
A Preprocessor for Linear Diophantine Equalities
and Inequalities

René Thiemann

University of Innsbruck, Austria

June 19, 2024

Abstract

We formalize a combination algorithm to preprocess a set of linear
diophantine equations and inequalities. It consists of three techniques
that are applied exhaustively.

• Pugh’s technique of tightening linear inequalities [4],
• Bromberger and Weidenbach’s algorithm to detect implicit equal-

ities [1] – here we make use of an incremental implementation of
the simplex algorithm [3], and

• Griggio’s diophantine equation solver [2] to eliminate all detected
equations.

In total, given some linear input constraints, the preprocessor will
either detect unsatisfiability in Z, or it returns equi-satisfiable inequal-
ities, which moreover are all strictly satisfiable in Q.

Contents
1 Linear Polynomials 2

1.1 An Abstract Type for Multivariate Linear Polynomials 2
1.2 An Implementation of Linear Polynomials as Ordered Asso-

ciation Lists . 8

2 Linear Diophantine Equations and Inequalities 20

3 Tightening 22

4 Linear Diophantine Equation Solver 24
4.1 Abstract Algorithm . 24
4.2 Executable Algorithm . 38

1

5 Detection of Implicit Equalities 49
5.1 Main Abstract Reasoning Step 49
5.2 Algorithm to Detect all Implicit Equalities in � 52
5.3 Algorithm to Detect Implicit Equalities in � 75

6 A Combined Preprocessor 79

7 Examples 83

1 Linear Polynomials
1.1 An Abstract Type for Multivariate Linear Polynomials
theory Linear-Polynomial

imports
Main

begin

typedef (overloaded) (′a :: zero, ′v) lpoly = { c :: ′v option ⇒ ′a. finite {v. c v
6= 0}}

by (intro exI [of - λ -. 0], auto)

setup-lifting type-definition-lpoly

instantiation lpoly :: (ab-group-add,type)ab-group-add
begin

lift-definition uminus-lpoly :: (′a, ′b) lpoly ⇒ (′a, ′b) lpoly is λ c x. − c x by
auto

lift-definition minus-lpoly :: (′a, ′b) lpoly ⇒ (′a, ′b) lpoly ⇒ (′a, ′b) lpoly is λ c1
c2 x. c1 x − c2 x
proof goal-cases

case (1 c1 c2)
have {v. c1 v − c2 v 6= 0} ⊆ {v. c1 v 6= 0} ∪ {v. c2 v 6= 0} by auto
from finite-subset[OF this] 1 show ?case by auto

qed

lift-definition plus-lpoly :: (′a, ′b) lpoly ⇒ (′a, ′b) lpoly ⇒ (′a, ′b) lpoly is λ c1
c2 x. c1 x + c2 x
proof goal-cases

case (1 c1 c2)
have {v. c1 v + c2 v 6= 0} ⊆ {v. c1 v 6= 0} ∪ {v. c2 v 6= 0} by auto
from finite-subset[OF this] 1 show ?case by auto

qed

lift-definition zero-lpoly :: (′a, ′b) lpoly is λ c. 0 by auto

instance by (intro-classes; transfer , auto simp: ac-simps)

2

end

lift-definition var-l :: ′v ⇒ (′a :: {comm-monoid-mult,zero-neq-one}, ′v) lpoly is
λ x. (λ c. 0)(Some x := 1) by auto
lift-definition constant-l :: (′a :: zero, ′v) lpoly ⇒ ′a is λ c. c None .
lift-definition coeff-l :: (′a :: zero, ′v) lpoly ⇒ ′v ⇒ ′a is λ c x. c (Some x) .
lift-definition vars-l :: (′a :: zero, ′v) lpoly ⇒ ′v set is λ c. { x. c (Some x) 6= 0}
.

lemma finite-vars-l[simp,intro]: finite (vars-l p)
proof (transfer , goal-cases)

case (1 p)
show ?case by (rule finite-subset[OF - finite-imageI [OF 1 , of the]], force)

qed

type-synonym (′a, ′v) assign = ′v ⇒ ′a

lemma vars-l-var [simp]: vars-l (var-l x) = {x} by transfer auto

lemma vars-l-plus: vars-l (p1 + p2) ⊆ vars-l p1 ∪ vars-l p2
by (transfer , auto)

lemma vars-l-minus: vars-l (p1 − p2) ⊆ vars-l p1 ∪ vars-l p2
by (transfer , auto)

lemma vars-l-uminus[simp]: vars-l (− p) = vars-l p
by (transfer , auto)

lemma vars-l-zero[simp]: vars-l 0 = {}
by (transfer , auto)

definition eval-l :: (′a :: comm-ring, ′v) assign ⇒ (′a, ′v) lpoly ⇒ ′a where
eval-l α p = constant-l p + sum (λ x. coeff-l p x ∗ α x) (vars-l p)

lemma eval-l-mono: assumes finite V vars-l p ⊆ V
shows eval-l α p = constant-l p + sum (λ x. coeff-l p x ∗ α x) V

proof −
define W where W = V − vars-l p
have [simp]: (

∑
x∈W . coeff-l p x ∗ α x) = 0

by (rule sum.neutral, unfold W-def , transfer , auto)
have V : V = W ∪ vars-l p W ∩ vars-l p = {} using assms unfolding W-def

by auto
show ?thesis unfolding eval-l-def using assms unfolding V

by (subst sum.union-disjoint[OF - - V (2)], auto)
qed

lemma eval-l-cong: assumes
∧

x. x ∈ vars-l p =⇒ α x = β x
shows eval-l α p = eval-l β p
unfolding eval-l-mono[OF finite-vars-l subset-refl]

3

by (intro arg-cong[of - - λ x. - + x] sum.cong refl, insert assms, auto)

lemma eval-l-0 [simp]: eval-l α 0 = 0 unfolding eval-l-def
by (transfer , auto)

lemma eval-l-plus[simp]: eval-l α (p1 + p2) = eval-l α p1 + eval-l α p2
proof −

have fin: finite (vars-l p1 ∪ vars-l p2) by auto
show ?thesis

apply (subst (1 2 3) eval-l-mono[OF fin])
subgoal by auto
subgoal by auto
subgoal by (rule vars-l-plus)
subgoal by (transfer , auto simp: sum.distrib algebra-simps)
done

qed

lemma eval-l-minus[simp]: eval-l α (p1 − p2) = eval-l α p1 − eval-l α p2
proof −

have fin: finite (vars-l p1 ∪ vars-l p2) by auto
show ?thesis

apply (subst (1 2 3) eval-l-mono[OF fin])
subgoal by auto
subgoal by auto
subgoal by (rule vars-l-minus)
subgoal by (transfer , auto simp: sum-subtractf algebra-simps)
done

qed

lemma eval-l-uminus[simp]: eval-l α (− p) = − eval-l α p
unfolding eval-l-def
by (transfer , auto simp: sum-negf)

lemma eval-l-var [simp]: eval-l α (var-l x) = α x
apply (subst eval-l-mono[of {x}])

apply force
apply force

by (transfer , auto)

lift-definition substitute-l :: ′v ⇒ (′a :: comm-ring, ′v) lpoly ⇒ (′a, ′v) lpoly ⇒
(′a, ′v) lpoly is
λ x p q y. (q(Some x := 0)) y + q (Some x) ∗ p y

proof goal-cases
case (1 x p1 p2)
show ?case

apply (rule finite-subset[of - {v. p1 v 6= 0} ∪ {v. p2 v 6= 0}])
using 1 by auto

qed

4

lemma vars-substitute-l: vars-l (substitute-l x p q) ⊆ vars-l p ∪ (vars-l q − {x})
by (transfer , auto)

lemma substitute-l-id: x /∈ vars-l q =⇒ substitute-l x p q = q
by transfer auto

lemma eval-substitute-l: eval-l α (substitute-l x p q) = eval-l (α(x := eval-l α p))
q
proof −

have fin: finite (insert x (vars-l p ∪ vars-l q))
and fin2 : finite (vars-l p ∪ vars-l q) by auto

define V where V = vars-l p ∪ vars-l q − {x}
have V : finite V x /∈ V unfolding V-def by auto
show ?thesis

apply (subst (1 2 3) eval-l-mono[OF fin])
subgoal by auto
subgoal by auto
subgoal using vars-substitute-l[of x p q] by auto
apply (unfold sum.insert-remove[OF fin2])
apply (unfold V-def [symmetric])
using V
apply (transfer)
apply (simp add: algebra-simps sum.distrib sum-distrib-left)
apply (intro sum.cong)
apply (auto simp: ac-simps)

done
qed

lift-definition fun-of-lpoly :: (′a :: zero, ′v) lpoly ⇒ ′v option ⇒ ′a is λ x. x .

lift-definition smult-l :: ′a :: comm-ring ⇒ (′a, ′v)lpoly ⇒ (′a, ′v)lpoly is
λ y c z. y ∗ c z

proof (goal-cases)
case 1
show ?case by (rule finite-subset[OF - 1], auto)

qed

lemma coeff-smult-l[simp]: coeff-l (smult-l c p) x = c ∗ coeff-l p x
by transfer auto

lemma constant-smult-l[simp]: constant-l (smult-l c p) = c ∗ constant-l p
by transfer auto

lemma eval-smult-l[simp]: eval-l α (smult-l c p) = c ∗ eval-l α p
apply (subst (1 2) eval-l-mono[of vars-l p])
subgoal by simp
subgoal by simp

5

subgoal by transfer auto
unfolding eval-l-def coeff-smult-l
by (auto simp: algebra-simps sum-distrib-left)

lift-definition const-l :: ′a :: zero ⇒ (′a, ′v) lpoly is λ c. (λ z. 0)(None := c)
by auto

lemma eval-l-const-l-constant: eval-l α (const-l (constant-l p)) = constant-l p
unfolding eval-l-def
by transfer auto

definition substitute-all-l :: (′v ⇒ (′a, ′w) lpoly) ⇒ (′a :: comm-ring, ′v) lpoly ⇒
(′a, ′w) lpoly where

substitute-all-l σ p = (const-l (constant-l p) + sum (λ x. smult-l (coeff-l p x) (σ
x)) (vars-l p))

lemma eval-substitute-all-l: eval-l α (substitute-all-l σ p) = eval-l (λ x. eval-l α
(σ x)) p
proof −

define xs where xs = vars-l p
have fin: finite xs unfolding xs-def by auto
show ?thesis

unfolding substitute-all-l-def
unfolding eval-l-mono[OF finite-vars-l subset-refl, of - p]
unfolding eval-l-plus eval-l-const-l-constant
unfolding xs-def [symmetric] using fin

proof (intro arg-cong[of - - λ x. - + x], induct xs rule: finite-induct)
case ∗: (insert x xs)
note IH = ∗(3)[OF ∗(1)]
note sum = sum.insert[OF ∗(1−2)]
show ?case unfolding sum eval-l-plus IH eval-smult-l by simp

qed simp
qed

lift-definition sdiv-l :: (int, ′v) lpoly ⇒ int ⇒ (int, ′v) lpoly is λ c q x. c x div q
proof (goal-cases)

case 1
show ?case by (rule finite-subset[OF - 1], auto)

qed

definition vars-l-list p = sorted-list-of-set (vars-l p)

lemma vars-l-list[simp]: set (vars-l-list p) = vars-l p
unfolding vars-l-list-def by simp

definition min-var :: (′a :: {linorder , ordered-ab-group-add-abs}, ′v :: linorder)
lpoly ⇒ ′v where

min-var p = (let
xcs = map (λ x. (x,coeff-l p x)) (vars-l-list p);

6

axcs = map (map-prod id abs) xcs;
m = min-list (map snd axcs)

in (case filter (λ xa. snd xa = m) axcs of
(x,a) # - ⇒ x))

lemma min-var : vars-l p 6= {} =⇒ coeff-l p (min-var p) 6= 0
x ∈ vars-l p =⇒ abs (coeff-l p (min-var p)) ≤ abs (coeff-l p x)

proof −
let ?m = min-var p
define xcs where xcs = map (λ x. (x,coeff-l p x)) (vars-l-list p)
define axcs where axcs = map (map-prod id abs) xcs
define m where m = min-list (map snd axcs)
define fxs where fxs = filter (λ xa. snd xa = m) axcs
{

fix x
assume x: x ∈ vars-l p
let ?c = coeff-l p x
from x have cx: ?c 6= 0 by transfer auto
from x have (x, ?c) ∈ set xcs unfolding xcs-def by force
hence ax: (x, abs ?c) ∈ set axcs unfolding axcs-def by force
hence map snd axcs 6= [] abs ?c ∈ set (map snd axcs) by force+
with min-list-Min[OF this(1), folded m-def]
have m: m = Min (set (map snd axcs)) m ∈ set (map snd axcs) m ≤ abs ?c

by auto
from m(2) have m ∈ snd ‘ set fxs unfolding fxs-def by force
then obtain y m ′ xs where fxs: fxs = ((y,m ′) # xs)

by (cases fxs, auto simp: fxs-def)
hence (y,m ′) ∈ set fxs by auto
from this[unfolded fxs-def] have m ′: m ′ = m by auto
with fxs have fxs: fxs = ((y,m) # xs) by auto
have m ′: ?m = y

unfolding min-var-def Let-def xcs-def [symmetric]
unfolding axcs-def [symmetric]
unfolding m-def [symmetric]
unfolding fxs-def [symmetric]
unfolding fxs by simp

from fxs have (y,m) ∈ set axcs unfolding fxs-def
by (metis Cons-eq-filter-iff in-set-conv-decomp)

then obtain c where (y,c) ∈ set xcs and mc: m = abs c unfolding axcs-def
by auto

hence c: c = coeff-l p y and y: y ∈ vars-l p unfolding xcs-def by auto
hence c0 : c 6= 0 by transfer auto
show abs (coeff-l p ?m) ≤ abs (coeff-l p x)

unfolding m ′ using m(3) unfolding c mc .
have abs (coeff-l p ?m) 6= 0 using c0 unfolding c m ′ by auto

}
thus vars-l p 6= {} =⇒ coeff-l p (min-var p) 6= 0 by auto

qed

7

definition gcd-coeffs-l :: (′a :: Gcd, ′v)lpoly ⇒ ′a where
gcd-coeffs-l p = Gcd (coeff-l p ‘ vars-l p)

lift-definition change-const :: ′a :: zero ⇒ (′a, ′v)lpoly ⇒ (′a, ′v)lpoly is λ x c.
c(None := x)
proof goal-cases

case (1 x c)
hence f : finite ((insert None) {v. c v 6= 0}) by auto
show ?case

by (rule finite-subset[OF - f], auto)
qed

lemma lpoly-fun-of-eqI : assumes
∧

x. fun-of-lpoly p x = fun-of-lpoly q x
shows p = q
using assms by transfer auto

lift-definition reorder-nontriv-var :: ′v ⇒ (int, ′v) lpoly ⇒ ′v ⇒ (int, ′v) lpoly is
λ x c y. (λ z. c z div c (Some x))(Some x := 1 , Some y := −1)

proof (goal-cases)
case (1 x c y)
from 1 have fin: finite (insert (Some y) (insert (Some x) ({v. c v 6= 0}))) by

auto
show ?case by (rule finite-subset[OF - fin], auto)

qed

lemma coeff-l-reorder-nontriv-var : coeff-l (reorder-nontriv-var x p y)
= (λ z. coeff-l p z div coeff-l p x)(x := 1 , y := −1)
by (transfer , auto simp: Let-def)

lemma vars-reorder-non-triv: vars-l (reorder-nontriv-var x p y) ⊆ insert x (insert
y (vars-l p))

by (transfer , auto simp: Let-def)

end

1.2 An Implementation of Linear Polynomials as Ordered
Association Lists

theory Linear-Polynomial-Impl
imports

HOL−Library.AList
Linear-Polynomial

begin

typedef (overloaded) (′a :: zero, ′v :: linorder) lpoly-impl =
{ (c :: ′a, vcs :: (′v × ′a) list).

sorted (map fst vcs) ∧
distinct (map fst vcs) ∧

8

Ball (snd ‘ set vcs) ((6=) 0)}
by (intro exI [of - (0 ,[])], auto)

setup-lifting type-definition-lpoly-impl

definition lookup-0 :: (′a × ′b :: zero)list ⇒ ′a ⇒ ′b where
lookup-0 xs x = (case map-of xs x of None ⇒ 0 | Some y ⇒ y)

lemma lookup-0-empty[simp]: lookup-0 [] = (λ x. 0)
by (intro ext, auto simp: lookup-0-def)

lemma lookup-0-single[simp]: lookup-0 [(x,c)] = (λ y. 0)(x := c)
by (intro ext, auto simp: lookup-0-def)

lemma finite-lookup-0 [simp, intro]: finite {x . lookup-0 xs x 6= 0}
unfolding lookup-0-def
by (rule finite-subset[OF - finite-set, of - map fst xs],

force split: option.splits dest!: map-of-SomeD)

lift-definition lpoly-of :: (′a :: zero, ′v :: linorder) lpoly-impl ⇒ (′a, ′v)lpoly is
λ (c, vcs) cx. case cx of None ⇒ c | Some x ⇒ lookup-0 vcs x
apply clarsimp
subgoal for c vcs

apply (rule finite-subset[of - insert None (Some ‘ {x. lookup-0 vcs x 6= 0})])
subgoal apply (clarsimp split: option.splits)

subgoal for x by (cases x, auto)
done

subgoal by simp
done

done

code-datatype lpoly-of

lift-definition zero-lpoly-impl :: (′a :: zero, ′v :: linorder) lpoly-impl is
(0 ,[]) by auto

lemma zero-lpoly-impl[code]: 0 = lpoly-of zero-lpoly-impl
by (transfer , auto split: option.splits)

lift-definition const-lpoly-impl :: ′a ⇒ (′a :: zero, ′v :: linorder) lpoly-impl is
λ c. (c,[]) by auto

lemma const-lpoly-impl[code]: const-l c = lpoly-of (const-lpoly-impl c)
by (transfer , auto split: option.splits)

lift-definition constant-lpoly-impl :: (′a :: zero, ′v :: linorder) lpoly-impl ⇒ ′a is
fst .

9

lemma constant-lpoly-impl[code]: constant-l (lpoly-of p) = constant-lpoly-impl p
by (transfer , auto)

lift-definition var-lpoly-impl :: ′v :: linorder ⇒ (′a :: {comm-monoid-mult,zero-neq-one},
′v) lpoly-impl is
λ x. (0 , [(x,1)]) by auto

lemma var-lpoly-impl[code]: var-l x = lpoly-of (var-lpoly-impl x)
by transfer (auto split: option.splits)

lift-definition uminus-lpoly-impl :: (′a :: ab-group-add, ′v :: linorder) lpoly-impl
⇒ (′a, ′v) lpoly-impl is
λ (c, vcs). (uminus c, map (map-prod id uminus) vcs)
by force

lemma uminus-lpoly-impl[code]: − lpoly-of p = lpoly-of (uminus-lpoly-impl p)
by transfer (force split: option.split simp: map-of-eq-None-iff lookup-0-def eq-key-imp-eq-value)

fun merge-coeffs-main :: (′a :: zero ⇒ ′a ⇒ ′a) ⇒ (′v :: linorder × ′a) list ⇒ (′v
× ′a)list ⇒ (′v × ′a)list where

merge-coeffs-main f ((x,c) # xs) ((y,d) # ys) = (
if x = y then (x,f c d) # merge-coeffs-main f xs ys
else if x < y then (x,f c 0) # merge-coeffs-main f xs ((y,d) # ys)
else (y,f 0 d) # merge-coeffs-main f ((x,c) # xs) ys)

| merge-coeffs-main f [] ys = map (map-prod id (f 0)) ys
| merge-coeffs-main f xs [] = map (map-prod id (λ x. f x 0)) xs

lemma merge-coeffs-main: assumes sorted (map fst vxs) distinct (map fst vxs)
sorted (map fst vys) distinct (map fst vys)
and f 0 0 = 0

shows sorted (map fst (merge-coeffs-main f vxs vys))
∧ distinct (map fst (merge-coeffs-main f vxs vys))
∧ fst ‘ set (merge-coeffs-main f vxs vys) = fst ‘ set vxs ∪ fst ‘ set vys
∧ lookup-0 (merge-coeffs-main f vxs vys) x = f (lookup-0 vxs x) (lookup-0 vys x)
using assms

proof (induction f vxs vys rule: merge-coeffs-main.induct)
case (1 f x c xs y d ys)
let ?lhs = merge-coeffs-main f ((x, c) # xs) ((y, d) # ys)
consider (eq) x = y | (lt) x 6= y x < y | (gt) x 6= y ¬ x < y by linarith
thus ?case
proof cases

case eq
from eq 1 .prems have sorted (map fst xs) distinct (map fst xs)

sorted (map fst ys) distinct (map fst ys) f 0 0 = 0 by auto
note IH = 1 .IH (1)[OF eq this]
from eq have res: ?lhs = (x, f c d) # merge-coeffs-main f xs ys by auto
from eq 1 .prems IH show ?thesis unfolding res using IH

apply (intro conjI)
subgoal by auto

10

subgoal by auto
subgoal by auto
subgoal by (force simp: lookup-0-def map-of-eq-None-iff split: option.split

dest: eq-key-imp-eq-value)
done

next
case lt
from lt 1 .prems have sorted (map fst xs) distinct (map fst xs)

sorted (map fst ((y, d) # ys)) distinct (map fst ((y, d) # ys)) f 0 0 = 0 by
auto

note IH = 1 .IH (2)[OF lt this]
from lt have res: ?lhs = (x, f c 0) # merge-coeffs-main f xs ((y, d) # ys) by

auto
from lt 1 .prems IH show ?thesis unfolding res using IH

apply (intro conjI)
subgoal by auto
subgoal by auto
subgoal by auto
subgoal by (force simp: lookup-0-def map-of-eq-None-iff split: option.split

dest: eq-key-imp-eq-value)
done

next
case gt
from gt 1 .prems have sorted (map fst ((x, c) # xs)) distinct (map fst ((x, c)

xs))
sorted (map fst ys) distinct (map fst ys) f 0 0 = 0 by auto

note IH = 1 .IH (3)[OF gt this]
from gt have res: ?lhs = (y, f 0 d) # merge-coeffs-main f ((x, c) # xs) ys by

auto
from gt 1 .prems IH show ?thesis unfolding res using IH

apply (intro conjI)
subgoal by auto
subgoal by auto
subgoal by auto
subgoal by (force simp: lookup-0-def map-of-eq-None-iff split: option.split

dest: eq-key-imp-eq-value)
done

qed
next

case (2 f ys)
then show ?case

apply (intro conjI)
subgoal by force
subgoal by force
subgoal by force

by (force simp: map-of-eq-None-iff lookup-0-def split: option.split dest: eq-key-imp-eq-value)
next

case (3 f v va)
then show ?case

11

apply (intro conjI)
subgoal by force
subgoal by force
subgoal by force

by (force simp: map-of-eq-None-iff lookup-0-def split: option.split dest: eq-key-imp-eq-value)
qed

definition filter-0 where filter-0 = filter (λ p. snd p 6= 0)

lemma filter-0 : assumes distinct (map fst xs) sorted (map fst xs)
shows lookup-0 (filter-0 xs) = lookup-0 xs

distinct (map fst (filter-0 xs))
sorted (map fst (filter-0 xs))
Ball (snd ‘ set (filter-0 xs)) ((6=) 0)

subgoal
apply (intro ext)
apply (clarsimp simp: lookup-0-def filter-0-def split: option.split)
apply (intro conjI impI allI)
subgoal for x
by (smt (verit, ccfv-SIG) eq-snd-iff map-of-SomeD mem-Collect-eq not-None-eq

set-filter weak-map-of-SomeI)
subgoal for x y by (force dest: map-of-SomeD simp: map-of-eq-None-iff)
subgoal for x y z using assms
by (metis (no-types, lifting) eq-key-imp-eq-value map-of-SomeD mem-Collect-eq

set-filter)
done

subgoal using assms(1) unfolding filter-0-def by (rule distinct-map-filter)
subgoal using assms(2) unfolding filter-0-def by (rule sorted-filter)
subgoal unfolding filter-0-def by auto
done

definition merge-coeffs :: (′a :: zero ⇒ ′a ⇒ ′a) ⇒ (′v :: linorder × ′a) list ⇒ (′v
× ′a)list ⇒ (′v × ′a)list where

merge-coeffs f xs ys = filter-0 (merge-coeffs-main f xs ys)

lemma merge-coeffs: assumes sorted (map fst vxs) distinct (map fst vxs)
sorted (map fst vys) distinct (map fst vys)
and f 0 0 = 0

shows sorted (map fst (merge-coeffs f vxs vys)) (is ?A)
distinct (map fst (merge-coeffs f vxs vys)) (is ?B)

