
Power Operator for Lists

Štěpán Holub, Martin Raška, Štěpán Starosta and Tobias Nipkow

February 23, 2025

Abstract

This entry defines the power operator xs ^^ n, the n-fold concate-
nation of xs with itself.

Much of the theory is taken from the AFP entry Combinatorics on
Words Basics where the operator is called ^@. This new entry uses the
standard overloaded ^^ syntax and is aimed at becoming the central
theory of the power operator for lists that can be extended easily.

1 The Power Operator ^^ on Lists
theory List-Power
imports Main
begin

lemma concat-replicate-single[simp]: concat (replicate m [a]) = replicate m a
〈proof 〉

overloading pow-list == compow :: nat ⇒ ′a list ⇒ ′a list
begin

primrec pow-list :: nat ⇒ ′a list ⇒ ′a list where
pow-list 0 xs = [] |
pow-list (Suc n) xs = xs @ pow-list n xs

end

context
begin

interpretation monoid-mult [] append
rewrites power u n = u ^^ n
〈proof 〉

lemmas pow-list-zero = power .power-0 and
pow-list-one = power-Suc0-right and
pow-list-1 = power-one-right and

1

https://www.isa-afp.org/entries/Combinatorics_Words.html
https://www.isa-afp.org/entries/Combinatorics_Words.html

pow-list-Nil = power-one and
pow-list-2 = power2-eq-square and
pow-list-Suc = power-Suc and
pow-list-Suc2 = power-Suc2 and
pow-list-comm = power-commutes and
pow-list-add = power-add and
pow-list-eq-if = power-eq-if and
pow-list-mult = power-mult and
pow-list-commuting-commutes = power-commuting-commutes

end

lemma pow-list-alt: xs^^n = concat (replicate n xs)
〈proof 〉

lemma pow-list-single: [a] ^^ m = replicate m a
〈proof 〉

lemma length-pow-list-single [simp]: length([a] ^^ n) = n
〈proof 〉

lemma nth-pow-list-single: i < m =⇒ ([a] ^^ m) ! i = a
〈proof 〉

lemma pow-list-not-NilD: xs ^^ m 6= [] =⇒ 0 < m
〈proof 〉

lemma length-pow-list: length(xs ^^ k) = k ∗ length xs
〈proof 〉

lemma pow-list-set: set (w ^^ Suc k) = set w
〈proof 〉

lemma pow-list-slide: xs @ (ys @ xs) ^^ n @ ys = (xs @ ys)^^(Suc n)
〈proof 〉

lemma hd-pow-list: 0 < n =⇒ hd(xs ^^ n) = hd xs
〈proof 〉

lemma rev-pow-list: rev (xs ^^ m) = (rev xs) ^^ m
〈proof 〉

lemma eq-pow-list-iff-eq-exp[simp]: assumes xs 6= [] shows xs ^^ k = xs ^^ m
←→ k = m
〈proof 〉

lemma pow-list-Nil-iff-0 : xs 6= [] =⇒ xs ^^ m = [] ←→ m = 0
〈proof 〉

2

lemma pow-list-Nil-iff-Nil: 0 < m =⇒ xs ^^ m = [] ←→ xs = []
〈proof 〉

lemma pow-eq-eq:
assumes xs ^^ k = ys ^^ k and 0 < k
shows (xs:: ′a list) = ys
〈proof 〉

lemma map-pow-list[simp]: map f (xs ^^ k) = (map f xs) ^^ k
〈proof 〉

lemma concat-pow-list: concat (xs ^^ k) = (concat xs) ^^ k
〈proof 〉

lemma concat-pow-list-single[simp]: concat ([a] ^^ k) = a ^^ k
〈proof 〉

lemma pow-list-single-Nil-iff : [a] ^^ n = [] ←→ n = 0
〈proof 〉

lemma hd-pow-list-single: k 6= 0 =⇒ hd ([a] ^^ k) = a
〈proof 〉

lemma index-pow-mod: i < length(xs ^^ k) =⇒ (xs ^^ k)!i = xs!(i mod length xs)
〈proof 〉

lemma unique-letter-word: assumes
∧

c. c ∈ set w =⇒ c = a shows w = [a] ^^
length w
〈proof 〉

lemma count-list-pow-list: count-list (w ^^ k) a = k ∗ (count-list w a)
〈proof 〉

lemma sing-pow-lists: a ∈ A =⇒ [a] ^^ n ∈ lists A
〈proof 〉

lemma one-generated-list-power : u ∈ lists {x} =⇒ ∃ k. concat u = x ^^ k
〈proof 〉

lemma pow-list-in-lists: 0 < k =⇒ u ^^ k ∈ lists B =⇒ u ∈ lists B
〈proof 〉

end

3

	The Power Operator 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 on Lists

