File ‹Tools/BNF/bnf_lift.ML›
signature BNF_LIFT =
sig
datatype lift_bnf_option =
Plugins_Option of Proof.context -> Plugin_Name.filter
| No_Warn_Wits
| No_Warn_Transfer
val copy_bnf:
(((lift_bnf_option list * (binding option * (string * sort option)) list) *
string) * thm option) * (binding * binding * binding) ->
local_theory -> local_theory
val copy_bnf_cmd:
(((lift_bnf_option list * (binding option * (string * string option)) list) *
string) * (Facts.ref * Token.src list) option) * (binding * binding * binding) ->
local_theory -> local_theory
val lift_bnf:
((((lift_bnf_option list * (binding option * (string * sort option)) list) *
string) * term list option) * thm list option) * (binding * binding * binding) ->
({context: Proof.context, prems: thm list} -> tactic) list ->
local_theory -> local_theory
val lift_bnf_cmd:
((((lift_bnf_option list * (binding option * (string * string option)) list) *
string) * string list) * (Facts.ref * Token.src list) list option) *
(binding * binding * binding) -> local_theory -> Proof.state
end
structure BNF_Lift : BNF_LIFT =
struct
open Ctr_Sugar_Tactics
open BNF_Util
open BNF_Comp
open BNF_Def
datatype lift_bnf_option =
Plugins_Option of Proof.context -> Plugin_Name.filter
| No_Warn_Wits
| No_Warn_Transfer;
datatype equiv_thm = Typedef | Quotient of thm
fun last2 [x, y] = ([], (x, y))
| last2 (x :: xs) = last2 xs |>> (fn y => x :: y)
| last2 [] = raise Match;
fun strip3 thm = (case Term.strip_comb (HOLogic.dest_Trueprop (Thm.prop_of thm)) of
(_, [x1, x2, x3]) => (x1, x2, x3)
| _ => error "strip3: wrong number of arguments");
val mk_Free = yield_singleton o mk_Frees;
fun TWICE t = t THEN' t;
fun prove lthy fvars tm tac =
Goal.prove_sorry lthy (map (fst o dest_Free) fvars) [] tm (fn {context, ...} => tac context);
fun mk_relT aT bT = aT --> bT --> HOLogic.boolT;
fun mk_relcompp r s = let
val (rT, sT) = apply2 fastype_of (r, s);
val ((xT, _), (_, zTs)) = apply2 dest_funT (rT, sT);
val T = rT --> sT --> mk_relT xT (fst (dest_funT zTs));
in Const (@{const_name relcompp}, T) $ r $ s end;
val mk_OO = fold_rev mk_relcompp;
fun mk_MaybeT T = mk_sumT (HOLogic.unitT, T);
fun mk_Nothing T = BNF_FP_Util.mk_Inl T HOLogic.unit;
val Just_const = BNF_FP_Util.Inr_const HOLogic.unitT;
fun mk_Just tm = Just_const (fastype_of tm) $ tm;
fun Maybe_map_const T =
let val (xT, yT) = dest_funT T in
Const (@{const_name map_sum}, (HOLogic.unitT --> HOLogic.unitT) --> T --> mk_MaybeT xT --> mk_MaybeT yT) $
HOLogic.id_const HOLogic.unitT
end;
fun mk_Maybe_map tm = Maybe_map_const (fastype_of tm) $ tm;
fun fromJust_const T = Const (@{const_name sum.projr}, mk_MaybeT T --> T)
fun rel_Maybe_const T U =
Const (@{const_name rel_sum}, (HOLogic.unitT --> HOLogic.unitT --> HOLogic.boolT) -->
(T --> U --> HOLogic.boolT) --> mk_MaybeT T --> mk_MaybeT U --> HOLogic.boolT) $
HOLogic.eq_const HOLogic.unitT
fun set_Maybe_const T = Const (@{const_name Basic_BNFs.setr}, mk_MaybeT T --> HOLogic.mk_setT T)
fun Inf_const T = Const (@{const_name Inf}, HOLogic.mk_setT T --> T);
fun Image_const T =
let
val relT = HOLogic.mk_setT (HOLogic.mk_prodT (T, T));
val setT = HOLogic.mk_setT T;
in Const (@{const_name Image}, relT --> setT --> setT) end;
fun bot_const T = Const (@{const_name bot}, T);
fun mk_insert x S =
Const (@{const_name Set.insert}, fastype_of x --> fastype_of S --> fastype_of S) $ x $ S;
fun mk_vimage f s =
let val (xT, yT) = dest_funT (fastype_of f) in
Const (@{const_name vimage}, (xT --> yT) --> HOLogic.mk_setT yT --> HOLogic.mk_setT xT) $ f $ s
end;
fun mk_case_prod (x, y) tm = let
val ((x, xT), (y, yT)) = apply2 dest_Free (x, y);
val prodT = HOLogic.mk_prodT (xT, yT);
in HOLogic.Collect_const prodT $ (Const (@{const_name case_prod},
(xT --> yT --> HOLogic.boolT) --> prodT --> HOLogic.boolT) $ absfree (x, xT)
(absfree (y, yT) tm)) end;
fun mk_Trueprop_implies (ps, c) =
Logic.list_implies (map HOLogic.mk_Trueprop ps, HOLogic.mk_Trueprop c);
fun mk_Collect (v, tm) = let val (n, T) = dest_Free v in
HOLogic.mk_Collect (n, T, tm) end;
fun prepare_wits is_quotient RepT wits opts alphas wits_F var_as var_as' sets lthy =
let
fun binder_types_until_eq V T =
let
fun strip (TU as Type ("fun", [T, U])) = if V = TU then [] else T :: strip U
| strip T = if V = T then [] else
error ("Bad type for witness: " ^ quote (Syntax.string_of_typ lthy T));
in strip T end;
val Iwits = the_default wits_F (Option.map (map (`(map (fn T =>
find_index (fn U => T = U) alphas) o binder_types_until_eq RepT o fastype_of))) wits);
val Iwits = if is_quotient then
let
val subsumed_Iwits =
filter (fn (J, _) => exists (fn (I, _) => subset (op =) (I, J)) wits_F) Iwits;
val _ = if null subsumed_Iwits orelse exists (fn No_Warn_Wits => true | _ => false) opts
then ()
else
let
val (suffix1, suffix2, be) =
(if length subsumed_Iwits = 1 then ("", "", "is") else ("s", "es", "are"))
in
subsumed_Iwits
|> map (Syntax.pretty_typ lthy o fastype_of o snd)
|> Pretty.big_list
("The following type" ^ suffix1 ^ " of nonemptiness witness" ^ suffix2 ^
" of the raw type's BNF " ^ be ^ " subsumed by the existing raw witnesses:")
|> (fn pt => Pretty.chunks [pt,
Pretty.para ("You do not need to lift these subsumed witnesses.")])
|> Pretty.string_of
|> warning
end;
in
filter_out (fn (J, _) => exists (fn (I, _) => subset (op =) (I, J)) wits_F) Iwits
end
else Iwits;
val wit_goals = maps (BNF_Def.mk_wit_goals var_as var_as' sets) Iwits;
val lost_wits = if is_quotient then [] else
filter_out (fn (J, _) => exists (fn (I, _) => subset (op =) (I, J)) Iwits) wits_F;
val _ =
if null lost_wits orelse exists (fn No_Warn_Wits => true | _ => false) opts then ()
else
let
val what = (if is_quotient then "quotient type" else "typedef");
val (suffix1, suffix2, be) =
(if length lost_wits = 1 then ("", "", "was") else ("s", "es", "were"))
in
lost_wits
|> map (Syntax.pretty_typ lthy o fastype_of o snd)
|> Pretty.big_list
("The following type" ^ suffix1 ^ " of nonemptiness witness" ^ suffix2 ^
" of the raw type's BNF " ^ be ^ " lost:")
|> (fn pt => Pretty.chunks [pt,
Pretty.para ("You can specify a liftable witness (e.g., a term of one of the above types\
\ that satisfies the " ^ what ^ "'s invariant)\
\ using the annotation [wits: <term>].")])
|> Pretty.string_of
|> warning
end;
in (Iwits, wit_goals) end;
fun mk_transfer_thms' bnf_F bnf_G name consts Tss crel_def pcrel_def defs lthy = let
val live = length (#alphas Tss);
val (pcrel_tm, crel_tm) = apply2 (Thm.prop_of #> Logic.dest_equals #> fst #> head_of)
(pcrel_def, crel_def);
val (var_Qs, var_Rs) = lthy
|> fold Variable.declare_typ (#alphas Tss @ Library.union (op =) (#deads Tss) (#Ds0 Tss))
|> mk_Frees "Q" (map2 mk_relT (#alphas Tss) (#betas Tss))
||>> mk_Frees "R" (map2 mk_relT (#gammas Tss) (#deltas Tss))
|> fst;
val (args_raw, (rep, abs)) = pcrel_tm
|> fastype_of
|> binder_types
|> last2;
val thy = Proof_Context.theory_of lthy;
val tyenv_match = Vartab.empty
|> Sign.typ_match thy ((rep, #rep Tss))
|> Sign.typ_match thy ((abs, #abs Tss));
val args = map (Envir.subst_type tyenv_match) args_raw;
val (pcrel_a, pcrel_b) = Envir.subst_term (tyenv_match, Vartab.empty) pcrel_tm
|> `(subst_atomic_types (#alphas Tss @ #betas Tss ~~ #gammas Tss @ #deltas Tss));
val tyenv_match = Vartab.empty |> Sign.typ_match thy
(crel_tm |> fastype_of |> binder_types |> tl |> hd, #abs Tss);
val crel_b = Envir.subst_term (tyenv_match, Vartab.empty) crel_tm
|> subst_atomic_types (#alphas Tss ~~ #betas Tss);
val crel_d = subst_atomic_types (#betas Tss ~~ #deltas Tss) crel_b;
val dead_args = map binder_types args
|> map (fn [T,U] => if T = U then SOME T else NONE | _ => NONE);
val parametrize = let
fun go (SOME T :: dTs) tms = HOLogic.eq_const T :: go dTs tms
| go (_ :: dTs) (tm :: tms) = tm :: go dTs tms
| go (_ :: dTs) tms = go dTs tms
| go _ _ = [];
in go dead_args end;
val pcrel_Qs = list_comb (pcrel_b, parametrize var_Qs);
val pcrel_Rs = list_comb (pcrel_a, parametrize var_Rs);
val Ds0 = Library.union (op =) (maps the_list dead_args) (#Ds0 Tss);
val permute_Ds = (mk_T_of_bnf Ds0 (#betas Tss) bnf_G, nth (binder_types (type_of pcrel_Qs)) 1)
|> apply2 (fn Type (_, Ts) => Ts | _ => []) |> op~~ |> typ_subst_atomic;
val Ds0 = map permute_Ds Ds0;
val rel_sets_Q = @{map 3} (fn aT => fn bT => fn Q =>
mk_rel 1 [aT] [bT] @{term rel_set} $ Q) (#alphas Tss) (#betas Tss) var_Qs;
fun mk_pcr_rel_F_eq Ts Us pcrel vs crel =
let
val thm = HOLogic.mk_Trueprop (HOLogic.mk_eq (pcrel, mk_relcompp (list_comb
(mk_rel_of_bnf (#deads Tss) (Ts Tss) (Us Tss) bnf_F, vs)) crel));
fun tac ctxt = unfold_thms_tac ctxt (pcrel_def :: defs @ @{thm id_bnf_apply} ::
Transfer.get_relator_eq ctxt) THEN (HEADGOAL (rtac ctxt refl))
in prove lthy vs thm tac |> mk_abs_def end;
val pcr_rel_F_eqs =
[mk_pcr_rel_F_eq #alphas #betas pcrel_Qs var_Qs crel_b,
mk_pcr_rel_F_eq #gammas #deltas pcrel_Rs var_Rs crel_d];
fun mk_transfer_rel' i tm =
let
fun go T' (n, q) = case T' of
Type ("fun", [T as Type ("fun", _), U]) =>
go U (n+1, q) |>> mk_rel_fun (fst (go T (n, q)))
| Type ("fun", [T, U]) =>
go T (n, q) |-> (fn x => fn st => go U st |>> mk_rel_fun x)
| Type (@{type_name bool}, _) => (HOLogic.eq_const HOLogic.boolT, (n, q))
| Type (@{type_name set}, _) => (nth rel_sets_Q n, (n, q))
| Type _ => (if q then pcrel_Qs else pcrel_Rs, (n, not q))
| TFree _ => (nth (if q then var_Qs else var_Rs) n, (n, not q))
| _ => raise Match
in go (fastype_of tm) (i, true) |> fst end;
fun prove_transfer_thm' i vars new_tm const =
let
val tm = HOLogic.mk_Trueprop (mk_transfer_rel' i new_tm $ #raw const $ new_tm);
val tac = (fn ctxt => unfold_thms_tac ctxt (pcr_rel_F_eqs @ [crel_def]) THEN
#tac const {Rs=var_Rs,Qs=var_Qs} ctxt);
in prove lthy vars tm tac end;
val prove_transfer_thm = prove_transfer_thm' 0;
val map_G = mk_map_of_bnf Ds0 (#betas Tss) (#deltas Tss) bnf_G;
