A Preprocessor for Linear Diophantine Equalities and Inequalities

René Thiemann
University of Innsbruck, Austria

June 19, 2024

Abstract

We formalize a combination algorithm to preprocess a set of linear diophantine equations and inequalities. It consists of three techniques that are applied exhaustively. - Pugh's technique of tightening linear inequalities [4], - Bromberger and Weidenbach's algorithm to detect implicit equalities [1] - here we make use of an incremental implementation of the simplex algorithm [3], and - Griggio's diophantine equation solver [2] to eliminate all detected equations. In total, given some linear input constraints, the preprocessor will either detect unsatisfiability in \mathbb{Z}, or it returns equi-satisfiable inequalities, which moreover are all strictly satisfiable in \mathbb{Q}.

Contents

1 Linear Polynomials 2
1.1 An Abstract Type for Multivariate Linear Polynomials 2
1.2 An Implementation of Linear Polynomials as Ordered Asso- ciation Lists 8
2 Linear Diophantine Equations and Inequalities 20
3 Tightening 22
4 Linear Diophantine Equation Solver 24
4.1 Abstract Algorithm 24
4.2 Executable Algorithm 38
5 Detection of Implicit Equalities 49
5.1 Main Abstract Reasoning Step 49
5.2 Algorithm to Detect all Implicit Equalities in \mathbb{Q} 52
5.3 Algorithm to Detect Implicit Equalities in \mathbb{Z} 75
6 A Combined Preprocessor 79
7 Examples 83

1 Linear Polynomials

1.1 An Abstract Type for Multivariate Linear Polynomials

```
theory Linear-Polynomial
    imports
        Main
begin
```

typedef (overloaded) ('a :: zero, $\left.{ }^{\prime} v\right)$ lpoly $=\left\{c::{ }^{\prime} v\right.$ option $\Rightarrow{ }^{\prime} a$. finite $\{v . c \quad v$
$\neq 0\}$ \}
by (intro exI[of - $\lambda-.0]$, auto)
setup-lifting type-definition-lpoly
instantiation lpoly :: (ab-group-add,type) ab-group-add
begin
lift-definition uminus-lpoly $::\left({ }^{\prime} a,{ }^{\prime} b\right)$ lpoly $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)$ lpoly is $\lambda c x .-c x$ by
auto
lift-definition minus-lpoly :: ('a, 'b) lpoly $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)$ lpoly $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)$ lpoly is $\lambda c 1$ c2 x. c1 $x-c 2 x$
proof goal-cases
case (1 c1 c2)
have $\{v . c 1 v-c 2 v \neq 0\} \subseteq\{v . c 1 v \neq 0\} \cup\{v . c 2 v \neq 0\}$ by auto
from finite-subset[OF this] 1 show ?case by auto
qed
lift-definition plus-lpoly :: ('a, 'b) lpoly $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)$ lpoly $\Rightarrow\left({ }^{\prime} a,^{\prime} b\right)$ lpoly is $\lambda c 1$ c2 x. c1 $x+c 2 x$
proof goal-cases
case (1 c1 c2)
have $\{v . c 1 v+c \mathcal{2} v \neq 0\} \subseteq\{v . c 1 v \neq 0\} \cup\{v . c \mathcal{Z} v \neq 0\}$ by auto
from finite-subset[OF this] 1 show ?case by auto
qed
lift-definition zero-lpoly :: ('a, 'b) lpoly is $\lambda c .0$ by auto
instance by (intro-classes; transfer, auto simp: ac-simps)
end
lift-definition var-l :: 'v \Rightarrow ('a :: \{comm-monoid-mult,zero-neq-one $\left.\},{ }^{\prime} v\right)$ lpoly is λx. (λ c. 0)(Some $x:=1$) by auto
lift-definition constant-l $::\left({ }^{\prime} a::\right.$ zero, $\left.{ }^{\prime} v\right)$ lpoly $\Rightarrow{ }^{\prime} a$ is λ c. c None.
lift-definition coeff-l $::\left({ }^{\prime} a::\right.$ zero, $\left.{ }^{\prime} v\right)$ lpoly $\Rightarrow{ }^{\prime} v \Rightarrow^{\prime} a$ is $\lambda c x$. c (Some x).
lift-definition vars-l $::\left({ }^{\prime} a::\right.$ zero, $\left.{ }^{\prime} v\right)$ lpoly $\Rightarrow{ }^{\prime} v$ set is $\lambda c .\{x . c($ Some $x) \neq 0\}$
.
lemma finite-vars-l[simp,intro]: finite (vars-l p)
proof (transfer, goal-cases)
case (1 p)
show ?case by (rule finite-subset[OF - finite-imageI[OF 1, of the]], force)
qed
type-synonym $\left({ }^{\prime} a,^{\prime} v\right)$ assign $={ }^{\prime} v \Rightarrow{ }^{\prime} a$
lemma vars-l-var $[$ simp $]$: vars-l $($ var-l $x)=\{x\}$ by transfer auto
lemma vars-l-plus: vars-l $(p 1+p 2) \subseteq$ vars-l $p 1 \cup$ vars-l p2
by (transfer, auto)
lemma vars-l-minus: vars-l $(p 1-p 2) \subseteq$ vars-l p1 \cup vars-l p2 by (transfer, auto)
lemma vars-l-uminus $[$ simp $]$: vars-l $(-p)=$ vars-l p
by (transfer, auto)
lemma vars-l-zero[simp]: vars-l $0=\{ \}$
by (transfer, auto)
definition eval-l $::\left({ }^{\prime} a::\right.$ comm-ring, $\left.{ }^{\prime} v\right)$ assign $\Rightarrow\left({ }^{\prime} a,^{\prime} v\right)$ lpoly $\Rightarrow{ }^{\prime} a$ where eval-l $\alpha p=$ constant-l $p+\operatorname{sum}(\lambda x$. coeff-l $p x * \alpha x)($ vars-l $p)$
lemma eval-l-mono: assumes finite V vars-l $p \subseteq V$
shows eval-l $\alpha p=$ constant-l $p+\operatorname{sum}(\lambda x$. coeff-l $p x * \alpha x) V$
proof -
define W where $W=V$ - vars-l p
have $[$ simp $]:\left(\sum x \in W\right.$. coeff-l $\left.p x * \alpha x\right)=0$ by (rule sum.neutral, unfold W-def, transfer, auto)
have $V: V=W \cup$ vars-l $p W \cap$ vars-l $p=\{ \}$ using assms unfolding W-def by auto
show ?thesis unfolding eval-l-def using assms unfolding V
by (subst sum.union-disjoint[OF - - V(2)], auto)
qed
lemma eval-l-cong: assumes $\bigwedge x . x \in$ vars-l $p \Longrightarrow \alpha x=\beta x$ shows eval-l $\alpha p=$ eval-l βp
unfolding eval-l-mono[OF finite-vars-l subset-refl]

```
    by (intro arg-cong[of - - \lambda x. - + x] sum.cong refl, insert assms, auto)
lemma eval-l-0[simp]: eval-l \alpha 0 = 0 unfolding eval-l-def
    by (transfer, auto)
lemma eval-l-plus[simp]: eval-l \alpha (p1 + p2) = eval-l \alpha p1 + eval-l \alpha p2
proof -
    have fin: finite (vars-l p1 \cup vars-l p2) by auto
    show ?thesis
        apply (subst (1 2 3) eval-l-mono[OF fin])
        subgoal by auto
        subgoal by auto
        subgoal by (rule vars-l-plus)
    subgoal by (transfer, auto simp: sum.distrib algebra-simps)
        done
qed
lemma eval-l-minus[simp]: eval-l \alpha (p1 - p2) = eval-l \alpha p1 - eval-l \alpha p2
proof -
    have fin: finite (vars-l p1 \cup vars-l p2) by auto
    show ?thesis
        apply (subst (1 2 3) eval-l-mono[OF fin])
        subgoal by auto
    subgoal by auto
    subgoal by (rule vars-l-minus)
    subgoal by (transfer, auto simp: sum-subtractf algebra-simps)
    done
qed
lemma eval-l-uminus[simp]: eval-l \alpha (- p)= - eval-l \alpha p
    unfolding eval-l-def
    by (transfer, auto simp: sum-negf)
lemma eval-l-var[simp]: eval-l \alpha (var-l x) = \alpha x
    apply (subst eval-l-mono[of {x}])
    apply force
    apply force
    by (transfer, auto)
```

lift-definition substitute-l $::{ }^{\prime} v \Rightarrow\left({ }^{\prime} a::\right.$ comm-ring, 'v) lpoly $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} v\right)$ lpoly \Rightarrow
($a,{ }^{\prime} v$) lpoly is
$\lambda x p q y .(q($ Some $x:=0)) y+q($ Some $x) * p y$
proof goal-cases
case (1 x p1 p2)
show ?case
apply (rule finite-subset[of - \{v.p1 v$\neq 0\} \cup\{v . p 2 v \neq 0\}])$
using 1 by auto
qed

```
lemma vars-substitute-l: vars-l (substitute-l x p q)\subseteqvars-l p \cup(vars-l q-{x})
    by (transfer, auto)
lemma substitute-l-id: x # vars-l q \Longrightarrow substitute-l x p q q q q
    by transfer auto
lemma eval-substitute-l: eval-l \alpha (substitute-l x p q) = eval-l ( }\alpha(x:= eval-l \alpha p)
q
proof -
    have fin: finite (insert x (vars-l p v vars-l q))
        and fin2: finite (vars-l p\cup vars-l q) by auto
    define }V\mathrm{ where }V=\mathrm{ vars-l }p\cup\mathrm{ vars-l }q-{x
    have V: finite V x\not\inV unfolding V-def by auto
    show ?thesis
        apply (subst (1 2 3) eval-l-mono[OF fin])
        subgoal by auto
        subgoal by auto
        subgoal using vars-substitute-l[of x p q] by auto
        apply (unfold sum.insert-remove[OF fin2])
        apply (unfold V-def[symmetric])
        using V
        apply (transfer)
        apply (simp add: algebra-simps sum.distrib sum-distrib-left)
        apply (intro sum.cong)
        apply (auto simp: ac-simps)
        done
qed
lift-definition fun-of-lpoly :: ('a :: zero,'v) lpoly = ' v option }=>\mp@subsup{}{}{\prime}a\mathrm{ is }\lambdax.x
lift-definition smult-l :: 'a :: comm-ring => (' a,'v)lpoly }=>(\mp@subsup{}{}{\prime}a,'v)lpoly is
    \lambda cz. y*cz
proof (goal-cases)
    case 1
    show ?case by (rule finite-subset[OF - 1], auto)
qed
lemma coeff-smult-l[simp]:coeff-l (smult-l c p) x = c* coeff-l p x
    by transfer auto
lemma constant-smult-l[simp]: constant-l (smult-l c p) =c* constant-l p
    by transfer auto
lemma eval-smult-l[simp]: eval-l \alpha (smult-l c p)=c*eval-l \alpha p
    apply (subst (1 2) eval-l-mono[of vars-l p])
    subgoal by simp
    subgoal by simp
```

subgoal by transfer auto
unfolding eval-l-def coeff-smult-l
by (auto simp: algebra-simps sum-distrib-left)
lift-definition const-l $::$ ' $a::$ zero $\Rightarrow\left({ }^{\prime} a,^{\prime} v\right)$ lpoly is $\lambda c .(\lambda z .0)($ None $:=c)$ by auto
lemma eval-l-const-l-constant: eval-l $\alpha($ const-l $($ constant-l $p))=$ constant-l p unfolding eval-l-def
by transfer auto
definition substitute-all-l $::\left({ }^{\prime} v \Rightarrow\left({ }^{\prime} a,{ }^{\prime} w\right)\right.$ lpoly $) \Rightarrow\left({ }^{\prime} a::\right.$ comm-ring, 'v) lpoly \Rightarrow (${ }^{\prime} a,{ }^{\prime} w$) lpoly where
substitute-all-l $\sigma p=($ const-l $($ constant-l $p)+\operatorname{sum}(\lambda x$. smult-l $($ coeff-l $p x)(\sigma$ $x))($ vars-l $p))$
lemma eval-substitute-all-l: eval-l α (substitute-all-l $\sigma p)=$ eval-l $(\lambda$ x. eval-l α $(\sigma x)) p$ proof -
define $x s$ where $x s=$ vars-l p have fin: finite $x s$ unfolding $x s-d e f$ by auto show ?thesis
unfolding substitute-all-l-def
unfolding eval-l-mono[OF finite-vars-l subset-refl, of - p]
unfolding eval-l-plus eval-l-const-l-constant
unfolding $x s$-def[symmetric] using fin
proof (intro arg-cong $[$ of $-\lambda x .-+x]$, induct xs rule: finite-induct)
case $*$: (insert x xs)
note $I H=*(3)[O F *(1)]$
note sum $=$ sum.insert $[O F *(1-2)]$
show ?case unfolding sum eval-l-plus IH eval-smult-l by simp
qed simp
qed
lift-definition sdiv-l $::\left(\right.$ int,$\left.^{\prime} v\right)$ lpoly \Rightarrow int $\Rightarrow\left({ }^{\text {int }},^{\prime} v\right)$ lpoly is $\lambda c q x . c x$ div q proof (goal-cases)
case 1
show ?case by (rule finite-subset[OF - 1], auto)
qed
definition vars-l-list $p=$ sorted-list-of-set (vars-l $p)$
lemma vars-l-list $[$ simp $]$: set (vars-l-list p) $=$ vars-l p
unfolding vars-l-list-def by simp
definition min-var :: ('a :: \{linorder, ordered-ab-group-add-abs\}, 'v :: linorder) lpoly \Rightarrow ' v where
\min-var $p=($ let
$x c s=\operatorname{map}(\lambda x .(x$, coeff-l $p x))($ vars-l-list $p) ;$

$$
a x c s=\operatorname{map}(\text { map-prod id abs }) x c s ;
$$

$m=$ min-list (map snd axcs)
in (case filter (λ xa. snd $x a=m$) axcs of $(x, a) \#-\Rightarrow x))$
lemma min-var: vars-l $p \neq\{ \} \Longrightarrow$ coeff-l p (min-var $p) \neq 0$
$x \in$ vars-l $p \Longrightarrow a b s($ coeff-l $p($ min-var $p)) \leq a b s($ coeff-l $p x)$
proof -
let $? m=$ min-var p
define $x c s$ where $x c s=\operatorname{map}(\lambda x .(x$, coeff-l $p x))($ vars-l-list $p)$
define axcs where axcs $=$ map (map-prod id abs) xcs
define m where $m=$ min-list ($m a p$ snd axcs)
define $f x s$ where $f x s=$ filter $(\lambda$ xa. snd $x a=m$) axcs
\{
fix x
assume $x: x \in$ vars-l p
let ? $c=$ coeff-l $p x$
from x have $c x: ? c \neq 0$ by transfer auto
from x have $(x, ? c) \in$ set xcs unfolding $x c s$-def by force
hence ax: $(x, a b s ? c) \in$ set axcs unfolding axcs-def by force
hence map snd axcs $\neq[]$ abs ?c \in set (map snd axcs) by force+
with min-list-Min[OF this(1), folded m-def]
have $m: m=\operatorname{Min}($ set $($ map snd axcs) $) m \in \operatorname{set}($ map snd axcs $) m \leq a b s ? c$
by auto
from $m(2)$ have $m \in$ snd' set fxs unfolding fxs-def by force
then obtain $y m^{\prime}$ xs where $f x s: f x s=\left(\left(y, m^{\prime}\right) \# x s\right)$
by (cases fxs, auto simp: fxs-def)
hence $\left(y, m^{\prime}\right) \in$ set fxs by auto
from this[unfolded fxs-def] have $m^{\prime}: m^{\prime}=m$ by auto
with $f x s$ have $f x s$: $f x s=((y, m) \# x s)$ by auto
have $m^{\prime}: ? m=y$
unfolding min-var-def Let-def xcs-def[symmetric]
unfolding axcs-def[symmetric]
unfolding m-def[symmetric]
unfolding fxs-def[symmetric]
unfolding fxs by simp
from $f x s$ have $(y, m) \in$ set axcs unfolding $f x s$-def
by (metis Cons-eq-filter-iff in-set-conv-decomp)
then obtain c where $(y, c) \in$ set xcs and $m c: m=a b s c$ unfolding axcs-def
by auto
hence $c: c=$ coeff-l $p y$ and $y: y \in$ vars-l p unfolding $x c s$-def by auto
hence $c 0: c \neq 0$ by transfer auto
show abs (coeff-l p ? m) $\leq a b s($ coeff-l $p x)$
unfolding m^{\prime} using $m(3)$ unfolding $c m c$.
have abs (coeff-l p ? m) $\neq 0$ using $c 0$ unfolding $c m^{\prime}$ by auto
\}
thus vars-l $p \neq\{ \} \Longrightarrow$ coeff-l $p($ min-var $p) \neq 0$ by auto qed

```
definition gcd-coeffs-l :: ('a :: Gcd,'v)lpoly = 'a where
    gcd-coeffs-l p = Gcd (coeff-l p'vars-l p)
lift-definition change-const :: 'a :: zero }=>(\mp@subsup{}{}{\prime}a,\mp@subsup{,}{}{\prime}v)lpoly => ('a,'v)lpoly is \lambda x c
c(None := x)
proof goal-cases
    case (1 x c)
    hence f: finite ((insert None) {v. c v\not=0}) by auto
    show ?case
    by (rule finite-subset[OF - f], auto)
qed
lemma lpoly-fun-of-eqI: assumes }\bigwedgex\mathrm{ .fun-of-lpoly p x = fun-of-lpoly q x
    shows p=q
    using assms by transfer auto
lift-definition reorder-nontriv-var :: 'v = (int,'v) lpoly => 'v = (int,'v) lpoly is
    \lambda с y.(\lambdaz. c z div c (Some x))(Some x := 1, Some y := - 1)
proof (goal-cases)
    case (1 x c y)
    from 1 have fin: finite (insert (Some y)(insert (Some x) ({v. c v\not=0}))) by
auto
    show ?case by (rule finite-subset[OF - fin], auto)
qed
lemma coeff-l-reorder-nontriv-var: coeff-l (reorder-nontriv-var x p y)
    =(\lambda z. coeff-l p z div coeff-l p x)(x:=1, y:= - 1)
    by (transfer, auto simp: Let-def)
lemma vars-reorder-non-triv: vars-l (reorder-nontriv-var x p y) \subseteq insert x (insert
y (vars-l p))
    by (transfer, auto simp: Let-def)
end
```


1.2 An Implementation of Linear Polynomials as Ordered Association Lists

```
theory Linear-Polynomial-Impl
```

theory Linear-Polynomial-Impl
imports
imports
HOL-Library.AList
HOL-Library.AList
Linear-Polynomial
Linear-Polynomial
begin
begin
typedef (overloaded) ('a :: zero,'v :: linorder) lpoly-impl =
typedef (overloaded) ('a :: zero,'v :: linorder) lpoly-impl =
{ (c :: 'a,vcs :: ('v ×'a) list).
{ (c :: 'a,vcs :: ('v ×'a) list).
sorted (map fst vcs)^
sorted (map fst vcs)^
distinct (map fst vcs) ^

```
        distinct (map fst vcs) ^
```

```
        Ball (snd'set vcs) ((\not=)0)}
    by (intro exI[of - (0,[])], auto)
setup-lifting type-definition-lpoly-impl
definition lookup-0 :: (' }a\times\mathrm{ ` 'b :: zero)list }=>\mp@subsup{'}{}{\prime}a=>'b wher
    lookup-0 xs x = (case map-of xs x of None }=>0|\mathrm{ Some y }=>\mathrm{ \ y)
lemma lookup-0-empty[simp]: lookup-0 [] = ( }\lambda\times2.0
    by (intro ext, auto simp: lookup-0-def)
lemma lookup-0-single[simp]: lookup-0 [(x,c)] = (\lambda y.0)(x:=c)
    by (intro ext, auto simp: lookup-0-def)
lemma finite-lookup-0[simp, intro]: finite {x . lookup-0 xs x\not=0}
    unfolding lookup-0-def
    by (rule finite-subset[OF - finite-set, of - map fst xs],
    force split: option.splits dest!: map-of-SomeD)
```

```
lift-definition lpoly-of :: ('a :: zero, 'v :: linorder) lpoly-impl \(\Rightarrow\) (' \(\left.a,{ }^{\prime} v\right)\) lpoly is
    \(\lambda(c, v c s) c x\). case cx of None \(\Rightarrow c \mid\) Some \(x \Rightarrow\) lookup-0 vcs \(x\)
    apply clarsimp
    subgoal for \(c v c s\)
    apply (rule finite-subset[of - insert None (Some ' \(\{x\). lookup-0 vcs \(x \neq 0\}\) )])
    subgoal apply (clarsimp split: option.splits)
        subgoal for \(x\) by (cases \(x\), auto)
        done
    subgoal by simp
        done
    done
```

code-datatype lpoly-of
lift-definition zero-lpoly-impl $::$ (' $a::$ zero, ' $v ~:: ~ l i n o r d e r) ~ l p o l y-i m p l ~ i s ~$
($0,[]$) by auto
lemma zero-lpoly-impl[code]: $0=$ lpoly-of zero-lpoly-impl
by (transfer, auto split: option.splits)
lift-definition const-lpoly-impl $::{ }^{\prime} a \Rightarrow\left({ }^{\prime} a::\right.$ zero, ${ }^{\prime} v::$ linorder $)$ lpoly-impl is
$\lambda c .(c,[])$ by auto
lemma const-lpoly-impl[code]: const-l c = lpoly-of (const-lpoly-impl c)
by (transfer, auto split: option.splits)
lift-definition constant-lpoly-impl :: (' $a::$ zero, 'v :: linorder) lpoly-impl $\Rightarrow{ }^{\prime} a$ is
fst .
lemma constant-lpoly-impl[code]: constant-l (lpoly-of $p)=$ constant-lpoly-impl p by (transfer, auto)
lift-definition var-lpoly-impl :: 'v :: linorder $\Rightarrow\left(^{\prime} a::\{\right.$ comm-monoid-mult,zero-neq-one $\}$,
$\left.{ }^{\prime} v\right)$ lpoly-impl is
$\lambda x .(0,[(x, 1)])$ by auto
lemma var-lpoly-impl[code]: var-l $x=$ lpoly-of (var-lpoly-impl x)
by transfer (auto split: option.splits)
lift-definition uminus-lpoly-impl :: ('a :: ab-group-add, 'v :: linorder) lpoly-impl $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} v\right)$ lpoly-impl is $\lambda(c, v c s)$. (uminus c, map (map-prod id uminus) vcs)
by force
lemma uminus-lpoly-impl[code]: - lpoly-of $p=$ lpoly-of (uminus-lpoly-impl p) by transfer (force split: option.split simp: map-of-eq-None-iff lookup-0-def eq-key-imp-eq-value)
fun merge-coeffs-main :: ('a :: zero $\left.\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow\left({ }^{\prime} v::\right.$ linorder $\left.\times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} v\right.$ $\left.\times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} v \times{ }^{\prime} a\right)$ list where
merge-coeffs-main $f((x, c) \# x s)((y, d) \# y s)=($
if $x=y$ then (x, f c d) \# merge-coeffs-main f xs ys
else if $x<y$ then $(x, f c 0) \#$ merge-coeffs-main $f x s((y, d) \# y s)$
else ($y, f 0 d$) \# merge-coeffs-main $f((x, c) \# x s)$ ys)
\mid merge-coeffs-main $f[]$ ys $=\operatorname{map}\left(\operatorname{map-prod} \operatorname{id}\left(\begin{array}{ll}f &)\end{array}\right)\right.$ ys
merge-coeffs-main f xs [] $=$ map $($ map-prod id $(\lambda x . f x 0))$ xs
lemma merge-coeffs-main: assumes sorted (map fst vxs) distinct (map fst vxs)
sorted (map fst vys) distinct (map fst vys)
and $f 00=0$
shows sorted (map fst (merge-coeffs-main f vxs vys))
\wedge distinct (map fst (merge-coeffs-main f vxs vys))
$\wedge f s t$ 'set (merge-coeffs-main f vxs vys) $=f s t$ ' set vxs $\cup f s t$ ' set vys
\wedge lookup-0 (merge-coeffs-main f vxs vys) $x=f$ (lookup-0 vxs $x)$ (lookup-0 vys x)
using assms
proof (induction f vxs vys rule: merge-coeffs-main.induct)
case (1fxcxsydys)
let ?lhs $=$ merge-coeffs-main $f((x, c) \# x s)((y, d) \# y s)$
consider $(e q) x=y|(l t) x \neq y x<y|(g t) x \neq y \neg x<y$ by linarith
thus ?case
proof cases
case $e q$
from eq 1.prems have sorted (map fst xs) distinct (map fst xs)
sorted (map fst ys) distinct (map fst ys) f $00=0$ by auto
note $I H=1 . I H(1)[O F$ eq this]
from eq have res: ?lhs $=(x, f c d) \#$ merge-coeffs-main f xs ys by auto
from eq 1.prems $I H$ show ?thesis unfolding res using $I H$ apply (intro conjI)
subgoal by auto

```
    subgoal by auto
    subgoal by auto
    subgoal by (force simp: lookup-0-def map-of-eq-None-iff split: option.split
dest: eq-key-imp-eq-value)
    done
    next
    case lt
    from lt 1.prems have sorted (map fst xs) distinct (map fst xs)
        sorted (map fst ((y,d) # ys)) distinct (map fst ((y,d) # ys)) f0 0 = 0 by
auto
    note IH = 1.IH(2)[OF lt this]
    from lt have res: ?lhs = (x,fc 0) # merge-coeffs-main f xs ((y,d) # ys) by
auto
    from lt 1.prems IH show ?thesis unfolding res using IH
        apply (intro conjI)
        subgoal by auto
        subgoal by auto
        subgoal by auto
            subgoal by (force simp: lookup-0-def map-of-eq-None-iff split: option.split
dest: eq-key-imp-eq-value)
            done
    next
        case gt
        from gt 1.prems have sorted (map fst ((x,c)# xs)) distinct (map fst ((x, c)
# xs))
            sorted (map fst ys) distinct (map fst ys) f 0 0 = 0 by auto
            note IH = 1.IH(3)[OF gt this]
    from gt have res:?lhs = (y,f0d) # merge-coeffs-main f ((x,c) # xs) ys by
auto
    from gt 1.prems IH show ?thesis unfolding res using IH
            apply (intro conjI)
            subgoal by auto
            subgoal by auto
            subgoal by auto
                subgoal by (force simp: lookup-0-def map-of-eq-None-iff split: option.split
dest: eq-key-imp-eq-value)
            done
        qed
next
    case (2 f ys)
    then show ?case
        apply (intro conjI)
        subgoal by force
        subgoal by force
        subgoal by force
    by (force simp: map-of-eq-None-iff lookup-0-def split:option.split dest: eq-key-imp-eq-value)
next
    case (3fv va)
    then show ?case
```

