Power Operator for Lists

Štěpán Holub, Martin Raška, Štěpán Starosta and Tobias Nipkow

February 23, 2025

Abstract

This entry defines the power operator $xs ^n$ n, the n-fold concatenation of xs with itself.

Much of the theory is taken from the AFP entry Combinatorics on Words Basics where the operator is called \circ . This new entry uses the standard overloaded \circ syntax and is aimed at becoming the central theory of the power operator for lists that can be extended easily.

1 The Power Operator ^^ on Lists

theory List-Power imports Main begin

lemma concat-replicate-single[simp]: concat (replicate m [a]) = replicate m a**by**(induction m) auto

overloading pow-list == compow :: $nat \Rightarrow 'a \ list \Rightarrow 'a \ list$ begin

primrec pow-list :: $nat \Rightarrow 'a \ list \Rightarrow 'a \ list$ where pow-list 0 xs = [] |pow-list (Suc n) xs = xs @ pow-list n xs

end

```
context
begin
```

```
interpretation monoid-mult [] append

rewrites power u \ n = u \ n

proof –

show class.monoid-mult [] (@)

by (unfold-locales, simp-all)

show power.power [] (@) u \ n = u \ n

by (induction n) (auto simp add: power.power.simps)
```

\mathbf{qed}

— inherited power properties

```
lemmas pow-list-zero = power.power-0 and
pow-list-one = power-Suc0-right and
pow-list-1 = power-one-right and
pow-list-Nil = power-one and
pow-list-2 = power2-eq-square and
pow-list-Suc2 = power-Suc and
pow-list-Suc2 = power-Suc2 and
pow-list-comm = power-commutes and
pow-list-add = power-add and
pow-list-eq-if = power-eq-if and
pow-list-mult = power-mult and
pow-list-commuting-commutes = power-commuting-commutes
```

\mathbf{end}

lemma pow-list-alt: $xs^n = concat$ (replicate n xs) by (induct n) auto

lemma pow-list-single: $[a] \frown m = replicate m a$ **by**(simp add: pow-list-alt)

lemma length-pow-list-single [simp]: length $([a] \frown n) = n$ by $(simp \ add: \ pow-list-single)$

lemma *nth-pow-list-single*: $i < m \implies ([a] \frown m) ! i = a$ **by** (*simp* add: *pow-list-single*)

lemma pow-list-not-NilD: $xs \frown m \neq [] \Longrightarrow 0 < m$ by (cases m) auto

lemma length-pow-list: length(xs $\widehat{\ } k$) = k * length xs by (induction k) simp+

lemma pow-list-set: set $(w \frown Suc k) = set w$ by (induction k)(simp-all)

lemma pow-list-slide: $xs @ (ys @ xs) \frown n @ ys = (xs @ ys) \frown (Suc n)$ by (induction n) simp+

lemma hd-pow-list: $0 < n \implies hd(xs \frown n) = hd xs$ **by**(auto simp: pow-list-alt hd-append gr0-conv-Suc)

lemma rev-pow-list: rev $(xs \frown m) = (rev xs) \frown m$ by (induction m)(auto simp: pow-list-comm) lemma eq-pow-list-iff-eq-exp[simp]: assumes $xs \neq []$ shows $xs \frown k = xs \frown m$ $\longleftrightarrow k = m$ proof assume k = m thus $xs \frown k = xs \frown m$ by simp \mathbf{next} assume $xs \frown k = xs \frown m$ thus k = m using $\langle xs \neq [] \rangle$ [folded length-0-conv] **by** (*metis length-pow-list mult-cancel2*) qed lemma pow-list-Nil-iff-0: $xs \neq [] \implies xs \frown m = [] \longleftrightarrow m = 0$ **by** (*simp add: pow-list-eq-if*) lemma pow-list-Nil-iff-Nil: $0 < m \implies xs \frown m = [] \longleftrightarrow xs = []$ by (cases xs) (auto simp add: pow-list-Nil pow-list-Nil-iff-0) lemma pow-eq-eq: assumes $xs \frown k = ys \frown k$ and $\theta < k$ **shows** $(xs::'a \ list) = ys$ proofhave length xs = length ysusing assms(1) length-pow-list by (metis nat-mult-eq-cancel1[OF $\langle 0 < k \rangle$]) thus ?thesis by (metis Suc-pred append-eq-append-conv assms(1,2) pow-list.simps(2)) qed **lemma** map-pow-list[simp]: map $f(xs \frown k) = (map f xs) \frown k$ by (induction k) simp-all **lemma** concat-pow-list: concat (xs $\frown k$) = (concat xs) $\frown k$ by (induction k) simp-all **lemma** concat-pow-list-single[simp]: concat ([a] $\frown k$) = a $\frown k$ **by** (*simp add: pow-list-alt*) **lemma** pow-list-single-Nil-iff: $[a] \frown n = [] \longleftrightarrow n = 0$ **by** (*simp add: pow-list-single*) **lemma** hd-pow-list-single: $k \neq 0 \implies hd$ ([a] $\frown k$) = a by (cases k) simp+ **lemma** index-pow-mod: $i < length(xs \frown k) \Longrightarrow (xs \frown k)!i = xs!(i \mod length xs)$ proof(induction k)have aux: $length(xs \frown Suc l) = length(xs \frown l) + length xs$ for l by simp have aux1: length (xs $\frown l$) $\leq i \implies i < length(xs \frown l) + length xs \implies i \mod i$ $length xs = i - length(xs^{-1})$ for l**unfolding** *length-pow-list*[*of l xs*] using less-diff-conv2[of l * length xs i length xs, unfolded add.commute[of length $xs \ l * length \ xs]$

le-add-diff-inverse[of l*length xs i]
by (simp add: mod-nat-eqI)
case (Suc k)
show ?case
unfolding aux sym[OF pow-list-Suc2[symmetric]] nth-append le-mod-geq
using aux1[OF - Suc.prems[unfolded aux]]
Suc.IH pow-list-Suc2[symmetric] Suc.prems[unfolded aux] leI[of i length(xs ^^
k)] by presburger
qed auto

lemma unique-letter-word: **assumes** $\bigwedge c. \ c \in set \ w \implies c = a$ **shows** $w = [a] \frown$ length w **using** assms **proof** (induction w) **case** (Cons b w) **have** [a] \frown length w = w **using** Cons.IH[OF Cons.prems[OF list.set-intros(2)]].. **then show** b $\# w = [a] \frown$ length(b # w)

 $\mathbf{qed} \ simp$

lemma count-list-pow-list: count-list $(w \frown k) a = k * (count-list w a)$ by (induction k) simp+

lemma sing-pow-lists: $a \in A \Longrightarrow [a] \frown n \in lists A$ by (induction n) auto

lemma one-generated-list-power: $u \in lists \{x\} \Longrightarrow \exists k. \ concat \ u = x \frown k$ **proof**(induction u rule: lists.induct) **case** Nil **then show** ?case **by** (metis concat.simps(1) pow-list.simps(1)) **next case** Cons **then show** ?case **by** (metis concat.simps(2) pow-list-Suc singletonD) **qed**

lemma pow-list-in-lists: $0 < k \Longrightarrow u \frown k \in lists B \Longrightarrow u \in lists B$ **by** (metis Suc-pred in-lists-conv-set pow-list-set)

end