The Lévy-Prokhorov Metric

Michikazu Hirata

June 11, 2024

Abstract

We formalize the Lévy-Prokhorov metric, a metric on finite measures, mainly following the lecture notes by Gaans [4]. This entry includes the following formalization.

- Characterizations of closed sets, open sets, and topology by limit.
- A special case of Alaoglu's theorem.
- Weak convergence and the Portmanteau theorem.
- The Lévy-Prokhorov metric and its completeness and separability.
- The equivalence of the topology of weak convergence and the topology generated by the Lévy-Prokhorov metric.
- Prokhorov's theorem.
- Equality of two σ-algebras on the space of finite measures. One is the Borel algebra of the Lévy-Prokhorov metric and the other is the least σ-algebra that makes $(\lambda \mu . \mu(A))$ measurable for all measurable sets A.
- The space of finite measures on a standard Borel space is also a standard Borel space.

Contents

1 Preliminaries 2
1.1 Finite Sum of Measures 4
1.2 Sequentially Continuous Maps 13
1.3 Sequential Compactness 13
1.4 Lemmas for Limsup and Liminf 16
1.5 A Characterization of Closed Sets by Limit 20
1.6 A Characterization of Topology by Limit 24
1.7 A Characterization of Open Sets by Limit 24
1.8 Lemmas for Upper/Lower-Semi Continuous Maps 27
2 Alaoglu's Theorem 28
2.1 Metrizability of the Space of Uniformly Bounded Positive Lin- ear Functionals 29
2.2 Alaoglu's Theorem 40
3 General Weak Convergence 44
3.1 Topology of Weak Convegence 45
3.2 Weak Convergence 46
3.3 Limit in Topology of Weak Convegence 46
3.4 The Portmanteau Theorem 49
4 The Lévy-Prokhorov Metric 67
4.1 The Lévy-Prokhorov Metric 67
4.2 Convervence and Weak Convergence 85
4.3 Separability 92
4.4 The Lévy-Prokhorov Metric and Topology of Weak Convegence105
5 Prokhorov's Theorem 106
5.1 Prokhorov's Theorem 106
5.2 Completeness of the Lévy-Prokhorov Metric 125
5.3 Equivalence of Separability, Completeness, and Compactness 131
5.4 Prokhorov Theorem for Topology of Weak Convergence 140
6 Measurable Space of Finite Measures 143
6.1 Measurable Space of Finite Measures 143
6.2 Equivalence between Spaces of Finite Measures 146
6.3 Standardness 156

1 Preliminaries

```
theory Lemmas-Levy-Prokhorov
    imports Standard-Borel-Spaces.StandardBorel
begin
```

lemma(in Metric-space) [measurable]:
shows mball-sets: mball $x e \in$ sets (borel-of mtopology)
and mcball-sets: mcball $x e \in$ sets (borel-of mtopology)
by (auto simp: borel-of-open borel-of-closed)
lemma Metric-space-eq-MCauchy:
assumes Metric-space $M d \bigwedge x y . x \in M \Longrightarrow y \in M \Longrightarrow d x y=d^{\prime} x y$
and $\bigwedge x y \cdot d^{\prime} x y=d^{\prime} y x \bigwedge x y \cdot d^{\prime} x y \geq 0$
shows Metric-space.MCauchy Mdxn \longleftrightarrow Metric-space.MCauchy M d ${ }^{\prime} x n$
proof -
interpret d : Metric-space $M d$ by fact

```
    interpret d': Metric-space M d
    using Metric-space-eq assms d.Metric-space-axioms by blast
    show ?thesis
    using assms(2) by(auto simp: d.MCauchy-def d'.MCauchy-def subsetD)
qed
```

lemma borel-of-compact: Hausdorff-space $X \Longrightarrow$ compactin $X K \Longrightarrow K \in$ sets
(borel-of X)
by (auto intro!: borel-of-closed compactin-imp-closedin)
lemma prob-algebra-cong: sets $M=$ sets $N \Longrightarrow$ prob-algebra $M=$ prob-algebra N
by (simp add: prob-algebra-def cong: subprob-algebra-cong)
lemma topology-eq-closedin: $X=Y \longleftrightarrow(\forall C$. closedin $X C \longleftrightarrow$ closedin $Y C)$
unfolding topology-eq
by (metis closedin-def closedin-topspace openin-closedin-eq openin-topspace sub-
set-antisym)

Another version of finite-measure $? M \Longrightarrow$ countable $\{x$. Sigma-Algebra.measure
$? M\{x\} \neq 0\}$
lemma(in finite-measure) countable-support-sets:
assumes disjoint-family-on Ai D
shows countable $\{i \in D$. measure $M(A i i) \neq 0\}$
proof cases
assume measure $M($ space $M)=0$
with bounded-measure measure-le-0-iff have $[$ simp $]:\{i \in D$. measure $M(A i i) \neq$
$0\}=\{ \}$
by auto
show ?thesis
by simp
next
let $? M=$ measure $M($ space $M)$ and $? m=\lambda i$. measure $M(A i i)$
assume ? $M \neq 0$
then have $*:\{i \in D$.? $m i \neq 0\}=(\bigcup n .\{i \in D$. ? $M /$ Suc $n<? m i\})$
using reals-Archimedean[of ?m $x / ? M$ for $x]$
by (auto simp: field-simps not-le[symmetric] divide-le-0-iff measure-le-0-iff)
have $* *$: $\bigwedge n$. finite $\{i \in D$.? $M /$ Suc $n<? m i\}$
proof (rule ccontr)
fix n assume infinite $\{i \in D$. ? $M /$ Suc $n<$? m i\} (is infinite ? X)
then obtain X where finite X card $X=$ Suc (Suc n) $X \subseteq$? X
by (meson infinite-arbitrarily-large)
from this(3) have $*: \bigwedge x . x \in X \Longrightarrow$? $M /$ Suc $n \leq$? $m x$
by auto
$\{$ fix i assume $i \in X$
from $\langle ? M \neq 0\rangle *[O F$ this $]$ have $? m i \neq 0$ by (auto simp: field-simps
measure-le-0-iff)
then have Ai $i \in$ sets M by (auto dest: measure-notin-sets) \}

```
    note sets-Ai = this
    have disj: disjoint-family-on Ai X
        using <X\subseteq?X> assms by(auto simp: disjoint-family-on-def)
    have ?M< (\sumx\inX.?M / Suc n)
        using <?M 
        by (simp add: <card X = Suc (Suc n)〉 field-simps less-le)
    also have ... \leq (\sumx\inX. ?m x)
        by (rule sum-mono) fact
    also have ... = measure M (\bigcup i\inX. Ai i)
    using sets-Ai 〈finite X〉 by (intro finite-measure-finite-Union[symmetric,OF
- - disj])
            (auto simp: disjoint-family-on-def)
    finally have ?M < measure M (\bigcupi\inX. Ai i).
    moreover have measure M (\bigcupi\inX. Ai i)\leq?M
        using sets-Ai[THEN sets.sets-into-space] by (intro finite-measure-mono) auto
    ultimately show False by simp
qed
show ?thesis
    unfolding * by (intro countable-UN countableI-type countable-finite[OF **])
qed
```


1．1 Finite Sum of Measures

definition sum－measure $::$＇b measure \Rightarrow＇a set $\Rightarrow(' a \Rightarrow$＇b measure $) \Rightarrow$＇b measure where
sum－measure M I Mi \equiv measure－of（space $M)($ sets $M)\left(\lambda A . \sum i \in I\right.$ ．emeasure（Mi i）A ）
lemma sum－measure－cong：
assumes sets $M=$ sets $M^{\prime} \bigwedge i . i \in I \Longrightarrow N i=N^{\prime} i$
shows sum－measure $M I N=$ sum－measure $M^{\prime} I N^{\prime}$
by（simp add：sum－measure－def assms cong：sets－eq－imp－space－eq）
lemma［simp］：
shows space－sum－measure：space（sum－measure MIMi）＝space M and sets－sum－measure $[$ measurable－cong］：sets（sum－measure M I Mi）$=$ sets M
by（auto simp：sum－measure－def）
lemma emeasure－sum－measure：
assumes［measurable］：$A \in$ sets M and $\bigwedge i . i \in I \Longrightarrow$ sets $(M i i)=$ sets M
shows emeasure（sum－measure MIMi）A＝（ $\mathrm{\sum i} \mathrm{\in I}$ ．Mi i A）
proof（rule emeasure－measure－of $[o f$－space M sets $M])$
show countably－additive（sets（sum－measure MIMi））（ $\lambda A . \sum i \in I$ ．emeasure（Mi
i）A ）
unfolding sum－measure－def sets．sets－measure－of－eq countably－additive－def
proof safe
fix $A i::$ nat \Rightarrow－
assume h：range $A i \subseteq$ sets M disjoint－family $A i$

```
    then have [measurable]: \ij.j 
    by(auto simp: assms)
    show (\sumi. \sumj\inI. emeasure (Mi j) (Ai i)) = (\sumi\inI. emeasure (Mi i) (U
(range Ai)))
    by(auto simp: suminf-sum intro!: Finite-Cartesian-Product.sum-cong-aux sum-
inf-emeasure h)
    qed
qed(auto simp: positive-def sum-measure-def intro!: sets.sets-into-space)
lemma sum-measure-infinite: infinite I \Longrightarrow sum-measure M I Mi = null-measure
M
    by(auto simp: sum-measure-def null-measure-def)
lemma nn-integral-sum-measure:
    assumes f\inborel-measurable M and [measurable-cong]: \i.i\inI\Longrightarrow sets (Mi
i) = sets M
    shows (\int +
    using assms(1)
proof induction
    case h:(cong fg)
    then show ?case (is ?lhs = ?rhs)
        by(auto cong: nn-integral-cong[of sum-measure M I Mi,simplified] intro!: Fi-
nite-Cartesian-Product.sum-cong-aux)
            (auto cong: nn-integral-cong simp: sets-eq-imp-space-eq[OF assms(2)[symmetric]])
next
    case (set A)
    then show ?case
        by(auto simp: emeasure-sum-measure assms)
next
    case (mult uc)
    then show ?case
    by(auto simp add: nn-integral-cmult sum-distrib-left intro!: Finite-Cartesian-Product.sum-cong-aux)
next
    case (add uv)
    then show ?case
        by(auto simp: nn-integral-add sum.distrib)
next
    case ih[measurable]:(seq U)
    show ?case (is ?lhs = ?rhs)
    proof -
        have ?lhs=(\int+ x. (\bigsqcupi.U i x) \partialsum-measure M I Mi)
            by(auto intro!: nn-integral-cong) (use SUP-apply in auto)
    also have ... = (\bigsqcupi. ( }\mp@subsup{|}{}{+}x.U U x \partialsum-measure M I Mi))
        by(rule nn-integral-monotone-convergence-SUP) (use ih in auto)
        also have ... = (\bigsqcupi.\sumj\inI. (\int +}x.U U x \partial(Mi j)))
        by(simp add: ih)
            also have ... = (\sumj\inI. \bigsqcupi. \int +}\mp@subsup{}{}{+}.U\mathrm{ U i x }\partial(Mij)
                by(auto intro!: incseq-nn-integral ih ennreal-SUP-sum)
            also have ... = (\sumj\inI. \int +}x.(\bigsqcupi.U i x) \partial(Mi j))
```

by (auto intro!: Finite-Cartesian-Product.sum-cong-aux nn-integral-monotone-convergence-SUP[symmetric] ih)
also have $\ldots=$?rhs
by (auto intro!: Finite-Cartesian-Product.sum-cong-aux nn-integral-cong) (metis SUP-apply Sup-apply)
finally show?thesis.
qed
qed
corollary integrable-sum-measure-iff-ne:
fixes $f::$ ' $a \Rightarrow$ ' $b::\{b a n a c h, ~ s e c o n d-c o u n t a b l e-t o p o l o g y\} ~$
assumes [measurable-cong]: $\bigwedge i . i \in I \Longrightarrow$ sets $($ Mi i $)=$ sets M and finite I and
$I \neq\{ \}$
shows integrable (sum-measure MIMi)f $\longleftrightarrow(\forall i \in I$. integrable (Mi i) f)
proof safe
fix i
assume [measurable]: integrable (sum-measure MIMi) f and $i: i \in I$
then have [measurable]: $\bigwedge i . i \in I \Longrightarrow f \in$ borel-measurable (Mi i)
$f \in$ borel-measurable $M\left(\int^{+}\right.$x. ennreal $($norm $(f x))$ dsum-measure $\left.M I M i\right)<$ ∞
by (auto simp: integrable-iff-bounded)
hence $\left(\sum i \in I . \int^{+}\right.$x. ennreal (norm $\left.(f x)\right)$ дMi i $)<\infty$
by (simp add: nn-integral-sum-measure assms)
thus integrable (Mi i) f
by (auto simp: assms integrable-iff-bounded i)
next
assume $h: \forall i \in I$. integrable (Mi i) f
obtain i where $i: i \in I$
using assms by auto
have [measurable]: $f \in$ borel-measurable M
using $h[$ rule-format, $O F i] i$ by auto
show integrable (sum-measure MIMi) f
using h by (auto simp: integrable-iff-bounded nn-integral-sum-measure assms)
qed
corollary integrable-sum-measure-iff:
fixes $f::$ ' $a \Rightarrow$ ' $b::\{$ banach, second-countable-topology $\}$
assumes [measurable-cong]: $\bigwedge i . i \in I \Longrightarrow$ sets $($ Mi $i)=$ sets M and finite I
and [measurable]: $f \in$ borel-measurable M
shows integrable (sum-measure MIMi)f $\longleftrightarrow(\forall i \in I$. integrable (Mi i) f)
proof safe
fix i
assume integrable (sum-measure MIMi) $f i \in I$
thus integrable (Mi i) f
using integrable-sum-measure-iff-ne[of I Mi,OF assms(1-2)] by auto
qed(auto simp: integrable-iff-bounded nn-integral-sum-measure assms)
lemma integral-sum-measure:
fixes $f:: ' a \Rightarrow$ ' $b::\{b a n a c h$, second-countable-topology $\}$

```
    assumes \([\) measurable-cong]: \(\backslash i . i \in I \Longrightarrow\) sets \((M i i)=\) sets \(M \bigwedge i . i \in I \Longrightarrow\)
integrable (Mi i) \(f\)
    shows \(\left(\int x . f x \partial\right.\) sum-measure \(\left.M I M i\right)=\left(\sum i \in I .\left(\int x . f x \partial(M i i)\right)\right)\)
proof -
    consider \(I=\{ \} \mid\) finite \(I I \neq\{ \} \mid\) infinite \(I\) by auto
    then show?thesis
    proof cases
        case 1
        then show ?thesis
        by (auto simp: sum-measure-def integral-null-measure[simplified null-measure-def])
    next
    case 2
    have integrable (sum-measure MI Mi) \(f\)
            by(auto simp: assms(2) integrable-sum-measure-iff-ne[of I Mi,OF assms(1)
2,simplified])
    thus ?thesis
    proof induction
            case \(h\) :(base A c)
            then have \(h^{\prime}: \bigwedge i . i \in I \Longrightarrow\) emeasure (Mi i) \(A<\top\)
                by (auto simp: emeasure-sum-measure assms 2)
            show ?case
                using \(h\)
                by (auto simp: measure-def \(h^{\prime}\) emeasure-sum-measure assms enn2real-sum[of
\(I\) di. emeasure (Mi i) A,OF h才 scaleR-left.sum
                intro!: Finite-Cartesian-Product.sum-cong-aux)
    next
            case \(i h:(a d d f g)\)
            then have \(\bigwedge i . i \in I \Longrightarrow\) integrable (Mi i) \(g \bigwedge i . i \in I \Longrightarrow\) integrable (Mi i) \(f\)
                by(auto simp: integrable-sum-measure-iff-ne assms 2)
            with ih show ?case
                by (auto simp: sum.distrib)
    next
        case \(i h:(\lim f s)\)
    then have [measurable]:f \(\in\) borel-measurable \(M\) \i.s \(i \in\) borel-measurable \(M\)
                by auto
            have int[measurable]:integrable (Mi i) f \(\bigwedge\) j. integrable (Mi i) \((s j)\) if \(i \in I\)
for \(i\)
```



```
    show ?case
    \(\operatorname{proof}\left(\right.\) rule LIMSEQ-unique \(\left[\right.\) where \(X=\lambda i . \sum j \in I\). \(\int x\). s i \(\left.\left.x \partial(M i j)\right]\right)\)
                show \(\left(\lambda i . \sum j \in I . \int x\right.\). s i \(\left.x \partial(M i j)\right) \longrightarrow\left(\int x . f x\right.\) dsum-measure \(M I\)
Mi)
            using ih by (auto simp: ih(5)[symmetric] intro!: integral-dominated-convergence[where
\(w=\lambda x\). \(2 *\) norm \((f x)])\)
        show \(\left(\lambda i . \sum j \in I . \int x . s i x \partial(M i j)\right) \longrightarrow\left(\sum j \in I .\left(\int x . f x \partial(M i j)\right)\right)\)
        proof (rule tendsto-sum)
            fix \(j\)
            assume \(j: j \in I\)
            show \(\left(\lambda i . \int x . s i x \partial(M i j)\right) \longrightarrow\left(\int x . f x \partial(M i j)\right)\)
```

using integral-dominated-convergence[of $f M i j s \lambda x$. $2 * \operatorname{norm}(f x), O F$ - - AE-I2 AE-I2] ih int[OF j]
by (auto simp: sets-eq-imp-space-eq[OF assms(1)[OF j]]) qed qed
qed
next
case 3
then show ?thesis
by(simp add: sum-measure-infinite)
qed
qed
Lemmas related to scale measure
lemma integrable-scale-measure:
fixes $f::{ }^{\prime} a \Rightarrow$ ' $b::\{$ banach, second-countable-topology $\}$
assumes integrable $M f$
shows integrable (scale-measure (ennreal r) M) f
using assms ennreal-less-top
by (auto simp: integrable-iff-bounded nn-integral-scale-measure ennreal-mult-less-top)
lemma integral-scale-measure:
assumes $r \geq 0$ integrable $M f$
shows $\left(\int x . f x\right.$ dscale-measure (ennreal $\left.\left.r\right) M\right)=r *\left(\int x . f x \partial M\right)$
using assms(2)
proof induction
case $\operatorname{ih}:(\lim f s)$
show ?case
proof (rule LIMSEQ-unique[where $X=\lambda i$. $\int x$.s i x dscale-measure (ennreal r) M])
from $i h(1-4)$ show $\left(\lambda i . \int x . s i x \partial\right.$ scale-measure (ennreal $\left.\left.r\right) M\right) \longrightarrow\left(\int x\right.$. $f x$ dscale-measure (ennreal r) M)
by (auto intro!: integral-dominated-convergence $[$ where $w=\lambda x$. $2 *$ norm $(f x)]$ integrable-scale-measure
simp: space-scale-measure)
show (λ i. $\int x . s$ i x dscale-measure (ennreal $\left.\left.r\right) M\right) \longrightarrow r *\left(\int x . f x \partial M\right)$
unfolding $i h(5)$ using $i h(1-4)$ by (auto intro!: integral-dominated-convergence[where $w=\lambda x$. 2 * norm $(f x)]$ tendsto-mult-left $)$
qed
qed(auto simp: measure-scale-measure[OF assms(1)] ring-class.ring-distribs(1) in-tegrable-scale-measure)

lemma

fixes c :: ereal
assumes $c: c \neq-\infty$ and $a: \bigwedge n .0 \leq a n$
shows liminf-cadd: liminf $(\lambda n . c+a n)=c+\liminf a$ and limsup-cadd: limsup $(\lambda n . c+a n)=c+$ limsup a
by (auto simp add: liminf-SUP-INF limsup-INF-SUP INF-ereal-add-right[OF - c
a] SUP-ereal-add-right $[O F-c]$
intro!: INF-ereal-add-right c SUP-upper2 a)
lemma(in Metric-space) frontier-measure-zero-balls:
assumes sets $N=$ sets (borel-of mtopology) finite-measure $N M \neq\{ \}$
and $e>0$ and separable-space mtopology
obtains ai ri where
$(\bigcup i:: n a t . \operatorname{mball}($ ai $i)($ ri i) $)=M(\bigcup i:: n a t . \operatorname{mcball}($ ai $i)($ ri $i))=M$
ヘi. ai $i \in M \bigwedge$ i. ri $i>0 \bigwedge$. . ri $i<e$
\i. measure $N($ mtopology frontier-of (mball (ai i) (ri i))) $=0$
\i. measure N (mtopology frontier-of (mcball (ai i) (ri i))) $=0$
proof -
interpret N : finite-measure N by fact
have [measurable]: $\bigwedge a r$. mball a $r \in$ sets $N \bigwedge a r$. mcball a $r \in$ sets N
$\bigwedge a r$. mtopology frontier-of (mball a r) c sets $N \bigwedge a r$. mtopology frontier-of
(mcball a r) \in sets N
by (auto simp: assms(1) borel-of-closed borel-of-open[OF openin-mball] closedin-frontier-of)
have mono:mtopology frontier-of (mball a r) $\subseteq\{y \in M . d$ a $y=r\}$
mtopology frontier-of (mcball a r) $\subseteq\{y \in M . d$ a $y=r\}$ for $a r$
proof -
have mtopology frontier-of (mball a r) \subseteq mcball a r - mball a r
using closure-of-mball by (auto simp: frontier-of-def interior-of-openin[OF
openin-mball])
also have $\ldots \subseteq\{y \in M . d$ a $y=r\}$
by auto
finally show mtopology frontier-of (mball a r) $\subseteq\{y \in M . d$ a $y=r\}$.
have mtopology frontier-of (mcball a r) \subseteq mcball a r - mball a r
using interior-of-mcball by (auto simp: frontier-of-def closure-of-closedin[OF
closedin-mcball])
also have $\ldots \subseteq\{y \in M . d$ a $y=r\}$
by (auto simp: mcball-def mball-def)
finally show mtopology frontier-of (mcball a r) $\subseteq\{y \in M . d$ a $y=r\}$.
qed
have sets[measurable]: $\{y \in M . d$ a $y=r\} \in \operatorname{sets} N$ if $a \in M$ for $a r$
proof -
have [simp]: $d a-‘\{r\} \cap M=\{y \in M . d a y=r\}$ by blast
show ?thesis
using measurable-sets[OF continuous-map-measurable[OF uniformly-continuous-imp-continuous-map[OF
mdist-set-uniformly-continuous[of Self $\{a\}]]]$, of $\{r\}]$
by(simp add: borel-of-euclidean mtopology-of-def space-borel-of assms(1)
mdist-set-Self)
(metis (no-types, lifting) 〈d $a-‘\{r\} \cap M=\{y \in M . d$ a $y=r\}\rangle$ commute d-set-singleton that vimage-inter-cong)
qed
from assms(5) obtain U where U : countable U mdense U by (auto simp: sep-arable-space-def2)
with $\operatorname{assms}(3)$ have U-ne: $U \neq\{ \}$
by (auto simp: mdense-empty-iff)
\{ fix $i::$ nat
have countable $\{r \in\{e / \mathcal{D}<. .<e\}$. measure $N\{y \in M . d$ (from-nat-into $U i) y$

```
=r}\not=0}
        by(rule N.countable-support-sets) (auto simp: disjoint-family-on-def)
    from real-interval-avoid-countable-set[of e / 2 e,OF - this] assms(4)
    have }\existsr\mathrm{ . measure N {y,M.d (from-nat-into U i) y=r}=0^r>e/2^
r<e
        by auto
    }
    then obtain ri where ri: \bigwedgei. measure N {y\inM.d (from-nat-into U i) y=ri
i} = 0
    \i.ri i>e/2 \i.ri i<e
    by metis
    have 1:(\bigcupi.mball (from-nat-into U i) (ri i))=M(\bigcupi.mcball (from-nat-into
U i)(ri i))=M
    proof -
    have M = (\bigcupu\inU. mball u (e / 2))
        by(rule mdense-balls-cover[OF U(2),symmetric]) (simp add: assms(4))
    also have ... =(U i.mball (from-nat-into U i) (e / 2))
        by(rule UN-from-nat-into[OF U(1) U-ne])
    also have ...\subseteq(\bigcupi.mball (from-nat-into U i) (ri i))
                using mball-subset-concentric[OF order.strict-implies-order[OF ri(2)]] by
auto
    finally have 1:M\subseteq(\i. mball (from-nat-into U i) (ri i)) .
    moreover have M\subseteq(\bigcupi. mcball (from-nat-into U i) (ri i))
        by(rule order.trans[OF 1]) fastforce
        ultimately show (\bigcupi. mball (from-nat-into U i) (ri i)) =M(\bigcupi. mcball
(from-nat-into U i)(ri i))}=
        by fastforce+
    qed
    have 2: \i. from-nat-into U i G M \i. ri i>0 \bigwedgei.ri i<e
        using from-nat-into[OF U-ne] dense-in-subset[OF U(2)] ri(3) assms(4)
        by(auto intro!: order.strict-trans[OF - ri(2),of 0])
    have 3: measure N (mtopology frontier-of (mball (from-nat-into U i) (ri i)))=
0
    measure N (mtopology frontier-of (mcball (from-nat-into U i) (ri i))) = 0 for i
    using N.finite-measure-mono[OF mono(1) sets[of from-nat-into U i ri i]]
            N.finite-measure-mono[OF mono(2) sets[of from-nat-into U i ri i]]
    by (auto simp add: 2 measure-le-0-iff ri(1))
show ?thesis
    using 12 3 that by blast
qed
lemma finite-measure-integral-eq-dense:
    assumes finite: finite-measure N finite-measure M
    and sets-N:sets N = sets (borel-of X) and sets-M: sets M = sets (borel-of X)
    and dense:dense-in (mtopology-of (cfunspace X euclidean-metric)) F
    and integ-eq:\f::- => real. f}\inF\Longrightarrow(\intx.fx\partialN)=(\intx.fx\partialM
    and f:continuous-map X euclideanreal f bounded (f'topspace X)
    shows}(\intx.fx\partialN)=(\intx.fx\partialM
proof -
```