Ball (snd ‘ set (merge-coeffs f vxs vys)) ((6=) 0) (is ?C)
lookup-0 (merge-coeffs f vxs vys) x = f (lookup-0 vxs x) (lookup-0 vys x) (is ?D)

proof −
let ?m = merge-coeffs-main f vxs vys
from merge-coeffs-main[OF assms(1−4), of f , OF assms(5)]
have distinct (map fst ?m) sorted (map fst ?m) lookup-0 ?m x = f (lookup-0 vxs

x) (lookup-0 vys x)
by auto

from filter-0 [OF this(1−2)] this(3)

12

show ?A ?B ?C ?D
unfolding merge-coeffs-def [symmetric] by auto

qed

lift-definition minus-lpoly-impl :: (′a :: ab-group-add, ′v :: linorder) lpoly-impl ⇒
(′a, ′v) lpoly-impl ⇒ (′a, ′v) lpoly-impl is
λ (c, vxs) (d, vys). (c − d, merge-coeffs minus vxs vys)
apply clarsimp
subgoal for vxs vys

using merge-coeffs[of vxs vys minus] by auto
done

lemma minus-lpoly-impl[code]: lpoly-of p − lpoly-of q = lpoly-of (minus-lpoly-impl
p q)

apply transfer
apply clarsimp
apply (intro ext)
subgoal for a vxs b vys x

using merge-coeffs[of vxs vys minus]
by (cases x, auto)

done

lift-definition plus-lpoly-impl :: (′a :: ab-group-add, ′v :: linorder) lpoly-impl ⇒
(′a, ′v) lpoly-impl ⇒ (′a, ′v) lpoly-impl is
λ (c, vxs) (d, vys). (c + d, merge-coeffs plus vxs vys)
apply clarsimp
subgoal for vxs vys

using merge-coeffs[of vxs vys plus] by auto
done

lemma plus-lpoly-impl[code]: lpoly-of p + lpoly-of q = lpoly-of (plus-lpoly-impl p
q)

apply transfer
apply clarsimp
apply (intro ext)
subgoal for a vxs b vys x

using merge-coeffs[of vxs vys plus]
by (cases x, auto)

done

lift-definition map-lpoly-impl :: (′a :: zero ⇒ ′a) ⇒ (′a, ′v :: linorder)lpoly-impl
⇒ (′a, ′v)lpoly-impl is
λ f (c,vcs). (f c, filter-0 (map (map-prod id f) vcs))
by clarsimp (intro conjI filter-0 , auto simp: filter-0-def)

lemma map-lpoly-impl: f 0 = 0 =⇒ fun-of-lpoly (lpoly-of (map-lpoly-impl f p)) =
(λ x. f (fun-of-lpoly (lpoly-of p) x))

apply (intro ext)
apply transfer

13

apply clarsimp
subgoal for x f c vcs

apply (cases x)
subgoal by simp
subgoal for y

apply (simp add: filter-0)
by (force simp: lookup-0-def map-of-eq-None-iff dest: eq-key-imp-eq-value split:

option.split)
done

done

definition sdiv-lpoly-impl p x = map-lpoly-impl (λ y. y div x) p

lemma sdiv-lpoly-impl[code]: sdiv-l (lpoly-of p) x = lpoly-of (sdiv-lpoly-impl p x)
apply (intro lpoly-fun-of-eqI)
apply (unfold sdiv-lpoly-impl-def , subst map-lpoly-impl, force)
by transfer auto

definition smult-lpoly-impl x p = map-lpoly-impl ((∗) x) p

lemma smult-lpoly-impl[code]: smult-l x (lpoly-of p) = lpoly-of (smult-lpoly-impl x
p)

apply (intro lpoly-fun-of-eqI)
apply (unfold smult-lpoly-impl-def , subst map-lpoly-impl, force)
by transfer auto

instantiation lpoly :: (type,type)equal begin
definition equal-lpoly :: (′a, ′b) lpoly ⇒ (′a, ′b) lpoly ⇒ bool where equal-lpoly =
(=)
instance

by (intro-classes, auto simp: equal-lpoly-def)
end

instantiation lpoly-impl :: (zero,linorder)equal begin
lift-definition equal-lpoly-impl :: (′a, ′b) lpoly-impl ⇒ (′a, ′b) lpoly-impl ⇒ bool

is λ (c,xs) (d,ys). c = d ∧ xs = ys .
instance

by (intro-classes, transfer , auto)
end

lift-definition vars-coeffs-impl :: (′a :: zero, ′v :: linorder) lpoly-impl ⇒ (′v × ′a)
list is snd .

lemma vars-coeffs-impl:
set (vars-coeffs-impl p) = (λ v. (v, coeff-l (lpoly-of p) v)) ‘ vars-l (lpoly-of p) (is

?A)
distinct (map fst (vars-coeffs-impl p)) (is ?B)
sorted (map fst (vars-coeffs-impl p)) (is ?C)
vars-l-list (lpoly-of p) = map fst (vars-coeffs-impl p) (is ?D)

14

vars-coeffs-impl p = map (λ v. (v, coeff-l (lpoly-of p) v)) (vars-l-list (lpoly-of p))
(is ?E)
proof −

show ?A ?B ?C
proof (atomize(full), transfer , goal-cases)

case (1 p)
define vcs where vcs = snd p
with 1 have sort: sorted (map fst vcs) and

dist: distinct (map fst vcs) and
non0 : ∀ y∈set vcs. snd y 6= 0 by auto

let ?set = (λx. (x, lookup-0 vcs x)) ‘ {x. lookup-0 vcs x 6= 0}
{

fix x c
{

assume x: (x,c) ∈ set vcs
with non0 have c: c 6= 0 by auto
with dist x have lookup-0 vcs x = c unfolding lookup-0-def by simp
hence (x,c) ∈ ?set using c by auto

}
moreover
{

assume (x,c) ∈ ?set
hence look: lookup-0 vcs x = c and c: c 6= 0 by auto
hence (x,c) ∈ set vcs unfolding lookup-0-def

by (cases map-of vcs x; force dest: map-of-SomeD)
}
ultimately have (x,c) ∈ set vcs ←→ (x,c) ∈ ?set by auto

}
with 1 show ?case unfolding vcs-def by auto

qed
show ?D unfolding vars-l-list-def using ‹?A› ‹?B› ‹?C ›
by (metis (no-types, lifting) fst-eqD image-set list.map-comp list.map-ident-strong

o-def sorted-distinct-set-unique sorted-list-of-set.distinct-sorted-key-list-of-set sorted-list-of-set.sorted-sorted-key-list-of-set
vars-l-list vars-l-list-def)

show ?E using ‹?A› ‹?B› ‹?C › ‹?D›
by (smt (verit, ccfv-SIG) fst-conv image-iff list.map-comp list.map-ident-strong

o-def)
qed

declare vars-coeffs-impl(4)[code]

declare eval-l-def [code del]

lemma eval-lpoly-impl[code]: eval-l α (lpoly-of p) =
constant-lpoly-impl p + (

∑
(x, c) ← vars-coeffs-impl p. c ∗ α x)

unfolding eval-l-def constant-lpoly-impl
unfolding vars-coeffs-impl(5)
unfolding vars-l-list[symmetric]
apply (subst sum.distinct-set-conv-list)

15

subgoal unfolding vars-l-list-def by simp
subgoal unfolding map-map o-def split ..
done

declare substitute-all-l-def [code del]

lemma substitute-all-impl[code]: substitute-all-l σ (lpoly-of p) =
const-l (constant-lpoly-impl p) + (

∑
(x, c) ← vars-coeffs-impl p. smult-l c (σ x))

unfolding substitute-all-l-def constant-lpoly-impl
unfolding vars-coeffs-impl(5)
unfolding vars-l-list[symmetric]
apply (subst sum.distinct-set-conv-list)
subgoal unfolding vars-l-list-def by simp
subgoal unfolding map-map o-def split ..
done

lemma equal-lpoly-impl[code]: HOL.equal (lpoly-of p) (lpoly-of q) = (p = q)
proof (unfold equal-lpoly-def , standard)

assume ∗: lpoly-of p = lpoly-of q
hence vars-coeffs-impl p = vars-coeffs-impl q

unfolding vars-coeffs-impl(5) by simp
moreover from ∗ have constant-l (lpoly-of p) = constant-l (lpoly-of q) by simp
from this[unfolded constant-lpoly-impl]
have constant-lpoly-impl p = constant-lpoly-impl q .
ultimately show p = q by transfer auto

qed auto

fun update-main :: ′v :: linorder ⇒ ′a :: zero ⇒ (′v × ′a) list ⇒ (′v × ′a) list
where

update-main x a ((y,b) # zs) = (if x > y then (y,b) # update-main x a zs
else if x = y then (y, a) # zs else (x,a) # (y, b) # zs)

| update-main x a [] = [(x,a)]

lemma update-main: assumes sorted (map fst vcs) distinct (map fst vcs) Ball
(snd ‘ set vcs) ((6=) 0)

and vcs ′ = update-main x a vcs
and a: a 6= 0

shows sorted (map fst vcs ′) distinct (map fst vcs ′) Ball (snd ‘ set vcs ′) ((6=) 0)
fst ‘ set vcs ′ = insert x (fst ‘ set vcs)
lookup-0 vcs ′ z = ((lookup-0 vcs)(x := a)) z
using assms(1−4)

proof (atomize(full), induct vcs arbitrary: vcs ′)
case Nil
thus ?case using a by auto

next
case (Cons p vcs vcs1)
obtain y b where p: p = (y,b) by force
note Cons = Cons[unfolded p list.simps fst-conv]

16

consider (gt) x > y | (lt) x < y | (eq) x = y by fastforce
thus ?case
proof cases

case gt
define vcs2 where vcs2 = update-main x a vcs
from gt Cons have vcs1 : vcs1 = (y, b) # vcs2 unfolding vcs2-def by auto
from Cons(2−) have ∗:

sorted (map fst vcs)
distinct (map fst vcs)
∀ y∈snd ‘ set vcs. 0 6= y by auto

from Cons(1)[OF ∗ vcs2-def] Cons(2−4) a gt
show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def)

next
case lt
with Cons have vcs1 : vcs1 = (x,a) # (y,b) # vcs by auto
from Cons(2−4) a lt
show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def)

next
case eq
with Cons have vcs1 : vcs1 = (x,a) # vcs by auto
from Cons(2−4) a eq
show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def)

qed
qed

fun update-main-0 :: ′v :: linorder ⇒ (′v × ′a) list ⇒ (′v × ′a) list where
update-main-0 x ((y,b) # zs) = (if x > y then (y,b) # update-main-0 x zs

else if x = y then zs else (y, b) # zs)
| update-main-0 x [] = []

lemma update-main-0 : assumes sorted (map fst vcs) distinct (map fst vcs) Ball
(snd ‘ set vcs) ((6=) 0)

and vcs ′ = update-main-0 x vcs
shows sorted (map fst vcs ′) distinct (map fst vcs ′) Ball (snd ‘ set vcs ′) ((6=) 0)

fst ‘ set vcs ′ = fst ‘ set vcs − {x}
lookup-0 vcs ′ z = ((lookup-0 vcs)(x := 0)) z
using assms(1−4)

proof (atomize(full), induct vcs arbitrary: vcs ′)
case Nil
hence vcs ′: vcs ′ = [] by auto
show ?case unfolding vcs ′ by auto

next
case (Cons p vcs vcs1)
obtain y b where p: p = (y,b) by force
note Cons = Cons[unfolded p list.simps fst-conv]
consider (gt) x > y | (lt) x < y | (eq) x = y by fastforce
thus ?case
proof cases

case gt

17

define vcs2 where vcs2 = update-main-0 x vcs
from gt Cons have vcs1 : vcs1 = (y, b) # vcs2 unfolding vcs2-def by auto
from Cons(2−) have ∗:

sorted (map fst vcs)
distinct (map fst vcs)
∀ y∈snd ‘ set vcs. 0 6= y by auto

from Cons(1)[OF ∗ vcs2-def] Cons(2−4) gt
show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def)

next
case lt
with Cons have vcs1 : vcs1 = (y,b) # vcs by auto
from Cons(2−4) lt
show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def split: option.split)

next
case eq
with Cons have vcs1 : vcs1 = vcs by auto
from Cons(2−4) eq
show ?thesis unfolding p vcs1 by (force simp: lookup-0-def split: option.split)

qed
qed

lift-definition update-lpoly-impl :: ′v :: linorder ⇒ ′a :: zero ⇒ (′a, ′v)lpoly-impl
⇒ (′a, ′v)lpoly-impl is
λ x a (c, vs). if a = 0 then (c, update-main-0 x vs) else (c, update-main x a vs)
apply clarsimp
subgoal for x a c vs d vcs
proof goal-cases

case 1
show ?case
proof (cases a = 0)

case True
hence vcs: vcs = update-main-0 x vs and c: c = d using 1 by auto
from update-main-0 [OF 1 (2) 1 (3) - vcs] 1 (4)
show ?thesis using c by auto

next
case False
hence vcs: vcs = update-main x a vs and c: c = d using 1 by auto
from update-main[OF 1 (2) 1 (3) - vcs False] 1 (4)
show ?thesis using c by auto

qed
qed
done

lemma update-lpoly-impl: fun-of-lpoly (lpoly-of (update-lpoly-impl x a p)) = (fun-of-lpoly
(lpoly-of p))(Some x := a)

apply (transfer , clarsimp, intro conjI ext impI)
subgoal for x a z vs p

using update-main-0 (5)[of vs - x, OF - - - refl]

18

by (cases p, auto)
subgoal for x a z vs p

using update-main(5)[of vs - x a, OF - - - refl]
by (cases p, auto)

done

lift-definition coeff-lpoly-impl :: (′a :: zero, ′v :: linorder)lpoly-impl ⇒ ′v ⇒ ′a is
λ (c,p) x. lookup-0 p x .

lemma coeff-lpoly-impl[code]: coeff-l (lpoly-of p) x = coeff-lpoly-impl p x
by (transfer , auto)

definition substitute-l-impl where
substitute-l-impl x p q = (let c = coeff-lpoly-impl q x in

plus-lpoly-impl (update-lpoly-impl x 0 q) (smult-lpoly-impl c p))

lemma substitute-l-impl[code]:
substitute-l x (lpoly-of p) (lpoly-of q) = lpoly-of (substitute-l-impl x p q)
unfolding substitute-l-impl-def Let-def
unfolding plus-lpoly-impl[symmetric] smult-lpoly-impl[symmetric] coeff-lpoly-impl[symmetric]

proof (intro lpoly-fun-of-eqI , goal-cases)
case (1 y)
show ?case using update-lpoly-impl[of x 0 q]

by transfer auto
qed

definition reorder-nontriv-var-impl where
reorder-nontriv-var-impl x p y = (let c = coeff-lpoly-impl p x

in update-lpoly-impl y (−1) (update-lpoly-impl x 1 (sdiv-lpoly-impl p c)))

lemma reorder-nontriv-var-impl[code]:
reorder-nontriv-var x (lpoly-of p) y = lpoly-of (reorder-nontriv-var-impl x p y)
unfolding reorder-nontriv-var-impl-def Let-def sdiv-lpoly-impl-def coeff-lpoly-impl[symmetric]

proof (intro lpoly-fun-of-eqI , goal-cases)
case (1 z)
show ?case unfolding update-lpoly-impl

apply (subst map-lpoly-impl, force)
by transfer auto

qed

declare min-var-def [code del]

lemmas min-var-impl = min-var-def [of lpoly-of p for p,
folded vars-coeffs-impl(5)]

declare min-var-impl[code]

declare gcd-coeffs-l-def [code del]

19

lemma Gcd-set: Gcd (set (xs :: ′a :: semiring-Gcd list)) = gcd-list xs
unfolding Gcd-set-eq-fold Gcd-fin.set-eq-fold[of xs] ..

lemma gcd-coeffs-impl[code]:
gcd-coeffs-l (lpoly-of (p :: (′a :: semiring-Gcd,-)lpoly-impl)) = fold gcd (map snd

(vars-coeffs-impl p)) 0
unfolding gcd-coeffs-l-def vars-coeffs-impl(5) map-map o-def snd-conv
unfolding vars-l-list[symmetric] image-set Gcd-set Gcd-fin.set-eq-fold ..

lift-definition change-const-impl :: ′a ⇒ (′a :: zero, ′v :: linorder)lpoly-impl ⇒
(′a, ′v)lpoly-impl

is λ c (d,vs). (c,vs) by auto

lemma change-const-impl[code]: change-const c (lpoly-of p) = lpoly-of (change-const-impl
c p)

by (intro lpoly-fun-of-eqI , transfer , auto)

end

2 Linear Diophantine Equations and Inequalities

We just represent equations and inequalities as polynomials, i.e., p = 0 or
p ≤ 0. There is no need for strict inequalities p < 0 since for integers this
is equivalent to p + 1 ≤ 0.
theory Diophantine-Eqs-and-Ineqs

imports Linear-Polynomial
begin

type-synonym ′v dleq = (int, ′v) lpoly
type-synonym ′v dlineq = (int, ′v) lpoly

definition satisfies-dleq :: (int, ′v) assign ⇒ ′v dleq ⇒ bool where
satisfies-dleq α p = (eval-l α p = 0)

definition satisfies-dlineq :: (int, ′v) assign ⇒ ′v dlineq ⇒ bool where
satisfies-dlineq α p = (eval-l α p ≤ 0)

abbreviation satisfies-eq-ineqs :: (int, ′v) assign ⇒ ′v dleq set ⇒ ′v dlineq set ⇒
bool (- |=dio

′(-,- ′)) where
satisfies-eq-ineqs α eqs ineqs ≡ Ball eqs (satisfies-dleq α) ∧ Ball ineqs (satisfies-dlineq

α)

definition trivial-ineq :: (int, ′v :: linorder)lpoly ⇒ bool option where
trivial-ineq c = (if vars-l-list c = [] then Some (constant-l c ≤ 0) else None)

lemma trivial-ineq-None: trivial-ineq c = None =⇒ vars-l c 6= {}
unfolding trivial-ineq-def unfolding vars-l-list[symmetric] by fastforce

20

lemma trivial-ineq-Some: assumes trivial-ineq c = Some b
shows b = satisfies-dlineq α c

proof −
from assms[unfolded trivial-ineq-def] have vars: vars-l c = {} and b: b =

(constant-l c ≤ 0)
by (auto split: if-splits simp: vars-l-list-def)

show ?thesis unfolding satisfies-dlineq-def eval-l-def vars using b by auto
qed

fun trivial-ineq-filter :: ′v :: linorder dlineq list ⇒ ′v dlineq list option
where trivial-ineq-filter [] = Some []
| trivial-ineq-filter (c # cs) = (case trivial-ineq c of Some True ⇒ trivial-ineq-filter

cs
| Some False ⇒ None
| None ⇒ map-option ((#) c) (trivial-ineq-filter cs))

lemma trivial-ineq-filter : trivial-ineq-filter cs = None =⇒ (@ α. α |=dio ({}, set
cs))

trivial-ineq-filter cs = Some ds =⇒
Ball (set ds) (λ c. vars-l c 6= {}) ∧
(α |=dio ({}, set cs) ←→ α |=dio ({}, set ds)) ∧
length ds ≤ length cs

proof (atomize(full), induct cs arbitrary: ds)
case IH : (Cons c cs)
let ?t = trivial-ineq c
consider (T) ?t = Some True | (F) ?t = Some False | (V) ?t = None by (cases

?t, auto)
thus ?case
proof cases

case F
from trivial-ineq-Some[OF F] F show ?thesis by auto

next
case T
from trivial-ineq-Some[OF T] T IH show ?thesis by force

next
case V
from trivial-ineq-None[OF V] V IH show ?thesis by auto

qed
qed simp

lemma trivial-lhe: assumes vars-l p = {}
shows eval-l α p = constant-l p

satisfies-dleq α p ←→ p = 0
proof −

show id: eval-l α p = constant-l p
by (subst eval-l-mono[of {}], insert assms, auto)

show satisfies-dleq α p ←→ p = 0
unfolding satisfies-dleq-def id using assms

21

apply (transfer)
by (metis (mono-tags, lifting) Collect-empty-eq not-None-eq)

qed

end

3 Tightening

replace p + c ≤ 0 by p / g + d c / g e ≤ 0 where c is a constant and g is
the gcd of the variable coefficients of p.
theory Diophantine-Tightening

imports
Diophantine-Eqs-and-Ineqs

begin

definition tighten-ineq :: ′v dlineq ⇒ ′v dlineq where
tighten-ineq p = (let g = gcd-coeffs-l p;

c = constant-l p
in if g = 1 then p else let d = − ((−c) div g)

in change-const d (sdiv-l p g))

lemma tighten-ineq: assumes vars-l p 6= {}
shows satisfies-dlineq α (tighten-ineq p) = satisfies-dlineq α p

proof (rule ccontr)
assume contra: ¬ ?thesis
let ?tp = tighten-ineq p
define g where g = gcd-coeffs-l p
define c where c = constant-l p
note def = tighten-ineq-def [of p, unfolded Let-def , folded g-def , folded c-def]
define d where d = − (− c div g)
define mc where mc = −c
define pg where pg = sdiv-l p g
define f where f = (

∑
x∈vars-l pg. coeff-l pg x ∗ α x)

from contra def have g1 : (g = 1) = False by auto
from def [unfolded this if-False, folded d-def pg-def]
have tp: ?tp = change-const d pg by auto

from assms have g0 : g 6= 0 unfolding g-def gcd-coeffs-l-def
by (transfer , auto)

have g ≥ 0 unfolding g-def gcd-coeffs-l-def by simp
with g0 g1 have g: g > 0 by simp
have p: p = change-const c (smult-l g pg) (is - = ?p)
proof (intro lpoly-fun-of-eqI , goal-cases)

case (1 x)
show ?case
proof (cases x)

case None

22

thus ?thesis unfolding c-def by transfer auto
next

case (Some y)
hence fun-of-lpoly (change-const c (smult-l g pg)) x
= g ∗ (fun-of-lpoly p x div g) unfolding pg-def by transfer auto

also have . . . = fun-of-lpoly p x
proof (rule dvd-mult-div-cancel)
have fun-of-lpoly p x ∈ coeff-l p ‘ vars-l p ∨ fun-of-lpoly p x = 0 unfolding

Some
by transfer auto

thus g dvd fun-of-lpoly p x using g0 unfolding g-def gcd-coeffs-l-def by
auto

qed
finally show ?thesis by auto

qed
qed

have coeff : coeff-l ?p x = g ∗ coeff-l pg x for x by transfer auto
have coeff ′: coeff-l ?tp x = coeff-l pg x for x unfolding tp by transfer auto

have eval-l α p = constant-l ?p + (
∑

x∈vars-l ?p. coeff-l ?p x ∗ α x) unfolding
p unfolding eval-l-def by auto

also have constant-l ?p = c by transfer auto
also have vars-l ?p = vars-l pg using g0 by transfer auto
finally have evalp: eval-l α p = c + g ∗ f unfolding f-def coeff sum-distrib-left

by (simp add: ac-simps)

have eval-l α ?tp = constant-l ?tp + (
∑

x∈vars-l ?tp. coeff-l ?tp x ∗ α x) un-
folding eval-l-def by auto

also have vars-l ?tp = vars-l pg unfolding tp by transfer auto
also have constant-l ?tp = d unfolding tp by transfer auto
finally have eval-tp: eval-l α ?tp = d + f unfolding f-def coeff ′ by auto

define mo where mo = mc mod g
define di where di = mc div g
have mc: mc = g ∗ di + mo and mo: 0 ≤ mo mo < g using g unfolding

mo-def di-def by auto

have sat-p: satisfies-dlineq α p = (g ∗ f ≤ −c) unfolding satisfies-dlineq-def
evalp by auto

have satisfies-dlineq α ?tp = (f ≤ − d) unfolding satisfies-dlineq-def eval-tp by
auto

also have . . . = (g ∗ f ≤ g ∗ (−d)) using g
by (smt (verit, ccfv-SIG) mult-le-cancel-left-pos)

finally have ?thesis ←→ (g ∗ f ≤ −c ←→ g ∗ f ≤ g ∗ (−d)) unfolding sat-p
by auto
also have . . .←→ True unfolding d-def minus-minus mc-def [symmetric] di-def [symmetric]

unfolding mc using mo
by (smt (verit, del-insts) int-distrib(4) mult-le-cancel-left1)

23

finally show False using contra by auto
qed

definition tighten-ineqs :: ′v dlineq list ⇒ ′v :: linorder dlineq list option where
tighten-ineqs cs = map-option (map tighten-ineq) (trivial-ineq-filter cs)

lemma tighten-ineqs: tighten-ineqs cs = None =⇒ @ α. α |=dio ({}, set cs)
tighten-ineqs cs = Some ds =⇒

(α |=dio ({}, set cs) ←→ α |=dio ({}, set ds)) ∧
length ds ≤ length cs

proof (atomize(full), goal-cases)
case 1
show ?case
proof (cases trivial-ineq-filter cs)

case None
thus ?thesis unfolding tighten-ineqs-def using trivial-ineq-filter(1)[OF None]

by auto
next

case (Some cs ′)
from Some have tighten-ineqs cs = Some (map tighten-ineq cs ′) unfolding

tighten-ineqs-def by auto
with trivial-ineq-filter(2)[OF Some, of α]
show ?thesis using tighten-ineq[of - α] by auto

qed
qed

end

4 Linear Diophantine Equation Solver

We verify Griggio’s algorithm to eliminate equations or detect unsatisfiabil-
ity.