apply (intro conjI)
subgoal by force
subgoal by force
subgoal by force
by (force simp: map-of-eq-None-iff lookup-0-def split: option.split dest: eq-key-imp-eq-value)
qed
definition filter- 0 where filter- $0=$ filter $(\lambda$. snd $p \neq 0)$
lemma filter-0: assumes distinct (map fst xs) sorted (map fst xs)
shows lookup-0 (filter-0 xs) $=$ lookup-0 xs
distinct (map fst (filter-0 xs))
sorted (map fst (filter-0 xs))
Ball (snd'set (filter-0 xs)) $((\neq) 0)$
subgoal
apply (intro ext)
apply (clarsimp simp: lookup-0-def filter-0-def split: option.split)
apply (intro conjI impI allI)
subgoal for x
by (smt (verit, ccfv-SIG) eq-snd-iff map-of-SomeD mem-Collect-eq not-None-eq set-filter weak-map-of-SomeI)
subgoal for $x y$ by (force dest: map-of-SomeD simp: map-of-eq-None-iff)
subgoal for $x y z$ using assms
by (metis (no-types, lifting) eq-key-imp-eq-value map-of-SomeD mem-Collect-eq set-filter)
done
subgoal using assms(1) unfolding filter-0-def by (rule distinct-map-filter)
subgoal using assms(2) unfolding filter-0-def by (rule sorted-filter)
subgoal unfolding filter-0-def by auto
done
definition merge-coeffs $::\left({ }^{\prime} a::\right.$ zero $\left.\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow\left({ }^{\prime} v::\right.$ linorder $\left.\times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} v\right.$
$\left.\times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} v \times{ }^{\prime} a\right)$ list where
merge-coeffs f xs ys $=$ filter-0 (merge-coeffs-main f xs ys)
lemma merge-coeffs: assumes sorted (map fst vxs) distinct (map fst vxs)
sorted (map fst vys) distinct (map fst vys)
and $f 00=0$
shows sorted (map fst (merge-coeffs f vxs vys)) (is ? A)
distinct (map fst (merge-coeffs f vxs vys)) (is ?B)
Ball (snd'set (merge-coeffs f vxs vys)) $((\neq) 0)($ is ?C)
lookup-0 (merge-coeffs f vxs vys) $x=f$ (lookup-0 vxs $x)$ (lookup-0 vys x) (is ?D)
proof -
let $? m=$ merge-coeffs-main f vxs vys
from merge-coeffs-main[OF $\operatorname{assms}(1-4)$, of f, OF $\operatorname{assms}(5)$]
have distinct (map fst ? m) sorted (map fst ? m) lookup-0 ? m $x=f$ (lookup-0 vxs
x) (lookup-0 vys x)
by auto
from filter-0 $[$ OF this(1-2)] this(3)

```
    show ?A ?B ?C ?D
    unfolding merge-coeffs-def[symmetric] by auto
qed
```

lift-definition minus-lpoly-impl $::$ (' $a::$ ab-group-add, 'v $::$ linorder) lpoly-impl \Rightarrow
$\left({ }^{\prime} a,{ }^{\prime} v\right)$ lpoly-impl $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} v\right)$ lpoly-impl is
$\lambda(c, v x s)(d, v y s) .(c-d$, merge-coeffs minus vxs vys $)$
apply clarsimp
subgoal for vxs vys
using merge-coeffs[of vxs vys minus] by auto
done
lemma minus-lpoly-impl[code]: lpoly-of $p-l p o l y-o f ~ q=l p o l y$-of (minus-lpoly-impl
$p q$)
apply transfer
apply clarsimp
apply (intro ext)
subgoal for a vxs b vys x
using merge-coeffs[of vxs vys minus]
by (cases x, auto)
done
lift-definition plus-lpoly-impl :: ('a :: ab-group-add, 'v :: linorder) lpoly-impl \Rightarrow
$\left({ }^{\prime} a,{ }^{\prime} v\right)$ lpoly-impl $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} v\right)$ lpoly-impl is
$\lambda(c, v x s)(d$, vys $) .(c+d$, merge-coeffs plus vxs vys)
apply clarsimp
subgoal for vxs vys
using merge-coeffs[of vxs vys plus] by auto
done
lemma plus-lpoly-impl[code]: lpoly-of $p+$ lpoly-of $q=$ lpoly-of (plus-lpoly-impl p
q)
apply transfer
apply clarsimp
apply (intro ext)
subgoal for a vxs b vys x
using merge-coeffs[of vxs vys plus]
by (cases x, auto)
done
lift-definition map-lpoly-impl :: ('a :: zero $\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow\left({ }^{\prime} a,{ }^{\prime} v ~:: ~ l i n o r d e r\right) l p o l y-i m p l$
$\Rightarrow\left({ }^{\prime} a,{ }^{\prime} v\right)$ lpoly-impl is
$\lambda f(c, v c s) .(f c$, filter-0 (map (map-prod id $f) v c s))$
by clarsimp (intro conjI filter-0, auto simp: filter-0-def)
lemma map-lpoly-impl: f0=0 0 fun-of-lpoly $($ lpoly-of $($ map-lpoly-impl f $p))=$
(λ x.f (fun-of-lpoly (lpoly-of p) x))
apply (intro ext)
apply transfer

```
    apply clarsimp
    subgoal for x fcvcs
    apply (cases x)
    subgoal by simp
    subgoal for }
        apply (simp add: filter-0)
        by (force simp:lookup-0-def map-of-eq-None-iff dest: eq-key-imp-eq-value split:
option.split)
    done
    done
definition sdiv-lpoly-impl px = map-lpoly-impl ( }\lambda\mathrm{ y. y div x) p
lemma sdiv-lpoly-impl[code]: sdiv-l (lpoly-of p) x = lpoly-of (sdiv-lpoly-impl p x)
    apply (intro lpoly-fun-of-eqI)
    apply (unfold sdiv-lpoly-impl-def, subst map-lpoly-impl, force)
    by transfer auto
definition smult-lpoly-impl x p = map-lpoly-impl ((*) x) p
lemma smult-lpoly-impl[code]: smult-l x (lpoly-of p) = lpoly-of (smult-lpoly-impl x
p)
    apply (intro lpoly-fun-of-eqI)
    apply (unfold smult-lpoly-impl-def, subst map-lpoly-impl, force)
    by transfer auto
instantiation lpoly :: (type,type)equal begin
definition equal-lpoly :: ('a,'b) lpoly }=>('a,'b) lpoly => bool where equal-lpoly =
(=)
instance
    by (intro-classes, auto simp: equal-lpoly-def)
end
instantiation lpoly-impl :: (zero,linorder)equal begin
lift-definition equal-lpoly-impl:: ('a,'b) lpoly-impl =>('a,'b) lpoly-impl => bool
    is \lambda(c,xs)(d,ys).c=d\wedgexs=ys.
instance
    by (intro-classes, transfer, auto)
end
lift-definition vars-coeffs-impl :: ('a :: zero, 'v :: linorder) lpoly-impl => ('v ×'a)
list is snd .
lemma vars-coeffs-impl:
    set (vars-coeffs-impl p)=(\lambdav.(v, coeff-l(lpoly-of p)v))`vars-l (lpoly-of p) (is
?A)
    distinct (map fst (vars-coeffs-impl p)) (is ?B)
    sorted (map fst (vars-coeffs-impl p)) (is ?C)
    vars-l-list (lpoly-of p) = map fst (vars-coeffs-impl p) (is ?D)
```

```
    vars-coeffs-impl p = map (\lambda v. (v, coeff-l (lpoly-of p) v)) (vars-l-list (lpoly-of p))
(is ?E)
proof -
    show ?A ?B ?C
    proof (atomize(full), transfer, goal-cases)
    case (1 p)
    define vcs where vcs= snd p
    with 1 have sort: sorted (map fst vcs) and
        dist: distinct (map fst vcs) and
        non0: }\forally\in\mathrm{ set vcs. snd }y\not=0\mathrm{ by auto
    let ?set = (\lambdax.(x, lookup-0 vcs x))'{x. lookup-0 vcs x\not=0}
    {
        fix }x
        {
            assume x: (x,c)\in set vcs
            with non0 have c:c\not=0 by auto
            with dist x have lookup-0 vcs x = c unfolding lookup-0-def by simp
            hence (x,c)\in ?set using c by auto
        }
        moreover
        {
            assume (x,c) \in ?set
            hence look: lookup-0 vcs x = c and c:c\not=0 by auto
            hence (x,c)\in set vcs unfolding lookup-O-def
            by (cases map-of vcs x; force dest: map-of-SomeD)
        }
            ultimately have }(x,c)\in\mathrm{ set vcs }\longleftrightarrow(x,c)\in\mathrm{ ?set by auto
    }
    with 1 show ?case unfolding vcs-def by auto
qed
show ?D unfolding vars-l-list-def using <?A〉\langle?B\rangle\langle?C>
    by (metis (no-types, lifting) fst-eqD image-set list.map-comp list.map-ident-strong
o-def sorted-distinct-set-unique sorted-list-of-set.distinct-sorted-key-list-of-set sorted-list-of-set.sorted-sorted-ke
vars-l-list vars-l-list-def)
    show ?E using <?A\rangle\langle?B\rangle\langle?C\rangle\langle?D>
    by (smt (verit, ccfv-SIG) fst-conv image-iff list.map-comp list.map-ident-strong
o-def)
qed
declare vars-coeffs-impl(4)[code]
declare eval-l-def[code del]
lemma eval-lpoly-impl[code]: eval-l \alpha (lpoly-of p)=
    constant-lpoly-impl p +( }\sum(x,c)\leftarrowvars-coeffs-impl p.c*\alphax
    unfolding eval-l-def constant-lpoly-impl
    unfolding vars-coeffs-impl(5)
    unfolding vars-l-list[symmetric]
    apply (subst sum.distinct-set-conv-list)
```

```
    subgoal unfolding vars-l-list-def by simp
    subgoal unfolding map-map o-def split ..
    done
declare substitute-all-l-def[code del]
lemma substitute-all-impl[code]: substitute-all-l \sigma (lpoly-of p)=
    const-l (constant-lpoly-impl p) + (\sum(x,c)\leftarrowvars-coeffs-impl p. smult-l c (\sigma x))
    unfolding substitute-all-l-def constant-lpoly-impl
    unfolding vars-coeffs-impl(5)
    unfolding vars-l-list[symmetric]
    apply (subst sum.distinct-set-conv-list)
    subgoal unfolding vars-l-list-def by simp
    subgoal unfolding map-map o-def split ..
    done
lemma equal-lpoly-impl[code]: HOL.equal (lpoly-of p) (lpoly-of q) = (p=q)
proof (unfold equal-lpoly-def, standard)
    assume *: lpoly-of p = lpoly-of q
    hence vars-coeffs-impl p = vars-coeffs-impl q
        unfolding vars-coeffs-impl(5) by simp
    moreover from * have constant-l (lpoly-of p) = constant-l (lpoly-of q) by simp
    from this[unfolded constant-lpoly-impl]
    have constant-lpoly-impl p = constant-lpoly-impl q.
    ultimately show }p=q\mathrm{ by transfer auto
qed auto
fun update-main :: 'v :: linorder }=>\mp@subsup{|}{}{\prime}a\mp@code{:: zero }=>('v\times'a) list = ('v ×'a) lis
where
    update-main x a ((y,b) # zs)=(if x > y then (y,b) # update-main x a zs
        else if }x=y\mathrm{ then (y,a)# zs else (x,a) # (y,b) # zs)
| update-main x a [] = [(x,a)]
lemma update-main: assumes sorted (map fst vcs) distinct (map fst vcs) Ball
(snd' set vcs) ((\not=)0)
    and vcs' = update-main x a vcs
    and a:a\not=0
shows sorted (map fst vcs') distinct (map fst vcs') Ball (snd' set vcs') ((\not=) 0)
    fst ' set vcs' = insert x (fst' set vcs)
    lookup-0 vcs' z = ((lookup-0 vcs)(x:=a)) z
    using assms(1-4)
proof (atomize(full), induct vcs arbitrary: vcs')
    case Nil
    thus ?case using a by auto
next
    case (Cons p vcs vcs1)
    obtain yb}\mathrm{ where p: p=(y,b) by force
    note Cons = Cons[unfolded p list.simps fst-conv]
```

```
consider (gt) x>y|(lt) x<y|(eq) x = y by fastforce
thus ?case
proof cases
    case gt
    define vcs2 where vcs2 = update-main x a vcs
    from gt Cons have vcs1:vcs1 = (y,b) # vcs2 unfolding vcs2-def by auto
    from Cons(2-) have *:
        sorted (map fst vcs)
        distinct (map fst vcs)
        \forally\insnd' set vcs. 0 F y by auto
    from Cons(1)[OF * vcs2-def] Cons(2-4) a gt
    show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def)
next
    case lt
    with Cons have vcs1: vcs1 = (x,a) # (y,b) # vcs by auto
    from Cons(2-4) a lt
    show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def)
next
    case eq
    with Cons have vcs1: vcs1 = (x,a) # vcs by auto
    from Cons(2-4) a eq
    show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def)
    qed
qed
fun update-main-0 :: 'v :: linorder }=>('v\times'a) list => ('v\times 'a) list wher
    update-main-0 x ((y,b) # zs) = (if x > y then (y,b) # update-main-0 x zs
        else if }x=y\mathrm{ then zs else (y,b) #zs)
| update-main-0 x [] = []
lemma update-main-0: assumes sorted (map fst vcs) distinct (map fst vcs) Ball
(snd' set vcs) ((\not=)0)
    and vcs' = update-main-0 x vcs
shows sorted (map fst vcs') distinct (map fst vcs') Ball (snd' set vcs') ((\not=)0)
    fst'set vcs' = fst' set vcs - {x}
    lookup-0 vcs'}z=((lookup-0 vcs)(x:=0)) z
    using assms(1-4)
proof (atomize(full), induct vcs arbitrary: vcs')
    case Nil
    hence vcs':vcs' = [] by auto
    show ?case unfolding vcs' by auto
next
    case (Cons p vcs vcs1)
    obtain yb where p:p=(y,b) by force
    note Cons = Cons[unfolded p list.simps fst-conv]
    consider (gt) x>y|(lt) x<y|(eq)x=y by fastforce
    thus ?case
    proof cases
    case gt
```

```
    define vcs2 where vcs2 = update-main-0 x vcs
    from gt Cons have vcs1: vcs1 = (y,b) # vcs2 unfolding vcs2-def by auto
    from Cons(2-) have *:
    sorted (map fst vcs)
    distinct (map fst vcs)
    \forally\insnd ' set vcs. 0 = y by auto
    from Cons(1)[OF * vcs2-def] Cons(2-4) gt
    show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def)
next
    case lt
    with Cons have vcs1: vcs1 = (y,b) # vcs by auto
    from Cons(2-4) lt
    show ?thesis unfolding p vcs1 by (auto simp: lookup-0-def split: option.split)
next
    case eq
    with Cons have vcs1: vcs1 = vcs by auto
    from Cons(2-4) eq
    show ?thesis unfolding p vcs1 by (force simp: lookup-0-def split: option.split)
    qed
qed
```

lift-definition update-lpoly-impl $::$ ' $v::$ linorder $\Rightarrow{ }^{\prime} a::$ zero $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} v\right)$ lpoly-impl
$\Rightarrow\left({ }^{\prime} a,{ }^{\prime} v\right)$ lpoly-impl is
$\lambda x a(c, v s)$. if $a=0$ then (c, update-main-0 x vs) else (c, update-main x a vs)
apply clarsimp
subgoal for x a c vs d vcs
proof goal-cases
case 1
show ?case
proof (cases $a=0$)
case True
hence $v c s: v c s=u p d a t e-m a i n-0 x$ vs and $c: c=d$ using 1 by auto
from update-main- $0[$ OF 1(2) 1(3)-vcs] 1 (4)
show ?thesis using c by auto
next
case False
hence vcs: vcs = update-main x a vs and $c: c=d$ using 1 by auto
from update-main[OF 1(2) 1(3)-vcs False] 1 (4)
show ?thesis using c by auto
qed
qed
done
lemma update-lpoly-impl: fun-of-lpoly (lpoly-of (update-lpoly-impl x a p)) $=($ fun-of-lpoly
(lpoly-of p))(Some $x:=a$)
apply (transfer, clarsimp, intro conjI ext impI)
subgoal for x a z vs p
using update-main- $0(5)[$ of vs $-x, O F-$ - refl]

```
    by (cases p, auto)
subgoal for x a z vs p
    using update-main(5)[of vs - x a,OF --refl]
    by (cases p, auto)
done
```



```
    \lambda(c,p) x. lookup-0 p x .
lemma coeff-lpoly-impl[code]: coeff-l (lpoly-of p) x = coeff-lpoly-impl p x
    by (transfer, auto)
definition substitute-l-impl where
    substitute-l-impl x p q= (let c = coeff-lpoly-impl q x in
        plus-lpoly-impl (update-lpoly-impl x O q) (smult-lpoly-impl c p))
lemma substitute-l-impl[code]:
    substitute-l x (lpoly-of p)(lpoly-of q) = lpoly-of (substitute-l-impl x p q)
    unfolding substitute-l-impl-def Let-def
    unfolding plus-lpoly-impl[symmetric] smult-lpoly-impl[symmetric] coeff-lpoly-impl[symmetric]
proof (intro lpoly-fun-of-eqI, goal-cases)
    case (1 y)
    show ?case using update-lpoly-impl[of x 0 q]
        by transfer auto
qed
definition reorder-nontriv-var-impl where
    reorder-nontriv-var-impl x p y = (let c= coeff-lpoly-impl p x
        in update-lpoly-impl y (-1) (update-lpoly-impl x 1 (sdiv-lpoly-impl p c)))
lemma reorder-nontriv-var-impl[code]:
    reorder-nontriv-var x (lpoly-of p) y = lpoly-of (reorder-nontriv-var-impl x p y)
    unfolding reorder-nontriv-var-impl-def Let-def sdiv-lpoly-impl-def coeff-lpoly-impl[symmetric]
proof (intro lpoly-fun-of-eqI, goal-cases)
    case (1 z)
    show ?case unfolding update-lpoly-impl
        apply (subst map-lpoly-impl, force)
        by transfer auto
qed
declare min-var-def[code del]
lemmas min-var-impl = min-var-def[of lpoly-of p for p,
    folded vars-coeffs-impl(5)]
declare min-var-impl[code]
declare gcd-coeffs-l-def[code del]
```

```
lemma Gcd-set:Gcd (set (xs :: 'a :: semiring-Gcd list)) = gcd-list xs
    unfolding Gcd-set-eq-fold Gcd-fin.set-eq-fold[of xs] ..
lemma gcd-coeffs-impl[code]:
    gcd-coeffs-l (lpoly-of (p :: ('a :: semiring-Gcd,-)lpoly-impl)) = fold gcd (map snd
(vars-coeffs-impl p)) 0
    unfolding gcd-coeffs-l-def vars-coeffs-impl(5) map-map o-def snd-conv
    unfolding vars-l-list[symmetric] image-set Gcd-set Gcd-fin.set-eq-fold ..
lift-definition change-const-impl :: ' }a>>('a :: zero, 'v :: linorder)lpoly-impl =>
('a, 'v)lpoly-impl
    is \lambdac(d,vs).(c,vs) by auto
```

lemma change-const-impl[code]: change-const c (lpoly-of p) $=$ lpoly-of (change-const-impl
c p)
by (intro lpoly-fun-of-eqI, transfer, auto)
end

2 Linear Diophantine Equations and Inequalities

We just represent equations and inequalities as polynomials, i.e., $p=0$ or $p \leq 0$. There is no need for strict inequalities $p<0$ since for integers this is equivalent to $p+1 \leq 0$.
theory Diophantine-Eqs-and-Ineqs
imports Linear-Polynomial
begin
type-synonym 'v dleq $=($ int,,$v)$ lpoly
type-synonym 'v dlineq $=($ int, ' v) lpoly
definition satisfies-dleq $::\left(\right.$ int,' v) assign $\Rightarrow{ }^{\prime} v$ dleq \Rightarrow bool where
satisfies-dleq $\alpha p=($ eval-l $\alpha p=0)$
definition satisfies-dlineq $::($ int,$' v)$ assign $\Rightarrow{ }^{\prime} v$ dlineq \Rightarrow bool where satisfies-dlineq $\alpha=($ eval-l $\alpha p \leq 0)$
abbreviation satisfies-eq-ineqs $::($ int,$' v)$ assign $\Rightarrow{ }^{\prime} v$ dleq set $\Rightarrow^{\prime} v$ dlineq set \Rightarrow bool $\left(-\models_{\text {dio }}{ }^{\prime}(-,--)\right)$ where
satisfies-eq-ineqs α eqs ineqs \equiv Ball eqs (satisfies-dleq α) \wedge Ball ineqs (satisfies-dlineq a)
definition trivial-ineq :: (int,'v :: linorder)lpoly \Rightarrow bool option where trivial-ineq $c=($ if vars-l-list $c=[]$ then Some (constant-l $c \leq 0)$ else None)
lemma trivial-ineq-None: trivial-ineq $c=$ None \Longrightarrow vars-l $c \neq\{ \}$
unfolding trivial-ineq-def unfolding vars-l-list[symmetric] by fastforce

```
lemma trivial-ineq-Some: assumes trivial-ineq c = Some b
    shows b}=\mathrm{ satisfies-dlineq a c
proof -
    from assms[unfolded trivial-ineq-def] have vars: vars-l c={} and b: b=
(constant-l c < 0)
    by (auto split: if-splits simp: vars-l-list-def)
    show ?thesis unfolding satisfies-dlineq-def eval-l-def vars using b by auto
qed
fun trivial-ineq-filter :: 'v :: linorder dlineq list }=>\mp@subsup{|}{}{\prime}v\mathrm{ dlineq list option
    where trivial-ineq-filter [] = Some []
    trivial-ineq-filter (c# cs) = (case trivial-ineq c of Some True }=>\mathrm{ trivial-ineq-filter
cs
            Some False }=>\mathrm{ None
            | None = map-option ((#) c)(trivial-ineq-filter cs))
lemma trivial-ineq-filter: trivial-ineq-filter cs = None \Longrightarrow(# \alpha.\alpha \modelsdio ({}, set
cs))
    trivial-ineq-filter cs=Some ds\Longrightarrow
            Ball (set ds) (\lambda c. vars-l c\not={})^
            (\alpha}\mp@subsup{\models}{\mathrm{ dio }}{}({},\mathrm{ set cs) }\longleftrightarrow\alpha\mp@subsup{\models}{\mathrm{ dio }}{}({},\mathrm{ set ds ))}
            length ds \leq length cs
proof (atomize(full), induct cs arbitrary:ds)
    case IH:(Cons c cs)
    let ?t = trivial-ineq c
    consider (T)?t = Some True | (F) ?t = Some False | (V)?t = None by (cases
?t, auto)
    thus ?case
    proof cases
        case F
        from trivial-ineq-Some[OF F] F show ?thesis by auto
    next
        case T
        from trivial-ineq-Some[OF T] T IH show ?thesis by force
    next
        case V
        from trivial-ineq-None[OF V] V IH show ?thesis by auto
    qed
qed simp
lemma trivial-lhe: assumes vars-l p={}
    shows eval-l \alpha p = constant-l p
        satisfies-dleq \alpha p\longleftrightarrowp=0
proof -
    show id: eval-l \alpha p = constant-l p
        by (subst eval-l-mono[of {}], insert assms, auto)
    show satisfies-dleq \alpha p\longleftrightarrowp=0
        unfolding satisfies-dleq-def id using assms
```

```
    apply (transfer)
    by (metis (mono-tags, lifting) Collect-empty-eq not-None-eq)
qed
```

end

3 Tightening

replace $p+c \leq 0$ by $p / g+\lceil c / g\rceil \leq 0$ where c is a constant and g is the gcd of the variable coefficients of p.

```
theory Diophantine-Tightening
    imports
        Diophantine-Eqs-and-Ineqs
begin
definition tighten-ineq \(::\) ' \(v\) dlineq \(\Rightarrow\) ' \(v\) dlineq where
    tighten-ineq \(p=(\) let \(g=g c d\)-coeffs-l \(p\);
        \(c=\) constant-l \(p\)
        in if \(g=1\) then \(p\) else let \(d=-((-c)\) div \(g)\)
            in change-const d (sdiv-l pg))
lemma tighten-ineq: assumes vars-l \(p \neq\{ \}\)
    shows satisfies-dlineq \(\alpha\) (tighten-ineq \(p)=\) satisfies-dlineq \(\alpha p\)
proof (rule ccontr)
    assume contra: \(\neg\) ?thesis
    let ? \(t p=\) tighten-ineq \(p\)
    define \(g\) where \(g=g c d\)-coeffs-l \(p\)
    define \(c\) where \(c=\) constant-l \(p\)
    note def \(=\) tighten-ineq-def[of \(p\), unfolded Let-def, folded \(g\)-def, folded \(c\)-def]
    define \(d\) where \(d=-(-c\) div \(g)\)
    define \(m c\) where \(m c=-c\)
    define \(p g\) where \(p g=s d i v-l p g\)
    define \(f\) where \(f=\left(\sum x \in\right.\) vars-l pg. coeff-l \(\left.p g x * \alpha x\right)\)
    from contra def have \(g 1:(g=1)=\) False by auto
    from def[unfolded this if-False, folded d-def pg-def]
    have \(t p\) : ?tp \(=\) change-const \(d p g\) by auto
    from assms have \(g 0: g \neq 0\) unfolding \(g\)-def \(g c d\)-coeffs-l-def
        by (transfer, auto)
    have \(g \geq 0\) unfolding \(g\)-def \(g c d\)-coeffs-l-def by simp
    with \(g 0 g 1\) have \(g: g>0\) by simp
    have \(p: p=\) change-const \(c(\) smult-l \(g \mathrm{pg})(\) is \(-=? p)\)
    proof (intro lpoly-fun-of-eqI, goal-cases)
        case (1 \(x\) )
        show ?case
        proof (cases \(x\) )
            case None
```

```
    thus ?thesis unfolding c-def by transfer auto
    next
    case (Some y)
    hence fun-of-lpoly (change-const c (smult-l g pg)) x
        =g* (fun-of-lpoly p x div g) unfolding pg-def by transfer auto
    also have ... = fun-of-lpoly px
    proof (rule dvd-mult-div-cancel)
    have fun-of-lpoly p x coeff-l p'vars-l p\vee fun-of-lpoly px=0 unfolding
Some
            by transfer auto
            thus g dvd fun-of-lpoly p x using g0 unfolding g-def gcd-coeffs-l-def by
auto
    qed
        finally show ?thesis by auto
        qed
    qed
```

 have coeff: coeff-l ? \(p x=g *\) coeff-l \(p g x\) for \(x\) by transfer auto
 have coeff ': coeff-l ? tp \(x=\) coeff-l pg \(x\) for \(x\) unfolding \(t p\) by transfer auto
 have eval-l \(\alpha\) p constant-l ? \(p+\left(\sum x \in\right.\) vars-l ? \(p\). coeff-l ? \(\left.p x * \alpha x\right)\) unfolding
 p unfolding eval-l-def by auto
also have constant-l ? $p=c$ by transfer auto
also have vars-l ? $p=$ vars-l pg using $g 0$ by transfer auto
finally have evalp: eval-l $\alpha p=c+g * f$ unfolding f-def coeff sum-distrib-left
by (simp add: ac-simps)
have eval-l α ? tp $=$ constant-l ?tp $+\left(\sum x \in\right.$ vars-l ?tp. coeff-l ? tp $\left.x * \alpha x\right)$ un-
folding eval-l-def by auto
also have vars-l ? tp = vars-l $p g$ unfolding $t p$ by transfer auto
also have constant-l ? $t p=d$ unfolding $t p$ by transfer auto
finally have eval-tp: eval-l α ? tp $=d+f$ unfolding f-def coeff' by auto
define $m o$ where $m o=m c \bmod g$
define $d i$ where $d i=m c d i v g$
have $m c: m c=g * d i+m o$ and $m o: 0 \leq m o m o<g$ using g unfolding
mo-def di-def by auto
have sat-p: satisfies-dlineq $\alpha p=(g * f \leq-c)$ unfolding satisfies-dlineq-def
evalp by auto
have satisfies-dlineq α ? tp $=(f \leq-d)$ unfolding satisfies-dlineq-def eval-tp by
auto
also have $\ldots=(g * f \leq g *(-d))$ using g
by (smt (verit, ccfv-SIG) mult-le-cancel-left-pos)
finally have ?thesis $\longleftrightarrow(g * f \leq-c \longleftrightarrow g * f \leq g *(-d))$ unfolding sat-p
by auto
also have $\ldots \longleftrightarrow$ True unfolding d-def minus-minus mc-def[symmetric] di-def[symmetric]
unfolding mc using mo
by (smt (verit, del-insts) int-distrib(4) mult-le-cancel-left1)

```
    finally show False using contra by auto
qed
definition tighten-ineqs :: 'v dlineq list }=>\mp@subsup{'}{}{\prime}v v:: linorder dlineq list option where
    tighten-ineqs cs = map-option (map tighten-ineq)(trivial-ineq-filter cs)
lemma tighten-ineqs: tighten-ineqs cs =None \Longrightarrow# \alpha. \alpha \models dio ({}, set cs)
    tighten-ineqs cs = Some ds \Longrightarrow
        (\alpha}\mp@subsup{\models}{\mathrm{ dio }}{}({},\mathrm{ set cs) « < < = dio }({},\mathrm{ set ds ))^
        length ds \leq length cs
proof (atomize(full), goal-cases)
    case 1
    show ?case
    proof (cases trivial-ineq-filter cs)
        case None
        thus ?thesis unfolding tighten-ineqs-def using trivial-ineq-filter(1)[OF None]
by auto
    next
        case (Some cs')
            from Some have tighten-ineqs cs = Some (map tighten-ineq cs') unfolding
tighten-ineqs-def by auto
    with trivial-ineq-filter(2)[OF Some, of \alpha]
    show ?thesis using tighten-ineq[of-\alpha] by auto
    qed
qed
end
```


4 Linear Diophantine Equation Solver

We verify Griggio's algorithm to eliminate equations or detect unsatisfiability.