interpret N : finite-measure N

by fact
interpret M : finite-measure M
by fact
have integ- $N: \bigwedge A . A \in$ sets $N \Longrightarrow$ integrable $N($ indicat-real $A)$
and integ- $M: \wedge A . A \in$ sets $M \Longrightarrow$ integrable M (indicat-real $A)$
by (auto simp add: N.emeasure-eq-measure M.emeasure-eq-measure)
have space- N : space $N=$ topspace X and space- M : space $M=$ topspace X
using sets- N sets- M sets-eq-imp-space-eq[of - borel-of $X]$
by (auto simp: space-borel-of)
from f obtain B where $B: \bigwedge x . x \in$ topspace $X \Longrightarrow|f x| \leq B$
by (meson bounded-real imageI)
show $\left(\int x . f x \partial N\right)=\left(\int x . f x \partial M\right)$
proof -
have in-mspace-measurable: $g \in$ borel-measurable $N g \in$ borel-measurable M if $g: g \in$ mspace (cfunspace X (euclidean-metric :: real metric)) for g using continuous-map-measurable[of X euclidean,simplified borel-of-euclidean]
g
by (auto simp: sets-M cong: measurable-cong-sets sets- N)
have $f^{\prime}:(\lambda x \in$ topspace $X . f x) \in$ mspace (cfunspace X euclidean-metric) using $f(1) f(2)$ by simp
with mdense-of-def3[THEN iffD1,OF assms(5)] obtain $f n$ where $f n$:
range $f n \subseteq F$ limitin (mtopology-of (cfunspace X euclidean-metric)) fn
($\lambda x \in$ topspace $X . f x$) sequentially
by blast
hence $f n$-space: $\bigwedge n$. fn $n \in$ mspace (cfunspace X euclidean-metric)
using dense-in-subset[OF assms(5)] by auto
hence [measurable]: $(\lambda x \in$ topspace $X . f x) \in$ borel-measurable $N(\lambda x \in$ topspace
X. $f(x) \in$ borel-measurable M
$\bigwedge n . f n n \in$ borel-measurable $N \bigwedge n$. fn $n \in$ borel-measurable M
using f^{\prime} by (auto simp del: mspace-cfunspace intro!: in-mspace-measurable)
interpret d: Metric-space mspace (cfunspace X euclidean-metric) mdist (cfunspace
$X($ euclidean-metric :: real metric $))$
by blast
from $f n$ have limitin d.mtopology $f n(\lambda x \in$ topspace $X . f x)$ sequentially by (simp add: mtopology-of-def)
hence limit: $\lfloor\varepsilon . \varepsilon>0 \Longrightarrow \exists N . \forall n \geq N$.fn $n \in$ mspace (cfunspace X eu-
clidean-metric) \wedge
mdist (cfunspace X euclidean-metric) ($f n n$) (restrict f (topspace
$X))<\varepsilon$
unfolding d.limit-metric-sequentially by blast
from this[of 1] obtain NO where NO:
$\bigwedge n . n \geq N 0 \Longrightarrow$ mdist (cfunspace X euclidean-metric) $(f n n)(\lambda x \in$ topspace
X. $f x)<1$
by auto
have 1: $(\lambda i . f n(i+N O) x) \longrightarrow(\lambda x \in$ topspace $X . f x) x$ if $x: x \in$ topspace
X for x proof (rule LIMSEQ-I)
fix $r::$ real
assume $r: 0<r$
from limit [OF half-gt-zero[OF r]] obtain N where N :
$\bigwedge n . n \geq N \Longrightarrow$ mdist (cfunspace X euclidean-metric) (fn n) (restrict f (topspace $X)$) $<r /$ 2
by blast
show \exists no. $\forall n \geq n o$. norm $(f n(n+N 0) x-r e s t r i c t f($ topspace $X) x)<r$
proof (safe intro!: exI[where $x=N]$)
fix n
assume $n: N \leq n$
with $N[O F$ trans-le-add1[OF this,of NO]]
have mdist (cfunspace X euclidean-metric) $(f n(n+N O))$ (restrict f (topspace $X)) \leq r / 2$
by auto
from order.strict-trans1[OF mdist-cfunspace-imp-mdist-le[OF fn-space f ${ }^{\prime}$ this x], of $r] x r$
show norm $(f n(n+N O) x-r e s t r i c t f($ topspace $X) x)<r$
by (auto simp: dist-real-def)
qed
qed
have 2: $\operatorname{norm}(f n(i+N O) x) \leq 2 * B+1$ if $x: x \in$ topspace X for $i x$ proof-
from $N O[$ of $i+N O]$
have mdist (cfunspace X euclidean-metric) $(f n(i+N O))$ (restrict f (topspace $X)) \leq 1$
by linarith
from mdist-cfunspace-imp-mdist-le[OF fn-space f^{\prime} this $\left.x\right]$
have norm $(f n(i+N O) x-f x) \leq 1$
using x by (auto simp: dist-real-def)
thus ?thesis
using $B[O F x]$ by auto
qed
from 1 2 have $\left(\lambda i\right.$. integral $\left.{ }^{L} N(f n(i+N 0))\right) \longrightarrow$ integral $^{L} N$ (restrict f (topspace X))
by (auto intro!: integral-dominated-convergence[where $s=\lambda i . f n(i+N 0)$ and $w=\lambda x .2 * B+1]$ simp: space- N)
moreover have $\left(\lambda i\right.$. integral $\left.{ }^{L} N(f n(i+N O))\right) \longrightarrow$ integral $^{L} M$ (restrict $f($ topspace $X)$)
proof -
have $\left[\right.$ simp]: integral ${ }^{L} N(f n(i+N 0))=$ integral $^{L} M(f n(i+N O))$ for i using $f n(1) \mathbf{b y}($ auto intro!: assms $(6))$
from 12 show ?thesis
by (auto intro!: integral-dominated-convergence[where $s=\lambda i . f n(i+N 0)$
and $w=\lambda x$. 2 $* B+1]$
simp: space-M)
qed
ultimately have integral ${ }^{L} N($ restrict $f($ topspace $X))=$ integral $^{L} M$ (restrict $f($ topspace $X))$
by (rule tendsto-unique[OF sequentially-bot])

```
    moreover have integral }\mp@subsup{}{}{L}N(\mathrm{ restrict f (topspace X)) = integral }\mp@subsup{}{}{L}N
    by(auto cong: Bochner-Integration.integral-cong[OF refl] simp: space- N[symmetric])
    moreover have integral L}M(\mathrm{ restrict f (topspace X)) = integral }\mp@subsup{}{}{L}M
    by(auto cong: Bochner-Integration.integral-cong[OF refl] simp: space-M[symmetric])
    ultimately show ?thesis
        by simp
    qed
qed
```


1.2 Sequentially Continuous Maps

definition seq-continuous-map :: 'a topology \Rightarrow 'b topology $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ 'b) \Rightarrow bool where
seq-continuous-map $X Y f \equiv(\forall x n x$. limitin X xn x sequentially $\longrightarrow \operatorname{limitin} Y$ ($\lambda n . f(x n n))(f x)$ sequentially $)$
lemma seq-continuous-map:
seq-continuous-map $X Y f \longleftrightarrow(\forall x n x$. limitin X xn x sequentially $\longrightarrow \operatorname{limitin~} Y$
$(\lambda n . f(x n n))(f x)$ sequentially $)$
by (auto simp: seq-continuous-map-def)
lemma seq-continuous-map-funspace:
assumes seq-continuous-map $X Y f$
shows $f \in$ topspace $X \rightarrow$ topspace Y
proof
fix x
assume $x \in$ topspace X
then have limitin $X(\lambda n . x) x$ sequentially
by auto
hence limitin $Y(\lambda n . f x)(f x)$ sequentially
using assms
by (meson limitin-sequentially seq-continuous-map)
thus $f x \in$ topspace Y
by auto
qed
lemma seq-continuous-iff-continuous-first-countable:
assumes first-countable X
shows seq-continuous-map $X \quad Y=$ continuous-map $X Y$
by standard (simp add: continuous-map-iff-limit-seq assms seq-continuous-map-def)

1.3 Sequential Compactness

definition seq-compactin :: 'a topology \Rightarrow ' a set \Rightarrow bool where seq-compactin X S
$\longleftrightarrow S \subseteq$ topspace $X \wedge(\forall x n .(\forall n::$ nat. xn $n \in S) \longrightarrow(\exists l \in S . \exists a::$ nat \Rightarrow nat. strict-mono $a \wedge$ limitin $X(x n \circ a) l$ sequentially $))$
definition seq-compact-space $X \equiv$ seq-compactin X (topspace X)

```
lemma seq-compactin-subset-topspace: seq-compactin XS\LongrightarrowS\subseteq topspace X
    by(auto simp: seq-compactin-def)
lemma seq-compactin-empty[simp]: seq-compactin X {}
    by(auto simp: seq-compactin-def)
lemma seq-compactin-seq-compact[simp]: seq-compactin euclidean S \longleftrightarrow seq-compact
S
    by(auto simp: seq-compactin-def seq-compact-def)
lemma image-seq-compactin:
    assumes seq-compactin X S seq-continuous-map X Y f
    shows seq-compactin Y (f`S)
    unfolding seq-compactin-def
proof safe
    fix yn
    assume }\foralln::nat. yn n \inf'
    then have }\foralln.\existsx\inS.yn n=f
        by blast
    then obtain xn where xn:\bigwedgen::nat. xn n GS \n.yn n=f(xn n)
        by metis
    then obtain lx a where la: lx \inS strict-mono a limitin X (xn\circa)lx sequentially
        by (meson assms(1) seq-compactin-def)
    show }\existsl\inf'S.\existsa.strict-mono a ^ limitin Y (yn\circa)l sequentially
    proof(safe intro!: bexI[where x=f lx] exI[where x=a])
        have [simp]:yn ○ }a=(\lambdan.f((xn\circa)n)
            by(auto simp: xn(2) comp-def)
        show limitin Y (yn ○a) (flx) sequentially
            using la(3) assms(2) xn(1,2) by(fastforce simp: seq-continuous-map)
    qed(use la in auto)
qed(use seq-compactin-subset-topspace[OF assms(1)] seq-continuous-map-funspace[OF
assms(2)] in auto)
lemma closed-seq-compactin:
    assumes seq-compactin X K C\subseteqK closedin X C
    shows seq-compactin X C
    unfolding seq-compactin-def
proof safe
    fix }x
    assume xn: }\foralln::nat. xn n\in
    then have }\foralln\mathrm{ . xn n }\in
        using assms(2) by blast
    with assms(1) obtain la where l:l l K strict-mono a limitin X (xn ○a) l
sequentially
    by (meson seq-compactin-def)
    have}l\in
    using xn by(auto intro!: limitin-closedin[OF l(3) assms(3)])
    with l(2,3) show \existsl\inC.\existsa. strict-mono a ^ limitin X (xn ○a)l sequentially
        by blast
```

qed(use closedin-subset[OF assms(3)] in auto)
corollary closedin-seq-compact-space:
seq-compact-space $X \Longrightarrow$ closedin $X C \Longrightarrow$ seq-compactin $X C$
by (auto intro!: closed-seq-compactin[where $K=$ topspace X and $C=C]$ closedin-subset simp: seq-compact-space-def)
lemma seq-compactin-subtopology: seq-compactin (subtopology X S) $T \longleftrightarrow$ seq-compactin $X T \wedge T \subseteq S$
by (fastforce simp: seq-compactin-def limitin-subtopology subsetD)
corollary seq-compact-space-subtopology: seq-compactin $X S \Longrightarrow$ seq-compact-space
(subtopology X S)
by (auto simp: seq-compact-space-def seq-compactin-subtopology inf-absorb2 seq-compactin-subset-topspace)
lemma seq-compactin-PiED:
assumes seq-compactin (product-topology XI) (Pi $\left.i_{E} I S\right)$
shows $\left(P i_{E} I S=\{ \} \vee(\forall i \in I\right.$. seq-compactin $\left.(X i)(S i))\right)$
proof -
consider $P i_{E} I S=\{ \} \mid P i_{E} I S \neq\{ \}$
by blast
then show $\left(P i_{E} I S=\{ \} \vee(\forall i \in I\right.$. seq-compactin $\left.(X i)(S i))\right)$
proof cases
case 1
then show ?thesis
by simp
next
case 2
then have $S i-n e: \bigwedge i . i \in I \Longrightarrow S i \neq\{ \}$
by blast
then obtain $c i$ where $c i: \bigwedge i . i \in I \Longrightarrow c i i \in S i$
by (meson PiE-E ex-in-conv)
show ?thesis
proof (safe intro!: disjI2) fix i
assume $i: i \in I$
show seq-compactin ($X i$) ($S i$)
unfolding seq-compactin-def
proof safe
fix $x n$
assume $x n: \forall n::$ nat. xn $n \in S i$
define $X n$ where $X n \equiv(\lambda n$. $\lambda j \in I$. if $j=i$ then xn n else ci $j)$
have $\bigwedge n . X n n \in P i_{E} I S$
using i xn ci by (auto simp: Xn-def)
then obtain $L a$ where $L: L \in P i_{E} I S$ strict-mono a
limitin (product-topology XI) (Xn○a)L sequentially
by (meson assms seq-compactin-def)
thus $\exists l \in S i$. \exists a. strict-mono $a \wedge \operatorname{limitin}(X i)(x n \circ a) l$ sequentially
using i by (auto simp: limitin-componentwise Xn-def comp-def intro!:

```
bexI[where }x=Li] exI[\mathrm{ where }x=a]
    next
                show }\x.x\inSi\Longrightarrowx\intopspace (Xi
                    using i subset-PiE[THEN iffD1,OF seq-compactin-subset-topspace[OF
assms,simplified]] 2 by auto
            qed
    qed
    qed
qed
lemma metrizable-seq-compactin-iff-compactin:
    assumes metrizable-space X
    shows seq-compactin X S \longleftrightarrow compactin X S
proof -
    obtain d where d: Metric-space (topspace X) d Metric-space.mtopology (topspace
X) d=X
    by (metis Metric-space.topspace-mtopology assms metrizable-space-def)
    interpret Metric-space topspace X d
    by fact
    have seq-compactin X S «eq-compactin mtopology S
    by(simp add:d)
    also have ... \longleftrightarrow compactin mtopology S
    by(fastforce simp: compactin-sequentially seq-compactin-def)
    also have ... \longleftrightarrow compactin X S
    by(simp add: d)
    finally show ?thesis.
qed
corollary metrizable-seq-compact-space-iff-compact-space:
    shows metrizable-space }X\Longrightarrow\mathrm{ seq-compact-space }X\longleftrightarrow\mathrm{ compact-space }
    unfolding seq-compact-space-def compact-space-def by(rule metrizable-seq-compactin-iff-compactin)
```


1.4 Lemmas for Limsup and Liminf

```
lemma real-less-add-ex-less-pair:
    fixes x w v :: real
    assumes }x<w+
    shows \existsyz. x = y+z^y<w^z<v
    apply(rule exI[where }x=w-(w+v-x) / 2])
    apply(rule exI[where }x=v-(w+v-x)/2]
    using assms by auto
lemma ereal-less-add-ex-less-pair:
    fixes x w v :: ereal
    assumes - < <w-\infty<vx<w+v
    shows \existsyz. x = y+z^y<w\wedgez<v
proof -
    consider x =-\infty| - \infty<x x<\infty w=\inftyv=\infty
    | - < < x x<\inftyw<\inftyv=\infty| - \infty<x < < < v<\infty w=\infty
```

```
    | -\infty<xx<\inftyw<\inftyv<\infty
    using assms(3) less-ereal.simps(2) by blast
then show ?thesis
proof cases
    assume x =-\infty
    then show ?thesis
        using assms by(auto intro!: exI[where x=- \infty])
next
    assume h:-\infty<x x<\inftyw=\inftyv=\infty
    show ?thesis
        apply(rule exI[where }x=0]\mathrm{ )
        apply(rule exI[where }x=x]
        using h assms by simp
    next
    assume h:-\infty<x x<\inftyw<\inftyv=\infty
    then obtain }\mp@subsup{x}{}{\prime}\mp@subsup{w}{}{\prime}\mathrm{ where eq: w= ereal w' }x=\mathrm{ ereal }\mp@subsup{x}{}{\prime
        using assms by (metis less-irrefl sgn-ereal.cases)
    show ?thesis
        apply(rule exI[where }x=w-1]
        apply(rule exI[where x=x - (w-1)])
        using h assms by(auto simp: eq one-ereal-def)
next
    assume h:-\infty<x x<\inftyv<\infty w=\infty
    then obtain }\mp@subsup{x}{}{\prime}\mp@subsup{v}{}{\prime}\mathrm{ where eq: v=ereal v}\mp@subsup{v}{}{\prime}x=\mathrm{ ereal }\mp@subsup{x}{}{\prime
        using assms by (metis less-irrefl sgn-ereal.cases)
    show ?thesis
        apply(rule exI[where }x=x-(v-1)]
        apply(rule exI[where }x=v-1]
        using h assms by(auto simp: eq one-ereal-def)
    next
    assume - \infty< x x < w w<\inftyv<\infty
    then obtain }\mp@subsup{x}{}{\prime}\mp@subsup{v}{}{\prime}\mp@subsup{w}{}{\prime}\mathrm{ where eq: x = ereal }\mp@subsup{x}{}{\prime}w=\mathrm{ ereal }\mp@subsup{w}{}{\prime}v=\mathrm{ ereal }\mp@subsup{v}{}{\prime
        using assms by (metis less-irrefl sgn-ereal.cases)
    have \exists}\mp@subsup{y}{}{\prime}\mp@subsup{z}{}{\prime}.\mp@subsup{x}{}{\prime}=\mp@subsup{y}{}{\prime}+\mp@subsup{z}{}{\prime}\wedge\mp@subsup{y}{}{\prime}<\mp@subsup{w}{}{\prime}\wedge\mp@subsup{z}{}{\prime}<\mp@subsup{v}{}{\prime
        using real-less-add-ex-less-pair assms by (simp add: eq)
    then obtain }\mp@subsup{y}{}{\prime}\mp@subsup{z}{}{\prime}\mathrm{ where }y\mp@subsup{z}{}{\prime}:\mp@subsup{x}{}{\prime}=\mp@subsup{y}{}{\prime}+\mp@subsup{z}{}{\prime}\wedge\mp@subsup{y}{}{\prime}<\mp@subsup{w}{}{\prime}\wedge\mp@subsup{z}{}{\prime}<\mp@subsup{v}{}{\prime
        by blast
    show ?thesis
        apply(rule exI[where }x=\mathrm{ ereal }y]
        apply(rule exI[where x=ereal z`])
        using yz' by(simp add: eq)
    qed
qed
lemma real-add-less:
fixes x w v :: real
assumes w+v<x
shows \existsyz. x=y+z^w<y^v<z
apply(rule exI[where }x=w+(x-(w+v))/ 2])
```

```
    apply(rule exI[where }x=v+(x-(w+v))/2]
    using assms by auto
lemma ereal-add-less:
    fixes }xwv:: erea
    assumes }w+v<
    shows \existsyz. x=y+z\wedgew<y^v<z
proof -
    have - < < x v<\infty w<\infty
        using assms less-ereal.simps(2,3) by auto
    then consider x=\inftyw<\inftyv<\infty|-\infty<xx<\inftyw=-\inftyv=-\infty
        |}-\infty<xx<\inftyw=-\inftyv<\infty-\infty<
        | -\infty<xx<\inftyv=-\inftyw<\infty-\infty<w
        | -\infty<xx<\infty-\infty<ww<\inftyv<\infty-\infty<v
    by blast
    thus ?thesis
    proof cases
    assume x=\inftyw<\inftyv<\infty
    then show ?thesis
        by(auto intro!: exI[where x=\infty])
    next
    assume h:- \infty<xx<\inftyw=-\inftyv=-\infty
    show ?thesis
        apply(rule exI[where }x=0]\mathrm{ )
        apply(rule exI[where }x=x]
        using h assms by simp
    next
    assume h:- \infty<xx<\inftyw=-\inftyv<\infty-\infty<v
    then obtain }\mp@subsup{x}{}{\prime}\mp@subsup{v}{}{\prime}\mathrm{ where }x\mp@subsup{v}{}{\prime}:x=\mathrm{ ereal }\mp@subsup{x}{}{\prime}v=\mathrm{ ereal v'
        by (metis less-irrefl sgn-ereal.cases)
    show ?thesis
    apply(rule exI[where x=x - (v+1)])
    apply(rule exI[where }x=v+1]
        using h by(auto simp: xv')
    next
    assume h:- \infty<xx<\inftyv=-\inftyw<\infty-\infty<w
    then obtain \mp@subsup{x}{}{\prime}\mp@subsup{w}{}{\prime}\mathrm{ where }x\mp@subsup{w}{}{\prime}:x=\mathrm{ ereal }\mp@subsup{x}{}{\prime}w=\mathrm{ ereal w'}
        by (metis less-irrefl sgn-ereal.cases)
    show ?thesis
            apply(rule exI[where }x=w+1]
            apply(rule exI[where }x=x-(w+1)]
            using }h\mathrm{ by(auto simp: xw')
    next
    assume h:- \infty<x x<\infty-\infty<ww<\inftyv<\infty-\infty<v
    then obtain \mp@subsup{x}{}{\prime}\mp@subsup{v}{}{\prime}\mp@subsup{w}{}{\prime}\mathrm{ where eq:x= ereal }\mp@subsup{x}{}{\prime}w=\mathrm{ ereal }\mp@subsup{w}{}{\prime}v=\mathrm{ ereal }\mp@subsup{v}{}{\prime}
            using assms by (metis less-irrefl sgn-ereal.cases)
    have }\exists\mp@subsup{y}{}{\prime}\mp@subsup{z}{}{\prime}.\mp@subsup{x}{}{\prime}=\mp@subsup{y}{}{\prime}+\mp@subsup{z}{}{\prime}\wedge\mp@subsup{y}{}{\prime}>\mp@subsup{w}{}{\prime}\wedge\mp@subsup{z}{}{\prime}>\mp@subsup{v}{}{\prime
        using assms real-add-less by(auto simp: eq)
    then obtain }\mp@subsup{y}{}{\prime}\mp@subsup{z}{}{\prime}\mathrm{ where }y\mp@subsup{z}{}{\prime}:\mp@subsup{x}{}{\prime}=\mp@subsup{y}{}{\prime}+\mp@subsup{z}{}{\prime}\wedge\mp@subsup{y}{}{\prime}>\mp@subsup{w}{}{\prime}\wedge\mp@subsup{z}{}{\prime}>\mp@subsup{v}{}{\prime
```

by blast
show ?thesis
$\operatorname{apply}($ rule exI $[$ where $x=$ ereal $y\rceil)$
apply (rule exI[where $x=$ ereal $z])$
using $y z^{\prime} \operatorname{by}(\operatorname{simp} a d d: e q)$
qed
qed
A generalized version of \neg (liminf ? $u=\infty \wedge$ liminf ?v $=-\infty \vee \liminf$? u $=-\infty \wedge \liminf ? v=\infty) \Longrightarrow \liminf ? u+\liminf ? v \leq \liminf (\lambda n . ? u n+$?v n).
lemma ereal-Liminf-add-mono:
fixes $u v:^{\prime}{ }^{\prime} a \Rightarrow$ ereal
assumes $\neg((\operatorname{Liminf} F u=\infty \wedge \operatorname{Liminf} F v=-\infty) \vee(\operatorname{Liminf} F u=-\infty \wedge$
Liminf F $v=\infty)$)
shows $\operatorname{Liminf} F(\lambda n . u n+v n) \geq \operatorname{Liminf} F u+\operatorname{Liminf} F v$
proof (cases)
assume $(\operatorname{Liminf} F u=-\infty) \vee(\operatorname{Liminf} F v=-\infty)$
then have $*$: Liminf $F u+\operatorname{Liminf} F v=-\infty$ using assms by auto
show ?thesis by (simp add: *)
next
assume $\neg((\operatorname{Liminf} F u=-\infty) \vee(\operatorname{Liminf} F v=-\infty))$
then have $h: \operatorname{Liminf} F u>-\infty \operatorname{Liminf} F v>-\infty$ by auto
show ?thesis
unfolding le-Liminf-iff
proof safe
fix y
assume $y: y<\operatorname{Liminf} F u+\operatorname{Liminf} F v$
then obtain $x z$ where $x z: y=x+z x<\operatorname{Liminf} F u \quad z<\operatorname{Liminf} F v$
using ereal-less-add-ex-less-pair h by blast
show $\forall_{F} x$ in $F . y<u x+v x$
by (rule eventually-mp[OF - eventually-conj[OF less-LiminfD[OF xz(2)] less-LiminfD[OF $x z(3)]]]$)
(auto simp: xz intro!: eventuallyI ereal-add-strict-mono2)
qed
qed
A generalized version of $\limsup (\lambda n$. ?u $n+$?v $n) \leq$ limsup ? $u+$ limsup ?v.
lemma ereal-Limsup-add-mono:
fixes u v: ' $a \Rightarrow$ ereal
shows Limsup $F(\lambda n . u n+v n) \leq$ Limsup $F u+$ Limsup $F v$
unfolding Limsup-le-iff
proof safe
fix y
assume Limsup $F u+\operatorname{Limsup} F v<y$
then obtain $x z$ where $x z: y=x+z$ Limsup $F u<x$ Limsup $F v<z$
using ereal-add-less by blast
show $\forall_{F} x$ in $F . u x+v x<y$
by (rule eventually-mp $[$ OF - eventually-conj $[$ OF Limsup-less $D[$ OF xz(2)] Lim-sup-less $D[$ OF $x z(3)]]])$
(auto simp: xz intro!: eventuallyI ereal-add-strict-mono2)
qed