4.1 Abstract Algorithm
theory Linear-Diophantine-Solver

imports
Diophantine-Eqs-and-Ineqs
HOL.Map

begin

lift-definition normalize-dleq :: ′v dleq ⇒ int × ′v dleq is
λ c. (Gcd (range c), λ x. c x div Gcd (range c))
apply simp
subgoal by (rule finite-subset, auto)
done

24

lemma normalize-dleq-gcd: assumes normalize-dleq p = (g,q)
and p 6= 0

shows g = Gcd (insert (constant-l p) (coeff-l p ‘ vars-l p))
and g ≥ 1
and normalize-dleq q = (1 ,q)
using assms

proof (atomize (full), transfer , goal-cases)
case (1 p g q)
let ?G = insert (p None) ((λx. p (Some x)) ‘ {x. p (Some x) 6= 0})
let ?g = Gcd (range p)
have Gcd ?G = Gcd (insert 0 ?G) by auto
also have insert 0 ?G = insert 0 (range p)
proof −

{
fix y
assume ∗: y ∈ insert 0 (range p) y /∈ insert 0 ?G
then obtain z where y = p z by auto
with ∗ have False by (cases z, auto)

}
thus ?thesis by auto

qed
also have Gcd . . . = Gcd (range p) by auto
finally have eq: Gcd ?G = ?g .

from 1 obtain x where px: p x 6= 0 by auto
then obtain y where y ∈ range p y 6= 0 by auto
hence g0 : ?g 6= 0 by auto
moreover have ?g ≥ 0 by simp
ultimately have g1 : ?g ≥ 1 by linarith

from 1 have gg: g = ?g by auto

let ?gq = Gcd (range q)
from 1 have q: q = (λx. p x div ?g) by auto
have dvd: ?g dvd p x for x by auto
define gp where gp = ?g
define gq where gq = ?gq
note hide = gp-def [symmetric] gq-def [symmetric]
have ?gq ≥ 0 by simp
then consider (0) ?gq = 0 | (1) ?gq = 1 | (large) ?gq ≥ 2 by linarith
hence gq1 : ?gq = 1
proof cases

case 0
hence range q ⊆ {0} by simp
moreover from px dvd[of x] have q x 6= 0 unfolding q

using dvd-div-eq-0-iff by blast
ultimately show ?thesis by auto

next
case large

25

hence gq0 : ?gq 6= 0 by linarith
define prod where prod = ?gq ∗ ?g
{

fix y
have ?gq dvd q y by simp
then obtain fq where qy: q y = ?gq ∗ fq by blast
from dvd[of y] obtain fp where py: p y = ?g ∗ fp by blast
have prod dvd p y using fun-cong[OF q, of y] py qy gq0 g0 unfolding hide

prod-def by auto
}
hence prod dvd Gcd (range p)

by (simp add: dvd-Gcd-iff)
from this[unfolded prod-def] g0 gq0 have ?gq dvd 1 by force
hence abs ?gq = 1 by simp
with large show ?thesis by simp

qed simp

show ?case unfolding gg gq1
by (intro conjI g1 eq[symmetric], auto)

qed

lemma vars-l-normalize: normalize-dleq p = (g,q) =⇒ vars-l q = vars-l p
proof (transfer , goal-cases)

case (1 c g q)
{

fix x
assume c (Some x) 6= 0
moreover have Gcd (range c) dvd c (Some x) by simp
ultimately have c (Some x) div Gcd (range c) 6= 0 by fastforce

}
thus ?case using 1 by auto

qed

lemma eval-normalize-dleq: normalize-dleq p = (g,q) =⇒ eval-l α p = g ∗ eval-l
α q
proof (subst (1 2) eval-l-mono[of vars-l p], goal-cases)

case 1 show ?case by force
case 2 thus ?case using vars-l-normalize by auto
case 3 thus ?case by force
case 4 thus ?case
proof (transfer , goal-cases)

case (1 c g d α)
show ?case
proof (cases range c ⊆ {0})

case True
hence c x = 0 for x using 1 by auto

26

thus ?thesis using 1 by auto
next

case False
let ?g = Gcd (range c)
from False have gcd: ?g 6= 0 by auto
hence mult: c x div ?g ∗ ?g = c x for x by simp
let ?expr = c None div ?g + (

∑
x | c (Some x) 6= 0 . c (Some x) div ?g ∗ α

x)
have ?g ∗ ?expr = ?expr ∗ ?g by simp
also have . . . = c None + (

∑
x | c (Some x) 6= 0 . c (Some x) ∗ α x)

unfolding distrib-right mult sum-distrib-right
by (simp add: ac-simps mult)

finally show ?thesis using 1 (3) by auto
qed

qed
qed

lemma gcd-unsat-detection: assumes g = Gcd (coeff-l p ‘ vars-l p)
and ¬ g dvd constant-l p

shows ¬ satisfies-dleq α p
proof

assume satisfies-dleq α p
from this[unfolded satisfies-dleq-def eval-l-def]
have (

∑
x∈vars-l p. coeff-l p x ∗ α x) = − constant-l p by auto

hence (
∑

x∈vars-l p. coeff-l p x ∗ α x) dvd constant-l p by auto
moreover have g dvd (

∑
x∈vars-l p. coeff-l p x ∗ α x)

unfolding assms by (rule dvd-sum, simp)
ultimately show False using assms by auto

qed

lemma substitute-l-in-equation: assumes α x = eval-l α p
shows eval-l α (substitute-l x p q) = eval-l α q

satisfies-dleq α (substitute-l x p q) ←→ satisfies-dleq α q
proof −

show eval-l α (substitute-l x p q) = eval-l α q
unfolding eval-substitute-l unfolding assms(1)[symmetric] by auto

thus satisfies-dleq α (substitute-l x p q) ←→ satisfies-dleq α q
unfolding satisfies-dleq-def by auto

qed

type-synonym ′v dleq-sf = ′v × (int, ′v)lpoly

fun satisfies-dleq-sf :: (int, ′v) assign ⇒ ′v dleq-sf ⇒ bool where
satisfies-dleq-sf α (x,p) = (α x = eval-l α p)

type-synonym ′v dleq-system = ′v dleq-sf set × ′v dleq set

fun satisfies-system :: (int, ′v) assign ⇒ ′v dleq-system ⇒ bool where

27

satisfies-system α (S ,E) = (Ball S (satisfies-dleq-sf α) ∧ Ball E (satisfies-dleq
α))

fun invariant-system :: ′v dleq-system ⇒ bool where
invariant-system (S ,E) = (Ball (fst ‘ S) (λ x. x /∈

⋃
(vars-l ‘ (snd ‘ S ∪ E)) ∧

(∃ ! e. (x,e) ∈ S)))

definition reorder-for-var where
reorder-for-var x p = (if coeff-l p x = 1 then − (p − var-l x) else p + var-l x)

lemma reorder-for-var : assumes abs (coeff-l p x) = 1
shows satisfies-dleq α p←→ satisfies-dleq-sf α (x, reorder-for-var x p) (is ?prop1)

vars-l (reorder-for-var x p) = vars-l p − {x} (is ?prop2)
proof −

from assms have coeff-l p x = 1 ∨ coeff-l p x = −1 by auto
hence ?prop1 ∧ ?prop2
proof

assume 1 : coeff-l p x = 1
hence res: reorder-for-var x p = − (p − var-l x) unfolding reorder-for-var-def

by auto
have ?prop2 unfolding res vars-l-uminus using 1 by transfer auto
moreover have ?prop1 unfolding satisfies-dleq-def res satisfies-dleq-sf .simps

by auto
ultimately show ?thesis by auto

next
assume m1 : coeff-l p x = −1
hence res: reorder-for-var x p = p + var-l x unfolding reorder-for-var-def by

auto
have ?prop2 unfolding res using m1 by transfer auto
moreover have ?prop1 unfolding satisfies-dleq-def res satisfies-dleq-sf .simps

by auto
ultimately show ?thesis by auto

qed
thus ?prop1 ?prop2 by blast+

qed

lemma reorder-nontriv-var-sat: ∃ a. satisfies-dleq (α(y := a)) (reorder-nontriv-var
x p y)
proof −

define X where X = insert x (vars-l p) − {y}
have X : finite X y /∈ X insert x (insert y (vars-l p)) = insert y X unfolding

X-def by auto
have sum: sum f (insert x (insert y (vars-l p))) = f y + sum f X for f :: - ⇒

int
unfolding X using X(1−2) by simp

show ?thesis
unfolding satisfies-dleq-def
apply (subst eval-l-mono[of insert x (insert y (vars-l p))])

apply force

28

apply (rule vars-reorder-non-triv)
apply (unfold sum)
apply (subst (1) coeff-l-reorder-nontriv-var)
apply (subst sum.cong[OF refl, of - - λ z. coeff-l (reorder-nontriv-var x p y) z

∗ α z])
subgoal using X by auto
subgoal by simp algebra
done

qed

lemma reorder-nontriv-var : assumes a: a = coeff-l p x a 6= 0
and y: y /∈ vars-l p
and q: q = reorder-nontriv-var x p y
and e: e = reorder-for-var x q
and r : r = substitute-l x e p

shows fun-of-lpoly r = (λ z. fun-of-lpoly p z mod a)(Some x := 0 , Some y := a)
constant-l r = constant-l p mod a
coeff-l r = (λ z. coeff-l p z mod a)(x := 0 , y := a)

proof −
from a have xv: x ∈ vars-l p by (transfer , auto)
with y have xy: x 6= y by auto
from q have q: fun-of-lpoly q = (λz. fun-of-lpoly p z div a)(Some x := 1 , Some

y := − 1)
unfolding a by transfer

hence fun-of-lpoly e = (λz. − (fun-of-lpoly p z div a))(Some x := 0 , Some y :=
1)

unfolding e reorder-for-var-def using xy
by (transfer , auto)

thus main: fun-of-lpoly r = (λ z. fun-of-lpoly p z mod a)(Some x := 0 , Some y
:= a)

unfolding r using a xy y
by (transfer , auto simp: minus-mult-div-eq-mod)

from main show constant-l r = constant-l p mod a by transfer auto
from main show coeff-l r = (λ z. coeff-l p z mod a)(x := 0 , y := a) by transfer

auto
qed

inductive griggio-equiv-step :: ′v dleq-system ⇒ ′v dleq-system ⇒ bool where
griggio-solve: abs (coeff-l p x) = 1 =⇒ e = reorder-for-var x p =⇒

griggio-equiv-step (S ,insert p E) (insert (x, e) (map-prod id (substitute-l x e) ‘
S), substitute-l x e ‘ E)
| griggio-normalize: normalize-dleq p = (g,q) =⇒ g ≥ 1 =⇒

griggio-equiv-step (S ,insert p E) (S , insert q E)
| griggio-trivial: griggio-equiv-step (S , insert 0 E) (S , E)

fun vars-system :: ′v dleq-system ⇒ ′v set where
vars-system (S , E) = fst ‘ S ∪

⋃
(vars-l ‘ (snd ‘ S ∪ E))

29

lemma griggio-equiv-step: assumes griggio-equiv-step SE TF
shows (satisfies-system α SE ←→ satisfies-system α TF) ∧

(invariant-system SE −→ invariant-system TF) ∧
vars-system TF ⊆ vars-system SE

using assms
proof induction

case ∗: (griggio-solve p x e S E)
from ∗(1) have xp: x ∈ vars-l p by transfer auto
let ?E = insert p E
let ?T = insert (x, e) (map-prod id (substitute-l x e) ‘ S)
let ?F = substitute-l x e ‘ E
note reorder = reorder-for-var [OF ∗(1), folded ∗(2)]
from reorder(1)[of α]
have satisfies-system α (S , ?E) = satisfies-system α (insert (x,e) S , E)

unfolding satisfies-system.simps by auto
also have . . . = satisfies-system α (?T , ?F)
proof (cases α x = eval-l α e)

case True
from substitute-l-in-equation[OF this] show ?thesis by auto

qed auto
finally have equiv: satisfies-system α (S , ?E) = satisfies-system α (?T , ?F) .
moreover {

assume inv: invariant-system (S , ?E)
have invariant-system (?T , ?F)

unfolding invariant-system.simps
proof (intro ballI)

fix y
assume y: y ∈ fst ‘ ?T
from vars-substitute-l[of x e, unfolded reorder]
have vars-subst: vars-l (substitute-l x e q) ⊆ vars-l p − {x} ∪ (vars-l q −

{x}) for q by auto
from y have y: y = x ∨ x 6= y ∧ y ∈ fst ‘ S by force
thus y /∈

⋃
(vars-l ‘ (snd ‘ ?T ∪ ?F)) ∧ (∃ !f . (y, f) ∈ ?T)

proof
assume y: y = x
hence y /∈

⋃
(vars-l ‘ (snd ‘ ?T ∪ ?F)) using vars-subst reorder(2) by

auto
moreover have ∃ !f . (y, f) ∈ ?T unfolding y
proof (intro ex1I [of - e])

fix f
assume xf : (x, f) ∈ ?T
show f = e
proof (rule ccontr)

assume f 6= e
with xf have x ∈ fst ‘ S by force
from inv[unfolded invariant-system.simps, rule-format, OF this]
have x /∈ vars-l p by auto
with ∗(1) show False by transfer auto

30

qed
qed force
ultimately show ?thesis by auto

next
assume x 6= y ∧ y ∈ fst ‘ S
hence xy: x 6= y and y: y ∈ fst ‘ S by auto
from inv[unfolded invariant-system.simps, rule-format, OF y]
have nmem: y /∈

⋃
(vars-l ‘ (snd ‘ S ∪ insert p E)) and unique: (∃ !f . (y,

f) ∈ S) by auto
from unique have ∃ !f . (y, f) ∈ ?T using xy by force
moreover from nmem reorder(2) have y /∈ vars-l e by auto
with nmem vars-substitute-l[of x e]
have y /∈

⋃
(vars-l ‘ (snd ‘ ?T ∪ ?F)) by auto

ultimately show ?thesis by auto
qed

qed
}
moreover
have vars-system (?T , ?F) ⊆ vars-system (S , ?E)

using reorder(2) vars-substitute-l[of x e] xp unfolding vars-system.simps
by (auto simp: rev-image-eqI) blast

ultimately show ?case by auto
next

case ∗: (griggio-normalize p g q S E)
from vars-l-normalize[OF ∗(1)] have vars[simp]: vars-l q = vars-l p by auto
from eval-normalize-dleq[OF ∗(1)] ∗(2)
have sat[simp]: satisfies-dleq α p = satisfies-dleq α q unfolding satisfies-dleq-def

by auto
show ?case by simp

next
case griggio-trivial
show ?case by (simp add: satisfies-dleq-def)

qed

inductive griggio-unsat :: ′v dleq ⇒ bool where
griggio-gcd-unsat: ¬ Gcd (coeff-l p ‘ vars-l p) dvd constant-l p =⇒ griggio-unsat

p
| griggio-constant-unsat: vars-l p = {} =⇒ p 6= 0 =⇒ griggio-unsat p

lemma griggio-unsat: assumes griggio-unsat p
shows ¬ satisfies-system α (S , insert p E)
using assms

proof induction
case (griggio-gcd-unsat p)
from gcd-unsat-detection[OF refl this]
show ?case by auto

next
case (griggio-constant-unsat p)
hence eval-l α p 6= 0 for α

31

unfolding eval-l-def
proof (transfer , goal-cases)

case (1 p α)
from 1 (3) obtain x where p x 6= 0 by auto
with 1 show ?case by (cases x, auto)

qed
thus ?case by (auto simp: satisfies-dleq-def)

qed

definition adjust-assign :: ′v dleq-sf list ⇒ (′v ⇒ int) ⇒ (′v ⇒ int) where
adjust-assign S α x = (case map-of S x of Some p ⇒ eval-l α p | None ⇒ α x)

definition solution-subst :: ′v dleq-sf list ⇒ (′v ⇒ (int, ′v)lpoly) where
solution-subst S x = (case map-of S x of Some p ⇒ p | None ⇒ var-l x)

locale griggio-input = fixes
V :: ′v :: linorder set and
E :: ′v dleq set

begin

fun invariant-state where
invariant-state (Some (SF ,X)) = (invariant-system SF
∧ vars-system SF ⊆ V ∪ X
∧ V ∩ X = {}
∧ (∀ α. (satisfies-system α SF −→ Ball E (satisfies-dleq α))

∧ (Ball E (satisfies-dleq α) −→ (∃ β. satisfies-system β SF ∧ (∀ x. x /∈
X −→ α x = β x)))))
| invariant-state None = (∀ α. ¬ Ball E (satisfies-dleq α))

inductive-set griggio-step :: (′v dleq-system × ′v set) option rel where
griggio-eq-step: griggio-equiv-step SF TG =⇒ (Some (SF ,X), Some (TG, X)) ∈

griggio-step
| griggio-fail-step: griggio-unsat p =⇒ (Some ((S ,insert p F),X), None) ∈ grig-
gio-step
| griggio-complex-step: coeff-l p x 6= 0

=⇒ q = reorder-nontriv-var x p y
=⇒ e = reorder-for-var x q
=⇒ y /∈ V ∪ X
=⇒ (Some ((S ,insert p F),X),

Some ((insert (x,e) (map-prod id (substitute-l x e) ‘ S), substitute-l x e ‘
insert p F), insert y X))

∈ griggio-step

lemma griggio-step: assumes (A,B) ∈ griggio-step
and invariant-state A

shows invariant-state B
using assms

proof (induct rule: griggio-step.induct)

32

case ∗: (griggio-eq-step SF TG X)
from griggio-equiv-step[OF ∗(1)] ∗(2)
show ?case by auto

next
case ∗: (griggio-fail-step p S F X)
from griggio-unsat[OF ∗(1)]
have ¬ satisfies-system α (S , insert p F) for α by auto
with ∗(2)[unfolded invariant-state.simps] have ¬ Ball E (satisfies-dleq α) for α

by blast
then show ?case by auto

next
case ∗: (griggio-complex-step p x q y e X S F)
have sat: ∃ a. satisfies-dleq (α(y := a)) q for α

using reorder-nontriv-var-sat[of - y x p] ∗(2) by auto
have invariant-state (Some ((S , insert p F), X)) by fact
note inv = this[unfolded invariant-state.simps]
let ?F = insert q (insert p F)
let ?Y = insert y X
let ?T = insert (x, e) (map-prod id (substitute-l x e) ‘ S)
let ?G = substitute-l x e ‘ insert p F
define SF where SF = (S ,?F)
define TG where TG = (?T ,?G)
define Y where Y = ?Y
from inv ∗ have y: y /∈ vars-system (S , insert p F) by blast
have inv ′: invariant-state (Some ((S , ?F), ?Y))

unfolding invariant-state.simps
proof (intro allI conjI impI)

from inv ‹y /∈ V ∪ X›
show V ∩ insert y X = {} by auto
from ∗(1) have xp: x ∈ vars-l p by transfer auto
with vars-reorder-non-triv[of x p y, folded ∗(2)]
have vq: vars-l q ⊆ insert y (vars-l p) by auto
from inv have vSF : vars-system (S , insert p F) ⊆ V ∪ X by auto
with vq show vars-system (S , insert q (insert p F)) ⊆ V ∪ insert y X by auto
{

fix α
assume satisfies-system α (S , insert q (insert p F))
hence satisfies-system α (S , insert p F) by auto
with inv show Ball E (satisfies-dleq α) by blast

}
{

fix α
assume Ball E (satisfies-dleq α)
with inv obtain β where sat2 : satisfies-system β (S , insert p F)

and eq:
∧

z. z /∈ X =⇒ α z = β z by blast
from sat[of β] obtain a where sat3 : satisfies-dleq (β(y := a)) q by auto
let ?β = β(y := a)
show ∃β. satisfies-system β (S , ?F) ∧ (∀ z. z /∈ ?Y −→ α z = β z)
proof (intro exI [of - ?β] conjI allI impI)

