File ‹Tools/Function/partial_function.ML›
signature PARTIAL_FUNCTION =
sig
val init: string -> term -> term -> thm -> thm -> thm option -> Morphism.declaration
val mono_tac: Proof.context -> int -> tactic
val add_partial_function: string -> (binding * typ option * mixfix) list ->
Attrib.binding * term -> local_theory -> (term * thm) * local_theory
val add_partial_function_cmd: string -> (binding * string option * mixfix) list ->
Attrib.binding * string -> local_theory -> (term * thm) * local_theory
val transform_result: morphism -> term * thm -> term * thm
end;
structure Partial_Function: PARTIAL_FUNCTION =
struct
open Function_Lib
datatype setup_data = Setup_Data of
{fixp: term,
mono: term,
fixp_eq: thm,
fixp_induct: thm,
fixp_induct_user: thm option};
fun transform_setup_data phi (Setup_Data {fixp, mono, fixp_eq, fixp_induct, fixp_induct_user}) =
let
val term = Morphism.term phi;
val thm = Morphism.thm phi;
in
Setup_Data
{fixp = term fixp, mono = term mono, fixp_eq = thm fixp_eq,
fixp_induct = thm fixp_induct, fixp_induct_user = Option.map thm fixp_induct_user}
end;
structure Modes = Generic_Data
(
type T = setup_data Symtab.table;
val empty = Symtab.empty;
fun merge data = Symtab.merge (K true) data;
)
fun init mode fixp mono fixp_eq fixp_induct fixp_induct_user phi =
let
val data' =
Setup_Data
{fixp = fixp, mono = mono, fixp_eq = fixp_eq,
fixp_induct = fixp_induct, fixp_induct_user = fixp_induct_user}
|> transform_setup_data (phi $> Morphism.trim_context_morphism);
in Modes.map (Symtab.update (mode, data')) end;
val known_modes = Symtab.keys o Modes.get o Context.Proof;
fun lookup_mode ctxt =
Symtab.lookup (Modes.get (Context.Proof ctxt))
#> Option.map (transform_setup_data (Morphism.transfer_morphism' ctxt));
fun rewrite_with_asm_tac ctxt k =
Subgoal.FOCUS (fn {context = ctxt', prems, ...} =>
Local_Defs.unfold0_tac ctxt' [nth prems k]) ctxt;
fun dest_case ctxt t =
case strip_comb t of
(Const (case_comb, _), args) =>
(case Ctr_Sugar.ctr_sugar_of_case ctxt case_comb of
NONE => NONE
| SOME {case_thms, ...} =>
let
val lhs = Thm.prop_of (hd case_thms)
|> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst;
val arity = length (snd (strip_comb lhs));
val conv = funpow (length args - arity) Conv.fun_conv
(Conv.rewrs_conv (map mk_meta_eq case_thms));
in
SOME (nth args (arity - 1), conv)
end)
| _ => NONE;
val split_cases_tac = Subgoal.FOCUS_PARAMS (fn {context = ctxt, ...} =>
SUBGOAL (fn (t, i) => case t of
_ $ (_ $ Abs (_, _, body)) =>
(case dest_case ctxt body of
NONE => no_tac
| SOME (arg, conv) =>
let open Conv in
if Term.is_open arg then no_tac
else ((DETERM o Induct.cases_tac ctxt false [[SOME arg]] NONE [])
THEN_ALL_NEW (rewrite_with_asm_tac ctxt 0)
THEN_ALL_NEW eresolve_tac ctxt @{thms thin_rl}
THEN_ALL_NEW (CONVERSION
(params_conv ~1 (fn ctxt' =>
arg_conv (arg_conv (abs_conv (K conv) ctxt'))) ctxt))) i
end)
| _ => no_tac) 1);
fun mono_tac ctxt =
K (Local_Defs.unfold0_tac ctxt [@{thm curry_def}])
THEN' (TRY o REPEAT_ALL_NEW
(resolve_tac ctxt (rev (Named_Theorems.get ctxt \<^named_theorems>‹partial_function_mono›))
ORELSE' split_cases_tac ctxt));
fun apply_inst ctxt t u =
let
val thy = Proof_Context.theory_of ctxt;
val T = domain_type (fastype_of t);
val T' = fastype_of u;
val subst = Sign.typ_match thy (T, T') Vartab.empty
handle Type.TYPE_MATCH => raise TYPE ("apply_inst", [T, T'], [t, u])
in
map_types (Envir.norm_type subst) t $ u