1.5 A Characterization of Closed Sets by Limit

There is a net which charactrize closed sets in terms of convergence. Since Isabelle/HOL's convergent is defined through filters, we transform the net to a filter. We refer to the lecture notes by Shi [3] for the conversion.

```
definition derived-filter :: ['i set, \({ }^{\prime} i \Rightarrow{ }^{\prime} i \Rightarrow\) bool \(] \Rightarrow\) 'i filter where
derived-filter \(I\) op \(\equiv\left(\prod i \in I\right.\). principal \(\{j \in I\). op \(\left.i j\}\right)\)
lemma eventually-derived-filter:
    assumes \(A \neq\{ \}\)
    and refl: \(\wedge a . a \in A \Longrightarrow\) rel \(a\) a
    and trans: \(\bigwedge a b c . a \in A \Longrightarrow b \in A \Longrightarrow c \in A \Longrightarrow\) rel \(a b \Longrightarrow\) rel \(b c \Longrightarrow\) rel
a \(c\)
    and pair-bounded: \(\backslash a b . a \in A \Longrightarrow b \in A \Longrightarrow \exists c \in A\). rel \(a c \wedge\) rel \(b c\)
    shows eventually \(P(\) derived-filter \(A\) rel \() \longleftrightarrow(\exists i \in A . \forall n \in A\). rel in \(\longrightarrow P n)\)
proof -
    show ?thesis
        unfolding derived-filter-def
    proof (subst eventually-INF-base)
        fix \(a b\)
        assume \(h: a \in A b \in A\)
        then obtain \(z\) where \(z \in A\) rel \(a z\) rel \(b z\)
            using pair-bounded by metis
        thus \(\exists x \in A\). principal \(\{j \in A\). rel \(x j\} \leq\) principal \(\{j \in A\). rel a \(j\} \sqcap\) principal
\(\{j \in A\). rel \(b j\}\)
            using \(h\) by (auto intro!: bexI[where \(x=z]\) dest: trans)
    next
        show \((\exists b \in A\). eventually \(P(\) principal \(\{j \in A\). rel \(b j\})) \longleftrightarrow(\exists i \in A . \forall n \in A\). rel
\(i n \longrightarrow P n)\)
            unfolding eventually-principal by blast
        qed fact
qed
definition nhdsin-sets :: ' \(a\) topology \(\Rightarrow\) ' \(a \Rightarrow\) 'a set filter where
\(n h d s i n-s e t s ~ X x \equiv\) derived-filter \(\{U\). openin \(X U \wedge x \in U\}(\supseteq)\)
lemma eventually-nhdsin-sets:
    assumes \(x \in\) topspace \(X\)
    shows eventually \(P(\) nhdsin-sets \(X x) \longleftrightarrow(\exists U\). openin \(X U \wedge x \in U \wedge(\forall V\).
openin \(X V \longrightarrow x \in V \longrightarrow V \subseteq U \longrightarrow P V))\)
proof -
    have \(h:\{U\). openin \(X U \wedge x \in U\} \neq\{ \}\)
        \(\bigwedge a . a \in\{U\). openin \(X U \wedge x \in U\} \Longrightarrow(\supseteq) a a\)
```

$\wedge a b c . a \in\{U$. openin $X U \wedge x \in U\} \Longrightarrow b \in\{U$. openin $X U \wedge x \in$ $U\} \Longrightarrow c \in\{U$. openin $X U \wedge x \in U\} \Longrightarrow(\supseteq) a b \Longrightarrow(\supseteq) b c \Longrightarrow(\supseteq) a c$
$\wedge a b . a \in\{U$. openin $X U \wedge x \in U\} \Longrightarrow b \in\{U$. openin $X U \wedge x \in U\}$ $\Longrightarrow \exists c \in\{U$. openin $X U \wedge x \in U\}$. (ِ) $a c \wedge(\supseteq) b c$
proof safe
fix $U V$
assume $x \in U x \in V$ openin $X U$ openin $X V$
then show $\exists W \in\{U$. openin $X U \wedge x \in U\} . W \subseteq U \wedge W \subseteq V$
using openin-Int $[$ of $X U V]$ by auto
qed(use assms in fastforce) +
show ?thesis
unfolding nhdsin-sets-def
apply (subst eventually-derived-filter[of $\{U$. openin $X U \wedge x \in U\}(\supseteq)])$
using h apply blast
apply simp
using h
apply blast
using h
apply blast
apply fastforce
done
qed
lemma eventually-nhdsin-setsI:
assumes $x \in$ topspace $X \wedge U . x \in U \Longrightarrow$ openin $X U \Longrightarrow P U$
shows eventually P (nhdsin-sets X x)
using assms by (auto simp: eventually-nhdsin-sets)
lemma nhdsin-sets-bot[simp, intro]:
assumes $x \in$ topspace X
shows nhdsin-sets $X \quad x \neq \perp$
by (auto simp: trivial-limit-def eventually-nhdsin-sets[OF assms])
corollary limitin-nhdsin-sets: limitin X xn x (nhdsin-sets $X x) \longleftrightarrow x \in$ topspace $X \wedge(\forall U$. openin $X U \longrightarrow x \in U \longrightarrow(\exists V$. openin $X V \wedge x \in V \wedge(\forall W$. openin $X W \longrightarrow x \in W \longrightarrow W \subseteq V \longrightarrow x n W \in U))$)
using eventually-nhdsin-sets by (fastforce dest: limitin-topspace simp: limitin-def)
lemma closedin-limitin:
assumes $T \subseteq$ topspace $X \backslash x n x . x \in$ topspace $X \Longrightarrow(\bigwedge U . x \in U \Longrightarrow$ openin
$X U \Longrightarrow x n U \neq x) \Longrightarrow(\bigwedge U . x \in U \Longrightarrow$ openin $X U \Longrightarrow x n U \in T) \Longrightarrow(\bigwedge U$.
$x n U \in$ topspace $X) \Longrightarrow$ limitin X xn x (nhdsin-sets $X x) \Longrightarrow x \in T$
shows closedin $X T$
proof -
have 1: X derived-set-of $T \subseteq T$
proof
fix x
assume $x: x \in X$ derived-set-of T
hence $x^{\prime}: x \in$ topspace X

```
        by (simp add: in-derived-set-of)
    define xn where xn \equiv( }\lambdaU\mathrm{ . if }x\inU\wedge\mathrm{ openin X U then (SOME y. y }\not=x
y\inT\wedge y\inU) else x)
    have xn: xn U\not=x xn U\inT xn U\inU if U: openin X U x }\inU\mathrm{ for }
    proof -
        have (SOME y. y }=x\wedgey\inT\wedgey\inU)\not=x\wedge(SOME y. y f=x\wedge y\in
\wedge y\inU)\inT^(SOME y. y\not=x\wedge y\inT^ y\inU)\inU
            by(rule someI-ex,insert x U) (auto simp:derived-set-of-def)
        thus xn U\not=x xn U\inT xn U\inU
            by(auto simp: xn-def U)
    qed
    hence 1:\U. x 
XU\Longrightarrowxn U \inT
            by simp-all
    moreover have xn U \in topspace X for U
    proof(cases x }\inU\wedge\mathrm{ openin X U)
        case True
        with assms 1 show ?thesis
            by fast
    next
        case False
        with x 1 derived-set-of-subset-topspace[of X T] show ?thesis
            by(auto simp: xn-def)
    qed
    moreover have limitin X xn x (nhdsin-sets X x)
        unfolding limitin-nhdsin-sets
    proof safe
        fix }
        assume U}\mathrm{ : openin X U x 
        then show \existsV. openin X V^x\inV\wedge(}\forallW\mathrm{ . openin X W 
W\subseteqV\longrightarrowxn W G U)
        using xn by(fastforce intro!: exI[where }x=U]
    qed(use x derived-set-of-subset-topspace in fastforce)
    ultimately show }x\in
        by(rule assms(2)[OF x}]
    qed
    thus ?thesis
    using assms(1) by(auto intro!: closure-of-eq[THEN iffD1] simp: closure-of)
qed
corollary closedin-iff-limitin-eq:
    fixes }X\mathrm{ :: 'a topology
    shows closedin X C
        \longleftrightarrowC\subseteqtopspace X ^
            ( }\forall\mathrm{ xi x (F :: 'a set filter). ( }\forall\mathrm{ i. xi i }\in\mathrm{ topspace }X)\longrightarrowx\in topspace X
                \longrightarrow ( \forall _ { F } \text { i in F. xi i }
proof
    assume C\subseteq topspace X ^
        (\forallxix (F :: 'a set filter). (\foralli. xi i \in topspace X) \longrightarrowx topspace X
```

then show closedin $X C$
apply(intro closedin-limitin)
apply blast
by (metis (mono-tags, lifting) nhdsin-sets-bot eventually-nhdsin-setsI)
qed(auto dest: limitin-closedin closedin-subset)
lemma closedin-iff-limitin-sequentially:
assumes first-countable X
shows closedin $X S \longleftrightarrow S \subseteq$ topspace $X \wedge(\forall \sigma$ l. range $\sigma \subseteq S \wedge$ limitin $X \sigma l$

```
sequentially \longrightarrowl\inS)(is ?lhs=?rhs)
```

proof safe
assume $h: S \subseteq$ topspace $X \forall \sigma l$. range $\sigma \subseteq S \wedge$ limitin $X \sigma l$ sequentially $\longrightarrow l$
$\in S$
show closedin X S
proof(rule closedin-limitin)
fix $x u x$
assume $x u: \bigwedge U . x \in U \Longrightarrow$ openin $X U \Longrightarrow x u U \in S \bigwedge U . x u U \in$ topspace
X limitin X xu x (nhdsin-sets $X x$)
then have $x: x \in$ topspace X
by (auto simp: limitin-topspace)
then obtain B where B : countable $B \wedge V . V \in B \Longrightarrow$ openin $X V$
$\bigwedge U$. openin $X U \Longrightarrow x \in U \Longrightarrow(\exists V \in B . x \in V \wedge V \subseteq U)$
using assms first-countable-def by metis
define B^{\prime} where $B^{\prime} \equiv B \cap\{U . x \in U\}$
have $B^{\prime}-n e: B^{\prime} \neq\{ \}$
using B^{\prime}-def $B(3) x$ by fastforce
have $c B^{\prime}$:countable B^{\prime}
using $B \mathbf{b y}\left(s i m p\right.$ add: $\left.B^{\prime}-d e f\right)$
have $B^{\prime}: \bigwedge V . V \in B^{\prime} \Longrightarrow$ openin $X V \bigwedge U$. openin $X U \Longrightarrow x \in U \Longrightarrow$
$\left(\exists V \in B^{\prime} . x \in V \wedge V \subseteq U\right)$
using $B B^{\prime}$-def by fastforce+
define $x n$ where $x n \equiv\left(\lambda n . x u\left(\bigcap i \leq n\right.\right.$. (from-nat-into $\left.\left.\left.B^{\prime} i\right)\right)\right)$
have $x n$-in-S: range $x n \subseteq S$ and limitin-xn: limitin X xn x sequentially
proof -
have $1: \bigwedge n$. openin $X\left(\bigcap i \leq n\right.$. (from-nat-into $\left.\left.B^{\prime} i\right)\right)$
by (auto simp: $B^{\prime}(1) B^{\prime}$-ne from-nat-into)
have 2: $\bigwedge n . x \in\left(\bigcap i \leq n\right.$. (from-nat-into $\left.\left.B^{\prime} i\right)\right)$

thus range $x n \subseteq S$
using $1 \mathbf{b y}$ (auto simp: xn-def intro!: xu)
show limitin X xn x sequentially
unfolding limitin-sequentially
proof safe
fix U
assume U : openin $X U x \in U$
then obtain V where $V: x \in V$ openin $X V \wedge W$. openin $X W \Longrightarrow x \in$
$W \Longrightarrow W \subseteq V \Longrightarrow x u W \in U$

```
            by (metis limitin-nhdsin-sets xu(3))
            then obtain }\mp@subsup{V}{}{\prime}\mathrm{ where }\mp@subsup{V}{}{\prime}:\mp@subsup{V}{}{\prime}\in\mp@subsup{B}{}{\prime}x\in\mp@subsup{V}{}{\prime}\mp@subsup{V}{}{\prime}\subseteq
            using B' by meson
        then obtain N where N:(\bigcapi\leqN.(from-nat-into B'i))\subseteq \ V'
            by (metis Inf-lower atMost-iff cB' from-nat-into-surj image-iff order.refl)
        show }\existsN.\foralln\geqN. xn n \in
        proof(safe intro!: exI[where }x=N]\mathrm{ )
            fix n
            assume [arith]: n\geqN
            show xn n \inU
            unfolding xn-def
            proof(rule V(3))
            have }(\bigcapi\leqn.(from-nat-into B'i))\subseteq(\bigcapi\leqN.(from-nat-into B' 隹)
                    by force
            also have ... \subseteqV
                using N V' by simp
            finally show }\bigcap\mathrm{ (from-nat-into }\mp@subsup{B}{}{\prime}'{..n})\subseteqV
            qed(use 12 in auto)
        qed
        qed fact
    qed
    thus }x\in
        using h(2) by blast
    qed fact
qed(auto simp: limitin-closedin range-subsetD dest: closedin-subset)
```


1.6 A Characterization of Topology by Limit

```
lemma topology-eq-filter:
    fixes \(X\) :: 'a topology
    assumes topspace \(X=\) topspace \(Y\)
    and \(\bigwedge(F::\) 'a set filter) xi \(x\). \((\bigwedge i\). xi \(i \in\) topspace \(X) \Longrightarrow x \in\) topspace \(X \Longrightarrow\)
limitin \(X\) xi \(x F \longleftrightarrow\) limitin \(Y\) xi \(x F\)
    shows \(X=Y\)
    unfolding topology-eq-closedin closedin-iff-limitin-eq using assms by simp
lemma topology-eq-limit-sequentially:
    assumes topspace \(X=\) topspace \(Y\)
    and first-countable \(X\) first-countable \(Y\)
    and \(\bigwedge x n x\). \((\bigwedge n\). xn \(i \in\) topspace \(X) \Longrightarrow x \in\) topspace \(X \Longrightarrow\) limitin \(X\) xn \(x\)
sequentially \(\longleftrightarrow\) limitin \(Y\) xn \(x\) sequentially
    shows \(X=Y\)
    unfolding topology-eq-closedin closedin-iff-limitin-sequentially[OF assms(2)] closedin-iff-limitin-sequentially
\(\operatorname{assms}(3)]\)
    by (metis dual-order.trans limitin-topspace range-subsetD \(\operatorname{assms}(1,4)\) )
```


1.7 A Characterization of Open Sets by Limit

corollary openin-limitin:
assumes $U \subseteq$ topspace $X \bigwedge x i x . x \in$ topspace $X \Longrightarrow(\bigwedge i . x i i \in$ topspace $X)$
\Longrightarrow limitin X xi $x(n h d s i n-s e t s ~ X x) \Longrightarrow x \in U \Longrightarrow \forall_{F}$ i in (nhdsin-sets $\left.X x\right)$. xi $i \in U$
shows openin $X U$
unfolding openin-closedin-eq
proof(safe intro!: assms(1) closedin-limitin)
fix $x i x$
assume $h: x \in$ topspace $X \forall V . x \in V \longrightarrow$ openin $X V \longrightarrow$ xi $V \in$ topspace X - U
$\forall V$. xi $V \in$ topspace X limitin X xi $x(n h d s i n$-sets $X x) x \in U$
show False
using assms(2)[OF $h(1,3,4,5)[$ rule-format $]] h(2)$
by(auto simp: eventually-nhdsin-sets[OF h(1)])
qed
corollary openin-iff-limitin-eq:
fixes X :: 'a topology
shows openin $X U \longleftrightarrow U \subseteq$ topspace $X \wedge\left(\forall x i x\left(F::{ }^{\prime} a\right.\right.$ set filter $)$. $(\forall$ i. $x i \quad i \in$ topspace $X) \longrightarrow x \in U \longrightarrow$ limitin X xi $x F \longrightarrow\left(\forall_{F}\right.$ i in F. xi $\left.i \in U\right)$)
by (auto intro!: openin-limitin openin-subset simp: limitin-def)
corollary limitin-openin-sequentially:
assumes first-countable X
shows openin $X U \longleftrightarrow U \subseteq$ topspace $X \wedge(\forall x n x . x \in U \longrightarrow$ limitin X xn x sequentially $\longrightarrow(\exists N . \forall n \geq N . x n n \in U))$
unfolding openin-closedin-eq closedin-iff-limitin-sequentially[OF assms]
apply safe
apply (simp add: assms closedin-iff-limitin-sequentially limitin-sequentially openin-closedin)
apply (simp add: limitin-sequentially)
apply blast
done
lemma upper-semicontinuous-map-limsup-iff:
fixes $f::{ }^{\prime} a \Rightarrow$ ('b :: \{complete-linorder,linorder-topology\})
assumes first-countable X
shows upper-semicontinuous-map $X f \longleftrightarrow(\forall x n x$. limitin X xn x sequentially $\longrightarrow \limsup (\lambda n . f(x n n)) \leq f x)$
unfolding upper-semicontinuous-map-def
proof safe
fix $x n x$
assume $h: \forall a$. openin $X\{x \in$ topspace $X . f x<a\}$ limitin X xn x sequentially show limsup $(\lambda n . f(x n n)) \leq f x$
unfolding Limsup-le-iff eventually-sequentially
proof safe
fix y
assume y : $f x<y$
show $\exists N . \forall n \geq N . f(x n n)<y$
proof (rule ccontr)
assume $\nexists N . \forall n \geq N . f(x n n)<y$

```
    then have hc:\N.\existsn\geqN.f(xn n)\geqy
        using linorder-not-less by blast
    define a :: nat }=>\mathrm{ nat where }a\equiv\mathrm{ rec-nat (SOME n.f (xn n) \y) ( }\lambdan\mathrm{ nan.
SOME m.m> an }\wedgef(xnm)\geqy
    have strict-mono a
    proof(rule strict-monoI-Suc)
        fix n
        have [simp]:a (Suc n)=(SOME m.m>an^f(xn m)\geqy)
        by(auto simp: a-def)
    show a n < a (Suc n)
        by simp (metis (mono-tags, lifting) Suc-le-lessD hc someI)
    qed
    have *:f (xn (a n)) \geq y for n
    proof(cases n)
        case 0
        then show ?thesis
        using hc[of 0] by(auto simp: a-def intro!: someI-ex)
    next
        case (Suc n')
        then show ?thesis
        by(simp add: a-def) (metis (mono-tags, lifting) Suc-le-lessD hc someI-ex)
    qed
    have }\existsN.\foralln\geqN.(xn\circa)n\in{x\intopspace X.fx<y
        using limitin-subsequence[OF <strict-mono a〉 h(2)] h(1)[rule-format,of y] y
        by(fastforce simp: limitin-sequentially)
    with * show False
        using leD by auto
    qed
    qed
next
    fix }
    assume h: \forallxn x. limitin X xn x sequentially \longrightarrowlimsup (\lambdan.f(xn n)) \leqfx
    show openin X {x\in topspace X. fx<a}
        unfolding limitin-openin-sequentially[OF assms]
proof safe
        fix }x\mathrm{ xn
        assume h':limitin X xn x sequentially x topspace X f x < a
        with h have limsup ( }\lambdan.f(xn n))\leqf
        by auto
    with }\mp@subsup{h}{}{\prime}(3)\mathrm{ obtain }N\mathrm{ where N:\n. n\N #f(xn n)<a
        by(auto simp: Limsup-le-iff eventually-sequentially)
    obtain }\mp@subsup{N}{}{\prime}\mathrm{ where }\mp@subsup{N}{}{\prime}:\bigwedgen.n\geq\mp@subsup{N}{}{\prime}\Longrightarrowxn n\in topspace X
                by (meson h'(1) limitin-sequentially openin-topspace)
    thus \existsN.\foralln\geqN. xn n \in{x\in topspace X.fx<a}
        using h'(3) N by(auto intro!: exI[where x=max N N ])
    qed
qed
```


1.8 Lemmas for Upper/Lower-Semi Continuous Maps

```
lemma upper-semicontinuous-map-limsup-real:
    fixes \(f::^{\prime} a \Rightarrow\) real
    assumes first-countable \(X\)
    shows upper-semicontinuous-map \(X f \longleftrightarrow(\forall x n x\). limitin \(X\) xn \(x\) sequentially
\(\longrightarrow \limsup (\lambda n . f(x n n)) \leq f x)\)
    unfolding upper-semicontinuous-map-real-iff upper-semicontinuous-map-limsup-iff [OF
assms] by simp
lemma lower-semicontinuous-map-liminf-iff:
    fixes \(f:: ' a \Rightarrow(' b::\{\) complete-linorder,linorder-topology \(\})\)
    assumes first-countable \(X\)
    shows lower-semicontinuous-map \(X f \longleftrightarrow(\forall x n x\). limitin \(X\) xn \(x\) sequentially
\(\longrightarrow f x \leq \liminf (\lambda n . f(x n n)))\)
    unfolding lower-semicontinuous-map-def
proof safe
    fix \(x n x\)
    assume \(h: \forall a\). openin \(X\{x \in\) topspace \(X . a<f x\}\) limitin \(X\) xn \(x\) sequentially
    show \(f x \leq \liminf (\lambda n . f(x n n))\)
        unfolding le-Liminf-iff eventually-sequentially
    proof safe
        fix \(y\)
        assume \(y: y<f x\)
        show \(\exists N . \forall n \geq N . y<f(x n n)\)
        proof (rule ccontr)
            assume \(\nexists N . \forall n \geq N . y<f(x n n)\)
            then have \(h c: \bigwedge N . \exists n \geq N . y \geq f(x n n)\)
                by (meson verit-comp-simplify1 (3))
            define \(a::\) nat \(\Rightarrow\) nat where \(a \equiv\) rec-nat (SOME \(n . f(x n n) \leq y)(\lambda n a n\).
SOME \(m . m>\) an \(\wedge f(x n m) \leq y)\)
            have strict-mono a
            proof(rule strict-monoI-Suc)
                fix \(n\)
                    have \([\) simp \(]: a(\) Suc \(n)=(\) SOME m. \(m>a n \wedge f(x n m) \leq y)\)
                    by (auto simp: a-def)
                        show \(a n<a\) (Suc \(n\) )
                        by simp (metis (no-types, lifting) Suc-le-lessD \(\langle\neq N . \forall n \geq N . y<f(x n n)\) )
not-le someI-ex)
        qed
        have \(*: f(x n(a n)) \leq y\) for \(n\)
        proof (cases \(n\) )
            case 0
            then show ?thesis
                using hc[of 0] by (auto simp: a-def intro!: someI-ex)
        next
            case (Suc \(n^{\prime}\) )
            then show ?thesis
                by (simp add: a-def) (metis (mono-tags, lifting) Suc-le-lessD hc someI-ex)
        qed
```

```
        have }\existsN.\foralln\geqN.(xn\circa)n\in{x\intopspace X. fx>y
            using limitin-subsequence[OF <strict-mono a〉 h(2)] h(1)[rule-format,of y] y
            by(fastforce simp: limitin-sequentially)
            with * show False
                using leD by auto
        qed
    qed
next
    fix }
    assume h: \forallxn x. limitin X xn x sequentially \longrightarrowfx\leqliminf (\lambdan.f(xn n))
    show openin X {x\in topspace X.a<fx}
        unfolding limitin-openin-sequentially[OF assms]
    proof safe
        fix x xn
        assume h':limitin X xn x sequentially x topspace X f x>a
        with h have fx\leqliminf ( }\lambdan.f(xn n)
        by auto
    with }\mp@subsup{h}{}{\prime}(3)\mathrm{ obtain }N\mathrm{ where }N:\n.n\geqN\Longrightarrowf(xn n)>
        by(auto simp:le-Liminf-iff eventually-sequentially)
    obtain }\mp@subsup{N}{}{\prime}\mathrm{ where }\mp@subsup{N}{}{\prime}:\bigwedgen.n\geq\mp@subsup{N}{}{\prime}\Longrightarrowxn n\in topspace X
        by (meson h'(1) limitin-sequentially openin-topspace)
    thus }\existsN.\foralln\geqN. xn n \in{x\in topspace X.fx>a
        using h'(3) N by(auto intro!: exI[where x=max N N ])
    qed
qed
lemma lower-semicontinuous-map-liminf-real:
    fixes f :: 'a }=\mathrm{ real
    assumes first-countable X
    shows lower-semicontinuous-map X f}\longleftrightarrow(\forallxn x.limitin X xn x sequentially
    fx\leqliminf (\lambdan.f(xn n)))
    unfolding lower-semicontinuous-map-real-iff lower-semicontinuous-map-liminf-iff[OF
assms] by simp
end
```


2 Alaoglu's Theorem

theory Alaoglu-Theorem
imports Lemmas-Levy-Prokhorov
Riesz-Representation.Riesz-Representation
begin
We prove (a special case of) Alaoglu's theorem for the space of continuous functions. We refer to Section 9 of the lecture note by Heil [1].