33

show z /∈ ?Y =⇒ α z = ?β z for z
using eq[of z] by auto

have satisfies-system ?β (S , ?F) = satisfies-system ?β (S , insert p F) using
sat3 by auto

also have . . . = satisfies-system β (S , insert p F)
unfolding satisfies-system.simps

proof (intro arg-cong2 [of - - - - conj] ball-cong refl)
fix r
assume r ∈ insert p F
with y have y /∈ vars-l r by auto
thus satisfies-dleq ?β r = satisfies-dleq β r

unfolding satisfies-dleq-def
by (subst eval-l-cong[of - ?β β], auto)

next
fix zr
assume zr ∈ S
then obtain z r where zr : zr = (z,r) and (z,r) ∈ S by (cases zr , auto)
hence insert z (vars-l r) ⊆ V ∪ X using vSF by force
with ∗(4) have z 6= y and y /∈ vars-l r by auto
thus satisfies-dleq-sf ?β zr = satisfies-dleq-sf β zr

unfolding satisfies-dleq-sf .simps zr
by (subst eval-l-cong[of - ?β β], auto)

qed
also have . . . by fact
finally show satisfies-system ?β (S , ?F) .

qed
}
from inv have invariant-system (S , insert p F) by auto
with y vq
show invariant-system (S , ?F) by auto

qed
have step: griggio-equiv-step (S , ?F) (?T , ?G)
proof (intro griggio-equiv-step.intros(1) ∗(3))

show |coeff-l q x| = 1 unfolding ∗(2) coeff-l-reorder-nontriv-var by simp
qed
from griggio-equiv-step[OF this] inv ′

show ?case unfolding SF-def [symmetric] TG-def [symmetric] Y-def [symmetric]
by auto
qed

context
assumes VE :

⋃
(vars-l ‘ E) ⊆ V

begin

lemma griggio-steps: assumes (Some (({},E),{}), SFO) ∈ griggio-step^∗ (is (?I ,-)
∈ -)

shows invariant-state SFO
proof −

define I where I = ?I

34

have inv: invariant-state I unfolding I-def using VE by auto
from assms[folded I-def]
show ?thesis
proof (induct)

case base
then show ?case using inv .

next
case step
then show ?case using griggio-step[OF step(2)] by auto

qed
qed

lemma griggio-fail: assumes (Some (({},E),{}), None) ∈ griggio-step^∗
shows @ α. α |=dio (E , {})

proof −
from griggio-steps[OF assms] show ?thesis by auto

qed

lemma griggio-success: assumes (Some (({},E),{}), Some ((S ,{}),X)) ∈ grig-
gio-step^∗

and β: β = adjust-assign S-list α set S-list = S
shows β |=dio (E , {})

proof −
obtain LV RV where LV : LV = fst ‘ S

and RV : RV =
⋃

(vars-l ‘ snd ‘ S)
by auto

have id: satisfies-system β (S , {}) = Ball S (satisfies-dleq-sf β) for β
by auto

have id2 : vars-system (S , {}) = LV ∪ RV
by (auto simp: LV RV)

have id3 : invariant-system (S , {}) = (LV ∩ RV = {} ∧ (∀ x∈LV . ∃ !e. (x, e) ∈
S))

by (auto simp: LV RV)
from griggio-steps[OF assms(1)]
have invariant-state (Some ((S , {}), X)) .
note inv = this[unfolded invariant-state.simps id id2 id3]
from inv have Ball S (satisfies-dleq-sf β) =⇒ Ball E (satisfies-dleq β)

by auto
moreover {

fix x e
assume xe: (x,e) ∈ S
hence x: x ∈ LV by (force simp: LV)
with inv xe have ∃ ! e. (x,e) ∈ S by force
with xe have map-of S-list x = Some e unfolding β(2)[symmetric]

by (metis map-of-SomeD weak-map-of-SomeI)
hence β x = eval-l α e unfolding β adjust-assign-def by simp
also have . . . = eval-l β e
proof (rule eval-l-cong)

35

fix y
assume y ∈ vars-l e
with xe have y ∈ RV unfolding RV by force
with inv have y /∈ LV by auto
thus α y = β y unfolding β(2)[symmetric] β(1) adjust-assign-def LV

by (force split: option.splits dest: map-of-SomeD)
qed
finally have satisfies-dleq-sf β (x,e) by auto

}
ultimately show ?thesis by force

qed

In the following lemma we not only show that the equations E are solvable,
but also how the solution S can be used to process other constraints. Assume
P describes an indexed set of polynomials, and f is a formula that describes
how these polynomials must be evaluated, e.g., f i = (i 1 ≤ 0 ∧ i 2 > 5 ∗
i 3) for some inequalities.
Then f (P) ∧ E is equi-satisfiable to f (σ(P)) where σ is a substitution com-
puted from S, and adjust-assign S is used to translated a solution in one
direction.
theorem griggio-success-translations:

fixes P :: ′i ⇒ (int, ′v)lpoly and f :: (′i ⇒ int) ⇒ bool
assumes (Some (({},E),{}), Some ((S ,{}),X)) ∈ griggio-step^∗

and σ: σ = solution-subst S-list
and S-list: set S-list = S

shows

f (λ i. eval-l α (substitute-all-l σ (P i))) =⇒
β = adjust-assign S-list α =⇒
f (λ i. eval-l β (P i)) ∧ β |=dio (E , {})

f (λ i. eval-l α (P i)) ∧ α |=dio (E , {}) =⇒
(
∧

i. vars-l (P i) ⊆ V) =⇒
∃ γ. f (λ i. eval-l γ (substitute-all-l σ (P i)))

proof −
assume sol: f (λ i. eval-l α (substitute-all-l σ (P i)))

and β: β = adjust-assign S-list α
from griggio-success[OF assms(1) β S-list]
have solE : β |=dio (E , {}) by auto
show f (λ i. eval-l β (P i)) ∧ β |=dio (E , {})
proof (intro conjI [OF - solE])

{
fix i
have eval-l α (substitute-all-l σ (P i)) = eval-l β (P i)

unfolding eval-substitute-all-l
proof (rule eval-l-cong)

fix x
show eval-l α (σ x) = β x unfolding σ β solution-subst-def adjust-assign-def

36

by (auto split: option.splits)
qed

}
with sol show f (λ i. eval-l β (P i)) by auto

qed
next

assume f : f (λi. eval-l α (P i)) ∧ α |=dio (E , {})
and vV :

∧
i. vars-l (P i) ⊆ V

from griggio-steps[OF assms(1)]
have invariant-state (Some ((S , {}), X)) .
note inv = this[unfolded invariant-state.simps]
from f inv obtain γ

where sat: satisfies-system γ (S , {}) and ab:
∧

x. x /∈ X =⇒ α x = γ x by
blast

from inv sat have E : Ball E (satisfies-dleq γ) by auto
{

fix i
have eval-l α (P i) = eval-l γ (P i)
proof (rule eval-l-cong)

fix x
show x ∈ vars-l (P i) =⇒ α x = γ x

by (rule ab, insert vV [of i] inv, auto)
qed

}
with f have f : f (λi. eval-l γ (P i)) by auto
{

fix i
have eval-l (λx. eval-l γ (σ x)) (P i) = eval-l γ (P i)
proof (intro eval-l-cong)

fix x
note defs = σ solution-subst-def
show eval-l γ (σ x) = γ x
proof (cases x ∈ fst ‘ S)

case False
thus ?thesis unfolding defs S-list[symmetric]

by (force split: option.splits dest: map-of-SomeD)
next

case True
then obtain e where xe: (x,e) ∈ S by force
have ∃ ! e. (x,e) ∈ S using inv True by auto
with xe have map-of S-list x = Some e unfolding S-list[symmetric]

by (metis map-of-SomeD weak-map-of-SomeI)
hence id: σ x = e unfolding defs by auto
show ?thesis unfolding id using xe sat by auto

qed
qed

}
thus ∃ γ. f (λi. eval-l γ (substitute-all-l σ (P i)))

unfolding eval-substitute-all-l

37

by (intro exI [of - γ], insert f , auto)
qed

corollary griggio-success-equivalence:
fixes P :: ′i ⇒ (int, ′v)lpoly and f :: (′i ⇒ int) ⇒ bool
assumes (Some (({},E),{}), Some ((S ,{}),X)) ∈ griggio-step^∗

and σ: σ = solution-subst S-list
and S-list: set S-list = S
and vV :

∧
i. vars-l (P i) ⊆ V

shows
(∃ α. f (λ i. eval-l α (substitute-all-l σ (P i))))
←→ (∃ α. f (λ i. eval-l α (P i)) ∧ Ball E (satisfies-dleq α))

proof −
note main = griggio-success-translations[OF assms(1 ,2) S-list, of f - P]
from main(1)[OF - refl] main(2)[OF - vV]
show ?thesis by blast

qed

end
end

end

4.2 Executable Algorithm
theory Linear-Diophantine-Solver-Impl

imports
Linear-Diophantine-Solver

begin

definition simplify-dleq :: ′v dleq ⇒ ′v dleq + bool where
simplify-dleq p = (let

g = gcd-coeffs-l p;
c = constant-l p

in if g = 0 then
Inr (c = 0)

else if g = 1 then Inl p
else if g dvd c then Inl (sdiv-l p g) else Inr False)

lemma simplify-dleq-0 : assumes simplify-dleq p = Inr True
shows p = 0

proof −
from assms[unfolded simplify-dleq-def Let-def gcd-coeffs-l-def]
have gcd: Gcd (coeff-l p ‘ vars-l p) = 0 and const: constant-l p = 0

by (auto split: if-splits)
from gcd have coeff-l p ‘ vars-l p ⊆ {0} by auto
hence vars-l p = {} by transfer auto
with const have fun-of-lpoly p = (λ -. 0)

38

proof (transfer , intro ext, goal-cases)
case (1 c x)
thus ?case by (cases x, auto)

qed
thus p = 0 by transfer auto

qed

lemma simplify-dleq-fail: assumes simplify-dleq p = Inr False
shows griggio-unsat p

proof −
let ?g = Gcd (coeff-l p ‘ vars-l p)
from assms[unfolded simplify-dleq-def gcd-coeffs-l-def Let-def]
consider (const) ?g = 0 constant-l p 6= 0
| (gcd) ¬ (?g dvd constant-l p)
by (auto split: if-splits)

thus ?thesis
proof cases

case const
from const have coeff-l p ‘ vars-l p ⊆ {0} by auto
hence vars-l p = {} by transfer auto
moreover from const have p 6= 0 by transfer auto
ultimately show ?thesis by (rule griggio-constant-unsat)

next
case gcd
thus ?thesis by (rule griggio-gcd-unsat)

qed
qed

definition dleq-normalized where dleq-normalized p = (Gcd (coeff-l p ‘ vars-l p)
= 1)

definition size-dleq :: ′v dleq ⇒ int where size-dleq p = sum (abs o coeff-l p)
(vars-l p)

lemma size-dleq-pos: size-dleq p ≥ 0 unfolding size-dleq-def by simp

lemma simplify-dleq-keep: assumes simplify-dleq p = Inl q
shows
∃ g ≥ 1 . normalize-dleq p = (g, q)
size-dleq p ≥ size-dleq q
dleq-normalized q

proof (atomize (full), unfold dleq-normalized-def , goal-cases)
case 1
let ?g = Gcd (coeff-l p ‘ vars-l p)
from assms[unfolded simplify-dleq-def gcd-coeffs-l-def Let-def]
have g: ?g 6= 0 ?g dvd constant-l p and p0 : p 6= 0

and choice: ?g = 1 ∧ q = p ∨ ?g 6= 1 ∧ q = sdiv-l p ?g
by (auto split: if-splits)

from g have gG: ?g = Gcd (insert (constant-l p) (coeff-l p ‘ vars-l p)) (is - =

39

?G) by auto
from g(1) have g1 : ?g ≥ 1 by (smt (verit) Gcd-int-greater-eq-0)
obtain g ′ q ′ where norm: normalize-dleq p = (g ′, q ′) by force
note norm-gcd = normalize-dleq-gcd[OF norm p0 , folded gG]
from choice show ?case
proof

assume ?g = 1 ∧ q = p
hence g: ?g = 1 and id: q = p by auto
with gG have ?G = 1 by auto
with norm gG norm-gcd have normalize-dleq p = (1 , q ′) by metis
hence norm: normalize-dleq p = (1 ,p) by (transfer , auto)
show ?thesis unfolding id apply (intro conjI exI [of - ?g])

subgoal unfolding g by auto
subgoal unfolding g id using norm by auto
subgoal by simp
subgoal by (rule g)
done

next
note g ′ = norm-gcd(1)
assume ?g 6= 1 ∧ q = sdiv-l p ?g
with g ′ g have g ′01 : g ′ 6= 0 g ′ 6= 1 and q: q = sdiv-l p g ′ by auto
from norm have q ′: q ′ = q unfolding q

by (transfer , auto)
note norm-gcd = norm-gcd[unfolded q ′]
note norm = norm[unfolded q ′]
show ?thesis
proof (intro conjI exI [of - g ′])

show 1 ≤ g ′ by fact
show normalize-dleq p = (g ′, q) by fact
from g ′01 have abs g ′ ≥ 1 by linarith
hence abs (y div g ′) ≤ abs y for y

by (smt (verit) div-by-1 div-nonpos-pos-le0 int-div-less-self norm-gcd(2)
pos-imp-zdiv-nonneg-iff zdiv-mono2-neg)

hence le: |coeff-l q x| ≤ |coeff-l p x| for x unfolding q by (transfer , auto)
have pq: p = smult-l g ′ q unfolding q using norm

by (transfer , auto)
have vars: vars-l q = vars-l p unfolding pq using g ′01

by (transfer , auto)
show size-dleq q ≤ size-dleq p unfolding size-dleq-def vars

by (rule sum-mono, auto simp: le)
from gG have ?g = Gcd (range (fun-of-lpoly p)) unfolding g ′[symmetric]

using norm
by transfer auto

have g ′ = ?g by (rule g ′)
also have coeff-l p ‘ vars-l p = (λ x. g ′ ∗ x) ‘ coeff-l q ‘ vars-l p

unfolding pq by transfer auto
also have vars-l p = vars-l q by (simp add: vars)
also have Gcd ((∗) g ′ ‘ coeff-l q ‘ vars-l q) = g ′ ∗ Gcd (coeff-l q ‘ vars-l q)
by (metis Gcd-int-greater-eq-0 Gcd-mult abs-of-nonneg linordered-nonzero-semiring-class.zero-le-one

40

norm-gcd(2) normalize-int-def order .trans zero-le-mult-iff)
finally have abs g ′ = abs g ′ ∗ abs (Gcd (coeff-l q ‘ vars-l q)) by simp
with g ′01 show Gcd (coeff-l q ‘ vars-l q) = 1 by simp

qed
qed

qed

fun simplify-dleqs :: ′v dleq list ⇒ ′v dleq list option where
simplify-dleqs [] = Some []
| simplify-dleqs (e # es) = (case simplify-dleq e of

Inr False ⇒ None
| Inr True ⇒ simplify-dleqs es
| Inl e ′⇒ map-option (Cons e ′) (simplify-dleqs es))

context griggio-input
begin

lemma simplify-dleqs: simplify-dleqs es = None =⇒ (Some ((S ,set es ∪ F),X),
None) ∈ griggio-step^∗

simplify-dleqs es = Some fs =⇒
(Some ((S ,set es ∪ F),X), Some ((S ,set fs ∪ F),X)) ∈ griggio-step^∗
∧ Ball (set fs) dleq-normalized ∧ length fs ≤ length es ∧
(length fs < length es ∨ fs = [] ∨ size-dleq (hd fs) ≤ size-dleq (hd es))

proof (atomize (full), induct es arbitrary: F fs)
case (Cons e es F fs)
let ?ST = Some ((S , set (e # es) ∪ F), X)
define ST where ST = ?ST
consider (F) simplify-dleq e = Inr False
| (T) simplify-dleq e = Inr True
| (New) e ′ where simplify-dleq e = Inl e ′

by (cases simplify-dleq e, auto)
thus ?case
proof cases

case F
from simplify-dleq-fail[OF F]
have griggio-unsat e by auto
from griggio-fail-step[OF this] F
show ?thesis by auto

next
case T
with simplify-dleq-0 [OF T]
have e: e = 0 and id: simplify-dleqs (e # es) = simplify-dleqs es by auto
with griggio-eq-step[OF griggio-trivial]
have (?ST , Some ((S , set es ∪ F), X)) ∈ griggio-step by auto
with Cons[of F fs] show ?thesis unfolding ST-def [symmetric] id by fastforce

next
case (New e ′)
with simplify-dleq-keep[OF New] obtain g where g: g ≥ 1

41

and norm: normalize-dleq e = (g, e ′)
and res: simplify-dleqs (e # es) = map-option (Cons e ′) (simplify-dleqs es)
and e ′: dleq-normalized e ′

and size: size-dleq e ′ ≤ size-dleq e
by auto

from griggio-eq-step[OF griggio-normalize[OF norm g]]
have (?ST , Some ((S , set es ∪ insert e ′ F), X)) ∈ griggio-step by auto

with Cons[of insert e ′ F] e ′ size show ?thesis unfolding res ST-def [symmetric]

by force
qed

qed simp

context
fixes fresh-var :: nat ⇒ ′v

begin

partial-function (option) dleq-solver-main
:: nat ⇒ (′v × ′v dleq) list ⇒ ′v dleq list ⇒ (′v × (int, ′v)lpoly) list option where
dleq-solver-main n s es = (case simplify-dleqs es of

None ⇒ None
| Some [] ⇒ Some s
| Some (p # fs) ⇒

let x = min-var p; c = abs (coeff-l p x)
in if c = 1 then

let e = reorder-for-var x p;
σ = substitute-l x e in

dleq-solver-main n ((x, e) # map (map-prod id σ) s) (map σ fs) else
let y = fresh-var n;

q = reorder-nontriv-var x p y;
e = reorder-for-var x q;
σ = substitute-l x e in

dleq-solver-main (Suc n) ((x, e) # map (map-prod id σ) s) (σ p # map
σ fs))

fun state-of where state-of n s es = Some ((set s, set es), fresh-var ‘ {..<n})

lemma dleq-solver-main: assumes fresh-var : range fresh-var ∩ V = {} inj fresh-var
and inv: invariant-state (state-of n s es)

shows dleq-solver-main n s es = None =⇒ (state-of n s es, None) ∈ griggio-step^∗

dleq-solver-main n s es = Some s ′ =⇒ ∃ X . (state-of n s es, Some ((set s ′, {}),
X)) ∈ griggio-step^∗

using inv
proof (atomize(full), induct es arbitrary: n s rule: wf-induct[OF wf-measures[of
[length, nat o size-dleq o hd]]])

case (1 es n s)
note def [simp] = dleq-solver-main.simps[of n s es]
show ?case

42

proof (cases simplify-dleqs es)
case None
with simplify-dleqs(1)[OF this, of set s {}]
show ?thesis by auto

next
case (Some es ′)
from simplify-dleqs(2)[OF this, of set s {}]
have steps: (state-of n s es, state-of n s es ′) ∈ griggio-step∗

and norm: Ball (set es ′) dleq-normalized
and size: length es ′ ≤ length es length es ′ < length es ∨ es ′ = [] ∨ size-dleq

(hd es ′) ≤ size-dleq (hd es)
by auto

from steps griggio-step 1 (2) have inv: invariant-state (state-of n s es ′)
by (induct, auto)

show ?thesis
proof (cases es ′)

case Nil
with Some steps show ?thesis unfolding def by auto

next
case (Cons p fs)
note steps = steps[unfolded Cons]
note Some = Some[unfolded Cons]
note norm = norm[unfolded Cons]
note size = size[unfolded Cons]
note inv = inv[unfolded Cons]
let ?st = state-of n s (p # fs)
have np: dleq-normalized p using norm by auto
hence vp: vars-l p 6= {} unfolding dleq-normalized-def by auto
hence p0 : p 6= 0 by auto
define x where x = min-var p
define c where c = |coeff-l p x|
from min-var(1)[of p, folded x-def , OF vp] have c0 : c > 0 coeff-l p x 6= 0

unfolding c-def by auto
note def = def [unfolded Some option.simps list.simps, unfolded Let-def , folded

x-def , folded c-def]
show ?thesis
proof (cases c = 1)

case c1 : True
define e where e = reorder-for-var x p
define σ where σ = substitute-l x e
from c1 have (c = 1) = True by auto
note def = def [unfolded this if-True, folded e-def , folded σ-def]
let ?s ′ = (x, e) # map (map-prod id σ) s
let ?fs = map σ fs
let ?st ′ = state-of n ?s ′ ?fs
have step: (?st, ?st ′) ∈ griggio-step unfolding state-of .simps

using griggio-solve[OF c1 [unfolded c-def] e-def , folded σ-def]
by (intro griggio-eq-step, auto)

note inv ′ = griggio-step[OF step inv]

43

from size have (?fs, es) ∈ measures [length, nat ◦ size-dleq ◦ hd] by auto
from 1 (1)[rule-format, OF this inv ′, folded def] steps step
show ?thesis by (meson rtrancl.rtrancl-into-rtrancl rtrancl-trans)

next
case False
with c0 have c1 : c > 1 by auto
define y where y = fresh-var n
define q where q = reorder-nontriv-var x p y
define e where e = reorder-for-var x q
define σ where σ = substitute-l x e
have y: y /∈ V ∪ fresh-var ‘ {..<n} using fresh-var unfolding y-def inj-def

by auto
from inv y have yp: y /∈ vars-l p by auto
from c1 have coeff-l p x 6= 0 unfolding c-def by auto

note cσp = reorder-nontriv-var(1 ,3)[OF refl this yp q-def e-def fun-cong[OF
σ-def]]

have fs: fresh-var ‘ {..<Suc n} = insert y (fresh-var ‘ {..< n})
unfolding y-def using lessThan-Suc by force

from c1 have (c = 1) = False by auto
note def = def [unfolded this if-False, folded y-def , folded q-def , folded e-def ,

folded σ-def]
let ?s ′ = (x, e) # map (map-prod id σ) s
let ?fs = σ p # map σ fs
let ?st ′ = state-of (Suc n) ?s ′ ?fs
have step: (?st, ?st ′) ∈ griggio-step unfolding state-of .simps

using griggio-complex-step[OF c0 (2) q-def e-def y, folded σ-def ,of set s
set fs]

unfolding fs by auto
note inv ′ = griggio-step[OF step inv]
have (?fs, es) ∈ measures [length, nat ◦ size-dleq ◦ hd]
proof (cases length (p # fs) < length es)

case False
let ?h = hd es
from False have len: length es = Suc (length fs) and ph: size-dleq p ≤

size-dleq ?h
using size by auto

have main: size-dleq (σ p) < size-dleq p
proof −

define p ′ where p ′ = σ p
define m where m = coeff-l p x
have m: m 6= 0 using c0 unfolding m-def by auto
from c1 [unfolded c-def] have x: x ∈ vars-l p by transfer auto
have vars-l p 6= {x} using np[unfolded dleq-normalized-def] c1 [unfolded

c-def]
by auto

with x obtain z where z: z ∈ vars-l p − {x} by auto
have cy: coeff-l (σ p) y = coeff-l p x by (simp add: cσp)
with c0 (2) have y ′: y ∈ vars-l (σ p) by transfer auto
{

44

fix u
assume u ∈ vars-l (σ p)
hence coeff-l (σ p) u 6= 0 by (transfer , auto)
hence u 6= x ∧ (u 6= y −→ coeff-l p u 6= 0) unfolding cσp(2) using

yp x
by (auto split: if-splits simp: m-def)

hence u 6= x ∧ (u 6= y −→ u ∈ vars-l p) by transfer auto
hence u ∈ insert y (vars-l p) − {x} by auto

