File ‹Tools/BNF/bnf_tactics.ML›
signature BNF_TACTICS =
sig
include CTR_SUGAR_GENERAL_TACTICS
val fo_rtac: Proof.context -> thm -> int -> tactic
val clean_blast_tac: Proof.context -> int -> tactic
val subst_tac: Proof.context -> int list option -> thm list -> int -> tactic
val subst_asm_tac: Proof.context -> int list option -> thm list -> int -> tactic
val mk_rotate_eq_tac: Proof.context -> (int -> tactic) -> thm -> thm -> thm -> thm -> ''a list ->
''a list -> int -> tactic
val mk_pointfree2: Proof.context -> thm -> thm
val mk_Abs_bij_thm: Proof.context -> thm -> thm -> thm
val mk_Abs_inj_thm: thm -> thm
val mk_map_comp_id_tac: Proof.context -> thm -> tactic
val mk_map_cong0_tac: Proof.context -> int -> thm -> tactic
val mk_map_cong0L_tac: Proof.context -> int -> thm -> thm -> tactic
end;
structure BNF_Tactics : BNF_TACTICS =
struct
open Ctr_Sugar_General_Tactics
open BNF_Util
fun fo_rtac ctxt thm = Subgoal.FOCUS (fn {concl, context = ctxt, ...} =>
let
val concl_pat = Drule.strip_imp_concl (Thm.cprop_of thm)
val insts = Thm.first_order_match (concl_pat, concl)
in
rtac ctxt (Drule.instantiate_normalize insts thm) 1
end
handle Pattern.MATCH => no_tac) ctxt;
fun clean_blast_tac ctxt = blast_tac (put_claset (claset_of \<^theory_context>‹HOL›) ctxt);
fun subst_tac ctxt = EqSubst.eqsubst_tac ctxt o the_default [0];
fun subst_asm_tac ctxt = EqSubst.eqsubst_asm_tac ctxt o the_default [0];
fun mk_pointfree2 ctxt thm = thm
|> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq
|> apply2 (dest_comb #> apsnd (dest_comb #> fst) #> HOLogic.mk_comp)
|> mk_Trueprop_eq
|> (fn goal => Goal.prove_sorry ctxt [] [] goal
(K (rtac ctxt ext 1 THEN
unfold_thms_tac ctxt ([o_apply, unfold_thms ctxt [o_apply] (mk_sym thm)]) THEN
rtac ctxt refl 1)))
|> Thm.close_derivation ⌂;
fun mk_Abs_inj_thm inj = inj OF (replicate 2 @{thm UNIV_I});
fun mk_Abs_bij_thm ctxt Abs_inj_thm surj = rule_by_tactic ctxt ((rtac ctxt surj THEN' etac ctxt exI) 1)
(Abs_inj_thm RS @{thm bijI'});
fun mk_flatten_assoc_tac ctxt refl_tac trans assoc cong = rtac ctxt trans 1 THEN
REPEAT_DETERM (CHANGED ((FIRST' [rtac ctxt trans THEN' rtac ctxt assoc, rtac ctxt cong THEN' refl_tac]) 1)) THEN
refl_tac 1;
fun mk_rotate_eq_tac ctxt refl_tac trans assoc com cong =
let
fun gen_tac [] [] = K all_tac
| gen_tac [x] [y] = if x = y then refl_tac else error "mk_rotate_eq_tac: different lists"
| gen_tac (x :: xs) (y :: ys) = if x = y
then rtac ctxt cong THEN' refl_tac THEN' gen_tac xs ys
else rtac ctxt trans THEN' rtac ctxt com THEN'
K (mk_flatten_assoc_tac ctxt refl_tac trans assoc cong) THEN'
gen_tac (xs @ [x]) (y :: ys)
| gen_tac _ _ = error "mk_rotate_eq_tac: different lists";
in
gen_tac
end;
fun mk_map_comp_id_tac ctxt map_comp0 =
(rtac ctxt trans THEN' rtac ctxt map_comp0 THEN' K (unfold_thms_tac ctxt @{thms comp_id}) THEN' rtac ctxt refl) 1;
fun mk_map_cong0_tac ctxt m map_cong0 =
EVERY' [rtac ctxt mp, rtac ctxt map_cong0,
CONJ_WRAP' (K (rtac ctxt @{thm ballI} THEN' Goal.assume_rule_tac ctxt)) (1 upto m)] 1;
fun mk_map_cong0L_tac ctxt passive map_cong0 map_id =
(rtac ctxt trans THEN' rtac ctxt map_cong0 THEN' EVERY' (replicate passive (rtac ctxt refl))) 1 THEN
REPEAT_DETERM (EVERY' [rtac ctxt trans, etac ctxt @{thm bspec}, assume_tac ctxt,
rtac ctxt sym, rtac ctxt @{thm id_apply}] 1) THEN
rtac ctxt map_id 1;
end;