4.1 Abstract Algorithm

```
theory Linear-Diophantine-Solver
    imports
        Diophantine-Eqs-and-Ineqs
        HOL.Map
begin
lift-definition normalize-dleq :: 'v dleq }=>\mathrm{ int }\times\mathrm{ 'v dleq is
    \lambdac.(Gcd (range c), \lambdax.cx div Gcd (range c))
    apply simp
    subgoal by (rule finite-subset, auto)
    done
```

```
lemma normalize-dleq-gcd: assumes normalize-dleq \(p=(g, q)\)
    and \(p \neq 0\)
shows \(g=G c d(\) insert \((\) constant-l \(p)(\) coeff-l \(p\) 'vars-l \(p))\)
    and \(g \geq 1\)
    and normalize-dleq \(q=(1, q)\)
    using assms
proof (atomize (full), transfer, goal-cases)
    case (1pgq)
    let \(? G=\operatorname{insert}(p\) None \()((\lambda x . p(\) Some \(x))\) ' \(\{x\). p \((\) Some \(x) \neq 0\})\)
    let ? \(g=G c d(\) range \(p)\)
    have Gcd? \(G=G c d(\) insert \(0 ? G)\) by auto
    also have insert 0 ? \(G=\) insert \(0(\) range \(p)\)
    proof -
        \{
        fix \(y\)
        assume \(*: y \in \operatorname{insert} 0\) (range \(p\) ) \(y \notin\) insert \(0 ? G\)
        then obtain \(z\) where \(y=p z\) by auto
        with \(*\) have False by (cases \(z\), auto)
    \}
    thus ?thesis by auto
    qed
    also have Gcd \(\ldots=\) Gcd (range \(p\) ) by auto
    finally have eq: Gcd? \(G=? g\).
    from 1 obtain \(x\) where \(p x: p x \neq 0\) by auto
    then obtain \(y\) where \(y \in\) range \(p y \neq 0\) by auto
    hence \(g 0: ? g \neq 0\) by auto
    moreover have ? \(g \geq 0\) by \(\operatorname{simp}\)
    ultimately have \(g 1: ? g \geq 1\) by linarith
    from 1 have \(g g: g=? g\) by auto
    let \(? g q=G c d(\) range \(q)\)
    from 1 have \(q: q=(\lambda x . p x\) div ? \(g)\) by auto
    have \(d v d\) : ? \(g\) dvd \(p x\) for \(x\) by auto
    define \(g p\) where \(g p=? g\)
    define \(g q\) where \(g q=? g q\)
    note hide \(=g p\)-def[symmetric] \(g q\)-def[symmetric]
    have ? \(g q \geq 0\) by \(\operatorname{simp}\)
    then consider \((0) ? g q=0|(1) ? g q=1|\) (large) ? \(g q \geq 2\) by linarith
    hence \(g q 1: ~ ? g q=1\)
    proof cases
    case 0
    hence range \(q \subseteq\{0\}\) by \(\operatorname{simp}\)
    moreover from \(p x d v d[o f x]\) have \(q x \neq 0\) unfolding \(q\)
        using dvd-div-eq-0-iff by blast
    ultimately show ?thesis by auto
next
    case large
```

```
    hence gq0: ?gq\not=0 by linarith
    define prod where prod =?gq *?g
    {
        fix y
        have ?gq dvd q y by simp
        then obtain fq where qy: q y=?gq*fq by blast
        from dvd[of y] obtain fp where py: p y =?g*fp by blast
        have prod dvd p y using fun-cong[OF q, of y] py qy gq0 g0 unfolding hide
prod-def by auto
    }
    hence prod dvd Gcd (range p)
            by (simp add:dvd-Gcd-iff)
    from this[unfolded prod-def] g0 gq0 have ?gq dvd 1 by force
    hence abs ?gq=1 by simp
    with large show ?thesis by simp
    qed simp
    show ?case unfolding gg gq1
    by (intro conjI g1 eq[symmetric], auto)
qed
```

```
lemma vars-l-normalize: normalize-dleq \(p=(g, q) \Longrightarrow\) vars-l \(q=\) vars-l \(p\)
```

lemma vars-l-normalize: normalize-dleq $p=(g, q) \Longrightarrow$ vars-l $q=$ vars-l p
proof (transfer, goal-cases)
proof (transfer, goal-cases)
case (1 c g q)
case (1 c g q)
\{
\{
fix x
fix x
assume c (Some $x) \neq 0$
assume c (Some $x) \neq 0$
moreover have Gcd (range c) dvd c (Some x) by simp
moreover have Gcd (range c) dvd c (Some x) by simp
ultimately have c (Some x) div Gcd (range c) $\neq 0$ by fastforce
ultimately have c (Some x) div Gcd (range c) $\neq 0$ by fastforce
\}
\}
thus ?case using 1 by auto
thus ?case using 1 by auto
qed
qed
lemma eval-normalize-dleq: normalize-dleq $p=(g, q) \Longrightarrow$ eval-l $\alpha p=g *$ eval-l
lemma eval-normalize-dleq: normalize-dleq $p=(g, q) \Longrightarrow$ eval-l $\alpha p=g *$ eval-l
αq
αq
proof (subst (1 2) eval-l-mono[of vars-l p], goal-cases)
proof (subst (1 2) eval-l-mono[of vars-l p], goal-cases)
case 1 show ?case by force
case 1 show ?case by force
case 2 thus ?case using vars-l-normalize by auto
case 2 thus ?case using vars-l-normalize by auto
case 3 thus ?case by force
case 3 thus ?case by force
case 4 thus ?case
case 4 thus ?case
proof (transfer, goal-cases)
proof (transfer, goal-cases)
case (1 c gd α)
case (1 c gd α)
show ?case
show ?case
proof (cases range $c \subseteq\{0\}$)
proof (cases range $c \subseteq\{0\}$)
case True
case True
hence $c x=0$ for x using 1 by auto

```
            hence \(c x=0\) for \(x\) using 1 by auto
```

```
        thus ?thesis using 1 by auto
    next
        case False
        let ?g=Gcd (range c)
        from False have gcd: ?g}\not=0\mathrm{ by auto
        hence mult: cx div ? g* ? g = cx for x by simp
        let ?expr = c None div ?g + (\sumx|c(Some x)}\not=0.c(Some x) div ?g*
x)
    have ?g * ? expr = ? expr * ?g by simp
        also have ... = c None + (\sumx|c(Some x) = 0.c (Some x)*\alpha x)
            unfolding distrib-right mult sum-distrib-right
            by (simp add: ac-simps mult)
        finally show ?thesis using 1(3) by auto
        qed
    qed
qed
lemma gcd-unsat-detection: assumes g=Gcd (coeff-l p'vars-l p)
    and }\negg\mathrm{ dvd constant-l p
shows \neg satisfies-dleq \alpha p
proof
    assume satisfies-dleq \alpha p
    from this[unfolded satisfies-dleq-def eval-l-def]
    have (\sumx\invars-l p. coeff-l px*\alphax) = - constant-l p by auto
    hence ( }\sumx\in\mathrm{ vars-l p. coeff-l px* 人x)dvd constant-l p by auto
    moreover have gdvd ( }\sumx\invars-l p. coeff-l px*\alphax
        unfolding assms by (rule dvd-sum, simp)
    ultimately show False using assms by auto
qed
lemma substitute-l-in-equation: assumes \alpha x = eval-l \alpha p
    shows eval-l \alpha (substitute-l x p q) = eval-l \alpha q
        satisfies-dleq \alpha (substitute-l x p q) \longleftrightarrow satisfies-dleq \alpha q
proof -
    show eval-l \alpha (substitute-l x p q) = eval-l \alpha q
        unfolding eval-substitute-l unfolding assms(1)[symmetric] by auto
    thus satisfies-dleq \alpha (substitute-l x p q) \longleftrightarrow satisfies-dleq \alpha q
        unfolding satisfies-dleq-def by auto
qed
type-synonym 'v dleq-sf='v }\times(int,'v)lpol
fun satisfies-dleq-sf:: (int,'v) assign }=>\mp@subsup{}{}{\prime}v vleq-sf => bool wher
    satisfies-dleq-sf \alpha (x,p) = (\alphax = eval-l \alpha p)
type-synonym 'v dleq-system = 'v dleq-sf set }\times\mathrm{ 'v dleq set
fun satisfies-system :: (int,'v) assign = 'v dleq-system }=>\mathrm{ bool where
```

satisfies-system $\alpha(S, E)=($ Ball S (satisfies-dleq-sf $\alpha) \wedge$ Ball E (satisfies-dleq $\alpha)$)
fun invariant-system :: 'v dleq-system \Rightarrow bool where
invariant-system $(S, E)=($ Ball $(f s t ‘ S)(\lambda x . x \notin \bigcup($ vars-l' $($ snd' $S \cup E)) \wedge$ $(\exists!e .(x, e) \in S)))$
definition reorder-for-var where
reorder-for-var $x p=($ if coeff-l $p x=1$ then $-(p-v a r-l x)$ else $p+v a r-l x)$
lemma reorder-for-var: assumes abs (coeff-l p x) $=1$
shows satisfies-dleq $\alpha p \longleftrightarrow$ satisfies-dleq-sf $\alpha(x$, reorder-for-var $x p)$ (is ?prop1) vars-l (reorder-for-var $x p$) vars-l $p-\{x\}$ (is ?prop2)
proof -
from assms have coeff-l $p x=1 \vee$ coeff-l $p x=-1$ by auto
hence ?prop1 \wedge ?prop2
proof
assume 1: coeff-l $p x=1$
hence res: reorder-for-var x $p=-(p-v a r-l x)$ unfolding reorder-for-var-def
by auto
have ?prop2 unfolding res vars-l-uminus using 1 by transfer auto
moreover have ?prop1 unfolding satisfies-dleq-def res satisfies-dleq-sf.simps
by auto
ultimately show ?thesis by auto
next
assume m1: coeff-l $p x=-1$
hence res: reorder-for-var $x p=p+$ var-l x unfolding reorder-for-var-def by auto
have ?prop2 unfolding res using $m 1$ by transfer auto
moreover have ?prop1 unfolding satisfies-dleq-def res satisfies-dleq-sf.simps
by auto
ultimately show ?thesis by auto
qed
thus ?prop1 ?prop2 by blast+
qed
lemma reorder-nontriv-var-sat: \exists a. satisfies-dleq $(\alpha(y:=a)$) (reorder-nontriv-var $x p y)$
proof -
define X where $X=$ insert $x($ vars- $l p)-\{y\}$
have X : finite $X \notin X$ insert x (insert $y(v a r s-l p))=$ insert $y X$ unfolding X-def by auto
have sum: sum $f($ insert $x($ insert $y(v a r s-l ~ p)))=f y+\operatorname{sum} f X$ for $f::-\Rightarrow$ int
unfolding X using $X(1-2)$ by simp
show ?thesis
unfolding satisfies-dleq-def
apply (subst eval-l-mono[of insert x (insert y (vars-l p))])
apply force

```
    apply (rule vars-reorder-non-triv)
    apply (unfold sum)
    apply (subst (1) coeff-l-reorder-nontriv-var)
    apply (subst sum.cong[OF refl, of - - \lambda z. coeff-l (reorder-nontriv-var x p y) z
* \alpha z])
    subgoal using }X\mathrm{ by auto
    subgoal by simp algebra
    done
qed
lemma reorder-nontriv-var: assumes a: a=coeff-l p x a\not=0
    and y: y \not\invars-l p
    and q:q= reorder-nontriv-var x p y
    and e: e=reorder-for-var x q
    and r:r = substitute-l x e p
shows fun-of-lpoly r = ( \lambda z. fun-of-lpoly p z mod a)(Some x := 0, Some y :=a)
    constant-l r = constant-l p mod a
    coeff-l r = ( \lambdaz. coeff-l p z mod a)(x:=0,y:=a)
proof -
    from a have xv: x\in vars-l p by (transfer, auto)
    with }y\mathrm{ have xy: }x\not=y\mathrm{ by auto
    from q have q: fun-of-lpoly q = (\lambdaz. fun-of-lpoly p z div a)(Some x := 1, Some
y:=-1)
    unfolding a by transfer
    hence fun-of-lpoly e=(\lambdaz.- (fun-of-lpoly p z div a))(Some x := 0, Some y :=
1)
    unfolding e reorder-for-var-def using xy
    by (transfer, auto)
    thus main: fun-of-lpoly r = ( \lambda z. fun-of-lpoly pzmod a)(Some x := 0, Some y
:=a)
    unfolding r using a xy y
    by (transfer, auto simp: minus-mult-div-eq-mod)
    from main show constant-l r = constant-l p mod a by transfer auto
    from main show coeff-l r = ( \lambdaz. coeff-l p z mod a)(x:=0,y:=a) by transfer
auto
qed
```

inductive griggio-equiv-step $::$ 'v dleq-system $\Rightarrow{ }^{\prime} v$ dleq-system \Rightarrow bool where
griggio-solve: abs (coeff-l $p x)=1 \Longrightarrow e=$ reorder-for-var $x>$
griggio-equiv-step (S,insert $p E$) (insert (x, e) (map-prod id (substitute-l x e)'
$S)$, substitute-l x e ' E)
| griggio-normalize: normalize-dleq $p=(g, q) \Longrightarrow g \geq 1 \Longrightarrow$ griggio-equiv-step (S, insert $p E$) (S, insert $q E)$
| griggio-trivial: griggio-equiv-step $(S$, insert $0 E)(S, E)$
fun vars-system $::$ 'v dleq-system \Rightarrow ' v set where vars-system $(S, E)=f s t ' S \cup \bigcup($ vars-l' ' $($ snd ' $S \cup E))$

```
lemma griggio-equiv-step: assumes griggio-equiv-step SE TF
    shows(satisfies-system \alpha SE \longleftrightarrow satisfies-system \alpha TF)^
        (invariant-system SE \longrightarrow invariant-system TF) ^
        vars-system TF}\subseteq\mathrm{ vars-system SE
    using assms
proof induction
    case *: (griggio-solve p x e S E)
    from *(1) have xp: }x\in\mathrm{ vars-l }p\mathrm{ by transfer auto
    let ? E = insert p E
    let ?T = insert (x, e) (map-prod id (substitute-l x e)`S)
    let ?F = substitute-l }x\mathrm{ e' }
    note reorder = reorder-for-var[OF *(1), folded *(2)]
    from reorder(1)[of \alpha]
    have satisfies-system \alpha (S,?E) = satisfies-system \alpha (insert (x,e)S,E)
        unfolding satisfies-system.simps by auto
    also have ... = satisfies-system \alpha (?T, ?F)
    proof (cases \alpha x = eval-l \alpha e)
        case True
        from substitute-l-in-equation[OF this] show ?thesis by auto
    qed auto
    finally have equiv: satisfies-system \alpha (S,?E) = satisfies-system \alpha (?T,?F).
    moreover {
        assume inv: invariant-system (S,?E)
        have invariant-system (?T, ?F)
        unfolding invariant-system.simps
        proof (intro ballI)
            fix y
            assume y:y\infst'?T
            from vars-substitute-l[of x e, unfolded reorder]
                have vars-subst: vars-l (substitute-l x e q)\subseteqvars-l p - {x} \cup (vars-l q -
{x}) for q by auto
        from y have y:y=x\vee x = y^y\infst' }S\mathrm{ by force
        thus y\not\inU(vars-l'(snd'?T\cup?F))}\wedge(\exists!f.(y,f)\in?T
        proof
            assume y: y=x
                hence y }\not=\(vars-l`(snd'?T \cup?F)) using vars-subst reorder(2) by
auto
            moreover have }\exists\mathrm{ ! f. (y,f) &?T unfolding y
            proof (intro ex1I[of-e])
                fix f
                assume xf: (x,f)\in?T
                show f}=
                proof (rule ccontr)
                    assume f}\not=
                    with xf have }x\infst'S by forc
                    from inv[unfolded invariant-system.simps, rule-format, OF this]
                    have x & vars-l p by auto
                    with *(1) show False by transfer auto
```

```
            qed
            qed force
            ultimately show ?thesis by auto
            next
            assume }x\not=y\wedgey\infst'
            hence xy: }x\not=y\mathrm{ and }y:y\infst'S by aut
            from inv[unfolded invariant-system.simps, rule-format, OF y]
            have nmem: y }\ddagger\bigcup(vars-l'(snd'S\cup insert p E)) and unique: (\exists!f. (y
f)\inS) by auto
            from unique have }\exists!f.(y,f)\in?T\mathrm{ using }xy\mathrm{ by force
            moreover from nmem reorder(2) have y & vars-l e by auto
            with nmem vars-substitute-l[of x e]
            have }y\not\in\bigcup(vars-l'(snd '?T \cup?F)) by aut
            ultimately show ?thesis by auto
            qed
        qed
    }
    moreover
    have vars-system (?T, ?F) \subseteq vars-system (S, ?E)
        using reorder(2) vars-substitute-l[of x e] xp unfolding vars-system.simps
            by (auto simp: rev-image-eqI) blast
    ultimately show ?case by auto
next
    case *: (griggio-normalize p g q S E)
    from vars-l-normalize[OF *(1)] have vars[simp]: vars-l q = vars-l p by auto
    from eval-normalize-dleq[OF *(1)] *(2)
    have sat[simp]: satisfies-dleq \alpha p = satisfies-dleq \alpha q unfolding satisfies-dleq-def
by auto
    show ?case by simp
next
    case griggio-trivial
    show ?case by (simp add: satisfies-dleq-def)
qed
inductive griggio-unsat :: 'v dleq }=>\mathrm{ bool where
    griggio-gcd-unsat: \neg Gcd (coeff-l p'vars-l p) dvd constant-l p\Longrightarrow griggio-unsat
p
| griggio-constant-unsat: vars-l p={}\Longrightarrowp\not=0\Longrightarrow griggio-unsat p
lemma griggio-unsat: assumes griggio-unsat p
    shows \neg satisfies-system \alpha (S, insert p E)
    using assms
proof induction
    case (griggio-gcd-unsat p)
    from gcd-unsat-detection[OF refl this]
    show ?case by auto
next
    case (griggio-constant-unsat p)
    hence eval-l \alpha p\not=0 for \alpha
```

```
    unfolding eval-l-def
    proof (transfer, goal-cases)
    case (1 p \alpha)
    from 1(3) obtain x where px\not=0 by auto
    with 1 show ?case by (cases x, auto)
qed
    thus ?case by (auto simp: satisfies-dleq-def)
qed
definition adjust-assign :: 'v dleq-sf list }=>('v=>\mathrm{ int ) }=>('v=>\mathrm{ int) where
    adjust-assign S \alpha x = (case map-of S x of Some p = eval-l \alpha p| None = \alpha x)
definition solution-subst :: 'v dleq-sf list }=>\mathrm{ ('v 
    solution-subst Sx=(case map-of S x of Some p=>p|None }=>\mathrm{ var-l x)
locale griggio-input = fixes
    V :: 'v :: linorder set and
    E :: 'v dleq set
```

```
begin
fun invariant-state where
    invariant-state (Some (SF,X)) = (invariant-system SF
    vars-system SF}\subseteqV\cup
    \wedge V\capX={}
    \wedge(\forall\alpha.(satisfies-system \alpha SF \longrightarrow Ball E (satisfies-dleq \alpha))
        \wedge ( \text { Ball E (satisfies-dleq } \alpha ) \longrightarrow ( \exists ~ \beta . ~ s a t i s f i e s - s y s t e m ~ \beta ~ S F ~ \wedge ~ ( ~ \forall ~ x . ~ x \notin ~
X\longrightarrow\alpha x = \betax)))))
| invariant-state None = (\forall \alpha.\neg Ball E (satisfies-dleq \alpha))
inductive-set griggio-step :: ('v dleq-system × 'v set) option rel where
    griggio-eq-step: griggio-equiv-step SF TG\Longrightarrow(Some (SF,X), Some (TG, X))\in
griggio-step
| griggio-fail-step: griggio-unsat p\Longrightarrow(Some ((S,insert p F),X), None) \in grig-
gio-step
| griggio-complex-step: coeff-l p x = 0
        \Longrightarrow q = ~ r e o r d e r - n o n t r i v - v a r ~ x ~ p ~ y ~
        \Longrightarrow e = r e o r d e r - f o r - v a r ~ x ~ q ~
    "}\not\inV\cup
    CSome ((S,insert p F),X),
        Some ((insert (x,e) (map-prod id (substitute-l x e)'S), substitute-l x e`
insert p F), insert y X))
        griggio-step
lemma griggio-step: assumes (A,B)\in griggio-step
    and invariant-state }
shows invariant-state B
    using assms
proof (induct rule: griggio-step.induct)
```

```
    case *: (griggio-eq-step SF TG X)
    from griggio-equiv-step[OF *(1)]*(2)
    show ?case by auto
next
    case *: (griggio-fail-step p S F X)
    from griggio-unsat[OF *(1)]
    have ᄀ satisfies-system \alpha (S, insert p F) for \alpha by auto
    with *(2)[unfolded invariant-state.simps] have }\neg\mathrm{ Ball E (satisfies-dleq 人) for }
by blast
    then show ?case by auto
next
    case *: (griggio-complex-step p x q y e X S F)
    have sat: \existsa.satisfies-dleq (\alpha(y:=a)) q for \alpha
    using reorder-nontriv-var-sat[of - y x p]*(2) by auto
    have invariant-state (Some ((S, insert p F), X)) by fact
    note inv = this[unfolded invariant-state.simps]
    let ?F = insert q(insert p F)
    let ?Y = insert y X
    let ?T = insert (x,e) (map-prod id (substitute-l x e)`S)
    let ?G = substitute-l x e ` insert p F
    define SF where SF = (S,?F)
    define TG where TG = (?T,?G)
    define }Y\mathrm{ where }Y=\mathrm{ ? }
    from inv * have y:y\not\invars-system (S, insert p F) by blast
    have inv': invariant-state (Some ((S, ?F),?Y))
    unfolding invariant-state.simps
proof (intro allI conjI impI)
    from inv 〈y\not\inV\cupX>
    show }V\cap\mathrm{ insert y }X={}\mathrm{ by auto
    from *(1) have xp: x\in vars-l p by transfer auto
    with vars-reorder-non-triv[of x p y, folded *(2)]
    have vq: vars-l q\subseteq insert y (vars-l p) by auto
    from inv have vSF: vars-system (S, insert p F)\subseteqV }\subseteq\X\mathrm{ by auto
    with vq show vars-system (S, insert q(insert p F))\subseteqV \ insert y X by auto
    {
        fix }
        assume satisfies-system \alpha (S, insert q (insert p F))
        hence satisfies-system \alpha (S, insert p F) by auto
        with inv show Ball E (satisfies-dleq \alpha) by blast
    }
    {
        fix }
        assume Ball E (satisfies-dleq \alpha)
        with inv obtain \beta where sat2: satisfies-system \beta (S, insert p F)
            and eq: \bigwedgez. z\not\inX\Longrightarrow\alphaz=\betaz by blast
        from sat[of \beta] obtain a where sat3: satisfies-dleq (\beta(y:=a)) q by auto
        let ? }\beta=\beta(y:=a
        show \exists \beta. satisfies-system \beta}(S,?F)\wedge(\forallz.z\not\in?Y\longrightarrow\alpha \ < < < z
        proof (intro exI[of - ? \beta] conjI allI impI)
```

```
        show z\not\in?Y\Longrightarrow\alphaz=? }\beta\mathrm{ z for }
            using eq[of z] by auto
        have satisfies-system ? }\beta(S,?F)=\mathrm{ satisfies-system ? }\beta\mathrm{ ( S, insert p F) using
sat3 by auto
            also have ... = satisfies-system \beta (S, insert p F)
            unfolding satisfies-system.simps
        proof (intro arg-cong2[of - - conj] ball-cong refl)
            fix r
            assume r\in insert p F
            with y have }y\not\in\mathrm{ vars-l r by auto
            thus satisfies-dleq ?\beta r = satisfies-dleq \beta r
                    unfolding satisfies-dleq-def
            by (subst eval-l-cong[of - ? \beta \beta], auto)
        next
            fix }z
            assume zr \inS
            then obtain zr where zr:zr=(z,r) and (z,r)\inS by (cases zr,auto)
            hence insert z (vars-l r)\subseteqV\cupX using vSF by force
            with *(4) have z\not=y and y\not\invars-l r by auto
            thus satisfies-dleq-sf ? }\beta\textrm{zr}=\mathrm{ satisfies-dleq-sf }\beta\mathrm{ zr
                unfolding satisfies-dleq-sf.simps zr
                by (subst eval-l-cong[of - ? \beta \beta], auto)
            qed
            also have ... by fact
            finally show satisfies-system ?\beta (S,?F).
            qed
    }
    from inv have invariant-system (S, insert p F) by auto
    with yvq
    show invariant-system (S,?F) by auto
qed
have step: griggio-equiv-step (S,?F) (?T, ?G)
proof (intro griggio-equiv-step.intros(1)*(3))
    show |coeff-l q x| = 1 unfolding *(2) coeff-l-reorder-nontriv-var by simp
qed
from griggio-equiv-step[OF this] inv'
show ?case unfolding SF-def[symmetric] TG-def[symmetric] Y-def[symmetric]
by auto
qed
context
    assumes VE: \ (vars-l' E)\subseteqV
begin
lemma griggio-steps: assumes (Some (({},E),{}),SFO) \in griggio-step * (is (?I,-)
\epsilon-)
    shows invariant-state SFO
proof -
    define }I\mathrm{ where I=?I
```

```
    have inv: invariant-state I unfolding I-def using VE by auto
    from assms[folded I-def]
    show ?thesis
    proof (induct)
    case base
    then show ?case using inv.
    next
        case step
        then show ?case using griggio-step[OF step(2)] by auto
    qed
qed
lemma griggio-fail: assumes (Some (({},E),{}), None) \in griggio-step **
    shows # \alpha. \alpha = dio (E,{})
proof -
    from griggio-steps[OF assms] show ?thesis by auto
qed
lemma griggio-success: assumes (Some (({},E),{}), Some ((S,{}),X)) \in grig-
gio-step * *
    and \beta: \beta= adjust-assign S-list \alpha set S-list =S
    shows }\beta\mp@subsup{\models}{dio}{(}E,{}
proof -
    obtain LV RV where LV:LV =fst'S
        and RV:RV=U (vars-l'snd'S)
        by auto
    have id: satisfies-system \beta}(S,{})=\mathrm{ Ball S (satisfies-dleq-sf }\beta)\mathrm{ for }
        by auto
    have id2: vars-system (S, {})=LV \cupRV
    by (auto simp: LV RV)
    have id3: invariant-system }(S,{})=(LV\capRV={}\wedge(\forallx\inLV.\exists!e.(x,e)
S))
    by (auto simp: LV RV)
    from griggio-steps[OF assms(1)]
    have invariant-state (Some ((S, {}), X)) .
    note inv = this[unfolded invariant-state.simps id id2 id3]
    from inv have Ball S (satisfies-dleq-sf \beta)\Longrightarrow Ball E (satisfies-dleq \beta)
        by auto
    moreover {
        fix }x
        assume xe:}(x,e)\in
    hence x: x\inLV by (force simp: LV)
    with inv xe have }\exists\mathrm{ ! e. (x,e) GS by force
    with xe have map-of S-list x = Some e unfolding \beta(2)[symmetric]
        by (metis map-of-SomeD weak-map-of-SomeI)
    hence }\betax=\mathrm{ eval-l }\alphae\mathrm{ unfolding }\beta\mathrm{ adjust-assign-def by simp
    also have ... = eval-l \betae
    proof (rule eval-l-cong)
```

```
        fix y
        assume y vars-l e
        with xe have }y\inRV\mathrm{ unfolding RV by force
        with inv have }y\not\inLV\mathrm{ by auto
        thus \alpha y = \beta y unfolding \beta(2)[symmetric] \beta(1) adjust-assign-def LV
            by (force split:option.splits dest: map-of-SomeD)
        qed
        finally have satisfies-dleq-sf \beta (x,e) by auto
    }
    ultimately show ?thesis by force
qed
```