val map_transfer = prove_transfer_thm (var_Qs @ var_Rs) map_G (#map consts);
val pred_G = mk_pred_of_bnf Ds0 (#betas Tss) bnf_G;
val pred_transfer = #pred consts |> Option.map (fn p =>
("pred", [prove_transfer_thm (var_Qs @ var_Rs) pred_G p]));
val rel_G = mk_rel_of_bnf Ds0 (#betas Tss) (#deltas Tss) bnf_G;
val rel_transfer = prove_transfer_thm (var_Qs @ var_Rs) rel_G (#rel consts);
val sets_G = mk_sets_of_bnf (replicate live Ds0) (replicate live (#betas Tss)) bnf_G;
fun mk_set_transfer i set_G raw tac = prove_transfer_thm' i var_Qs set_G {raw=raw, tac=tac};
val sets_transfer = @{map 4} mk_set_transfer
(0 upto (live-1)) sets_G (#raws (#sets consts)) (#tacs (#sets consts));
val transform = Morphism.thm (Morphism.thm_morphism "BNF" (unfold_thms lthy defs)) |> map;
val b = Binding.qualified_name name;
val qualify =
let val qs = Binding.path_of b;
in fold_rev (fn (s, mand) => Binding.qualify mand s) qs end;
fun mk_binding n = Binding.name (n ^ "_transfer_raw")
|> Binding.qualify true (Binding.name_of b) |> qualify;
val notes = [("map", [map_transfer]), ("rel", [rel_transfer])] @ the_list pred_transfer @
[("set", sets_transfer)] |> map (fn (n, thms) =>
((mk_binding n, []), [(transform thms, @{attributes [transfer_rule]})]));
in lthy |> Local_Theory.notes notes |> snd end;
fun mk_transfer_thms quiet bnf_F bnf_G name consts thm Tss defs lthy = let
fun mk_crel_def quot_thm =
(case thm of
Quotient equiv => @{thm Quotient_crel_quotient} OF [quot_thm, equiv]
| Typedef => hd ([quot_thm] RL @{thms Quotient_crel_typedef Quotient_crel_typecopy}));
fun no_quotient _ = [Pretty.para ("No quotient theorem has been registered for " ^
Binding.name_of (name_of_bnf bnf_G) ^ "."),
Pretty.para "Use setup_lifting to register a quotient or type definition theorem."];
fun wrong_quotient T lthy = [Pretty.para ("A wrong quotient theorem has been registered for " ^
Binding.name_of (name_of_bnf bnf_G) ^ "."),
Pretty.para ("Expected raw type " ^
Pretty.string_of (Syntax.pretty_typ lthy (T_of_bnf bnf_F)) ^
" but the quotient theorem has raw type " ^
Pretty.string_of (Syntax.pretty_typ lthy T) ^ "."),
Pretty.para "Use setup_lifting to register a different quotient or type definition theorem."];
fun pcr_why _ = [Pretty.para ("The pcr_" ^ Binding.name_of (name_of_bnf bnf_G) ^
" relator has not been defined.")];
fun warn_transfer why lthy =
(Pretty.para "The transfer theorems can't be generated:" :: why lthy)
|> Pretty.chunks |> Pretty.string_of |> warning |> K lthy;
fun maybe_warn_transfer why = not quiet ? warn_transfer why;
in
case Lifting_Info.lookup_quotients lthy name of
SOME {pcr_info, quot_thm} =>
(let
val crel_def = mk_crel_def quot_thm;
val rty = Lifting_Util.quot_thm_rty_qty quot_thm |> fst;
val thy = Proof_Context.theory_of lthy;
in
if Sign.typ_instance thy (rty, T_of_bnf bnf_F) then
(case pcr_info of
SOME {pcrel_def, ...} =>
mk_transfer_thms' bnf_F bnf_G name consts Tss crel_def pcrel_def defs lthy
| _ => maybe_warn_transfer pcr_why lthy)
else maybe_warn_transfer (wrong_quotient rty) lthy
end)
| _ => maybe_warn_transfer no_quotient lthy
end;
fun mk_typedef_transfer_tacs bnf_F bnf_G thms old_defs
map_raw rel_raw pred_raw sets_raw = let
val live = live_of_bnf bnf_G;
val Abs_G_inverse = @{thm type_definition.Abs_inverse} OF [#typedef thms];
val Rep_G = @{thm type_definition.Rep} OF [#typedef thms];
fun common_tac addefs tac = (fn _ => fn ctxt =>
HEADGOAL (EVERY' [SELECT_GOAL (unfold_thms_tac ctxt addefs),
REPEAT_DETERM o rtac ctxt rel_funI,
SELECT_GOAL (unfold_thms_tac ctxt @{thms o_apply}),
REPEAT_DETERM o eresolve_tac ctxt @{thms relcomppE exE conjE},
hyp_subst_tac ctxt]) THEN tac ctxt)
fun map_tac ctxt = (HEADGOAL o EVERY')
[rtac ctxt @{thm relcomppI},
etac ctxt (mk_rel_funDN (live+1) (map_transfer_of_bnf bnf_F)),
REPEAT_DETERM_N live o assume_tac ctxt,
SELECT_GOAL (unfold_thms_tac ctxt [Abs_G_inverse OF [#map_closed thms] OF [Rep_G]]),
REPEAT_DETERM o rtac ctxt refl];
val map_tac = common_tac [#map old_defs] map_tac;
fun rel_tac ctxt =
HEADGOAL (etac ctxt (mk_rel_funDN (live+2) (rel_transfer_of_bnf bnf_F)) THEN'
REPEAT_DETERM_N (live+1) o assume_tac ctxt);
val rel_tac = common_tac (#rel old_defs :: @{thms vimage2p_def}) rel_tac;
fun pred_tac ctxt =
HEADGOAL (etac ctxt (mk_rel_funDN (live+1) (pred_transfer_of_bnf bnf_F)) THEN'
REPEAT_DETERM_N live o (assume_tac ctxt));
val pred_tac = common_tac [#pred old_defs] pred_tac;
fun set_tac set_transfer_thm ctxt =
HEADGOAL (etac ctxt (rel_funD OF [set_transfer_thm]));
fun mk_set_tac set_def set_transfer = common_tac [set_def] (set_tac set_transfer);
val set_tacs = map2 mk_set_tac (#sets old_defs) (set_transfer_of_bnf bnf_F);
in {map={raw=map_raw,tac=map_tac},rel={raw=rel_raw,tac=rel_tac},
sets={raws=sets_raw,tacs=set_tacs},pred=SOME{raw=pred_raw,tac=pred_tac}} end;
fun typedef_bnf thm wits specs map_b rel_b pred_b opts lthy =
let
val plugins =
get_first (fn Plugins_Option f => SOME (f lthy) | _ => NONE) (rev opts)
|> the_default Plugin_Name.default_filter;
val (Rep_G, Abs_G, F) = strip3 thm;
val typ_Abs_G = dest_funT (fastype_of Abs_G);
val RepT = fst typ_Abs_G;
val AbsT = snd typ_Abs_G;
val AbsT_name = fst (dest_Type AbsT);
val tvs = AbsT |> dest_Type |> snd |> map (fst o dest_TVar);
val alpha0s = map (TFree o snd) specs;
val _ = length tvs = length alpha0s orelse
error ("Expected " ^ string_of_int (length tvs) ^ " type argument(s) to " ^ quote AbsT_name);
val subst = subst_TVars (tvs ~~ alpha0s);
val typ_subst = typ_subst_TVars (tvs ~~ alpha0s);
val Rep_G = subst Rep_G;
val Abs_G = subst Abs_G;
val F = subst F;
val RepT = typ_subst RepT;
val AbsT = typ_subst AbsT;
fun flatten_tyargs Ass =
map dest_TFree alpha0s
|> filter (fn T => exists (fn Ts => member op= Ts T) Ass);
val Ds0 = filter (is_none o fst) specs |> map snd;
val ((bnf_F, (deads, alphas)), ((_, unfolds), lthy)) =
bnf_of_typ true Dont_Inline (Binding.qualify true AbsT_name) flatten_tyargs []
Ds0 RepT ((empty_comp_cache, empty_unfolds), lthy);
val set_bs =
map (fn T => find_index (fn U => T = U) alpha0s) alphas
|> map (the_default Binding.empty o fst o nth specs);
val _ = (case alphas of [] => error "No live variables" | _ => ());
val defs = #map_unfolds unfolds @ flat (#set_unfoldss unfolds) @ #rel_unfolds unfolds @ #pred_unfolds unfolds;
val live = length alphas;
val sorts = map Type.sort_of_atyp alphas;
val names_lthy = fold Variable.declare_typ (alphas @ Library.union (op =) deads (map TFree Ds0)) lthy;
val (((alphas', betas), betas'), names_lthy) = names_lthy
|> mk_TFrees' sorts
||>> mk_TFrees' sorts
||>> mk_TFrees' sorts;
val map_F = mk_map_of_bnf deads alphas betas bnf_F;
val (typ_fs, typ_aF) = fastype_of map_F |> strip_typeN live ||> domain_type;
val typ_pairs = map HOLogic.mk_prodT (alphas ~~ alphas');
val typ_subst_pair = typ_subst_atomic (alphas ~~ typ_pairs);
val typ_pair = typ_subst_pair RepT;
val subst_b = subst_atomic_types (alphas ~~ betas);
val subst_a' = subst_atomic_types (alphas ~~ alphas');
val subst_pair = subst_atomic_types (alphas ~~ typ_pairs);
val aF_set = F;
val aF_set' = subst_a' F;
val pairF_set = subst_pair F;
val bF_set = subst_b F;
val map_F_fst = mk_map_of_bnf deads typ_pairs alphas bnf_F;
val map_F_snd = mk_map_of_bnf deads typ_pairs alphas' bnf_F
val sets_F_pairs = mk_sets_of_bnf (replicate live deads) (replicate live typ_pairs) bnf_F
val wits_F = mk_wits_of_bnf
(replicate (nwits_of_bnf bnf_F) deads)
(replicate (nwits_of_bnf bnf_F) alphas) bnf_F;
val (var_fs, names_lthy) = mk_Frees "f" typ_fs names_lthy;
val (var_x, names_lthy) = mk_Frees "x" [typ_aF] names_lthy |>> the_single;
val mem_x = HOLogic.mk_Trueprop (HOLogic.mk_mem (var_x, aF_set));
val map_f = list_comb (map_F, var_fs);
val mem_map = HOLogic.mk_Trueprop (HOLogic.mk_mem (map_f $ var_x, bF_set));
val imp_map = Logic.mk_implies (mem_x, mem_map);
val map_closed_F = fold_rev Logic.all var_fs (Logic.all var_x imp_map);
val (var_z, names_lthy) = mk_Free "z" typ_pair names_lthy;
val (var_z', names_lthy) = mk_Free "z'" typ_pair names_lthy;
val (pairs, names_lthy) = mk_Frees "tmp" typ_pairs names_lthy;
fun mk_map mfs f z = Term.list_comb (mfs, map (fst o Term.strip_comb o f) pairs) $ z;
fun mk_set var = map (fn t => t $ var) sets_F_pairs;
val (map_fst', map_fst) = apply2 (mk_map map_F_fst HOLogic.mk_fst) (var_z', var_z);
val (map_snd', map_snd) = apply2 (mk_map map_F_snd HOLogic.mk_snd) (var_z', var_z);
val mem_map_fst = HOLogic.mk_Trueprop (HOLogic.mk_mem (map_fst, aF_set));
val mem_map_snd = HOLogic.mk_Trueprop (HOLogic.mk_mem (map_snd, aF_set'));
val ex_conj = foldr1 HOLogic.mk_conj (map2 mk_leq (mk_set var_z') (mk_set var_z) @
[HOLogic.mk_eq (map_fst', map_fst), HOLogic.mk_eq (map_snd', map_snd)]);
val zip_concl = HOLogic.mk_Trueprop (mk_Bex pairF_set (absfree (dest_Free var_z') ex_conj));
val zip_closed_F = Logic.all var_z (Logic.list_implies ([mem_map_fst, mem_map_snd], zip_concl));
val (var_as, names_lthy) = mk_Frees "a" alphas names_lthy;
val (var_bs, _) = mk_Frees "a" alphas names_lthy;
val sets = mk_sets_of_bnf (replicate live deads) (replicate live alphas) bnf_F;
val (Iwits, wit_goals) =
prepare_wits false RepT wits opts alphas wits_F var_as var_bs sets lthy;
val wit_closed_Fs =
Iwits |> map (fn (I, wit_F) =>
let
val vars = map (nth var_as) I;
val wit_a = list_comb (wit_F, vars);
in fold_rev Logic.all vars (HOLogic.mk_Trueprop (HOLogic.mk_mem (wit_a, aF_set))) end);
val goals = [map_closed_F, zip_closed_F] @ wit_closed_Fs @
(case wits of NONE => [] | _ => wit_goals);
fun after_qed ([map_closed_thm] :: [zip_closed_thm] :: wit_thmss) lthy =
let
val (wit_closed_thms, wit_thms) =
(case wits of
NONE => (map the_single wit_thmss, wit_thms_of_bnf bnf_F)
| _ => chop (length wit_closed_Fs) (map the_single wit_thmss))
