File ‹Tools/BNF/bnf_util.ML›
signature BNF_UTIL =
sig
include CTR_SUGAR_UTIL
include BNF_FP_REC_SUGAR_UTIL
val transfer_plugin: string
val unflatt: 'a list list list -> 'b list -> 'b list list list
val unflattt: 'a list list list list -> 'b list -> 'b list list list list
val mk_TFreess: int list -> Proof.context -> typ list list * Proof.context
val mk_Freesss: string -> typ list list list -> Proof.context ->
term list list list * Proof.context
val mk_Freessss: string -> typ list list list list -> Proof.context ->
term list list list list * Proof.context
val nonzero_string_of_int: int -> string
val binder_fun_types: typ -> typ list
val body_fun_type: typ -> typ
val strip_fun_type: typ -> typ list * typ
val strip_typeN: int -> typ -> typ list * typ
val mk_pred2T: typ -> typ -> typ
val mk_relT: typ * typ -> typ
val dest_relT: typ -> typ * typ
val dest_pred2T: typ -> typ * typ
val mk_sumT: typ * typ -> typ
val ctwo: term
val fst_const: typ -> term
val snd_const: typ -> term
val Id_const: typ -> term
val enforce_type: Proof.context -> (typ -> typ) -> typ -> term -> term
val mk_Ball: term -> term -> term
val mk_Bex: term -> term -> term
val mk_Card_order: term -> term
val mk_Field: term -> term
val mk_Gr: term -> term -> term
val mk_Grp: term -> term -> term
val mk_UNION: term -> term -> term
val mk_Union: typ -> term
val mk_card_binop: string -> (typ * typ -> typ) -> term -> term -> term
val mk_card_of: term -> term
val mk_card_order: term -> term
val mk_cexp: term -> term -> term
val mk_cinfinite: term -> term
val mk_regularCard: term -> term
val mk_collect: term list -> typ -> term
val mk_converse: term -> term
val mk_conversep: term -> term
val mk_cprod: term -> term -> term
val mk_csum: term -> term -> term
val mk_dir_image: term -> term -> term
val mk_eq_onp: term -> term
val mk_rel_fun: term -> term -> term
val mk_image: term -> term
val mk_in: term list -> term list -> typ -> term
val mk_inj: term -> term
val mk_leq: term -> term -> term
val mk_ordLeq: term -> term -> term
val mk_ordLess: term -> term -> term
val mk_rel_comp: term * term -> term
val mk_rel_compp: term * term -> term
val mk_vimage2p: term -> term -> term
val mk_reflp: term -> term
val mk_symp: term -> term
val mk_transp: term -> term
val mk_union: term * term -> term
val mk_nthN: int -> term -> int -> term
val prod_injectD: thm
val prod_injectI: thm
val ctrans: thm
val id_apply: thm
val meta_mp: thm
val meta_spec: thm
val o_apply: thm
val rel_funD: thm
val rel_funI: thm
val set_mp: thm
val set_rev_mp: thm
val subset_UNIV: thm
val mk_conjIN: int -> thm
val mk_nthI: int -> int -> thm
val mk_nth_conv: int -> int -> thm
val mk_ordLeq_csum: int -> int -> thm -> thm
val mk_ordLess_csum: int -> int -> thm -> thm
val mk_pointful: Proof.context -> thm -> thm
val mk_rel_funDN: int -> thm -> thm
val mk_rel_funDN_rotated: int -> thm -> thm
val mk_sym: thm -> thm
val mk_trans: thm -> thm -> thm
val mk_UnIN: int -> int -> thm
val mk_Un_upper: int -> int -> thm
val is_refl_bool: term -> bool
val is_refl: thm -> bool
val is_concl_refl: thm -> bool