In the following lemma we not only show that the equations E are solvable, but also how the solution S can be used to process other constraints. Assume P describes an indexed set of polynomials, and f is a formula that describes how these polynomials must be evaluated, e.g., $f i=(i 1 \leq 0 \wedge i 2>5 *$ i 3) for some inequalities.
Then $f(P) \wedge E$ is equi-satisfiable to $f(\sigma(P))$ where σ is a substitution computed from S , and adjust-assign S is used to translated a solution in one direction.
theorem griggio-success-translations:
fixes P :: ${ }^{\prime} i \Rightarrow\left(\right.$ int $\left.^{\prime}, v\right)$ lpoly and $f::\left({ }^{\prime} i \Rightarrow\right.$ int $) \Rightarrow$ bool
assumes $\left(\right.$ Some $((\}, E),\{ \})$, Some $((S,\{ \}), X)) \in$ griggio-step ${ }^{*}$
and $\sigma: \sigma=$ solution-subst S-list
and S-list: set S-list $=S$
shows

```
    f(\lambda i. eval-l \alpha (substitute-all-l \sigma (Pi)))\Longrightarrow
    \beta= adjust-assign S-list \alpha \Longrightarrow
    f(\lambda i. eval-l \beta (Pi))^\beta \models dio (E,{})
    f(\lambda i. eval-l \alpha (Pi))\wedge\alpha \models = dio }(E,{})
    (\bigwedgei.vars-l (Pi)\subseteqV)\Longrightarrow
    \exists \gamma.f(\lambda i. eval-l }\gamma(\mathrm{ substitute-all-l }\sigma(Pi))
proof -
    assume sol: f(\lambda i. eval-l \alpha (substitute-all-l \sigma (P i)))
    and \beta: \beta=adjust-assign S-list \alpha
from griggio-success[OF assms(1) \beta S-list]
have solE: }\beta\mp@subsup{=}{\mathrm{ dio }}{(E,{}) by auto
show f(\lambda i. eval-l \beta}(Pi))\wedge\beta\mp@subsup{\models}{dio}{(}(E,{}
proof (intro conjI[OF - solE])
    {
        fix }
        have eval-l \alpha (substitute-all-l \sigma (Pi)) = eval-l \beta (Pi)
            unfolding eval-substitute-all-l
        proof (rule eval-l-cong)
            fix }
            show eval-l \alpha (\sigmax)=\betax unfolding \sigma \beta solution-subst-def adjust-assign-def
```

```
                by (auto split:option.splits)
            qed
    }
    with sol show f(\lambda i. eval-l \beta (P i)) by auto
    qed
next
    assume f: f(\lambdai. eval-l \alpha (P i)) ^\alpha \models dio (E, {})
        and vV:\bigwedgei.vars-l (Pi)\subseteqV
    from griggio-steps[OF assms(1)]
    have invariant-state (Some ((S, {}), X)) .
    note inv = this[unfolded invariant-state.simps]
    from f inv obtain \gamma
        where sat: satisfies-system \gamma (S,{}) and ab: \x. x\not\inX\Longrightarrow\alpha x = \gamma x by
blast
    from inv sat have E: Ball E (satisfies-dleq \gamma) by auto
    {
        fix }
        have eval-l \alpha (Pi)= eval-l \gamma (Pi)
        proof (rule eval-l-cong)
            fix }
            show }x\in\operatorname{vars-l}(Pi)\Longrightarrow\alphax=\gamma
                by (rule ab, insert vV[of i] inv, auto)
    qed
}
with f have f: f(\lambdai. eval-l \gamma (Pi)) by auto
{
    fix }
    have eval-l (\lambdax. eval-l \gamma (\sigmax)) (Pi)=eval-l \gamma (Pi)
    proof (intro eval-l-cong)
        fix }
        note defs = \sigma solution-subst-def
        show eval-l }\gamma(\sigmax)=\gamma
        proof (cases x f fst'S)
            case False
            thus ?thesis unfolding defs S-list[symmetric]
                    by (force split: option.splits dest: map-of-SomeD)
        next
            case True
            then obtain e where xe: (x,e) \inS by force
            have }\exists!e.(x,e)\inS\mathrm{ using inv True by auto
            with xe have map-of S-list x = Some e unfolding S-list[symmetric]
                    by (metis map-of-SomeD weak-map-of-SomeI)
            hence id: }\sigmax=e\mathrm{ unfolding defs by auto
            show ?thesis unfolding id using xe sat by auto
        qed
    qed
}
thus }\exists\gamma.f(\lambdai. eval-l \gamma (substitute-all-l \sigma (P i))
        unfolding eval-substitute-all-l
```

```
    by (intro exI[of - \gamma], insert f, auto)
qed
corollary griggio-success-equivalence:
    fixes }P:: 'i=>(int,'v)lpoly and f :: ('i > int) => boo
    assumes (Some (({},E),{}), Some ((S,{}),X)) \in griggio-step`*
        and \sigma: \sigma= solution-subst S-list
        and S-list: set S-list =S
        and vV: \bigwedgei.vars-l (Pi)\subseteqV
    shows
        (\exists \alpha.f (\lambda i. eval-l \alpha (substitute-all-l \sigma (P i))))
        \longleftrightarrow(\exists\alpha.f(\lambda i. eval-l \alpha (P i))}\wedge\mathrm{ Ball E (satisfies-dleq }\alpha)
proof -
    note main = griggio-success-translations[OF assms(1,2)S-list, of f-P]
    from main(1)[OF - refl] main(2)[OF - vV]
    show ?thesis by blast
qed
end
end
end
```


4.2 Executable Algorithm

```
theory Linear-Diophantine-Solver-Impl imports Linear-Diophantine-Solver
begin
definition simplify-dleq \(::\) ' \(v\) dleq \(\Rightarrow\) 'v dleq + bool where
simplify-dleq \(p=\) (let
\(g=g c d\)-coeffs-l \(p ;\)
\(c=\) constant-l \(p\)
in if \(g=0\) then
Inr \((c=0)\)
else if \(g=1\) then Inl \(p\)
else if \(g\) dvd \(c\) then Inl (sdiv-l \(p g\) ) else Inr False)
lemma simplify-dleq-0: assumes simplify-dleq \(p=\) Inr True
shows \(p=0\)
proof -
from assms[unfolded simplify-dleq-def Let-def gcd-coeffs-l-def]
have gcd: Gcd (coeff-l p'vars-l \(p\) ) \(=0\) and const: constant-l \(p=0\)
by (auto split: if-splits)
from \(g c d\) have coeff-l \(p\) ' vars-l \(p \subseteq\{0\}\) by auto
hence vars-l \(p=\{ \}\) by transfer auto
with const have fun-of-lpoly \(p=(\lambda-.0)\)
```

```
    proof (transfer, intro ext, goal-cases)
        case (1 c x)
        thus ?case by (cases x, auto)
    qed
    thus p=0 by transfer auto
qed
lemma simplify-dleq-fail: assumes simplify-dleq p = Inr False
    shows griggio-unsat p
proof -
    let ?g = Gcd (coeff-l p'vars-l p)
    from assms[unfolded simplify-dleq-def gcd-coeffs-l-def Let-def]
    consider (const) ?g = 0 constant-l }p\not=
        | (gcd) ᄀ(?g dvd constant-l p)
        by (auto split: if-splits)
    thus ?thesis
    proof cases
        case const
        from const have coeff-l p' vars-l p\subseteq{0} by auto
        hence vars-l p={} by transfer auto
        moreover from const have p\not=0 by transfer auto
        ultimately show ?thesis by (rule griggio-constant-unsat)
    next
        case gcd
        thus ?thesis by (rule griggio-gcd-unsat)
    qed
qed
definition dleq-normalized where dleq-normalized p = (Gcd (coeff-l p'vars-l p)
=1)
definition size-dleq :: 'v dleq => int where size-dleq p = sum(abs o coeff-l p)
(vars-l p)
lemma size-dleq-pos: size-dleq p}\geq0\mathrm{ unfolding size-dleq-def by simp
lemma simplify-dleq-keep: assumes simplify-dleq p = Inl q
    shows
        \existsg\geq1.normalize-dleq p = (g,q)
        size-dleq p}\geq\mathrm{ size-dleq q
        dleq-normalized q
proof (atomize (full), unfold dleq-normalized-def, goal-cases)
    case 1
    let ?g = Gcd (coeff-l p'vars-l p)
    from assms[unfolded simplify-dleq-def gcd-coeffs-l-def Let-def]
    have g: ?g\not=0 ?g dvd constant-l p and p0: p\not=0
        and choice: ?g=1^q=p\vee?g\not=1\wedgeq= sdiv-l p?g
        by (auto split: if-splits)
    from g have gG:?g=Gcd (insert (constant-l p)(coeff-l p'vars-l p)) (is - =
```

?G) by auto
from $g(1)$ have $g 1: ? g \geq 1$ by (smt (verit) Gcd-int-greater-eq-0)
obtain $g^{\prime} q^{\prime}$ where norm: normalize-dleq $p=\left(g^{\prime}, q^{\prime}\right)$ by force
note norm-gcd $=$ normalize-dleq-gcd $[$ OF norm p0, folded $g G]$
from choice show ?case
proof
assume $? g=1 \wedge q=p$
hence $g: ? g=1$ and $i d: q=p$ by auto
with $g G$ have ? $G=1$ by auto
with norm $g G$ norm-gcd have normalize-dleq $p=\left(1, q^{\prime}\right)$ by metis
hence norm: normalize-dleq $p=(1, p)$ by (transfer, auto)
show ?thesis unfolding id apply (intro conjI exI[of - ? $g]$)
subgoal unfolding g by auto
subgoal unfolding g id using norm by auto
subgoal by simp
subgoal by (rule g)
done
next
note $g^{\prime}=$ norm-gcd (1)
assume $? g \neq 1 \wedge q=$ sdiv-l p ? g
with $g^{\prime} g$ have $g^{\prime} 01: g^{\prime} \neq 0 g^{\prime} \neq 1$ and $q: q=$ sdiv-l $p g^{\prime}$ by auto
from norm have $q^{\prime}: q^{\prime}=q$ unfolding q
by (transfer, auto)
note norm-gcd $=$ norm-gcd[unfolded $q]$
note norm $=$ norm [unfolded q]
show ?thesis
proof (intro conjI exI [of - g $]$)
show $1 \leq g^{\prime}$ by fact
show normalize-dleq $p=\left(g^{\prime}, q\right)$ by fact
from $g^{\prime} 01$ have abs $g^{\prime} \geq 1$ by linarith
hence abs (y div g^{\prime}) $\leq a b s y$ for y
by (smt (verit) div-by-1 div-nonpos-pos-le0 int-div-less-self norm-gcd(2)
pos-imp-zdiv-nonneg-iff zdiv-mono2-neg)
hence le: \mid coeff-l $q x|\leq|$ coeff-l $p x \mid$ for x unfolding q by (transfer, auto)
have $p q: p=$ smult-l $l g^{\prime} q$ unfolding q using norm
by (transfer, auto)
have vars: vars-l $q=$ vars-l p unfolding $p q$ using $g^{\prime} 01$
by (transfer, auto)
show size-dleq $q \leq$ size-dleq p unfolding size-dleq-def vars
by (rule sum-mono, auto simp: le)
from $g G$ have $? g=G c d$ (range (fun-of-lpoly p)) unfolding $g^{\prime}[$ symmetric]
using norm
by transfer auto
have $g^{\prime}=$? g by (rule g^{\prime})
also have coeff-l p 'vars-l $p=\left(\lambda x . g^{\prime} * x\right)$ 'coeff-l q 'vars-l p
unfolding $p q$ by transfer auto
also have vars-l $p=$ vars-l q by (simp add: vars)
also have $G c d\left((*) g^{\prime}\right.$ ' coeff-l q 'vars-l $\left.q\right)=g^{\prime} * G c d($ coeff-l q 'vars-l q)
by (metis Gcd-int-greater-eq-0 Gcd-mult abs-of-nonneg linordered-nonzero-semiring-class.zero-le-one

```
norm-gcd(2) normalize-int-def order.trans zero-le-mult-iff)
            finally have abs \(g^{\prime}=a b s g^{\prime} * a b s(G c d(\) coeff-l \(q\) 'vars-l \(q))\) by simp
            with \(g^{\prime} 01\) show \(G c d(\) coeff-l \(q\) ' vars-l \(q)=1\) by simp
        qed
    qed
qed
fun simplify-dleqs :: 'v dleq list \(\Rightarrow\) 'v dleq list option where
    simplify-dleqs [] = Some []
\(\mid\) simplify-dleqs \((e \#\) es \()=\) (case simplify-dleq e of
        Inr False \(\Rightarrow\) None
    | Inr True \(\Rightarrow\) simplify-dleqs es
    | Inl \(e^{\prime} \Rightarrow\) map-option (Cons \(\left.e^{\prime}\right)\) (simplify-dleqs es))
context griggio-input
begin
lemma simplify-dleqs: simplify-dleqs es \(=\) None \(\Longrightarrow(\) Some \(((S\), set es \(\cup F), X)\),
None) \(\in\) griggio-step *
    simplify-dleqs es \(=\) Some \(f s \Longrightarrow\)
        \((\) Some \(((S\), set es \(\cup F), X)\), Some \(((S\), set \(f s \cup F), X)) \in\) griggio-step \({ }^{*}\)
        \(\wedge\) Ball (set fs) dleq-normalized \(\wedge\) length fs \(\leq\) length es \(\wedge\)
        (length \(f s<\) length es \(\vee f s=[] \vee\) size-dleq \((h d f s) \leq\) size-dleq \((h d e s)\) )
proof (atomize (full), induct es arbitrary: F fs)
    case (Cons e es \(F\) fs)
    let \(? S T=\) Some \(((S\), set \((e \# e s) \cup F), X)\)
    define \(S T\) where \(S T=\) ? \(S T\)
    consider \((F)\) simplify-dleq \(e=\) Inr False
        (T) simplify-dleq e=Inr True
        | (New) \(e^{\prime}\) where simplify-dleq \(e=\) Inl \(e^{\prime}\)
        by (cases simplify-dleq e, auto)
    thus ?case
    proof cases
        case \(F\)
        from simplify-dleq-fail[OF F]
        have griggio-unsat e by auto
        from griggio-fail-step[OF this] F
        show ?thesis by auto
    next
        case \(T\)
        with simplify-dleq- \(0[O F T]\)
        have \(e: e=0\) and id: simplify-dleqs \((e \# e s)=\) simplify-dleqs es by auto
        with griggio-eq-step [OF griggio-trivial]
        have \((? S T\), Some \(((S\), set es \(\cup F), X)) \in\) griggio-step by auto
        with Cons[of \(F f_{s}\) ] show ?thesis unfolding ST-def[symmetric] id by fastforce
    next
        case (New é)
        with simplify-dleq-keep[OF New] obtain \(g\) where \(g: g \geq 1\)
```

```
            and norm: normalize-dleq e=(g, e}
            and res: simplify-dleqs (e# es) = map-option (Cons e') (simplify-dleqs es)
            and e':dleq-normalized e'
            and size: size-dleq e'}\leq\mathrm{ size-dleq e
            by auto
                            from griggio-eq-step[OF griggio-normalize[OF norm g]]
                            have (?ST, Some ((S, set es U insert e' F), X)) \in griggio-step by auto
                                    with Cons[of insert e'F] e' size show ?thesis unfolding res ST-def[symmetric]
            by force
qed
qed simp
context
    fixes fresh-var :: nat }=>\mp@subsup{}{}{\prime}
begin
partial-function (option) dleq-solver-main
    :: nat }=>('v\times'v dleq) list => 'v dleq list => ('v > (int,'v)lpoly) list option where
    dleq-solver-main n s es = (case simplify-dleqs es of
            None }=>\mathrm{ None
            Some [] => Some s
            |ome (p#fs) =>
            let x = min-var p;c=abs(coeff-l px)
            in if c=1 then
                    let e = reorder-for-var x p;
                        \sigma= substitute-l x e in
                    dleq-solver-main n ((x, e) # map (map-prod id \sigma) s) (map \sigma fs) else
                    let }y=\mathrm{ fresh-var n;
                    q= reorder-nontriv-var x p y;
                    e=reorder-for-var x q;
                    \sigma= substitute-l x e in
                    dleq-solver-main (Suc n) ((x, e) # map (map-prod id \sigma) s) (\sigma p # map
\sigmafs))
fun state-of where state-of n s es = Some ((set s, set es), fresh-var' '{..<n})
lemma dleq-solver-main: assumes fresh-var: range fresh-var \capV={} inj fresh-var
    and inv: invariant-state (state-of n s es)
shows dleq-solver-main n s es =None \Longrightarrow(state-of n s es,None) \in griggio-step`*
    dleq-solver-main n s es = Some s' \Longrightarrow\existsX.(state-of n s es, Some ((set s', {}),
X)) \in griggio-step **
    using inv
proof (atomize(full), induct es arbitrary: n s rule: wf-induct[OF wf-measures[of
[length, nat o size-dleq o hd]]])
    case (1 es n s)
    note def[simp]=dleq-solver-main.simps[of n s es]
    show ?case
```

```
    proof (cases simplify-dleqs es)
    case None
    with simplify-dleqs(1)[OF this, of set s {}]
    show ?thesis by auto
next
    case (Some es')
    from simplify-dleqs(2)[OF this, of set s {}]
    have steps:(state-of n s es, state-of n s es') \in griggio-step*
        and norm: Ball (set es') dleq-normalized
        and size: length es' \leq length es length es'}<length es \vee es' = [] \vee size-dleq
(hd es') \leq size-dleq (hd es)
        by auto
    from steps griggio-step 1(2) have inv: invariant-state (state-of n s es')
        by (induct, auto)
    show ?thesis
    proof (cases es')
        case Nil
        with Some steps show ?thesis unfolding def by auto
    next
        case (Cons p fs)
        note steps = steps[unfolded Cons]
        note Some = Some[unfolded Cons]
        note norm = norm[unfolded Cons]
        note size = size[unfolded Cons]
        note inv = inv[unfolded Cons]
        let ?st = state-of ns(p# fs)
        have np:dleq-normalized p using norm by auto
        hence vp: vars-l p}\not={}\mathrm{ unfolding dleq-normalized-def by auto
        hence p0: p\not=0 by auto
        define }x\mathrm{ where }x=\mathrm{ min-var p
        define c where c=| coeff-l p x |
        from min-var(1)[of p, folded x-def, OF vp] have c0:c>0 coeff-l p x = 0
unfolding c-def by auto
    note def = def[unfolded Some option.simps list.simps, unfolded Let-def, folded
x-def, folded c-def]
        show ?thesis
        proof (cases c=1)
            case c1: True
            define e where e= reorder-for-var x p
            define }\sigma\mathrm{ where }\sigma=\mathrm{ substitute-l x e
            from c1 have (c=1) = True by auto
            note def = def[unfolded this if-True, folded e-def, folded \sigma-def]
            let ?s' = (x,e) # map (map-prod id \sigma) s
            let ?fs = map \sigma fs
            let ?st' = state-of n ?s' ?fs
            have step:(?st, ?st') \in griggio-step unfolding state-of.simps
            using griggio-solve[OF c1[unfolded c-def] e-def, folded \sigma-def]
            by (intro griggio-eq-step, auto)
            note inv' = griggio-step[OF step inv]
```

```
    from size have (?fs, es) \in measures [length, nat \circ size-dleq \circ hd] by auto
    from 1(1)[rule-format, OF this inv', folded def] steps step
    show ?thesis by (meson rtrancl.rtrancl-into-rtrancl rtrancl-trans)
    next
    case False
    with c0 have c1:c>1 by auto
    define }y\mathrm{ where }y=\mathrm{ fresh-var n
    define q}\mathrm{ where q}=\mathrm{ reorder-nontriv-var x p y
    define e}\mathrm{ where }e=\mathrm{ reorder-for-var x q
    define }\sigma\mathrm{ where }\sigma=\mathrm{ substitute-l x e
    have y:y\not\inV\cupfresh-var' {..<n} using fresh-var unfolding y-def inj-def
by auto
    from inv y have yp: y & vars-l p by auto
    from c1 have coeff-l px\not=0 unfolding c-def by auto
    note c\sigmap = reorder-nontriv-var(1,3)[OF refl this yp q-def e-def fun-cong[OF
\sigma-def]]
    have fs: fresh-var' {..<Suc n} = insert y (fresh-var ' {..<n})
        unfolding y-def using lessThan-Suc by force
    from c1 have (c=1) = False by auto
    note def = def[unfolded this if-False, folded y-def, folded q-def, folded e-def,
folded \sigma-def]
    let ? 's'=(x,e) # map (map-prod id \sigma)s
    let ?fs = vp# map \sigma fs
    let ?st' = state-of (Suc n) ? s' ?fs
    have step: (?st, ?st') \in griggio-step unfolding state-of.simps
        using griggio-complex-step[OF c0(2) q-def e-def y, folded \sigma-def,of set s
set fs]
            unfolding fs by auto
    note inv ' = griggio-step[OF step inv]
    have (?fs, es) \in measures [length, nat \circ size-dleq ○ hd]
    proof (cases length (p#fs)< length es)
        case False
        let ?h = hd es
            from False have len:length es =Suc (length fs) and ph: size-dleq p\leq
size-dleq?h
            using size by auto
            have main: size-dleq ( }\sigma\quadp)<\mathrm{ size-dleq p
            proof -
            define p' where }\mp@subsup{p}{}{\prime}=\sigma
            define m}\mathrm{ where m= coeff-l px
            have m: m\not=0 using c0 unfolding m-def by auto
            from c1[unfolded c-def] have x: x\in vars-l p by transfer auto
            have vars-l p}\not={x}\mathrm{ using np[unfolded dleq-normalized-def] c1[unfolded
c-def]
            by auto
        with x obtain z where z:z\in vars-l p-{x} by auto
        have cy: coeff-l ( }
        with c0(2) have y':y vars-l ( }\sigma\mathrm{ ( p) by transfer auto
        {
```

```
fix u
assume u\invars-l ( }
hence coeff-l ( }\sigma\mathrm{ p) u}=0\mathrm{ by (transfer, auto)
hence }u\not=x\wedge(u\not=y\longrightarrow\mathrm{ coeff-l pu}=0)\mathrm{ unfolding cop(2) using
yp x
    by (auto split: if-splits simp: m-def)
    hence }u\not=x\wedge(u\not=y\longrightarrowu\in\mathrm{ vars-l p) by transfer auto
    hence }u\in\mathrm{ insert y (vars-l p) -{x} by auto
        }
        hence vars: vars-l (\sigma p)\subseteq insert y (vars-l p) - {x} by auto
        have yz: y\not=z using yp z by auto
    have size-dleq p = c + sum (abs o coeff-l p) (vars-l p - {x})
                            unfolding size-dleq-def c-def by (subst sum.remove [OF - x], auto)
        also have ... =c +abs(coeff-l pz)+\operatorname{sum}(abs\circ coeff-l p) (vars-l p -
{x,z})
            by (subst sum.remove[OF - z], force, subst sum.cong, auto)
            finally have size-one: size-dleq p =c + |oeff-l p z| + sum (abs \circ coeff-l
p)(vars-l p - {x,z}).
    have size-dleq (\sigma p)=c+sum(abs o coeff-l (\sigma p)) (vars-l (\sigma p) - {y})
            unfolding size-dleq-def
            by (subst sum.remove[OF - y], auto simp: cy c-def)
            also have ... = c + |oeff-l (\sigma p)z| + sum (abs o coeff-l (\sigma p)) (vars-l
(\sigma p) - {y,z})
    proof (cases z vars-l (\sigma p)-{y})
            case True
            show ?thesis by (subst sum.remove[OF - True], force, subst sum.cong,
auto)
            next
                    case False
                    hence z&vars-l ( }\sigma~\mathrm{ ) using yz by auto
                    hence coeff-l ( }\sigma\quadp)z=0\mathrm{ by transfer auto
                    with False show ?thesis by (subst sum.cong, auto)
    qed
    also have ... < size-dleq p
    proof -
        have id: coeff-l ( }
            using yzz by auto
    have |coeff-l (\sigma p)z|<c unfolding id c-def unfolding m-def[symmetric]
using m
            by (rule abs-mod-less)
            also have ... \leq coeff-l pz|
                    using min-var(2)[of z p, folded x-def, folded c-def] using z by auto
            finally have less: |coeff-l ( }
            from yp x have xy: }x\not=y\mathrm{ by auto
                    have }\mp@subsup{x}{}{\prime}:x\not\in\operatorname{vars-l (\sigma p) using fun-cong[OF c\sigmap(2)] xy by transfer
auto
            have sum (abs \circ coeff-l (\sigma p)) (vars-l (\sigma p) - {y,z})
```

```
                        sum (abs ○ coeff-l (\sigma p)) (vars-l (\sigma p) - {x,y,z})
                by (rule sum.cong[OF - refl], insert x', auto)
            also have ... sum (abs ○ coeff-l p) (vars-l (\sigma p) - {x,y,z})
            proof (rule sum-mono, goal-cases)
                    case (1 u)
                    with vars have uy: u\not=y and u\in vars-l p by auto
                    from min-var(2)[OF this(2), folded x-def, folded m-def]
                    have }|m|\leq|\mathrm{ coeff-l pu| by auto
                            thus ?case unfolding o-def fun-cong[OF c\sigmap(2), folded m-def] using
muy
            by auto (smt (verit, ccfv-threshold) abs-mod-less)
            qed
            also have ... sum (abs o coeff-l p) (vars-l p - {x,z})
                    by (rule sum-mono2, insert vars, auto)
                    finally have le: sum (abs o coeff-l (\sigma p)) (vars-l (\sigma p) - {y,z})\leq
sum (abs ○ coeff-l p) (vars-l p - {x,z}).
                    from le less show ?thesis unfolding size-one by linarith
                    qed
                    finally show ?thesis.
            qed
            with ph have size-dleq ( }\sigma\mathrm{ p)< size-dleq ?h by simp
            with len show ?thesis
                using dual-order.strict-trans2 size-dleq-pos by auto
            qed simp
            from 1(1)[rule-format, OF this inv', folded def] steps step
            show ?thesis
                by (meson rtrancl.rtrancl-into-rtrancl rtrancl-trans)
            qed
    qed
    qed
qed
end
end
declare griggio-input.dleq-solver-main.simps[code]
definition fresh-var-gen :: ('v list }=>\mathrm{ nat }=>\mp@subsup{'}{}{\prime}v)=>\mathrm{ bool where
    fresh-var-gen fv = (\forall vs.range (fv vs) \cap set vs ={}^inj (fv vs))
context
    fixes fresh-var :: 'v :: linorder list }=>nat m 'v
begin
definition dleq-solver :: 'v list }=>\mp@subsup{|}{}{\prime}v\mathrm{ dleq list }=>('v\times(\mathrm{ int,'v)lpoly) list option
where
```

```
dleq-solver v e = (let fv = fresh-var (v@ concat (map vars-l-list e))
    in griggio-input.dleq-solver-main fv 0 [] e)
lemma dleq-solver: assumes fresh-var-gen fresh-var
    and dleq-solver v e = res
shows
    res = None \Longrightarrow# \alpha. \alpha \models dio (set e, {})
    res =Some s\Longrightarrowadjust-assign s \alpha = dio (set e, {})
    res =Some s \Longrightarrow\sigma= solution-subst s\Longrightarrow
        f(\lambda i. eval-l \alpha (substitute-all-l \sigma (P i))) \Longrightarrow
    \beta= adjust-assign s \alpha \Longrightarrow
    f(\lambda i. eval-l \beta (Pi))^\beta}\mp@subsup{\models}{\mathrm{ dio (set e, {})}}{\mathrm{ ( }
res=Some s \Longrightarrow\sigma= solution-subst s\Longrightarrow(\bigwedgei.vars-l (Pi)\subseteq set v)\Longrightarrow
    f(\lambda i. eval-l \alpha (Pi))\wedge\alpha = dio (set e, {}) \Longrightarrow
    \exists \gamma.f (\lambda i. eval-l }\gamma(\mathrm{ substitute-all-l }\sigma(P
proof -
    define V where V=v@ concat (map vars-l-list e)
    interpret griggio-input set V set e .
    define fv where fv = fresh-var V
    from dleq-solver-def[of v e, folded V-def, folded fv-def, unfolded Let-def,
        unfolded assms(2)]
    have res: res = dleq-solver-main fv 0 [] e by auto
    from assms(1)[unfolded fresh-var-gen-def, rule-format, of V, folded fv-def]
    have fv: range fv \cap set V={} inj fv by auto
    have eV:\bigcup (vars-l' set e)\subseteq set V unfolding V-def by auto
    have inv: invariant-state (state-of fv 0 [] e)
    by (simp, auto simp:V-def)
    note main = dleq-solver-main[OF fv inv, folded res]
    {
        assume res = None
        from main(1)[OF this] griggio-fail[OF eV]
        show # |. \alpha \models dio (set e, {}) by auto
    }
{
    assume res: res = Some s
    from main(2)[OF res] obtain X
            where steps: (Some (({}, set e), {}), Some ((set s,{}), X)) \in griggio-step*
by auto
    from griggio-success[OF eV steps refl refl]
    show adjust-assign s \alpha \models dio (set e, {}).
    {
        assume sig: }\sigma=\mathrm{ solution-subst s
            and f:f(\lambda i. eval-l \alpha (substitute-all-l \sigma (P i)))
            and }\beta:\beta=\mathrm{ adjust-assign s }
        from griggio-success-translations(1)[OF eV steps sig refl, of f \alpha P,OF f \beta]
        show f(\lambdai. eval-l \beta}(Pi))\wedge\beta\not=\mp@subsup{=}{\mathrm{ dio (set e,{}).}}{
    }
    {
        assume vars: \bigwedgei.vars-l (Pi)\subseteq set v and sig: \sigma= solution-subst s
```