val Abs_Gb = subst_b Abs_G;
val map_G = fold_rev lambda var_fs
(HOLogic.mk_comp (HOLogic.mk_comp (Abs_Gb, map_f), Rep_G));
val map_raw = fold_rev lambda var_fs map_f;
val sets_F = mk_sets_of_bnf (replicate live deads) (replicate live alphas) bnf_F;
val sets_G = map (fn set_F => HOLogic.mk_comp (set_F, Rep_G)) sets_F;
val bd_F = mk_bd_of_bnf deads alphas bnf_F;
val bd_G = bd_F;
val rel_F = mk_rel_of_bnf deads alphas betas bnf_F;
val (typ_Rs, _) = strip_typeN live (fastype_of rel_F);
val (var_Rs, names_lthy) = mk_Frees "R" typ_Rs lthy;
val Rep_Gb = subst_b Rep_G;
val rel_G = fold_rev absfree (map dest_Free var_Rs)
(mk_vimage2p Rep_G Rep_Gb $ list_comb (rel_F, var_Rs));
val rel_raw = fold_rev absfree (map dest_Free var_Rs) (list_comb (rel_F, var_Rs));
val pred_F = mk_pred_of_bnf deads alphas bnf_F;
val (typ_Ps, _) = strip_typeN live (fastype_of pred_F);
val (var_Ps, names_lthy) = mk_Frees "P" typ_Ps names_lthy;
val pred_G = fold_rev absfree (map dest_Free var_Ps)
(HOLogic.mk_comp (list_comb (pred_F, var_Ps), Rep_G));
val pred_raw = fold_rev absfree (map dest_Free var_Ps) (list_comb (pred_F, var_Ps));
val (var_as, _) = mk_Frees "a" alphas names_lthy;
val wits_G =
map (fn (I, wit_F) =>
let
val vs = map (nth var_as) I;
in fold_rev absfree (map dest_Free vs) (Abs_G $ (list_comb (wit_F, vs))) end)
Iwits;
val Rep_thm = thm RS @{thm type_definition.Rep};
val Abs_inverse_thm = thm RS @{thm type_definition.Abs_inverse};
val Abs_inject_thm = thm RS @{thm type_definition.Abs_inject};
val Rep_cases_thm = thm RS @{thm type_definition.Rep_cases};
val Rep_inverse_thm = thm RS @{thm type_definition.Rep_inverse};
fun map_id0_tac ctxt =
HEADGOAL (EVERY' [rtac ctxt ext,
SELECT_GOAL (unfold_thms_tac ctxt [map_id0_of_bnf bnf_F, id_apply, o_apply,
Rep_inverse_thm]),
rtac ctxt refl]);
fun map_comp0_tac ctxt =
HEADGOAL (EVERY' [rtac ctxt ext,
SELECT_GOAL (unfold_thms_tac ctxt [map_comp0_of_bnf bnf_F, o_apply,
Rep_thm RS (map_closed_thm RS Abs_inverse_thm)]),
rtac ctxt refl]);
fun map_cong0_tac ctxt =
HEADGOAL (EVERY' ([SELECT_GOAL (unfold_thms_tac ctxt [o_apply]),
rtac ctxt (([Rep_thm RS map_closed_thm, Rep_thm RS map_closed_thm] MRS
Abs_inject_thm) RS iffD2),
rtac ctxt (map_cong0_of_bnf bnf_F)] @ replicate live (Goal.assume_rule_tac ctxt)));
val set_map0s_tac =
map (fn set_map => fn ctxt =>
HEADGOAL (EVERY' [rtac ctxt ext,
SELECT_GOAL (unfold_thms_tac ctxt [set_map, o_apply,
Rep_thm RS (map_closed_thm RS Abs_inverse_thm)]),
rtac ctxt refl]))
(set_map_of_bnf bnf_F);
fun card_order_bd_tac ctxt = HEADGOAL (rtac ctxt (bd_card_order_of_bnf bnf_F));
fun cinfinite_bd_tac ctxt = HEADGOAL (rtac ctxt (bd_cinfinite_of_bnf bnf_F));
fun regularCard_bd_tac ctxt = HEADGOAL (rtac ctxt (bd_regularCard_of_bnf bnf_F));
val set_bds_tac =
map (fn set_bd => fn ctxt =>
HEADGOAL (EVERY' [SELECT_GOAL (unfold_thms_tac ctxt [o_apply]), rtac ctxt set_bd]))
(set_bd_of_bnf bnf_F);
fun le_rel_OO_tac ctxt =
HEADGOAL (EVERY' [rtac ctxt @{thm vimage2p_relcompp_mono},
rtac ctxt ((rel_OO_of_bnf bnf_F RS sym) RS @{thm ord_eq_le_trans}),
rtac ctxt @{thm order_refl}]);
fun rel_OO_Grp_tac ctxt =
HEADGOAL (EVERY' ([SELECT_GOAL (REPEAT_DETERM (HEADGOAL (rtac ctxt ext))),
SELECT_GOAL (unfold_thms_tac ctxt [@{thm OO_Grp_alt}, mem_Collect_eq,
o_apply, @{thm vimage2p_def}, in_rel_of_bnf bnf_F, Bex_def, mem_Collect_eq]),
rtac ctxt iffI,
SELECT_GOAL (REPEAT_DETERM (HEADGOAL (eresolve_tac ctxt [exE, conjE]))),
forward_tac ctxt
[zip_closed_thm OF (replicate 2 (Rep_thm RSN (2, @{thm ssubst_mem})))],
assume_tac ctxt,
SELECT_GOAL (REPEAT_DETERM (HEADGOAL (eresolve_tac ctxt [bexE, conjE]))),
etac ctxt Rep_cases_thm,
hyp_subst_tac ctxt,
SELECT_GOAL (REPEAT_DETERM (HEADGOAL (rtac ctxt exI))),
rtac ctxt conjI] @
replicate live
(EVERY' [TRY o rtac ctxt conjI, etac ctxt @{thm order_trans}, assume_tac ctxt]) @
[SELECT_GOAL (REPEAT_DETERM (HEADGOAL (rtac ctxt conjI))),
REPEAT_DETERM_N 2 o EVERY'
[rtac ctxt (trans OF [iffD2 OF [Abs_inject_thm OF
[map_closed_thm OF [Rep_thm], Rep_thm]], Rep_inverse_thm]),
etac ctxt trans, assume_tac ctxt],
SELECT_GOAL (REPEAT_DETERM (HEADGOAL (eresolve_tac ctxt [exE, conjE]))),
rtac ctxt exI,
rtac ctxt conjI] @
replicate (live-1) (rtac ctxt conjI THEN' assume_tac ctxt) @
[assume_tac ctxt,
rtac ctxt conjI,
REPEAT_DETERM_N 2 o EVERY'
[rtac ctxt (iffD1 OF [Abs_inject_thm OF [map_closed_thm OF [Rep_thm], Rep_thm]]),
etac ctxt (Rep_inverse_thm RS sym RSN (2, trans))]]));
fun pred_set_tac ctxt =
HEADGOAL (EVERY'
[rtac ctxt (pred_set_of_bnf bnf_F RS @{thm arg_cong[of _ _ "λf. f ∘ _"]} RS trans),
SELECT_GOAL (unfold_thms_tac ctxt (@{thms Ball_comp_iff conj_comp_iff})),
rtac ctxt refl]);
fun wit_tac ctxt =
HEADGOAL (EVERY'
(map (fn thm => (EVERY'
[SELECT_GOAL (unfold_thms_tac ctxt (o_apply ::
(wit_closed_thms RL [Abs_inverse_thm]))),
dtac ctxt thm, assume_tac ctxt]))
wit_thms));
val tactics = [map_id0_tac, map_comp0_tac, map_cong0_tac] @ set_map0s_tac @
[card_order_bd_tac, cinfinite_bd_tac, regularCard_bd_tac] @ set_bds_tac @
[le_rel_OO_tac, rel_OO_Grp_tac, pred_set_tac];
val (bnf_G, lthy) = bnf_def Dont_Inline (user_policy Note_Some) true I
tactics wit_tac NONE map_b rel_b pred_b set_bs
(((((((Binding.empty, AbsT), map_G), sets_G), bd_G), wits_G), SOME rel_G), SOME pred_G)
lthy;
val old_defs =
{sets = set_defs_of_bnf bnf_G, map = map_def_of_bnf bnf_G, rel = rel_def_of_bnf bnf_G,
pred = pred_def_of_bnf bnf_G};
val unfold_morphism = Morphism.thm_morphism "BNF" (unfold_thms lthy defs);
val (bnf_G, lthy) = morph_bnf_defs unfold_morphism bnf_G
|> (fn bnf => note_bnf_defs bnf lthy);
val quiet = exists (fn No_Warn_Transfer => true | _ => false) opts;
val transfer_consts = mk_typedef_transfer_tacs bnf_F bnf_G
{map_closed=map_closed_thm,typedef=thm} old_defs map_raw rel_raw pred_raw sets_F;
in
lthy |> BNF_Def.register_bnf plugins AbsT_name bnf_G |>
mk_transfer_thms quiet bnf_F bnf_G AbsT_name transfer_consts Typedef
{abs=typ_subst_atomic (alphas ~~ alphas') AbsT, rep=RepT, Ds0=map TFree Ds0,
deads = deads, alphas=alphas, betas=alphas', gammas=betas, deltas=betas'} defs
end
| after_qed _ _ = raise Match;
in
(goals, after_qed, defs, lthy)
end;
fun mk_quotient_transfer_tacs bnf_F Tss live qthms thms set_F'_thmss old_defs
inst_REL_pos_distrI map_raw rel_raw sets_raw = let
fun common_tac ctxt addefs = unfold_thms_tac ctxt (#REL qthms :: addefs) THEN
(REPEAT_DETERM o HEADGOAL) (rtac ctxt rel_funI);
val map_F_transfer = map_transfer_of_bnf bnf_F |> mk_rel_funDN (live+1);
fun map_transfer_q _ ctxt =
common_tac ctxt (#map old_defs :: @{thms o_def}) THEN
(HEADGOAL o EVERY') [REPEAT_DETERM o eresolve_tac ctxt @{thms relcomppE},
rtac ctxt @{thm relcomppI[rotated]}, hyp_subst_tac ctxt THEN' EVERY'
(map (rtac ctxt) [#rel_abs qthms, #map_F_rsp thms, (#rep_abs_rsp qthms), (#reflp qthms)]),
hyp_subst_tac ctxt, rtac ctxt map_F_transfer, REPEAT_DETERM_N (live+1) o assume_tac ctxt];
val rel_F_maps = rel_map_of_bnf bnf_F;
val rel_F_map_iffD2s = map (fn thm => thm RS @{thm iffD2}) rel_F_maps;
fun inst_REL_pos_distrI_order_refls vs aTs bTs ctxt = inst_REL_pos_distrI live vs aTs bTs ctxt
OF (replicate (live+1) asm_rl @ replicate live @{thm order_refl});
fun rel_transfer_q {Qs, Rs} ctxt = EVERY
[common_tac ctxt [#rel old_defs, @{thm vimage2p_def}],
HEADGOAL (rtac ctxt iffI),
(REPEAT_DETERM o ALLGOALS)
(eresolve_tac ctxt @{thms exE conjE relcomppE} ORELSE' hyp_subst_tac ctxt),
(HEADGOAL o EVERY')
[REPEAT_DETERM o dtac ctxt @{thm rel_fun_rel_OO1},
rtac ctxt (inst_REL_pos_distrI 0 (map mk_conversep Qs) (#betas Tss) (#alphas Tss) ctxt),
rtac ctxt @{thm relcomppI},
rtac ctxt (#symp qthms),
rtac ctxt (#map_F_rsp thms),
rtac ctxt (#rep_abs_rsp qthms),
rtac ctxt (#reflp qthms),
rtac ctxt @{thm relcomppI},
rtac ctxt (rel_flip_of_bnf bnf_F RS @{thm iffD1}),
rtac ctxt (nth rel_F_map_iffD2s 0),
rtac ctxt (nth rel_F_map_iffD2s 1),
etac ctxt (#rel_monoD_rotated thms)],
(REPEAT_DETERM_N live o HEADGOAL o EVERY')
[rtac ctxt @{thm predicate2I},
rtac ctxt @{thm conversepI},
rtac ctxt @{thm Basic_BNFs.rel_sum_simps(4)[THEN iffD2]},
etac ctxt @{thm conversepI}],
(HEADGOAL o EVERY')
[rtac ctxt (inst_REL_pos_distrI_order_refls Rs (#gammas Tss) (#deltas Tss) ctxt),
(SELECT_GOAL o REPEAT_DETERM o HEADGOAL) (etac ctxt @{thm relcomppI}),
rtac ctxt @{thm relcomppI[rotated]},
rtac ctxt (#map_F_rsp thms),
rtac ctxt (#rep_abs_rsp qthms OF [#reflp qthms]),
SELECT_GOAL (unfold_thms_tac ctxt (@{thms rel_sum_simps} @ rel_F_maps)),
assume_tac ctxt],
(REPEAT_DETERM_N (2*live) o HEADGOAL)
(rtac ctxt @{thm rel_sum_eq2_nonempty} ORELSE' rtac ctxt @{thm rel_sum_eq3_nonempty}),
(REPEAT_DETERM_N live)
(unfold_thms_tac ctxt @{thms sum.rel_compp[symmetric] eq_OO} THEN
HEADGOAL (etac ctxt @{thm sum.rel_mono[OF order_refl]})),
(HEADGOAL o EVERY')
[(SELECT_GOAL o REPEAT_DETERM o HEADGOAL) (dtac ctxt @{thm rel_fun_rel_OO2}),
rtac ctxt (inst_REL_pos_distrI 0 Qs (#alphas Tss) (#betas Tss) ctxt),
rtac ctxt @{thm relcomppI},
rtac ctxt (#reflp qthms),
rtac ctxt @{thm relcomppI},
rtac ctxt (nth rel_F_map_iffD2s 0),
rtac ctxt (nth rel_F_map_iffD2s 1),
etac ctxt (#rel_monoD_rotated thms)],
(REPEAT_DETERM_N live o HEADGOAL o EVERY')
[rtac ctxt @{thm predicate2I}, rtac ctxt @{thm rel_sum.intros(2)}, assume_tac ctxt],
(HEADGOAL o EVERY')
[rtac ctxt
(inst_REL_pos_distrI_order_refls (map mk_conversep Rs) (#deltas Tss) (#gammas Tss) ctxt),
rtac ctxt @{thm relcomppI},
etac ctxt (rotate_prems 1 (#transp qthms)),
rtac ctxt (#map_F_rsp thms),
rtac ctxt (#rep_abs_rsp qthms OF [#reflp qthms]),
etac ctxt @{thm relcomppI},
rtac ctxt @{thm relcomppI},
etac ctxt (#transp qthms),
rtac ctxt (#symp qthms),
rtac ctxt (#map_F_rsp thms),
rtac ctxt (#rep_abs_rsp qthms),
rtac ctxt (#reflp qthms),
rtac ctxt @{thm relcomppI[rotated]},
rtac ctxt (#reflp qthms),
rtac ctxt (rel_flip_of_bnf bnf_F RS @{thm iffD1}),