}
hence vars: vars-l (σ p) ⊆ insert y (vars-l p) − {x} by auto
have yz: y 6= z using yp z by auto
have size-dleq p = c + sum (abs ◦ coeff-l p) (vars-l p − {x})

unfolding size-dleq-def c-def by (subst sum.remove[OF - x], auto)
also have . . . = c + abs (coeff-l p z) + sum (abs ◦ coeff-l p) (vars-l p −

{x,z})
by (subst sum.remove[OF - z], force, subst sum.cong, auto)

finally have size-one: size-dleq p = c + |coeff-l p z| + sum (abs ◦ coeff-l
p) (vars-l p − {x, z}) .

have size-dleq (σ p) = c + sum (abs ◦ coeff-l (σ p)) (vars-l (σ p) − {y})
unfolding size-dleq-def
by (subst sum.remove[OF - y ′], auto simp: cy c-def)

also have . . . = c + |coeff-l (σ p) z| + sum (abs ◦ coeff-l (σ p)) (vars-l
(σ p) − {y, z})

proof (cases z ∈ vars-l (σ p) − {y})
case True
show ?thesis by (subst sum.remove[OF - True], force, subst sum.cong,

auto)
next

case False
hence z /∈ vars-l (σ p) using yz by auto
hence coeff-l (σ p) z = 0 by transfer auto
with False show ?thesis by (subst sum.cong, auto)

qed
also have . . . < size-dleq p
proof −

have id: coeff-l (σ p) z = coeff-l p z mod coeff-l p x unfolding cσp
using yz z by auto

have |coeff-l (σ p) z| < c unfolding id c-def unfolding m-def [symmetric]
using m

by (rule abs-mod-less)
also have . . . ≤ |coeff-l p z|

using min-var(2)[of z p, folded x-def , folded c-def] using z by auto
finally have less: |coeff-l (σ p) z| < |coeff-l p z| .

from yp x have xy: x 6= y by auto
have x ′: x /∈ vars-l (σ p) using fun-cong[OF cσp(2)] xy by transfer

auto
have sum (abs ◦ coeff-l (σ p)) (vars-l (σ p) − {y, z})

45

= sum (abs ◦ coeff-l (σ p)) (vars-l (σ p) − {x, y, z})
by (rule sum.cong[OF - refl], insert x ′, auto)

also have . . . ≤ sum (abs ◦ coeff-l p) (vars-l (σ p) − {x, y, z})
proof (rule sum-mono, goal-cases)

case (1 u)
with vars have uy: u 6= y and u ∈ vars-l p by auto
from min-var(2)[OF this(2), folded x-def , folded m-def]
have |m| ≤ |coeff-l p u| by auto

thus ?case unfolding o-def fun-cong[OF cσp(2), folded m-def] using
m uy

by auto (smt (verit, ccfv-threshold) abs-mod-less)
qed
also have . . . ≤ sum (abs ◦ coeff-l p) (vars-l p − {x, z})

by (rule sum-mono2 , insert vars, auto)
finally have le: sum (abs ◦ coeff-l (σ p)) (vars-l (σ p) − {y, z}) ≤

sum (abs ◦ coeff-l p) (vars-l p − {x, z}) .

from le less show ?thesis unfolding size-one by linarith
qed
finally show ?thesis .

qed
with ph have size-dleq (σ p) < size-dleq ?h by simp
with len show ?thesis

using dual-order .strict-trans2 size-dleq-pos by auto
qed simp
from 1 (1)[rule-format, OF this inv ′, folded def] steps step
show ?thesis

by (meson rtrancl.rtrancl-into-rtrancl rtrancl-trans)
qed

qed
qed

qed

end

end

declare griggio-input.dleq-solver-main.simps[code]

definition fresh-var-gen :: (′v list ⇒ nat ⇒ ′v) ⇒ bool where
fresh-var-gen fv = (∀ vs. range (fv vs) ∩ set vs = {} ∧ inj (fv vs))

context
fixes fresh-var :: ′v :: linorder list ⇒ nat ⇒ ′v

begin

definition dleq-solver :: ′v list ⇒ ′v dleq list ⇒ (′v × (int, ′v)lpoly) list option
where

46

dleq-solver v e = (let fv = fresh-var (v @ concat (map vars-l-list e))
in griggio-input.dleq-solver-main fv 0 [] e)

lemma dleq-solver : assumes fresh-var-gen fresh-var
and dleq-solver v e = res

shows
res = None =⇒ @ α. α |=dio (set e, {})
res = Some s =⇒ adjust-assign s α |=dio (set e, {})
res = Some s =⇒ σ = solution-subst s =⇒

f (λ i. eval-l α (substitute-all-l σ (P i))) =⇒
β = adjust-assign s α =⇒
f (λ i. eval-l β (P i)) ∧ β |=dio (set e, {})

res = Some s =⇒ σ = solution-subst s =⇒ (
∧

i. vars-l (P i) ⊆ set v) =⇒
f (λ i. eval-l α (P i)) ∧ α |=dio (set e, {}) =⇒
∃ γ. f (λ i. eval-l γ (substitute-all-l σ (P i)))

proof −
define V where V = v @ concat (map vars-l-list e)
interpret griggio-input set V set e .
define fv where fv = fresh-var V
from dleq-solver-def [of v e, folded V-def , folded fv-def , unfolded Let-def ,

unfolded assms(2)]
have res: res = dleq-solver-main fv 0 [] e by auto
from assms(1)[unfolded fresh-var-gen-def , rule-format, of V , folded fv-def]
have fv: range fv ∩ set V = {} inj fv by auto
have eV :

⋃
(vars-l ‘ set e) ⊆ set V unfolding V-def by auto

have inv: invariant-state (state-of fv 0 [] e)
by (simp, auto simp: V-def)

note main = dleq-solver-main[OF fv inv, folded res]
{

assume res = None
from main(1)[OF this] griggio-fail[OF eV]
show @ α. α |=dio (set e, {}) by auto

}
{

assume res: res = Some s
from main(2)[OF res] obtain X

where steps: (Some (({}, set e), {}), Some ((set s, {}), X)) ∈ griggio-step∗

by auto
from griggio-success[OF eV steps refl refl]
show adjust-assign s α |=dio (set e, {}) .
{

assume sig: σ = solution-subst s
and f : f (λ i. eval-l α (substitute-all-l σ (P i)))
and β: β = adjust-assign s α

from griggio-success-translations(1)[OF eV steps sig refl, of f α P, OF f β]
show f (λ i. eval-l β (P i)) ∧ β |=dio (set e,{}) .

}
{

assume vars:
∧

i. vars-l (P i) ⊆ set v and sig: σ = solution-subst s

47

and f : f (λ i. eval-l α (P i)) ∧ α |=dio (set e,{})
from vars have

∧
i. vars-l (P i) ⊆ set V unfolding V-def by auto

from griggio-success-translations(2)[OF eV steps sig refl, of f α P, OF f this]
show ∃ γ. f (λ i. eval-l γ (substitute-all-l σ (P i))) .

}
}

qed

definition equality-elim-for-inequalities :: ′v dleq list ⇒ ′v dlineq list ⇒
(′v dleq list × ((int, ′v)assign ⇒ (int, ′v)assign)) option where
equality-elim-for-inequalities eqs ineqs = (let v = concat (map vars-l-list ineqs)

in case dleq-solver v eqs of
None ⇒ None

| Some s ⇒ let σ = substitute-all-l (solution-subst s);
adj = adjust-assign s

in Some (map σ ineqs, adj))

lemma equality-elim-for-inequalities: assumes fresh-var-gen fresh-var
and equality-elim-for-inequalities eqs ineqs = res

shows res = None =⇒ @ α. α |=dio (set eqs, {})
res = Some (ineqs ′, adj) =⇒ α |=dio ({}, set ineqs ′) =⇒ (adj α) |=dio (set eqs,

set ineqs)
res = Some (ineqs ′, adj) =⇒ @ α. α |=dio ({}, set ineqs ′) =⇒ @ α. α |=dio (set

eqs, set ineqs)
res = Some (ineqs ′, adj) =⇒ length ineqs ′ = length ineqs

proof −
define v where v = concat (map vars-l-list ineqs)
note res = equality-elim-for-inequalities-def [of eqs ineqs, unfolded assms(2) Let-def ,

folded v-def]
note solver = dleq-solver [OF assms(1) refl, of v eqs]
show res = None =⇒ @ α. α |=dio (set eqs, {})

using solver(1) unfolding res by (auto split: option.splits)
assume res = Some (ineqs ′, adj)
note res = res[unfolded this]
from res obtain s where s: dleq-solver v eqs = Some s

by (cases dleq-solver v eqs, auto)
define σ where σ = solution-subst s
note res = res[unfolded s option.simps, folded σ-def]
from res have adj: adj = adjust-assign s

and ineqs ′: ineqs ′ = map (substitute-all-l σ) ineqs
by auto

define P where P i = (if i < length ineqs then ineqs ! i else 0) for i
define f where f xs = (∀ i < length ineqs. xs i ≤ (0 :: int)) for xs
note solver = solver(3−4)[OF s σ-def , where P = P and f = f]
have vars-l (P i) ⊆ set v for i unfolding v-def P-def by (auto simp: set-conv-nth[of

ineqs])
note solver = solver(1)[OF - refl, folded adj] solver(2)[OF this]

48

have id: f (λi. eval-l α (P i)) = (Ball (set ineqs) (satisfies-dlineq α)) for α
unfolding f-def P-def set-conv-nth by (auto simp: satisfies-dlineq-def)

note solver = solver [unfolded id eval-substitute-all-l σ-def]
from solver(1)[of α]
show α |=dio ({}, set ineqs ′) =⇒ (adj α) |=dio (set eqs, set ineqs)

unfolding ineqs ′ σ-def
by (auto simp: satisfies-dlineq-def eval-substitute-all-l)

show length ineqs ′ = length ineqs unfolding ineqs ′ by simp
assume no-sol: @ α. α |=dio ({}, set ineqs ′)
show @ α. α |=dio (set eqs, set ineqs) (is @ α. ?Pr α)
proof

assume ∃ α. ?Pr α
then obtain α where ?Pr α by blast
with solver(2)[of α] obtain γ

where Ball (set ineqs) (satisfies-dlineq (λx. eval-l γ (solution-subst s x)))
by blast

with no-sol show False
unfolding ineqs ′ σ-def
by (auto simp: satisfies-dlineq-def eval-substitute-all-l)

qed
qed

end

definition fresh-vars-nat :: nat list ⇒ nat ⇒ nat where
fresh-vars-nat xs = (let m = Suc (Max (set (0 # xs))) in (λ n. m + n))

lemma fresh-vars-nat: fresh-var-gen fresh-vars-nat
proof −

{
fix xs x
assume Suc (Max (insert 0 (set xs)) + x) ∈ insert 0 (set xs)
from Max-ge[OF - this] have False by auto

}
thus ?thesis unfolding fresh-var-gen-def fresh-vars-nat-def Let-def

by auto
qed

lemmas equality-elim-for-inequalities-nat = equality-elim-for-inequalities[OF fresh-vars-nat]

end

5 Detection of Implicit Equalities
5.1 Main Abstract Reasoning Step

The abstract reasoning steps is due to Bromberger and Weidenbach. Make
all inequalities strict and detect a minimal unsat core; all inequalities in this

49

core are implied equalities.
theory Equality-Detection-Theory

imports
Farkas.Farkas
Jordan-Normal-Form.Matrix

begin

lemma lec-rel-sum-list: lec-rel (sum-list cs) =
(if (∃ c ∈ set cs. lec-rel c = Lt-Rel) then Lt-Rel else Leq-Rel)

proof (induct cs)
case Nil
thus ?case by (auto simp: zero-le-constraint-def)

next
case (Cons c cs)
thus ?case by (cases sum-list cs; cases c; cases lec-rel c; auto)

qed

lemma equality-detection-rat: fixes cs :: rat le-constraint set
and p :: ′i ⇒ linear-poly
and co :: ′i ⇒ rat
and I :: ′i set

defines n ≡ λ i. Le-Constraint Leq-Rel (p i) (co i)
and s ≡ λ i. Le-Constraint Lt-Rel (p i) (co i)

assumes fin: finite cs finite I
and C : C ⊆ cs ∪ s ‘ I
and unsat: @ v. ∀ c ∈ C . v |=le c
and min:

∧
D. D ⊂ C =⇒ ∃ v. ∀ c ∈ D. v |=le c

and sol: ∀ c ∈ cs ∪ n ‘ I . v |=le c
and i: i ∈ I s i ∈ C

shows (p i){|v|} = co i
proof −

have finite ((cs ∪ s ‘ I) ∩ C) using fin by auto
with C have finC : finite C by (simp add: inf-absorb2)
from Motzkin ′s-transposition-theorem[OF this] unsat
obtain D const rel where valid: ∀ (r , c)∈set D. 0 < r ∧ c ∈ C and

eq: (
∑

(r , c)←D. Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R lec-const
c)) =

Le-Constraint rel 0 const
and ineq: rel = Leq-Rel ∧ const < 0 ∨ rel = Lt-Rel ∧ const ≤ 0 by auto

let ?expr = (
∑

(r , c)←D. Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R
lec-const c))

{
assume s i /∈ snd ‘ set D
with valid have valid: ∀ (r , c)∈set D. 0 < r ∧ c ∈ C − {s i}

by force
from finC have finite (C − {s i}) by auto
from Motzkin ′s-transposition-theorem[OF this] valid eq ineq
have @ v. ∀ c∈C − {s i}. v |=le c by blast

50

with min[of C − {s i}] i(2) have False by auto
}
hence mem: s i ∈ snd ‘ set D by auto
from i(1) sol have v |=le n i by auto
from this[unfolded n-def] have piv: (p i) {| v |} ≤ co i by simp
from ineq have const0 : const ≤ 0 by auto
define I ′ where I ′ = cs ∪ n ‘ I
define f where f c = (if c ∈ insert (s i) I ′ then c else (n (SOME j. j ∈ I ∧ s j

= c))) for c
let ?C = insert (s i) I ′

{
fix c
assume c ∈ C
hence c: c ∈ cs ∪ s ‘ I using C by auto
hence f c ∈ ?C ∧ lec-poly (f c) = lec-poly c ∧ lec-const (f c) = lec-const c
proof (cases c ∈ cs ∪ n ‘ I ∪ {s i})

case True
thus ?thesis unfolding f-def I ′-def by auto

next
case False
define j where j = (SOME x. x ∈ I ∧ s x = c)
from False have ∃ j. j ∈ I ∧ s j = c using c by auto
from someI-ex[OF this, folded j-def] have j: j ∈ I and c: c = s j by auto
from False have fc: f c = n j unfolding f-def j-def [symmetric] I ′-def by

auto
show ?thesis using j c fc by (auto simp: n-def s-def I ′-def)

qed
hence f c ∈ insert (s i) I ′ lec-poly (f c) = lec-poly c lec-const (f c) = lec-const

c
by auto

} note f = this

show ?thesis
proof (rule ccontr)

assume ¬ ?thesis
with piv have (p i){| v |} < co i by simp
hence vsi: v |=le s i unfolding s-def by auto
with sol have sol: (∃ v. ∀ c ∈ insert (s i) I ′. v |=le c) = True unfolding

I ′-def by auto
let ?D = map (map-prod id f) D
have fin: finite (insert (s i) I ′) unfolding I ′-def using fin by auto
from valid f (1)
have valid ′: ∀ (r , c)∈set ?D. 0 < r ∧ c ∈ ?C by force
let ?expr ′ =

∑
(r , c)←?D. Le-Constraint (lec-rel c) (r ∗R lec-poly c) (r ∗R

lec-const c)
have lec-const ?expr ′ = lec-const ?expr

unfolding sum-list-lec
apply simp
apply (rule arg-cong[of - - sum-list])

51

apply (rule map-cong[OF refl])
using f valid by auto

also have . . . = const unfolding eq by simp
finally have const: lec-const ?expr ′ = const by auto
have lec-poly ?expr ′ = lec-poly ?expr

unfolding sum-list-lec
apply simp
apply (rule arg-cong[of - - sum-list])
apply (rule map-cong[OF refl])
using f valid by auto

also have . . . = 0 unfolding eq by simp
finally have poly: lec-poly ?expr ′ = 0 by auto
from mem obtain c where (c, s i) ∈ set D by auto
hence (c, f (s i)) ∈ set ?D by force
hence mem: (c, s i) ∈ set ?D unfolding f-def by auto
moreover have lec-rel (s i) = Lt-Rel unfolding s-def by auto
ultimately
have rel: lec-rel ?expr ′ = Lt-Rel

unfolding lec-rel-sum-list using split-list[OF mem] by fastforce
have eq ′: ?expr ′ = Le-Constraint Lt-Rel 0 const

using const poly rel by (simp add: sum-list-lec)

from valid ′ eq ′ Motzkin ′s-transposition-theorem[OF fin, unfolded sol] const0
show False by blast

qed
qed

end

5.2 Algorithm to Detect all Implicit Equalities in �

Use incremental simplex algorithm to recursively detect all implied equali-
ties.
theory Equality-Detection-Impl

imports
Equality-Detection-Theory
Simplex.Simplex-Incremental
Deriving.Compare-Instances

begin

lemma indexed-sat-mono: (S ,v) |=ics cs =⇒ T ⊆ S =⇒ (T ,v) |=ics cs
by auto

lemma assert-all-simplex-plain-unsat: assumes invariant-simplex cs J s
and assert-all-simplex K s = Unsat I

shows ¬ (set K ∪ J , v) |=ics set cs
proof −

from assert-all-simplex-unsat[OF assms]
show ?thesis unfolding minimal-unsat-core-def by force

52

qed

lemma check-simplex-plain-unsat: assumes invariant-simplex cs J s
and check-simplex s = (s ′,Some I)

shows ¬ (J , v) |=ics set cs
proof −

from check-simplex-unsat[OF assms]
show ?thesis unfolding minimal-unsat-core-def by force

qed

hide-const (open) Congruence.eq

fun le-of-constraint :: constraint ⇒ rat le-constraint where
le-of-constraint (LEQ p c) = Le-Constraint Leq-Rel p c
| le-of-constraint (LT p c) = Le-Constraint Lt-Rel p c
| le-of-constraint (GEQ p c) = Le-Constraint Leq-Rel (−p) (−c)
| le-of-constraint (GT p c) = Le-Constraint Lt-Rel (−p) (−c)

fun poly-of-constraint :: constraint ⇒ linear-poly where
poly-of-constraint (LEQ p c) = p
| poly-of-constraint (LT p c) = p
| poly-of-constraint (GEQ p c) = (−p)
| poly-of-constraint (GT p c) = (−p)

fun const-of-constraint :: constraint ⇒ rat where
const-of-constraint (LEQ p c) = c
| const-of-constraint (LT p c) = c
| const-of-constraint (GEQ p c) = (−c)
| const-of-constraint (GT p c) = (−c)

fun is-no-equality :: constraint ⇒ bool where
is-no-equality (EQ p c) = False
| is-no-equality - = True

fun is-equality :: constraint ⇒ bool where
is-equality (EQ p c) = True
| is-equality - = False

lemma le-of-constraint: is-no-equality c =⇒ v |=c c ←→ (v |=le le-of-constraint
c)

by (cases c, auto simp: valuate-uminus)

lemma le-of-constraints: Ball cs is-no-equality =⇒ v |=cs cs ←→ (∀ c ∈ cs. v |=le

le-of-constraint c)
using le-of-constraint by auto

53

fun is-strict :: constraint ⇒ bool where
is-strict (GT - -) = True
| is-strict (LT - -) = True
| is-strict - = False

fun is-nstrict :: constraint ⇒ bool where
is-nstrict (GEQ - -) = True
| is-nstrict (LEQ - -) = True
| is-nstrict - = False

lemma is-equality-iff : is-equality c = (¬ is-strict c ∧ ¬ is-nstrict c)
by (cases c, auto)

lemma is-nstrict-iff : is-nstrict c = (¬ is-strict c ∧ ¬ is-equality c)
by (cases c, auto)

fun make-strict :: constraint ⇒ constraint where
make-strict (GEQ p c) = GT p c
| make-strict (LEQ p c) = LT p c
| make-strict c = c

fun make-equality :: constraint ⇒ constraint where
make-equality (GEQ p c) = EQ p c
| make-equality (LEQ p c) = EQ p c
| make-equality c = c

fun make-ineq :: constraint ⇒ constraint where
make-ineq (GEQ p c) = GEQ p c
| make-ineq (LEQ p c) = LEQ p c
| make-ineq (EQ p c) = LEQ p c

fun make-flipped-ineq :: constraint ⇒ constraint where
make-flipped-ineq (GEQ p c) = LEQ p c
| make-flipped-ineq (LEQ p c) = GEQ p c
| make-flipped-ineq (EQ p c) = GEQ p c

lemma poly-const-repr : assumes is-nstrict c
shows le-of-constraint c = Le-Constraint Leq-Rel (poly-of-constraint c) (const-of-constraint

c)
le-of-constraint (make-strict c) = Le-Constraint Lt-Rel (poly-of-constraint c)

(const-of-constraint c)
le-of-constraint (make-flipped-ineq c) = Le-Constraint Leq-Rel (− poly-of-constraint

c) (− const-of-constraint c)
using assms by (cases c, auto)+

lemma poly-const-repr-set: assumes Ball cs is-nstrict
shows le-of-constraint ‘ cs = (λ c. Le-Constraint Leq-Rel (poly-of-constraint c)

(const-of-constraint c)) ‘ cs

54

le-of-constraint ‘ (make-strict ‘ cs) = (λ c. Le-Constraint Lt-Rel (poly-of-constraint
c) (const-of-constraint c)) ‘ cs

subgoal using assms poly-const-repr(1) by simp
subgoal using assms poly-const-repr(2) unfolding image-comp o-def by auto
done

datatype eqd-index =
Ineq nat |
FIneq nat |
SIneq nat |
TmpSIneq nat

fun num-of-index :: eqd-index ⇒ nat where
num-of-index (FIneq n) = n
| num-of-index (Ineq n) = n
| num-of-index (SIneq n) = n
| num-of-index (TmpSIneq n) = n

derive compare-order eqd-index

fun index-constraint :: nat × constraint ⇒ eqd-index i-constraint list where
index-constraint (n, c) = (

if is-nstrict c then [(Ineq n, c), (FIneq n, make-flipped-ineq c), (TmpSIneq n,
make-strict c)] else

if is-strict c then [(SIneq n, c)] else
[(Ineq n, make-ineq c), (FIneq n, make-flipped-ineq c)]

)

definition init-constraints :: constraint list ⇒ eqd-index i-constraint list × nat list
× nat list × nat list where

init-constraints cs = (let
ics ′ = zip [0 ..< length cs] cs;
ics = concat (map index-constraint ics ′);
ineqs = map fst (filter (is-nstrict o snd) ics ′);
sneqs = map fst (filter (is-strict o snd) ics ′);
eqs = map fst (filter (is-equality o snd) ics ′)

in (ics, ineqs, sneqs, eqs))

definition index-of :: nat list ⇒ nat list ⇒ nat list ⇒ eqd-index list where
index-of ineqs sineqs eqs = map SIneq sineqs @ map Ineq eqs @ map FIneq eqs @

map Ineq ineqs

context
fixes cs :: constraint list
and ics :: eqd-index i-constraint list

begin

definition cs-of :: nat list ⇒ nat list ⇒ nat list ⇒ constraint set where

55

cs-of ineqs sineqs eqs = Simplex.restrict-to (set (index-of ineqs sineqs eqs)) (set
ics)

lemma init-constraints: assumes init: init-constraints cs = (ics, ineqs, sineqs, eqs)

shows v |=cs cs-of ineqs sineqs eqs ←→ v |=cs set cs
distinct-indices ics
fst ‘ set ics = set (map SIneq sineqs @ map Ineq eqs @ map FIneq eqs @ map