val no_refl: thm list -> thm list
val no_reflexive: thm list -> thm list
val parse_type_args_named_constrained: (binding option * (string * string option)) list parser
val parse_map_rel_pred_bindings: (binding * binding * binding) parser
val typedef: binding * (string * sort) list * mixfix -> term ->
(binding * binding) option -> (Proof.context -> tactic) ->
local_theory -> (string * Typedef.info) * local_theory
end;
structure BNF_Util : BNF_UTIL =
struct
open Ctr_Sugar_Util
open BNF_FP_Rec_Sugar_Util
val transfer_plugin = Plugin_Name.declare_setup \<^binding>‹transfer›;
fun unfla0 xs = fold_map (fn _ => fn (c :: cs) => (c, cs)) xs;
fun unflat0 xss = fold_map unfla0 xss;
fun unflatt0 xsss = fold_map unflat0 xsss;
fun unflattt0 xssss = fold_map unflatt0 xssss;
fun unflatt xsss = fst o unflatt0 xsss;
fun unflattt xssss = fst o unflattt0 xssss;
val parse_type_arg_constrained =
Parse.type_ident -- Scan.option (\<^keyword>‹::› |-- Parse.!!! Parse.sort);
val parse_type_arg_named_constrained =
(Parse.reserved "dead" >> K NONE || parse_opt_binding_colon >> SOME) --
parse_type_arg_constrained;
val parse_type_args_named_constrained =
parse_type_arg_constrained >> (single o pair (SOME Binding.empty)) ||
\<^keyword>‹(› |-- Parse.!!! (Parse.list1 parse_type_arg_named_constrained --| \<^keyword>‹)›) ||
Scan.succeed [];
val parse_map_rel_pred_binding = Parse.name --| \<^keyword>‹:› -- Parse.binding;
val no_map_rel = (Binding.empty, Binding.empty, Binding.empty);
fun extract_map_rel_pred ("map", m) = (fn (_, r, p) => (m, r, p))
| extract_map_rel_pred ("rel", r) = (fn (m, _, p) => (m, r, p))
| extract_map_rel_pred ("pred", p) = (fn (m, r, _) => (m, r, p))
| extract_map_rel_pred (s, _) = error ("Unknown label " ^ quote s ^ " (expected \"map\" or \"rel\")");
val parse_map_rel_pred_bindings =
\<^keyword>‹for› |-- Scan.repeat parse_map_rel_pred_binding
>> (fn ps => fold extract_map_rel_pred ps no_map_rel)
|| Scan.succeed no_map_rel;
fun typedef (b, Ts, mx) set opt_morphs tac lthy =
let
val b' = fold_rev Binding.prefix_name (map (suffix "_" o fst) (Binding.path_of b)) b;
val default_bindings = Typedef.default_bindings (Binding.concealed b');
val bindings =
(case opt_morphs of
NONE => default_bindings
| SOME (Rep_name, Abs_name) =>
{Rep_name = Binding.concealed Rep_name,
Abs_name = Binding.concealed Abs_name,
type_definition_name = #type_definition_name default_bindings});
val ((name, info), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> Typedef.add_typedef {overloaded = false} (b', Ts, mx) set (SOME bindings) tac
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
in
((name, Typedef.transform_info phi info), lthy)
end;
fun nonzero_string_of_int 0 = ""
| nonzero_string_of_int n = string_of_int n;
val mk_TFreess = fold_map mk_TFrees;
fun mk_Freesss x Tsss = @{fold_map 2} mk_Freess (mk_names (length Tsss) x) Tsss;
fun mk_Freessss x Tssss = @{fold_map 2} mk_Freesss (mk_names (length Tssss) x) Tssss;
fun strip_typeN 0 T = ([], T)
| strip_typeN n (Type (\<^type_name>‹fun›, [T, T'])) = strip_typeN (n - 1) T' |>> cons T