rtac ctxt (nth rel_F_map_iffD2s 0),
rtac ctxt (nth rel_F_map_iffD2s 1),
etac ctxt (#rel_monoD_rotated thms)],
(REPEAT_DETERM_N live o HEADGOAL o EVERY')
[rtac ctxt @{thm predicate2I},
rtac ctxt @{thm conversepI},
rtac ctxt @{thm rel_sum.intros(2)},
etac ctxt @{thm conversepI}],
(REPEAT_DETERM_N (2*live) o HEADGOAL)
(rtac ctxt @{thm rel_sum_eq2_nonempty} ORELSE' rtac ctxt @{thm rel_sum_eq3_nonempty}),
(REPEAT_DETERM_N live o EVERY)
[unfold_thms_tac ctxt @{thms sum.rel_compp[symmetric] eq_OO},
HEADGOAL (etac ctxt @{thm sum.rel_mono[OF order_refl]})]];
fun set_transfer_q set_G_def set_F'_thms _ ctxt =
let val set_F'_rsp = mk_rel_funDN 1 (#set_F'_respect set_F'_thms) in
common_tac ctxt (set_G_def :: @{thms o_def}) THEN
(HEADGOAL o EVERY')
[etac ctxt @{thm relcomppE}, hyp_subst_tac ctxt,
SELECT_GOAL (unfold_thms_tac ctxt
[set_F'_rsp OF [#rep_abs qthms] OF [#reflp qthms], @{thm rel_set_def}]),
dtac ctxt (#rel_F_rel_F' thms), rtac ctxt conjI] THEN
(REPEAT_DETERM_N 2 o HEADGOAL o EVERY')
[SELECT_GOAL (unfold_thms_tac ctxt [#rel_F'_set thms]),
REPEAT_DETERM o eresolve_tac ctxt [exE, conjE],
REPEAT_DETERM o dtac ctxt (mk_sym set_F'_rsp),
SELECT_GOAL (unfold_thms_tac ctxt [#set_map_F' set_F'_thms]),
rtac ctxt ballI, dtac ctxt @{thm equalityD1[THEN subsetD]}, assume_tac ctxt,
SELECT_GOAL (unfold_thms_tac ctxt @{thms image_iff}),
etac ctxt bexE, dtac ctxt set_mp, assume_tac ctxt,
SELECT_GOAL (unfold_thms_tac ctxt @{thms mem_Collect_eq case_prod_beta}),
rtac ctxt bexI, hyp_subst_tac ctxt, assume_tac ctxt, etac ctxt @{thm hypsubst},
etac ctxt @{thm imageI}, assume_tac ctxt]
end;
in
{map={raw=map_raw, tac=map_transfer_q},
rel={raw=rel_raw, tac=rel_transfer_q},
sets={raws=sets_raw,tacs=map2 set_transfer_q (#sets old_defs) set_F'_thmss},
pred=NONE}
end;
fun quotient_bnf (equiv_thm, quot_thm) wits specs map_b rel_b pred_b opts lthy =
let
val (equiv_rel, abs_G, rep_G) = strip3 quot_thm;
val (repT, absT) = dest_funT (fastype_of abs_G);
val absT_name = fst (dest_Type absT);
val tvs = map (fst o dest_TVar) (snd (dest_Type absT));
val _ = length tvs = length specs orelse
error ("Expected " ^ string_of_int (length tvs) ^
" type argument" ^ (if (length tvs) = 1 then "" else "s") ^ " to " ^ quote absT_name);
val alpha0s = map (TFree o snd) specs;
val typ_subst = typ_subst_TVars (tvs ~~ alpha0s);
val (repT, absT) = apply2 typ_subst (repT, absT);
val Ds0 = filter (is_none o fst) specs |> map snd;
fun flatten_tyargs Ass =
map dest_TFree alpha0s |> filter (fn T => exists (fn Ts => member op= Ts T) Ass);
val ((bnf_F, (deads, alphas)), ((_, unfolds), lthy)) =
bnf_of_typ true Dont_Inline (Binding.qualify true absT_name) flatten_tyargs
[] Ds0 repT ((empty_comp_cache, empty_unfolds), lthy);
val live = length alphas;
val _ = (if live = 0 then error "No live variables" else ());
val defs = #map_unfolds unfolds @ flat (#set_unfoldss unfolds) @ #rel_unfolds unfolds;
val set_bs =
map (fn T => find_index (fn U => T = U) alpha0s) alphas
|> map (the_default Binding.empty o fst o nth specs);
val subst = subst_TVars (tvs ~~ alpha0s);
val (abs_G, rep_G) = apply2 subst (abs_G, rep_G);
val sorts = map Type.sort_of_atyp alphas;
val (((betas, gammas), deltas), names_lthy) = fold Variable.declare_typ (alphas @ deads) lthy
|> mk_TFrees' sorts
||>> mk_TFrees' sorts
||>> mk_TFrees' sorts;
fun subst_Ts tm Ts = subst_atomic_types (alphas ~~ Ts) tm;
val subst_b = subst_atomic_types (alphas ~~ betas);
val subst_Maybe = subst_atomic_types o map (swap o `mk_MaybeT);
val equiv_rel_a = subst equiv_rel;
val map_F = mk_map_of_bnf deads alphas betas bnf_F;
val rel_F_ab = mk_rel_of_bnf deads alphas betas bnf_F;
val rel_F_bc = mk_rel_of_bnf deads betas gammas bnf_F;
val rel_F_ac = mk_rel_of_bnf deads alphas gammas bnf_F;
val rel_F_option = mk_rel_of_bnf deads (map mk_MaybeT alphas) (map mk_MaybeT betas) bnf_F;
val sets_F = mk_sets_of_bnf (replicate live deads) (replicate live alphas) bnf_F;
val wits_F = mk_wits_of_bnf
(replicate (nwits_of_bnf bnf_F) deads) (replicate (nwits_of_bnf bnf_F) alphas) bnf_F;
val (typ_fs, (typ_aF, typ_bF)) = strip_typeN live (fastype_of map_F) ||> dest_funT;
val typ_MaybeF = typ_subst_atomic (alphas ~~ map mk_MaybeT alphas) typ_aF;
val typ_a_sets = map HOLogic.mk_setT alphas;
val typ_pairs = map HOLogic.mk_prodT (alphas ~~ betas);
val typ_fs' = map (typ_subst_atomic (map (swap o `mk_MaybeT) betas)) typ_fs;
val ((((((((((((((((((((((var_Ps, var_Qs), var_Rs), var_x), var_x'), var_y), var_y'), var_mx),
var_As), var_As'), var_Ss), var_Bs), var_as), var_as'), var_bs), var_bs'), var_R), var_fs),
var_fs'), var_gs), var_gs'), var_z), var_ts) = names_lthy
|> mk_Frees "Ps" (map2 mk_relT alphas betas)
||>> mk_Frees "Qs" (map2 mk_relT betas gammas)
||>> mk_Frees "Rs" (map2 mk_relT alphas gammas)
||>> mk_Free "x" typ_aF
||>> mk_Free "x'" typ_aF
||>> mk_Free "y" typ_bF
||>> mk_Free "y'" (typ_subst_atomic (alphas ~~ gammas) typ_aF)
||>> mk_Free "mx" typ_MaybeF
||>> mk_Frees "As" typ_a_sets
||>> mk_Frees "As'" typ_a_sets
||>> mk_Frees "Ss" (map HOLogic.mk_setT typ_a_sets)
||>> mk_Frees "Bs" (map HOLogic.mk_setT betas)
||>> mk_Frees "as" alphas
||>> mk_Frees "as'" alphas
||>> mk_Frees "bs" betas
||>> mk_Frees "bs'" betas
||>> mk_Free "R" (typ_aF --> typ_bF --> HOLogic.boolT)
||>> mk_Frees "fs" typ_fs
||>> mk_Frees "fs'" typ_fs'
||>> mk_Frees "gs" typ_fs
||>> mk_Frees "gs'" typ_fs'
||>> mk_Free "z" (typ_subst_atomic (alphas ~~ typ_pairs) typ_aF)
||>> mk_Frees "ts" typ_pairs
|> fst;
fun suffix tm s = (dest_Const tm |> fst |> Long_Name.base_name) ^ s;
fun define lthy b n tm =
let
val b = Binding.qualify true absT_name (Binding.qualified_name b);
val ((tm, (_, def)), (lthy, lthy_old)) = lthy
|> (snd o Local_Theory.begin_nested)
|> Local_Theory.define_internal (((Binding.concealed b, NoSyn), (Binding.empty_atts, tm)))
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val tm = Term.subst_atomic_types
(map (`(Morphism.typ phi)) (alphas @ betas @ gammas @ map TFree Ds0))
(Morphism.term phi tm);
val def = mk_unabs_def n (HOLogic.mk_obj_eq (Morphism.thm phi def));
in ({def=def, tm=tm}, lthy) end;
val (REL, lthy) = define lthy "REL" 0 equiv_rel_a;
val REL_def = sym RS eq_reflection OF [#def REL];
fun REL_rewr_all ctxt thm = Conv.fconv_rule
(Conv.top_conv (fn _ => Conv.try_conv (Conv.rewr_conv REL_def)) ctxt) thm;
val equiv_rel_a' = equiv_rel_a;
val equiv_rel_a = #tm REL;
val (equiv_rel_b, equiv_rel_c) = apply2 (subst_Ts equiv_rel_a) (betas, gammas);
fun compp_not_bot comp aT cT = let
val T = mk_relT aT cT;
val mk_eq = HOLogic.eq_const T;
in HOLogic.mk_not (mk_eq $ comp $ bot_const T) end;
val ab_comps = map2 mk_relcompp var_Ps var_Qs;
val ne_comps = (@{map 3} compp_not_bot ab_comps alphas gammas);
val ab_prem = foldr1 HOLogic.mk_conj ne_comps;
val REL_pos_distrI_tm = let
val le_relcomps = map2 mk_leq ab_comps var_Rs;
val assm = mk_OO [equiv_rel_a, list_comb (rel_F_ab, var_Ps),
equiv_rel_b, list_comb (rel_F_bc, var_Qs)] equiv_rel_c;
val concl = mk_OO [equiv_rel_a, list_comb (rel_F_ac, var_Rs)] equiv_rel_c;
in
mk_Trueprop_implies
([assm $ var_x $ var_y'] @ ne_comps @ le_relcomps, concl $ var_x $ var_y')
end;
val ab_concl = mk_leq
(mk_OO [list_comb (rel_F_ab, var_Ps), equiv_rel_b] (list_comb (rel_F_bc, var_Qs)))
(mk_OO [equiv_rel_a, list_comb (rel_F_ac, ab_comps)] (equiv_rel_c));
val ab_imp = Logic.mk_implies (apply2 HOLogic.mk_Trueprop (ab_prem, ab_concl));
val rel_pos_distr = fold_rev Logic.all (var_Ps @ var_Qs) ab_imp;
fun mk_rel_pairs rel = mk_case_prod (var_x, var_x') (rel $ var_x $ var_x')
val rel_pairs = mk_rel_pairs equiv_rel_a;
fun rel_Inter_from_set_F (var_A, var_S) set_F = let
val typ_aset = fastype_of var_A;
val inter_S = Inf_const typ_aset $ var_S;
fun not_empty x = let val ty = fastype_of x
in HOLogic.mk_not (HOLogic.mk_eq (x, bot_const ty)) end;
val prems = map (HOLogic.mk_Trueprop o not_empty) [var_S, inter_S];
val setF_sub_A = mk_in [var_A] [set_F] typ_aF;
val setF_sub_S = mk_in [inter_S] [set_F] typ_aF;
val lhs = Inf_const (HOLogic.mk_setT typ_aF) $ (mk_image
(absfree (dest_Free var_A) (Image_const typ_aF $ rel_pairs $ setF_sub_A)) $ var_S);
val rhs = Image_const typ_aF $ rel_pairs $ setF_sub_S;
val concl = HOLogic.mk_Trueprop (mk_leq lhs rhs);
in Logic.all var_S (Logic.list_implies (prems, concl)) end;
val rel_Inters = map2 rel_Inter_from_set_F (var_As ~~ var_Ss) sets_F;
val map_F_Just = let
val option_tys = map mk_MaybeT alphas;
val somes = map Just_const alphas;
in list_comb (subst_atomic_types (betas ~~ option_tys) map_F, somes) end;
fun mk_set_F'_tm typ_a set_F =
let
val typ_aset = HOLogic.mk_setT typ_a;
val sbind = mk_UNION (subst_Maybe alphas set_F $ var_mx) (set_Maybe_const typ_a);
val collection = HOLogic.Collect_const typ_MaybeF $ absfree (dest_Free var_mx)
(subst_Maybe alphas equiv_rel_a $ (map_F_Just $ var_x) $ var_mx);
val set_F'_tm = lambda var_x
(Inf_const typ_aset $ (mk_image (absfree (dest_Free var_mx) sbind) $ collection));
in
set_F'_tm
end
val sets = mk_sets_of_bnf (replicate live deads) (replicate live alphas) bnf_F;
val sets' = map2 mk_set_F'_tm alphas sets;
val (Iwits, wit_goals) =
prepare_wits true repT wits opts alphas wits_F var_as var_as' sets' lthy;
val goals = rel_pos_distr :: rel_Inters @
(case wits of NONE => [] | _ => wit_goals);
val plugins =
get_first (fn Plugins_Option f => SOME (f lthy) | _ => NONE) (rev opts) |>
the_default Plugin_Name.default_filter;
fun after_qed thmss lthy =
(case thmss of [rel_pos_distr_thm0] :: thmss =>
let
val equiv_thm' = REL_rewr_all lthy equiv_thm;
val rel_pos_distr_thm =
@{thm equivp_add_relconj} OF [equiv_thm', equiv_thm', rel_pos_distr_thm0];
val (rel_Inter_thms, wit_thmss) = apply2 (fn f => flat (f live thmss)) (take, drop);
val map_G = fold_rev lambda var_fs (HOLogic.mk_comp (HOLogic.mk_comp