end;
fun head_conv cv ct =
if can Thm.dest_comb ct then Conv.fun_conv (head_conv cv) ct else cv ct;
fun curry_const (A, B, C) =
Const (\<^const_name>‹Product_Type.curry›,
[HOLogic.mk_prodT (A, B) --> C, A, B] ---> C);
fun mk_curry f =
case fastype_of f of
Type ("fun", [Type (_, [S, T]), U]) =>
curry_const (S, T, U) $ f
| T => raise TYPE ("mk_curry", [T], [f]);
fun curry_n arity = funpow (arity - 1) mk_curry;
fun uncurry_n arity = funpow (arity - 1) HOLogic.mk_case_prod;
val curry_uncurry_ss =
simpset_of (put_simpset HOL_basic_ss \<^context>
addsimps [@{thm Product_Type.curry_case_prod}, @{thm Product_Type.case_prod_curry}])
val split_conv_ss =
simpset_of (put_simpset HOL_basic_ss \<^context>
addsimps [@{thm Product_Type.split_conv}]);
val curry_K_ss =
simpset_of (put_simpset HOL_basic_ss \<^context>
addsimps [@{thm Product_Type.curry_K}]);
fun specialize_fixp_induct ctxt fT fT_uc curry uncurry mono_thm f_def rule =
let
val ([P], ctxt') = Variable.variant_fixes ["P"] ctxt
val P_inst = Abs ("f", fT_uc, Free (P, fT --> HOLogic.boolT) $ (curry $ Bound 0))
in
rule
|> infer_instantiate' ctxt
((map o Option.map) (Thm.cterm_of ctxt) [SOME uncurry, NONE, SOME curry, NONE, SOME P_inst])
|> Tactic.rule_by_tactic ctxt
(Simplifier.simp_tac (put_simpset curry_uncurry_ss ctxt) 3
THEN Simplifier.simp_tac (put_simpset curry_K_ss ctxt) 4
THEN Simplifier.full_simp_tac (put_simpset curry_uncurry_ss ctxt) 5)
|> (fn thm => thm OF [mono_thm, f_def])
|> Conv.fconv_rule (Conv.concl_conv ~1
(Raw_Simplifier.rewrite ctxt false [mk_meta_eq @{thm Product_Type.curry_case_prod}]))
|> singleton (Variable.export ctxt' ctxt)
end
fun mk_curried_induct args ctxt inst_rule =
let
val cert = Thm.cterm_of ctxt
val ([P], ctxt') = Variable.variant_fixes ["P"] ctxt
val split_paired_all_conv =
Conv.every_conv (replicate (length args - 1) (Conv.rewr_conv @{thm split_paired_all}))
val split_params_conv =
Conv.params_conv ~1 (fn _ => Conv.implies_conv split_paired_all_conv Conv.all_conv)
val (P_var, x_var) =
Thm.prop_of inst_rule |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop
|> strip_comb |> apsnd hd
|> apply2 dest_Var
val P_rangeT = range_type (snd P_var)
val PT = map (snd o dest_Free) args ---> P_rangeT
val x_inst = cert (foldl1 HOLogic.mk_prod args)
val P_inst = cert (uncurry_n (length args) (Free (P, PT)))
val inst_rule' = inst_rule
|> Tactic.rule_by_tactic ctxt
(Simplifier.simp_tac (put_simpset curry_uncurry_ss ctxt) 4
THEN Simplifier.simp_tac (put_simpset curry_uncurry_ss ctxt) 3
THEN CONVERSION (split_params_conv ctxt
then_conv (Conv.forall_conv (K split_paired_all_conv) ctxt)) 3)
|> Thm.instantiate (TVars.empty, Vars.make2 (P_var, P_inst) (x_var, x_inst))
|> Simplifier.full_simplify (put_simpset split_conv_ss ctxt)
|> singleton (Variable.export ctxt' ctxt)
in
inst_rule'
end;
fun transform_result phi (t, thm) = (Morphism.term phi t, Morphism.thm phi thm);
fun gen_add_partial_function prep mode fixes_raw eqn_raw lthy =
let
val setup_data = the (lookup_mode lthy mode)
handle Option.Option => error (cat_lines ["Unknown mode " ^ quote mode ^ ".",
"Known modes are " ^ commas_quote (known_modes lthy) ^ "."]);
val Setup_Data {fixp, mono, fixp_eq, fixp_induct, fixp_induct_user} = setup_data;
val ((fixes, [(eq_abinding, eqn)]), _) = prep fixes_raw [(eqn_raw, [], [])] lthy;
val ((_, plain_eqn), args_ctxt) = Variable.focus NONE eqn lthy;