and $f: f(\lambda$ i. eval-l $\alpha(P i)) \wedge \alpha \models_{\text {dio }}($ set $e,\{ \})$
from vars have $\wedge i$. vars-l $(P i) \subseteq$ set V unfolding V-def by auto from griggio-success-translations(2)[OF eV steps sig refl, of $f \alpha P$, OF fthis] show $\exists \gamma . f(\lambda i$. eval-l $\gamma($ substitute-all-l $\sigma(P i)))$.
\}
qed
definition equality-elim-for-inequalities $::$ ' v dleq list $\Rightarrow{ }^{\prime} v$ dlineq list \Rightarrow
(v dleq list $\times\left(\left(\right.\right.$ int $\left.^{\prime}, v\right)$ assign $\Rightarrow($ int,$' v)$ assign $\left.)\right)$ option where
equality-elim-for-inequalities eqs ineqs $=$ (let $v=$ concat (map vars-l-list ineqs)
in case dleq-solver v eqs of
None \Rightarrow None
| Some $s \Rightarrow$ let $\sigma=$ substitute-all-l (solution-subst s);
adj $=$ adjust-assign s
in Some (map σ ineqs, adj))
lemma equality-elim-for-inequalities: assumes fresh-var-gen fresh-var and equality-elim-for-inequalities eqs ineqs $=$ res
shows res $=$ None $\Longrightarrow \nexists \alpha . \alpha \models_{\text {dio }}$ (set eqs, $\}$)
res $=$ Some $\left(\right.$ ineqs s^{\prime}, adj $) \Longrightarrow \alpha \models_{\text {dio }}(\{ \}$, set ineqs $) \Longrightarrow($ adj $\alpha) \models_{\text {dio }}$ (set eqs, set ineqs)
res $=\operatorname{Some}\left(\right.$ ineqs $\left.^{\prime}, a d j\right) \Longrightarrow \nexists \alpha . \alpha \models_{d i o}\left(\{ \}\right.$, set ineqs $\left.{ }^{\prime}\right) \Longrightarrow \nexists \alpha . \alpha \models_{d i o}($ set
eqs, set ineqs)
res $=$ Some $\left(\right.$ ineqs $^{\prime}$, adj $) \Longrightarrow$ length ineqs ${ }^{\prime}=$ length ineqs
proof -
define v where $v=$ concat (map vars-l-list ineqs)
note res $=$ equality-elim-for-inequalities-def[of eqs ineqs, unfolded assms(2) Let-def,
folded v-def]
note solver $=$ dleq-solver $[O F$ assms(1) refl, of v eqs]
show res $=$ None $\Longrightarrow \nexists \alpha . \alpha \models_{\text {dio }}$ (set eqs, $\}$)
using solver(1) unfolding res by (auto split: option.splits)
assume res $=$ Some (ineqs' ${ }^{\prime}$, adj)
note res $=$ res[unfolded this]
from res obtain s where s : dleq-solver v eqs $=$ Some s
by (cases dleq-solver v eqs, auto)
define σ where $\sigma=$ solution-subst s
note res $=$ res[unfolded s option.simps, folded σ-def]
from res have adj: adj = adjust-assign s
and ineqs ${ }^{\prime}:$ ineqs $^{\prime}=m a p($ substitute-all-l $\sigma)$ ineqs
by auto
define P where $P i=($ if $i<$ length ineqs then ineqs ! i else 0$)$ for i
define f where $f x s=(\forall i<$ length ineqs. xs $i \leq(0::$ int $)$) for $x s$
note solver $=\operatorname{solver}(3-4)[$ OF s σ-def, where $P=P$ and $f=f]$
have vars-l $(P i) \subseteq$ set v for i unfolding v-def P-def by (auto simp: set-conv-nth[of ineqs])
note solver $=\operatorname{solver}(1)[O F-r e f l$, folded adj $] \operatorname{solver(2)[OF~this]~}$

```
    have id: f(\lambdai. eval-l \alpha (P i)) = (Ball (set ineqs) (satisfies-dlineq \alpha)) for \alpha
    unfolding f-def P-def set-conv-nth by (auto simp: satisfies-dlineq-def)
    note solver = solver[unfolded id eval-substitute-all-l \sigma-def]
    from solver(1)[of \alpha]
    show }\alpha\mp@subsup{\models}{\mathrm{ dio }}{}({},\mathrm{ set ineqs' ) > (adj }\alpha)\mp@subsup{\models}{dio}{(set eqs, set ineqs)
    unfolding ineqs' }\sigma\mathrm{ -def
    by (auto simp: satisfies-dlineq-def eval-substitute-all-l)
    show length ineqs' = length ineqs unfolding ineqs' by simp
    assume no-sol: # \alpha. \alpha = dio ({}, set ineqs')
    show ## 人. \alpha = dio (set eqs, set ineqs) (is # 人. ? Pr }\alpha\mathrm{ )
    proof
    assume \exists \alpha. ? Pr \alpha
    then obtain \alpha where ?Pr \alpha by blast
    with solver(2)[of \alpha] obtain \gamma
        where Ball (set ineqs) (satisfies-dlineq ( }\lambdax.\mathrm{ eval-l }\gamma(\mathrm{ solution-subst s x)))
        by blast
    with no-sol show False
        unfolding ineqs' }\sigma\mathrm{ -def
        by (auto simp: satisfies-dlineq-def eval-substitute-all-l)
    qed
qed
end
definition fresh-vars-nat :: nat list }=>\mathrm{ nat }=>\mathrm{ nat where
    fresh-vars-nat xs = (let m=Suc (Max (set (0 # xs))) in (\lambdan.m + n)}
lemma fresh-vars-nat: fresh-var-gen fresh-vars-nat
proof -
    {
        fix xs x
        assume Suc (Max (insert 0 (set xs)) + x) \in insert 0 (set xs)
        from Max-ge[OF - this] have False by auto
    }
    thus ?thesis unfolding fresh-var-gen-def fresh-vars-nat-def Let-def
        by auto
qed
lemmas equality-elim-for-inequalities-nat = equality-elim-for-inequalities[OF fresh-vars-nat]
end
```


5 Detection of Implicit Equalities

5.1 Main Abstract Reasoning Step

The abstract reasoning steps is due to Bromberger and Weidenbach. Make all inequalities strict and detect a minimal unsat core; all inequalities in this
core are implied equalities.

```
theory Equality-Detection-Theory
    imports
        Farkas.Farkas
        Jordan-Normal-Form.Matrix
begin
lemma lec-rel-sum-list: lec-rel (sum-list cs) \(=\)
    (if \((\exists c \in\) set cs. lec-rel \(c=L t-R e l)\) then Lt-Rel else Leq-Rel)
proof (induct \(c s\) )
    case Nil
    thus ?case by (auto simp: zero-le-constraint-def)
next
    case (Cons c cs)
    thus ?case by (cases sum-list cs; cases c; cases lec-rel c; auto)
qed
```

lemma equality-detection-rat: fixes cs :: rat le-constraint set
and $p:: \quad i \Rightarrow$ linear-poly
and $c o:: \quad$ ' $i \Rightarrow$ rat
and $I::$ ' i set
defines $n \equiv \lambda i$. Le-Constraint Leq-Rel ($p i$) (co i)
and $s \equiv \lambda i$. Le-Constraint Lt-Rel ($p i$) (co i)
assumes fin: finite cs finite I
and $C: C \subseteq c s \cup s^{\prime} I$
and unsat: $\nexists v . \forall c \in C . v \models_{l e} c$
and $\min : \bigwedge D . D \subset C \Longrightarrow \exists v . \forall c \in D . v \models_{l e} c$
and sol: $\forall c \in c s \cup n^{\prime} I . v=_{l e} c$
and $i: i \in I s i \in C$
shows $(p i)\{v\}=$ co i
proof -
have finite $((c s \cup s$ ' $I) \cap C)$ using fin by auto
with C have finC: finite C by (simp add: inf-absorb2)
from Motzkin's-transposition-theorem[OF this] unsat
obtain D const rel where valid: $\forall(r, c) \in$ set $D .0<r \wedge c \in C$ and
eq: $\left(\sum(r, c) \leftarrow D\right.$. Le-Constraint (lec-rel $\left.c\right)(r * R$ lec-poly $c)(r * R$ lec-const
c) $)=$

Le-Constraint rel 0 const
and ineq: rel $=$ Leq-Rel \wedge const $<0 \vee$ rel $=L t-R e l \wedge$ const ≤ 0 by auto
let ? expr $=\left(\sum(r, c) \leftarrow D\right.$. Le-Constraint (lec-rel c) $(r * R$ lec-poly $c)(r * R$ lec-const c))
\{
assume s $i \notin$ snd ' set D
with valid have valid: $\forall(r, c) \in$ set $D .0<r \wedge c \in C-\{s i\}$
by force
from finC have finite ($C-\{s i\}$) by auto
from Motzkin's-transposition-theorem[OF this] valid eq ineq
have $\nexists v . \forall c \in C-\{s i\} . v \models_{l e} c$ by blast

```
    with min[of C - {s i}] i(2) have False by auto
}
hence mem: s i\in snd' set D by auto
from i(1) sol have v}\mp@subsup{=}{le}{}ni\mathrm{ by auto
from this[unfolded n-def] have piv: (pi) {v} \leq co i by simp
from ineq have const0: const }\leq0\mathrm{ by auto
define }\mp@subsup{I}{}{\prime}\mathrm{ where }\mp@subsup{I}{}{\prime}=cs\cupn'
define f}\mathrm{ where fc=(if ceinsert (s i) I' then c else ( }n\mathrm{ (SOME j.j f I \ s j
=c))) for c
    let ?C = insert (s i) I'
    {
        fix c
        assume c}\in
        hence c:c\incs\cups'I using C by auto
    hence fc\in?C}\\wedge lec-poly (fc)= lec-poly c ^ lec-const (f c)= lec-const 
    proof (cases c c cs\cupn'I\cup{si})
            case True
        thus ?thesis unfolding f-def I'-def by auto
    next
        case False
        define j where j=(SOME x. x\inI^s x=c)
        from False have \existsj.j\inI\wedgesj=c using c by auto
        from someI-ex[OF this, folded j-def] have j: j\inI and c:c=s j by auto
        from False have fc: fc=nj unfolding f-def j-def[symmetric] I'-def by
    auto
        show ?thesis using j c fc by (auto simp: n-def s-def I'-def)
        qed
        hence f c \in insert (s i) I' lec-poly (f c)= lec-poly c lec-const (f c)= lec-const
c
        by auto
    } note f}=\mathrm{ this
    show ?thesis
    proof (rule ccontr)
    assume \neg ?thesis
    with piv have (pi){v}<co i by simp
    hence vsi:v}\mp@subsup{\models}{le}{}s\mathrm{ s unfolding s-def by auto
        with sol have sol: ( \exists v.\forallc\ininsert (s i) I'.v \modelsle c) = True unfolding
I'-def by auto
    let ?D = map (map-prod id f) D
    have fin: finite (insert (s i) I') unfolding I'-def using fin by auto
    from valid f(1)
    have valid': }\forall(r,c)\inset ?D. 0<r\wedgec\in?C by force
    let ?expr' = \sum(r,c)\leftarrow?D. Le-Constraint (lec-rel c) (r*R lec-poly c) (r*R
lec-const c)
    have lec-const ?expr' = lec-const ?expr
        unfolding sum-list-lec
        apply simp
        apply (rule arg-cong[of - -sum-list])
```

```
        apply (rule map-cong \([\) OF refl \(]\) )
        using \(f\) valid by auto
    also have \(\ldots=\) const unfolding eq by simp
    finally have const: lec-const ? expr \({ }^{\prime}=\) const by auto
    have lec-poly ? expr \({ }^{\prime}=l e c-\) poly ? expr
        unfolding sum-list-lec
        apply simp
        apply (rule arg-cong \([\) of --sum-list \(]\) )
        apply (rule map-cong \([\) OF refl \(]\) )
        using \(f\) valid by auto
    also have \(\ldots=0\) unfolding eq by simp
    finally have poly: lec-poly ? expr \(=0\) by auto
    from mem obtain \(c\) where \((c, s i) \in\) set \(D\) by auto
    hence \((c, f(s i)) \in\) set ? \(D\) by force
    hence mem: \((c, s i) \in\) set ?D unfolding \(f\)-def by auto
    moreover have lec-rel (s i) \(=\) Lt-Rel unfolding \(s\)-def by auto
    ultimately
    have rel: lec-rel ?expr \({ }^{\prime}=L t\)-Rel
        unfolding lec-rel-sum-list using split-list[OF mem] by fastforce
    have eq': ?expr \({ }^{\prime}=\) Le-Constraint Lt-Rel 0 const
        using const poly rel by (simp add: sum-list-lec)
    from valid' eq' Motzkin's-transposition-theorem[OF fin, unfolded sol] const0
    show False by blast
qed
qed
end
```


5.2 Algorithm to Detect all Implicit Equalities in \mathbb{Q}

Use incremental simplex algorithm to recursively detect all implied equalities.

```
theory Equality-Detection-Impl
    imports
        Equality-Detection-Theory
        Simplex.Simplex-Incremental
        Deriving.Compare-Instances
begin
lemma indexed-sat-mono: \((S, v) \models_{i c s} c s \Longrightarrow T \subseteq S \Longrightarrow(T, v) \models_{i c s} c s\)
    by auto
lemma assert-all-simplex-plain-unsat: assumes invariant-simplex cs J s
    and assert-all-simplex \(K s=\) Unsat \(I\)
shows \(\neg(\) set \(K \cup J, v) \models_{i c s}\) set cs
proof -
    from assert-all-simplex-unsat [OF assms]
    show ?thesis unfolding minimal-unsat-core-def by force
```


qed

```
lemma check-simplex-plain-unsat: assumes invariant-simplex cs J s
    and check-simplex \(s=\left(s^{\prime}\right.\), Some \(\left.I\right)\)
shows \(\neg(J, v) \neq_{i c s}\) set cs
proof -
    from check-simplex-unsat[OF assms]
    show ?thesis unfolding minimal-unsat-core-def by force
qed
```

hide-const (open) Congruence.eq
fun le-of-constraint $::$ constraint \Rightarrow rat le-constraint where
le-of-constraint (LEQ p c) = Le-Constraint Leq-Rel p c
|le-of-constraint $(L T p c)=$ Le-Constraint Lt-Rel p c
|le-of-constraint $(G E Q \quad p \quad c)=$ Le-Constraint Leq-Rel $(-p)(-c)$
|le-of-constraint $(G T p c)=$ Le-Constraint Lt-Rel $(-p)(-c)$
fun poly-of-constraint $::$ constraint \Rightarrow linear-poly where
poly-of-constraint $(L E Q p c)=p$
| poly-of-constraint (LT p c) $=p$
\mid poly-of-constraint $(G E Q \quad p c)=(-p)$
\mid poly-of-constraint $(G T p c)=(-p)$
fun const-of-constraint $::$ constraint \Rightarrow rat where
const-of-constraint $(L E Q \quad p \quad c)=c$
| const-of-constraint (LTpc)=c
| const-of-constraint (GEQ p c) $=(-c)$
\mid const-of-constraint $(G T p c)=(-c)$
fun is-no-equality :: constraint \Rightarrow bool where
is-no-equality $(E Q \quad p c)=$ False
| is-no-equality $-=$ True
fun is-equality $::$ constraint \Rightarrow bool where
is-equality $(E Q \quad p c)=$ True
| is-equality $-=$ False
lemma le-of-constraint: is-no-equality $c \Longrightarrow v \not \models_{c} c \longleftrightarrow\left(v \models_{l e}\right.$ le-of-constraint
c)
by (cases c, auto simp: valuate-uminus)
lemma le-of-constraints: Ball cs is-no-equality $\Longrightarrow v \models_{c s} c s \longleftrightarrow\left(\forall c \in c s . v \models_{l e}\right.$
le-of-constraint c)
using le-of-constraint by auto

```
fun is-strict \(::\) constraint \(\Rightarrow\) bool where
    is-strict (GT - -) \(=\) True
| is-strict (LT - -) \(=\) True
| is-strict - = False
fun is-nstrict :: constraint \(\Rightarrow\) bool where
    is-nstrict \((G E Q--)=\) True
| is-nstrict (LEQ--) \(=\) True
is-nstrict \(-=\) False
lemma is-equality-iff: is-equality \(c=(\neg\) is-strict \(c \wedge \neg\) is-nstrict \(c)\)
    by (cases \(c\), auto)
lemma is-nstrict-iff: is-nstrict \(c=(\neg\) is-strict \(c \wedge \neg\) is-equality \(c)\)
    by (cases c, auto)
fun make-strict \(::\) constraint \(\Rightarrow\) constraint where
    make-strict \((G E Q p c)=G T p c\)
| make-strict \((L E Q p c)=L T p c\)
make-strict \(c=c\)
fun make-equality :: constraint \(\Rightarrow\) constraint where
    make-equality \((G E Q p c)=E Q p c\)
| make-equality \((L E Q p c)=E Q p c\)
| make-equality \(c=c\)
fun make-ineq \(::\) constraint \(\Rightarrow\) constraint where
    make-ineq \((G E Q ~ p ~ c)=G E Q ~ p ~ c ~\)
| make-ineq \((L E Q p c)=L E Q p c\)
| make-ineq \((E Q\) p \(c)=L E Q p c\)
fun make-flipped-ineq \(::\) constraint \(\Rightarrow\) constraint where
    make-flipped-ineq \((G E Q p c)=L E Q ~ p ~ c\)
| make-flipped-ineq \((L E Q p c)=G E Q p c\)
make-flipped-ineq \((E Q p c)=G E Q p c\)
lemma poly-const-repr: assumes is-nstrict \(c\)
shows le-of-constraint \(c=\) Le-Constraint Leq-Rel (poly-of-constraint c) (const-of-constraint
c)
    le-of-constraint (make-strict \(c)=\) Le-Constraint Lt-Rel (poly-of-constraint c)
(const-of-constraint c)
    le-of-constraint (make-flipped-ineq \(c)=\) Le-Constraint Leq-Rel ( - poly-of-constraint
c) (- const-of-constraint c)
    using assms by (cases c, auto)+
lemma poly-const-repr-set: assumes Ball cs is-nstrict
    shows le-of-constraint' cs \(=(\lambda c\). Le-Constraint Leq-Rel (poly-of-constraint \(c)\)
(const-of-constraint c))'cs
```

le-of-constraint ' (make-strict' $c s)=(\lambda c$. Le-Constraint Lt-Rel (poly-of-constraint c) (const-of-constraint c))'cs
subgoal using assms poly-const-repr (1) by simp
subgoal using assms poly-const-repr(2) unfolding image-comp o-def by auto done

```
datatype eqd-index \(=\)
    Ineq nat |
    FIneq nat
    SIneq nat |
    TmpSIneq nat
```

fun num-of-index :: eqd-index \Rightarrow nat where
num-of-index $($ FIneq $n)=n$
\mid num-of-index $($ Ineq $n)=n$
|num-of-index (SIneq n) $=n$
\mid num-of-index $($ TmpSIneq $n)=n$
derive compare-order eqd-index
fun index-constraint $::$ nat \times constraint \Rightarrow eqd-index i-constraint list where
index-constraint $(n, c)=($
if is-nstrict c then $[($ Ineq $n, c),(F I n e q ~ n$, make-fipped-ineq $c),($ TmpSIneq n,
make-strict c)] else
if is-strict c then $[(S I n e q ~ n, ~ c)]$ else
[(Ineq n, make-ineq c), (FIneq n, make-flipped-ineq c)]
)
definition init-constraints $::$ constraint list \Rightarrow eqd-index i-constraint list \times nat list \times nat list \times nat list where
init-constraints cs $=($ let $i c s^{\prime}=z i p[0$.. $<$ length $c s] c s ;$ ics $=$ concat (map index-constraint ics');
ineqs $=$ map fst $($ filter $($ is-nstrict o snd) ics' $)$;
sneqs $=$ map fst (filter (is-strict o snd) ics');
eqs $=$ map fst (filter (is-equality o snd) ics')
in (ics, ineqs, sneqs, eqs))
definition index-of :: nat list \Rightarrow nat list \Rightarrow nat list \Rightarrow eqd-index list where index-of ineqs sineqs eqs = map SIneq sineqs @ map Ineq eqs @ map FIneq eqs @ map Ineq ineqs
context
fixes cs :: constraint list
and ics :: eqd-index i-constraint list
begin
definition cs-of :: nat list \Rightarrow nat list \Rightarrow nat list \Rightarrow constraint set where
cs-of ineqs sineqs eqs $=$ Simplex.restrict-to $($ set $($ index-of ineqs sineqs eqs $))($ set $i c s)$
lemma init-constraints: assumes init: init-constraints $c s=(i c s$, ineqs, sineqs, eqs $)$

```
    shows v}\mp@subsup{\models}{cs}{}cs\mathrm{ -of ineqs sineqs eqs }\longleftrightarrowv\mp@subsup{\models}{cs}{}\mathrm{ set cs
    distinct-indices ics
    fst'set ics = set (map SIneq sineqs @ map Ineq eqs @ map FIneq eqs @ map
Ineq ineqs @ map FIneq ineqs @ map TmpSIneq ineqs) (is - = ?l)
    set eqs}={i.i<length cs ^ is-equality (cs!i)
    set ineqs}={i.i<length cs \wedge is-nstrict (cs!i)
    set sineqs}={i.i<length cs \wedge is-strict (cs!i)
    set ics=
        (\lambdai. (Ineq i, make-ineq (cs!i)))' set eqs U
        (\lambdai. (FIneq i, make-flipped-ineq (cs!i)))' set eqs U
        ((\lambdai. (Ineq i, cs!i))'set ineqs U
        (\lambdai. (FIneq i, make-flipped-ineq (cs!i)))'set ineqs U
        (\lambdai. (TmpSIneq i, make-strict (cs!i)))' set ineqs) \cup
        (\lambdai.(SIneq i,cs!i))'set sineqs (is - = ?Large)
    distinct (eqs @ ineqs @ sineqs)
    set (eqs @ ineqs @ sineqs)={0 ..< length cs }
proof -
    let ?R = Simplex.restrict-to (Ineq 'set ineqs U SIneq' set sineqs U Ineq'set eqs
FIneq' set eqs) (set ics)
    let ?n = length cs
    let ?I = Ineq'set ineqs USIneq' set sineqs U Ineq'set eqs U FIneq'set eqs
    define ics' where ics' = zip [0..<?n] cs
    from init[unfolded init-constraints-def Let-def, folded ics'-def]
    have ics: ics = concat (map index-constraint ics') and
    eqs: eqs = map fst (filter (is-equality ○ snd) ics') and
    ineqs: ineqs = map fst (filter (is-nstrict ○ snd) ics') and
    sineqs: sineqs = map fst (filter (is-strict \circ snd) ics') by auto
    from eqs show eqs': set eqs}={i.i<?n\wedge is-equality (cs!i)
    by (force simp: set-zip ics'-def)
from ineqs show ineqs': set ineqs}={i.i<?n n\wedge is-nstrict (cs!i)
    by (force simp: set-zip ics'-def)
    from sineqs show sineqs': set sineqs}={i.i<?n ^ is-strict (cs!i)
    by (force simp: set-zip ics'-def)
show set (eqs @ ineqs @ sineqs)={0..<?n}
    unfolding set-append eqs' ineqs' sineqs'
    by (auto simp: is-nstrict-iff)
show distinct (eqs @ ineqs @ sineqs) unfolding distinct-append
    unfolding ineqs eqs sineqs ics'-def
    by (auto intro: distinct-map-filter simp: set-zip is-nstrict-iff)
        (simp add: is-equality-iff)
    from eqs' have eqs'': i set eqs \Longrightarrow index-constraint (i,cs!i)=
        [(Ineq i, make-ineq (cs!i)), (FIneq i, make-flipped-ineq (cs!i))] for i
    by (cases cs ! i, auto)
    from ineqs' have ineqs '': i set ineqs \Longrightarrow index-constraint (i,cs!i)=
```