| strip_typeN _ T = raise TYPE ("strip_typeN", [T], []);
fun strip_fun_type T = strip_typeN (num_binder_types T - 1) T;
val binder_fun_types = fst o strip_fun_type;
val body_fun_type = snd o strip_fun_type;
fun mk_pred2T T U = mk_predT [T, U];
val mk_relT = HOLogic.mk_setT o HOLogic.mk_prodT;
val dest_relT = HOLogic.dest_prodT o HOLogic.dest_setT;
val dest_pred2T = apsnd Term.domain_type o Term.dest_funT;
fun mk_sumT (LT, RT) = Type (\<^type_name>‹Sum_Type.sum›, [LT, RT]);
fun fst_const T = Const (\<^const_name>‹fst›, T --> fst (HOLogic.dest_prodT T));
fun snd_const T = Const (\<^const_name>‹snd›, T --> snd (HOLogic.dest_prodT T));
fun Id_const T = Const (\<^const_name>‹Id›, mk_relT (T, T));
fun enforce_type ctxt get_T T t =
Term.subst_TVars (tvar_subst (Proof_Context.theory_of ctxt) [get_T (fastype_of t)] [T]) t;
fun mk_converse R =
let
val RT = dest_relT (fastype_of R);
val RST = mk_relT (snd RT, fst RT);
in Const (\<^const_name>‹converse›, fastype_of R --> RST) $ R end;
fun mk_rel_comp (R, S) =
let
val RT = fastype_of R;
val ST = fastype_of S;
val RST = mk_relT (fst (dest_relT RT), snd (dest_relT ST));
in Const (\<^const_name>‹relcomp›, RT --> ST --> RST) $ R $ S end;
fun mk_Gr A f =
let val ((AT, BT), FT) = `dest_funT (fastype_of f);
in Const (\<^const_name>‹Gr›, HOLogic.mk_setT AT --> FT --> mk_relT (AT, BT)) $ A $ f end;
fun mk_conversep R =
let
val RT = dest_pred2T (fastype_of R);
val RST = mk_pred2T (snd RT) (fst RT);
in Const (\<^const_name>‹conversep›, fastype_of R --> RST) $ R end;
fun mk_rel_compp (R, S) =
let
val RT = fastype_of R;
val ST = fastype_of S;
val RST = mk_pred2T (fst (dest_pred2T RT)) (snd (dest_pred2T ST));
in Const (\<^const_name>‹relcompp›, RT --> ST --> RST) $ R $ S end;
fun mk_Grp A f =
let val ((AT, BT), FT) = `dest_funT (fastype_of f);
in Const (\<^const_name>‹Grp›, HOLogic.mk_setT AT --> FT --> mk_pred2T AT BT) $ A $ f end;
fun mk_image f =
let val (T, U) = dest_funT (fastype_of f);
in Const (\<^const_name>‹image›, (T --> U) --> HOLogic.mk_setT T --> HOLogic.mk_setT U) $ f end;
fun mk_Ball X f =
Const (\<^const_name>‹Ball›, fastype_of X --> fastype_of f --> HOLogic.boolT) $ X $ f;
fun mk_Bex X f =
Const (\<^const_name>‹Bex›, fastype_of X --> fastype_of f --> HOLogic.boolT) $ X $ f;
fun mk_UNION X f =
let
val (T, U) = dest_funT (fastype_of f);
in
Const (\<^const_name>‹Sup›, HOLogic.mk_setT U --> U)
$ (Const (\<^const_name>‹image›, (T --> U) --> fastype_of X --> HOLogic.mk_setT U) $ f $ X)
end;
fun mk_Union T =
Const (\<^const_name>‹Sup›, HOLogic.mk_setT (HOLogic.mk_setT T) --> HOLogic.mk_setT T);
val mk_union = HOLogic.mk_binop \<^const_name>‹sup›;
fun mk_Field r =
let val T = fst (dest_relT (fastype_of r));
in Const (\<^const_name>‹Field›, mk_relT (T, T) --> HOLogic.mk_setT T) $ r end;
fun mk_card_order bd =
let
val T = fastype_of bd;
val AT = fst (dest_relT T);
in
Const (\<^const_name>‹card_order_on›, HOLogic.mk_setT AT --> T --> HOLogic.boolT) $
HOLogic.mk_UNIV AT $ bd
end;
fun mk_Card_order bd =
let
val T = fastype_of bd;
val AT = fst (dest_relT T);
in