(subst_Ts abs_G betas, list_comb (map_F, var_fs)), rep_G));
val map_raw = fold_rev lambda var_fs (list_comb (map_F, var_fs))
|> subst_atomic_types (betas ~~ gammas);
fun mk_set_G var_A set_F lthy = let
val typ_a = HOLogic.dest_setT (fastype_of var_A);
val set_F'_tm = mk_set_F'_tm typ_a set_F
val (set_F', lthy) = define lthy (suffix set_F "'") 1 set_F'_tm;
val set_G = HOLogic.mk_comp (#tm set_F', rep_G);
val F_in_tm = lambda var_A (mk_in [var_A] [set_F] typ_aF);
val (F_in, lthy) = define lthy (suffix set_F "_in") 1 F_in_tm;
val F_in' = lambda var_A (mk_vimage map_F_Just (Image_const typ_MaybeF $
subst_Maybe alphas rel_pairs $ (subst_Maybe alphas (#tm F_in) $ mk_insert
(mk_Nothing typ_a) (mk_image (Just_const typ_a) $ var_A))));
val (F_in', lthy) = define lthy (suffix set_F "_in'") 1 F_in';
in ((set_G, {set_F'=set_F', F_in=F_in, F_in'=F_in'}), lthy) end;
val ((sets_G, set_F'_aux_defs), lthy) =
@{fold_map 2} mk_set_G var_As sets_F lthy |>> split_list;
val bd_G = mk_bd_of_bnf deads alphas bnf_F;
val rel_Maybes = @{map 3} (fn v => fn aT => fn bT => rel_Maybe_const aT bT $ v);
val rel_F'_tm = let val equiv_equiv_rel_option = subst_Ts equiv_rel_a' o map mk_MaybeT in
mk_vimage2p map_F_Just (subst_atomic_types (alphas ~~ betas) map_F_Just) $
mk_OO [equiv_equiv_rel_option alphas, list_comb (rel_F_option, rel_Maybes var_Ps alphas betas)]
(equiv_equiv_rel_option betas) end;
val (rel_F', lthy) =
define lthy (suffix rel_F_ab "'") (live+2) (fold_rev lambda var_Ps rel_F'_tm);
val rel_G = fold_rev lambda var_Ps (mk_vimage2p rep_G (subst_Ts rep_G betas) $ rel_F'_tm);
val rel_raw = fold_rev lambda var_Ps rel_F'_tm
|> subst_atomic_types (betas ~~ gammas);
val bd_card_order = bd_card_order_of_bnf bnf_F;
val bd_cinfinite = bd_cinfinite_of_bnf bnf_F;
val bd_regularCard = bd_regularCard_of_bnf bnf_F;
val in_rel = in_rel_of_bnf bnf_F;
val map_F_comp = map_comp_of_bnf bnf_F;
val map_F_comp0 = map_comp0_of_bnf bnf_F;
val map_F_cong = map_cong_of_bnf bnf_F;
val map_F_id0 = map_id0_of_bnf bnf_F;
val map_F_id = map_id_of_bnf bnf_F;
val rel_conversep = rel_conversep_of_bnf bnf_F;
val rel_flip = rel_flip_of_bnf bnf_F;
val rel_eq_onp = rel_eq_onp_of_bnf bnf_F;
val rel_Grp = rel_Grp_of_bnf bnf_F;
val rel_OO = rel_OO_of_bnf bnf_F;
val rel_map = rel_map_of_bnf bnf_F;
val rel_refl_strong = rel_refl_strong_of_bnf bnf_F;
val set_bd_thms = set_bd_of_bnf bnf_F;
val set_map_thms = set_map_of_bnf bnf_F;
val map_F_respect = HOLogic.mk_Trueprop (fold_rev mk_rel_fun (map2 (fn xT => fn yT =>
HOLogic.eq_const (xT --> yT)) alphas betas @ [equiv_rel_a]) (equiv_rel_b) $ map_F $ map_F);
fun map_F_respect_tac ctxt =
HEADGOAL (EVERY'
[REPEAT_DETERM_N (live + 1) o rtac ctxt @{thm rel_funI}, hyp_subst_tac ctxt,
rtac ctxt (BNF_FP_Util.split_conj_prems live rel_pos_distr_thm0 OF
replicate live @{thm Grp_conversep_nonempty} RS rev_mp),
rtac ctxt impI, dtac ctxt @{thm predicate2D}, etac ctxt @{thm relcomppI2[rotated]},
rtac ctxt (rel_Grp RS @{thm predicate2_eqD} RS iffD2), rtac ctxt @{thm GrpI[OF refl]},
REPEAT_DETERM o resolve_tac ctxt [CollectI, conjI, subset_UNIV],
rtac ctxt (rel_flip RS iffD2),
rtac ctxt (rel_Grp RS @{thm predicate2_eqD} RS iffD2), rtac ctxt @{thm GrpI[OF refl]},
REPEAT_DETERM o resolve_tac ctxt [CollectI, conjI, subset_UNIV],
SELECT_GOAL (unfold_thms_tac ctxt (rel_eq_onp :: @{thms Grp_conversep_eq_onp})),
etac ctxt @{thm predicate2D[OF rel_conj_eq_onp, rotated]},
rtac ctxt equiv_thm']);
val map_F_respect_thm = prove lthy [] map_F_respect map_F_respect_tac;
val rel_funD = mk_rel_funDN (live+1);
val map_F_rsp = (rel_funD map_F_respect_thm) OF (replicate live refl);
fun map_F_rsp_of tms ctxt = (infer_instantiate' ctxt (NONE :: NONE
:: map (SOME o Thm.cterm_of ctxt) tms) map_F_rsp)
val qthms = let
fun equivp_THEN thm = REL_rewr_all lthy equiv_thm RS thm;
fun Quotient3_THEN thm = REL_rewr_all lthy quot_thm RS thm;
in
{abs_rep = Quotient3_THEN @{thm Quotient3_abs_rep},
rel_abs = Quotient3_THEN @{thm Quotient3_rel_abs},
rep_abs = Quotient3_THEN @{thm Quotient3_rep_abs},
rep_reflp = Quotient3_THEN @{thm Quotient3_rep_reflp},
rep_abs_rsp = Quotient3_THEN @{thm rep_abs_rsp},
reflp = equivp_THEN @{thm equivp_reflp},
symp = equivp_THEN @{thm equivp_symp},
transp = equivp_THEN @{thm equivp_transp},
REL = REL_def}
end;
val REL_OO_REL_left_thm = let
val tm = mk_Trueprop_eq
(mk_OO [equiv_rel_a, equiv_rel_a] var_R, mk_relcompp equiv_rel_a var_R)
fun tac ctxt = HEADGOAL (EVERY'
[rtac ctxt ext,
rtac ctxt ext,
rtac ctxt iffI,
TWICE (etac ctxt @{thm relcomppE}),
rtac ctxt @{thm relcomppI},
etac ctxt (#transp qthms),
TWICE (assume_tac ctxt),
etac ctxt @{thm relcomppE},
etac ctxt @{thm relcomppI},
rtac ctxt @{thm relcomppI},
rtac ctxt (#reflp qthms),
assume_tac ctxt]);
in prove lthy [var_R] tm tac end;
val map_F_fs = list_comb (map_F, var_fs);
fun mk_set_F'_thmss (((((var_A, var_A'), var_S), var_B), var_b), var_b')
set_F {set_F', F_in, F_in'} rel_Inter_thm set_map_F_thm (idx, vf) =
let
val (var_f, var_fs') = case vf of
(f :: fs) => (f, fs)
| _ => error "won't happen";
val typ_a = fastype_of var_f |> dest_funT |> fst;
val typ_b = fastype_of var_b;
val (typ_asetset, typ_aset) = `HOLogic.mk_setT (fastype_of var_A);
val map_F_fs_x = map_F_fs $ var_x;
val F_in'_mono_tm = mk_Trueprop_implies
([mk_leq var_A var_A'], mk_leq (#tm F_in' $ var_A) (#tm F_in' $ var_A'));
fun F_in'_mono_tac ctxt =
unfold_thms_tac ctxt [#def F_in', #def F_in] THEN
HEADGOAL (EVERY'
[rtac ctxt subsetI,
etac ctxt vimageE,
etac ctxt @{thm ImageE},
etac ctxt CollectE,
etac ctxt CollectE,
dtac ctxt @{thm case_prodD},
hyp_subst_tac ctxt,
rtac ctxt (vimageI OF [refl]),
rtac ctxt @{thm ImageI},
rtac ctxt CollectI,
rtac ctxt @{thm case_prodI},
assume_tac ctxt ORELSE' rtac ctxt refl,
rtac ctxt CollectI,
etac ctxt subset_trans,
etac ctxt (@{thm insert_mono} OF [@{thm image_mono}])]);
val F_in'_mono_thm = prove lthy [var_A, var_A'] F_in'_mono_tm F_in'_mono_tac;
val F_in'_Inter_tm = mk_Trueprop_eq ((#tm F_in' $ (Inf_const typ_aset $ var_S)),
(Inf_const (HOLogic.mk_setT typ_aF) $ (mk_image (#tm F_in') $ var_S)));
fun F_in'_Inter_tac ctxt =
Local_Defs.unfold_tac ctxt [#def F_in', #def F_in]
THEN HEADGOAL (rtac ctxt (infer_instantiate' ctxt
[SOME (Thm.cterm_of ctxt (HOLogic.mk_eq (var_S, bot_const typ_asetset)))] @{thm case_split})
THEN' EVERY' [
hyp_subst_tac ctxt,
SELECT_GOAL
(unfold_thms_tac ctxt @{thms Inter_empty INT_empty UNIV_sum_unit_conv}),
rtac ctxt @{thm set_eqI},
rtac ctxt iffI,
rtac ctxt UNIV_I,
rtac ctxt (vimageI OF [refl]),
rtac ctxt @{thm ImageI},
rtac ctxt CollectI,
rtac ctxt @{thm case_prodI},
rtac ctxt (#reflp qthms),
rtac ctxt CollectI,
rtac ctxt subset_UNIV,
etac ctxt @{thm exE[OF ex_in_conv[THEN iffD2]]},
EqSubst.eqsubst_tac ctxt [0] @{thms image_INT[of _ UNIV _ id, simplified]},
rtac ctxt @{thm inj_Inr},
assume_tac ctxt,
SELECT_GOAL (unfold_thms_tac ctxt @{thms INT_extend_simps vimage_INT[symmetric]}),
rtac ctxt @{thm arg_cong2[where f=vimage, OF refl]},
rtac ctxt equalityI,
rtac ctxt subsetI,
rtac ctxt @{thm InterI},
etac ctxt imageE,
etac ctxt @{thm ImageE},
etac ctxt CollectE,
etac ctxt CollectE,
dtac ctxt @{thm case_prodD},
hyp_subst_tac ctxt,
rtac ctxt @{thm ImageI[OF CollectI]},
etac ctxt @{thm case_prodI} ORELSE' (SELECT_GOAL
(unfold_thms_tac ctxt @{thms prod.case}) THEN' rtac ctxt @{thm refl}),
rtac ctxt CollectI,
etac ctxt subset_trans,
etac ctxt @{thm INT_lower[OF imageI]},
rtac ctxt (@{thm subset_trans} OF [asm_rl, rel_Inter_thm]),
K (unfold_thms_tac ctxt @{thms image_image}),
rtac ctxt subset_refl,
K (unfold_thms_tac ctxt @{thms INT_extend_simps ex_in_conv[symmetric]}),
rtac ctxt exI,
rtac ctxt imageI,
assume_tac ctxt,
rtac ctxt exI,
rtac ctxt @{thm InterI},
etac ctxt imageE,
hyp_subst_tac ctxt,
rtac ctxt @{thm insertI1}]);
val F_in'_Inter_thm = prove lthy [var_S] F_in'_Inter_tm F_in'_Inter_tac;
val set_F'_respect_tm = HOLogic.mk_Trueprop (mk_rel_fun equiv_rel_a
(HOLogic.eq_const typ_aset) $ #tm set_F' $ #tm set_F');
fun set_F'_respect_tac ctxt = unfold_thms_tac ctxt (#def set_F' :: @{thms rel_fun_def})
THEN HEADGOAL (EVERY'
[TWICE (rtac ctxt allI),
rtac ctxt impI,
dtac ctxt (map_F_rsp_of (map Just_const alphas) ctxt),
rtac ctxt @{thm INF_cong},
rtac ctxt @{thm Collect_eqI},
rtac ctxt iffI,
etac ctxt (#transp qthms OF [#symp qthms]),
assume_tac ctxt,
etac ctxt (#transp qthms),
assume_tac ctxt,
rtac ctxt refl]);
val F_in'_alt2_tm = mk_Trueprop_eq
(#tm F_in' $ var_A, mk_in [var_A] [#tm set_F'] typ_aF);
fun F_in'_alt2_tac ctxt = HEADGOAL (rtac ctxt equalityI THEN'
(Subgoal.FOCUS o K) (unfold_thms_tac ctxt (map #def [set_F', F_in', F_in])) ctxt
THEN' EVERY'
[rtac ctxt subsetI,
rtac ctxt CollectI,
rtac ctxt subsetI,
dtac ctxt vimageD,
etac ctxt @{thm ImageE},
etac ctxt CollectE,
etac ctxt CollectE,
dtac ctxt @{thm case_prodD},
dtac ctxt @{thm InterD},
rtac ctxt @{thm imageI[OF CollectI]},
etac ctxt (#symp qthms),
etac ctxt @{thm UnionE},
etac ctxt imageE,
hyp_subst_tac ctxt,
etac ctxt @{thm subset_lift_sum_unitD},
etac ctxt @{thm setr.cases},
hyp_subst_tac ctxt,
assume_tac ctxt])
THEN unfold_thms_tac ctxt [#def set_F'] THEN
(HEADGOAL o EVERY')
[rtac ctxt subsetI,
etac ctxt CollectE,
etac ctxt (subsetD OF [F_in'_mono_thm]),
EqSubst.eqsubst_tac ctxt [0] [F_in'_Inter_thm],
rtac ctxt @{thm InterI}] THEN
REPEAT_DETERM (HEADGOAL (etac ctxt @{thm imageE} THEN' hyp_subst_tac ctxt)) THEN
(HEADGOAL o EVERY')
[etac ctxt CollectE,
SELECT_GOAL (unfold_thms_tac ctxt (map #def [F_in', F_in])),
rtac ctxt @{thm vimageI[OF refl]},
rtac ctxt @{thm ImageI},
rtac ctxt CollectI,
rtac ctxt @{thm case_prodI},
etac ctxt (#symp qthms),
rtac ctxt CollectI,
rtac ctxt subsetI,
rtac ctxt @{thm sum_insert_Inl_unit},
assume_tac ctxt,
hyp_subst_tac ctxt,
rtac ctxt imageI,
rtac ctxt @{thm UnionI},
rtac ctxt imageI,
assume_tac ctxt,