2.1 Metrizability of the Space of Uniformly Bounded Positive Linear Functionals

```
lemma metrizable-functional:
    fixes }X\mathrm{ :: 'a topology and r :: real
    defines prod-space \equiv powertop-real (mspace (cfunspace X euclidean-metric))
    defines }B\equiv{\varphi\in\mathrm{ topspace prod-space. }\varphi(\lambdax\intopspace X. 1)\leqr^ positive-linear-functional-on-CX
X\varphi}
    defines }\Phi\equiv\mathrm{ subtopology prod-space B
    assumes compact: compact-space X and met: metrizable-space }
    shows metrizable-space \Phi
proof(cases X = trivial-topology)
    case True
    hence metrizable-space prod-space
    by(auto simp: prod-space-def metrizable-space-product-topology metrizable-space-euclidean
intro!: countable-finite)
    thus ?thesis
        using \Phi-def metrizable-space-subtopology by blast
next
    case X-ne:False
    have Haus: Hausdorff-space X
        using met metrizable-imp-Hausdorff-space by blast
    consider r \geq0|r<0
        by fastforce
    then show ?thesis
    proof cases
        case r:1
        have B: B\subseteq topspace prod-space
            by(auto simp: B-def)
        have ext-eq: \f::'a m real. f}\in\mathrm{ mspace (cfunspace X euclidean-metric) }
(\lambdax\intopspace X. fx)=f
            by (auto simp: extensional-def)
        have met1: metrizable-space (mtopology-of (cfunspace X euclidean-metric))
            by (metis Metric-space.metrizable-space-mtopology Metric-space-mspace-mdist
mtopology-of-def)
    have separable-space (mtopology-of (cfunspace X (euclidean-metric :: real met-
ric)))
        proof -
        have separable-space (mtopology-of (cfunspace X (Met-TC.Self :: real metric)))
            using Met-TC.Metric-space-axioms Met-TC.separable-space-iff-second-countable
                by(auto intro!: Metric-space.separable-space-cfunspace[OF - - met compact])
            thus ?thesis
                by (simp add: Met-TC.Self-def euclidean-metric-def)
    qed
    then obtain F where dense:mdense-of (cfunspace X (euclidean-metric :: real
metric)) F and F-count: countable F
            using separable-space-def2 by blast
            have infinite (topspace (mtopology-of (cfunspace X (euclidean-metric :: real
metric))))
    proof(rule infinite-super[where S=(\lambdan::nat. \lambdax\intopspace X. real n)'UNIV])
```

```
        show infinite (range \((\lambda n\). \(\lambda x \in\) topspace \(X\). real \(n)\) )
        proof (intro range-inj-infinite inj-onI)
            fix \(n m\)
            assume \(h:(\lambda x \in\) topspace \(X\). real \(n)=(\lambda x \in\) topspace \(X\). real \(m)\)
            from \(X\)-ne obtain \(x\) where \(x \in\) topspace \(X\) by fastforce
            with fun-cong \([\) OF \(h\), of \(x]\) show \(n=m\)
            by \(\operatorname{simp}\)
        qed
    qed (auto simp: bounded-iff)
    from countable-as-injective-image[OF F-count dense-in-infinite[OF metrizable-imp-t1-space[OF
met1] this dense]]
    obtain \(g n::\) nat \(\Rightarrow\) - where \(g n: F=\) range \(g n\) inj \(g n\)
        by blast
        then have \(g n-i n: \bigwedge n . g n n \in F \bigwedge n . g n n \in\) mspace (cfunspace \(X\) eu-
clidean-metric)
            using dense-in-subset[OF dense] by auto
    hence gn-ext: \(\backslash n\). \((\lambda x \in\) topspace \(X\).gn \(n x)=g n n\)
        by(auto intro!: ext-eq)
    define \(d::\left[\left({ }^{\prime} a \Rightarrow\right.\right.\) real \() \Rightarrow\) real,\(\left({ }^{\prime} a \Rightarrow\right.\) real \() \Rightarrow\) real \(] \Rightarrow\) real
    where \(d \equiv\left(\lambda \varphi \psi .\left(\sum n .(1 / 2){ }^{\wedge} n *\right.\right.\) mdist (capped-metric 1 euclidean-metric)
                                    ( \(\varphi(\lambda x \in\) topspace \(X . g n n x))(\psi(\lambda x \in\) topspace
X. gn \(n x)\) )))
            have smble \([\) simp \(]\) : summable \((\lambda n .(1 / 2) \wedge n *\) mdist (capped-metric 1
(euclidean-metric :: real metric)) (a \(n\) ) (bn))
            for \(a b\)
            by(rule summable-comparison-test \({ }^{\prime}[\) where \(N=0\) and \(g=\lambda n\). (1/2) ^n*
1]) (auto intro!: mdist-capped)
    interpret \(d\) : Metric-space topspace \(\Phi d\)
    proof
            show \(\bigwedge x y .0 \leq d x y\)
                by (auto intro!: suminf-nonneg simp: \(d\)-def)
            show \(\bigwedge x y . d x y=d y x\)
                by(auto simp: d-def simp: mdist-commute)
    next
            fix \(\varphi \psi\)
            assume \(h: \varphi \in\) topspace \(\Phi \psi \in\) topspace \(\Phi\)
            show \(d \varphi \psi=0 \longleftrightarrow \varphi=\psi\)
            proof
                assume \(d \varphi \psi=0\)
                then have \(\forall n\). \((1 / 2)^{\wedge} n *\) mdist (capped-metric 1 euclidean-metric)
                        \((\varphi(\lambda x \in\) topspace \(X . g n n x))(\psi(\lambda x \in\) topspace
\(X . g n n x))=0\)
                by(intro suminf-eq-zero-iff[THEN iffD1]) (auto simp: d-def)
            hence eq: \(\backslash n . \varphi(\lambda x \in\) topspace \(X . g n n x)=\psi(\lambda x \in\) topspace \(X . g n n x)\)
            by simp
        show \(\varphi=\psi\)
        proof
            fix \(f\)
            consider \(f \notin\) mspace (cfunspace \(X\) (euclidean-metric :: real metric))
```

$\mid f \in$ mspace (cfunspace X (euclidean-metric :: real metric))
by blast
thus $\varphi f=\psi f$
proof cases
case 1
then show ?thesis
using h by (auto simp: Φ-def prod-space-def PiE-def extensional-def
simp del: mspace-cfunspace)
next
case f :2
then have positive-linear-functional-on-CX $X \varphi$ positive-linear-functional-on-CX
using $h \mathbf{b y}$ (auto simp: Φ-def topspace-subtopology-subset $[O F B] B$-def)
from Riesz-representation-real-compact-metrizable[OF compact met
this(1)]
Riesz-representation-real-compact-metrizable[OF compact met this(2)]
obtain $N L$ where
N : sets $N=$ sets (borel-of X) finite-measure N
Λf. continuous-map X euclideanreal $f \Longrightarrow \varphi($ restrict $f($ topspace $X))$
$=$ integral $^{L} N f$
and L : sets $L=$ sets (borel-of X) finite-measure L
Λf. continuous-map X euclideanreal $f \Longrightarrow \psi($ restrict $f($ topspace $X))$
$=$ integral $^{L} L f$
by auto
have f-ext: $(\lambda x \in$ topspace $X . f x)=f$
using f by (auto simp: extensional-def)
have $\varphi f=\varphi(\lambda x \in$ topspace $X . f x)$
by (simp add: f-ext)
also have $\ldots=$ integral $^{L} N f$
using f by (auto intro!: N)
also have $\ldots=$ integral $^{L} L f$
$\operatorname{proof}($ rule finite-measure-integral-eq-dense $[$ where $F=F$ and $X=X]$)
fix g
assume $g \in F$
then obtain n where $n: g=g n n$
using gn by fast
hence integral ${ }^{L} N g=$ integral $^{L} N(g n n)$
by simp
also have $\ldots=\varphi(\lambda x \in$ topspace X. gn $n x)$
using gn-in by (auto intro!: $N(3)[$ symmetric $]$)
also have $\ldots=$ integral $^{L} L g$
using gn-in by (auto simp: eq n intro!: L(3))
finally show integral ${ }^{L} N g=$ integral $^{L} L g$.
qed (use $N L$ dense f in auto)
also have $\ldots=\psi(\lambda x \in$ topspace $X . f x)$
using f by (auto intro!: L(3)[symmetric])
also have $\ldots=\psi f$
by (simp add: f-ext)
finally show ?thesis.
qed
qed
qed (auto simp add: d-def capped-metric-mdist)
next
fix $\varphi 1 \varphi 2 \varphi 3$
assume $h: \varphi 1 \in$ topspace $\Phi \varphi 2 \in$ topspace $\Phi \varphi 3 \in$ topspace Φ
show $d \varphi 1 \varphi 3 \leq d \varphi 1 \varphi 2+d \varphi 2 \varphi 3$
proof -
have $d \varphi 1 \varphi 3 \leq\left(\sum n .(1 / 2){ }^{\wedge} n *\right.$ mdist (capped-metric 1 euclidean-metric)
($\varphi 1$ ($\lambda x \in$ topspace $X . g n n x)$) (φ 2
($\lambda x \in$ topspace $X . g n n x))$

$$
+(1 / 2){ }^{\wedge} n * \text { mdist (capped-metric } 1 \text { euclidean-metric) }
$$

($\varphi 2(\lambda x \in$ topspace $X . g n n x)$) ($\varphi 3$
$(\lambda x \in t o p s p a c e ~ X . g n n x)))$
by (auto intro!: suminf-le mdist-triangle summable-add[OF smble smble,simplified distrib-left[symmetric]]
simp: d-def distrib-left[symmetric])
also have $\ldots=d \varphi 1 \varphi 2+d \varphi 2 \varphi 3$
by (simp add: suminf-add d-def)
finally show ?thesis .
qed
qed
have $\Phi=$ d.mtopology
unfolding topology-eq
proof safe
have continuous-map d.mtopology (subtopology prod-space B) id unfolding continuous-map-in-subtopology prod-space-def id-apply image-id continuous-map-componentwise
proof safe
fix $f::^{\prime} a \Rightarrow$ real
assume $f: f \in$ mspace (cfunspace X (euclidean-metric))
hence f-ext: $(\lambda x \in$ topspace $X . f x)=f$
by (auto intro!: ext-eq)
show continuous-map d.mtopology euclideanreal ($\lambda x . x f$)
unfolding continuous-map-iff-limit-seq[OF d.first-countable-mtopology]
proof safe
fix $\varphi n \varphi$
assume φ-limit:limitin d.mtopology $\varphi n \varphi$ sequentially
have $(\lambda n . \varphi n n f) \longrightarrow \varphi f$
proof (rule LIMSEQ-I)
fix e :: real
assume $e: e>0$
from f mdense-of-def3[THEN iffD1,OF dense] obtain $f n$ where $f n$:
$\bigwedge n . f n n \in F$ limitin (mtopology-of (cfunspace X euclidean-metric)) $f n$
f sequentially
by fast
with f dense-in-subset $[O F$ dense $]$ have $f n$-ext: $\wedge n$. $(\lambda x \in$ topspace $X . f n n$
$x)=f n n$
by (intro ext-eq) auto
define $a 0$ where $a 0 \equiv(S O M E n . \forall x \in$ topspace $X .|f n n x-f x| \leq(1$ $/ 3) *(1 /(r+1)) * e)$
have $a 0: \forall x \in$ topspace $X .|f n a 0 x-f x| \leq(1 / 3) *(1 /(r+1)) * e$ unfolding $a 0-d e f$
proof (rule someI-ex)
have $\bigwedge e . e>0 \Longrightarrow \exists N . \forall n \geq N$. mdist (cfunspace X euclidean-metric)
$(f n n) f<e$
by (metis Metric-space.limit-metric-sequentially Metric-space-mspace-mdist fn(2) mtopology-of-def)
from this[of $((1 / 3) *(1 /(r+1)) * e)]$
obtain N where $N: \wedge n . n \geq N \Longrightarrow$ mdist (cfunspace X euclidean-metric)
$(f n n) f<((1 / 3) *(1 /(r+1)) * e)$
using er by auto
hence mdist (cfunspace X euclidean-metric) $(f n N) f \leq((1 / 3) *(1$ $/(r+1)) * e)$ by fastforce
from mdist-cfunspace-imp-mdist-le[OF - -this]
have $l e: \bigwedge x . x \in$ topspace $X \Longrightarrow|f n N x-f x| \leq((1 / 3) *(1 /(r+$ 1)) $* e$) using $f n(1)[$ of $N]$ dense-in-subset[OF dense] f dist-real-def by auto thus $\exists n$. $\forall x \in$ topspace $X .|f n n x-f x| \leq 1 / 3 *(1 /(r+1)) * e$ by (auto intro!: exI $[$ where $x=N]$)
qed
obtain l where l : fn a $0=g n l$ using fn gn by blast
have $\bigwedge e . e>0 \Longrightarrow \exists N . \forall n \geq N . \varphi n n \in$ topspace $\Phi \wedge d(\varphi n n) \varphi<e$
using φ-limit by (fastforce simp: mtopology-of-def d.limit-metric-sequentially)
from this[of (1/2) ^ $l *(1 / 3) * \min 3 e] e$
obtain N where $N: \bigwedge n . n \geq N \Longrightarrow \varphi n n \in$ topspace Φ
$\bigwedge n . n \geq N \Longrightarrow d(\varphi n n) \varphi<(1 / 2)^{\wedge} l *(1 / 3) * \min 3 e$
by auto
show \exists no. $\forall n \geq$ no. norm $(\varphi n n f-\varphi f)<e$
proof (safe intro!: exI[where $x=N]$)
fix n
assume $n: N \leq n$
have $\operatorname{norm}(\varphi n n f-\varphi f) \leq|\varphi n n(f n a 0)-\varphi(f n a 0)|+\mid \varphi(f n a 0)$
$-\varphi f|+|\varphi n n(f n a 0)-\varphi n n f|$ by fastforce
also have $\ldots<(1 / 3) * e+(1 / 3) * e+(1 / 3) * e$
proof -
have 1: $|\varphi n n(f n a 0)-\varphi(f n a 0)|<(1 / 3) * e$
proof (rule ccontr)
assume $\neg|\varphi n n(f n a 0)-\varphi(f n a 0)|<1 / 3 * e$
then have $1:|\varphi n n(f n a 0)-\varphi(f n a 0)| \geq(1 / 3) * e$
by linarith
have le1: $|\varphi n n(f n a 0)-\varphi(f n a 0)|<1$
proof (rule ccontr)
assume $\neg|\varphi n n(f n a 0)-\varphi(f n a 0)|<1$
then have contr: $|\varphi n n(f n a 0)-\varphi(f n a 0)| \geq 1$

```
    by linarith
    consider e>3|e\leq3
    by fastforce
then show False
proof cases
    case 1
    with N[OF n] have d (\varphin n) \varphi<(1/2) ^l
            by simp
    also have }\ldots=(\summ\mathrm{ . if m=l then (1/2) ^l else 0)
            using suminf-split-initial-segment[where f=\lambdam. if m=l then
(1 / 2) ^l else (0 :: real) and k=Suc l]
                    by simp
                            also have ... \leqd (\varphin n) \varphi
                            unfolding d-def
                            proof(rule suminf-le)
                            fix m
                            show (if m=l then (1/2) ^l else 0)
                    \leq(1/2)^m* mdist (capped-metric 1 euclidean-metric)
                                    (\varphin n (restrict (gn m) (topspace X)))
                                    (\varphi (restrict (gn m) (topspace X)))
                                    using contr by(auto simp:l gn-ext capped-metric-mdist
dist-real-def)
    qed auto
    finally show False
                            by blast
        next
                            case 2
                            then have (1 / 2)^ l * (1 / 3)* min 3 e\leq (1 / 2)`l
                            by simp
                            also have }\ldots=(\summ\mathrm{ . if m=l then (1/2) ^l else 0)
                            using suminf-split-initial-segment[where f=\lambdam. if m}=l\mathrm{ then
(1 / 2) ^l else (0 :: real) and k=Suc l]
                    by simp
                            also have ... \leqd (\varphin n) \varphi
                            unfolding d-def
    proof(rule suminf-le)
        fix m
        show (if m=l then (1/2) ^l else 0)
                \leq(1/2)^m* mdist (capped-metric 1 euclidean-metric)
                                    (\varphin n (restrict (gn m) (topspace X)))
                                    (\varphi (restrict (gn m) (topspace X)))
                                    using contr by(auto simp:l gn-ext capped-metric-mdist
dist-real-def)
    qed auto
    also have .. < (1/2)^ l*(1 / 3)* min 3e
            by(rule N[OF n])
            finally show False by simp
        qed
        qed
```

```
    hence mdist1: mdist (capped-metric 1 euclidean-metric)
                                    (\varphin n (restrict (gn l) (topspace X)))
                                    (\varphi (restrict (gn l) (topspace X)))
                    = |\varphin n (fn a0) - \varphi (fna0)|
                            by(auto simp: capped-metric-mdist dist-real-def gn-ext l)
                            have(1 / 2)^l*(1 / 3)* min 3 e\leq(1/2)^l*(1 / 3)*e
                            using e by simp
                            also have ... = (\summ. if m=l then (1/2)^ l*(1/3)*e else 0)
                            using suminf-split-initial-segment[where f=\lambdam. if m=l then (1
/ 2) ^ l*(1 / 3)*e else 0 and k=Suc l]
        by simp
    also have ... \leqd (\varphin n) \varphi
            using 1 le1 by (fastforce simp: mdist1 d-def intro!: suminf-le)
            finally show False
            using N[OF n] by linarith
    qed
    have 2: }|\varphi(fna0)-\varphif|\leq(1/3)*
    proof -
            from limitin-topspace[OF \varphi-limit,simplified]
            have plf:positive-linear-functional-on-CX X \varphi
                by(simp add: \Phi-def B-def)
            from Riesz-representation-real-compact-metrizable[OF compact met
this]
            obtain N where N: sets N = sets (borel-of X) finite-measure N
                    \.continuous-map X euclideanreal }f\Longrightarrow\varphi\mathrm{ (restrict f (topspace
X))= integral }\mp@subsup{}{}{L}N
            by blast
    hence space-N: space N = topspace X
                            by(auto cong: sets-eq-imp-space-eq simp: space-borel-of)
    interpret N: finite-measure N by fact
    have [measurable]: fn a0 \in borel-measurable Nf\in borel-measurable
N
                            using continuous-map-measurable[of X euclideanreal] fn(1) f
dense-in-subset[OF dense]
                            by(auto simp: measurable-cong-sets[OF N(1) refl]
                            intro!:continuous-map-measurable[of X euclideanreal,simplified
borel-of-euclidean])
    have \varphi(fna0) - \varphif = \varphi(\lambdax\intopspace X.fn a0 x) - \varphi ( \lambdax\intopspace
X.f 
                            by(simp add: fn-ext f-ext)
                            also have ... = \varphi (\lambdax\intopspace X. fn a0 x) +\varphi (\lambdax\intopspace X.
- fx)
            using f by(auto intro!: pos-lin-functional-on-CX-compact-lin(1)[OF
plf compact,of - - 1,simplified,symmetric])
    also have ... = \varphi ( }\lambdax\in\mathrm{ topspace X. fn a0 x + - f x)
    by(rule pos-lin-functional-on-CX-compact-lin(2)[symmetric])
            (use fn(1) f dense-in-subset[OF dense] plf compact in auto)
    also have ... = \varphi ( }\lambdax\in\mathrm{ topspace X. fn a0 x - fx)
            by simp
```

```
also have \(\ldots=\left(\int x . f n a 0 x-f x \partial N\right)\) using \(f n(1) f\) dense-in-subset[OF dense] by(auto intro!: \(N(3)\) continuous-map-diff)
finally have \(|\varphi(f n a 0)-\varphi f|=\left|\left(\int x . f n a 0 x-f x \partial N\right)\right|\)
by \(\operatorname{simp}\)
also have \(\ldots \leq\left(\int x . \mid\right.\) fna \(\left.a 0 x-f x \mid \partial N\right)\)
by (rule integral-abs-bound)
also have \(\ldots \leq\left(\int x .(1 / 3) *(1 /(r+1)) * e \partial N\right)\)
by(rule Bochner-Integration.integral-mono,insert a0) (auto intro!: N.integrable-const-bound[where \(B=(1 / 3) *(1 /\) \((r+1)) * e]\) simp: space- \(N\) )
also have \(\ldots=(1 / 3) * e *((1 /(r+1) *\) measure \(N(\) space \(N)))\)
by \(\operatorname{simp}\)
also have \(\ldots \leq(1 / 3) * e\)
proof -
have measure \(N(\) space \(N)=\left(\int x .1 \partial N\right)\)
by \(\operatorname{simp}\)
also have \(\ldots=\varphi(\lambda x \in\) topspace \(X .1)\)
by \((\) intro \(N(3)[\) symmetric] \()\) simp
also have \(\ldots \leq r\)
using limitin-topspace[OF \(\varphi\)-limit,simplified] by(auto simp: \(\Phi\)-def
B-def)
finally have \((1 /(r+1) *\) measure \(N(\) space \(N)) \leq 1\) using \(r\) by simp
thus ?thesis
unfolding mult-le-cancel-left2 using \(e\) by auto
qed
finally show ?thesis .
qed
have 3: \(|\varphi n n(f n a 0)-\varphi n n f| \leq(1 / 3) * e\)
proof -
have plf:positive-linear-functional-on-CX \(X\) ( \(\varphi n\) n) using \(N(1)[O F n]\) by (simp add: \(\Phi\)-def B-def)
from Riesz-representation-real-compact-metrizable[OF compact met
this]
obtain \(N\) where \(N^{\prime}\) : sets \(N=\) sets (borel-of \(X\) ) finite-measure \(N\)
\(\bigwedge f\). continuous-map \(X\) euclideanreal \(f \Longrightarrow \varphi n n\) (restrict \(f\) (topspace
\(X)=\) integral \(^{L} N f\)
by blast
hence space- \(N\) : space \(N=\) topspace \(X\)
by (auto cong: sets-eq-imp-space-eq simp: space-borel-of)
interpret \(N\) : finite-measure \(N\) by fact
have [measurable]: fn a0 \(\in\) borel-measurable \(N f \in\) borel-measurable
\(N\)
using continuous-map-measurable[of \(X\) euclideanreal \(] f n(1) f\)
dense-in-subset[OF dense]
by (auto simp: measurable-cong-sets[OF \(N^{\prime}(1)\) refl \(]\) intro!: continuous-map-measurable[of X euclideanreal,simplified
borel-of-euclidean])
```

have $\varphi n n(f n a 0)-\varphi n n f=\varphi n n(\lambda x \in t o p s p a c e ~ X . f n a 0 x)-$ $\varphi n n(\lambda x \in$ topspace $X . f x)$
by (simp add: fn-ext f-ext)
also have $\ldots=\varphi n n(\lambda x \in$ topspace X. fna0 $x)+\varphi n n(\lambda x \in$ topspace
$X .-f x)$
using f by (auto intro!: pos-lin-functional-on-CX-compact-lin(1)[OF plf compact,of --1 ,simplified,symmetric])
also have $\ldots=\varphi n n(\lambda x \in$ topspace $X . f n a 0 x+-f x)$
by (rule pos-lin-functional-on-CX-compact-lin(2)[symmetric]) (use fn(1) plf compact f dense-in-subset[OF dense] in auto)
also have $\ldots=\varphi n n(\lambda x \in$ topspace X. $f n a 0 x-f x)$
by simp
also have $\ldots=\left(\int x . f n a 0 x-f x \partial N\right)$
using $f n(1) f$ dense-in-subset[OF dense] by(auto intro!: $N^{\prime}(3)$ continuous-map-diff)
finally have $|\varphi n n(f n a 0)-\varphi n n f|=\left|\left(\int x . f n a 0 x-f x \partial N\right)\right|$
by simp
also have $\ldots \leq\left(\int x .|f n a 0 x-f x| \partial N\right)$
by (rule integral-abs-bound)
also have $\ldots \leq\left(\int x .(1 / 3) *(1 /(r+1)) * e \partial N\right)$
by(rule Bochner-Integration.integral-mono,insert a0)
(auto intro!: N.integrable-const-bound $[$ where $B=(1 / 3) *(1 /$
$(r+1)) * e]$ simp: space- N)
also have $\ldots=(1 / 3) * e *((1 /(r+1) *$ measure $N($ space $N)))$
by simp
also have $\ldots \leq(1 / 3) * e$
proof -
have measure $N($ space $N)=\left(\int x .1 \partial N\right)$
by simp
also have $\ldots=\varphi n n(\lambda x \in$ topspace X. 1$)$
by (intro $N^{\prime}(3)[$ symmetric $\left.]\right)$ simp
also have $\ldots \leq r$
using $N(1)[O F n]$ by (auto simp: Φ-def B-def)
finally have $(1 /(r+1) *$ measure $N($ space $N)) \leq 1$ using r by simp
thus ?thesis
unfolding mult-le-cancel-left2 using e by auto
qed
finally show ?thesis.
qed
show ?thesis
using 123 by simp
qed
also have ... $=e$
by simp
finally show norm $(\varphi n n f-\varphi f)<e$.
qed
qed
thus limitin euclideanreal ($\lambda n . \varphi n n f$) (φf) sequentially

```
            by simp
        qed
    next
        show \x. x t topspace d.mtopology \Longrightarrowx\in extensional (mspace (cfunspace
X euclidean-metric))
                            unfolding d.topspace-mtopology by (auto simp: \Phi-def prod-space-def
extensional-def simp del: mspace-cfunspace)
    qed (simp, auto simp:\Phi-def)
    thus }\S. openin \PhiS\Longrightarrow openin d.mtopology S
        by (metis \Phi-def d.topspace-mtopology topology-finer-continuous-id)
    next
        have continuous-map \Phi d.mtopology id
        unfolding d.continuous-map-to-metric id-apply
    proof safe
        fix }\varphi\mathrm{ and e::real
        assume \varphi: \varphi\in topspace \Phi and e:0<e
        then obtain N where N:(1/2)^N<e / 2
                    by (meson half-gt-zero-iff one-less-numeral-iff reals-power-lt-ex semir-
ing-norm(76))
            define el where e}\mp@subsup{e}{}{\prime}\equive/2-(1/2)^
            have e':0< e'
                using N by(auto simp: e'-def)
            define U' where }\mp@subsup{U}{}{\prime}\equiv\mp@subsup{\Pi}{E}{\prime}f\inmspace (cfunspace X euclidean-metric)
                if \existsn<N.f=gn n then {\varphi (\lambdax\intopspace X. fx) - e}\mp@subsup{e}{}{\prime}<..<\varphi(\lambdax\intopspac
X. fx) +e'} else UNIV
            define U where }U\equiv\mp@subsup{U}{}{\prime}\cap
            show \existsU. openin }\PhiU\wedge\varphi\inU\wedge(\forally\inU.y\ind.mball \varphie
            proof(safe intro!: exI[where x=U])
                show openin \Phi U
                    unfolding \Phi-def openin-subtopology U-def
            proof(safe intro!: exI[where x=U ])
                    show openin prod-space U'
                    unfolding prod-space-def U'-def openin-PiE-gen
                    by (auto simp: Let-def)
                qed
            next
                show }\varphi\in
                    unfolding U-def U'-def
                proof safe
                    fix f :: 'a }=>\mathrm{ real
                    assume f:f\in mspace (cfunspace X euclidean-metric)
                    then show }\varphif\in(if\existsn<N.f=gn 
                                    then {\varphi (restrict f(topspace X)) - e '<...<\varphi (restrict f
(topspace X)) + e'}
                                    else UNIV)
            using e' by (auto simp: Let-def gn-ext)
            qed(use \varphi \Phi-def prod-space-def in auto)
        next
```

```
    fix }
    assume }\psi:\psi\in
    then have \psi2:\psi\in topspace \Phi
    using topspace-subtopology-subset[OF B] by(auto simp: U-def \Phi-def)
    have \psi-le: |\varphi (\lambdax\intopspace X.gn n x) - \psi (\lambdax\intopspace X.gn n x ) |<
e}\mathrm{ if n: n<N for n
    proof -
        have }\psi\in(\mp@subsup{\Pi}{E}{}f\inmspace (cfunspace X euclidean-metric).
                                    if }\existsn<N.f=gn
                            then {\varphi (restrict f (topspace X)) - e}\mp@subsup{e}{}{\prime}<..<\varphi (restrict f (topspace
X)) + e '}
                else UNIV)
            using \psi by(auto simp: U-def U'-def)
            from PiE-mem[OF this gn-in(2)[of n]]
            have }\psi(\lambdax\intopspace X.gn n x) \in(if \existsm<N.gn n=gn m
                then {\varphi (restrict (gn n) (topspace X)) -
e'<..<\varphi (restrict (gn n) (topspace X)) + e'}
                                    else UNIV)
            by(simp add: gn-ext)
            thus ?thesis
            by (metis abs-diff-less-iff diff-less-eq greaterThanLessThan-iff n)
            qed
            have d \varphi\psi<e
            proof -
            have d \varphi \psi = (\sumn.(1/2) ^}(n+N)* mdist (capped-metric 1
euclidean-metric)
                                    (\varphi (\lambdax\intopspace X.gn (n+N) x))
                                    (\psi (\lambdax\intopspace X.gn (n+N) x)))
                                    +(\sumn<N.(1/2) ^n* mdist (capped-metric 1
euclidean-metric)
                                    (\varphi (\lambdax\intopspace X.gn n x))
                                    (\psi (\lambdax\intopspace X.gn n x)))
            unfolding d-def by(rule suminf-split-initial-segment d-def) simp
            also have .. \leq (\sumn. (1/2) ^}(n+N)
                                    +(\sumn<N.(1/2)^n*mdist (capped-metric 1
euclidean-metric)
                                    (\varphi (\lambdax\intopspace X.gn n x))
                                    (\psi (\lambdax\intopspace X.gn n x)))
            by(auto intro!: suminf-le mdist-capped summable-ignore-initial-segment[where
k=N])
    also have ... =(1/2)^N*2
                        +(\sumn<N.(1 / 2) ^n* mdist (capped-metric 1
euclidean-metric)
                        (\varphi(\lambdax\intopspace X.gn n x))
            using nsum-of-r'[where r=1/2 and K=1 and k=N,simplified] by
simp
            also have ... \leq(1 / 2)^N*2
                        +(\sumn<N.(1/2)^n* |\varphi (\lambdax\intopspace X.gn n x) - \psi
```

```
(\lambdax\intopspace X.gn n x)|)
                    by(auto intro!: sum-mono mdist-capped-le[where m=euclidean-metric
:: real metric,simplified,simplified dist-real-def])
            also have ... \leq(1/2)^N*2 + (\sumn<N. (1 / 2) ^ n * e')
                    using \psi-le by(fastforce intro!: sum-mono)
            also have \ldots< < (1/2)^N*2 + (\sumn<Suc N.(1 / 2)^n n * ')
                    using e' by(auto intro!: sum-strict-monoZ)
            also have ... \leq(1/2)^N*2 + (\sumn.(1/2)^ n*e')
                using e}\mp@subsup{e}{}{\prime}\mathbf{by}(\mathrm{ auto intro!: sum-le-suminf summable-mult2 simp del:
sum.lessThan-Suc)
            also have \ldots.. = (1/2)^N*2 +(\sumn.(1/2)^ n)* ' 
                    by(auto intro!: suminf-mult2[symmetric])
                    also have ... = (1/2)^N*2 + 2* ''
                    by(auto simp: suminf-geometric)
                    also have ... = e
                    by(auto simp: e'-def)
                    finally show ?thesis.
                    qed
            with }\varphi\psi2\mathrm{ show }\psi\in\mathrm{ d.mball }\varphi
                by simp
            qed
        qed
        thus }\S. openin d.mtopology S\Longrightarrow openin \PhiS
        by (metis d.topspace-mtopology topology-finer-continuous-id)
    qed
    thus ?thesis
        using d.metrizable-space-mtopology by presburger
    next
        case r:2
        have False if h:\varphi\inB for \varphi
    proof -
        have 1:\varphi}(\lambdax\intopspace X.1)\leqr
            using }h\mathrm{ by(auto simp: B-def)
        have 2: \varphi (\lambdax\intopspace X.1)\geq0
            using h by(auto simp: B-def pos-lin-functional-on-CX-compact-pos[OF -
compact])
            from 12 r show False by linarith
        qed
        hence }B={
        by auto
    thus ?thesis
        by(auto simp: \Phi-def)
    qed
qed
```