$[($ Ineq $i, c s!i),($ FIneq i, make-flipped-ineq $(c s!i)),($ TmpSIneq i, make-strict (cs!i))] for i
by (cases cs ! i, auto)
from sineqs ${ }^{\prime}$ have sineqs ${ }^{\prime \prime}: i \in$ set sineqs \Longrightarrow index-constraint $(i, c s!i)=$ $[($ SIneq $i, c s!i)]$ for i
by (cases cs! i, auto)
let ? $I C=\lambda I . \bigcup($ set 'index-constraint' $(\lambda i .(i, c s!i))$ ' $I)$
have set ics' $=(\lambda i .(i, c s!i))$ ' $\{i . i<? n\}$ unfolding $i c s^{\prime}$-def
by (force simp: set-zip)
also have $\{i . i<? n\}=$ set eqs \cup set ineqs \cup set sineqs
unfolding ineqs ${ }^{\prime}$ eqs ${ }^{\prime}$ sineqs ${ }^{\prime}$
by (auto simp: is-equality-iff)
finally have set ics $=$?IC (set eqs \cup set ineqs \cup set sineqs $)$ unfolding ics set-concat set-map
by auto
also have $\ldots=$? $I C($ set eqs $) \cup$?IC (set ineqs) \cup ?IC (set sineqs) by auto
also have ?IC (set eqs) $=(\lambda i$. (Ineq i, make-ineq $(c s!i)))$ 'set eqs
$\cup(\lambda i$. (FIneq i, make-flipped-ineq $(c s!i)))$ 'set eqs
using eqs" by auto
also have ? ${ }^{\text {IC }}($ set ineqs $)=(\lambda i .($ Ineq $i, c s!i))$ 'set ineqs
$\cup(\lambda i$. (FIneq i, make-flipped-ineq $(c s!i)))$ ' set ineqs
$\cup(\lambda i$. (TmpSIneq i, make-strict $(c s!i)))$ ' set ineqs
using ineqs ${ }^{\prime \prime}$ by auto
also have ?IC (set sineqs $)=(\lambda i$. $($ SIneq $i, c s!i))$ 'set sineqs using sineqs" by auto
finally show icsL: set ics $=$? Large by auto
show fst' set ics $=$?l unfolding icsL set-map set-append image-Un image-comp o-def fst-conv
by auto
have distinct (map fst ics') unfolding ics'-def by auto
thus dist: distinct-indices ics unfolding ics
proof (induct ics')
case (Cons ic ics)
obtain $i c$ where $i c$: $i c=(i, c)$ by force \{
fix j
assume $j: j \in f s t$ 'set (index-constraint (i, c))
$j \in f s t$ ' $(\bigcup a \in$ set ics. set (index-constraint $a))$
from $j(1)$ have $j i$: num-of-index $j=i$ by (cases c, auto)
from $j(2)$ obtain $i^{\prime} c^{\prime}$ where $i c^{\prime}:\left(i^{\prime}, c^{\prime}\right) \in$ set ics and $j \in f s t$ 'set
(index-constraint $\left(i^{\prime}, c^{\prime}\right)$) by force
from this(2) have $j i^{\prime}$: num-of-index $j=i^{\prime}$ by (cases c^{\prime}, auto)
with $j i$ have $i=i^{\prime}$ by auto
with $i c^{\prime}$ ic Cons(2) have False by force
$\}$ note tedious $=$ this
show ?case unfolding ic distinct-indices-def
apply (simp del: index-constraint.simps, intro conjI)
subgoal by (cases c, auto)
subgoal using Cons by (auto simp: distinct-indices-def)

```
        subgoal using tedious by blast
        done
    qed (simp add: distinct-indices-def)
    show v}\mp@subsup{=}{cs}{}cs\mathrm{ -of ineqs sineqs eqs }\longleftrightarrowv\mp@subsup{\models}{cs}{}\mathrm{ set cs
    proof
    assume v: v}\mp@subsup{\models}{cs}{}cs\mathrm{ -of ineqs sineqs eqs
    {
        fix c
    assume c fet cs
    then obtain i where c:c=cs!i and i:i<?n unfolding set-conv-nth by
auto
    hence ic: (i,c)\in set ics' unfolding ics'-def set-zip by force
    hence ics: set (index-constraint (i,c))\subseteq set ics unfolding ics by force
    consider (e) is-equality c|(s) is-strict c|(n) is-nstrict c by (cases c,auto)
    hence v}\mp@subsup{\models}{c}{}
    proof cases
            case e
            hence eqs: i\in set eqs unfolding eqs using ic by force
            from e have {(FIneq i,make-flipped-ineq c),(Ineq i, make-ineq c)}}\subseteq\mathrm{ set
(index-constraint (i,c)) by (cases c, auto)
            moreover with ics have {(FIneq i, make-flipped-ineq c), (Ineq i, make-ineq
c)}}\subseteq\mathrm{ set ics by auto
            ultimately have {make-flipped-ineq c, make-ineq c} \subseteqcs-of ineqs sineqs
eqs unfolding cs-of-def using eqs
            unfolding index-of-def using e by (cases c, force+)
            with v have v}\mp@subsup{\models}{c}{}\mathrm{ make-flipped-ineq c v}\mp@subsup{\models}{c}{}\mathrm{ make-ineq c by auto
            with e show ?thesis by (cases c, auto)
        next
            case s
            hence sineqs:i\in set sineqs unfolding sineqs using ic by force
            from s have (SIneq i,c)\in set (index-constraint (i,c)) by (cases c, auto)
            moreover with ics have (SIneq i, c) \in set ics by auto
            ultimately have c\incs-of ineqs sineqs eqs unfolding cs-of-def using sineqs
                    unfolding index-of-def using s by (cases c, force+)
            with v show v}\mp@subsup{\models}{c}{c}c\mathrm{ by auto
        next
            case n
            hence ineq: i\in set ineqs unfolding ineqs using ic by force
            from n have (Ineq i, c)\in set (index-constraint (i,c)) by (cases c, auto)
            moreover with ics have (Ineq i, c) \in set ics by auto
            ultimately have c\incs-of ineqs sineqs eqs unfolding cs-of-def using ineq
                unfolding index-of-def using n by (cases c,force+)
            with v show v}\mp@subsup{\models}{c}{}c\mathrm{ by auto
        qed
    }
    thus v}\mp@subsup{\models}{cs}{}\mathrm{ set cs by auto
next
    assume v: v}\mp@subsup{\models}{cs}{}\mathrm{ set cs
```

fix c
assume $c \in c s$-of ineqs sineqs eqs
hence $c \in ? R$ unfolding $c s$-of-def index-of-def by auto
then obtain i where $i: i \in ? I$ and $i c:(i, c) \in$ set ics by force
from $i c$ [unfolded ics] obtain $k d$ where $i c:(i, c) \in$ set (index-constraint $k d$) and mem: $k d \in$ set $i c s{ }^{\prime}$ by auto
from mem[unfolded ics'-def] obtain $k d$ where $k d: k d=(k, d)$ and $d: d \in$ set $c s$ and $k: k<? n d=c s!k$
unfolding set-conv-nth by force
from $v d$ have $v d: v \not \models_{c} d$ by auto
consider $(s) j$ where $i=$ SIneq $j j \in$ set sineqs $\mid(e) j$ where $i=$ Ineq $j \vee i$ $=$ FIneq $j j \in$ set eqs $\mid(n) j$ where $i=$ Ineq $j j \in$ set ineqs
using i by auto
then have $v \models_{c} c$
proof cases
case n
from $i c[$ unfolded $n k d]$ have $j: j=k$ by (cases d, auto)
from n (2)[unfolded ineqs j] obtain eq where keq: $(k, e q) \in$ set $i c s^{\prime}$ and nstr: is-nstrict eq by force
from $k e q[u n f o l d e d ~ i c s '-d e f] ~ k$ have $e q=d$ unfolding set-conv-nth by force with nstr have is-nstrict d by auto
with ic[unfolded $n k d]$ have $c=d$ by (cases d, auto)
then show ?thesis using $v d$ by auto
next
case e
from ic e $k d$ have $j: j=k$ by (cases d, auto)
from e(2)[unfolded eqs j] obtain eq where $k e q:(k, e q) \in$ set $i c s^{\prime}$ and iseq: is-equality eq by force
from $k e q[u n f o l d e d ~ i c s '$-def] k have $e q=d$ unfolding set-conv-nth by force with iseq have eq: is-equality d by auto
with ic e $k d$ have $c=$ make-ineq $d \vee c=$ make-flipped-ineq d by (cases d, auto)
then show ?thesis using vd eq by (cases d, auto)
next
case s
from ic[unfolded skd] have $j: j=k$ by (cases d, auto)
from $s(2)$ [unfolded sineqs j] obtain eq where $k e q:(k, e q) \in$ set $i c s^{\prime}$ and str: is-strict eq by force
from $k e q[u n f o l d e d ~ i c s '-d e f] k$ have $e q=d$ unfolding set-conv-nth by force with str have is-strict d by auto
with $i c[$ unfolded $s k d]$ have $c=d$ by (cases d, auto)
then show ?thesis using $v d$ by auto
qed
\}
thus $v \not \models_{\text {cs }}$ cs-of ineqs sineqs eqs by auto
qed
qed
definition init-eq-finder-rat :: (eqd-index simplex-state \times nat list \times nat list \times nat list) option where
init-eq-finder-rat $=($ case init-constraints cs of (ics, ineqs, sineqs, eqs $)$
\Rightarrow let s0 $=$ init-simplex ics
in (case assert-all-simplex (index-of ineqs sineqs eqs) s0
of Unsat $-\Rightarrow$ None
| Inr s1 \Rightarrow (case check-simplex s1
of $(-$, Some -$) \Rightarrow$ None
$\mid(s 2$, None $) \Rightarrow \operatorname{Some}($ s 2, ineqs, sineqs, eqs $))))$
partial-function (tailrec) eq-finder-main-rat :: eqd-index simplex-state \Rightarrow nat list \Rightarrow nat list \Rightarrow nat list \times nat list $\times(v a r \Rightarrow$ rat $)$ where
[code]: eq-finder-main-rat s ineq eq $=$ (if ineq $=[]$ then (ineq, eq, solution-simplex s) else let

```
cp \(=\) checkpoint-simplex s;
    res-strict \(=(\) case assert-all-simplex (map TmpSIneq ineq) s - Make all
```

inequalities strict and test sat
of Unsat $C \Rightarrow \operatorname{Inl}(s, C)$
| Inr s1 \Rightarrow (case check-simplex s1 of
(s2, None) $\Rightarrow \operatorname{Inr}$ (solution-simplex s2)
$\mid(s 2$, Some $C) \Rightarrow$ Inl $($ backtrack-simplex cp s2, $C)))$
in case res-strict of
Inr sol \Rightarrow (ineq, eq, sol) —if indeed all equalities are strictly sat, then no
further equality is implied
| Inl $(s 2, C) \Rightarrow$ let
$e q^{\prime}=$ remdups $[i$. TmpSIneq $i<-C] ;-$ collect all indices of the strict inequalities within the minimal unsat-core

- the remdups might not be necessary, however the simplex interfact does not ensure distinctness of C
s3 $=$ sum.projr $($ assert-all-simplex $($ map FIneq eq' $) ~ s 2) ;$ and permantly add the flipped inequalities
$s_{4}=$ fst (check-simplex s3); - this check will succeed, no unsat can be reported here

$$
\text { ineq }^{\prime}=\text { filter }(\lambda i . i \notin \text { set eq') ineq }- \text { add eq' from inequalities to equalities }
$$ and continue

```
in eq-finder-main-rat s4 ineq' (eq' @ eq))
```

definition eq-finder-rat :: (nat list $\times(v a r \Rightarrow r a t))$ option where
eq-finder-rat $=$ (case init-eq-finder-rat of None \Rightarrow None
\mid Some (s, ineqs, sineqs, eqs) \Rightarrow Some (
case eq-finder-main-rat s ineqs eqs of (ineq, eq, sol)
$\Rightarrow(e q$, sol $)))$

context

fixes eqs ineqs sineqs:: nat list
assumes init-cs: init-constraints $c s=(i c s$, ineqs, sineqs, eqs $)$
begin
definition equiv-to-cs where

```
    equiv-to-cs eq \(=\left(\forall v . v \models_{c s}\right.\) set cs \(=\left(\right.\) set (index-of ineqs sineqs eq), v) \(\models_{i c s}\) set
ics)
definition strict-ineq-sat ineq eq \(v=((\) set (index-of ineqs sineqs eq) \(\cup\) TmpSIneq
' set ineq, v) \(\models_{i c s}\) set ics)
lemma init-eq-finder-rat: init-eq-finder-rat \(=\) None \(\Longrightarrow \nexists v . v \models_{c s}\) set cs
    init-eq-finder-rat \(=\) Some ( \(s\), ineq, sineq, eq) \(\Longrightarrow\)
        checked-simplex ics (set (index-of ineqs sineqs eq)) s
    \(\wedge e q=\) eqs \(\wedge\) ineq \(=\) ineqs \(\wedge\) sineq \(=\) sineqs
    \(\wedge\) equiv-to-cs eq
    \(\wedge\) distinct (ineq @ sineq @ eq)
    \(\wedge \operatorname{set}(\) ineq @ sineq @ eq) \(=\{0 . .<\) length \(c s\}\)
proof (atomize(full), goal-cases)
    case 1
    define \(s 0\) where \(s 0=\) init-simplex ics
    define \(I\) where \(I=\) index-of ineqs sineqs eqs
    note init \(=\) init-eq-finder-rat-def[unfolded init-cs split Let-def, folded s0-def I-def]
    note init-cs \(=\) init-constraints[OF init-cs, unfolded cs-of-def, folded I-def]
    from init-simplex[of ics, folded s0-def]
    have s0: invariant-simplex ics \{\} s0 by (rule checked-invariant-simplex)
    show ? case
    proof (cases assert-all-simplex I s0)
    case Inl
    from assert-all-simplex-plain-unsat[OF s0 Inl]
    have \(\nexists v\). \((\) set \(I, v) \neq_{i c s}\) set ics by auto
    hence \(\nexists v . v \models_{c s}\) set cs using init-cs(1) by auto
    with Inl init show?thesis by auto
next
    case (Inr s1)
    obtain \(s 2\) res where ch: check-simplex s1 \(=(s 2\), res \()\) by force
    note init \(=\) init[unfolded Inr ch split sum.simps]
    from assert-all-simplex-ok[OF s0 Inr]
    have s1: invariant-simplex ics (set I) s1 by auto
    show ?thesis
    proof (cases res)
        case Some
        note \(c h=\) ch[unfolded Some]
        from check-simplex-plain-unsat[OF s1 ch] init-cs(1)
            Some ch init
        show ?thesis by auto
    next
        case None
        note \(c h=c h[u n f o l d e d\) None]
        note init \(=\) init[unfolded None option.simps]
        from check-simplex-ok[OF s1 ch]
        have s2: checked-simplex ics (set I) s2 .
        from init s2 init-cs \((1,8,9)\) show ?thesis unfolding I-def equiv-to-cs-def by
```

```
fastforce
    qed
    qed
qed
lemma eq-finder-main-rat: fixes Ineq Eq
    assumes checked-simplex ics (set (index-of ineqs sineqs eq)) s
    and set ineq }\subseteq\mathrm{ set ineqs
    and set eqs}\subseteq\mathrm{ set eq }\wedge\mathrm{ set eq U set ineq = set eqs U set ineqs
    and eq-finder-main-rat s ineq eq = (Ineq, Eq,v-sol)
    and equiv-to-cs eq
    and distinct (ineq @ eq)
shows set Ineq \subseteq set ineqs set eqs \subseteq set Eq set Ineq U set Eq= set eqs U set ineqs
    and equiv-to-cs Eq
    and strict-ineq-sat Ineq Eq v-sol
    and distinct (Ineq @ Eq)
proof (atomize(full), goal-cases)
    case 1
    show ?case using assms
    proof (induction ineq arbitrary: s eq rule: length-induct)
    case (1 ineq s eq)
    define I where I= set (index-of ineqs sineqs eq)
    note s=1.prems(1)[folded I-def]
    note ineq = 1.prems(2)
    note eq=1.prems(3)
    note res = 1.prems(4)[unfolded eq-finder-main-rat.simps[of - ineq]]
    note equiv = 1.prems(5)
    note dist = 1.prems(6)
    note IH = 1.IH[rule-format]
    from s have inv: invariant-simplex ics I s by (rule checked-invariant-simplex)
    note sol = solution-simplex[OF s refl]
    show ?case
    proof (cases ineq = [])
        case True
        with res have Ineq = [] Eq=eq v-sol = solution-simplex s by auto
        with True have strict-ineq-sat Ineq Eq v-sol = ((I, solution-simplex s) \modelsics
set ics)
            unfolding strict-ineq-sat-def by (auto simp:I-def)
        with sol have strict-ineq-sat Ineq Eq v-sol by auto
    with True res eq ineq equiv sol dist show ?thesis by (auto simp: equiv-to-cs-def
strict-ineq-sat-def)
    next
        case False
        hence False: (ineq = []) = False by auto
        define cp where cp=checkpoint-simplex s
        let ?J = I\cup TmpSIneq'set ineq
        let ?ass = assert-all-simplex (map TmpSIneq ineq) s
        define inner where inner = (case assert-all-simplex (map TmpSIneq ineq)s
```

of $\operatorname{Inl} I \Rightarrow \operatorname{Inl}(s, I)$
| Inr s1 \Rightarrow (case check-simplex s1 of (s2, None) \Rightarrow Inr (solution-simplex s2) $\mid(s 2$, Some I) \Rightarrow Inl (backtrack-simplex cp s2, I)))
note res $=$ res[unfolded False if-False, folded cp-def, unfolded Let-def, folded inner-def]
\{
fix $s 2 C$
assume inner $=\operatorname{Inl}(s 2, C)$
note inner $=$ this[unfolded inner-def sum.simps]
have set $C \subseteq ? J \wedge$ minimal-unsat-core $($ set $C)$ ics \wedge invariant-simplex ics
I s2
proof (cases ?ass)
case unsat: (Inl D)
with inner have $D=C s 2=s$ by auto
with assert-all-simplex-unsat [OF inv unsat] inv show ?thesis by auto
next
case ass: (Inr s1)
note inner $=$ inner[unfolded ass sum.simps]
from inner obtain $s 3$ where check: check-simplex $s 1=(s 3$, Some $C)$
and s2: s2 $=$ backtrack-simplex cp s3
by (cases check-simplex s1, auto split: option.splits)
note s1 = assert-all-simplex-ok[OF inv ass]
from check-simplex-unsat[OF s1 check]
have s3: weak-invariant-simplex ics ?J s3 and C : set $C \subseteq$?J mini-mal-unsat-core (set C) ics by auto
from backtrack-simplex[OF s cp-def[symmetric] s3 s2[symmetric]]
have s2: invariant-simplex ics I s2 by auto
from s2 C show ?thesis by auto
qed
\} note inner-Some $=$ this
show ?thesis
proof (cases inner)
case (Inr sol)
note inner $=$ this[unfolded inner-def]
from inner obtain s1 where ass: ?ass = Inr s1 by (cases ?ass, auto)
note inner $=$ inner[unfolded ass sum.simps]
from inner obtain s2 where check: check-simplex s1 = (s2, None) by (cases check-simplex s1, auto split: option.splits)
from solution-simplex $[O F$ check-simplex-ok $[O F$ assert-all-simplex-ok $[O F$ inv ass] check]]
have (? J, sol) $\models_{i c s}$ set ics using inner[unfolded check split option.simps] by auto
hence str: strict-ineq-sat ineq eq sol unfolding I-def strict-ineq-sat-def by auto
from res[unfolded Inr] have $i d$: Ineq $=$ ineq $E q=e q v$-sol $=$ sol by auto
show ?thesis unfolding id using dist eq ineq equiv str by auto
next
case (Inl pair)

```
    then obtain s2 C where inner: inner = Inl (s2, C) by (cases pair,auto)
    from inner-Some[OF this]
    have C: set C\subseteqI\cupTmpSIneq' set ineq
        and unsat: minimal-unsat-core (set C) ics
        and s2: invariant-simplex ics I s2
        by auto
    define eq' where eq' = remdups [i. TmpSIneq i<-C]
    have ran: range TmpSIneq }\capI={}\mathrm{ unfolding I-def index-of-def by auto
    {
        assume eq' = []
        hence CI: set C\subseteqI using C ran eq'-def by force
    from unsat have }\existsv\mathrm{ . (set C,v) | =ics set ics unfolding minimal-unsat-core-def
by auto
            with indexed-sat-mono[OF sol CI] have False by auto
    }
    hence eq': eq' }=[]\mathrm{ by auto
    let ?eq=eq' @ eq
    define s3 where s3 = sum.projr (assert-all-simplex (map FIneq eq') s2)
    define s4 where s4 = fst (check-simplex s3)
    define ineq' where ineq' = filter ( }\lambdai.i\not\in\mathrm{ set eq') ineq
    have eq'-ineq: set eq}\mp@subsup{q}{}{\prime}\subseteq\mathrm{ set ineq using C ran unfolding eq'-def by auto
    have eq-new: set eqs }\subseteq\mathrm{ set ?eq ^ set ?eq U set ineq' = set eqs }\cup\mathrm{ set ineqs
using eq'-ineq ineq eq
            by (auto simp: ineq'-def)
    have dist: distinct (ineq' @ eq' @ eq) using dist unfolding ineq'-def using
eq'-ineq
            unfolding eq'-def by auto
            have ineq-new: set ineq' }\subseteq\mathrm{ set ineqs using ineq unfolding ineq'-def by
auto
            from eq' eq'-ineq have len: length ineq' < length ineq unfolding ineq'-def
            by (metis empty-filter-conv filter-True length-filter-less subsetD)
            note res = res[unfolded inner sum.simps split, folded eq'-def, folded s3-def,
folded ineq'-def s4-def]
    show ?thesis
    proof (rule IH[OF len - ineq-new eq-new res - dist])
            define }\mp@subsup{I}{}{\prime}\mathrm{ where }\mp@subsup{I}{}{\prime}=\mathrm{ index-of ineqs sineqs ?eq
    have II': set I' = set (map FIneq eq') \cupI unfolding I'-def I-def index-of-def
using ineq eq'-ineq by auto
            show equiv-new: equiv-to-cs ?eq
            proof -
            define c-of where c-of I = Simplex.restrict-to I (set ics) for I
            have ?thesis \longleftrightarrow(\forallv. (I,v) \modelsics set ics \longleftrightarrow(FIneq'set eq'\cupI,v)
\modelsics set ics)
                unfolding equiv-to-cs-def using equiv[unfolded equiv-to-cs-def]
                unfolding I'-def[symmetric] I-def[symmetric] II' by auto
            also have \ldots\longleftrightarrow(\forallv.v \models
                unfolding c-of-def by auto
            also have ...
            proof (intro allI impI)
```