rtac ctxt @{thm setr.intros[OF refl]}];
val F_in'_alt2_thm = prove lthy [var_A] F_in'_alt2_tm F_in'_alt2_tac;
val set_F'_alt_tm = mk_Trueprop_eq (#tm set_F' $ var_x,
Inf_const typ_aset $ mk_Collect (var_A, HOLogic.mk_mem (var_x, #tm F_in' $ var_A)));
fun set_F'_alt_tac ctxt = unfold_thms_tac ctxt [F_in'_alt2_thm]
THEN HEADGOAL (EVERY'
[rtac ctxt @{thm set_eqI},
rtac ctxt iffI,
rtac ctxt @{thm InterI},
etac ctxt CollectE,
etac ctxt CollectE,
dtac ctxt subsetD,
assume_tac ctxt,
assume_tac ctxt,
etac ctxt @{thm InterD},
rtac ctxt CollectI,
rtac ctxt CollectI,
rtac ctxt subset_refl]);
val set_F'_alt_thm = prove lthy [var_x] set_F'_alt_tm set_F'_alt_tac;
val map_F_in_F_in'I_tm = mk_Trueprop_implies ([HOLogic.mk_mem (var_x, #tm F_in' $ var_A')],
HOLogic.mk_mem (map_F_fs_x, subst_b (#tm F_in') $ (mk_image var_f $ var_A')));
fun map_F_in_F_in'I_tac ctxt =
Local_Defs.unfold_tac ctxt ([#def F_in', #def F_in, Bex_def] @ @{thms vimage_def Image_iff}) THEN
HEADGOAL (EVERY'
[etac ctxt @{thm CollectE},
etac ctxt exE,
etac ctxt conjE,
etac ctxt @{thm CollectE},
etac ctxt @{thm CollectE},
dtac ctxt @{thm case_prodD},
rtac ctxt @{thm CollectI},
rtac ctxt exI,
rtac ctxt @{thm conjI[rotated]},
rtac ctxt @{thm CollectI},
rtac ctxt @{thm case_prodI},
dtac ctxt (map_F_rsp_of (map mk_Maybe_map var_fs) ctxt),
SELECT_GOAL (unfold_thms_tac ctxt (map_F_comp :: @{thms o_def map_sum.simps})),
assume_tac ctxt,
rtac ctxt CollectI,
SELECT_GOAL (unfold_thms_tac ctxt set_map_thms),
etac ctxt @{thm image_map_sum_unit_subset}]);
val map_F_in_F_in'I_thm =
prove lthy (var_A' :: var_x :: var_fs) map_F_in_F_in'I_tm map_F_in_F_in'I_tac;
val REL_preimage_eq_tm = mk_Trueprop_implies ([HOLogic.mk_not (HOLogic.mk_eq
(HOLogic.mk_binop @{const_name inf} (var_B, mk_image var_f $ HOLogic.mk_UNIV typ_a),
bot_const (HOLogic.mk_setT typ_b)))], HOLogic.mk_eq (Image_const typ_aF $
rel_pairs $ mk_in [mk_vimage var_f var_B] [set_F] typ_aF, mk_vimage map_F_fs
(Image_const typ_bF $ subst_b rel_pairs $ mk_in [var_B] [subst_b set_F] typ_bF)));
fun subgoal_tac {context = ctxt, params, ...} = let
val (x, y) = case params of
[(_, x), _, (_, y)] => (x, y)
| _ => error "won't happen";
val cond = HOLogic.mk_conj (apply2 HOLogic.mk_mem ((var_b, var_B), (var_b', var_B)));
val cvars = var_fs |> maps (fn f => let val fT = fastype_of f in
map (SOME o Thm.cterm_of ctxt)
[if f = var_f then
fold_rev lambda [var_b, var_b'] cond else HOLogic.eq_const (range_type fT),
mk_conversep (mk_Grp (HOLogic.mk_UNIV (domain_type fT)) f)] end);
val rel_pos_distr_thm_inst = infer_instantiate' ctxt (cvars @ [SOME y,SOME x])
(@{thm predicate2D} OF [rel_pos_distr_thm]);
fun subset_UNIVs n = fold (fn a => fn b => conjI OF [a, b]) (replicate (n-1)
@{thm subset_UNIV}) @{thm subset_UNIV};
val GrpI_inst = infer_instantiate' ctxt (map SOME [Thm.cterm_of ctxt map_F_fs, x])
@{thm GrpI} OF [refl, CollectI] OF [subset_UNIVs live];
in EVERY [
HEADGOAL (Method.insert_tac ctxt [rel_pos_distr_thm_inst]),
unfold_thms_tac ctxt [rel_conversep, rel_OO, rel_Grp],
HEADGOAL (etac ctxt @{thm meta_impE}),
REPEAT_DETERM_N (live-1) (HEADGOAL (rtac ctxt @{thm conjI[rotated]})),
REPEAT_DETERM_N live (HEADGOAL (etac ctxt @{thm relcompp_mem_Grp_neq_bot} ORELSE'
rtac ctxt @{thm relcompp_eq_Grp_neq_bot})),
HEADGOAL (EVERY' [etac ctxt @{thm meta_impE},
rtac ctxt @{thm relcomppI},
rtac ctxt (#reflp qthms),
rtac ctxt @{thm relcomppI},
rtac ctxt rel_refl_strong]),
REPEAT_DETERM_N idx (HEADGOAL (rtac ctxt refl)),
HEADGOAL (rtac ctxt conjI THEN' TWICE (etac ctxt subsetD THEN' assume_tac ctxt)),
REPEAT_DETERM_N (live-idx-1) (HEADGOAL (rtac ctxt refl)),
HEADGOAL (EVERY'
[rtac ctxt @{thm relcomppI},
assume_tac ctxt,
rtac ctxt @{thm relcomppI},
rtac ctxt @{thm conversepI},
rtac ctxt GrpI_inst,
rtac ctxt (#reflp qthms),
etac ctxt @{thm relcomppE},
etac ctxt @{thm relcomppE},
etac ctxt @{thm relcomppE},
etac ctxt @{thm conversepE},
etac ctxt @{thm GrpE},
hyp_subst_tac ctxt,
rtac ctxt @{thm ImageI},
rtac ctxt CollectI,
rtac ctxt @{thm case_prodI},
assume_tac ctxt,
EqSubst.eqsubst_asm_tac ctxt [1] rel_map,
EqSubst.eqsubst_asm_tac ctxt [1] [in_rel_of_bnf bnf_F],
etac ctxt exE,
etac ctxt CollectE,
etac ctxt conjE,
etac ctxt conjE,
etac ctxt CollectE,
hyp_subst_tac ctxt,
rtac ctxt CollectI]),
unfold_thms_tac ctxt set_map_thms,
HEADGOAL (rtac ctxt (subsetI OF [vimageI] OF [refl]) THEN'
etac ctxt @{thm imageE} THEN' hyp_subst_tac ctxt),
REPEAT_DETERM_N 6 (HEADGOAL (etac ctxt Drule.thin_rl)),
REPEAT_DETERM_N (live-1) (HEADGOAL (etac ctxt conjE)),
HEADGOAL (EVERY' [dtac ctxt subsetD, assume_tac ctxt, etac ctxt CollectE]),
unfold_thms_tac ctxt @{thms split_beta},
HEADGOAL (etac ctxt conjunct2)] end;
fun REL_preimage_eq_tac ctxt = HEADGOAL (EVERY'
[rtac ctxt @{thm set_eqI},
rtac ctxt iffI,
etac ctxt @{thm ImageE},
etac ctxt CollectE,
etac ctxt CollectE,
dtac ctxt @{thm case_prodD},
rtac ctxt (vimageI OF [refl]),
rtac ctxt @{thm ImageI},
rtac ctxt CollectI,
rtac ctxt @{thm case_prodI},
etac ctxt map_F_rsp,
rtac ctxt CollectI,
EqSubst.eqsubst_tac ctxt [0] [set_map_F_thm],
etac ctxt @{thm subset_vimage_image_subset},
etac ctxt vimageE,
etac ctxt @{thm ImageE},
TWICE (etac ctxt CollectE),
dtac ctxt @{thm case_prodD},
hyp_subst_tac ctxt,
Subgoal.FOCUS_PARAMS subgoal_tac ctxt]);
val REL_preimage_eq_thm = prove lthy (var_B :: var_fs) REL_preimage_eq_tm REL_preimage_eq_tac;
val set_map_F'_tm = mk_Trueprop_eq (subst_b (#tm set_F')
$ map_F_fs_x, mk_image var_f $ (#tm set_F' $ var_x));
fun set_map_F'_tac ctxt = HEADGOAL (EVERY'
[rtac ctxt @{thm set_eqI},
rtac ctxt iffI,
EqSubst.eqsubst_asm_tac ctxt [0] [set_F'_alt_thm],
etac ctxt @{thm InterD},
rtac ctxt CollectI,
rtac ctxt map_F_in_F_in'I_thm,
SELECT_GOAL (unfold_thms_tac ctxt [F_in'_alt2_thm]),
rtac ctxt CollectI,
rtac ctxt subset_refl,
SELECT_GOAL (unfold_thms_tac ctxt [set_F'_alt_thm]),
rtac ctxt @{thm InterI},
etac ctxt imageE,
etac ctxt CollectE,
hyp_subst_tac ctxt,
etac ctxt @{thm vimageD[OF InterD]},
rtac ctxt CollectI]) THEN
HEADGOAL (Subgoal.FOCUS_PARAMS (fn {context = ctxt, params, ...} =>
let
val X = nth params 1 |> snd |> Thm.term_of;
val Inr_img = mk_image (Just_const (HOLogic.dest_setT (fastype_of X))) $ X;
fun cvars_of ctxt = map (SOME o Thm.cterm_of ctxt);
val cut_thm = infer_instantiate' ctxt (cvars_of ctxt [Inr_img, var_f])
@{thm insert_Inl_int_map_sum_unit};
val preimage_thm = infer_instantiate' ctxt (cvars_of ctxt
(filter (fn f => var_f <> f) var_fs |> map mk_Maybe_map))
(cut_thm RS REL_preimage_eq_thm);
in EVERY [
unfold_thms_tac ctxt (map #def [F_in', F_in] @ preimage_thm :: map_F_comp ::
@{thms lift_sum_unit_vimage_commute vimage_comp o_def map_sum.simps}),
unfold_thms_tac ctxt [@{thm o_def[symmetric]}, map_F_comp0],
Local_Defs.fold_tac ctxt @{thms vimage_comp},
HEADGOAL (etac ctxt (vimageI OF [refl]))] end) ctxt);
val set_F'_subset_tm = HOLogic.mk_Trueprop (mk_leq (#tm set_F' $ var_x) (set_F $ var_x));
fun set_F'_subset_tac ctxt =
let val int_e_thm = infer_instantiate' ctxt
(replicate 3 NONE @ [SOME (Thm.cterm_of ctxt (map_F_Just $ var_x))]) @{thm INT_E};
in HEADGOAL (EVERY' [SELECT_GOAL (Local_Defs.unfold_tac ctxt [#def set_F']),
rtac ctxt subsetI,
etac ctxt int_e_thm,
SELECT_GOAL (unfold_thms_tac ctxt [set_map_F_thm]),
etac ctxt @{thm UN_E},
etac ctxt imageE,
hyp_subst_tac ctxt,
SELECT_GOAL (unfold_thms_tac ctxt @{thms sum_set_simps singleton_iff}),
hyp_subst_tac ctxt,
assume_tac ctxt,
etac ctxt notE,
rtac ctxt CollectI,
rtac ctxt (#reflp qthms)])
end;
in
({F_in'_mono = F_in'_mono_thm,
F_in'_Inter = F_in'_Inter_thm,
set_F'_respect = prove lthy [] set_F'_respect_tm set_F'_respect_tac,
F_in'_alt2 = F_in'_alt2_thm,
set_F'_alt = set_F'_alt_thm,
map_F_in_F_in'I = map_F_in_F_in'I_thm,
set_map_F' = prove lthy (var_x :: var_fs) set_map_F'_tm set_map_F'_tac,
set_F'_subset = prove lthy [var_x] set_F'_subset_tm set_F'_subset_tac,
set_F'_def = #def set_F',
F_in_def = #def F_in,
F_in'_def = #def F_in'}, (idx + 1, var_fs'))
end;
val set_F'_thmss = @{fold_map 5} mk_set_F'_thmss
(var_As ~~ var_As' ~~ var_Ss ~~ var_Bs ~~ var_bs ~~ var_bs') sets_F set_F'_aux_defs
rel_Inter_thms set_map_thms (0, var_fs)
|> fst;
fun rel_map_F_fs_map_F_gs subst fs gs = subst equiv_rel_b $
(list_comb (subst map_F, fs) $ var_x) $ (list_comb (subst map_F, gs) $ var_x);
val F_in'D_thm = let
fun mk_prem var_a var_Aset {F_in', ...} var_f var_g =
[HOLogic.mk_mem (var_x, #tm F_in' $ var_Aset), mk_Ball var_Aset
((absfree (dest_Free var_a)) (HOLogic.mk_eq (var_f $ var_a, var_g $ var_a)))];
val prems = @{map 5} mk_prem var_as var_As set_F'_aux_defs var_fs' var_gs';
val F_in'D_tm = mk_Trueprop_implies (flat prems,
rel_map_F_fs_map_F_gs (subst_Maybe betas) var_fs' var_gs');
fun map_F_rsp_of_case_sums fs ctxt = map_F_rsp_of
(@{map 2} (fn f => fn T => BNF_FP_Util.mk_case_sum
(Term.absdummy HOLogic.unitT (mk_Nothing T), f)) fs betas) ctxt;
fun mk_var_fgs n = take n var_gs' @ drop n var_fs';
fun F_in'D_tac ctxt = EVERY
(unfold_thms_tac ctxt
(maps (fn {F_in'_def, F_in_def, ...} => [F_in'_def, F_in_def]) set_F'_thmss) ::
map (REPEAT_DETERM_N live o HEADGOAL)
[etac ctxt vimageE,
etac ctxt @{thm ImageE},
etac ctxt CollectE THEN' etac ctxt CollectE,
dtac ctxt @{thm case_prodD}] @
HEADGOAL (hyp_subst_tac ctxt THEN' rotate_tac (~live)) ::
map (fn i => (HEADGOAL o EVERY')
[if i < live then rtac ctxt (#transp qthms) else K all_tac,
Ctr_Sugar_Tactics.select_prem_tac ctxt live (dresolve_tac ctxt [asm_rl]) i,
rtac ctxt (#transp qthms),
dtac ctxt (map_F_rsp_of_case_sums (mk_var_fgs (i-1)) ctxt),
SELECT_GOAL (unfold_thms_tac ctxt (map_F_comp :: @{thms case_sum_o_inj(2)})),
etac ctxt (#symp qthms),
dtac ctxt (map_F_rsp_of_case_sums (mk_var_fgs i) ctxt),
SELECT_GOAL (unfold_thms_tac ctxt (map_F_comp :: @{thms case_sum_o_inj(2)})),