2.2 Alaoglu's Theorem

According to Alaoglu's theorem, $\left\{\varphi \in C(X)^{*} \mid\|\varphi\| \leq r\right\}$ is compact. We show that $\Phi=\left\{\varphi \in C(X)^{*} \mid\|\varphi\| \leq r \wedge \varphi\right.$ is positive $\}$ is compact. Note that
$\|\varphi\|=\varphi(1)$ when $\varphi \in C(X)^{*}$ is positive.
theorem Alaoglu-theorem-real-functional:
fixes X :: 'a topology and r :: real
defines prod-space \equiv powertop-real (mspace (cfunspace X euclidean-metric))
defines $B \equiv\{\varphi \in$ topspace prod-space. $\varphi(\lambda x \in$ topspace $X .1) \leq r \wedge$ positive-linear-functional-on- $C X$
$X \varphi\}$
assumes compact: compact-space X and ne: topspace $X \neq\{ \}$
shows compactin prod-space B
proof -
consider $r \geq 0 \mid r<0$
by linarith
then show? ?thesis
proof cases
assume rpos: $r \geq 0$
have continuous-map-compact-space-bounded: $\wedge f$. continuous-map X euclideanreal $f \Longrightarrow$ bounded (f 'topspace X)
by (meson compact compact-imp-bounded compact-space-def compactin-euclidean-iff image-compactin)
have 1: compactin prod-space
($\Pi_{E} f \in$ mspace (cfunspace X euclidean-metric). $\{-r *(\bigsqcup x \in$ topspace
$X .|f x|) . . r *(\bigsqcup x \in$ topspace $X .|f x|)\})$
by (auto simp: prod-space-def compactin-PiE)
have 2: $B \subseteq\left(\Pi_{E} f \in\right.$ mspace (cfunspace X euclidean-metric). $\{-r *(\bigsqcup x \in$ topspace
$X .|f x|) . . r *(\bigsqcup x \in$ topspace $X .|f x|)\})$
proof safe
fix φ and $f::{ }^{\prime} a \Rightarrow$ real
assume $h: \varphi \in B f \in$ mspace (cfunspace X euclidean-metric)
then have f : continuous-map X euclideanreal $f f \in$ topspace $X \rightarrow_{E}$ UNIV by (auto simp: extensional-def)
have plf:positive-linear-functional-on-CX $X \varphi$ using $h(1)$ by (auto simp: B-def)
note $\varphi=$ pos-lin-functional-on-CX-compact-lin[OF plf compact]
pos-lin-functional-on-CX-compact-pos[OF plf compact]
note φ-mono $=$ pos-lin-functional-on-CX-compact-mono[OF plf compact]
note φ-neg $=$ pos-lin-functional-on-CX-compact-uminus[OF plf compact
$f(1)$, symmetric]
obtain K where $K: \bigwedge x . x \in$ topspace $X \Longrightarrow|f x| \leq K$
using $h(2)$ bounded-real by auto
have f-Sup: $\backslash x . x \in$ topspace $X \Longrightarrow|f x| \leq(\bigsqcup x \in$ topspace $X .|f x|)$
by (auto intro!: cSup-upper bdd-aboveI [where $M=B] K$)
hence f-Sup-nonneg: $(\bigsqcup x \in$ topspace $X .|f x|) \geq 0$
using ne by fastforce
have $|\varphi f|=\mid \varphi(\lambda x \in$ topspace $X . f x) \mid$
using $f(2)$ by fastforce
also have $\ldots \leq \varphi(\lambda x \in$ topspace $X .|f x|)$
using φ-mono $[O F-f(1)$ continuous-map-norm $[\operatorname{OF} f(1)$, simplified $]]$
$\varphi(3)[$ OF continuous-map-norm $[$ OF $f(1)$,simplified $]]$
φ-mono $[O F$ - continuous-map-minus $[O F f(1)]$ continuous-map-norm $[O F$ f(1),simplified]]

```
        by(cases \varphi (restrict f(topspace X)) \geq0) (auto simp: \varphi-neg)
        also have ... \leq\varphi (\lambdax\intopspace X.(\x\intopspace X. |fx|) * 1)
            using continuous-map-norm[where 'b=real] f(1) f-Sup
            by(intro \varphi-mono) auto
    also have ... =( }\bigsqcupx\intopspace X. |f x|)*\varphi( (\lambdax\intopspace X. 1)
            by(intro \varphi) simp
    also have ... \leqr*(\x\intopspace X. |f x|)
    using h(1) f-Sup-nonneg by(auto simp: B-def mult.commute mult-right-mono)
    finally show }\varphif\in{-r*(\bigsqcupx\intopspace X. |fx|)..r*(\bigsqcupx\intopspace X. |f
x|)}
    by auto
    qed (auto simp: prod-space-def B-def)
    have 3: closedin prod-space B
    proof(rule closedin-limitin)
    fix }\varphin
    assume h:\U.\varphi\inU\Longrightarrow openin prod-space U\Longrightarrow\varphin U\not=\varphi
                    \ U . \varphi \in U \Longrightarrow \text { openin prod-space U } \Longrightarrow \text { ¢ \| U }
                    limitin prod-space \varphin \varphi (nhdsin-sets prod-space \varphi)
    then have xnx:\varphi \in extensional (mspace (cfunspace X euclidean-metric))
            ( }\mp@subsup{\forall}{F}{}U\mathrm{ in nhdsin-sets prod-space }\varphi.\varphinU\in\mathrm{ topspace prod-space)
            \.f\inmspace (cfunspace X euclidean-metric) \Longrightarrowlimitin euclideanreal ( }\lambdac
\varphincf) (\varphif) (nhdsin-sets prod-space \varphi)
            by(auto simp: limitin-componentwise prod-space-def)
    have }\varphi\mathrm{ -top: }\varphi\in\mathrm{ topspace prod-space
            by (meson h(3) limitin-topspace)
    show }\varphi\in
            unfolding B-def
    proof safe
    have limit:limitin euclideanreal ( }\lambdac.\varphinc(\lambdax\intopspace X. 1)) (\varphi ( \lambdax\intopspace
X. 1)) (nhdsin-sets prod-space \varphi)
            by(rule xnx(3)) (auto simp: bounded-iff)
```



```
                using h(2)
            by(auto intro!: tendsto-upperbound[OF limit[simplified] - nhdsin-sets-bot[OF
\varphi-top]]
                        eventually-nhdsin-setsI[OF \varphi-top] simp: B-def)
    next
        show positive-linear-functional-on-CX X \varphi
            unfolding positive-linear-functional-on-CX-compact[OF compact]
        proof safe
            fix cf
            assume f:continuous-map X euclideanreal f
                            then have f':(\lambdax\intopspace X.c*fx)\in mspace (cfunspace X eu-
clidean-metric)
            ( }\lambdax\intopspace X.fx)\inmspace (cfunspace X euclidean-metric)
            by(auto simp: intro!: continuous-map-compact-space-bounded continu-
ous-map-real-mult-left)
            have tends1:((\lambdaU.c*\varphinU(\lambdax\intopspace X.f x))\longrightarrow\varphi(\lambdax\intopspace
X.c*fx)) (nhdsin-sets prod-space \varphi)
```

using B-def $f h(2) \mathbf{b y}$ (fastforce intro!: tendsto-cong[THEN iffD1,OF xnx(3)[OF $f^{\prime}(1)$,simplified $\left.]\right]$
eventually-nhdsin-setsI[OF φ-top] pos-lin-functional-on-CX-compact-lin $[O F$ - compact f])
show $\varphi(\lambda x \in$ topspace $X . c * f x)=c * \varphi(\lambda x \in$ topspace $X . f x)$
by (rule tendsto-unique [OF nhdsin-sets-bot[OF φ-top] tends1 tend-sto-mult-left $\left[\right.$ OF $x n x(3)\left[O F f^{\prime}(2)\right.$, simplified $\left.\left.\left.]\right]\right]\right)$
next
fix $f g$
assume fg:continuous-map X euclideanreal f continuous-map X euclideanreal g
then have $f g^{\prime}:(\lambda x \in$ topspace $X . f x) \in$ mspace (cfunspace X eu-clidean-metric)
($\lambda x \in$ topspace $X . g x) \in$ mspace (cfunspace X euclidean-metric)
$(\lambda x \in$ topspace $X . f x+g x) \in$ mspace (cfunspace X euclidean-metric)
by (auto intro!: continuous-map-compact-space-bounded continuous-map-add)
have $((\lambda c . \varphi n c(\lambda x \in$ topspace $X . f x)+\varphi n c(\lambda x \in$ topspace $X . g x))$
$\varphi(\lambda x \in$ topspace $X . f x+g x))($ nhdsin-sets prod-space $\varphi)$
using B-def $f g h(2)$
by (fastforce intro!: tendsto-cong[THEN iffD1 ,OF - xnx(3)[OF fg'(3),simplified]] eventually-nhdsin-setsI[OF φ-top] pos-lin-functional-on-CX-compact-lin[OF - compact])
moreover have $((\lambda c . \varphi n c(\lambda x \in$ topspace $X . f x)+\varphi n c(\lambda x \in$ topspace X. $g x)$)

$$
\longrightarrow \varphi(\lambda x \in \text { topspace } X . f x)+\varphi(\lambda x \in \text { topspace } X . g x))
$$

(nhdsin-sets prod-space φ) using $x n x \mathrm{fg}^{\prime}$ by (auto intro!: tendsto-add)
ultimately show $\varphi(\lambda x \in$ topspace $X . f x+g x)=\varphi(\lambda x \in$ topspace $X . f$
$x)+\varphi(\lambda x \in$ topspace $X . g x)$
by(rule tendsto-unique [OF nhdsin-sets-bot[OF φ-top]])
next
fix f
assume f :continuous-map X euclideanreal $f \forall x \in$ topspace $X .0 \leq f x$
then have $1:(\lambda x \in$ topspace $X . f x) \in$ mspace (cfunspace X euclidean-metric) by (auto intro!: continuous-map-compact-space-bounded)
from $f h(2)$ show $0 \leq \varphi(\lambda x \in$ topspace $X . f x)$
by (auto intro!: tendsto-lowerbound $[$ OF $x n x(3)[O F 1$,simplified $]$ - nhdsin-sets-bot $[$ OF φ-top]]
eventually-nhdsin-setsI[OF φ-top] simp: B-def pos-lin-functional-on-CX-compact-pos[OF

- compact f(1)])
qed
qed fact
qed (auto simp: B-def)
show ?thesis
using 123 by(rule closed-compactin)
next
assume $r: r<0$
have $B=\{ \}$
proof safe

```
    fix }
    assume h:\varphi\inB
    then have }\f\mathrm{ . continuous-map X euclideanreal }f\Longrightarrow(\x.x\in\mathrm{ topspace }
\Longrightarrowfx\geq0)\Longrightarrow\varphi(\lambdax\intopspace X. fx)\geq0
            by(auto simp: B-def pos-lin-functional-on-CX-compact-pos[OF - compact])
            from this[of \lambdax. 1] hr show }\varphi\in{
        by(auto simp: B-def)
    qed
    thus compactin prod-space B
        by blast
    qed
qed
theorem Alaoglu-theorem-real-functional-seq:
    fixes }X\mathrm{ :: 'a topology and r :: real
    defines prod-space \equiv powertop-real (mspace (cfunspace X euclidean-metric))
    defines B\equiv{\varphi\intopspace prod-space. }\varphi(\lambdax\intopspace X. 1)\leqr^ positive-linear-functional-on-CX
X\varphi}
    assumes compact:compact-space X and ne: topspace X }\not={}\mathrm{ and met: metriz-
able-space X
    shows seq-compactin prod-space B
proof -
    have compactin prod-space B
            using Alaoglu-theorem-real-functional[OF compact ne] by(auto simp: B-def
prod-space-def)
    hence compact-space (subtopology prod-space B)
        using compact-space-subtopology by blast
    hence seq-compact-space (subtopology prod-space B)
        unfolding B-def prod-space-def
        using metrizable-seq-compact-space-iff-compact-space[OF metrizable-functional[OF
compact met]]
        by fast
    moreover have B\subseteqtopspace prod-space
        by(auto simp: B-def)
    ultimately show ?thesis
        by (simp add: inf.absorb-iff2 seq-compact-space-def seq-compactin-subtopology)
qed
end
```


3 General Weak Convergence

```
theory General-Weak-Convergence
    imports Lemmas-Levy-Prokhorov
                Riesz-Representation.Regular-Measure
begin
```

We formalize the notion of weak convergence and equivalent conditions. The formalization of weak convergence in HOL-Probability is restricted to
probability measures on real numbers. Our formalization is generalized to finite measures on any metric spaces.

3.1 Topology of Weak Convegence

definition weak-conv-topology :: 'a topology \Rightarrow ' a measure topology where weak-conv-topology $X \equiv$ topology-generated-by
$(\bigcup f \in\{f$. continuous-map X euclideanreal $f \wedge(\exists B . \forall x \in$ topspace $X .|f x| \leq B)\}$.
Collect (openin (pullback-topology $\{N$. sets $N=$ sets (borel-of X) \wedge f-nite-measure $N\}$

$$
\left.\left.\left.\left(\lambda N . \int x . f x \partial N\right) \text { euclideanreal }\right)\right)\right)
$$

```
lemma topspace-weak-conv-topology[simp]:
    topspace \((\) weak-conv-topology \(X)=\{N\). sets \(N=\) sets (borel-of \(X) \wedge\) finite-measure
\(N\}\)
    unfolding weak-conv-topology-def openin-pullback-topology
    by (auto intro!: exI \([\) where \(x=\lambda x\). 1] exI \([\) where \(x=1]\) ) blast
lemma openin-weak-conv-topology-base:
    assumes \(f\) :continuous-map \(X\) euclideanreal \(f\) and \(B: \bigwedge x . x \in\) topspace \(X \Longrightarrow \mid f\)
\(x \mid \leq B\)
    and \(U\) :open \(U\)
    shows openin (weak-conv-topology \(X)\left(\left(\lambda N . \int x . f x \partial N\right)-{ }^{\prime} U\right.\)
                                    \(\cap\{N\). sets \(N=\) sets (borel-of \(X) \wedge\) finite-measure
N\})
    using assms
    by (fastforce simp: weak-conv-topology-def openin-topology-generated-by-iff openin-pullback-topology
        intro!: Basis)
    lemma continuous-map-weak-conv-topology:
    assumes \(f\) :continuous-map \(X\) euclideanreal \(f\) and \(B: \bigwedge x . x \in\) topspace \(X \Longrightarrow \mid f\)
\(x \mid \leq B\)
    shows continuous-map (weak-conv-topology \(X\) ) euclideanreal \(\left(\lambda N . \int x . f x \partial N\right)\)
    using openin-weak-conv-topology-base[OF assms]
    by (auto simp: continuous-map-def Collect-conj-eq Int-commute Int-left-commute
vimage-def)
lemma weak-conv-topology-minimal:
    assumes topspace \(Y=\{N\). sets \(N=\) sets \((\) borel-of \(X) \wedge\) finite-measure \(N\}\)
        and \(\Lambda f B\). continuous-map \(X\) euclideanreal \(f\)
                        \(\Longrightarrow(\bigwedge x . x \in\) topspace \(X \Longrightarrow|f x| \leq B) \Longrightarrow\) continuous-map \(Y\)
euclideanreal \(\left(\lambda N . \int x . f x \partial N\right)\)
    shows openin (weak-conv-topology \(X\) ) \(U \Longrightarrow\) openin \(Y U\)
    unfolding weak-conv-topology-def openin-topology-generated-by-iff
proof (induct rule: generate-topology-on.induct)
    case \(h\) :(Basis s)
    then obtain \(f B\) where \(f\) : continuous-map \(X\) euclidean \(f \bigwedge x . x \in\) topspace \(X \Longrightarrow\)
\(|f x| \leq B\)
```

openin (pullback-topology $\{N$. sets $N=$ sets (borel-of $X) \wedge$ finite-measure $N\}$ $\left(\lambda N . \int x . f x \partial N\right)$ euclideanreal) s by blast
then obtain u where u :
open us $=\left(\lambda N . \int x . f x \partial N\right)-{ }^{‘} u \cap\{N$. sets $N=$ sets (borel-of $X) \wedge f i-$ nite-measure $N\}$
unfolding openin-pullback-topology by auto
with $\operatorname{assms}(2)[\operatorname{OF} f(1,2)]$
show ?case
using assms(1) continuous-map-open by fastforce
qed auto
lemma weak-conv-topology-continuous-map-integral:
assumes continuous-map X euclideanreal $f \bigwedge x . x \in$ topspace $X \Longrightarrow|f x| \leq B$ shows continuous-map (weak-conv-topology X) euclideanreal $\left(\lambda N . \int x . f x \partial N\right)$ unfolding continuous-map
proof safe
fix U
assume openin euclideanreal U
then show openin (weak-conv-topology X) $\{N \in$ topspace (weak-conv-topology $\left.X) .\left(\int x . f x \partial N\right) \in U\right\}$
unfolding weak-conv-topology-def openin-topology-generated-by-iff using assms
by (auto intro!: Basis exI [where $x=U]$ exI [where $x=f]$ exI $[$ where $x=B]$ simp: openin-pullback-topology) blast
qed simp

3.2 Weak Convergence

abbreviation weak-conv-on $::(' a \Rightarrow$ ' b measure $) \Rightarrow$ ' b measure \Rightarrow 'a filter $\Rightarrow{ }^{\prime} b$ topology \Rightarrow bool

$$
\left({ }^{\prime}\left((-) / \Rightarrow_{W C}(-)\right)(-) / \text { on }(-)[56,55] 55\right) \text { where }
$$

weak-conv-on Ni N F X \equiv limitin (weak-conv-topology X) Ni N F
abbreviation weak-conv-on-seq $::($ nat \Rightarrow 'b measure $) \Rightarrow$ 'b measure \Rightarrow 'b topology \Rightarrow bool
$\left({ }^{\prime}\left((-) / \Rightarrow_{W C}(-)^{\prime}\right)\right.$ on $\left.(-)[56,55] 55\right)$ where
weak-conv-on-seq Ni N $X \equiv$ weak-conv-on Ni N sequentially X

3.3 Limit in Topology of Weak Convegence

lemma weak-conv-on-def:
weak-conv-on Ni NFX \longleftrightarrow
$\left(\forall_{F}\right.$ i in F. sets $(N i i)=$ sets $($ borel-of $X) \wedge$ finite-measure $\left.(N i i)\right) \wedge$ sets $N=$ sets (borel-of X)
\wedge finite-measure N
$\wedge(\forall f$. continuous-map X euclideanreal $f \longrightarrow(\exists B . \forall x \in$ topspace $X .|f x| \leq$ B)

$$
\left.\longrightarrow\left(\left(\lambda i . \int x . f x \partial N i i\right) \longrightarrow\left(\int x . f x \partial N\right)\right) F\right)
$$

proof safe
assume h:weak-conv-on Ni NFX
then have 1:sets $N=$ sets (borel-of X) finite-measure N using limitin-topspace by fastforce+
then show $\bigwedge x . x \in$ sets $N \Longrightarrow x \in$ sets (borel-of $X) \bigwedge x . x \in$ sets (borel-of X)
$\Longrightarrow x \in$ sets N
finite-measure N
by auto
show 2: $\forall_{F} i$ in F. sets $(N i i)=$ sets $($ borel-of $X) \wedge$ finite-measure $(N i i)$
using $h \mathbf{b y}$ (cases $F=\perp$) (auto simp: limitin-def)
fix $f B$
assume f :continuous-map X euclideanreal f and $B: \forall x \in$ topspace X. $|f x| \leq B$
show $\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right) F$
unfolding tendsto-iff
proof safe
fix r :: real
assume [arith]: $r>0$
then have openin

```
                    (weak-conv-topology \(X\) )
                    \(\left(\left(\lambda N . \int x . f x \partial N\right)-‘\left(\right.\right.\) ball \(\left.\left(\int x . f x \partial N\right) r\right)\)
```