fix v
assume $v: v \models_{c s}$ c-of I
let ? Ineq $=$ Equality-Detection-Impl.Ineq'set ineq
let ?SIneq $=$ Equality-Detection-Impl.TmpSIneq' set ineq
from init-constraints[OF init-cs]
have dist: distinct (map fst ics) unfolding distinct-indices-def by auto \{
fix $c i$
assume $c: c \in c$-of $\{i\}$
have c-of $\{i\}=\{c\}$
proof -
\{
fix d
assume $d \in c$-of $\{i\}$
from this[unfolded c-of-def]
have $d:(i, d) \in$ set ics by force
from c [unfolded c-of-def]
have $c:(i, c) \in$ set ics by force
from $c d$ dist have $c=d$ by (metis eq-key-imp-eq-value)
\}
with c show ?thesis by blast
qed
$\}$ note c-of-inj $=t h i s$
let $? n=$ length $c s$
\{
note init-cs ${ }^{\prime}=$ init-cs[unfolded init-constraints-def Let-def]
fix i
assume $i \in$ set ineq
with ineq have $i \in$ set ineqs by auto
with init-cs ${ }^{\prime}$
have $i \in \operatorname{set}(m a p f s t$ (filter (is-nstrict \circ snd) (zip [0..<length cs]
cs))) by auto
hence $i-n: i<? n$ and nstr: is-nstrict (cs!i) by (auto simp: set-zip)
hence $(i, c s!i) \in \operatorname{set}(z i p[0 . .<? n]$ cs) by (force simp: set-zip)
with init-cs' have set (index-constraint $(i, c s!i)) \subseteq$ set ics by force
hence
cs $!i \in c$-of $\{$ Equality-Detection-Impl.Ineq $i\}$
make-strict $(c s!i) \in c$-of $\{$ TmpSIneq $i\}$
make-flipped-ineq $(c s!i) \in c$-of $\{$ FIneq $i\}$
using nstr unfolding c-of-def by (cases cs ! i; force)+
with c-of-inj
have c-of $\{$ Equality-Detection-Impl.Ineq $i\}=\{c s!i\}$
c-of $\{$ TmpSIneq $i\}=\{$ make-strict $(c s!i)\}$
c-of $\{$ FIneq $i\}=\{$ make-flipped-ineq $(c s!i)\}$
by auto
note nstr this i-n
$\}$ note c-of-ineq $=$ this
have cIneq: c-of ? Ineq $=((!) c s)$ ' set ineq using c-of-ineq(2) unfolding c-of-def by blast
have c SIneq: c-of ?SIneq $=($ make-strict $o(!) c s)$ 'set ineq using c-of-ineq(3) unfolding c-of-def o-def by blast
have $I \cup$?Ineq $=I$ using ineq unfolding I-def index-of-def by auto with v have $v \not \models_{c s}(c$-of $I \cup c$-of ?Ineq) unfolding c-of-def by auto hence $v: v \models_{c s}(c$-of $I \cup((!) c s)$ ' set ineq) unfolding cIneq by auto have Ball (snd' set ics) is-no-equality using init-cs[unfolded init-constraints-def Let-def] apply clarsimp subgoal for $i c j d$ by (cases d, auto) done
hence no-eq-c: Ball (c-of I) is-no-equality for I unfolding c-of-def by auto
have no-eq-ineq: $i \in$ set ineq \Longrightarrow is-no-equality (cs!i) for i using c-of-ineq(1)[of $i]$ by (cases cs ! i, auto)
define $C I$ where $C I=$ le-of-constraint ' $(c$-of $I)$
from v have $v: \forall c \in C I \cup l e$-of-constraint' $((!) c s$ 'set ineq $) .\left(v \models_{l e}\right.$ c)
unfolding CI-def
by (subst (asm) le-of-constraints, insert no-eq-ineq no-eq-c, auto)
define p where $p=(\lambda i$. poly-of-constraint (cs!i))
define co where co $=(\lambda i$. const-of-constraint (cs!i))
have nstri: Ball ((!) cs ' set ineq) is-nstrict using c-of-ineq(1) by auto
have lecs-ineq: set ine \subseteq set ineq \Longrightarrow le-of-constraint' ((!) cs ' set ine)
$=(\lambda i$. Le-Constraint Leq-Rel ($p i$ i) (co $i))$ ' set ine for ine
by (subst poly-const-repr-set, insert nstri, auto simp: p-def co-def)
from v lecs-ineq[OF subset-refl]
have $v: \forall c \in C I \cup(\lambda i$. Le-Constraint Leq-Rel (pi) (co i))' set ineq. $\left(v \models_{l e} c\right)$ by auto
have finCI: finite CI unfolding CI-def c-of-def by auto
note main-step $=$ equality-detection-rat $[O F$ finCI finite-set $--v]$
let ? $C=l e$-of-constraint ' $(c$-of $($ set $C))$
from C have c-of $($ set $C) \subseteq c$-of $I \cup c$-of ?SIneq unfolding c-of-def by auto
hence c-of $($ set $C) \subseteq c$-of $I \cup($ make-strict $o(!) c s)$ ' set ineq unfolding cSIneq.
hence ? $C \subseteq C I \cup$ le-of-constraint' ((make-strict o (!) cs)' set ineq) unfolding $C I$-def by auto
also have le-of-constraint' $(($ make-strict $o(!) c s)$ 'set ineq $)=(\lambda i$. Le-Constraint Lt-Rel ($\mathrm{p} i$) (co $i)$)' set ineq
unfolding o-def unfolding p-def co-def
using poly-const-repr-set(2)[OF nstri, unfolded image-comp o-def] by
auto
finally have ? $C \subseteq C I \cup\left(\lambda i\right.$. Le-Constraint Lt-Rel $\left.\left(\begin{array}{ll}p & i\end{array}\right)(c o i)\right)$ 'set ineq by auto

```
    note main-step = main-step[OF this]
    from unsat[unfolded minimal-unsat-core-def]
    have }\not\existsv.(set C,v)\not\mp@subsup{\models}{ics}{}\mathrm{ set ics by auto
    hence ##v.v}\mp@subsup{\models}{cs}{}c\mathrm{ cof (set C) unfolding c-of-def by auto
    hence }\not\existsv.\forallc\inle-of-constraint '(c-of (set C)).v =lle 
        by (subst (asm) le-of-constraints[OF no-eq-c], auto)
    note main-step = main-step[OF this]
    {
        fix }
        assume D Cle-of-constraint '(c-of (set C))
        hence }\existsCS\mathrm{ . le-of-constraint ' CS = D^CS `c-of (set C)
        by (metis subset-image-iff subset-not-subset-eq)
    then obtain CS where D: D =le-of-constraint ' CS and sub:CS
C-of (set C) by auto
    define c-fun where c-fun i=(THE x. x c c-of {i}) for i
    {
        fix }\mp@subsup{C}{}{\prime
        assume C': C'}\subseteq\mathrm{ set C
        {
            fix }
                assume i\inC'
                with C' C have i\inI\cupTmpSIneq' set ineq by auto
                from this[unfolded I-def index-of-def] ineq eq
            have i\in set (map SIneq sineqs @ map Equality-Detection-Impl.Ineq
eqs @
                map FIneq eqs @ map Equality-Detection-Impl.Ineq ineqs @ map
FIneq ineqs @ map TmpSIneq ineqs) (is - }\in\mathrm{ ?S)
                    by auto
                also have ?S \subseteqfst'set ics using init-constraints(3)[OF init-cs]
by auto
                finally have i\infst' set ics by auto
                then obtain c where (i,c)\in set ics by force
                hence }c\inc\mathrm{ -of {i} unfolding c-of-def by force
                from c-of-inj[OF this] have c:c-of {i}={c} by auto
                hence c-fun i=c unfolding c-fun-def by auto
                with c have c-of {i}={c-fun i} by auto
            }
            hence c-of C'=c-fun' }\mp@subsup{C}{}{\prime}\mathrm{ 'unfolding c-of-def by blast
            } note to-c-fun = this
            from sub[unfolded to-c-fun[OF subset-refl]]
            have CS \subsetc-fun'set C by auto
            hence \exists}\mp@subsup{C}{}{\prime}.\mp@subsup{C}{}{\prime}\subset\mathrm{ set }C\wedgeCS=c\mathrm{ -fun ' }\mp@subsup{C}{}{\prime
            by (metis subset-image-iff subset-not-subset-eq)
            then obtain C' where sub: }\mp@subsup{C}{}{\prime}\subset\mathrm{ set C and CS: CS =c-fun ' C'
by auto
    from CS to-c-fun[of C ] sub have CS: CS = c-of C' by auto
```

```
    from unsat[unfolded minimal-unsat-core-def] dist sub
    have }\existsv.(\mp@subsup{C}{}{\prime},v)\models\mp@subsup{=}{ics}{}\mathrm{ set ics
    unfolding distinct-indices-def by auto
    hence }\existsv.v\not\mp@subsup{\models}{cs}{}CS\mathrm{ unfolding CS c-of-def by auto
    hence }\existsv.\forallc\inD.v\not\mp@subsup{\models}{le}{}c\mathrm{ unfolding D
        by (subst (asm) le-of-constraints, unfold CS, insert no-eq-c, auto)
    }
    note main-step = main-step[OF this]
    {
    fix ie
    assume ieq': i f set eq' and mem:(FIneq i,e) \in set ics
    from ieq' eq'-def have tmp: TmpSIneq i }\in\mathrm{ set C by auto
    have i:i\in set ineq using ieq' eq'-ineq by auto
    from c-of-ineq(1,3,5)[OF i] tmp
    have *: make-strict (cs!i)\inc-of (set C) is-nstrict (cs!i) i<?n
        by (auto simp: c-of-def)
    from *(3) have (i,cs!i)\in set (zip [0..< ?n] cs) by (force simp:
set-zip set-conv-nth)
    hence set (index-constraint (i, cs!i))\subseteq set ics using init-cs[unfolded
init-constraints-def Let-def]
            by force
            hence (FIneq i, make-flipped-ineq (cs!i)) \in set ics using *(2) by
(cases cs!i,auto)
                            with mem dist have e: e= make-flipped-ineq (cs !i) by (metis
eq-key-imp-eq-value)
                            have le-of-constraint (make-strict (cs!i)) = Le-Constraint Lt-Rel (p
i)(co i)
                            by (subst poly-const-repr(2), insert *, auto simp: p-def co-def)
                            from this * have Le-Constraint Lt-Rel ( 
`(c-of (set C))
                            by force
                            from main-step[OF - i this]
                            have eq: (pi) {|v}= co i by auto
                            have id:le-of-constraint (make-flipped-ineq (cs!i)) = Le-Constraint
Leq-Rel (- p i) (- co i)
            by (subst poly-const-repr(3), insert *, auto simp: p-def co-def)
            from * have is-no-equality (make-flipped-ineq (cs!i)) by (cases cs!
i, auto)
            from le-of-constraint[OF this, of v]
            have v}\mp@subsup{\models}{c}{}e\mathrm{ using e id eq by (simp add: valuate-uminus)
            }
            thus v}\mp@subsup{\models}{cs}{}c\mathrm{ -of (FIneq'set eq') unfolding c-of-def by auto
            qed
            finally show ?thesis by simp
            qed
            from equiv equiv-new sol
            have sol: (set I', solution-simplex s) \models }\mp@subsup{}{ics}{}\mathrm{ set ics unfolding equiv-to-cs-def
```

```
index-of-def I-def I'-def by auto
    have }I\mp@subsup{I}{}{\prime}:\mathrm{ set I'= set (map FIneq eq') }\cupI\mathrm{ unfolding I'-def I-def index-of-def
using eq'-ineq ineq by auto
let ?ass = assert-all-simplex (map FIneq eq') s2
    {
            fix }
            assume ?ass = Unsat K
            from assert-all-simplex-plain-unsat[OF s2 this, folded II'] sol have False
by auto
            }
            hence ass: ?ass = Inr s3 unfolding s3-def by (cases ?ass, auto)
            from assert-all-simplex-ok[OF s2 ass]
            have s3: invariant-simplex ics (set I') s3 unfolding II' by (simp add:
ac-simps)
            from s4-def[unfolded ass, simplified] obtain c where
                check-simplex s3 = (s4, c) by (cases check-simplex s3, auto)
            with check-simplex-plain-unsat[OF s3] sol
            have check-simplex s3 = (s4,None) by (cases c,auto)
            from check-simplex-ok[OF s3 this]
                show checked-simplex ics (set (index-of ineqs sineqs (eq'@ eq))) s4
unfolding I'-def .
            qed
            qed
    qed
    qed
qed
lemma eq-finder-rat-in-ctxt: eq-finder-rat =None \Longrightarrow# v.v \models
    eq-finder-rat =Some (eq-idx,v-sol) \Longrightarrow {i.i<length cs ^ is-equality (cs!i)}
\subseteq \mp@code { s e t ~ e q - i d x ~ ^ }
    set eq-idx \subseteq{0 ..< length cs} ^
    distinct eq-idx (is - \Longrightarrow ?main1)
    eq-finder-rat = Some (eq-idx,v-sol) \Longrightarrow
    set feq = make-equality'(!) cs' set eq-idx \Longrightarrow
    set fineq = (!) cs ' ({0 ..< length cs } - set eq-idx) \Longrightarrow
    (\forallv.v\models\mp@subsup{\models}{cs}{}\mathrm{ set cs }\longleftrightarrowv\mp@subsup{\models}{cs}{}(\mathrm{ set feq U set fineq))}\wedge
    Ball (set feq) is-equality ^ Ball (set fineq) is-no-equality }
    (v-sol }\mp@subsup{\models}{cs}{}(\mathrm{ set feq U make-strict'set fineq)) (is - }\Longrightarrow-\Longrightarrow-\Longrightarrow ?main2) 
proof -
    assume eq-finder-rat = None
    from this[unfolded eq-finder-rat-def] have init-eq-finder-rat = None by (cases
init-eq-finder-rat, auto)
    from init-eq-finder-rat(1)[OF this] show # v.v }\mp@subsup{\models}{cs}{}\mathrm{ set cs.
next
    assume eq-finder-rat = Some (eq-idx, v-sol)
    note res = this[unfolded eq-finder-rat-def]
    then obtain s ineq sineq eq
    where init: init-eq-finder-rat = Some (s, ineq, sineq, eq)
    by (cases init-eq-finder-rat, auto)
```

from init-eq-finder-rat(2)[OF init] have sineq: sineq $=$ sineqs
and dist:distinct (ineq @ sineq @ eq) and set: set (ineq @ sineq @ eq) = $\{0 . .<$ length $c s\}$ by auto
note res $=$ res[unfolded init option.simps split sineq]
from res
obtain f fe where main: eq-finder-main-rat s ineq eq $=(f i, f e, v$-sol $)$
by (cases eq-finder-main-rat s ineq eq, auto)
note res $=$ res[unfolded main split]
from res have eq-idx: eq-idx $=f e$
by auto
from dist have dist': distinct (ineq @ eq) by auto
from init-eq-finder-rat(2)[OF init]
have checked-simplex ics (set (index-of ineqs sineqs eq)) s and
$* *:$ set ineq \subseteq set ineqs set eqs \subseteq set eq \wedge set eq \cup set ineq $=$ set eqs \cup set ineqs
equiv-to-cs eq
and $* * *:\{0 . .<$ length $c s\}=$ set $($ ineq @ sineq @ eq) distinct (ineq @ sineq @ eq)
by auto
from eq-finder-main-rat[OF this (1,2,3) main this(4) dist']
have $*$: set $f \subseteq$ set ineqs set eqs \subseteq set fe set fe \cup set $f i=$ set eqs \cup set ineqs and equiv: equiv-to-cs fe
and sat: strict-ineq-sat fi fe v-sol
and dist ${ }^{\prime \prime}$: distinct ($f i$ @ fe) by auto
note init $=$ init-cs[unfolded init-constraints-def Let-def]
note init $^{\prime}=$ init-constraints[OF init-cs]
note eqs $=$ init $^{\prime}(4)$
show ? main 1
proof (intro conjI)
show distinct eq-idx unfolding eq-idx using dist" by auto
show $\{i . i<$ length cs \wedge is-equality $(c s!i)\} \subseteq$ set eq-idx
unfolding eq-idx using set $* * *$ eqs by auto
show set eq-idx $\subseteq\{0 . .<$ length $c s\}$ unfolding eq-idx using set $* * *$ by auto qed
assume feq: set feq = make-equality '(!) cs ' set eq-idx
assume fineq: set fineq $=(!) c s$ ' $(\{0$.. $<$ length $c s\}-$ set eq-idx $)$
from $f e q$ eq-idx
have feq: set feq $=$ set $(\operatorname{map}(\lambda i$. make-equality $(c s!i)) f e)$ by auto
have fineq: set fineq $=$ set $(\operatorname{map}((!) c s)($ sineqs @ fi))
unfolding set-map $* * *$ using $* * *$ (2) unfolding sineq eq-idx fineq
apply (intro image-cong[OF - refl $]$)
unfolding *** $^{\text {sineq }}$ using $* * *(1-2)$ dist ${ }^{\prime \prime}$ by auto
note ineqs $=$ init $^{\prime}(5)$
note sineqs $=\operatorname{init}^{\prime}(6)$
note $i c s=$ init $^{\prime}(7)$
from $*(3)$ have $f e: i \in$ set $f e \Longrightarrow$ is-equality (cs!i) \vee is-nstrict (cs!i) for i
unfolding eqs ineqs by auto
let $? n=$ length $c s$
show ?main2
proof (intro conjI ballI allI)
define c-of where c-of $I=$ Simplex.restrict-to I (set ics) for I
have [simp]: c-of $(I \cup J)=c$-of $I \cup c$-of J for $I J$ unfolding c-of-def by auto \{
fix v
have cs: $v \not \models_{c s}$ set cs $=v \models_{c s}$ c-of (set (index-of ineqs sineqs fe)) (is - $=$?cond)
using equiv[unfolded equiv-to-cs-def] unfolding c-of-def by auto
have ?cond $\longleftrightarrow v \models_{\text {cs }}$ c-of (SIneq' set sineqs)
$\wedge\left(v \not \models_{c s} c\right.$-of (Ineq'set fe)
$\wedge v \models_{c s} c$-of (FIneq'set fe))
$\wedge v \not \models_{c s} c$-of (Ineq'set ineqs) unfolding index-of-def
by auto
also have c-of (SIneq'set sineqs) $=((!) c s)$ 'set sineqs
unfolding c-of-def ics
unfolding sineqs by force
also have c-of (Ineq'set ineqs) $=((!) c s)$ 'set ineqs
unfolding c-of-def ics
unfolding ineqs eqs
by (auto simp: is-nstrict-iff) force
also have c-of (FIneq'set fe) $=(\lambda i$. make-flipped-ineq (cs!i))'set fe (is $? l=? r)$
proof
show ?l \subseteq ?r
unfolding c-of-def ics using $f e *(3)$
unfolding ineqs eqs by auto
show ? $\subseteq \subseteq$?l
proof
fix c
assume $c \in$? r
then obtain i where $i: i \in$ set $f e$ and $c: c=$ make-flipped-ineq (cs $!i)$
by auto
from $* i$ have $i^{\prime}: i \in$ set eqs \cup set ineqs by auto
have $($ FIneq $i, c) \in$ set ics $\cap\{$ FIneq $i\} \times$ UNIV
unfolding c ics using i^{\prime} by auto
hence $c \in c$-of $\{$ FIneq $i\}$ unfolding c-of-def by force
with i show $c \in ? l$ unfolding c-of-def by auto
qed
qed
also have c-of $($ Ineq'set $f e)=(\lambda$ i. make-ineq $(c s!i))$ 'set fe $($ is ?l $=? r)$ proof
\{
fix i
have $i \in$ set $f e \Longrightarrow$ is-nstrict $(c s!i) \Longrightarrow c s!i \in(\lambda i$. make-ineq $(c s!i))$ ' set fe

```
        by (cases cs ! i; force)
    }
    thus ?l \subseteq?r
    unfolding c-of-def ics using fe*(3)
        unfolding ineqs eqs by auto
    show ?r }\subseteq\mathrm{ ?l
    proof
        fix c
        assume c}\in\mathrm{ ?r
        then obtain i where i:i\inset fe and c:c=make-ineq (cs!i)
        by auto
    from *i have i':}i\in\mathrm{ set eqs }\cup\mathrm{ set ineqs by auto
    from fe[OF i]
    have (Ineq i, c)\in set ics \cap{Ineq i} }\times\mathrm{ UNIV
    proof
        assume is-equality (cs!i)
        with i' have i\in set eqs unfolding ineqs by (cases cs ! i, auto)
        thus ?thesis
            unfolding c ics using i' by (cases cs! i; force)
    next
        assume stri: is-nstrict (cs!i)
        with \mp@subsup{i}{}{\prime}}\mathrm{ have }\mp@subsup{i}{}{\prime}:i\in\mathrm{ set ineqs unfolding eqs by (cases cs!i,auto)
        from stri have c:c=cs!i unfolding c by (cases cs!i, auto)
        thus ?thesis
            unfolding c ics using i' by (cases cs ! i; force)
    qed
    hence c \in c-of {Ineq i} unfolding c-of-def by force
    with i show c}\in\mathrm{ ?l unfolding c-of-def by auto
    qed
qed
also have v }\mp@subsup{=}{cs}{}((\lambdai.make-ineq (cs!i))' set fe) ^
v}\mp@subsup{=}{cs}{}((\lambdai. make-flipped-ineq (cs ! i))' set fe)
\longleftrightarrowv\modelscs}((\lambda i. make-equality (cs!i))'set fe) (is ?l = ?r)
proof -
    have?l \longleftrightarrow }\longleftrightarrow(\foralli\in\mathrm{ set fe.v}\mp@subsup{\models}{c}{}\mathrm{ make-ineq (cs!i)}\wedgev\not\models\mp@subsup{}{c}{}\mathrm{ make-flipped-ineq
(cs!i))
            by auto
    also have ...\longleftrightarrow(\foralli\in set fe.v \models}\mp@subsup{c}{c}{}\mathrm{ make-equality (cs!i))
            apply (intro ball-cong[OF refl])
            subgoal for i using fe[of i]
            by (cases cs!i,auto)
        done
    also have }\ldots\longleftrightarrow\mathrm{ ?r by auto
    finally show ?l = ?r .
qed
finally have ?cond \longleftrightarrow
    v}\mp@subsup{\models}{cs}{}((!)cs'(set sineqs \cup set ineqs)\cup(\lambdai. make-equality (cs!i))' set fe
    by auto
also have }\ldots\longleftrightarrowv\not\mp@subsup{\models}{cs}{}(\mathrm{ set feq }\cup\mathrm{ set fineq) (is ?l = ?r)
```

```
    proof
    show ?l \Longrightarrow ?r unfolding feq fineq using * by auto
    assume v: ?r
    show ?l
    proof
            fix c
            assume c:c\in(!) cs'(set sineqs U set ineqs) U
                (\lambdai. make-equality (cs!i))'set fe
            show v}\mp@subsup{=}{c}{c
            proof (cases c \in (!) cs ' (set sineqs U set fi) U
                (\lambdai. make-equality (cs!i))'set fe)
            case True
            thus ?thesis using v feq fineq * by auto
            next
                case False
                with c obtain i where i\in set ineqs - set fi and c:c=cs!i by auto
                with * have i:i\in set fe by auto
            with v have v}\mp@subsup{=}{c}{}\mathrm{ make-equality (cs!i)
                using v feq fineq * by auto
                with fe[OF i] show ?thesis unfolding c by (cases cs!i,auto)
            qed
        qed
    qed
    finally have main: ?cond \longleftrightarrowv \models
    with cs show v}\mp@subsup{=}{cs}{}\mathrm{ set cs=v}\mp@subsup{\models}{cs}{}\mathrm{ (set feq U set fineq) by auto
    note main
    } note main = this
    fix c
    {
        assume c\in set feq
        from this[unfolded feq] obtain i where i:i\in set fe
        and c:c= make-equality (cs!i) by auto
    from i* have i\in set eqs }\cup\mathrm{ set ineqs by auto
    hence is-equality (cs!i)\vee is-nstrict (cs!i)
        unfolding ineqs eqs by auto
    thus is-equality c unfolding c
        by (cases cs ! i, auto)
    }
    {
        assume c f set fineq
        from this[unfolded fineq]* obtain i}\mathrm{ where i:i}\mathrm{ : set sineqs }\cup\mathrm{ set ineqs
            and c:c=cs!i by auto
            hence is-nstrict c\vee is-strict c unfolding c sineqs ineqs by auto
            thus is-no-equality c by (cases c, auto)
    }
    from sat[unfolded strict-ineq-sat-def]
    have old: v-sol }\mp@subsup{\models}{cs}{}c\mathrm{ cof (set (index-of ineqs sineqs fe)) and new: v-sol }\mp@subsup{\models}{cs}{
c-of (TmpSIneq' set fi)
    by (auto simp: c-of-def)
```

```
    have tmp: c-of (TmpSIneq'set fi)=(\lambda i. make-strict (cs ! i))' set fi
    apply (rule sym)
    unfolding c-of-def ics using *(1) unfolding ineqs
    by force
    fix c
    assume c \in set feq U make-strict' set fineq
    thus v-sol \models}\mp@subsup{c}{c}{}
    proof
        assume c \in set feq
        thus ?thesis using old[unfolded main] by auto
    next
        assume c\in make-strict'set fineq
        from this[unfolded fineq]
        obtain i where i:i\in set sineqs }\veei\in\mathrm{ set fi
            and c:c= make-strict (cs!i) by force
        from i show ?thesis
        proof
            assume i\in set fi
            with new[unfolded tmp] c show ?thesis by auto
        next
            assume i: i\in set sineqs
            hence v: v-sol }\mp@subsup{\models}{c}{}\mathrm{ (cs!i) using old[unfolded main]
                unfolding fineq by auto
            from i[unfolded sineqs] have make-strict (cs!i)=cs!i
                by (cases cs!i, auto)
            with v show ?thesis unfolding c by auto
        qed
    qed
    qed
qed
end
end
lemma eq-finder-rat:
```

```
\(e q\)-finder-rat cs \(=\) None \(\Longrightarrow \nexists v . v \neq_{c s}\) set cs \((\) is \(? p 1 \Longrightarrow\) ? \(g 1)\)
```

$e q$-finder-rat cs $=$ None $\Longrightarrow \nexists v . v \neq_{c s}$ set cs $($ is $? p 1 \Longrightarrow$? $g 1)$
eq-finder-rat cs $=$ Some $(e q-i d x, v$-sol $) \Longrightarrow$
eq-finder-rat cs $=$ Some $(e q-i d x, v$-sol $) \Longrightarrow$
$\{i . i<$ length cs $\wedge i s$-equality $(c s!i)\} \subseteq$ set eq-idx \wedge
$\{i . i<$ length cs $\wedge i s$-equality $(c s!i)\} \subseteq$ set eq-idx \wedge
set eq-idx $\subseteq\{0$.. $<$ length $c s\} \wedge$
set eq-idx $\subseteq\{0$.. $<$ length $c s\} \wedge$
distinct eq-idx (is ?p2 \Longrightarrow ? $\left.{ }^{2} 2\right)$
distinct eq-idx (is ?p2 \Longrightarrow ? $\left.{ }^{2} 2\right)$
eq-finder-rat cs $=$ Some $(e q-i d x, v$-sol $) \Longrightarrow$
eq-finder-rat cs $=$ Some $(e q-i d x, v$-sol $) \Longrightarrow$
set eq = make-equality '(!) cs' set eq-idx \Longrightarrow
set eq = make-equality '(!) cs' set eq-idx \Longrightarrow
set ineq $=(!) c s$ ' $(\{0 \quad . .<$ length $c s\}-$ set eq-idx $) \Longrightarrow$
set ineq $=(!) c s$ ' $(\{0 \quad . .<$ length $c s\}-$ set eq-idx $) \Longrightarrow$
$\left(\forall v . v \models_{c s}\right.$ set $c s \longleftrightarrow v \models_{c s}($ set eq \cup set ineq $\left.)\right) \wedge$
$\left(\forall v . v \models_{c s}\right.$ set $c s \longleftrightarrow v \models_{c s}($ set eq \cup set ineq $\left.)\right) \wedge$
Ball (set eq) is-equality \wedge Ball (set ineq) is-no-equality \wedge
Ball (set eq) is-equality \wedge Ball (set ineq) is-no-equality \wedge
$\left(v\right.$-sol $\models_{c s}($ set eq \cup make-strict'set ineq) $)$

```
    \(\left(v\right.\)-sol \(\models_{c s}(\) set eq \(\cup\) make-strict'set ineq) \()\)
```

```
    (is \(? p 2 \Longrightarrow\) ? \(p 3 \Longrightarrow\) ? \(p 4 \Longrightarrow\) ? 93 )
proof -
    obtain ics ineqs sineqs eqs
        where init-constraints \(c s=(i c s\), ineqs, sineqs, eqs \()\)
        by (cases init-constraints cs)
    from eq-finder-rat-in-ctxt[OF this]
```



```
qed
hide-fact eq-finder-rat-in-ctxt
end
```