Ineq ineqs @ map FIneq ineqs @ map TmpSIneq ineqs) (is - = ?l)
set eqs = {i. i < length cs ∧ is-equality (cs ! i)}
set ineqs = {i. i < length cs ∧ is-nstrict (cs ! i)}
set sineqs = {i. i < length cs ∧ is-strict (cs ! i)}
set ics =

(λi. (Ineq i, make-ineq (cs ! i))) ‘ set eqs ∪
(λi. (FIneq i, make-flipped-ineq (cs ! i))) ‘ set eqs ∪
((λi. (Ineq i, cs ! i)) ‘ set ineqs ∪
(λi. (FIneq i, make-flipped-ineq (cs ! i))) ‘ set ineqs ∪
(λi. (TmpSIneq i, make-strict (cs ! i))) ‘ set ineqs) ∪
(λi. (SIneq i, cs ! i)) ‘ set sineqs (is - = ?Large)

distinct (eqs @ ineqs @ sineqs)
set (eqs @ ineqs @ sineqs) = {0 ..< length cs}

proof −
let ?R = Simplex.restrict-to (Ineq ‘ set ineqs ∪ SIneq ‘ set sineqs ∪ Ineq ‘ set eqs
∪ FIneq ‘ set eqs) (set ics)

let ?n = length cs
let ?I = Ineq ‘ set ineqs ∪ SIneq ‘ set sineqs ∪ Ineq ‘ set eqs ∪ FIneq ‘ set eqs
define ics ′ where ics ′ = zip [0 ..< ?n] cs
from init[unfolded init-constraints-def Let-def , folded ics ′-def]
have ics: ics = concat (map index-constraint ics ′) and

eqs: eqs = map fst (filter (is-equality ◦ snd) ics ′) and
ineqs: ineqs = map fst (filter (is-nstrict ◦ snd) ics ′) and
sineqs: sineqs = map fst (filter (is-strict ◦ snd) ics ′) by auto

from eqs show eqs ′: set eqs = {i. i < ?n ∧ is-equality (cs ! i)}
by (force simp: set-zip ics ′-def)

from ineqs show ineqs ′: set ineqs = {i. i < ?n ∧ is-nstrict (cs ! i)}
by (force simp: set-zip ics ′-def)

from sineqs show sineqs ′: set sineqs = {i. i < ?n ∧ is-strict (cs ! i)}
by (force simp: set-zip ics ′-def)

show set (eqs @ ineqs @ sineqs) = {0 ..< ?n}
unfolding set-append eqs ′ ineqs ′ sineqs ′

by (auto simp: is-nstrict-iff)
show distinct (eqs @ ineqs @ sineqs) unfolding distinct-append

unfolding ineqs eqs sineqs ics ′-def
by (auto intro: distinct-map-filter simp: set-zip is-nstrict-iff)
(simp add: is-equality-iff)

from eqs ′ have eqs ′′: i ∈ set eqs =⇒ index-constraint (i, cs ! i) =
[(Ineq i, make-ineq (cs ! i)), (FIneq i, make-flipped-ineq (cs ! i))] for i

by (cases cs ! i, auto)
from ineqs ′ have ineqs ′′: i ∈ set ineqs =⇒ index-constraint (i, cs ! i) =

56

[(Ineq i, cs ! i), (FIneq i, make-flipped-ineq (cs ! i)), (TmpSIneq i, make-strict
(cs ! i))] for i

by (cases cs ! i, auto)
from sineqs ′ have sineqs ′′: i ∈ set sineqs =⇒ index-constraint (i, cs ! i) =

[(SIneq i, cs ! i)] for i
by (cases cs ! i, auto)

let ?IC = λ I .
⋃

(set ‘ index-constraint ‘ (λi. (i, cs ! i)) ‘ I)
have set ics ′ = (λ i. (i, cs ! i)) ‘ {i. i < ?n} unfolding ics ′-def

by (force simp: set-zip)
also have {i. i < ?n} = set eqs ∪ set ineqs ∪ set sineqs

unfolding ineqs ′ eqs ′ sineqs ′

by (auto simp: is-equality-iff)
finally have set ics = ?IC (set eqs ∪ set ineqs ∪ set sineqs) unfolding ics

set-concat set-map
by auto

also have . . . = ?IC (set eqs) ∪ ?IC (set ineqs) ∪ ?IC (set sineqs) by auto
also have ?IC (set eqs) = (λ i. (Ineq i, make-ineq (cs ! i))) ‘ set eqs
∪ (λ i. (FIneq i, make-flipped-ineq (cs ! i))) ‘ set eqs

using eqs ′′ by auto
also have ?IC (set ineqs) = (λ i. (Ineq i, cs ! i)) ‘ set ineqs
∪ (λ i. (FIneq i, make-flipped-ineq (cs ! i))) ‘ set ineqs
∪ (λ i. (TmpSIneq i, make-strict (cs ! i))) ‘ set ineqs

using ineqs ′′ by auto
also have ?IC (set sineqs) = (λ i. (SIneq i, cs ! i)) ‘ set sineqs

using sineqs ′′ by auto
finally show icsL: set ics = ?Large by auto
show fst ‘ set ics = ?l unfolding icsL set-map set-append image-Un image-comp

o-def fst-conv
by auto

have distinct (map fst ics ′) unfolding ics ′-def by auto
thus dist: distinct-indices ics unfolding ics
proof (induct ics ′)

case (Cons ic ics)
obtain i c where ic: ic = (i,c) by force
{

fix j
assume j: j ∈ fst ‘ set (index-constraint (i, c))

j ∈ fst ‘ (
⋃

a∈set ics. set (index-constraint a))
from j(1) have ji: num-of-index j = i by (cases c, auto)

from j(2) obtain i ′ c ′ where ic ′: (i ′,c ′) ∈ set ics and j ∈ fst ‘ set
(index-constraint (i ′,c ′)) by force

from this(2) have ji ′: num-of-index j = i ′ by (cases c ′, auto)
with ji have i = i ′ by auto
with ic ′ ic Cons(2) have False by force

} note tedious = this
show ?case unfolding ic distinct-indices-def

apply (simp del: index-constraint.simps, intro conjI)
subgoal by (cases c, auto)
subgoal using Cons by (auto simp: distinct-indices-def)

57

subgoal using tedious by blast
done

qed (simp add: distinct-indices-def)

show v |=cs cs-of ineqs sineqs eqs ←→ v |=cs set cs
proof

assume v: v |=cs cs-of ineqs sineqs eqs
{

fix c
assume c ∈ set cs
then obtain i where c: c = cs ! i and i: i < ?n unfolding set-conv-nth by

auto
hence ic: (i,c) ∈ set ics ′ unfolding ics ′-def set-zip by force
hence ics: set (index-constraint (i,c)) ⊆ set ics unfolding ics by force
consider (e) is-equality c | (s) is-strict c | (n) is-nstrict c by (cases c, auto)
hence v |=c c
proof cases

case e
hence eqs: i ∈ set eqs unfolding eqs using ic by force
from e have {(FIneq i, make-flipped-ineq c), (Ineq i, make-ineq c)} ⊆ set

(index-constraint (i,c)) by (cases c, auto)
moreover with ics have {(FIneq i, make-flipped-ineq c), (Ineq i, make-ineq

c)} ⊆ set ics by auto
ultimately have {make-flipped-ineq c, make-ineq c} ⊆ cs-of ineqs sineqs

eqs unfolding cs-of-def using eqs
unfolding index-of-def using e by (cases c, force+)

with v have v |=c make-flipped-ineq c v |=c make-ineq c by auto
with e show ?thesis by (cases c, auto)

next
case s
hence sineqs: i ∈ set sineqs unfolding sineqs using ic by force
from s have (SIneq i, c) ∈ set (index-constraint (i,c)) by (cases c, auto)
moreover with ics have (SIneq i, c) ∈ set ics by auto

ultimately have c ∈ cs-of ineqs sineqs eqs unfolding cs-of-def using sineqs
unfolding index-of-def using s by (cases c, force+)

with v show v |=c c by auto
next

case n
hence ineq: i ∈ set ineqs unfolding ineqs using ic by force
from n have (Ineq i, c) ∈ set (index-constraint (i,c)) by (cases c, auto)
moreover with ics have (Ineq i, c) ∈ set ics by auto
ultimately have c ∈ cs-of ineqs sineqs eqs unfolding cs-of-def using ineq

unfolding index-of-def using n by (cases c, force+)
with v show v |=c c by auto

qed
}
thus v |=cs set cs by auto

next
assume v: v |=cs set cs

58

{
fix c
assume c ∈ cs-of ineqs sineqs eqs
hence c ∈ ?R unfolding cs-of-def index-of-def by auto
then obtain i where i: i ∈ ?I and ic: (i,c) ∈ set ics by force
from ic[unfolded ics] obtain kd where ic: (i,c) ∈ set (index-constraint kd)

and mem: kd ∈ set ics ′ by auto
from mem[unfolded ics ′-def] obtain k d where kd: kd = (k,d) and d: d ∈

set cs and k: k < ?n d = cs ! k
unfolding set-conv-nth by force

from v d have vd: v |=c d by auto
consider (s) j where i = SIneq j j ∈ set sineqs | (e) j where i = Ineq j ∨ i

= FIneq j j ∈ set eqs | (n) j where i = Ineq j j ∈ set ineqs
using i by auto

then have v |=c c
proof cases

case n
from ic[unfolded n kd] have j: j = k by (cases d, auto)
from n(2)[unfolded ineqs j] obtain eq where keq: (k,eq) ∈ set ics ′ and

nstr : is-nstrict eq by force
from keq[unfolded ics ′-def] k have eq = d unfolding set-conv-nth by force
with nstr have is-nstrict d by auto
with ic[unfolded n kd] have c = d by (cases d, auto)
then show ?thesis using vd by auto

next
case e
from ic e kd have j: j = k by (cases d, auto)
from e(2)[unfolded eqs j] obtain eq where keq: (k,eq) ∈ set ics ′ and iseq:

is-equality eq by force
from keq[unfolded ics ′-def] k have eq = d unfolding set-conv-nth by force
with iseq have eq: is-equality d by auto
with ic e kd have c = make-ineq d ∨ c = make-flipped-ineq d by (cases d,

auto)
then show ?thesis using vd eq by (cases d, auto)

next
case s
from ic[unfolded s kd] have j: j = k by (cases d, auto)
from s(2)[unfolded sineqs j] obtain eq where keq: (k,eq) ∈ set ics ′ and

str : is-strict eq by force
from keq[unfolded ics ′-def] k have eq = d unfolding set-conv-nth by force
with str have is-strict d by auto
with ic[unfolded s kd] have c = d by (cases d, auto)
then show ?thesis using vd by auto

qed
}
thus v |=cs cs-of ineqs sineqs eqs by auto

qed
qed

59

definition init-eq-finder-rat :: (eqd-index simplex-state × nat list × nat list × nat
list) option where

init-eq-finder-rat = (case init-constraints cs of (ics, ineqs, sineqs, eqs)
⇒ let s0 = init-simplex ics
in (case assert-all-simplex (index-of ineqs sineqs eqs) s0

of Unsat - ⇒ None
| Inr s1 ⇒ (case check-simplex s1

of (-, Some -) ⇒ None
| (s2 , None) ⇒ Some (s2 , ineqs, sineqs, eqs))))

partial-function (tailrec) eq-finder-main-rat :: eqd-index simplex-state ⇒ nat list
⇒ nat list ⇒ nat list × nat list × (var ⇒ rat) where
[code]: eq-finder-main-rat s ineq eq = (if ineq = [] then (ineq, eq, solution-simplex

s) else let
cp = checkpoint-simplex s;

res-strict = (case assert-all-simplex (map TmpSIneq ineq) s — Make all
inequalities strict and test sat

of Unsat C ⇒ Inl (s, C)
| Inr s1 ⇒ (case check-simplex s1 of

(s2 , None) ⇒ Inr (solution-simplex s2)
| (s2 , Some C) ⇒ Inl (backtrack-simplex cp s2 , C)))

in case res-strict of
Inr sol ⇒ (ineq, eq, sol) — if indeed all equalities are strictly sat, then no

further equality is implied
| Inl (s2 , C) ⇒ let

eq ′ = remdups [i. TmpSIneq i <− C]; — collect all indices of the strict
inequalities within the minimal unsat-core

— the remdups might not be necessary, however the simplex interfact
does not ensure distinctness of C

s3 = sum.projr (assert-all-simplex (map FIneq eq ′) s2); — and permantly
add the flipped inequalities

s4 = fst (check-simplex s3); — this check will succeed, no unsat can be
reported here

ineq ′ = filter (λ i. i /∈ set eq ′) ineq — add eq’ from inequalities to equalities
and continue

in eq-finder-main-rat s4 ineq ′ (eq ′ @ eq))

definition eq-finder-rat :: (nat list × (var ⇒ rat)) option where
eq-finder-rat = (case init-eq-finder-rat of None ⇒ None
| Some (s, ineqs, sineqs, eqs) ⇒ Some (

case eq-finder-main-rat s ineqs eqs of (ineq, eq, sol)
⇒ (eq, sol)))

context
fixes eqs ineqs sineqs:: nat list
assumes init-cs: init-constraints cs = (ics, ineqs, sineqs, eqs)

begin

60

definition equiv-to-cs where
equiv-to-cs eq = (∀ v. v |=cs set cs = (set (index-of ineqs sineqs eq), v) |=ics set

ics)

definition strict-ineq-sat ineq eq v = ((set (index-of ineqs sineqs eq) ∪ TmpSIneq
‘ set ineq, v) |=ics set ics)

lemma init-eq-finder-rat: init-eq-finder-rat = None =⇒ @ v. v |=cs set cs
init-eq-finder-rat = Some (s, ineq, sineq, eq) =⇒

checked-simplex ics (set (index-of ineqs sineqs eq)) s
∧ eq = eqs ∧ ineq = ineqs ∧ sineq = sineqs
∧ equiv-to-cs eq
∧ distinct (ineq @ sineq @ eq)
∧ set (ineq @ sineq @ eq) = {0 ..< length cs}

proof (atomize(full), goal-cases)
case 1
define s0 where s0 = init-simplex ics
define I where I = index-of ineqs sineqs eqs
note init = init-eq-finder-rat-def [unfolded init-cs split Let-def , folded s0-def I-def]
note init-cs = init-constraints[OF init-cs, unfolded cs-of-def , folded I-def]
from init-simplex[of ics, folded s0-def]
have s0 : invariant-simplex ics {} s0 by (rule checked-invariant-simplex)
show ?case
proof (cases assert-all-simplex I s0)

case Inl
from assert-all-simplex-plain-unsat[OF s0 Inl]
have @ v. (set I ,v) |=ics set ics by auto
hence @ v. v |=cs set cs using init-cs(1) by auto
with Inl init show ?thesis by auto

next
case (Inr s1)
obtain s2 res where ch: check-simplex s1 = (s2 , res) by force
note init = init[unfolded Inr ch split sum.simps]
from assert-all-simplex-ok[OF s0 Inr]
have s1 : invariant-simplex ics (set I) s1 by auto
show ?thesis
proof (cases res)

case Some
note ch = ch[unfolded Some]
from check-simplex-plain-unsat[OF s1 ch] init-cs(1)

Some ch init
show ?thesis by auto

next
case None
note ch = ch[unfolded None]
note init = init[unfolded None option.simps]
from check-simplex-ok[OF s1 ch]
have s2 : checked-simplex ics (set I) s2 .
from init s2 init-cs(1 ,8 ,9) show ?thesis unfolding I-def equiv-to-cs-def by

61

fastforce
qed

qed
qed

lemma eq-finder-main-rat: fixes Ineq Eq
assumes checked-simplex ics (set (index-of ineqs sineqs eq)) s
and set ineq ⊆ set ineqs
and set eqs ⊆ set eq ∧ set eq ∪ set ineq = set eqs ∪ set ineqs
and eq-finder-main-rat s ineq eq = (Ineq, Eq, v-sol)
and equiv-to-cs eq
and distinct (ineq @ eq)

shows set Ineq ⊆ set ineqs set eqs ⊆ set Eq set Ineq ∪ set Eq = set eqs ∪ set ineqs

and equiv-to-cs Eq
and strict-ineq-sat Ineq Eq v-sol
and distinct (Ineq @ Eq)

proof (atomize(full), goal-cases)
case 1
show ?case using assms
proof (induction ineq arbitrary: s eq rule: length-induct)

case (1 ineq s eq)
define I where I = set (index-of ineqs sineqs eq)
note s = 1 .prems(1)[folded I-def]
note ineq = 1 .prems(2)
note eq = 1 .prems(3)
note res = 1 .prems(4)[unfolded eq-finder-main-rat.simps[of - ineq]]
note equiv = 1 .prems(5)
note dist = 1 .prems(6)
note IH = 1 .IH [rule-format]
from s have inv: invariant-simplex ics I s by (rule checked-invariant-simplex)
note sol = solution-simplex[OF s refl]
show ?case
proof (cases ineq = [])

case True
with res have Ineq = [] Eq = eq v-sol = solution-simplex s by auto
with True have strict-ineq-sat Ineq Eq v-sol = ((I , solution-simplex s) |=ics

set ics)
unfolding strict-ineq-sat-def by (auto simp: I-def)

with sol have strict-ineq-sat Ineq Eq v-sol by auto
with True res eq ineq equiv sol dist show ?thesis by (auto simp: equiv-to-cs-def

strict-ineq-sat-def)
next

case False
hence False: (ineq = []) = False by auto
define cp where cp = checkpoint-simplex s
let ?J = I ∪ TmpSIneq ‘ set ineq
let ?ass = assert-all-simplex (map TmpSIneq ineq) s
define inner where inner = (case assert-all-simplex (map TmpSIneq ineq) s

62

of Inl I ⇒ Inl (s, I)
| Inr s1 ⇒ (case check-simplex s1 of (s2 , None) ⇒ Inr (solution-simplex

s2) | (s2 , Some I) ⇒ Inl (backtrack-simplex cp s2 , I)))
note res = res[unfolded False if-False, folded cp-def , unfolded Let-def , folded

inner-def]
{

fix s2 C
assume inner = Inl (s2 , C)
note inner = this[unfolded inner-def sum.simps]
have set C ⊆ ?J ∧ minimal-unsat-core (set C) ics ∧ invariant-simplex ics

I s2
proof (cases ?ass)

case unsat: (Inl D)
with inner have D = C s2 = s by auto
with assert-all-simplex-unsat[OF inv unsat] inv show ?thesis by auto

next
case ass: (Inr s1)
note inner = inner [unfolded ass sum.simps]
from inner obtain s3 where check: check-simplex s1 = (s3 , Some C)

and s2 : s2 = backtrack-simplex cp s3
by (cases check-simplex s1 , auto split: option.splits)

note s1 = assert-all-simplex-ok[OF inv ass]
from check-simplex-unsat[OF s1 check]

have s3 : weak-invariant-simplex ics ?J s3 and C : set C ⊆ ?J mini-
mal-unsat-core (set C) ics by auto

from backtrack-simplex[OF s cp-def [symmetric] s3 s2 [symmetric]]
have s2 : invariant-simplex ics I s2 by auto
from s2 C show ?thesis by auto

qed
} note inner-Some = this

show ?thesis
proof (cases inner)

case (Inr sol)
note inner = this[unfolded inner-def]
from inner obtain s1 where ass: ?ass = Inr s1 by (cases ?ass, auto)
note inner = inner [unfolded ass sum.simps]
from inner obtain s2 where check: check-simplex s1 = (s2 , None) by

(cases check-simplex s1 , auto split: option.splits)
from solution-simplex[OF check-simplex-ok[OF assert-all-simplex-ok[OF inv

ass] check]]
have (?J , sol) |=ics set ics using inner [unfolded check split option.simps]

by auto
hence str : strict-ineq-sat ineq eq sol unfolding I-def strict-ineq-sat-def by

auto
from res[unfolded Inr] have id: Ineq = ineq Eq = eq v-sol = sol by auto
show ?thesis unfolding id using dist eq ineq equiv str by auto

next
case (Inl pair)

63

then obtain s2 C where inner : inner = Inl (s2 , C) by (cases pair , auto)
from inner-Some[OF this]
have C : set C ⊆ I ∪ TmpSIneq ‘ set ineq

and unsat: minimal-unsat-core (set C) ics
and s2 : invariant-simplex ics I s2
by auto

define eq ′ where eq ′ = remdups [i. TmpSIneq i <− C]
have ran: range TmpSIneq ∩ I = {} unfolding I-def index-of-def by auto
{

assume eq ′ = []
hence CI : set C ⊆ I using C ran eq ′-def by force

from unsat have @ v. (set C , v) |=ics set ics unfolding minimal-unsat-core-def
by auto

with indexed-sat-mono[OF sol CI] have False by auto
}
hence eq ′: eq ′ 6= [] by auto
let ?eq = eq ′ @ eq
define s3 where s3 = sum.projr (assert-all-simplex (map FIneq eq ′) s2)
define s4 where s4 = fst (check-simplex s3)
define ineq ′ where ineq ′ = filter (λi. i /∈ set eq ′) ineq
have eq ′-ineq: set eq ′ ⊆ set ineq using C ran unfolding eq ′-def by auto
have eq-new: set eqs ⊆ set ?eq ∧ set ?eq ∪ set ineq ′ = set eqs ∪ set ineqs

using eq ′-ineq ineq eq
by (auto simp: ineq ′-def)

have dist: distinct (ineq ′ @ eq ′ @ eq) using dist unfolding ineq ′-def using
eq ′-ineq

unfolding eq ′-def by auto
have ineq-new: set ineq ′ ⊆ set ineqs using ineq unfolding ineq ′-def by

auto
from eq ′ eq ′-ineq have len: length ineq ′ < length ineq unfolding ineq ′-def

by (metis empty-filter-conv filter-True length-filter-less subsetD)
note res = res[unfolded inner sum.simps split, folded eq ′-def , folded s3-def ,

folded ineq ′-def s4-def]
show ?thesis
proof (rule IH [OF len - ineq-new eq-new res - dist])

define I ′ where I ′ = index-of ineqs sineqs ?eq
have II ′: set I ′= set (map FIneq eq ′) ∪ I unfolding I ′-def I-def index-of-def

using ineq eq ′-ineq by auto
show equiv-new: equiv-to-cs ?eq
proof −

define c-of where c-of I = Simplex.restrict-to I (set ics) for I
have ?thesis ←→ (∀ v. (I , v) |=ics set ics ←→ (FIneq ‘ set eq ′ ∪ I , v)

|=ics set ics)
unfolding equiv-to-cs-def using equiv[unfolded equiv-to-cs-def]
unfolding I ′-def [symmetric] I-def [symmetric] II ′ by auto

also have . . . ←→ (∀ v. v |=cs c-of I −→ v |=cs c-of (FIneq ‘ set eq ′))
unfolding c-of-def by auto

also have . . .
proof (intro allI impI)