Const (\<^const_name>‹card_order_on›, HOLogic.mk_setT AT --> T --> HOLogic.boolT) $
mk_Field bd $ bd
end;
fun mk_cinfinite bd = Const (\<^const_name>‹cinfinite›, fastype_of bd --> HOLogic.boolT) $ bd;
fun mk_regularCard bd = Const (\<^const_name>‹regularCard›, fastype_of bd --> HOLogic.boolT) $ bd;
fun mk_ordLeq t1 t2 =
HOLogic.mk_mem (HOLogic.mk_prod (t1, t2),
Const (\<^const_name>‹ordLeq›, mk_relT (fastype_of t1, fastype_of t2)));
fun mk_ordLess t1 t2 =
HOLogic.mk_mem (HOLogic.mk_prod (t1, t2),
Const (\<^const_name>‹ordLess›, mk_relT (fastype_of t1, fastype_of t2)));
fun mk_card_of A =
let
val AT = fastype_of A;
val T = HOLogic.dest_setT AT;
in
Const (\<^const_name>‹card_of›, AT --> mk_relT (T, T)) $ A
end;
fun mk_dir_image r f =
let val (T, U) = dest_funT (fastype_of f);
in Const (\<^const_name>‹dir_image›, mk_relT (T, T) --> (T --> U) --> mk_relT (U, U)) $ r $ f end;
fun mk_rel_fun R S =
let
val ((RA, RB), RT) = `dest_pred2T (fastype_of R);
val ((SA, SB), ST) = `dest_pred2T (fastype_of S);
in Const (\<^const_name>‹rel_fun›, RT --> ST --> mk_pred2T (RA --> SA) (RB --> SB)) $ R $ S end;
fun mk_in As sets T =
let
fun in_single set A =
let val AT = fastype_of A;
in Const (\<^const_name>‹less_eq›, AT --> AT --> HOLogic.boolT) $ (set $ Free ("x", T)) $ A end;
in
if null sets then HOLogic.mk_UNIV T
else HOLogic.mk_Collect ("x", T, foldr1 (HOLogic.mk_conj) (map2 in_single sets As))
end;
fun mk_inj t =
let val T as Type (\<^type_name>‹fun›, [domT, _]) = fastype_of t in
Const (\<^const_name>‹inj_on›, T --> HOLogic.mk_setT domT --> HOLogic.boolT) $ t
$ HOLogic.mk_UNIV domT
end;
fun mk_leq t1 t2 =
Const (\<^const_name>‹less_eq›, fastype_of t1 --> fastype_of t2 --> HOLogic.boolT) $ t1 $ t2;
fun mk_card_binop binop typop t1 t2 =
let
val (T1, relT1) = `(fst o dest_relT) (fastype_of t1);
val (T2, relT2) = `(fst o dest_relT) (fastype_of t2);
in Const (binop, relT1 --> relT2 --> mk_relT (typop (T1, T2), typop (T1, T2))) $ t1 $ t2 end;
val mk_csum = mk_card_binop \<^const_name>‹csum› mk_sumT;
val mk_cprod = mk_card_binop \<^const_name>‹cprod› HOLogic.mk_prodT;
val mk_cexp = mk_card_binop \<^const_name>‹cexp› (op --> o swap);
val ctwo = \<^term>‹ctwo›;
fun mk_collect xs defT =
let val T = (case xs of [] => defT | (x::_) => fastype_of x);
in Const (\<^const_name>‹collect›, HOLogic.mk_setT T --> T) $ (HOLogic.mk_set T xs) end;
fun mk_vimage2p f g =
let
val (T1, T2) = dest_funT (fastype_of f);
val (U1, U2) = dest_funT (fastype_of g);
in
Const (\<^const_name>‹vimage2p›,
(T1 --> T2) --> (U1 --> U2) --> mk_pred2T T2 U2 --> mk_pred2T T1 U1) $ f $ g
end;
fun mk_eq_onp P =
let
val T = domain_type (fastype_of P);
in
Const (\<^const_name>‹eq_onp›, (T --> HOLogic.boolT) --> T --> T --> HOLogic.boolT) $ P
end;
fun mk_pred name R =
Const (name, uncurry mk_pred2T (fastype_of R |> dest_pred2T) --> HOLogic.boolT) $ R;
val mk_reflp = mk_pred \<^const_abbrev>‹reflp›;
val mk_symp = mk_pred \<^const_abbrev>‹symp›;
val mk_transp = mk_pred \<^const_abbrev>‹transp›;
fun mk_trans thm1 thm2 = trans OF [thm1, thm2];
fun mk_sym thm = thm RS sym;
