Power Operator for Lists

Štěpán Holub, Martin Raška, Štěpán Starosta and Tobias Nipkow

February 23, 2025

Abstract

This entry defines the power operator $xs ^n$ n, the n-fold concatenation of xs with itself.

Much of the theory is taken from the AFP entry Combinatorics on Words Basics where the operator is called \circ . This new entry uses the standard overloaded \circ syntax and is aimed at becoming the central theory of the power operator for lists that can be extended easily.

1 The Power Operator ^^ on Lists

theory List-Power imports Main begin

lemma concat-replicate-single[simp]: concat (replicate m [a]) = replicate $m a \langle proof \rangle$

overloading pow-list == compow :: $nat \Rightarrow 'a \ list \Rightarrow 'a \ list$ begin

primrec pow-list :: $nat \Rightarrow 'a \ list \Rightarrow 'a \ list$ where pow-list 0 xs = [] |pow-list (Suc n) xs = xs @ pow-list n xs

 \mathbf{end}

context begin

interpretation monoid-mult [] append rewrites power $u \ n = u \ n$ $\langle proof \rangle$

lemmas pow-list-zero = power.power-0 and pow-list-one = power-Suc0-right and pow-list-1 = power-one-right and pow-list-Nil = power-one and pow-list-2 = power2-eq-square and pow-list-Suc = power-Suc and pow-list-Suc2 = power-Suc2 and pow-list-comm = power-commutes and pow-list-add = power-add and pow-list-eq-if = power-eq-if and pow-list-mult = power-mult and pow-list-commuting-commutes = power-commuting-commutes

\mathbf{end}

lemma pow-list-alt: $xs^n = concat$ (replicate n xs) $\langle proof \rangle$

lemma pow-list-single: $[a] \frown m = replicate m \ a \langle proof \rangle$

lemma length-pow-list-single [simp]: length([a] $\frown n$) = n $\langle proof \rangle$

lemma *nth-pow-list-single*: $i < m \implies ([a] \frown m) ! i = a \langle proof \rangle$

lemma pow-list-not-NilD: $xs \frown m \neq [] \Longrightarrow 0 < m \langle proof \rangle$

lemma length-pow-list: length(xs $\frown k$) = k * length xs $\langle proof \rangle$

lemma pow-list-set: set $(w \frown Suc k) = set w \langle proof \rangle$

lemma pow-list-slide: $xs @ (ys @ xs) \frown n @ ys = (xs @ ys) \frown (Suc n) \langle proof \rangle$

lemma hd-pow-list: $0 < n \implies hd(xs \frown n) = hd xs$ $\langle proof \rangle$

lemma rev-pow-list: rev $(xs \frown m) = (rev xs) \frown m$ $\langle proof \rangle$

lemma eq-pow-list-iff-eq-exp[simp]: assumes $xs \neq []$ shows $xs \frown k = xs \frown m \Leftrightarrow k = m \langle proof \rangle$

lemma pow-list-Nil-iff-0: $xs \neq [] \implies xs \frown m = [] \longleftrightarrow m = 0$ $\langle proof \rangle$ **lemma** pow-list-Nil-iff-Nil: $0 < m \implies xs \frown m = [] \leftrightarrow xs = [] \langle proof \rangle$

lemma pow-eq-eq: assumes $xs \frown k = ys \frown k$ and 0 < kshows $(xs::'a \ list) = ys$ $\langle proof \rangle$

lemma map-pow-list[simp]: map $f(xs \frown k) = (map \ f \ xs) \frown k \langle proof \rangle$

lemma concat-pow-list: concat (xs $\ \ k$) = (concat xs) $\ \ k$ (proof)

lemma concat-pow-list-single[simp]: concat ([a] $\frown k$) = a $\frown k$ (proof)

lemma pow-list-single-Nil-iff: [a] $\frown n = [] \longleftrightarrow n = 0$ $\langle proof \rangle$

lemma hd-pow-list-single: $k \neq 0 \implies hd$ ([a] $\ \ k) = a \langle proof \rangle$

lemma index-pow-mod: $i < length(xs \frown k) \Longrightarrow (xs \frown k)!i = xs!(i mod length xs)$ $\langle proof \rangle$

lemma unique-letter-word: **assumes** $\bigwedge c. \ c \in set \ w \Longrightarrow c = a$ **shows** $w = [a] \land length \ w \ \langle proof \rangle$

lemma count-list-pow-list: count-list $(w \frown k) a = k * (count-list w a) \langle proof \rangle$

lemma sing-pow-lists: $a \in A \Longrightarrow [a] \frown n \in lists A$ $\langle proof \rangle$

lemma one-generated-list-power: $u \in lists \{x\} \Longrightarrow \exists k. \ concat \ u = x \frown k \ \langle proof \rangle$

lemma pow-list-in-lists: $0 < k \Longrightarrow u \frown k \in lists B \Longrightarrow u \in lists B$ $\langle proof \rangle$

end