64

fix v
assume v: v |=cs c-of I
let ?Ineq = Equality-Detection-Impl.Ineq ‘ set ineq
let ?SIneq = Equality-Detection-Impl.TmpSIneq ‘ set ineq
from init-constraints[OF init-cs]

have dist: distinct (map fst ics) unfolding distinct-indices-def by auto
{

fix c i
assume c: c ∈ c-of {i}
have c-of {i} = {c}
proof −

{
fix d
assume d ∈ c-of {i}
from this[unfolded c-of-def]
have d: (i, d) ∈ set ics by force
from c[unfolded c-of-def]
have c: (i, c) ∈ set ics by force
from c d dist have c = d by (metis eq-key-imp-eq-value)

}
with c show ?thesis by blast

qed
} note c-of-inj = this

let ?n = length cs
{

note init-cs ′ = init-cs[unfolded init-constraints-def Let-def]
fix i
assume i ∈ set ineq
with ineq have i ∈ set ineqs by auto
with init-cs ′

have i ∈ set (map fst (filter (is-nstrict ◦ snd) (zip [0 ..<length cs]
cs))) by auto

hence i-n: i < ?n and nstr : is-nstrict (cs ! i) by (auto simp: set-zip)
hence (i, cs ! i) ∈ set (zip [0 ..<?n] cs) by (force simp: set-zip)
with init-cs ′ have set (index-constraint (i, cs ! i)) ⊆ set ics by force
hence

cs ! i ∈ c-of {Equality-Detection-Impl.Ineq i}
make-strict (cs ! i) ∈ c-of {TmpSIneq i}
make-flipped-ineq (cs ! i) ∈ c-of {FIneq i}
using nstr unfolding c-of-def by (cases cs ! i; force)+

with c-of-inj
have c-of {Equality-Detection-Impl.Ineq i} = {cs ! i}

c-of {TmpSIneq i} = {make-strict (cs ! i)}
c-of {FIneq i} = {make-flipped-ineq (cs ! i)}
by auto

note nstr this i-n
} note c-of-ineq = this

65

have cIneq: c-of ?Ineq = ((!) cs) ‘ set ineq using c-of-ineq(2) unfolding
c-of-def by blast

have cSIneq: c-of ?SIneq = (make-strict o (!) cs) ‘ set ineq
using c-of-ineq(3) unfolding c-of-def o-def by blast

have I ∪ ?Ineq = I using ineq unfolding I-def index-of-def by auto
with v have v |=cs (c-of I ∪ c-of ?Ineq) unfolding c-of-def by auto
hence v: v |=cs (c-of I ∪ ((!) cs) ‘ set ineq) unfolding cIneq by auto
have Ball (snd ‘ set ics) is-no-equality

using init-cs[unfolded init-constraints-def Let-def]
apply clarsimp
subgoal for i c j d by (cases d, auto)
done
hence no-eq-c: Ball (c-of I) is-no-equality for I unfolding c-of-def

by auto
have no-eq-ineq: i ∈ set ineq =⇒ is-no-equality (cs ! i) for i using

c-of-ineq(1)[of i] by (cases cs ! i, auto)
define CI where CI = le-of-constraint ‘ (c-of I)
from v have v: ∀ c ∈ CI ∪ le-of-constraint ‘ ((!) cs ‘ set ineq). (v |=le

c)
unfolding CI-def
by (subst (asm) le-of-constraints, insert no-eq-ineq no-eq-c, auto)

define p where p = (λ i. poly-of-constraint (cs ! i))
define co where co = (λ i. const-of-constraint (cs ! i))

have nstri: Ball ((!) cs ‘ set ineq) is-nstrict using c-of-ineq(1) by auto
have lecs-ineq: set ine ⊆ set ineq =⇒ le-of-constraint‘ ((!) cs ‘ set ine)

= (λi. Le-Constraint Leq-Rel (p i) (co i)) ‘ set ine for ine
by (subst poly-const-repr-set, insert nstri, auto simp: p-def co-def)

from v lecs-ineq[OF subset-refl]
have v: ∀ c ∈ CI ∪ (λi. Le-Constraint Leq-Rel (p i) (co i)) ‘ set ineq.

(v |=le c) by auto
have finCI : finite CI unfolding CI-def c-of-def by auto
note main-step = equality-detection-rat[OF finCI finite-set - - - v]

let ?C = le-of-constraint ‘ (c-of (set C))
from C have c-of (set C) ⊆ c-of I ∪ c-of ?SIneq unfolding c-of-def

by auto
hence c-of (set C) ⊆ c-of I ∪ (make-strict o (!) cs) ‘ set ineq unfolding

cSIneq .
hence ?C ⊆ CI ∪ le-of-constraint ‘ ((make-strict o (!) cs) ‘ set ineq)

unfolding CI-def by auto
also have le-of-constraint‘ ((make-strict o (!) cs) ‘ set ineq) = (λi.

Le-Constraint Lt-Rel (p i) (co i)) ‘ set ineq
unfolding o-def unfolding p-def co-def

using poly-const-repr-set(2)[OF nstri, unfolded image-comp o-def] by
auto

finally have ?C ⊆ CI ∪ (λi. Le-Constraint Lt-Rel (p i) (co i)) ‘ set
ineq by auto

66

note main-step = main-step[OF this]

from unsat[unfolded minimal-unsat-core-def]
have @ v. (set C , v) |=ics set ics by auto
hence @ v. v |=cs c-of (set C) unfolding c-of-def by auto
hence @ v. ∀ c∈le-of-constraint ‘ (c-of (set C)). v |=le c

by (subst (asm) le-of-constraints[OF no-eq-c], auto)

note main-step = main-step[OF this]

{
fix D
assume D ⊂ le-of-constraint ‘ (c-of (set C))
hence ∃ CS . le-of-constraint ‘ CS = D ∧ CS ⊂ c-of (set C)

by (metis subset-image-iff subset-not-subset-eq)
then obtain CS where D: D = le-of-constraint ‘ CS and sub: CS

⊂ c-of (set C) by auto
define c-fun where c-fun i = (THE x . x ∈ c-of {i}) for i
{

fix C ′

assume C ′: C ′ ⊆ set C
{

fix i
assume i ∈ C ′

with C ′ C have i ∈ I ∪ TmpSIneq ‘ set ineq by auto
from this[unfolded I-def index-of-def] ineq eq

have i ∈ set (map SIneq sineqs @ map Equality-Detection-Impl.Ineq
eqs @

map FIneq eqs @ map Equality-Detection-Impl.Ineq ineqs @ map
FIneq ineqs @ map TmpSIneq ineqs) (is - ∈ ?S)

by auto
also have ?S ⊆ fst ‘ set ics using init-constraints(3)[OF init-cs]

by auto
finally have i ∈ fst ‘ set ics by auto
then obtain c where (i,c) ∈ set ics by force
hence c ∈ c-of {i} unfolding c-of-def by force
from c-of-inj[OF this] have c: c-of {i} = {c} by auto
hence c-fun i = c unfolding c-fun-def by auto
with c have c-of {i} = {c-fun i} by auto

}
hence c-of C ′ = c-fun ‘ C ′ unfolding c-of-def by blast

} note to-c-fun = this
from sub[unfolded to-c-fun[OF subset-refl]]
have CS ⊂ c-fun ‘ set C by auto
hence ∃ C ′. C ′ ⊂ set C ∧ CS = c-fun ‘ C ′

by (metis subset-image-iff subset-not-subset-eq)
then obtain C ′ where sub: C ′ ⊂ set C and CS : CS = c-fun ‘ C ′

by auto
from CS to-c-fun[of C ′] sub have CS : CS = c-of C ′ by auto

67

from unsat[unfolded minimal-unsat-core-def] dist sub
have ∃ v. (C ′, v) |=ics set ics

unfolding distinct-indices-def by auto
hence ∃ v. v |=cs CS unfolding CS c-of-def by auto
hence ∃ v. ∀ c∈D. v |=le c unfolding D

by (subst (asm) le-of-constraints, unfold CS , insert no-eq-c, auto)
}

note main-step = main-step[OF this]

{
fix i e
assume ieq ′: i ∈ set eq ′ and mem: (FIneq i, e) ∈ set ics
from ieq ′ eq ′-def have tmp: TmpSIneq i ∈ set C by auto
have i: i ∈ set ineq using ieq ′ eq ′-ineq by auto
from c-of-ineq(1 ,3 ,5)[OF i] tmp
have ∗: make-strict (cs ! i) ∈ c-of (set C) is-nstrict (cs ! i) i < ?n

by (auto simp: c-of-def)
from ∗(3) have (i, cs ! i) ∈ set (zip [0 ..< ?n] cs) by (force simp:

set-zip set-conv-nth)
hence set (index-constraint (i, cs ! i)) ⊆ set ics using init-cs[unfolded

init-constraints-def Let-def]
by force

hence (FIneq i, make-flipped-ineq (cs ! i)) ∈ set ics using ∗(2) by
(cases cs ! i, auto)

with mem dist have e: e = make-flipped-ineq (cs ! i) by (metis
eq-key-imp-eq-value)

have le-of-constraint (make-strict (cs ! i)) = Le-Constraint Lt-Rel (p
i) (co i)

by (subst poly-const-repr(2), insert ∗, auto simp: p-def co-def)
from this ∗ have Le-Constraint Lt-Rel (p i) (co i) ∈ le-of-constraint

‘ (c-of (set C))
by force

from main-step[OF - i this]
have eq: (p i) {| v |} = co i by auto
have id: le-of-constraint (make-flipped-ineq (cs ! i)) = Le-Constraint

Leq-Rel (− p i) (− co i)
by (subst poly-const-repr(3), insert ∗, auto simp: p-def co-def)

from ∗ have is-no-equality (make-flipped-ineq (cs ! i)) by (cases cs !
i, auto)

from le-of-constraint[OF this, of v]
have v |=c e using e id eq by (simp add: valuate-uminus)

}
thus v |=cs c-of (FIneq ‘ set eq ′) unfolding c-of-def by auto

qed
finally show ?thesis by simp

qed
from equiv equiv-new sol

have sol: (set I ′, solution-simplex s) |=ics set ics unfolding equiv-to-cs-def

68

index-of-def I-def I ′-def by auto
have II ′: set I ′= set (map FIneq eq ′) ∪ I unfolding I ′-def I-def index-of-def

using eq ′-ineq ineq by auto
let ?ass = assert-all-simplex (map FIneq eq ′) s2
{

fix K
assume ?ass = Unsat K

from assert-all-simplex-plain-unsat[OF s2 this, folded II ′] sol have False
by auto

}
hence ass: ?ass = Inr s3 unfolding s3-def by (cases ?ass, auto)
from assert-all-simplex-ok[OF s2 ass]
have s3 : invariant-simplex ics (set I ′) s3 unfolding II ′ by (simp add:

ac-simps)
from s4-def [unfolded ass, simplified] obtain c where

check-simplex s3 = (s4 , c) by (cases check-simplex s3 , auto)
with check-simplex-plain-unsat[OF s3] sol
have check-simplex s3 = (s4 , None) by (cases c, auto)
from check-simplex-ok[OF s3 this]

show checked-simplex ics (set (index-of ineqs sineqs (eq ′ @ eq))) s4
unfolding I ′-def .

qed
qed

qed
qed

qed

lemma eq-finder-rat-in-ctxt: eq-finder-rat = None =⇒ @ v. v |=cs set cs
eq-finder-rat = Some (eq-idx, v-sol) =⇒ {i . i < length cs ∧ is-equality (cs ! i)}
⊆ set eq-idx ∧

set eq-idx ⊆ {0 ..< length cs} ∧
distinct eq-idx (is - =⇒ ?main1)

eq-finder-rat = Some (eq-idx, v-sol) =⇒
set feq = make-equality ‘ (!) cs ‘ set eq-idx =⇒
set fineq = (!) cs ‘ ({0 ..< length cs} − set eq-idx) =⇒
(∀ v. v |=cs set cs ←→ v |=cs (set feq ∪ set fineq)) ∧
Ball (set feq) is-equality ∧ Ball (set fineq) is-no-equality ∧
(v-sol |=cs (set feq ∪ make-strict ‘ set fineq)) (is - =⇒ - =⇒ - =⇒ ?main2)

proof −
assume eq-finder-rat = None
from this[unfolded eq-finder-rat-def] have init-eq-finder-rat = None by (cases

init-eq-finder-rat, auto)
from init-eq-finder-rat(1)[OF this] show @ v. v |=cs set cs .

next
assume eq-finder-rat = Some (eq-idx, v-sol)
note res = this[unfolded eq-finder-rat-def]
then obtain s ineq sineq eq

where init: init-eq-finder-rat = Some (s, ineq, sineq, eq)
by (cases init-eq-finder-rat, auto)

69

from init-eq-finder-rat(2)[OF init] have sineq: sineq = sineqs
and dist: distinct (ineq @ sineq @ eq) and set: set (ineq @ sineq @ eq) =

{0 ..<length cs} by auto
note res = res[unfolded init option.simps split sineq]
from res
obtain fi fe where main: eq-finder-main-rat s ineq eq = (fi,fe, v-sol)

by (cases eq-finder-main-rat s ineq eq, auto)
note res = res[unfolded main split]
from res have eq-idx: eq-idx = fe

by auto
from dist have dist ′: distinct (ineq @ eq) by auto
from init-eq-finder-rat(2)[OF init]
have checked-simplex ics (set (index-of ineqs sineqs eq)) s and
∗∗: set ineq ⊆ set ineqs set eqs ⊆ set eq ∧ set eq ∪ set ineq = set eqs ∪ set ineqs

equiv-to-cs eq
and ∗∗∗: {0 ..<length cs} = set (ineq @ sineq @ eq) distinct (ineq @ sineq @

eq)
by auto

from eq-finder-main-rat[OF this(1 ,2 ,3) main this(4) dist ′]
have ∗: set fi ⊆ set ineqs set eqs ⊆ set fe set fe ∪ set fi = set eqs ∪ set ineqs

and equiv: equiv-to-cs fe
and sat: strict-ineq-sat fi fe v-sol
and dist ′′: distinct (fi @ fe) by auto

note init = init-cs[unfolded init-constraints-def Let-def]
note init ′ = init-constraints[OF init-cs]
note eqs = init ′(4)

show ?main1
proof (intro conjI)

show distinct eq-idx unfolding eq-idx using dist ′′ by auto
show {i . i < length cs ∧ is-equality (cs ! i)} ⊆ set eq-idx

unfolding eq-idx using set ∗ ∗∗ eqs by auto
show set eq-idx ⊆ {0 ..<length cs} unfolding eq-idx using set ∗ ∗∗ by auto

qed

assume feq: set feq = make-equality ‘ (!) cs ‘ set eq-idx
assume fineq: set fineq = (!) cs ‘ ({0 ..< length cs} − set eq-idx)
from feq eq-idx
have feq: set feq = set (map (λi. make-equality (cs ! i)) fe) by auto
have fineq: set fineq = set (map ((!) cs) (sineqs @ fi))

unfolding set-map ∗∗∗ using ∗∗∗(2) unfolding sineq eq-idx fineq
apply (intro image-cong[OF - refl])
unfolding ∗∗∗ sineq using ∗ ∗∗(1−2) dist ′′ by auto

note ineqs = init ′(5)
note sineqs = init ′(6)
note ics = init ′(7)
from ∗(3) have fe: i ∈ set fe =⇒ is-equality (cs ! i) ∨ is-nstrict (cs ! i) for i

70

unfolding eqs ineqs by auto
let ?n = length cs
show ?main2
proof (intro conjI ballI allI)

define c-of where c-of I = Simplex.restrict-to I (set ics) for I
have [simp]: c-of (I ∪ J) = c-of I ∪ c-of J for I J unfolding c-of-def by

auto
{

fix v
have cs: v |=cs set cs = v |=cs c-of (set (index-of ineqs sineqs fe)) (is - =

?cond)
using equiv[unfolded equiv-to-cs-def] unfolding c-of-def by auto

have ?cond ←→ v |=cs c-of (SIneq ‘ set sineqs)
∧ (v |=cs c-of (Ineq ‘ set fe)
∧ v |=cs c-of (FIneq ‘ set fe))
∧ v |=cs c-of (Ineq ‘ set ineqs) unfolding index-of-def

by auto
also have c-of (SIneq ‘ set sineqs) = ((!) cs) ‘ set sineqs

unfolding c-of-def ics
unfolding sineqs by force

also have c-of (Ineq ‘ set ineqs) = ((!) cs) ‘ set ineqs
unfolding c-of-def ics
unfolding ineqs eqs
by (auto simp: is-nstrict-iff) force

also have c-of (FIneq ‘ set fe) = (λ i. make-flipped-ineq (cs ! i)) ‘ set fe (is
?l = ?r)

proof
show ?l ⊆ ?r

unfolding c-of-def ics using fe ∗(3)
unfolding ineqs eqs by auto

show ?r ⊆ ?l
proof

fix c
assume c ∈ ?r
then obtain i where i: i ∈ set fe and c: c = make-flipped-ineq (cs ! i)

by auto
from ∗ i have i ′: i ∈ set eqs ∪ set ineqs by auto
have (FIneq i, c) ∈ set ics ∩ {FIneq i} × UNIV

unfolding c ics using i ′ by auto
hence c ∈ c-of {FIneq i} unfolding c-of-def by force
with i show c ∈ ?l unfolding c-of-def by auto

qed
qed
also have c-of (Ineq ‘ set fe) = (λ i. make-ineq (cs ! i)) ‘ set fe (is ?l = ?r)
proof

{
fix i
have i ∈ set fe =⇒ is-nstrict (cs ! i) =⇒ cs ! i ∈ (λi. make-ineq (cs ! i))

‘ set fe

71

by (cases cs ! i; force)
}
thus ?l ⊆ ?r

unfolding c-of-def ics using fe ∗(3)
unfolding ineqs eqs by auto

show ?r ⊆ ?l
proof

fix c
assume c ∈ ?r
then obtain i where i: i ∈ set fe and c: c = make-ineq (cs ! i)

by auto
from ∗ i have i ′: i ∈ set eqs ∪ set ineqs by auto
from fe[OF i]
have (Ineq i, c) ∈ set ics ∩ {Ineq i} × UNIV
proof

assume is-equality (cs ! i)
with i ′ have i ∈ set eqs unfolding ineqs by (cases cs ! i, auto)
thus ?thesis

unfolding c ics using i ′ by (cases cs ! i; force)
next

assume stri: is-nstrict (cs ! i)
with i ′ have i ′: i ∈ set ineqs unfolding eqs by (cases cs ! i, auto)
from stri have c: c = cs ! i unfolding c by (cases cs ! i, auto)
thus ?thesis

unfolding c ics using i ′ by (cases cs ! i; force)
qed
hence c ∈ c-of {Ineq i} unfolding c-of-def by force
with i show c ∈ ?l unfolding c-of-def by auto

qed
qed
also have v |=cs ((λi. make-ineq (cs ! i)) ‘ set fe) ∧
v |=cs ((λi. make-flipped-ineq (cs ! i)) ‘ set fe)
←→ v |=cs ((λ i. make-equality (cs ! i)) ‘ set fe) (is ?l = ?r)
proof −
have ?l ←→ (∀ i ∈ set fe. v |=c make-ineq (cs ! i) ∧ v |=c make-flipped-ineq

(cs ! i))
by auto

also have . . . ←→ (∀ i ∈ set fe. v |=c make-equality (cs ! i))
apply (intro ball-cong[OF refl])
subgoal for i using fe[of i]

by (cases cs ! i, auto)
done

also have . . . ←→ ?r by auto
finally show ?l = ?r .

qed
finally have ?cond ←→
v |=cs ((!) cs ‘ (set sineqs ∪ set ineqs) ∪ (λi. make-equality (cs ! i)) ‘ set fe)
by auto

also have . . . ←→ v |=cs (set feq ∪ set fineq) (is ?l = ?r)

72

proof
show ?l =⇒ ?r unfolding feq fineq using ∗ by auto
assume v: ?r
show ?l
proof

fix c
assume c: c ∈ (!) cs ‘ (set sineqs ∪ set ineqs) ∪

(λi. make-equality (cs ! i)) ‘ set fe
show v |=c c
proof (cases c ∈ (!) cs ‘ (set sineqs ∪ set fi) ∪

(λi. make-equality (cs ! i)) ‘ set fe)
case True
thus ?thesis using v feq fineq ∗ by auto

next
case False
with c obtain i where i ∈ set ineqs − set fi and c: c = cs ! i by auto
with ∗ have i: i ∈ set fe by auto
with v have v |=c make-equality (cs ! i)

using v feq fineq ∗ by auto
with fe[OF i] show ?thesis unfolding c by (cases cs ! i, auto)

qed
qed

qed
finally have main: ?cond ←→ v |=cs (set feq ∪ set fineq) by auto
with cs show v |=cs set cs = v |=cs (set feq ∪ set fineq) by auto
note main

} note main = this
fix c
{

assume c ∈ set feq
from this[unfolded feq] obtain i where i: i ∈ set fe

and c: c = make-equality (cs ! i) by auto
from i ∗ have i ∈ set eqs ∪ set ineqs by auto
hence is-equality (cs ! i) ∨ is-nstrict (cs ! i)

unfolding ineqs eqs by auto
thus is-equality c unfolding c

by (cases cs ! i, auto)
}
{

assume c ∈ set fineq
from this[unfolded fineq] ∗ obtain i where i: i ∈ set sineqs ∪ set ineqs

and c: c = cs ! i by auto
hence is-nstrict c ∨ is-strict c unfolding c sineqs ineqs by auto
thus is-no-equality c by (cases c, auto)

}
from sat[unfolded strict-ineq-sat-def]
have old: v-sol |=cs c-of (set (index-of ineqs sineqs fe)) and new: v-sol |=cs

c-of (TmpSIneq ‘ set fi)
by (auto simp: c-of-def)

73

have tmp: c-of (TmpSIneq ‘ set fi) = (λ i. make-strict (cs ! i)) ‘ set fi
apply (rule sym)
unfolding c-of-def ics using ∗(1) unfolding ineqs
by force

fix c
assume c ∈ set feq ∪ make-strict ‘ set fineq
thus v-sol |=c c
proof

assume c ∈ set feq
thus ?thesis using old[unfolded main] by auto

next
assume c ∈ make-strict ‘ set fineq
from this[unfolded fineq]
obtain i where i: i ∈ set sineqs ∨ i ∈ set fi

and c: c = make-strict (cs ! i) by force
from i show ?thesis
proof

assume i ∈ set fi
with new[unfolded tmp] c show ?thesis by auto

next
assume i: i ∈ set sineqs
hence v: v-sol |=c (cs ! i) using old[unfolded main]

unfolding fineq by auto
from i[unfolded sineqs] have make-strict (cs ! i) = cs ! i

by (cases cs ! i, auto)
with v show ?thesis unfolding c by auto

qed
qed

qed
qed

end
end

lemma eq-finder-rat:
eq-finder-rat cs = None =⇒ @ v. v |=cs set cs (is ?p1 =⇒ ?g1)
eq-finder-rat cs = Some (eq-idx, v-sol) =⇒
{i . i < length cs ∧ is-equality (cs ! i)} ⊆ set eq-idx ∧
set eq-idx ⊆ {0 ..< length cs} ∧
distinct eq-idx (is ?p2 =⇒ ?g2)

eq-finder-rat cs = Some (eq-idx, v-sol) =⇒
set eq = make-equality ‘ (!) cs ‘ set eq-idx =⇒
set ineq = (!) cs ‘ ({0 ..< length cs} − set eq-idx) =⇒
(∀ v. v |=cs set cs ←→ v |=cs (set eq ∪ set ineq)) ∧
Ball (set eq) is-equality ∧ Ball (set ineq) is-no-equality ∧
(v-sol |=cs (set eq ∪ make-strict ‘ set ineq))