val prod_injectD = @{thm iffD1[OF prod.inject]};
val prod_injectI = @{thm iffD2[OF prod.inject]};
val ctrans = @{thm ordLeq_transitive};
val id_apply = @{thm id_apply};
val meta_mp = @{thm meta_mp};
val meta_spec = @{thm meta_spec};
val o_apply = @{thm o_apply};
val rel_funD = @{thm rel_funD};
val rel_funI = @{thm rel_funI};
val set_mp = @{thm set_mp};
val set_rev_mp = @{thm set_rev_mp};
val subset_UNIV = @{thm subset_UNIV};
fun mk_pointful ctxt thm = unfold_thms ctxt [o_apply] (thm RS fun_cong);
fun mk_nthN 1 t 1 = t
| mk_nthN _ t 1 = HOLogic.mk_fst t
| mk_nthN 2 t 2 = HOLogic.mk_snd t
| mk_nthN n t m = mk_nthN (n - 1) (HOLogic.mk_snd t) (m - 1);
fun mk_nth_conv n m =
let
fun thm b = if b then @{thm fstI} else @{thm sndI};
fun mk_nth_conv _ 1 1 = refl
| mk_nth_conv _ _ 1 = @{thm fst_conv}
| mk_nth_conv _ 2 2 = @{thm snd_conv}
| mk_nth_conv b _ 2 = @{thm snd_conv} RS thm b
| mk_nth_conv b n m = mk_nth_conv false (n - 1) (m - 1) RS thm b;
in mk_nth_conv (not (m = n)) n m end;
fun mk_nthI 1 1 = @{thm TrueE[OF TrueI]}
| mk_nthI n m = fold (curry op RS) (replicate (m - 1) @{thm sndI})
(if m = n then @{thm TrueE[OF TrueI]} else @{thm fstI});
fun mk_conjIN 1 = @{thm TrueE[OF TrueI]}
| mk_conjIN n = mk_conjIN (n - 1) RSN (2, conjI);
fun mk_ordLeq_csum 1 1 thm = thm
| mk_ordLeq_csum _ 1 thm = @{thm ordLeq_transitive} OF [thm, @{thm ordLeq_csum1}]
| mk_ordLeq_csum 2 2 thm = @{thm ordLeq_transitive} OF [thm, @{thm ordLeq_csum2}]
| mk_ordLeq_csum n m thm = @{thm ordLeq_transitive} OF
[mk_ordLeq_csum (n - 1) (m - 1) thm, @{thm ordLeq_csum2[OF Card_order_csum]}];
fun mk_ordLess_csum 1 1 thm = thm
| mk_ordLess_csum _ 1 thm = @{thm ordLess_ordLeq_trans} OF [thm, @{thm ordLeq_csum1}]
| mk_ordLess_csum 2 2 thm = @{thm ordLess_ordLeq_trans} OF [thm, @{thm ordLeq_csum2}]
| mk_ordLess_csum n m thm = @{thm ordLess_ordLeq_trans} OF
[mk_ordLess_csum (n - 1) (m - 1) thm, @{thm ordLeq_csum2[OF Card_order_csum]}];
fun mk_rel_funDN n = funpow n (fn thm => thm RS rel_funD);
val mk_rel_funDN_rotated = rotate_prems ~1 oo mk_rel_funDN;
local
fun mk_Un_upper' 0 = @{thm subset_refl}
| mk_Un_upper' 1 = @{thm Un_upper1}
| mk_Un_upper' k = Library.foldr (op RS o swap)
(replicate (k - 1) @{thm subset_trans[OF Un_upper1]}, @{thm Un_upper1});
in
fun mk_Un_upper 1 1 = @{thm subset_refl}
| mk_Un_upper n 1 = mk_Un_upper' (n - 2) RS @{thm subset_trans[OF Un_upper1]}
| mk_Un_upper n m = mk_Un_upper' (n - m) RS @{thm subset_trans[OF Un_upper2]};
end;
local
fun mk_UnIN' 0 = @{thm UnI2}
| mk_UnIN' m = mk_UnIN' (m - 1) RS @{thm UnI1};
in
fun mk_UnIN 1 1 = @{thm TrueE[OF TrueI]}
| mk_UnIN n 1 = Library.foldr1 (op RS o swap) (replicate (n - 1) @{thm UnI1})
| mk_UnIN n m = mk_UnIN' (n - m)
end;
fun is_refl_bool t =
op aconv (HOLogic.dest_eq t)
handle TERM _ => false;
fun is_refl_prop t =
op aconv (HOLogic.dest_eq (HOLogic.dest_Trueprop t))
handle TERM _ => false;
val is_refl = is_refl_prop o Thm.prop_of;
val is_concl_refl = is_refl_prop o Logic.strip_imp_concl o Thm.prop_of;
val no_refl = filter_out is_refl;
val no_reflexive = filter_out Thm.is_reflexive;
end;