val ((f_binding, fT), mixfix) = the_single fixes;
val f_bname = Binding.name_of f_binding;
fun note_qualified (name, thms) =
Local_Theory.note ((derived_name f_binding name, []), thms) #> snd
val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop plain_eqn);
val (head, args) = strip_comb lhs;
val argnames = map (fst o dest_Free) args;
val F = fold_rev lambda (head :: args) rhs;
val arity = length args;
val (aTs, bTs) = chop arity (binder_types fT);
val tupleT = foldl1 HOLogic.mk_prodT aTs;
val fT_uc = tupleT :: bTs ---> body_type fT;
val f_uc = Var ((f_bname, 0), fT_uc);
val x_uc = Var (("x", 1), tupleT);
val uncurry = lambda head (uncurry_n arity head);
val curry = lambda f_uc (curry_n arity f_uc);
val F_uc =
lambda f_uc (uncurry_n arity (F $ curry_n arity f_uc));
val mono_goal = apply_inst lthy mono (lambda f_uc (F_uc $ f_uc $ x_uc))
|> HOLogic.mk_Trueprop
|> Logic.all x_uc;
val mono_thm = Goal.prove_internal lthy [] (Thm.cterm_of lthy mono_goal)
(K (mono_tac lthy 1))
val inst_mono_thm = Thm.forall_elim (Thm.cterm_of lthy x_uc) mono_thm
val f_def_rhs = curry_n arity (apply_inst lthy fixp F_uc);
val f_def_binding =
Thm.make_def_binding (Config.get lthy Function_Lib.function_internals) f_binding
val ((f, (_, f_def)), lthy') =
Local_Theory.define ((f_binding, mixfix), ((f_def_binding, []), f_def_rhs)) lthy;
val eqn = HOLogic.mk_eq (list_comb (f, args),
Term.betapplys (F, f :: args))
|> HOLogic.mk_Trueprop;
val unfold =
(infer_instantiate' lthy' (map (SOME o Thm.cterm_of lthy') [uncurry, F, curry]) fixp_eq
OF [inst_mono_thm, f_def])
|> Tactic.rule_by_tactic lthy' (Simplifier.simp_tac (put_simpset curry_uncurry_ss lthy') 1);
val specialized_fixp_induct =
specialize_fixp_induct lthy' fT fT_uc curry uncurry inst_mono_thm f_def fixp_induct
|> Drule.rename_bvars' (map SOME (f_bname :: f_bname :: argnames));
val mk_raw_induct =
infer_instantiate' args_ctxt
((map o Option.map) (Thm.cterm_of args_ctxt) [SOME uncurry, NONE, SOME curry])
#> mk_curried_induct args args_ctxt
#> singleton (Variable.export args_ctxt lthy')
#> (fn thm => infer_instantiate' lthy'
[SOME (Thm.cterm_of lthy' F)] thm OF [inst_mono_thm, f_def])
#> Drule.rename_bvars' (map SOME (f_bname :: argnames @ argnames))
val raw_induct = Option.map mk_raw_induct fixp_induct_user
val rec_rule =
let open Conv in
Goal.prove lthy' (map (fst o dest_Free) args) [] eqn (fn _ =>
CONVERSION ((arg_conv o arg1_conv o head_conv o rewr_conv) (mk_meta_eq unfold)) 1
THEN resolve_tac lthy' @{thms refl} 1)
end;
val ((_, [rec_rule']), lthy'') = lthy' |> Local_Theory.note (eq_abinding, [rec_rule])
in
lthy''
|> Spec_Rules.add Binding.empty Spec_Rules.equational_recdef [f] [rec_rule']
|> note_qualified ("simps", [rec_rule'])
|> note_qualified ("mono", [mono_thm])
|> (case raw_induct of NONE => I | SOME thm => note_qualified ("raw_induct", [thm]))
|> note_qualified ("fixp_induct", [specialized_fixp_induct])
|> pair (f, rec_rule')
end;
val add_partial_function = gen_add_partial_function Specification.check_multi_specs;
val add_partial_function_cmd = gen_add_partial_function Specification.read_multi_specs;
val mode = \<^keyword>‹(› |-- Parse.name --| \<^keyword>‹)›;
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹partial_function› "define partial function"
((mode -- (Parse.vars -- (Parse.where_ |-- Parse_Spec.simple_spec)))
>> (fn (mode, (vars, spec)) => add_partial_function_cmd mode vars spec #> #2));
end;