5.3 Algorithm to Detect Implicit Equalities in \mathbb{Z}

Use the rational equality finder to identify integer equalities.
Basically, this is just a conversion between the different types of constraints.

```
theory Linear-Diophantine-Eq-Finder
    imports
        Linear-Polynomial-Impl
        Equality-Detection-Impl
        Diophantine-Tightening
begin
definition linear-poly-of-lpoly :: (int,var)lpoly \(\Rightarrow\) linear-poly where
    [code del]: linear-poly-of-lpoly \(p=(\) let cxs \(=\operatorname{map}(\lambda v .(v\), coeff-l \(p v))(v a r s-l-l i s t\)
p)
        in sum-list (map \((\lambda(x, c)\). lp-monom (of-int c) \(x) c x s))\)
lemma linear-poly-of-lpoly-impl[code]:
    linear-poly-of-lpoly (lpoly-of \(p)=(\) let cxs \(=\) vars-coeffs-impl \(p\)
        in sum-list (map ( \(\lambda(x, c)\). lp-monom (of-int c) \(x)\) cxs))
    unfolding linear-poly-of-lpoly-def vars-coeffs-impl(5) ..
lemma valuate-sum-list: valuate (sum-list ps) \(\alpha=\) sum-list (map ( \(\lambda\) p. valuate \(p\)
a) \(p s\) )
    by (induct ps, auto simp: valuate-zero valuate-add)
lemma linear-poly-of-lpoly: rat-of-int (eval-l \(\alpha\) p) \(=\) of-int \((\) constant-l \(p)+\) valuate
(linear-poly-of-lpoly \(p\) ) ( \(\lambda\) x. of-int \((\alpha x)\) )
    unfolding eval-l-def of-int-add
    unfolding linear-poly-of-lpoly-def Let-def map-map o-def split valuate-sum-list
valuate-lp-monom
    unfolding of-int-mult [symmetric] of-int-sum
    unfolding vars-l-list-def
    by (subst sum-list-distinct-conv-sum-set, auto)
definition dleq-to-constraint :: var dleq \(\Rightarrow\) constraint where
```

```
    dleq-to-constraint \(p=E Q(\) linear-poly-of-lpoly \(p)(\) of-int \((-\) constant-l \(p))\)
```

lemma dleq-to-constraint: satisfies-dleq $\alpha e \longleftrightarrow$ satisfies-constraint (λ x. rat-of-int
$(\alpha x))$ (dleq-to-constraint e)
proof -
have satisfies-dleq $\alpha e \longleftrightarrow$ rat-of-int $($ eval-l $\alpha e)=0$
unfolding satisfies-dleq-def by blast
also have $\ldots \longleftrightarrow$ satisfies-constraint (λ x. rat-of-int (αx)) (dleq-to-constraint
e)
unfolding linear-poly-of-lpoly[of α e] dleq-to-constraint-def
by auto
finally show ?thesis .
qed
definition dlineq-to-constraint :: var dlineq \Rightarrow constraint where
dlineq-to-constraint $p=L E Q($ linear-poly-of-lpoly $p)($ of-int $(-$ constant-l $p))$
lemma dlineq-to-constraint: satisfies-dlineq $\alpha e \longleftrightarrow$
satisfies-constraint (λ x. rat-of-int $(\alpha x))$ (dlineq-to-constraint e)
proof -
have satisfies-dlineq $\alpha e \longleftrightarrow$ rat-of-int (eval-l $\alpha e) \leq 0$
unfolding satisfies-dlineq-def by simp
also have $\ldots \longleftrightarrow$ satisfies-constraint (λ x. rat-of-int (αx)) (dlineq-to-constraint
e)
unfolding linear-poly-of-lpoly[of α e] dlineq-to-constraint-def
by auto
finally show ?thesis.
qed
definition eq-finder-int :: var dlineq list \Rightarrow
(var dleq list \times var dlineq list) option where
[code del]: eq-finder-int ineqs $=($ case
eq-finder-rat (map dlineq-to-constraint ineqs) of
None \Rightarrow None
\mid Some ($i d x-e q,-) \Rightarrow$ let $I=$ set $i d x-e q$;
ics $=$ zip $[0 . .<$ length ineqs $]$ ineqs
in case List.partition $(\lambda(i, c) . i \in I)$ ics
of (eqs2, ineqs2) \Rightarrow Some (map snd eqs2, map snd ineqs2))
lemma classify-dlineq-to-constraint[simp]:
\neg is-strict (dlineq-to-constraint c)
\neg is-equality (dlineq-to-constraint c)
is-nstrict (dlineq-to-constraint c)
by (auto simp: dlineq-to-constraint-def)
lemma init-constraints-ineqs:
init-constraints (map dlineq-to-constraint ineqs) $=$
(let idx $=[0 . .<$ length ineqs $]$;
$i c s^{\prime}=z i p i d x$

```
        (map dlineq-to-constraint ineqs);
    ics = concat (map index-constraint ics')
    in (ics, idx, [], []))
    unfolding init-constraints-def length-map Let-def
    apply (clarsimp simp flip: set-empty, intro conjI)
    subgoal apply (subst filter-True)
    subgoal by (auto dest!: set-zip-rightD)
    subgoal by auto
    done
by (auto dest!: set-zip-rightD)
lemmas eq-finder-int-code[code] =
    eq-finder-int-def[unfolded eq-finder-rat-def init-eq-finder-rat-def, unfolded init-constraints-ineqs]
lemma eq-finder-int: assumes
    res: eq-finder-int ineqs = res
    shows res =None \Longrightarrow# \alpha. \alpha = dio ({}, set ineqs)
        res =Some (eqs, ineqs')\Longrightarrow\alpha\mp@subsup{\models}{\mathrm{ dio }}{\prime}({},\mathrm{ set ineqs) }\longleftrightarrow\alpha\models\mp@subsup{\models}{dio}{(set eqs, set}
ineqs')
    res =Some (eqs, ineqs')\Longrightarrow\exists\alpha.\alpha \models}\mp@subsup{c}{cs}{\prime}(make-strict 'dlineq-to-constraint '
set ineqs')
    res =Some (eqs, ineqs')}\Longrightarrow\mathrm{ length ineqs = length eqs + length ineqs'
proof (atomize(full), goal-cases)
    case 1
    define cs where cs = map dlineq-to-constraint ineqs
    let ?sat = \lambda \alpha eqs ineqs. Ball (set eqs) (satisfies-dleq \alpha) ^ Ball (set ineqs)
(satisfies-dlineq \alpha)
    note defs = dlineq-to-constraint dleq-to-constraint
    note defs2 = satisfies-dlineq-def satisfies-dleq-def
    note defs3 = dlineq-to-constraint-def dleq-to-constraint-def
    note res = res[unfolded eq-finder-int-def, folded cs-def]
    show ?case
    proof (cases eq-finder-rat cs)
        case None
        with res have res: res = None by auto
        from eq-finder-rat(1)[OF None, unfolded cs-def]
        have ## 人. ?sat \alpha [] ineqs unfolding defs by auto
        with res show ?thesis by auto
    next
        case (Some pair)
            then obtain eq-idx sol where eq: eq-finder-rat cs = Some (eq-idx, sol) by
(cases pair, auto)
    define ics where ics = zip [0 ..< length ineqs] ineqs
    let ?I = set eq-idx
    let ?part = List.partition ( }\lambda(i,c).i\in?I) ic
    obtain ineqs2 eqs2 where part: ?part = (eqs2, ineqs2) by force
    let ?ineqs2 = map snd ineqs2
    let ?eqs2 = map snd eqs2
    have ics:ics = map ( }\lambdai.(i,\mathrm{ ineqs ! i) ) [0 ..< length ineqs]
```

```
        unfolding ics-def by (intro nth-equalityI, auto)
    from part have eqs2:?eqs2 = map ((!) ineqs) (filter ( }\lambda\mathrm{ i. i f ?I) [0 ..< length
ineqs])
            unfolding ics by (auto simp: filter-map o-def)
    from part have ineqs2:?ineqs2 = map ((!) ineqs) (filter (\lambda i. i\not\in?I)[0 ..<
length ineqs])
    unfolding ics by (auto simp: filter-map o-def)
    note res = res[unfolded eq option.simps split Let-def, folded ics-def,
        unfolded part split]
    from eq-finder-rat(2)[OF eq]
    have eq-finder2: {i.i<length cs }\wedge\mathrm{ is-equality (cs!i)} }\subseteq\mathrm{ ?I
        ?I\subseteq{0..<length cs }
        distinct eq-idx by auto
    have len: length ineqs = length cs unfolding cs-def by auto
    from eq-finder2 have filter: {x\in set [0..<length ineqs]. x f ?I } =?I
        unfolding len by force
    from eq-finder2 have filter': set (filter (\lambdai. i\not\in?I) [0..<length ineqs]) ={0
..< length cs} - ?I
        unfolding len by force
    have eqs2': set (map dleq-to-constraint ?eqs2) = make-equality'(!) cs '?I
        unfolding set-map eqs2 set-filter image-comp filter o-def using eq-finder2
        by (intro image-cong[OF refl])
            (auto simp:cs-def nth-append defs3)
    have ineqs2': set (map dlineq-to-constraint ?ineqs2) = (!) cs ' ({0..<length cs }
- ?I)
            unfolding set-map ineqs2 filter' image-comp o-def
            apply (intro image-cong[OF refl])
            subgoal for }i\mathrm{ using set-mp[OF eq-finder2(1), of i]
            unfolding defs2 by (auto simp: cs-def nth-append defs3)
        done
    from eq-finder-rat(3)[OF eq eqs2' ineqs2 ] have
    equiv: \ v.v \modelscs set cs=v \modelscs (dleq-to-constraint'set ?eqs2 \cup dlineq-to-constraint
' set ?ineqs2)
            and strict: sol }\mp@subsup{\models}{cs}{}(\mathrm{ set (map dleq-to-constraint ?eqs2) U make-strict' set
(map dlineq-to-constraint ?ineqs2))
            unfolding set-map by metis+
    from strict have strict: sol }\mp@subsup{\models}{cs}{(}\mathrm{ (make-strict 'dlineq-to-constraint'set ?ineqs2)
by auto
    {
        let ? }\alpha=\lambdax :: var. rat-of-int ( \alpha x)
        have ?sat \alpha [] ineqs \longleftrightarrow ? }\alpha\mp@subsup{\models}{cs}{}\mathrm{ set cs unfolding cs-def
            by (auto simp: defs)
        also have ...\longleftrightarrow ?sat \alpha ?eqs2 ?ineqs2 unfolding equiv
            using defs[of \alpha] by fastforce
            finally have ?sat \alpha [] ineqs \longleftrightarrow ?sat \alpha ?eqs2 ?ineqs2 .
    } note eq=this
    have length ineqs = length ics unfolding ics-def by auto
```

```
    also have ... = length eqs2 + length ineqs2 using part[simplified]
    by (smt (verit) comp-def filter-cong sum-length-filter-compl)
    finally show ?thesis using eq res strict by fastforce
    qed
qed
end
```


6 A Combined Preprocessor

We combine equality detection, equality elimination and tightening in one function that eliminates all explicit and implicit equations from a list of inequalities and equalities, to either detect unsat or to return an equivalent list of inequalities which all can be satisfied strictly in the rational numbers.

```
theory Dio-Preprocessor
    imports
        Linear-Polynomial-Impl
        Linear-Diophantine-Solver-Impl
        Diophantine-Tightening
        Linear-Diophantine-Eq-Finder
begin
```

Combine equality elimination and tightening in one algorithm
definition dio-elim-equations-and-tighten :: var dleq list \Rightarrow var dlineq list \Rightarrow
(var dlineq list $\times(($ int,var $)$ assign $\Rightarrow($ int,var $)$ assign $))$ option where
dio-elim-equations-and-tighten eqs ineqs $=$ (case equality-elim-for-inequalities fresh-vars-nat
eqs ineqs
of None \Rightarrow None
| Some (ineqs2, adj) \Rightarrow map-option (λ ineqs3. (ineqs3, adj)) (tighten-ineqs
ineqs2))
lemma dio-elim-equations-and-tighten: assumes
res: dio-elim-equations-and-tighten eqs ineqs $=$ res
shows res $=$ None $\Longrightarrow \nexists \alpha . \alpha \neq_{\text {dio }}$ (set eqs, set ineqs)
res $=$ Some $\left(\right.$ ineqs $^{\prime}$, adj $) \Longrightarrow \alpha \models_{\text {dio }}\left(\{ \}\right.$, set ineqs $\left.{ }^{\prime}\right) \Longrightarrow \beta=\operatorname{adj} \alpha \Longrightarrow \beta \models_{d i o}$
(set eqs, set ineqs)
res $=$ Some $\left(\right.$ ineqs $\left.^{\prime}, a d j\right) \Longrightarrow \nexists \alpha . \alpha \models_{\text {dio }}\left(\{ \}\right.$, set ineqs $\left.{ }^{\prime}\right) \Longrightarrow \nexists \alpha \cdot \alpha \models_{\text {dio }}($ set
eqs, set ineqs)
res $=$ Some $\left(\right.$ ineqs $^{\prime}$, adj $) \Longrightarrow$ length ineqs ${ }^{\prime} \leq$ length ineqs
proof (atomize(full), goal-cases)
case 1
note res $=$ res[unfolded dio-elim-equations-and-tighten-def]
show ? case
proof (cases equality-elim-for-inequalities fresh-vars-nat eqs ineqs)
case None
from equality-elim-for-inequalities-nat(1)[OF None refl] None show ?thesis
using res by auto

```
    next
        case (Some pair)
        obtain ineqs2 adj' where pair: pair = (ineqs2, adj') by force
        note Some = Some[unfolded pair]
        note res = res[unfolded Some option.simps split]
        note eq-elim = equality-elim-for-inequalities-nat(2-)[OF Some refl]
        show ?thesis
        proof (cases tighten-ineqs ineqs2)
        case None
        with res eq-elim tighten-ineqs(1)[OF None] show ?thesis by auto
    next
        case (Some ineqs3)
        with res eq-elim tighten-ineqs(2)[OF Some] show ?thesis by force
    qed
    qed
qed
```

Now all three preprocessing steps are combined.
Since after an equality elimination the resulting inequalities might be tightened, it can happen that after the tightening new equalities are implied; therefore the whole process is performed recursively

```
function dio-preprocess-main :: (int, var) lpoly list }=>\mathrm{ ((int, var) lpoly list }
((int,var)assign =>(int,var)assign)) option where
    dio-preprocess-main ineqs = (case eq-finder-int ineqs of None }=>\mathrm{ None
        | Some (eqs, ineqs') }=>\mathrm{ (case eqs of [] = Some (ineqs', id)
            | - = (case dio-elim-equations-and-tighten eqs ineqs' of None }=>\mathrm{ None
            | Some (ineqs'', adj) => map-option (map-prod id ( }\lambda\mathrm{ adj'. adj o adj'))
(dio-preprocess-main ineqs''))))
    by pat-completeness auto
termination
proof (standard, rule wf-measure[of length], goal-cases)
    case (1 ineqs pair eqs ineqs' e eqs' pair' ineqs'" adj)
    from eq-finder-int(4)[OF 1(1), folded 1 (2), OF refl]
        dio-elim-equations-and-tighten(4)[OF 1(4), folded 1(5), OF refl]
        1(3)
    show ?case by auto
qed
```

declare dio-preprocess-main.simps[simp del]
lemma dio-preprocess-main: assumes
res: dio-preprocess-main ineqs $=$ res
shows res $=$ None $\Longrightarrow \nexists \alpha . \alpha \models_{\text {dio }}(\{ \}$, set ineqs)
res $=$ Some $\left(\right.$ ineqs $\left.s^{\prime}, a d j\right) \Longrightarrow \alpha \models_{\text {dio }}(\{ \}$, set ineqs $) \Longrightarrow(\operatorname{adj} \alpha) \models_{d i o}(\{ \}$, set
ineqs)
res $=\operatorname{Some}\left(\right.$ ineqs $\left.^{\prime}, a d j\right) \Longrightarrow \nexists \alpha . \alpha \models_{\text {dio }}\left(\{ \}\right.$, set ineqs $\left.{ }^{\prime}\right) \Longrightarrow \nexists \alpha . \alpha \models_{d i o}(\{ \}$,
set ineqs)
res $=$ Some $($ ineqs', adj $) \Longrightarrow \exists \alpha . \alpha \models_{c s}$ (make-strict'dlineq-to-constraint'set

```
ineqs')
proof (atomize(full), goal-cases)
    case 1
    show ?case using res
    proof (induction ineqs arbitrary: res ineqs' adj \alpha rule: dio-preprocess-main.induct)
    case (1 ineqs res ineqs' adj \alpha)
    note res = dio-preprocess-main.simps[of ineqs, unfolded 1.prems]
    show ?case
    proof (cases eq-finder-int ineqs)
        case None
        from res[unfolded None option.simps] eq-finder-int(1)[OF None] show ?thesis
by auto
    next
        case (Some pair)
        obtain eqs1 ineqs1 where pair: pair = (eqs1, ineqs1) by force
        note Some = Some[unfolded pair]
        note res = res[unfolded Some option.simps split]
        note eqf = eq-finder-int(2,3)[OF Some refl]
        note IH = 1.IH[OF Some refl]
        show ?thesis
        proof (cases eqs1)
            case Nil
            with res have res = Some (ineqs1, id) by auto
            with res eqf Nil show ?thesis by auto
        next
            case (Cons e eqs1')
            note res = res[unfolded Cons list.simps, folded Cons]
            note IH = IH[OF Cons]
            show ?thesis
            proof (cases dio-elim-equations-and-tighten eqs1 ineqs1)
                case None
                note res = res[unfolded None option.simps]
            from dio-elim-equations-and-tighten(1)[OF None] res show ?thesis using
eqf by auto
            next
                case (Some pair2)
                obtain ineqs2 adj2 where pair2: pair2 = (ineqs2, adj2) by force
                note Some = Some[unfolded this]
                note res = res[unfolded Some option.simps split]
                note IH=IH[OF Some refl refl}
                note elim = dio-elim-equations-and-tighten(2-3)[OF Some refl]
                note elim}=\operatorname{elim}(1)[OF-refl] elim(2
                show ?thesis
                proof (cases dio-preprocess-main ineqs2)
                    case None
                    with IH have ## . }\foralla\in\mathrm{ set ineqs2. satisfies-dlineq }\alpha\mathrm{ a by auto
                    with elim res None eqf show ?thesis by auto
                next
                case (Some pair3)
```

```
                    obtain ineqs3 adj3 where pair3: pair3 = (ineqs3, adj3) by force
                    note Some = Some[unfolded this]
                    from res[unfolded Some]
                    have res: res = Some (ineqs3, adj2 o adj3) by auto
                    from IH[of ineqs3 adj3] Some res IH elim eqf show ?thesis by auto
                    qed
            qed
        qed
    qed
    qed
qed
```

The final preprocessing function just does some initial round of equality elimination and tightening before invoking the main algorithm which tries to detect and eliminate further implicit equalities.

```
definition dio-preprocess :: var dleq list }=>\mathrm{ var dlineq list }=>\mathrm{ (var dlineq list }
((int,var)assign => (int,var)assign)) option where
    dio-preprocess eqs ineqs = (case dio-elim-equations-and-tighten eqs ineqs of None
=> None
    | Some (ineqs', adj) => map-option (map-prod id (\lambda adj'. adj o adj'))
(dio-preprocess-main ineqs'))
```

The dio-preprocess algorithm eliminates all explicit and implicit equalities; in the negative outcome (None) we see (1) that the input constraints are unsat; and in the positive case (Some) (2) the resulting inequalities are equisatisfiable to the input constraints, (3) the solutions can be transformed in one direction via an adjuster adj, and (4) all resulting inequalities can be satisfied strictly using rational numbers, so no further equalities can be deduced using rational arithmetic reasoning.

```
lemma dio-preprocess: assumes res: dio-preprocess eqs ineqs \(=\) res
    shows res \(=\) None \(\Longrightarrow \nexists \alpha . \alpha \neq_{\text {dio }}\) (set eqs, set ineqs)
    res \(=\) Some \(\left(\right.\) ineqs \(\left.^{\prime}, a d j\right) \Longrightarrow\left(\exists \alpha . \alpha \neq_{\text {dio }}\left(\{ \}\right.\right.\), set ineqs \(\left.\left.{ }^{\prime}\right)\right) \longleftrightarrow\left(\exists \alpha . \alpha \models_{\text {dio }}\right.\)
(set eqs, set ineqs))
    res \(=\) Some \(\left(\right.\) ineqs \(\left.^{\prime}, a d j\right) \Longrightarrow \alpha \models_{\text {dio }}\left(\{ \}\right.\), set ineqs \(\left.{ }^{\prime}\right) \Longrightarrow(\) adj \(\alpha) \models_{\text {dio }}(\) set eqs,
set ineqs
    res \(=\) Some \((\) ineqs', adj \() \Longrightarrow \exists \alpha . \alpha \models_{c s}\) (make-strict'dlineq-to-constraint'set
ineqs \({ }^{\prime}\) )
proof (atomize(full), goal-cases)
    case 1
    note res \(=\) res[unfolded dio-preprocess-def]
    show? case
    proof (cases dio-elim-equations-and-tighten eqs ineqs)
        case None
        with dio-elim-equations-and-tighten(1)[OF None] res show ?thesis by auto
    next
        case (Some pair)
        obtain ineqs1 adj1 where pair \(=(\) ineqs 1, adj1 \()\) by force
        note Some \(=\) Some[unfolded this]
```

```
    note res = res[unfolded Some option.simps split]
    note elim = dio-elim-equations-and-tighten(2-3)[OF Some refl]
    note elim}=\operatorname{elim}(1)[OF-refl] elim(2
    show ?thesis
    proof (cases dio-preprocess-main ineqs1)
    case None
    with dio-preprocess-main(1)[OF None] res elim show ?thesis by auto
    next
        case (Some pair2)
        obtain ineqs2 adj2 where pair2 = (ineqs2, adj2) by force
        note Some = Some[unfolded this]
        from res[unfolded Some]
        have res:res = Some (ineqs2, adj1 ○ adj2) by auto
        from dio-preprocess-main(2-4)[OF Some refl] elim res
        show ?thesis by fastforce
    qed
qed
qed
end
```


7 Examples

theory Dio-Preprocessing-Examples
 imports
 Dio-Preprocessor
 begin

Inequalities where branch-and-bound algorithm is not terminating without setting global bounds
definition example-3-x-min-y :: (int,var)lpoly list where

```
    example-3-x-min-y = (let x = var-l 1; y = var-l 2 in
```

 [const-l 1 - smult-l \(3 x+\) smult-l \(3 y\),
 smult-l \(3 x\) - smult-l \(3 y\) - const-l 2])
 Preprocessing can detect unsat
lemma case dio-preprocess [] example-3-x-min-y of None \Rightarrow True \mid Some $-\Rightarrow$ False

> by eval

Griggio, example 1, unsat detection by preprocessing
definition griggio-example-1-eqs :: var dleq list where
griggio-example-1-eqs $=($ let $x 1=$ var-l 1; x2 $=$ var-l 2; x3 $=$ var-l 3 in
[smult-l 3 x1 + smult-l 3 x2 + smult-l 14 x3 - const-l 4 ,
smult-l $7 x 1+$ smult-l $12 x 2+$ smult-l $31 x 3-$ const-l 17])
lemma case dio-preprocess griggio-example-1-eqs [] of None \Rightarrow True \mid Some $-\Rightarrow$ False

by eval

Griggio, example 2, unsat detection by preprocessing
definition griggio-example-2-eqs :: var dleq list where
griggio-example-2-eqs $=\left(\right.$ let $x 1=$ var-l $1 ; x 2=\operatorname{var-l} 2 ; x 3=v a r-l 3 ; x_{4}=v a r-l$ 4 in
[smult-l 2 x1 - smult-l 5 x3, x2 - smult-l 3 x4])
definition griggio-example-2-ineqs :: (int,var) lpoly list where
griggio-example-2-ineqs $=($ let $x 1=$ var-l $1 ; x 2=$ var-l $2 ; x 3=$ var-l 3 in
[- smult-l $2 x 1-x 2-x 3+$ const-l 7, smult-l 2 x1 $+x 2+x 3-$ const-l 8])
lemma case dio-preprocess griggio-example-2-eqs griggio-example-2-ineqs of None \Rightarrow True \mid Some $-\Rightarrow$ False
by eval
Termination proof of binary logarithm program $n:=0$; while $(x>1)\{x$ $:=x \operatorname{div} 2 ; n:=n+1\}$
definition example-log-transition-formula :: (int,var) lpoly list
where example-log-transition-formula $=\left(\right.$ let $x=$ var-l $1 ; x^{\prime}=$ var-l $2 ; n=$ var-l
3; $n^{\prime}=$ var-l 4
in [const-l $1-x$,
$n^{\prime}-n$,
$n-n^{\prime}$,
smult-l $2 x^{\prime}-x$,
$x-$ smult-l $2 x^{\prime}-$ const-l 1])
x is decreasing in each iteration
value (code) let $x=$ var-l $1 ; x^{\prime}=$ var-l 2 in dio-preprocess []$\left(\left(x-x^{\prime}\right) \#\right.$ exam-ple-log-transition-formula)
x is bounded by -2
value (code) let $x=$ var-l 1 in dio-preprocess []$((x+$ const-l 2 $) \#$ example-log-transition-formula $)$
end

References

[1] M. Bromberger and C. Weidenbach. New techniques for linear arithmetic: cubes and equalities. Formal Methods Syst. Des., 51(3):433-461, 2017.
[2] A. Griggio. A practical approach to satisability modulo linear integer arithmetic. J. Satisf. Boolean Model. Comput., 8(1/2):1-27, 2012.
[3] F. Maric, M. Spasic, and R. Thiemann. An incremental simplex algorithm with unsatisfiable core generation. Arch. Formal Proofs, 2018, 2018.
[4] W. W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence analysis. In J. L. Martin, editor, Proceedings Supercomputing '91, Albuquerque, NM, USA, November 18-22, 1991, pages 4-13. ACM, 1991.