EqSubst.eqsubst_tac ctxt [0] [map_F_cong OF replicate i refl @ asm_rl :: replicate (live-i) refl],
rtac ctxt @{thm sum.case_cong[OF refl refl]},
etac ctxt bspec,
hyp_subst_tac ctxt,
etac ctxt @{thm subset_lift_sum_unitD},
assume_tac ctxt,
assume_tac ctxt]) (1 upto live));
in prove lthy (var_x :: var_As @ var_fs' @ var_gs') F_in'D_tm F_in'D_tac end;
val map_F_cong'_thm = let
fun mk_prem {set_F', ...} var_a var_f var_g = Logic.all var_a
(mk_Trueprop_implies ([HOLogic.mk_mem (var_a, #tm set_F' $ var_x)],
HOLogic.mk_eq (var_f $ var_a, var_g $ var_a)));
val map_F_cong'_tm = Logic.list_implies
(@{map 4} mk_prem set_F'_aux_defs var_as var_fs var_gs, HOLogic.mk_Trueprop
(rel_map_F_fs_map_F_gs I var_fs var_gs));
fun Just_o_fun bT f = HOLogic.mk_comp (Just_const bT, f);
fun map_F_Just_o_funs fs = list_comb
(subst_Maybe betas map_F, map2 Just_o_fun betas fs) $ var_x;
fun map_F_cong'_tac ctxt = let
val map_F_respect_inst = map_F_rsp
|> infer_instantiate' ctxt (map (SOME o Thm.cterm_of ctxt)
(map map_F_Just_o_funs [var_fs, var_gs] @ map fromJust_const betas))
|> Local_Defs.unfold ctxt (map_F_comp :: @{thms o_assoc
Fun.o_apply[where f=projr and g=Inr, unfolded sum.sel] id_def[symmetric]})
|> Local_Defs.unfold ctxt @{thms id_comp};
in
HEADGOAL (rtac ctxt map_F_respect_inst THEN' rtac ctxt F_in'D_thm) THEN
EVERY (map (fn {F_in'_alt2, ...} =>
unfold_thms_tac ctxt [F_in'_alt2] THEN
HEADGOAL (EVERY'
[rtac ctxt CollectI,
rtac ctxt subset_refl,
rtac ctxt ballI,
SELECT_GOAL (unfold_thms_tac ctxt [o_apply]),
rtac ctxt @{thm arg_cong[where f=Inr]},
asm_full_simp_tac ctxt])) set_F'_thmss) end;
in prove lthy (var_x :: var_fs @ var_gs) map_F_cong'_tm map_F_cong'_tac end;
val rel_F'_set_thm = let
val lhs = list_comb (#tm rel_F', var_Ps) $ var_x $ var_y;
fun mk_subset_A var_a var_b var_P {set_F', ...} = let
val collect_A = mk_case_prod (var_a, var_b) (var_P $ var_a $ var_b);
in mk_leq (subst_atomic_types (alphas ~~ typ_pairs) (#tm set_F') $ var_z) collect_A end;
val subset_As = @{map 4} mk_subset_A var_as var_bs var_Ps set_F'_aux_defs;
fun mk_map mfs f z =
Term.list_comb (mfs, map (fst o Term.strip_comb o f) var_ts) $ z;
val map_F_fst = mk_map_of_bnf deads typ_pairs alphas bnf_F;
val map_F_snd = mk_map_of_bnf deads typ_pairs betas bnf_F;
val map_fst = equiv_rel_a $ (mk_map map_F_fst HOLogic.mk_fst var_z) $ var_x;
val map_snd = equiv_rel_b $ (mk_map map_F_snd HOLogic.mk_snd var_z) $ var_y;
val rhs = let val (z, T) = dest_Free var_z in
HOLogic.mk_exists (z, T, fold_rev (fn a => fn b => HOLogic.mk_conj (a, b))
(subset_As @ [map_fst]) map_snd) end;
val rel_F'_set_tm = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs));
val maybePairsTs = map HOLogic.mk_prodT (map mk_MaybeT alphas ~~ map mk_MaybeT betas)
fun mk_map_prod_projr aT bT = let
val (mabT, (maT, mbT)) = `HOLogic.mk_prodT (apply2 mk_MaybeT (aT, bT));
val map_prod_const = Const (@{const_name map_prod},
(maT --> aT) --> (mbT --> bT) --> mabT --> HOLogic.mk_prodT (aT, bT));
in map_prod_const $ fromJust_const aT $ fromJust_const bT end;
fun exI_OF_tac ctxt tm = rtac ctxt
(infer_instantiate' ctxt (NONE :: [SOME (Thm.cterm_of ctxt tm)]) exI);
fun subgoal1_tac {context = ctxt, params, ...} =
let
val z = (case params of
(_ :: _ :: (_, ct) :: _) => Thm.term_of ct
| _ => error "won't happen");
val map_F_projr_z = list_comb (mk_map_of_bnf deads maybePairsTs typ_pairs bnf_F,
map2 mk_map_prod_projr alphas betas) $ z;
in
HEADGOAL (exI_OF_tac ctxt map_F_projr_z) THEN
HEADGOAL (EVERY' (maps (fn {set_F'_subset, set_F'_respect, set_map_F', ...} =>
[rtac ctxt conjI,
dtac ctxt (set_F'_subset RS @{thm order_trans}),
TWICE (dtac ctxt (set_F'_respect RS @{thm rel_funD})),
SELECT_GOAL (unfold_thms_tac ctxt [set_map_F']),
etac ctxt @{thm in_rel_sum_in_image_projr},
TWICE (assume_tac ctxt)]) set_F'_thmss)) THEN
HEADGOAL (EVERY' (map (fn Ts => FIRST'
[dtac ctxt (map_F_rsp_of (map fromJust_const Ts) ctxt),
etac ctxt sym , assume_tac ctxt]) [alphas, betas])) THEN
unfold_thms_tac ctxt (map_F_comp ::
@{thms fst_comp_map_prod snd_comp_map_prod comp_projr_Inr} @ [map_F_id]) THEN
HEADGOAL (rtac ctxt conjI) THEN
HEADGOAL (etac ctxt (#symp qthms) THEN' assume_tac ctxt
ORELSE' (EVERY' (maps (fn Ts =>
[dtac ctxt (map_F_rsp_of (map fromJust_const Ts) ctxt),
SELECT_GOAL (unfold_thms_tac ctxt (map_F_comp ::
@{thms fst_comp_map_prod snd_comp_map_prod comp_projr_Inr} @ [map_F_id])),
assume_tac ctxt]) [alphas, betas]))) end;
fun subgoal2_tac {context = ctxt, params, ...} = let
val z = (case params of
((_, ct) :: _) => Thm.term_of ct
| _ => error "won't happen");
fun exI_map_Ifs_tac mk_proj Ts = exI_OF_tac ctxt (list_comb
(mk_map_of_bnf deads typ_pairs (map mk_MaybeT Ts) bnf_F, @{map 3}
(fn var_t => fn {set_F', ...} => fn T => lambda var_t (BNF_FP_Util.mk_If
(HOLogic.mk_mem (var_t, subst_Ts (#tm set_F') typ_pairs $ z))
(mk_Just (mk_proj var_t)) (mk_Nothing T))) var_ts set_F'_aux_defs Ts) $ z)
fun mk_REL_trans_map_F n = (rotate_prems n (#transp qthms) OF
[rel_funD map_F_respect_thm] OF (replicate live refl @ [#symp qthms]));
in
HEADGOAL (EVERY'
[exI_map_Ifs_tac HOLogic.mk_fst alphas,
rtac ctxt conjI,
etac ctxt (mk_REL_trans_map_F 0)]) THEN
unfold_thms_tac ctxt [map_F_comp, @{thm o_def}] THEN
HEADGOAL (rtac ctxt map_F_cong'_thm) THEN
REPEAT_DETERM_N live (HEADGOAL (etac ctxt @{thm if_P[symmetric]})) THEN
HEADGOAL (EVERY' [exI_map_Ifs_tac HOLogic.mk_snd betas, rtac ctxt conjI]) THEN
unfold_thms_tac ctxt rel_map THEN
HEADGOAL (rtac ctxt rel_refl_strong) THEN
REPEAT_DETERM_N live (HEADGOAL (etac ctxt @{thm subset_rel_sumI})) THEN
HEADGOAL (etac ctxt (mk_REL_trans_map_F 1 OF [#symp qthms])) THEN
unfold_thms_tac ctxt [map_F_comp, @{thm o_def}] THEN
HEADGOAL (rtac ctxt map_F_cong'_thm) THEN
REPEAT_DETERM_N live (HEADGOAL (etac ctxt @{thm if_P})) end;
fun rel_F'_set_tac ctxt = EVERY
([unfold_thms_tac ctxt (#def rel_F' :: #REL qthms :: @{thms vimage2p_def relcompp_apply}),
HEADGOAL (rtac ctxt iffI),
(HEADGOAL o TWICE) (etac ctxt exE THEN' etac ctxt conjE),
HEADGOAL (EVERY'
[dtac ctxt (in_rel RS iffD1),
etac ctxt exE,
TWICE (etac ctxt conjE),
etac ctxt CollectE,
hyp_subst_tac ctxt]),
(REPEAT_DETERM_N (live-1) o HEADGOAL) (etac ctxt conjE),
HEADGOAL (Subgoal.FOCUS_PARAMS subgoal1_tac ctxt THEN' etac ctxt exE),
(REPEAT_DETERM_N (live+1) o HEADGOAL) (etac ctxt conjE),
HEADGOAL (Subgoal.FOCUS_PARAMS subgoal2_tac ctxt)]);
in prove lthy (var_x :: var_y :: var_Ps) rel_F'_set_tm rel_F'_set_tac end;
fun map_G_id0_tac ctxt = HEADGOAL (EVERY' [SELECT_GOAL (unfold_thms_tac ctxt
[@{thm fun_eq_iff}, o_apply, map_F_id0, id_apply, #abs_rep qthms]),
rtac ctxt allI, rtac ctxt refl]);
fun map_G_comp0_tac ctxt = HEADGOAL (EVERY' [rtac ctxt ext, rtac ctxt sym,
SELECT_GOAL (unfold_thms_tac ctxt [o_apply, map_F_comp0]), rtac ctxt (#rel_abs qthms),
rtac ctxt map_F_rsp, rtac ctxt (#rep_abs qthms), rtac ctxt (#reflp qthms)]);
fun map_G_cong_tac ctxt = EVERY
[Local_Defs.fold_tac ctxt (map #set_F'_def set_F'_thmss),
unfold_thms_tac ctxt [o_apply],
HEADGOAL (rtac ctxt (#rel_abs qthms) THEN' rtac ctxt map_F_cong'_thm),
REPEAT_DETERM_N live (HEADGOAL (asm_full_simp_tac ctxt))];
fun mk_set_G_map0_G_tac thms ctxt =
HEADGOAL (rtac ctxt ext) THEN
EVERY [unfold_thms_tac ctxt [o_apply],
Local_Defs.fold_tac ctxt [#set_F'_def thms]] THEN
HEADGOAL (EVERY' (map (rtac ctxt)
[trans OF [#set_map_F' thms RS sym, sym] RS sym,
@{thm rel_funD} OF [#set_F'_respect thms],
#rep_abs qthms,
map_F_rsp,
#rep_reflp qthms]));
fun bd_card_order_tac ctxt = HEADGOAL (rtac ctxt bd_card_order);
fun bd_cinfinite_tac ctxt = HEADGOAL (rtac ctxt bd_cinfinite);
fun bd_regularCard_tac ctxt = HEADGOAL (rtac ctxt bd_regularCard);
fun mk_set_G_bd_tac thms set_bd_thm ctxt = EVERY
[Local_Defs.fold_tac ctxt [#set_F'_def thms],
unfold_thms_tac ctxt [o_apply],
HEADGOAL (rtac ctxt (@{thm ordLeq_ordLess_trans} OF
[@{thm card_of_mono1} OF [#set_F'_subset thms], set_bd_thm]))];
fun rel_compp_tac ctxt = EVERY
[unfold_thms_tac ctxt [#REL qthms],
HEADGOAL (TWICE (rtac ctxt @{thm vimage2p_relcompp_mono})),
(unfold_thms_tac ctxt (REL_OO_REL_left_thm :: @{thms relcompp_assoc})),
(unfold_thms_tac ctxt [Local_Defs.unfold ctxt @{thms eq_OO}
(infer_instantiate' ctxt [HOLogic.eq_const HOLogic.unitT |> Thm.cterm_of ctxt |> SOME]
@{thm sum.rel_compp})]),
HEADGOAL (rtac ctxt rel_pos_distr_thm),
unfold_thms_tac ctxt
@{thms fun_eq_iff bot_apply bot_bool_def not_all eq_False not_not OO_def},
REPEAT_DETERM (HEADGOAL (resolve_tac ctxt [exI, conjI, @{thm rel_sum.intros(1)}, refl]))];
fun rel_compp_Grp_tac ctxt = let
val _ = ()
in EVERY [Local_Defs.fold_tac ctxt (@{thm Grp_def} :: map #set_F'_def set_F'_thmss),
unfold_thms_tac ctxt
[o_apply, @{thm mem_Collect_eq}, @{thm OO_Grp_alt}, @{thm vimage2p_def}],
Local_Defs.fold_tac ctxt [Local_Defs.unfold ctxt @{thms vimage2p_def} (#def rel_F')],
unfold_thms_tac ctxt [rel_F'_set_thm],
HEADGOAL (TWICE (rtac ctxt ext)),
HEADGOAL (rtac ctxt iffI),
REPEAT_DETERM (ALLGOALS (eresolve_tac ctxt [exE, conjE])),
HEADGOAL (rtac ctxt exI),
REPEAT_FIRST (resolve_tac ctxt [conjI]),
HEADGOAL (EVERY' (maps (fn {set_F'_respect, ...} =>
[etac ctxt @{thm subset_trans[rotated]},
rtac ctxt equalityD1,
rtac ctxt (@{thm rel_funD} OF [set_F'_respect]),
rtac ctxt (#rep_abs qthms),
rtac ctxt (#reflp qthms)]) set_F'_thmss)),
(HEADGOAL o TWICE o EVERY')
[rtac ctxt (trans OF [asm_rl, #abs_rep qthms]),
rtac ctxt (#rel_abs qthms),
etac ctxt (rotate_prems 1 (#transp qthms)),
rtac ctxt map_F_rsp,
rtac ctxt (#rep_abs qthms),
rtac ctxt (#reflp qthms)
],
HEADGOAL (rtac ctxt exI THEN' rtac ctxt conjI),
(REPEAT_DETERM_N live o HEADGOAL o EVERY')
[assume_tac ctxt, rtac ctxt conjI],
(HEADGOAL o TWICE o EVERY') [
hyp_subst_tac ctxt,
rtac ctxt (#rep_abs_rsp qthms),
rtac ctxt map_F_rsp,
rtac ctxt (#rep_reflp qthms)]]
end;
fun pred_G_set_G_tac ctxt = HEADGOAL (rtac ctxt refl);