74

(is ?p2 =⇒ ?p3 =⇒ ?p4 =⇒ ?g3)
proof −

obtain ics ineqs sineqs eqs
where init-constraints cs = (ics, ineqs, sineqs, eqs)
by (cases init-constraints cs)

from eq-finder-rat-in-ctxt[OF this]
show ?p1 =⇒ ?g1 ?p2 =⇒ ?g2 ?p2 =⇒ ?p3 =⇒ ?p4 =⇒ ?g3 by auto

qed

hide-fact eq-finder-rat-in-ctxt

end

5.3 Algorithm to Detect Implicit Equalities in �

Use the rational equality finder to identify integer equalities.
Basically, this is just a conversion between the different types of constraints.
theory Linear-Diophantine-Eq-Finder

imports
Linear-Polynomial-Impl
Equality-Detection-Impl
Diophantine-Tightening

begin

definition linear-poly-of-lpoly :: (int,var)lpoly ⇒ linear-poly where
[code del]: linear-poly-of-lpoly p = (let cxs = map (λ v. (v, coeff-l p v)) (vars-l-list

p)
in sum-list (map (λ (x,c). lp-monom (of-int c) x) cxs))

lemma linear-poly-of-lpoly-impl[code]:
linear-poly-of-lpoly (lpoly-of p) = (let cxs = vars-coeffs-impl p

in sum-list (map (λ (x,c). lp-monom (of-int c) x) cxs))
unfolding linear-poly-of-lpoly-def vars-coeffs-impl(5) ..

lemma valuate-sum-list: valuate (sum-list ps) α = sum-list (map (λ p. valuate p
α) ps)

by (induct ps, auto simp: valuate-zero valuate-add)

lemma linear-poly-of-lpoly: rat-of-int (eval-l α p) = of-int (constant-l p) + valuate
(linear-poly-of-lpoly p) (λ x. of-int (α x))

unfolding eval-l-def of-int-add
unfolding linear-poly-of-lpoly-def Let-def map-map o-def split valuate-sum-list

valuate-lp-monom
unfolding of-int-mult[symmetric] of-int-sum
unfolding vars-l-list-def
by (subst sum-list-distinct-conv-sum-set, auto)

definition dleq-to-constraint :: var dleq ⇒ constraint where

75

dleq-to-constraint p = EQ (linear-poly-of-lpoly p) (of-int (− constant-l p))

lemma dleq-to-constraint: satisfies-dleq α e ←→ satisfies-constraint (λ x. rat-of-int
(α x)) (dleq-to-constraint e)
proof −

have satisfies-dleq α e ←→ rat-of-int (eval-l α e) = 0
unfolding satisfies-dleq-def by blast

also have . . . ←→ satisfies-constraint (λ x. rat-of-int (α x)) (dleq-to-constraint
e)

unfolding linear-poly-of-lpoly[of α e] dleq-to-constraint-def
by auto

finally show ?thesis .
qed

definition dlineq-to-constraint :: var dlineq ⇒ constraint where
dlineq-to-constraint p = LEQ (linear-poly-of-lpoly p) (of-int (− constant-l p))

lemma dlineq-to-constraint: satisfies-dlineq α e ←→
satisfies-constraint (λ x. rat-of-int (α x)) (dlineq-to-constraint e)

proof −
have satisfies-dlineq α e ←→ rat-of-int (eval-l α e) ≤ 0

unfolding satisfies-dlineq-def by simp
also have . . . ←→ satisfies-constraint (λ x. rat-of-int (α x)) (dlineq-to-constraint

e)
unfolding linear-poly-of-lpoly[of α e] dlineq-to-constraint-def
by auto

finally show ?thesis .
qed

definition eq-finder-int :: var dlineq list ⇒
(var dleq list × var dlineq list) option where

[code del]: eq-finder-int ineqs = (case
eq-finder-rat (map dlineq-to-constraint ineqs) of

None ⇒ None
| Some (idx-eq, -) ⇒ let I = set idx-eq;

ics = zip [0 ..< length ineqs] ineqs
in case List.partition (λ (i,c). i ∈ I) ics

of (eqs2 , ineqs2) ⇒ Some (map snd eqs2 , map snd ineqs2))

lemma classify-dlineq-to-constraint[simp]:
¬ is-strict (dlineq-to-constraint c)
¬ is-equality (dlineq-to-constraint c)
is-nstrict (dlineq-to-constraint c)
by (auto simp: dlineq-to-constraint-def)

lemma init-constraints-ineqs:
init-constraints (map dlineq-to-constraint ineqs) =

(let idx = [0 ..<length ineqs];
ics ′ = zip idx

76

(map dlineq-to-constraint ineqs);
ics = concat (map index-constraint ics ′)
in (ics, idx, [], []))

unfolding init-constraints-def length-map Let-def
apply (clarsimp simp flip: set-empty, intro conjI)
subgoal apply (subst filter-True)

subgoal by (auto dest!: set-zip-rightD)
subgoal by auto
done

by (auto dest!: set-zip-rightD)

lemmas eq-finder-int-code[code] =
eq-finder-int-def [unfolded eq-finder-rat-def init-eq-finder-rat-def , unfolded init-constraints-ineqs]

lemma eq-finder-int: assumes
res: eq-finder-int ineqs = res
shows res = None =⇒ @ α. α |=dio ({}, set ineqs)

res = Some (eqs, ineqs ′) =⇒ α |=dio ({}, set ineqs) ←→ α |=dio (set eqs, set
ineqs ′)

res = Some (eqs, ineqs ′) =⇒ ∃ α. α |=cs (make-strict ‘ dlineq-to-constraint ‘
set ineqs ′)

res = Some (eqs, ineqs ′) =⇒ length ineqs = length eqs + length ineqs ′

proof (atomize(full), goal-cases)
case 1
define cs where cs = map dlineq-to-constraint ineqs
let ?sat = λ α eqs ineqs. Ball (set eqs) (satisfies-dleq α) ∧ Ball (set ineqs)

(satisfies-dlineq α)
note defs = dlineq-to-constraint dleq-to-constraint
note defs2 = satisfies-dlineq-def satisfies-dleq-def
note defs3 = dlineq-to-constraint-def dleq-to-constraint-def
note res = res[unfolded eq-finder-int-def , folded cs-def]
show ?case
proof (cases eq-finder-rat cs)

case None
with res have res: res = None by auto
from eq-finder-rat(1)[OF None, unfolded cs-def]
have @ α. ?sat α [] ineqs unfolding defs by auto
with res show ?thesis by auto

next
case (Some pair)
then obtain eq-idx sol where eq: eq-finder-rat cs = Some (eq-idx, sol) by

(cases pair , auto)
define ics where ics = zip [0 ..< length ineqs] ineqs
let ?I = set eq-idx
let ?part = List.partition (λ(i, c). i ∈ ?I) ics
obtain ineqs2 eqs2 where part: ?part = (eqs2 , ineqs2) by force
let ?ineqs2 = map snd ineqs2
let ?eqs2 = map snd eqs2
have ics: ics = map (λ i. (i, ineqs ! i)) [0 ..< length ineqs]

77

unfolding ics-def by (intro nth-equalityI , auto)
from part have eqs2 : ?eqs2 = map ((!) ineqs) (filter (λ i. i ∈ ?I) [0 ..< length

ineqs])
unfolding ics by (auto simp: filter-map o-def)

from part have ineqs2 : ?ineqs2 = map ((!) ineqs) (filter (λ i. i /∈ ?I) [0 ..<
length ineqs])

unfolding ics by (auto simp: filter-map o-def)
note res = res[unfolded eq option.simps split Let-def , folded ics-def ,

unfolded part split]
from eq-finder-rat(2)[OF eq]
have eq-finder2 : {i. i < length cs ∧ is-equality (cs ! i)} ⊆ ?I

?I ⊆ {0 ..<length cs}
distinct eq-idx by auto

have len: length ineqs = length cs unfolding cs-def by auto
from eq-finder2 have filter : {x ∈ set [0 ..<length ineqs]. x ∈ ?I} = ?I

unfolding len by force
from eq-finder2 have filter ′: set (filter (λi. i /∈ ?I) [0 ..<length ineqs]) = {0

..< length cs} − ?I
unfolding len by force

have eqs2 ′: set (map dleq-to-constraint ?eqs2) = make-equality ‘ (!) cs ‘ ?I
unfolding set-map eqs2 set-filter image-comp filter o-def using eq-finder2
by (intro image-cong[OF refl])
(auto simp: cs-def nth-append defs3)

have ineqs2 ′: set (map dlineq-to-constraint ?ineqs2) = (!) cs ‘ ({0 ..<length cs}
− ?I)

unfolding set-map ineqs2 filter ′ image-comp o-def
apply (intro image-cong[OF refl])
subgoal for i using set-mp[OF eq-finder2 (1), of i]

unfolding defs2 by (auto simp: cs-def nth-append defs3)
done

from eq-finder-rat(3)[OF eq eqs2 ′ ineqs2 ′] have
equiv:

∧
v. v |=cs set cs = v |=cs (dleq-to-constraint ‘ set ?eqs2 ∪ dlineq-to-constraint

‘ set ?ineqs2)
and strict: sol |=cs (set (map dleq-to-constraint ?eqs2) ∪ make-strict ‘ set

(map dlineq-to-constraint ?ineqs2))
unfolding set-map by metis+

from strict have strict: sol |=cs (make-strict ‘ dlineq-to-constraint ‘ set ?ineqs2)
by auto

{
let ?α = λ x :: var . rat-of-int (α x)
have ?sat α [] ineqs ←→ ?α |=cs set cs unfolding cs-def

by (auto simp: defs)
also have . . . ←→ ?sat α ?eqs2 ?ineqs2 unfolding equiv

using defs[of α] by fastforce
finally have ?sat α [] ineqs ←→ ?sat α ?eqs2 ?ineqs2 .

} note eq = this

have length ineqs = length ics unfolding ics-def by auto

78

also have . . . = length eqs2 + length ineqs2 using part[simplified]
by (smt (verit) comp-def filter-cong sum-length-filter-compl)

finally show ?thesis using eq res strict by fastforce
qed

qed

end

6 A Combined Preprocessor

We combine equality detection, equality elimination and tightening in one
function that eliminates all explicit and implicit equations from a list of
inequalities and equalities, to either detect unsat or to return an equivalent
list of inequalities which all can be satisfied strictly in the rational numbers.
theory Dio-Preprocessor

imports
Linear-Polynomial-Impl
Linear-Diophantine-Solver-Impl
Diophantine-Tightening
Linear-Diophantine-Eq-Finder

begin

Combine equality elimination and tightening in one algorithm
definition dio-elim-equations-and-tighten :: var dleq list ⇒ var dlineq list ⇒

(var dlineq list × ((int,var)assign ⇒ (int,var)assign)) option where
dio-elim-equations-and-tighten eqs ineqs = (case equality-elim-for-inequalities fresh-vars-nat

eqs ineqs
of None ⇒ None
| Some (ineqs2 , adj) ⇒ map-option (λ ineqs3 . (ineqs3 , adj)) (tighten-ineqs

ineqs2))

lemma dio-elim-equations-and-tighten: assumes
res: dio-elim-equations-and-tighten eqs ineqs = res
shows res = None =⇒ @ α. α |=dio (set eqs, set ineqs)
res = Some (ineqs ′, adj) =⇒ α |=dio ({}, set ineqs ′) =⇒ β = adj α =⇒ β |=dio

(set eqs, set ineqs)
res = Some (ineqs ′ , adj) =⇒ @ α. α |=dio ({}, set ineqs ′) =⇒ @ α . α |=dio (set

eqs, set ineqs)
res = Some (ineqs ′, adj) =⇒ length ineqs ′ ≤ length ineqs

proof (atomize(full), goal-cases)
case 1
note res = res[unfolded dio-elim-equations-and-tighten-def]
show ?case
proof (cases equality-elim-for-inequalities fresh-vars-nat eqs ineqs)

case None
from equality-elim-for-inequalities-nat(1)[OF None refl] None show ?thesis

using res by auto

79

next
case (Some pair)
obtain ineqs2 adj ′ where pair : pair = (ineqs2 , adj ′) by force
note Some = Some[unfolded pair]
note res = res[unfolded Some option.simps split]
note eq-elim = equality-elim-for-inequalities-nat(2−)[OF Some refl]
show ?thesis
proof (cases tighten-ineqs ineqs2)

case None
with res eq-elim tighten-ineqs(1)[OF None] show ?thesis by auto

next
case (Some ineqs3)
with res eq-elim tighten-ineqs(2)[OF Some] show ?thesis by force

qed
qed

qed

Now all three preprocessing steps are combined.
Since after an equality elimination the resulting inequalities might be tight-
ened, it can happen that after the tightening new equalities are implied;
therefore the whole process is performed recursively
function dio-preprocess-main :: (int, var) lpoly list ⇒ ((int, var) lpoly list ×
((int,var)assign ⇒ (int,var)assign)) option where

dio-preprocess-main ineqs = (case eq-finder-int ineqs of None ⇒ None
| Some (eqs, ineqs ′) ⇒ (case eqs of [] ⇒ Some (ineqs ′, id)
| - ⇒ (case dio-elim-equations-and-tighten eqs ineqs ′ of None ⇒ None
| Some (ineqs ′′, adj) ⇒ map-option (map-prod id (λ adj ′. adj o adj ′))

(dio-preprocess-main ineqs ′′))))
by pat-completeness auto

termination
proof (standard, rule wf-measure[of length], goal-cases)

case (1 ineqs pair eqs ineqs ′ e eqs ′ pair ′ ineqs ′′ adj)
from eq-finder-int(4)[OF 1 (1), folded 1 (2), OF refl]

dio-elim-equations-and-tighten(4)[OF 1 (4), folded 1 (5), OF refl]
1 (3)

show ?case by auto
qed

declare dio-preprocess-main.simps[simp del]

lemma dio-preprocess-main: assumes
res: dio-preprocess-main ineqs = res
shows res = None =⇒ @ α. α |=dio ({}, set ineqs)
res = Some (ineqs ′, adj) =⇒ α |=dio ({}, set ineqs ′) =⇒ (adj α) |=dio ({}, set

ineqs)
res = Some (ineqs ′ , adj) =⇒ @ α. α |=dio ({}, set ineqs ′) =⇒ @ α. α |=dio ({},

set ineqs)
res = Some (ineqs ′, adj) =⇒ ∃ α. α |=cs (make-strict ‘ dlineq-to-constraint ‘ set

80

ineqs ′)
proof (atomize(full), goal-cases)

case 1
show ?case using res
proof (induction ineqs arbitrary: res ineqs ′ adj α rule: dio-preprocess-main.induct)

case (1 ineqs res ineqs ′ adj α)
note res = dio-preprocess-main.simps[of ineqs, unfolded 1 .prems]
show ?case
proof (cases eq-finder-int ineqs)

case None
from res[unfolded None option.simps] eq-finder-int(1)[OF None] show ?thesis

by auto
next

case (Some pair)
obtain eqs1 ineqs1 where pair : pair = (eqs1 , ineqs1) by force
note Some = Some[unfolded pair]
note res = res[unfolded Some option.simps split]
note eqf = eq-finder-int(2 ,3)[OF Some refl]
note IH = 1 .IH [OF Some refl]
show ?thesis
proof (cases eqs1)

case Nil
with res have res = Some (ineqs1 , id) by auto
with res eqf Nil show ?thesis by auto

next
case (Cons e eqs1 ′)
note res = res[unfolded Cons list.simps, folded Cons]
note IH = IH [OF Cons]
show ?thesis
proof (cases dio-elim-equations-and-tighten eqs1 ineqs1)

case None
note res = res[unfolded None option.simps]
from dio-elim-equations-and-tighten(1)[OF None] res show ?thesis using

eqf by auto
next

case (Some pair2)
obtain ineqs2 adj2 where pair2 : pair2 = (ineqs2 , adj2) by force
note Some = Some[unfolded this]
note res = res[unfolded Some option.simps split]
note IH = IH [OF Some refl refl]
note elim = dio-elim-equations-and-tighten(2−3)[OF Some refl]
note elim = elim(1)[OF - refl] elim(2)
show ?thesis
proof (cases dio-preprocess-main ineqs2)

case None
with IH have @α. ∀ a∈set ineqs2 . satisfies-dlineq α a by auto
with elim res None eqf show ?thesis by auto

next
case (Some pair3)

81

obtain ineqs3 adj3 where pair3 : pair3 = (ineqs3 , adj3) by force
note Some = Some[unfolded this]
from res[unfolded Some]
have res: res = Some (ineqs3 , adj2 o adj3) by auto
from IH [of ineqs3 adj3] Some res IH elim eqf show ?thesis by auto

qed
qed

qed
qed

qed
qed

The final preprocessing function just does some initial round of equality
elimination and tightening before invoking the main algorithm which tries
to detect and eliminate further implicit equalities.
definition dio-preprocess :: var dleq list ⇒ var dlineq list ⇒ (var dlineq list ×
((int,var)assign ⇒ (int,var)assign)) option where

dio-preprocess eqs ineqs = (case dio-elim-equations-and-tighten eqs ineqs of None
⇒ None

| Some (ineqs ′, adj) ⇒ map-option (map-prod id (λ adj ′. adj o adj ′))
(dio-preprocess-main ineqs ′))

The dio-preprocess algorithm eliminates all explicit and implicit equalities;
in the negative outcome (None) we see (1) that the input constraints are
unsat; and in the positive case (Some) (2) the resulting inequalities are
equisatisfiable to the input constraints, (3) the solutions can be transformed
in one direction via an adjuster adj, and (4) all resulting inequalities can
be satisfied strictly using rational numbers, so no further equalities can be
deduced using rational arithmetic reasoning.
lemma dio-preprocess: assumes res: dio-preprocess eqs ineqs = res

shows res = None =⇒ @ α. α |=dio (set eqs, set ineqs)
res = Some (ineqs ′, adj) =⇒ (∃ α. α |=dio ({}, set ineqs ′)) ←→ (∃ α. α |=dio

(set eqs, set ineqs))
res = Some (ineqs ′, adj) =⇒ α |=dio ({}, set ineqs ′) =⇒ (adj α) |=dio (set eqs,

set ineqs)
res = Some (ineqs ′, adj) =⇒ ∃ α. α |=cs (make-strict ‘ dlineq-to-constraint ‘ set

ineqs ′)
proof (atomize(full), goal-cases)

case 1
note res = res[unfolded dio-preprocess-def]
show ?case
proof (cases dio-elim-equations-and-tighten eqs ineqs)

case None
with dio-elim-equations-and-tighten(1)[OF None] res show ?thesis by auto

next
case (Some pair)
obtain ineqs1 adj1 where pair = (ineqs1 , adj1) by force
note Some = Some[unfolded this]

82

note res = res[unfolded Some option.simps split]
note elim = dio-elim-equations-and-tighten(2−3)[OF Some refl]
note elim = elim(1)[OF - refl] elim(2)
show ?thesis
proof (cases dio-preprocess-main ineqs1)

case None
with dio-preprocess-main(1)[OF None] res elim show ?thesis by auto

next
case (Some pair2)
obtain ineqs2 adj2 where pair2 = (ineqs2 , adj2) by force
note Some = Some[unfolded this]
from res[unfolded Some]
have res: res = Some (ineqs2 , adj1 ◦ adj2) by auto
from dio-preprocess-main(2−4)[OF Some refl] elim res
show ?thesis by fastforce

qed
qed

qed

end

7 Examples
theory Dio-Preprocessing-Examples

imports
Dio-Preprocessor

begin

Inequalities where branch-and-bound algorithm is not terminating without
setting global bounds
definition example-3-x-min-y :: (int,var)lpoly list where

example-3-x-min-y = (let x = var-l 1 ; y = var-l 2 in
[const-l 1 − smult-l 3 x + smult-l 3 y,
smult-l 3 x − smult-l 3 y − const-l 2])

Preprocessing can detect unsat
lemma case dio-preprocess [] example-3-x-min-y of None ⇒ True | Some -⇒ False

by eval

Griggio, example 1, unsat detection by preprocessing
definition griggio-example-1-eqs :: var dleq list where

griggio-example-1-eqs = (let x1 = var-l 1 ; x2 = var-l 2 ; x3 = var-l 3 in
[smult-l 3 x1 + smult-l 3 x2 + smult-l 14 x3 − const-l 4 ,
smult-l 7 x1 + smult-l 12 x2 + smult-l 31 x3 − const-l 17])

lemma case dio-preprocess griggio-example-1-eqs [] of None ⇒ True | Some - ⇒
False

83

by eval

Griggio, example 2, unsat detection by preprocessing
definition griggio-example-2-eqs :: var dleq list where

griggio-example-2-eqs = (let x1 = var-l 1 ; x2 = var-l 2 ; x3 = var-l 3 ; x4 = var-l
4 in

[smult-l 2 x1 − smult-l 5 x3 ,
x2 − smult-l 3 x4])

definition griggio-example-2-ineqs :: (int,var) lpoly list where
griggio-example-2-ineqs = (let x1 = var-l 1 ; x2 = var-l 2 ; x3 = var-l 3 in

[− smult-l 2 x1 − x2 − x3 + const-l 7 ,
smult-l 2 x1 + x2 + x3 − const-l 8])

lemma case dio-preprocess griggio-example-2-eqs griggio-example-2-ineqs
of None ⇒ True | Some - ⇒ False

by eval

Termination proof of binary logarithm program n := 0 ; while (x > 1) {x
:= x div 2 ; n := n + 1}
definition example-log-transition-formula :: (int,var) lpoly list

where example-log-transition-formula = (let x = var-l 1 ; x ′ = var-l 2 ; n = var-l
3 ; n ′ = var-l 4

in [const-l 1 − x,
n ′ − n,
n − n ′,
smult-l 2 x ′ − x,
x − smult-l 2 x ′ − const-l 1])

x is decreasing in each iteration
value (code) let x = var-l 1 ; x ′ = var-l 2 in dio-preprocess [] ((x − x ′) # exam-
ple-log-transition-formula)

x is bounded by -2
value (code) let x = var-l 1 in dio-preprocess [] ((x + const-l 2) # example-log-transition-formula)

end

References

[1] M. Bromberger and C. Weidenbach. New techniques for linear arith-
metic: cubes and equalities. Formal Methods Syst. Des., 51(3):433–461,
2017.

[2] A. Griggio. A practical approach to satisability modulo linear integer
arithmetic. J. Satisf. Boolean Model. Comput., 8(1/2):1–27, 2012.

84

[3] F. Maric, M. Spasic, and R. Thiemann. An incremental simplex algo-
rithm with unsatisfiable core generation. Arch. Formal Proofs, 2018,
2018.

[4] W. W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In J. L. Martin, editor, Proceedings
Supercomputing ’91, Albuquerque, NM, USA, November 18-22, 1991,
pages 4–13. ACM, 1991.

85

	Linear Polynomials
	An Abstract Type for Multivariate Linear Polynomials
	An Implementation of Linear Polynomials as Ordered Association Lists

	Linear Diophantine Equations and Inequalities
	Tightening
	Linear Diophantine Equation Solver
	Abstract Algorithm
	Executable Algorithm

	Detection of Implicit Equalities
	Main Abstract Reasoning Step
	Algorithm to Detect all Implicit Equalities in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Algorithm to Detect Implicit Equalities in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000

	A Combined Preprocessor
	Examples