 \(\cap\{N\). sets \(N=\) sets (borel-of \(X) \wedge\) finite-measure \(N\}\)) (is openin
 - ? U)
using $f B$ by (auto intro!: openin-weak-conv-topology-base)
moreover have $N \in$? U
using h by (simp add: 1)
ultimately have $N n U: \forall_{F} n$ in F. Ni $n \in$? U
using h limitinD by fastforce
show $\forall_{F} n$ in F. dist $\left(\int x . f x \partial N i n\right)\left(\int x . f x \partial N\right)<r$
by (auto intro!: eventuallyI[THEN eventually-mp[OF - NnU]] simp: dist-real-def)
qed
next
assume $h: \forall_{F} i$ in F. sets $(N i i)=$ sets $($ borel-of $X) \wedge$ finite-measure $(N i i)$
sets $N=$ sets (borel-of X)
finite-measure N
$\forall f$. continuous-map X euclideanreal $f \longrightarrow(\exists B . \forall x \in$ topspace $X .|f x| \leq$
B)
$\longrightarrow\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right) F$
show $\left(N i \Rightarrow_{W C} N\right) F$ on X
unfolding limitin-def
proof safe
show $N \in$ topspace (weak-conv-topology X)
using h by auto
fix U
assume h^{\prime} :openin (weak-conv-topology X) $U N \in U$
show $\forall_{F} x$ in F. Ni $x \in U$
using h^{\prime} [simplified weak-conv-topology-def openin-topology-generated-by-iff]
proof induction
case Empty
then show?case
by simp
next
case (Int ab)
then show? case
by (simp add: eventually-conj-iff)
next
case (UN K)
then show? case
using UnionI eventually-mono by fastforce
next
case $s:($ Basis $s)$
then obtain f where f : continuous-map X euclidean $f \exists B . \forall x \in$ topspace X.
$|f x| \leq B$
openin (pullback-topology $\{N$. sets $N=$ sets (borel-of X) \wedge
finite-measure $N\}\left(\lambda N . \int x . f x \partial N\right)$ euclideanreal) s
by blast
then obtain u where u :
open $u s=\left(\lambda N . \int x . f x \partial N\right)-‘ u \cap\{N$. sets $N=$ sets (borel-of $X) \wedge$
finite-measure $N\}$
unfolding openin-pullback-topology by auto
have $\left(\int x . f x \partial N\right) \in u$
using $u s$ by blast
moreover have $\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right) F$
using $f h$ by blast
ultimately have $1: \forall_{F} n$ in $F .\left(\int x . f x \partial(N i n)\right) \in u$
by (simp add: tendsto-def $u(1)$)
show ?case
by (auto intro!: eventuallyI[THEN eventually-mp[OF - eventually-conj[OF 1
$h(1)]]]$ simp: $u(2)$)
qed
qed
qed
lemma weak-conv-on-def':
assumes $\bigwedge i$. sets $(N i i)=$ sets (borel-of $X)$ and $\bigwedge i$. finite-measure (Ni i)
and sets $N=$ sets (borel-of X) and finite-measure N
shows weak-conv-on Ni N F X
$\longleftrightarrow(\forall f$. continuous-map X euclideanreal $f \longrightarrow(\exists B . \forall x \in$ topspace $X .|f x|$
$\leq B)$

$$
\left.\longrightarrow\left(\left(\lambda i . \int x . f x \partial N i i\right) \longrightarrow\left(\int x . f x \partial N\right)\right) F\right)
$$

using assms by (auto simp: weak-conv-on-def)
lemmas weak-conv-seq-def $=$ weak-conv-on-def[where $F=$ sequentially]
lemma weak-conv-on-const:
$(\bigwedge i . N i i=N) \Longrightarrow$ sets $N=$ sets (borel-of $X)$
\Longrightarrow finite-measure $N \Longrightarrow$ weak-conv-on Ni N F X
by (auto simp: weak-conv-on-def)
lemmas weak-conv-on-seq-const $=$ weak-conv-on-const $[$ where $F=$ sequentially $]$

context Metric-space

begin
abbreviation mweak-conv $\equiv(\lambda N i N F$. weak-conv-on Ni N F mtopology $)$
abbreviation mweak-conv-seq $\equiv \lambda N i$ N. mweak-conv Ni N sequentially
lemmas mweak-conv-def $=$ weak-conv-on-def[where $X=$ mtopology,simplified $]$
lemmas mweak-conv-seq-def $=$ weak-conv-seq-def[where $X=$ mtopology,simplified $]$
end

3.4 The Portmanteau Theorem

locale mweak-conv-fin $=$ Metric-space +
fixes $N i::{ }^{\prime} b \Rightarrow{ }^{\prime} a$ measure and $N::$ 'a measure and F
assumes sets-Ni: $\forall_{F} i$ in F. sets $(N i i)=$ sets (borel-of mtopology)
and sets- $N[$ measurable-cong]: sets $N=$ sets (borel-of mtopology)
and finite-measure- $N i: \forall_{F} i$ in F. finite-measure (Ni i)
and finite-measure- N : finite-measure N
begin
interpretation N : finite-measure N
by (simp add: finite-measure- N)
lemma space- N : space $N=M$
using sets-eq-imp-space-eq[OF sets-N] by (auto simp: space-borel-of)
lemma space- $N i: \forall_{F} i$ in F. space $(N i i)=M$
by (rule eventually-mp $[O F-$ sets-Ni $]$) (auto simp: space-borel-of cong: sets-eq-imp-space-eq)
lemma eventually- $N i: \forall_{F} i$ in F. space $(N i i)=M \wedge$ sets $(N i i)=$ sets (borel-of mtopology) \wedge finite-measure (Ni i)
by (intro eventually-conj space-Ni sets-Ni finite-measure-Ni)
lemma measure-converge-bounded ${ }^{\prime}$:
assumes $((\lambda n$. measure $($ Ni n) M) \longrightarrow measure $N M) F$
obtains K where $\bigwedge A . \forall_{F} x$ in F. measure (Ni $\left.x\right) A \leq K \bigwedge A$. measure $N A \leq$ K
proof -
have measure $N A \leq$ measure $N M+1$ for A
using $N . b o u n d e d-m e a s u r e[o f ~ A] ~ b y(s i m p ~ a d d: ~ s p a c e-~ N) ~$
moreover have $\forall_{F} x$ in F. measure (Ni x) $A \leq$ measure $N M+1$ for A
proof (rule eventuallyI[THEN eventually-mp[OF - eventually-conj[OF eventu-ally-Ni tendstoD[OF assms,of 1]]]])
fix x
show (space $(N i x)=M \wedge$ sets $(N i x)=$ sets (borel-of mtopology) $\wedge f i-$ nite-measure (Ni x)) ^
dist (measure $($ Ni $x) M$) (measure $N M)<1 \longrightarrow$ measure $(N i x) A \leq$ measure $N M+1$
using finite-measure.bounded-measure[of Ni x A]
by (auto intro!: eventuallyI[THEN eventually-mp [OF - tendstoD $[O F$ assms,of 1]]] simp: dist-real-def)
qed simp
ultimately show ?thesis
using that by blast
qed

lemma

assumes $F \neq \perp \forall_{F} x$ in F. measure (Nix) $A \leq K$ measure $N A \leq K$
shows Liminf-measure-bounded: Liminf F (גi. measure (Ni i) A) $<\infty 0 \leq$ Liminf F (λi. measure (Ni i) A)
and Limsup-measure-bounded: Limsup $F(\lambda i$. measure (Ni i) $A)<\infty 0 \leq$ Limsup $F(\lambda i$. measure ($N i$ i) A)
proof -
have Liminf $F(\lambda i$. measure $(N i i) A) \leq K \operatorname{Limsup} F(\lambda i$. measure $(N i i) A) \leq$ K
using assms $\mathbf{b y}$ (auto intro!: Liminf-le Limsup-bounded)
thus Liminf $F(\lambda i$. measure $(N i$ i) $A)<\infty \operatorname{Limsup} F(\lambda i$. measure $(N i i) A)<$ ∞
by auto
show $0 \leq \operatorname{Liminf} F(\lambda i$. measure (Ni i) A) $0 \leq \operatorname{Limsup} F(\lambda i$. measure (Ni $i)$ A)
by (auto intro!: le-Limsup Liminf-bounded assms)
qed
lemma mweak-conv1:
fixes $f::^{\prime} a \Rightarrow$ real
assumes mweak-conv Ni NF
and uniformly-continuous-map Self euclidean-metric f
shows $(\exists B . \forall x \in M .|f x| \leq B) \Longrightarrow\left(\left(\lambda n\right.\right.$. integral ${ }^{L}($ Ni $\left.n) f\right) \longrightarrow$ integral $^{L} N$ f) F
using uniformly-continuous-imp-continuous-map[OF assms(2)] assms(1) by (auto simp: mweak-conv-def mtopology-of-def)
lemma mweak-conv2:
assumes $\bigwedge f::$ ' $a \Rightarrow$ real. uniformly-continuous-map Self euclidean-metric $f \Longrightarrow$ $(\exists B . \forall x \in M .|f x| \leq B)$
$\Longrightarrow\left(\left(\lambda n\right.\right.$. integral $\left.^{L}(N i n) f\right) \longrightarrow$ integral $\left.^{L} N f\right) F$
and closedin mtopology A
shows Limsup $F(\lambda x$. ereal (measure $(N i x) A)) \leq \operatorname{ereal}($ measure $N A)$
proof -
consider $A=\{ \}|F=\perp| A \neq\{ \} F \neq \perp$
by blast
then show ?thesis
proof cases
assume $A=\{ \}$
then show?thesis
using Limsup-obtain linorder-not-less by fastforce
next
assume A-ne: $A \neq\{ \}$ and $F: F \neq \perp$
have $A[$ measurable $]: A \in$ sets $N \forall_{F} i$ in F. $A \in$ sets (Ni i)
using borel-of-closed $[O F \operatorname{assms}(2)]$ by (auto simp: sets- N eventually-mp $[O F$ -sets-Ni])
have $((\lambda n$. measure $(N i n) M) \longrightarrow$ measure $N M) F$
proof -
have $1:((\lambda n$. measure $(N i n)(\operatorname{space}(N i n))) \longrightarrow$ measure $N M) F$
using assms (1)[of λx. 1] by (auto simp: space- N)
show ?thesis
by (rule tendsto-cong[THEN iffD1,OF eventually-mp[OF - space-Ni] 1]) simp
qed
then obtain K where $K: \bigwedge A . \forall_{F} x$ in F. measure $(N i x) A \leq K \bigwedge A$. measure $N A \leq K$ using measure-converge-bounded ${ }^{\prime}$ by auto
define $U m$ where $U m \equiv(\lambda m$. $\cup a \in A$. mball a $(1 /$ Suc $m))$
have Um-open: openin mtopology $(U m m)$ for m by (auto simp: Um-def)
hence $U m-m[m e a s u r a b l e]: \bigwedge m . U m m \in$ sets $N \bigwedge m . \forall_{F} i$ in F. Um $m \in$ sets (Nii)
by (auto simp: sets- N intro!: borel-of-open eventually-mono[OF sets-Ni])
have A-Um: $A \subseteq U m m$ for m
using closedin-subset[OF assms(2)] by(fastforce simp: Um-def)
have $\exists f m::-\Rightarrow$ real. $\quad(\forall x . f m x \geq 0) \wedge(\forall x . f m x \leq 1) \wedge(\forall x \in M-U m m$. $f m x=0) \wedge(\forall x \in A . f m x=1) \wedge$
uniformly-continuous-map Self euclidean-metric fm for m
proof -
have 1: closedin mtopology $(M-U m m)$
using Um-open[of m] by (auto simp: closedin-def Diff-Diff-Int Int-absorb1)
have 2: $A \cap(M-U m m)=\{ \}$
using $A-U m[$ of $m]$ by blast
have 3: $1 / S u c m \leq d x y$ if $x \in A y \in M-U m m$ for $x y$
proof (rule ccontr)
assume $\neg 1 /$ real $($ Suc $m) \leq d x y$
then have $d x y<1 /(1+$ real $m)$ by simp
thus False
using that closedin-subset[OF assms(2)] by(auto simp: Um-def)
qed
show ?thesis
by (metis Urysohn-lemma-uniform[of Self ,simplified mtopology-of-def,simplified, OF $\operatorname{assms}(2) 123, s i m p l i f i e d]$ Diff-iff)
qed
then obtain $f m::$ nat $\Rightarrow-\Rightarrow$ real where $f m: \bigwedge m x . f m m x \geq 0 \bigwedge m x . f m$ $m x \leq 1$
\bigwedge м $m x . x \in A \Longrightarrow f m m x=1 \bigwedge m x . x \in M \Longrightarrow x \notin U m m \Longrightarrow f m x=0$
$\bigwedge m$. uniformly-continuous-map Self euclidean-metric (fm m)
by (metis Diff-iff)
have fm-m[measurable]: $\bigwedge m . \forall_{F} i$ in $F . f m m \in$ borel-measurable $(N i i) \bigwedge m$. fm $m \in$ borel-measurable N
using continuous-map-measurable[OF uniformly-continuous-imp-continuous-map[OF $f m(5)]]$
by (auto simp: borel-of-euclidean mtopology-of-def eventually-mono[OF sets-Ni])
have int-bounded: $\forall_{F} n$ in F. ($\left.\int x . f m m x \partial N i n\right) \leq K$ for m
proof (rule eventually-mono)
show $\forall_{F} n$ in F. space (Ni n) $=M \wedge$ finite-measure (Ni n) $\wedge f m m \in$ borel-measurable (Nin) \wedge
$\left(\int x . f m m x \partial N i n\right) \leq\left(\int x .1 \partial N i n\right) \wedge\left(\int x .1 \partial N i n\right) \leq K$
proof (intro eventually-conj)
show $\forall_{F} n$ in F. $\left(\int x . f m m x \partial N i n\right) \leq\left(\int x .1 \partial N i n\right)$
proof (rule eventually-mono)
show $\forall_{F} n$ in F. space (Ni $\left.n\right)=M \wedge$ finite-measure (Ni $\left.n\right) \wedge f m m \in$ borel-measurable (Ni n)
by (intro eventually-conj space-Ni finite-measure-Ni fm-m)
show space (Nin)=M^finite-measure (Ni n) \wedge fm $m \in$ borel-measurable (Nin)
$\Longrightarrow\left(\int x . f m m x \partial N i n\right) \leq\left(\int x .1 \partial N i n\right)$ for n
by (rule integral-mono, insert fm) (auto intro!: finite-measure.integrable-const-bound [where $B=1]$)
qed
show $\forall_{F} n$ in F. $\left(\int x .1\right.$ DNi $\left.n\right) \leq K$
by(rule eventually-mono[OF eventually-conj[OF K(1)[of M] space-Ni]])
simp
qed (auto simp: space-Ni finite-measure-Ni fm-m)
qed simp
have 1: Limsup $F(\lambda n$. measure $(N i n) A) \leq$ measure $N(U m m)$ for m
proof -
have Limsup $F(\lambda n$. measure $(N i n) A)=$ Limsup $F\left(\lambda n . \int x\right.$. indicat-real A $x \partial N i n$)
$\mathbf{b y}($ intro Limsup-eq $[O F$ eventually-mono[OF A(2)]]) simp
also have $\ldots \leq \operatorname{Limsup} F\left(\lambda n . \int x . f m m x \partial N i n\right)$
proof (safe intro!: eventuallyI[THEN Limsup-mono[OF eventually-mp[OF -eventually-conj[OF fm-m(1)[of m] eventually-conj $[$ OF finite-measure-Ni eventually-conj $[$ OF A(2) int-bounded[of m][]]]]]])
fix n
assume $h:\left(\int x . f m m x \partial N i n\right) \leq K A \in \operatorname{sets}$ (Ni n) finite-measure (Ni n) fm $m \in$ borel-measurable (Ni n)
with $f m$ show ereal $\left(\int x\right.$. indicat-real $\left.A x \partial N i n\right) \leq \operatorname{ereal}\left(\int x . f m m x \partial N i\right.$ n)
by (auto intro!: Limsup-mono integral-mono finite-measure.integrable-const-bound[where $B=1$]
simp del: Bochner-Integration.integral-indicator) (auto simp: indica-tor-def)
qed
also have $\ldots=\left(\int x . f m m x \partial N\right)$
using $f m$ by (auto intro!: lim-imp-Limsup[OF F tendsto-ereal[OF assms(1) [OF $f m(5)[$ of ml]]]] exI[where $x=1])$
also have $\ldots \leq\left(\int x\right.$. indicat-real $\left.(U m m) x \partial N\right)$
unfolding ereal-less-eq(3) by(rule integral-mono, insert fm(4)[of -m] $f m(1,2))$
(auto intro!: N.integrable-const-bound $[$ where $B=1]$,auto simp: indicator-def space- N)
also have $\ldots=$ measure $N(U m m)$
by simp
finally show ?thesis.
qed
have 2: $(\lambda n$. measure $N(U m n)) \longrightarrow$ measure $N A$
proof -
have $[$ simp $]:(\bigcap($ range Um) $)=A$
unfolding Um-def
by (rule nbh-Inter-closure-of[OF A-ne - - LIMSEQ-Suc,simplified clo-sure-of-closedin [OF $\operatorname{assms}(2)]]$, insert sets.sets-into-space[OF A(1)])
(auto intro!: decseq-SucI simp: frac-le space-N lim-1-over-n)
have $[$ simp $]$: monotone $(\leq)(\lambda x y . y \subseteq x) U m$
unfolding Um-def by(rule nbh-decseq) (auto intro!: decseq-SucI simp: frac-le)
have $(\lambda n$. measure $N(U m n)) \longrightarrow$ measure $N(\bigcap($ range Um $))$
by(rule N.finite-Lim-measure-decseq) auto
thus?thesis by simp

qed

show ?thesis
using $1 \mathbf{b y}$ (auto intro!: Lim-bounded2[OF tendsto-ereal[OF 2]]) qed simp
qed
lemma mweak-conv3:
assumes $\bigwedge A$. closedin mtopology $A \Longrightarrow$ Limsup $F(\lambda n$. measure $(N i n) A) \leq$ measure $N A$ and $((\lambda n$. measure $($ Ni $n) M) \longrightarrow$ measure $N M) F$ and openin mtopology U
shows measure $N U \leq \operatorname{Liminf} F(\lambda n$. measure $(N i n) U)$ $\operatorname{proof}($ cases $F=\perp$)
assume $F: F \neq \perp$
obtain K where $K: \bigwedge A . \forall_{F} x$ in F. measure (Nix) $A \leq K \bigwedge A$. measure $N M$ $\leq K$
using measure-converge-bounded ${ }^{\prime}[$ OF assms(2)] by metis
have $U[$ measurable $]: U \in$ sets $N \forall_{F} i$ in $F . U \in$ sets $(N i i)$
by (auto simp: sets- N borel-of-open assms eventually-mono $[O F$ sets- $N i]$)
have ereal (measure $N U)=$ measure $N M-$ measure $N(M-U)$
by (simp add: N.finite-measure-compl[simplified space- N])
also have $\ldots \leq$ measure $N M-\operatorname{Limsup} F(\lambda n$. measure $(N i n)(M-U))$
using assms(1)[OF openin-closedin[THEN iffD1 ,OF - assms(3)]] openin-subset[OF $\operatorname{assms}(3)]$
by (metis ereal-le-real ereal-minus(1) ereal-minus-mono topspace-mtopology) also have $\ldots=$ measure $N M+\operatorname{Liminf} F(\lambda n .-\operatorname{ereal}($ measure $(N i n)(M-$ $U)$)
by (metis ereal-Liminf-uminus minus-ereal-def)
also have $\ldots=\operatorname{Liminf} F(\lambda n$. measure $(N i n) M)+\operatorname{Liminf} F(\lambda n .-$ measure (Nin) $(M-U))$
using tendsto-iff-Liminf-eq-Limsup[OF F,THEN iffD1,OF tendsto-ereal[OF $\operatorname{assms}(2)]]$ by simp
also have $\ldots \leq \operatorname{Liminf} F(\lambda n$. ereal (measure (Nin) M) + ereal (- measure (Ni n) $(M-U)))$
by (rule ereal-Liminf-add-mono) (use Liminf-measure-bounded $[$ OF F K] in auto)
also have $\ldots=\operatorname{Liminf} F(\lambda n$. measure $(N i n) U)$
by (auto intro!: Liminf-eq eventually-mono[OF eventually-conj[OF U(2) even-tually-conj[OF space-Ni finite-measure-Ni]]] simp: finite-measure.finite-measure-compl)
finally show ?thesis .
qed simp
lemma mweak-conv3':
assumes $\bigwedge U$. openin mtopology $U \Longrightarrow$ measure $N U \leq \operatorname{Liminf} F(\lambda n$. measure (Nin) U)
and $((\lambda n$. measure $(N i n) M) \longrightarrow$ measure $N M) F$
and closedin mtopology A
shows Limsup $F(\lambda n$. measure $(N i n) A) \leq$ measure $N A$
proof (cases $F=\perp$)
assume $F: F \neq \perp$
have $A\left[\right.$ measurable]: $A \in$ sets $N \forall_{F} i$ in $F . A \in$ sets (Ni i)
by (auto simp: sets- N borel-of-closed assms eventually-mono[OF sets-Ni])
have Limsup $F(\lambda n$. measure $(N i n) A)=\operatorname{Limsup} F(\lambda n$. ereal (measure $(N i n)$ $M)+\operatorname{ereal}(-$ measure $(N i n)(M-A)))$
by (auto intro!: Limsup-eq eventually-mono[OF eventually-conj[OF A(2) even-tually-conj[OF space-Ni finite-measure-Ni]]] simp: finite-measure.finite-measure-compl)
also have $\ldots \leq$ Limsup $F(\lambda n$. measure (Ni n) M) $+\operatorname{Limsup} F(\lambda n$. - measure (Ni n) $(M-A))$
by (rule ereal-Limsup-add-mono)
also have $\ldots=\operatorname{Limsup} F(\lambda n$. measure $($ Nin) $M)+\operatorname{Limsup} F(\lambda n .-\operatorname{ereal}($ measure (Ni n) (M-A)))
by simp
also have $\ldots=$ Limsup $F(\lambda n$. measure $(N i n) M)-\operatorname{Liminf} F(\lambda n$. measure (Nin) $(M-A)$)
unfolding ereal-Limsup-uminus using minus-ereal-def by presburger
also have $\ldots=$ measure $N M-\operatorname{Liminf} F(\lambda n$. measure $(N i n)(M-A))$
by (simp add: lim-imp-Limsup[OF F tendsto-ereal $[$ OF assms(2)]])
also have $\ldots \leq$ measure $N M-$ measure $N(M-A)$
using assms(1)[OF openin-diff[OF openin-topspace assms(3)]] closedin-subset[OF assms(3)]
by (metis assms $(1,3)$ ereal-le-real ereal-minus (1) ereal-minus-mono open-in-mspace openin-diff)
also have $\ldots=$ measure $N A$
by (simp add: N.finite-measure-compl[simplified space- $N]$)
finally show? thesis .
qed simp
lemma mweak-conv4:
assumes $\bigwedge A$. closedin mtopology $A \Longrightarrow$ Limsup $F(\lambda n$. measure (Ni n) $A) \leq$ measure $N A$
and $\wedge U$. openin mtopology $U \Longrightarrow$ measure $N U \leq$ Liminf F (λn. measure (Nin) U)
and [measurable]: $A \in$ sets (borel-of mtopology)
and measure N (mtopology frontier-of $A)=0$
shows $((\lambda n$. measure $(N i n) A) \longrightarrow$ measure $N A) F$
proof (cases $F=\perp$)
assume $F: F \neq \perp$
have [measurable]: $A \in$ sets N mtopology closure-of $A \in$ sets N mtopology inte-rior-of $A \in$ sets N
mtopology frontier-of $A \in$ sets N
and $A: \forall_{F} i$ in $F . A \in$ sets $(N i \quad i) \forall_{F} i$ in F. mtopology closure-of $A \in$ sets (Ni i)
\forall_{F} i in F. mtopology interior-of $A \in$ sets $(N i i) \forall_{F} i$ in F. mtopology frontier-of $A \in$ sets (Ni i)
by (auto simp: sets- N borel-of-open borel-of-closed closedin-frontier-of eventu-ally-mono[OF sets-Ni])
have Limsup $F(\lambda n$. measure $(N i n) A) \leq L i m s u p ~ F(\lambda n$. measure (Ni n) (mtopology closure-of A))
using sets.sets-into-space[OF assms(3)]
by (fastforce intro!: Limsup-mono finite-measure.finite-measure-mono[OF - clo-sure-of-subset]
eventually-mono[OF eventually-conj[OF finite-measure-Ni A(2)]] simp: space-borel-of)
also have $\ldots \leq$ measure N (mtopology closure-of A)
by(auto intro!: assms(1))
also have $\ldots \leq$ measure $N(A \cup($ mtopology frontier-of $A))$
using closure-of-subset[of A mtopology] sets.sets-into-space[OF assms(3)] inte-rior-of-subset[of mtopology A]
by (auto simp: space-borel-of interior-of-union-frontier-of [symmetric] simp del: interior-of-union-frontier-of intro!: N.finite-measure-mono)
also have $\ldots \leq$ measure $N A+$ measure N (mtopology frontier-of A)
by (simp add: N.finite-measure-subadditive)
also have $\ldots=$ measure $N A$ by (simp add: assms)
finally have 1: Limsup $F(\lambda n$. measure $(N i n) A) \leq$ measure $N A$.
have ereal (measure $N A$) $=$ measure $N A-$ measure N (mtopology frontier-of A)
by (simp add: assms)
also have $\ldots \leq$ measure $N(A-$ mtopology frontier-of $A)$
by (auto simp: N.finite-measure-Diff' intro!: N.finite-measure-mono)
also have $\ldots \leq$ measure N (mtopology interior-of A)
using closure-of-subset[OF sets.sets-into-space[OF assms(3),simplified space-borel-of]]
by (auto intro!: N.finite-measure-mono simp: frontier-of-def)
also have $\ldots \leq \operatorname{Liminf} F(\lambda n$. measure (Ni n) (mtopology interior-of A))
by (auto intro!: assms)
also have $\ldots \leq \operatorname{Liminf} F(\lambda n$. measure $(N i n) A)$
by (fastforce intro!: Liminf-mono finite-measure.finite-measure-mono interior-of-subset eventually-mono[OF eventually-conj[OF finite-measure-Ni A(1)]])
finally have 2: measure $N A \leq \operatorname{Liminf} F(\lambda n$. measure (Nin) A).
have Liminf $F(\lambda n$. measure $(N i n) A)=$ measure $N A \wedge \operatorname{Limsup} F(\lambda n$. measure
(Ni n) A) $=$ measure $N A$
using 12 order.trans[OF 2 Liminf-le-Limsup[OF F]] order.trans[OF Lim-inf-le-Limsup [OF F] 1] antisym
by blast
thus ?thesis
by (metis F lim-ereal tendsto-Limsup)
qed simp
lemma mweak-conv5:
assumes $\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure N (mtopology frontier-of A) $=0$

$$
\Longrightarrow((\lambda n \text {. measure }(N i n) A) \longrightarrow \text { measure } N A) F
$$