val tactics = map_G_id0_tac :: map_G_comp0_tac :: map_G_cong_tac ::
map mk_set_G_map0_G_tac set_F'_thmss @
bd_card_order_tac :: bd_cinfinite_tac :: bd_regularCard_tac ::
map2 mk_set_G_bd_tac set_F'_thmss set_bd_thms @
rel_compp_tac :: rel_compp_Grp_tac :: [pred_G_set_G_tac];
val (wits_G, wit_thms) =
let
val wit_F_thmss = map (map2 (fn set_F' => fn wit =>
(#set_F'_subset set_F' RS set_mp RS wit)
|> unfold_thms lthy [#set_F'_def set_F']) set_F'_thmss)
(wit_thmss_of_bnf bnf_F);
val (wits_F, wit_F_thmss) = split_list
(filter_out (fn ((J, _), _) => exists (fn (I, _) => subset (op =) (I, J)) Iwits)
(wits_F ~~ wit_F_thmss));
fun mk_wit (I, wit) = let val vars = (map (fn n => nth var_as n) I)
in fold_rev lambda vars (abs_G $ list_comb (wit, vars)) end;
in
(map mk_wit (Iwits @ wits_F), wit_thmss @ flat wit_F_thmss)
end;
fun mk_wit_tacs ({set_F'_def, set_F'_respect, ...} :: set_F'_thmss) (w :: ws) ctxt =
EVERY [unfold_thms_tac ctxt [@{thm o_def},
set_F'_respect RS @{thm rel_funD} OF [#rep_abs qthms OF [(#reflp qthms)]]],
unfold_thms_tac ctxt [set_F'_def],
HEADGOAL (etac ctxt w)]
THEN mk_wit_tacs set_F'_thmss ws ctxt
| mk_wit_tacs [] ws ctxt = mk_wit_tacs set_F'_thmss ws ctxt
| mk_wit_tacs _ _ _ = all_tac;
val (bnf_G, lthy) = bnf_def Dont_Inline (user_policy Note_Some) true I
tactics (mk_wit_tacs [] wit_thms) NONE map_b rel_b pred_b set_bs
(((((((Binding.empty, absT), map_G), sets_G), bd_G), wits_G), SOME rel_G), NONE) lthy;
val old_defs =
{sets = set_defs_of_bnf bnf_G, map = map_def_of_bnf bnf_G, rel = rel_def_of_bnf bnf_G};
val set_F'_defs = map (mk_abs_def o #set_F'_def) set_F'_thmss;
val unfold_morphism = Morphism.thm_morphism "BNF"
(unfold_thms lthy (defs @ #def REL :: set_F'_defs));
val (bnf_G, lthy) = morph_bnf_defs unfold_morphism bnf_G
|> (fn bnf => note_bnf_defs bnf lthy);
val rel_monoD_rotated = rotate_prems ~1 (rel_mono_of_bnf bnf_F RS @{thm predicate2D});
val REL_pos_distrI = let
fun tac ctxt = EVERY
[HEADGOAL (dtac ctxt (rotate_prems ~1 (rel_pos_distr_thm RS @{thm predicate2D}))),
(REPEAT_DETERM o HEADGOAL) (rtac ctxt conjI ORELSE' assume_tac ctxt),
(REPEAT_DETERM o HEADGOAL) (etac ctxt @{thm relcomppE}),
HEADGOAL (dtac ctxt rel_monoD_rotated),
(REPEAT_DETERM o HEADGOAL)
(assume_tac ctxt ORELSE' rtac ctxt @{thm relcomppI})];
in prove lthy (var_x :: var_y' :: var_Ps @ var_Qs @ var_Rs) REL_pos_distrI_tm tac end;
val rel_F_rel_F' = let
val rel_F = mk_rel_of_bnf deads alphas betas bnf_F;
val rel_F_rel_F'_tm = (rel_F, #tm rel_F')
|> apply2 (fn R => HOLogic.mk_Trueprop (list_comb (R, var_Ps) $ var_x $ var_y))
|> Logic.mk_implies;
fun rel_F_rel_F'_tac ctxt = EVERY
[HEADGOAL (dtac ctxt (in_rel_of_bnf bnf_F RS iffD1)),
unfold_thms_tac ctxt (rel_F'_set_thm :: @{thms mem_Collect_eq}),
(REPEAT_DETERM o HEADGOAL) (eresolve_tac ctxt [exE, conjE]),
HEADGOAL (rtac ctxt exI),
HEADGOAL (EVERY' (maps (fn thms =>
[rtac ctxt conjI,
rtac ctxt subsetI,
dtac ctxt (set_mp OF [#set_F'_subset thms]),
dtac ctxt subsetD,
assume_tac ctxt, assume_tac ctxt]) set_F'_thmss)),
(REPEAT_DETERM o HEADGOAL)
(rtac ctxt conjI ORELSE' hyp_subst_tac ctxt THEN' rtac ctxt (#reflp qthms))]
in prove lthy (var_x :: var_y :: var_Ps) rel_F_rel_F'_tm rel_F_rel_F'_tac end;
fun inst_REL_pos_distrI n vs aTs bTs ctxt =
infer_instantiate' ctxt (replicate n NONE @ (rel_Maybes vs aTs bTs
|> map (SOME o Thm.cterm_of ctxt))) REL_pos_distrI;
val Tss = {abs = typ_subst_atomic (alphas ~~ betas) absT, rep = repT, Ds0 = map TFree Ds0,
deads = deads, alphas = alphas, betas = betas, gammas = gammas, deltas = deltas};
val thms =
{map_F_rsp = map_F_rsp,
rel_F'_def = #def rel_F',
rel_F_rel_F' = rel_F_rel_F',
rel_F'_set = rel_F'_set_thm,
rel_monoD_rotated = rel_monoD_rotated}
val transfer_consts = mk_quotient_transfer_tacs bnf_F Tss live
qthms thms set_F'_thmss old_defs inst_REL_pos_distrI
map_raw rel_raw (map (#tm o #set_F') set_F'_aux_defs);
val quiet = exists (fn No_Warn_Transfer => true | _ => false) opts;
in
lthy |> BNF_Def.register_bnf plugins absT_name bnf_G |>
mk_transfer_thms quiet bnf_F bnf_G absT_name transfer_consts (Quotient equiv_thm) Tss
(defs @ #def REL :: set_F'_defs)
end
| _ => raise Match);
in (goals, after_qed, #def REL :: defs, lthy) end;
local
fun prepare_common prepare_name prepare_sort prepare_term prepare_thm
(((((plugins, raw_specs), raw_absT_name), raw_wits), xthms_opt), (map_b, rel_b, pred_b)) lthy =
let
val absT_name = prepare_name lthy raw_absT_name;
fun bad_input input =
Pretty.chunks [Pretty.para ("Expected theorem(s) of either form:"),
Pretty.item [Pretty.enum "," "" "" [Syntax.pretty_term lthy @{term "Quotient R Abs Rep T"},
Syntax.pretty_term lthy @{term "reflp R"}]],
Pretty.item [Syntax.pretty_term lthy @{term "Quotient R Abs Rep T"}],
Pretty.item [Syntax.pretty_term lthy @{term "type_definition Rep Abs A"}],
Pretty.para ("Got"), Pretty.enum "," "" "" (map (Thm.pretty_thm lthy) input)]
|> Pretty.string_of
|> error;
fun no_refl qthm =
Pretty.chunks [Pretty.para ("Could not find a reflexivity rule for the Quotient theorem:"),
Pretty.item [Thm.pretty_thm lthy qthm],
Pretty.para ("Try supplying a reflexivity theorem manually or registering it in setup_lifting.")]
|> Pretty.string_of
|> error;
fun find_equiv_thm_via_Quotient qthm =
let
val refl_thms = Lifting_Info.get_reflexivity_rules lthy
|> map (unfold_thms lthy @{thms reflp_eq[symmetric]});
in
(case refl_thms RL [qthm RS @{thm Quotient_reflp_imp_equivp}] of
[] => no_refl qthm
| thm :: _ => thm)
end;
val (lift_thm, equiv_thm) =
(case Option.map (prepare_thm lthy) xthms_opt of
SOME (thms as [qthm, _]) =>
(case try (fn thms => @{thm Quotient_reflp_imp_equivp} OF thms) thms of
SOME equiv_thm => (qthm RS @{thm Quotient_Quotient3}, Quotient equiv_thm)
| NONE => bad_input thms)
| SOME [thm] =>
(case try (fn thm => thm RS @{thm Quotient_Quotient3}) thm of
SOME qthm => (qthm, Quotient (find_equiv_thm_via_Quotient thm))
| NONE => if can (fn thm => thm RS @{thm type_definition.Rep}) thm
then (thm, Typedef)
else bad_input [thm])
| NONE => (case Lifting_Info.lookup_quotients lthy absT_name of
SOME {quot_thm = qthm, ...} =>
(case [qthm] RL @{thms Quotient_eq_onp_typedef Quotient_eq_onp_type_copy} of
thm :: _ => (thm, Typedef)
| _ => (qthm RS @{thm Quotient_Quotient3},
Quotient (find_equiv_thm_via_Quotient qthm)))
| NONE => (Typedef.get_info lthy absT_name |> hd |> snd |> #type_definition, Typedef))
| SOME thms => bad_input thms);
val wits = (Option.map o map) (prepare_term lthy) raw_wits;
val specs =
map (apsnd (apsnd (the_default @{sort type} o Option.map (prepare_sort lthy)))) raw_specs;
val which_bnf = (case equiv_thm of
Quotient thm => quotient_bnf (thm, lift_thm)
| Typedef => typedef_bnf lift_thm);
in
which_bnf wits specs map_b rel_b pred_b plugins lthy
end;
fun prepare_lift_bnf prepare_name prepare_sort prepare_term prepare_thm =
(fn (goals, after_qed, definitions, lthy) =>
lthy
|> Proof.theorem NONE after_qed (map (single o rpair []) goals)
|> Proof.refine_singleton
(Method.Basic (fn ctxt => SIMPLE_METHOD (unfold_thms_tac ctxt definitions)))
|> Proof.refine_singleton (Method.primitive_text (K I))) oo
prepare_common prepare_name prepare_sort prepare_term prepare_thm o apfst (apfst (apsnd SOME));
fun prepare_solve prepare_name prepare_typ prepare_sort prepare_thm tacs =
(fn (goals, after_qed, definitions, lthy) =>
lthy
|> after_qed (map2 (fn goal => fn tac => [Goal.prove_sorry lthy [] [] goal
(fn (ctxtprems as {context = ctxt, prems = _}) =>
unfold_thms_tac ctxt definitions THEN tac ctxtprems)])
goals (tacs (length goals)))) oo
prepare_common prepare_name prepare_typ prepare_sort prepare_thm;
in
val lift_bnf_cmd =
prepare_lift_bnf
(fst o dest_Type oo Proof_Context.read_type_name {proper = true, strict = false})
Syntax.read_sort Syntax.read_term Attrib.eval_thms;
fun lift_bnf args tacs =
prepare_solve (K I) (K I) (K I) (K I) (K tacs) args;
fun copy_bnf_tac {context = ctxt, prems = _} =
REPEAT_DETERM (resolve_tac ctxt [bexI, conjI, UNIV_I, refl, subset_refl] 1);
val copy_bnf =
apfst (apfst (rpair NONE))
#> apfst (apsnd (Option.map single))
#> prepare_solve (K I) (K I) (K I) (K I)
(fn n => replicate n copy_bnf_tac);
val copy_bnf_cmd =
apfst (apfst (rpair NONE))
#> apfst (apsnd (Option.map single))
#> prepare_solve
(fst o dest_Type oo Proof_Context.read_type_name {proper = true, strict = false})
Syntax.read_sort Syntax.read_term Attrib.eval_thms
(fn n => replicate n copy_bnf_tac);
end;
local
val parse_wits =
@{keyword "["} |-- (Parse.name --| @{keyword ":"} -- Scan.repeat Parse.term >>
(fn ("wits", Ts) => Ts
| (s, _) => error ("Unknown label " ^ quote s ^ " (expected \"wits\")"))) --|
@{keyword "]"} || Scan.succeed [];
fun parse_common_opts p =
Scan.optional (@{keyword "("} |--
Parse.list1 (Parse.group (K "option")
(Scan.first (p :: [Plugin_Name.parse_filter >> Plugins_Option,
Parse.reserved "no_warn_transfer" >> K No_Warn_Transfer])))
--| @{keyword ")"}) [];
val parse_lift_opts = Parse.reserved "no_warn_wits" >> K No_Warn_Wits |> parse_common_opts;
val parse_copy_opts = parse_common_opts Scan.fail;
val parse_xthm = Scan.option (Parse.reserved "via" |-- Parse.thm);
val parse_xthms = Scan.option (Parse.reserved "via" |-- Parse.thms1);
in
val _ =
Outer_Syntax.local_theory_to_proof @{command_keyword lift_bnf}
"register a quotient type/subtype of a bounded natural functor (BNF) as a BNF"
((parse_lift_opts -- parse_type_args_named_constrained -- Parse.type_const -- parse_wits --
parse_xthms -- parse_map_rel_pred_bindings) >> lift_bnf_cmd);
val _ =
Outer_Syntax.local_theory @{command_keyword copy_bnf}
"register a type copy of a bounded natural functor (BNF) as a BNF"
((parse_copy_opts -- parse_type_args_named_constrained -- Parse.type_const --
parse_xthm -- parse_map_rel_pred_bindings) >> copy_bnf_cmd);
end;
end;