shows mweak-conv Ni NF
proof $($ cases $F=\perp$)
assume $F: F \neq \perp$
show ?thesis
unfolding mweak-conv-def
proof safe
fix $f B$
assume h :continuous-map mtopology euclideanreal $f \forall x \in M .|f x| \leq B$
have $((\lambda n$. measure $(N i n) M) \longrightarrow$ measure $N M) F$
using frontier-of-topspace[of mtopology] by(auto intro!: assms borel-of-open)
then obtain K where $K: \bigwedge A . \forall_{F} x$ in F. measure (Nix) $A \leq K \bigwedge A$. measure $N A \leq K$ using measure-converge-bounded' by metis
from continuous-map-measurable[OF h(1)]
have $f[$ measurable $]: f \in$ borel-measurable $N \forall_{F}$ i in $F . f \in$ borel-measurable (Ni
i)
by(auto cong: measurable-cong-sets simp: sets- N borel-of-euclidean intro!: eventually-mono $[O F$ sets-Ni])
have f-int[simp]: integrable $N f \forall_{F}$ i in F. integrable (Ni i) f
using h by (auto intro!: N.integrable-const-bound $[$ where $B=B]$ finite-measure.integrable-const-bound $[$ wher
$B=B]$
eventually-mono[OF eventually-conj[OF eventually-conj[OF space-Ni f(2)]
finite-measure-Ni]] simp: space- N)
show $\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right) F$
proof (cases $B>0$)
case False
with $h(2)$ have $1: \bigwedge x . x \in \operatorname{space} N \Longrightarrow f x=0 \forall_{F}$ i in $F . \forall x . x \in$ space
$(N i i) \longrightarrow f x=0$
by (fastforce simp: space- N intro!: eventually-mono[OF space-Ni])+ thus ?thesis
by(auto cong: Bochner-Integration.integral-cong
intro!: tendsto-cong[where $g=\lambda x .0$ and $f=\left(\lambda n . \int x . f x \partial N i n\right), T H E N$
iffD2] eventually-mono[OF 1(2)])
next case $B[$ arith $]$:True show ?thesis proof (cases $K>0$) case False then have 1:measure $N A=0 \forall_{F} x$ in F. measure ($N i x$) $M=0$ for A using $K(2)[$ of $A]$ measure-nonneg $[$ of $-A]$ measure-le- 0 -iff by(fastforce intro!: eventuallyI[THEN eventually-mp[OF - K (1) [of M]]])+ hence $N=$ null-measure (borel-of mtopology)
by(auto intro!: measure-eqI simp: sets- N N.emeasure-eq-measure)
moreover have $\forall_{F} x$ in F. Ni $x=$ null-measure (borel-of mtopology)
using order.trans[where $c=0, O F$ finite-measure.bounded-measure]
by (intro eventually-mono[OF eventually-conj $[O F$ eventually-conj $[O F$ space-Ni eventually-conj[OF finite-measure-Ni sets-Ni]] 1(2)]] measure-eqI) (auto simp: finite-measure.emeasure-eq-measure measure-le-0-iff)
ultimately show ?thesis
by (simp add: eventually-mono tendsto-eventually)
next
case [arith]:True
show ?thesis unfolding tendsto-iff LIMSEQ-def dist-real-def
proof safe
fix r :: real
assume r [arith]: $r>0$
define ν where $\nu \equiv \operatorname{distr} N$ borel f
have sets-nu[measurable-cong, simp]: sets $\nu=$ sets borel by (simp add: ν-def)
interpret ν : finite-measure ν
by (auto simp: ν-def N.finite-measure-distr)
have $(1 / 6) *(r / K) *(1 / B)>0$
by auto
from nat-approx-posE[OF this]
obtain N^{\prime} where $N^{\prime}: 1 /\left(\right.$ Suc $\left.N^{\prime}\right)<(1 / 6) *(r / K) *(1 / B)$
by auto
from mult-strict-right-mono $[$ OF this $B]$ have $N^{\prime \prime}: B /\left(\right.$ Suc $\left.N^{\prime}\right)<(1 /$
$6) *(r / K)$
by auto
have $\exists t n \in\left\{B /\right.$ Suc $N^{\prime} *($ real $n-1)-B<. .<B /$ Suc $N^{\prime} *$ real $n-$ $B\}$. measure $\nu\{t n\}=0$ for n
proof (rule ccontr)
assume $\neg\left(\exists\right.$ tn $\in\left\{B /\right.$ Suc $N^{\prime} *($ real $n-1)-B<. .<B / S u c N^{\prime} *$
real $n-B\}$. measure $\nu\{t n\}=0$)
then have $\left\{B /\right.$ Suc $N^{\prime} *($ real $n-1)-B<. .<B /$ Suc $N^{\prime} *$ real $n-$
$B\} \subseteq\{x$. measure $\nu\{x\} \neq 0\}$
by auto
moreover have uncountable $\left\{B /\right.$ Suc $N^{\prime} *($ real $n-1)-B<. .<B /$
Suc $N^{\prime} *$ real $\left.n-B\right\}$
unfolding uncountable-open-interval right-diff-distrib by auto

```
            ultimately show False
            using \nu.countable-support by(meson countable-subset)
    qed
    then obtain tn where tn: \bigwedgen.B/Suc N'*(real n-1)-B<tnn
\n.tn n<B/Suc N'* real n - B
    \n.measure \nu {tn n} =0
    by (metis greaterThanLessThan-iff)
    have t0: tn 0<-B
        using tn(2)[of 0] by simp
    have tN:B<tn(Suc (2* (Suc N')))
    proof -
        have}B*(2+2*real N')/(1+real N')=2*
        by(auto simp: divide-eq-eq)
        with tn(1)[of Suc (2 * (Suc N'))] show ?thesis
        by simp
    qed
    define }Aj\mathrm{ where }Aj\equiv(\lambdaj.f-`{tn j..<tn (Suc j)}\capM
    have sets-Aj[measurable]: \j. Aj j \in sets N \forall}\mp@subsup{\forall}{F}{}i\mathrm{ in F. }\forallj. Ajj | set
(Ni i)
        using measurable-sets[OF f(1)]
            by(auto simp: Aj-def space-N intro!: eventually-mono[OF eventu-
ally-conj[OF space-Ni f(2)]])
    have m-f:measure N (mtopology frontier-of (Aj j))=0 for j
    proof -
    have measure N(mtopology frontier-of (Aj j)) = measure N (mtopology
closure-of (Aj j) - mtopology interior-of (Aj j))
        by(simp add: frontier-of-def)
    also have ... \leqmeasure \nu{tn j, tn (Suc j)}
    proof -
        have [simp]: {x\inM.tn j\leqfx\wedgefx\leqtn (Suc j)}=f-`'{tn j..tn
(Suc j)} \cap M
                {x\inM.tnj<fx^fx<tn(Suc j)}=f-'{tn j<..<tn (Suc j)}
\capM
                by auto
            have mtopology closure-of (Aj j)\subseteqf -'{tn j..tn (Suc j)}\capM
            by(rule closure-of-minimal,insert closedin-continuous-map-preimage[OF
h(1),of {tn j.tn (Suc j)}])
                            (auto simp: Aj-def)
                            moreover have f-'{ {n j<..<tn (Suc j)}\capM\subseteq mtopology interior-of
by (rule interior-of-maximal, insert openin-continuous-map-preimage \([O F\) \(h(1)\), of \(\{\operatorname{tn} j<. .<\operatorname{tn}(S u c j)\}])\)
(auto simp: Aj-def)
ultimately have mtopology closure-of (Aj j) - mtopology interior-of \((A j j) \subseteq f-‘\{t n j, t n(S u c j)\} \cap M\)
by(fastforce dest: contra-subsetD)
with closedin-subset[OF closedin-closure-of,of mtopology Aj j] show
?thesis
by (auto simp: \(\nu\)-def measure-distr intro!: N.finite-measure-mono)
```

```
(auto simp: space-N)
    qed
    also have ... \leq measure \nu{tn j} + measure \nu {tn (Suc j)}
            using \nu.finite-measure-subadditive[of {tn (Suc j)} {tn j}] by auto
            also have ... = 0
            by(simp add: tn)
            finally show ?thesis
            by (simp add: measure-le-0-iff)
        qed
    hence conv:((\lambdan. measure (Ni n) (Aj j)) \longrightarrow measure N (Aj j)) F for j
            by(auto intro!: assms simp: sets-N[symmetric] sets-Ni)
    have fil1:\forall F n in F. |tn j| * |measure (Ni n) (Aj j) - measure N (Aj j)|
<r/(3*(Suc (Suc (2 * Suc N')))) for j
    proof(cases |tn j| = 0)
    case pos:False
    then have r / (3*(Suc (Suc (2*Suc N'))))*(1 / |tn j|)>0
            by auto
    with conv[of j]
    have 1:\forall\mp@subsup{V}{F}{}n in F. |measure (Ni n) (Aj j) - measure N (Aj j)|
                        <r/(3*(Suc (Suc (2 * Suc N'))))*(1 / |tn j|)
            unfolding tendsto-iff dist-real-def by metis
            have }\mp@subsup{\forall}{F}{}n\mathrm{ n in F. |tn j| * |measure (Ni n) (Aj j) - measure N (Aj j)|<
r/(3* (Suc (Suc (2 * Suc N'))))
    proof(rule eventuallyI[THEN eventually-mp[OF - 1]])
        show |measure (Ni n) (Ajj) - measure N (Aj j)|<r / real (3 * Suc
(Suc (2 * Suc N')))*(1 / |tn j|)
                        \longrightarrow | t n j \| * \| m e a s u r e ~ ( N i ~ n ) ( A j j ) ~ - ~ m e a s u r e ~ N ~ ( A j ~ j ) \| < r ~ / ~ r e a l
(3*Suc (Suc (2*Suc N'))) for n
                    using mult-less-cancel-right-pos[of |tn j| |measure (Ni n) (Aj j) -
measure N (Aj j)
                    r / real (3 * Suc (Suc (2 * Suc N'))) *(1 / |tn j|)] pos by(simp
add: mult.commute)
            qed
            thus ?thesis by auto
                            qed auto
                            hence fil1:\forall F n in F. \forallj\in{..Suc (2 * Suc N')}. |tn j| * |measure (Ni n)
(Aj j) - measure N (Ajj)|
                        <r/(3* (Suc (Suc (2*Suc N'))))
            by(auto intro!: eventually-ball-finite)
    have tn-strictmono: strict-mono tn
            unfolding strict-mono-Suc-iff
    proof safe
    fix n
    show tn n<tn(Suc n)
        using tn(1)[of Suc n] tn(2)[of n] by auto
    qed
    from strict-mono-less[OF this] have Aj-disj: disjoint-family Aj
                            by(auto simp: disjoint-family-on-def Aj-def) (metis linorder-not-le
not-less-eq order-less-le order-less-trans)
```

```
        have Aj-un: M = (\bigcupi\in{..Suc (2*Suc N')}.Aj i)
        proof
            show M\subseteq\bigcup(Aj'{..Suc (2 * Suc N')})
            proof
            fix }
            assume x:x\inM
            with h(2) tN t0 have h':tn 0<fxfx<tn(Suc (2*Suc N'))
            by fastforce+
            define n where n\equivLEAST n.f }x<\operatorname{tn}(Suc n
            have fx<tn (Suc n)
                unfolding n-def by(rule LeastI-ex) (use h' in auto)
            moreover have tn n\leqfx
            by (metis Least-le Suc-n-not-le-n h'(1) less-eq-real-def linorder-not-less
n-def not0-implies-Suc)
            moreover have n\leq2*Suc N'
                unfolding n-def by(rule Least-le) (use h' in auto)
            ultimately show }x\in\bigcup(Aj'{..Suc (2*Suc N')}
                    by(auto simp:Aj-def x)
qed
qed(auto simp: Aj-def)
    define h where h\equiv(\lambdax.\sumi\leqSuc (2* (Suc N')).tn i*indicat-real (Aj
i) x)
            have h[measurable]:}h\in\mathrm{ borel-measurable N }\mp@subsup{\forall}{F}{}\mathrm{ i in F. h 旃rel-measurable
(Ni i)
            by(auto simp: h-def simp del: sum.atMost-Suc sum-mult-indicator intro!:
borel-measurable-sum eventually-mono[OF sets-Aj(2)])
    have h-f:hx\leqfx if x\inM for }
    proof -
            from that disjoint-family-onD[OF Aj-disj]
            obtain n where n: x\inAjnn\leqSuc (2*Suc N') \m.m\not=n\Longrightarrowx
# Aj m
            by(auto simp: Aj-un)
            have hx=(\sumi\leqSuc (2 * (Suc N')). if i=n then tn i else 0)
            unfolding h-def by(rule Finite-Cartesian-Product.sum-cong-aux) (use
n in auto)
            also have ... = tn n
            using n by auto
            also have ... \leqfx
            using n(1) by(auto simp: Aj-def)
            finally show ?thesis.
    qed
    have f-h: fx<hx+(1/3)*(r / enn2real K) if }x\inM\mathrm{ for }
    proof -
        from that disjoint-family-onD[OF Aj-disj]
        obtain n where n: x G Aj n n \leqSuc (2*Suc N') \m.m\not=n\Longrightarrowx
&Aj m
            by(auto simp: Aj-un)
            have hx=(\sumi\leqSuc (2* (Suc N')). if i=n then tn i else 0)
            unfolding h-def by(rule Finite-Cartesian-Product.sum-cong-aux) (use
```

n in auto)
also have $\ldots=\operatorname{tn} n$
using n by auto
finally have $h x: h x=\operatorname{tn} n$.
have $f x<t n$ (Suc n)
using n by (auto simp: Aj-def)
hence $f x-t n n<t n(S u c n)-t n n$ by auto
also have $\ldots<B / \operatorname{real}\left(S u c N^{\prime}\right) * \operatorname{real}($ Suc $n)-\left(B / \operatorname{real}\left(S u c N^{\prime}\right) *\right.$ $($ real $n-1)$)
using $\operatorname{tn}(1)[$ of $n] \operatorname{tn}(2)[$ of Suc $n]$ by auto
also have $\ldots=2 * B / \operatorname{real}\left(\right.$ Suc $\left.N^{\prime}\right)$
by (auto simp: diff-divide-distrib[symmetric]) (simp add: ring-distribs(1) right-diff-distrib)
also have $\ldots<(1 / 3) *(r / e n n 2 r e a l ~ K)$ using $N^{\prime \prime}$ by auto
finally show ?thesis
using $h x$ by simp
qed
with h-f have $f h: \bigwedge x . x \in M \Longrightarrow|f x-h x|<(1 / 3) *(r /$ enn2real
K)
by fastforce
have h-bounded: $|h x| \leq\left(\sum i \leq\right.$ Suc $\left(2 *\left(\right.\right.$ Suc $\left.\left.N^{\prime}\right)\right)$. \mid tn $\left.i \mid\right)$ for x
unfolding h-def $\mathbf{b y}$ (rule order.trans[OF sum-abs[of λi. tn $i *$ indicat-real (Aj i) x
$\left\{\right.$..Suc $\left(2 *\left(\right.\right.$ Suc $\left.\left.\left.\left.N^{\prime}\right)\right)\right\}\right]$ sum-mono]) (auto simp: indicator-def)
hence h-int [simp]: integrable $N h \forall_{F} i$ in F. integrable (Ni i) h
by (auto intro!: N.integrable-const-bound[where B=EíSuc (2 * (Suc $\left.N^{\prime}\right)$). $\left.|t n i|\right]$
finite-measure.integrable-const-bound $\left[\right.$ where $B=\sum i \leq$ Suc (2 * (Suc $\left.N^{\prime}\right)$). $\left.|\operatorname{tn} i|\right]$

> eventually-mono[OF eventually-conj[OF finite-measure-Ni h(2)]])
show $\forall_{F} n$ in F. $\left|\left(\int x . f x \partial N i n\right)-\left(\int x . f x \partial N\right)\right|<r$
proof (safe intro!: eventually-mono[OF eventually-conj[OF K(1)[of M]
eventually-conj $[O F$ eventually-conj $[O F$ fil1 h-int(2)]
eventually-conj[OF f-int(2)
eventually-conj $[$ OF eventually-conj $[$ OF finite-measure-Ni
space-Ni]
sets-Aj(2)]]J]])
fix n
assume $n: \forall j \in\left\{.\right.$. Suc $\left(2 *\right.$ Suc $\left.\left.N^{\prime}\right)\right\}$.
\mid tn $j|*|$ measure $(N i n)(A j j)-$ measure $N(A j j) \mid<r /$ real $(3 * S u c$ $\left.\left(S u c\left(2 * S u c N^{\prime}\right)\right)\right)$
measure (Ni n) (space (Nin)) $\leq K$
and h-intn $[$ simp $]$:integrable (Ni n) h and -intn[simp]:integrable (Ni
n) f
and sets-Aj2[measurable]: $\forall j$. Aj $j \in$ sets (Ni n)
and space-Ni:M = space (Ni n)
and finite-measure (Ni n)
interpret $N i$: finite-measure (Ni n) by fact

```
    have \(\left|\left(\int x . f x \partial N i n\right)-\left(\int x . f x \partial N\right)\right|\)
    \(=\mid\left(\int x . f x-h x \partial N i n\right)+\left(\left(\int x . h x \partial N i n\right)-\left(\int x . h x \partial N\right)\right)-\)
\(\left(\int x . f x-h x \partial N\right) \mid\)
by (simp add: Bochner-Integration.integral-diff[OF \(f\)-int(1) h-int(1)]
Bochner-Integration.integral-diff [OF f-intn h-intn])
    also have \(\ldots \leq\left|\int x . f x-h x \partial N i n\right|+\mid\left(\int x . h x \partial N i n\right)-\left(\int x . h x\right.\)
\(\partial N)\left|+\left|\int x . f x-h x \partial N\right|\right.\)
            by linarith
    also have \(\ldots \leq\left(\int x .|f x-h x| \partial N i n\right)+\mid\left(\int x . h x \partial N i n\right)-\left(\int x . h x\right.\)
\(\partial N) \mid+\left(\int x .|f x-h x| \partial N\right)\)
            using integral-abs-bound by (simp add: add-mono del: f-int f-intn)
            also have \(\ldots \leq r / 3+\left|\left(\int x . h x \partial N i n\right)-\left(\int x . h x \partial N\right)\right|+r / 3\)
            proof -
                            have \(\left(\int x .|f x-h x| \partial N i n\right) \leq\left(\int x .(1 / 3) *(r /\right.\) enn2real K) \(\mathrm{CNi} n)\)
        by(rule integral-mono) (insert fh, auto simp: space-Ni order.strict-implies-order)
            also have \(\ldots=\) measure (Ni n) (space (Ni n)) / K* (r / 3)
                by auto
                    also have \(\ldots \leq r / 3\)
                    by (rule mult-left-le-one-le) (use \(n\) space-Ni in auto)
                            finally have \(1:\left(\int x .|f x-h x| \partial N i n\right) \leq r / 3\).
                            have \(\left(\int x .|f x-h x| \partial N\right) \leq\left(\int x .(1 / 3) *(r / K) \partial N\right)\)
    by (rule integral-mono) (insert fh, auto simp: space- \(N\) order.strict-implies-order)
            also have \(\ldots=\) measure \(N(\) space \(N) /\) enn2real \(K *(r / 3)\)
                by auto
            also have \(\ldots \leq r / 3\)
                by (rule mult-left-le-one-le) (use \(K\) space- \(N\) in auto)
            finally show ?thesis
                using 1 by auto
    qed
    also have ... \(<r\)
    proof -
        have \(\left|\left(\int x . h x \partial N i n\right)-\left(\int x . h x \partial N\right)\right|\)
            \(=\mid\left(\int x .\left(\sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right) \cdot\right.\right.\) tn \(i *\) indicat-real \(\left.(A j i) x\right) \partial N i\)
n)
                    \(-\left(\int x .\left(\sum i \leq S u c\left(2 *\left(S u c N^{\prime}\right)\right) \cdot\right.\right.\) tn \(i *\) indicat-real \(\left.(A j i) x\right)\)
\(\partial N) \mid\)
            by (simp add: h-def)
            also have \(\ldots=\mid\left(\sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right) .\left(\int x\right.\right.\).tn \(i *\) indicat-real \((A j\)
                i) \(x \partial N i n)\) )
                    \(-\left(\sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right) \cdot\left(\int x . t n i *\right.\right.\) indicat-real \((A j\)
i) \(x \partial N)\) )
    proof -
        have 1: \(\left(\int x .\left(\sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right)\right.\right.\). tn \(i *\) indicat-real \(\left.(A j i) x\right)\)
\(\partial N i n)\)
                        \(=\left(\sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right) .\left(\int x . \operatorname{tn} i *\right.\right.\) indicat-real \((A j i) x\)
\(\partial N i n)\) )
    by (rule Bochner-Integration.integral-sum) (use integrable-real-mult-indicator
sets-Aj2 in blast)
        have 2: \(\left(\int x .\left(\sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right)\right.\right.\). tn \(i *\) indicat-real \(\left.(A j i) x\right)\)
```

$$
=\left(\sum i \leq S u c\left(2 *\left(S u c N^{\prime}\right)\right) \cdot\left(\int x \cdot \operatorname{tn} i * \text { indicat-real }(A j i) x\right.\right.
$$

$\partial N))$
by (rule Bochner-Integration.integral-sum) (use integrable-real-mult-indicator sets-Aj(1) in blast)
show ?thesis
by (simp only: 1 2)
qed
also have $\ldots=\mid\left(\sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right)\right.$.tn $i *$ measure (Ni $\left.n\right)(A j$
i))

$$
-\left(\sum i \leq S u c\left(2 *\left(S u c N^{\prime}\right)\right) \cdot \text { tn } i * \text { measure } N(A j i)\right) \mid
$$

by simp
also have $\ldots=\mid \sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right)$.tn $i *($ measure (Ni $n)(A j$
$i)$ - measure $N(A j i)) \mid$
by(auto simp: sum-subtractf right-diff-distrib)
also have $\ldots \leq\left(\sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right)\right.$. \mid tn $i *($ measure (Ni $n)(A j$
$i)-$ measure $N(A j i)) \mid)$
by (rule sum-abs)
also have $\ldots \leq\left(\sum i \leq S u c\left(2 *\left(S u c N^{\prime}\right)\right) .|t n i| * \mid(\right.$ measure (Ni n) (Aj
$i)$ - measure $N(A j i)) \mid)$
by (simp add: abs-mult)
also have $\ldots<\left(\sum i \leq \operatorname{Suc}\left(2 *\left(S u c N^{\prime}\right)\right) . r /(3 *(S u c(S u c(2 * S u c\right.$ $\left.N^{\prime}\right)$)))
by (rule sum-strict-mono) (use n in auto)
also have $\ldots=\operatorname{real}\left(\operatorname{Suc}\left(\operatorname{Suc}\left(2 * \operatorname{Suc} N^{\prime}\right)\right)\right) *(1 /(\operatorname{Suc}(S u c)(2 *$
Suc $\left.\left.N^{\prime}\right)\right)$) $\left.(r / 3)\right)$
by auto
also have $\ldots=r / 3$
unfolding mult.assoc[symmetric] by simp
finally show ?thesis by auto
qed
finally show $\left|\left(\int x . f x \partial N i n\right)-\left(\int x . f x \partial N\right)\right|<r$.
qed
qed
qed
qed
qed(auto simp: sets- N finite-measure- N intro!: eventually-mono[OF eventually-Ni])
qed (simp add: mweak-conv-def sets-Ni sets-N finite-measure- N)
lemma mweak-conv-eq: mweak-conv Ni N F
$\longleftrightarrow\left(\forall f::^{\prime} a \Rightarrow\right.$ real. continuous-map mtopology euclidean $f \longrightarrow(\exists B . \forall x \in M .|f x|$ $\leq B$)

$$
\left.\longrightarrow\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right) F\right)
$$

by (auto simp: sets- N mweak-conv-def finite-measure- N intro!: eventually-mono[OF eventually-conj[OF finite-measure-Ni sets-Ni]])
lemma mweak-conv-eq1: mweak-conv Ni N F
$\longleftrightarrow\left(\forall f::^{\prime} a \Rightarrow\right.$ real. uniformly-continuous-map Self euclidean-metric $f \longrightarrow(\exists B$.
$\forall x \in M .|f x| \leq B)$

$$
\left.\longrightarrow\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right) F\right)
$$

proof

assume $h: \forall f::^{\prime} a \Rightarrow$ real. uniformly-continuous-map Self euclidean-metric $f \longrightarrow$ $(\exists B . \forall x \in M .|f x| \leq B)$

$$
\longrightarrow\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right) F
$$

have $1:((\lambda n$. measure $($ Ni $n) M) \longrightarrow$ measure $N M) F$
proof -
have 1:((λn. measure $(N i n)($ space $(N i n))) \longrightarrow$ measure $N M) F$ using $h[r u l e-f o r m a t, O F ~ u n i f o r m l y-c o n t i n u o u s-m a p-c o n s t[T H E N ~ i f f D 2, o f ~-~ 1]] ~] ~$ by (auto simp: space- N)
show ?thesis
by (auto intro!: tendsto-cong[THEN iffD1,OF - 1] eventually-mono[OF space-Ni]) qed
have \bigwedge A. closedin mtopology $A \Longrightarrow \operatorname{Limsup} F(\lambda n$. measure (Ni n) $A) \leq$ measure $N A$ and $\bigwedge U$. openin mtopology $U \Longrightarrow$ measure $N U \leq \operatorname{Liminf} F(\lambda n$. measure (Ni n) U)
using mweak-conv2[OF h[rule-format $]$ mweak-conv3[OF - 1] by auto
hence $\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure N (mtopology frontier-of $A)=0$

$$
\Longrightarrow((\lambda n . \text { measure }(\text { Ni } n) A) \longrightarrow \text { measure } N A) F
$$

using mweak-conv4 by auto
with mweak-conv5 show mweak-conv Ni N F by auto qed(use mweak-conv1 in auto)
lemma mweak-conv-eq2: mweak-conv Ni N F
$\longleftrightarrow((\lambda n$. measure $(N i n) M) \longrightarrow$ measure $N M) F \wedge(\forall$ A. closedin mtopology A
$\longrightarrow \operatorname{Limsup} F(\lambda n$. measure $(N i n) A) \leq$ measure $N A)$
proof safe
assume mweak-conv Ni NF
note $h=$ this[simplified mweak-conv-eq1]
show 1:((λn. measure $($ Ni $n) M) \longrightarrow$ measure $N M) F$
proof -
have 1:((λn. measure $($ Ni $n)($ space $(N i n))) \longrightarrow$ measure $N M) F$
using h[rule-format,OF uniformly-continuous-map-const[THEN iffD2,of - 1]] by (auto simp: space- N)
show ?thesis
by (auto intro!: tendsto-cong[THEN iffD1,OF - 1] eventually-mono[OF space-Ni])
qed
show \bigwedge A. closedin mtopology $A \Longrightarrow$ Limsup $F(\lambda n$. measure $($ Ni $n) A) \leq$ measure N A
using mweak-conv2[OF h[rule-format]] by auto
next
assume $h:((\lambda n$. measure $(N i n) M) \longrightarrow$ measure $N M) F$
\forall A. closedin mtopology $A \longrightarrow$ Limsup $F(\lambda n$. measure $($ Ni $n) A) \leq$ measure N A
then have $\bigwedge A$. closedin mtopology $A \Longrightarrow$ Limsup $F(\lambda n$. measure $(N i n) A) \leq$ measure $N A$
and $\bigwedge U$. openin mtopology $U \Longrightarrow$ measure $N U \leq \operatorname{Liminf} F(\lambda n$. measure ($N i$ n) U) using mweak-conv3 by auto
hence $\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure N (mtopology frontier-of A) $=0$

$$
\Longrightarrow((\lambda n . \text { measure }(N i n) A) \longrightarrow \text { measure } N A) F
$$

using mweak-conv4 by auto
with mweak-conv5 show mweak-conv Ni N F by auto
qed
lemma mweak-conv-eq3: mweak-conv Ni N F
$\longleftrightarrow((\lambda n$. measure $(N i n) M) \longrightarrow$ measure $N M) F \wedge$
$(\forall U$. openin mtopology $U \longrightarrow$ measure $N U \leq \operatorname{Liminf} F(\lambda n$. measure (Ni $n)$
$U)$)
proof safe
assume mweak-conv Ni N F
note $h=$ this[simplified mweak-conv-eq1]
show 1:((λn. measure $(N i n) M) \longrightarrow$ measure $N M) F$
proof -
have $1:((\lambda n$. measure $($ Ni $n)($ space $(N i n))) \longrightarrow$ measure $N M) F$ using $h[$ rule-format,OF uniformly-continuous-map-const[THEN iffD2,of - 1]] by (auto simp: space- N)
show ?thesis
by (auto intro!: tendsto-cong[THEN iffD1,OF - 1] eventually-mono[OF space-Ni])
qed
show $\bigwedge U$. openin mtopology $U \Longrightarrow$ measure $N U \leq \operatorname{Liminf} F(\lambda n$. measure $(N i$
n) U)
using mweak-conv2[OF h[rule-format $]$ mweak-conv3[OF - 1] by auto
next
assume $h:((\lambda n$. measure $(N i n) M) \longrightarrow$ measure $N M) F$ $\forall U$. openin mtopology $U \longrightarrow$ measure $N U \leq \operatorname{Liminf} F(\lambda n$. measure (Ni n) U)
then have $\bigwedge A$. closedin mtopology $A \Longrightarrow$ Limsup $F(\lambda n$. measure $($ Ni $n) A) \leq$ measure $N A$
and $\bigwedge U$. openin mtopology $U \Longrightarrow$ measure $N U \leq \operatorname{Liminf} F$ (λn. measure ($N i$
n) U) using mweak-conv3' by auto
hence $\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure N (mtopology frontier-of A) $=0$

$$
\Longrightarrow((\lambda n . \text { measure }(N i n) A) \longrightarrow \text { measure } N A) F
$$

using mweak-conv4 by auto
with mweak-conv5 show mweak-conv Ni N F by auto
qed
lemma mweak-conv-eq4: mweak-conv Ni N F
$\longleftrightarrow(\forall A \in$ sets (borel-of mtopology). measure N (mtopology frontier-of A) $=0$ $\longrightarrow((\lambda n$. measure $(N i n) A) \longrightarrow$ measure $N A) F)$
proof safe
assume mweak-conv Ni N F
note $h=$ this[simplified mweak-conv-eq1]
have $1:((\lambda n$. measure $(N i n) M) \longrightarrow$ measure $N M) F$
proof -
have $1:((\lambda n$. measure $($ Ni $n)($ space $(N i n))) \longrightarrow$ measure $N M) F$
using $h[$ rule-format,OF uniformly-continuous-map-const[THEN iffD2,of - 1]]
by (auto simp: space- N)
show ?thesis
by (auto intro!: tendsto-cong[THEN iffD1,OF - 1] eventually-mono[OF space-Ni]) qed
have $\bigwedge A$. closedin mtopology $A \Longrightarrow$ Limsup $F(\lambda n$. measure (Nin) $A) \leq$ measure N A
and $\bigwedge U$. openin mtopology $U \Longrightarrow$ measure $N U \leq \operatorname{Liminf} F(\lambda n$. measure $(N i$
n) U)
using mweak-conv2[OF h[rule-format $]$] mweak-conv3[OF - 1] by auto
thus $\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure N (mtopology frontier-of A) $=0$
$\Longrightarrow((\lambda n$. measure $($ Ni $n) A) \longrightarrow$ measure $N A) F$
using mweak-conv4 by auto
qed(use mweak-conv5 in auto)
corollary mweak-conv-imp-limit-space:
assumes mweak-conv Ni NF
shows $((\lambda i$. measure $(N i i) M) \longrightarrow$ measure $N M) F$
using assms by (simp add: mweak-conv-eq3)
end
lemma
assumes metrizable-space X
and $\forall_{F} i$ in F. sets (Ni i) $=$ sets (borel-of $\left.X\right) \forall_{F} i$ in F. finite-measure (Ni i) and sets $N=$ sets (borel-of X) finite-measure N
shows weak-conv-on-eq1:
weak-conv-on Ni N F X
$\longleftrightarrow((\lambda n$. measure $($ Ni $n)($ topspace $X)) \longrightarrow$ measure $N($ topspace $X)) F$
$\wedge(\forall$ A. closedin $X A \longrightarrow$ Limsup $F(\lambda n$. measure $($ Ni $n) A) \leq$ measure N
A) (is ?eq1)
and weak-conv-on-eq2:
weak-conv-on Ni N F X
$\longleftrightarrow((\lambda n$. measure $($ Ni $n)($ topspace $X)) \longrightarrow$ measure $N($ topspace $X)) F$ $\wedge(\forall U$. openin $X U \longrightarrow$ measure $N U \leq \operatorname{Liminf} F(\lambda n$. measure (Ni n)
$U)$) (is ? eq2)
and weak-conv-on-eq3:
weak-conv-on Ni N F X
$\longleftrightarrow(\forall A \in$ sets $($ borel-of $X)$. measure $N(X$ frontier-of $A)=0$ $\longrightarrow((\lambda n$. measure $(N i n) A) \longrightarrow$ measure $N A) F)$ (is?eq3)
proof -
obtain d where d : Metric-space (topspace X) d Metric-space.mtopology (topspace X) $d=X$
by (metis Metric-space.topspace-mtopology assms(1) metrizable-space-def)

then interpret mweak-conv-fin topspace $X d$ Ni N

by (auto simp: mweak-conv-fin-def mweak-conv-fin-axioms-def assms)
show ?eq1 ?eq2 ?eq3
using mweak-conv-eq2 mweak-conv-eq3 mweak-conv-eq4 unfolding $d(2)$ by blast+
qed
end

4 The Lévy-Prokhorov Metric

theory Levy-Prokhorov-Distance
imports Lemmas-Levy-Prokhorov General-Weak-Convergence
begin

4.1 The Lévy-Prokhorov Metric

lemma LPm-ne':
assumes finite-measure M finite-measure N
shows $\exists e>0 . \forall A B C D$. measure $M A \leq$ measure $N(B A e)+e \wedge$ measure $N C \leq$ measure $M(D C e)+e$
proof -
interpret M : finite-measure M by fact
interpret N : finite-measure N by fact
from M.emeasure-real N.emeasure-real obtain $m n$ where $m n[$ arith $]$:
$m \geq 0 n \geq 0 M($ space $M)=$ ennreal $m N($ space $N)=$ ennreal n
by metis
then have $M N: \backslash A$. measure $M A \leq m \bigwedge A$. measure $N A \leq n$
using M.bounded-measure N.bounded-measure measure-eq-emeasure-eq-ennreal by blast+
show ?thesis
proof (safe intro!: exI[where $x=m+n+1]$)
fix $A B C D$
note $[$ arith $]=M N(1)[$ of $A] M N(1)[$ of $D C(m+n+1)] M N(2)[$ of $C]$
$M N(2)[$ of $B A(m+n+1)]$
show measure $M A \leq$ measure $N(B A(m+n+1))+(m+n+1)$ measure N
$C \leq$ measure $M(D C(m+n+1))+(m+n+1)$
by(simp-all add: add.commute add-increasing2)
qed simp
qed
locale Levy-Prokhorov = Metric-space
begin
definition $\mathcal{P} \equiv\{N$. sets $N=$ sets (borel-of mtopology) \wedge finite-measure $N\}$
lemma inP-D:
assumes $N \in \mathcal{P}$
shows finite-measure N sets $N=$ sets (borel-of mtopology) space $N=M$

```
    using assms by (auto simp: \(\mathcal{P}\)-def space-borel-of cong: sets-eq-imp-space-eq)
declare inP-D(2)[measurable-cong]
lemma inP-I: sets \(N=\) sets (borel-of mtopology) \(\Longrightarrow\) finite-measure \(N \Longrightarrow N \in\)
\(\mathcal{P}\)
    by (auto simp: \(\mathcal{P}\)-def)
lemma inP-iff: \(N \in \mathcal{P} \longleftrightarrow\) sets \(N=\) sets (borel-of mtopology) \(\wedge\) finite-measure \(N\)
    by (simp add: \(\mathcal{P}\)-def)
lemma \(M\)-empty- \(P\) :
    assumes \(M=\{ \}\)
    shows \(\mathcal{P}=\{ \} \vee \mathcal{P}=\{\) count-space \(\{ \}\}\)
proof -
    have \(\wedge N . N \in \mathcal{P} \Longrightarrow N=\) count-space \(\}\)
        by (simp add: assms inP-D(3) space-empty)
    thus ?thesis
        by blast
qed
lemma \(M\)-empty- \(P^{\prime}\)
    assumes \(M=\{ \}\)
    shows \(\mathcal{P}=\{ \} \vee \mathcal{P}=\{\) null-measure (borel-of mtopology) \(\}\)
    by (metis inP-D(2) singletonI space-count-space space-empty space-empty-iff space-null-measure
M-empty-P[OF assms])
lemma inP-mweak-conv-fin-all:
    assumes \(\backslash i\). Ni \(i \in \mathcal{P} N \in \mathcal{P}\)
    shows mweak-conv-fin MdNiNF
    using assms inP-D by (auto simp: mweak-conv-fin-def Metric-space-axioms mweak-conv-fin-axioms-def)
lemma inP-mweak-conv-fin:
    assumes \(\forall_{F}\) i in \(F\). Ni \(i \in \mathcal{P} N \in \mathcal{P}\)
    shows mweak-conv-fin \(M d N i N F\)
    using assms inP-D by (auto simp: mweak-conv-fin-def Metric-space-axioms mweak-conv-fin-axioms-def
        intro!: eventually-mono[OF assms(1)])
definition \(L P m\) :: 'a measure \(\Rightarrow\) 'a measure \(\Rightarrow\) real where
\(L P m\) N \(L \equiv\)
    if \(N \in \mathcal{P} \wedge L \in \mathcal{P}\) then
        \((\Pi\{e . e>0 \wedge(\forall A \in\) sets (borel-of mtopology).
                                    measure \(N A \leq\) measure \(L(\bigcup a \in A\). mball a e \(e)+e \wedge\)
                                    measure \(L A \leq\) measure \(N(\bigcup a \in A\). mball a e) \(+e)\})\)
else 0
lemma bdd-below-Levy-Prokhorov:
bdd-below \(\{e . e>0 \wedge(\forall A \in\) sets (borel-of mtopology).
measure \(N A \leq\) measure \(L(\bigcup a \in A\). mball a e) \(+e \wedge\)
```

measure $L A \leq$ measure $N(\bigcup a \in A$. mball a e) $+e)\}$ $\operatorname{by}($ auto intro!: bdd-belowI $[$ where $m=0]$)

lemma LPm-ne:

assumes $N \in \mathcal{P} L \in \mathcal{P}$
shows $\{e . e>0 \wedge(\forall A \in$ sets (borel-of mtopology).
measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e $)+e \wedge$
measure $L A \leq$ measure $N(\bigcup a \in A$. mball a e) $+e)\}$
$\neq\{ \}$
proof -
from $L P m-n e^{\prime}[O F$ inP-D(1)[OF assms(1)] inP-D(1)[OF assms(2)]] show ?thesis by fastforce
qed
lemma LPm-imp-le:
assumes $e>0$
and $\wedge B . B \in$ sets (borel-of mtopology) \Longrightarrow measure $L B \leq$ measure $N(\bigcup a \in B$.
mball a e) $+e$
and $\bigwedge B . B \in$ sets (borel-of mtopology) \Longrightarrow measure $N B \leq$ measure $L(\bigcup a \in B$.
mball a $e)+e$
shows $L P m L N \leq e$
proof -
consider $L \notin \mathcal{P}|N \notin \mathcal{P}| L \in \mathcal{P} N \in \mathcal{P}$ by auto
then show ?thesis
proof cases
case 3
show ?thesis
by (auto simp add: LPm-def 3 intro!: cINF-lower[where $f=i d$,simplified] assms bdd-belowI[where $m=0]$)
qed(insert assms,simp-all add: LPm-def)
qed
lemma LPm-le-max-measure: $L P m L N \leq \max$ (measure L (space L)) (measure $N($ space $N))$
proof -
consider $N \notin \mathcal{P} \mid L \notin \mathcal{P}$
$\mid \max ($ measure $L($ space $L))($ measure $N($ space $N))=0 L \in \mathcal{P} N \in \mathcal{P}$
$\mid \max ($ measure $L($ space $L))($ measure $N($ space $N))>0 L \in \mathcal{P} N \in \mathcal{P}$
by (metis less-max-iff-disj max.idem zero-less-measure-iff)
then show ?thesis
proof cases
assume $h: L \in \mathcal{P} N \in \mathcal{P} \max ($ measure $L($ space $L))($ measure $N($ space $N))$ $=0$
interpret L : finite-measure L
using h by (auto dest: inP-D)
interpret N : finite-measure N
using h by (auto dest: inP-D)
have measureL: $\backslash A$. measure $L A=0$
by (metis L.bounded-measure $h(3)$ max.absorb1 max.commute max.left-idem

```
measure-nonneg)
    have measureN:\A. measure N A=0
        by (metis N.bounded-measure h(3) max.absorb1 max.commute max.left-idem
measure-nonneg)
    have \e. e>0\LongrightarrowLPmLN\leqe
        by(auto intro!: LPm-imp-le simp: measureL measureN)
    thus ?thesis
        by(simp add: h(3) field-le-epsilon)
    next
    assume h:max (measure L (space L)) (measure N (space N))>0(is ?a>0)
L\in\mathcal{P}N\in\mathcal{P}
    interpret L: finite-measure L
        using }h\mathrm{ by (auto dest: inP-D)
    interpret N: finite-measure N
        using }h\mathrm{ by(auto dest: inP-D)
    have }\wedgeB.B\in\mathrm{ sets (borel-of mtopology) }\Longrightarrow\mathrm{ measure L B m measure N (\a,B.
mball a ?a) + ?a
        using L.bounded-measure by(auto intro!: add-increasing max.coboundedI1)
    moreover have }\B.B\in\mathrm{ sets (borel-of mtopology) }\Longrightarrow\mathrm{ measure NB}\leq\mathrm{ measure
L(\bigcupa\inB. mball a ?a) + ?a
        using N.bounded-measure by(auto intro!: add-increasing max.coboundedI2)
    ultimately show ?thesis
        by(auto intro!: LPm-imp-le h)
    qed(simp-all add: LPm-def max-def)
qed
lemma LPm-less-then:
    assumes N\in\mathcal{P}\mathrm{ and L}\in\mathcal{P}
        and LPm NL<eA\in sets (borel-of mtopology)
        shows measure NA\leq measure L (\bigcupa\inA. mball a e) +e measure L A\leq
measure N (\bigcupa\inA. mball a e) +e
proof -
    have sets-NL: sets (borel-of mtopology) = sets N sets (borel-of mtopology) = sets
L
    using assms by (auto simp: inP-D)
    interpret L: finite-measure L
    by (simp add: assms(2) inP-D)
    interpret N: finite-measure N
    by (simp add: assms(1) inP-D)
    have }\Pi{e.e>0\wedge(\forallA\insets (borel-of mtopology)
                                    measure NA\leqmeasure L (\bigcupa\inA. mball a e) +e^
                                    measure L A\leqmeasure N (\bigcupa\inA. mball a e) +e)}<e
    using assms by(simp add: LPm-def)
    from cInf-less-iff[THEN iffD1,OF LPm-ne[OF assms(1,2)] bdd-below-Levy-Prokhorov
this]
    obtain e}\mp@subsup{e}{}{\prime}\mathrm{ where e}\mp@subsup{e}{}{\prime}\mathrm{ :
    e}>>0\A.A\in\mathrm{ sets (borel-of mtopology) }\Longrightarrow\mathrm{ measure NA smeasure L (\a,A.
mball a e}\mp@subsup{e}{}{\prime})+\mp@subsup{e}{}{\prime
    \ A . A \in \text { sets (borel-of mtopology) > measure L A m measure N ( \a,A.mball}
```

```
\(\left.a e^{\prime}\right)+e^{\prime} e^{\prime}<e\)
    by auto
    have measure \(N A \leq\) measure \(L\left(\bigcup a \in A\right.\). mball a \(\left.e^{\prime}\right)+e^{\prime}\)
    by (auto intro!: é assms)
    also have \(\ldots \leq\) measure \(L\left(\bigcup a \in A\right.\). mball a \(\left.e^{\prime}\right)+e\)
    using \(e^{\prime}\) by auto
    also have \(\ldots \leq\) measure \(L(\bigcup a \in A\). mball a \(e)+e\)
    using sets.sets-into-space \(\left[O F\right.\) assms(4)] mball-subset-concentric \(\left[o f e^{\prime} e\right] e^{\prime}\)
    by (auto intro!: L.finite-measure-mono borel-of-open simp: space-borel-of sets-NL(2)[symmetric])
    finally show measure \(N A \leq\) measure \(L(\bigcup a \in A\). mball a e \()+e\).
    have measure \(L A \leq\) measure \(N\left(\bigcup a \in A\right.\). mball a \(\left.e^{\prime}\right)+e^{\prime}\)
    by (auto intro!: é assms)
    also have \(\ldots \leq\) measure \(N\left(\bigcup a \in A\right.\). mball a \(\left.e^{\prime}\right)+e\)
    using \(e^{\prime}\) by auto
    also have \(\ldots \leq\) measure \(N(\bigcup a \in A\). mball a e \()+e\)
    using sets.sets-into-space[OF assms(4)] mball-subset-concentric[of \(\left.e^{\prime} e\right] e^{\prime}\)
    by(auto intro!: N.finite-measure-mono borel-of-open simp: space-borel-of sets-NL(1)[symmetric])
    finally show measure \(L A \leq\) measure \(N(\bigcup a \in A\). mball a \(e)+e\).
qed
lemma LPm-nonneg:0 \(\leq L P m\) N \(L\)
    by (auto simp: LPm-def le-cInf-iff[OF LPm-ne bdd-below-Levy-Prokhorov])
lemma LPm-open: LPm \(L N=(\) if \(L \in \mathcal{P} \wedge N \in \mathcal{P}\) then
                                    \((\sqcap\{e . e>0 \wedge(\forall A \in\{U\). openin mtopology \(U\}\).
                                measure \(L A \leq\) measure \(N(\bigcup a \in A\). mball
\(a e)+e \wedge\)
                                measure \(N A \leq\) measure \(L(\bigcup a \in A\). mball
\(a e)+e)\}\) )
                else 0)
proof -
    \{
        assume \(L N: L \in \mathcal{P} N \in \mathcal{P}\)
        then have finite-measure \(L\) finite-measure \(N\)
        and sets-MN[measurable-cong]:sets (borel-of mtopology) \(=\) sets \(L\) sets (borel-of
mtopology) \(=\) sets \(N\)
            by (auto dest: in \(P-D\) )
    interpret \(L\) : finite-measure \(L\) by fact
    interpret \(N\) : finite-measure \(N\) by fact
    have \(\Pi\{e .0<e \wedge(\forall A \in\) sets (borel-of mtopology).
                    measure \(L A \leq\) measure \(N(\bigcup a \in A\). mball a e \()+e \wedge\) measure \(N A \leq\)
measure \(L(\bigcup a \in A\). mball a e \()+e)\}=\)
            \(\Pi\{e .0<e \wedge(\forall A\). openin mtopology \(A \longrightarrow\)
                    measure \(L A \leq\) measure \(N(\bigcup a \in A\). mball a e \()+e \wedge\) measure \(N A \leq\)
measure \(L(\bigcup a \in A\). mball \(a e)+e)\}\)
            (is ?lhs = ? \(r\) sh \()\)
    proof (rule order.antisym)
        show ?rhs \(\leq\) ?lhs
        using LPm-ne[OF LN] by (auto intro!: cInf-superset-mono bdd-belowI[where
```

$m=0]$ dest: borel-of-open)
next
have ball-sets[measurable]: $\bigwedge A e .(\bigcup a \in A$. mball a e $) \in$ sets $L \bigwedge A e .(\bigcup a \in A$. mball a e) \in sets N
by(auto simp: sets-MN[symmetric])
show ?lhs \leq ?rhs
proof (safe intro!: cInf-le-iff-less[where $f=$ id,simplified,THEN iffD2])
have ne: $\{e .0<e \wedge(\forall A$. openin mtopology A
\longrightarrow measure $L A \leq$ measure $N(\bigcup a \in A$. mball a e $)+e \wedge$ measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e) $+e)\} \neq\{ \}$
using LPm-ne' $[$ OF L.finite-measure-axioms N.finite-measure-axioms $]$ by fastforce
fix y
assume $y>$? $r h s$
from cInf-less $D[$ OF ne this] obtain x where $x: x<y 0<x$
$\bigwedge A$. openin mtopology $A \Longrightarrow$ measure $L A \leq$ measure $N(\bigcup a \in A$. mball a
$x)+x$
\bigwedge A. openin mtopology $A \Longrightarrow$ measure $N A \leq$ measure $L(\bigcup a \in A$. mball a $x)+x$
by auto
define x^{\prime} where $x^{\prime} \equiv x+(y-x) / 2$
have $x^{\prime} 1$: $x^{\prime}>0 x<x^{\prime}$
using $x(1,2)$ by (auto simp: x^{\prime}-def add-pos-pos)
with mball-subset-concentric $\left[\right.$ of $\left.x x^{\prime}\right]$ have $x^{\prime 2}$: measure $L A \leq$ measure N $\left(\bigcup a \in\right.$ A. mball $\left.a x^{\prime}\right)+x^{\prime}$
measure $N A \leq$ measure $L\left(\bigcup a \in A\right.$. mball a $\left.x^{\prime}\right)+x^{\prime}$ if openin mtopology A for A
by (auto intro!: order.trans $[$ OF $x(3)[$ OF that $]]$ order.trans $[$ OF $x(4)[O F$ that] $]$
add-mono N.finite-measure-mono L.finite-measure-mono)
show $\exists i \in\{e .0<e \wedge(\forall A \in$ sets (borel-of mtopology). measure $L A \leq$ measure $N(\bigcup a \in A$. mball a e $)+e \wedge$ measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e $)+e)\}$.
$i \leq y$
proof (safe intro!: bexI $[$ where $x=y]$)
fix A
assume $A: A \in$ sets (borel-of mtopology)
then have [measurable]: $A \in$ sets $L A \in$ sets N
by (auto simp: sets-MN[symmetric])
have measure $L A=\Pi$ (measure L ' $\{C$. openin mtopology $C \wedge A \subseteq C\}$)
by (simp add: L.outer-regularD[OF L.outer-regular' $[$ OF metrizable-space-mtopology sets-MN(1)]])
also have $\ldots \leq \Pi\left\{\right.$ measure $N\left(\bigcup c \in C\right.$. mball $\left.c x^{\prime}\right)+x^{\prime} \mid C$. openin mtopology $C \wedge A \subseteq C\}$
using sets.sets-into-space $[O F A]$
by (auto intro!: cInf-mono $x^{\prime 2}$ 2 bdd-belowI $[$ where $m=0]$ simp: space-borel-of)
also have $\ldots \leq$ measure $N\left(\bigcup a \in(\bigcup a \in\right.$ A. mball a $((y-x) / 2))$. mball a $\left.x^{\prime}\right)$
$+x^{\prime}$
proof(safe intro!: cInf-lower bdd-belowI[where $m=0]$)

```
                            have A\subseteq(\bigcupa\inA. mball a ((y-x)/2))
                            using x(1) sets.sets-into-space[OF A] by(fastforce simp: space-borel-of)
                            thus \existsC. measure N (\bigcupb\in(\bigcupa\inA. mball a ((y-x) / 2)). mball b x')
+ ('
                = measure N(\bigcupc\inC. mball c x') + (' ^ openin mtopology C ^
A\subseteqC
            by(auto intro!: exI[where x=\bigcup a\inA. mball a ((y-x)/2)])
            qed(use measure-nonneg \mp@subsup{x}{}{\prime}1 in auto)
            also have ... \leqmeasure N (\bigcupa\inA. mball a ((y-x)/2 + x')) + \mp@subsup{x}{}{\prime}
            using nbh-add[of x' (y-x)/\mathcal{L A] by(auto intro!: N.finite-measure-mono)}
            also have ... = measure N(\bigcupa\inA. mball a y) + x'
            by(auto simp: x'-def)
            also have ... \leq measure N (\bigcupa\inA. mball a y) + y
            using x(1,2)
            by(auto simp: x'-def intro!: order.trans[OF le-add-same-cancel1[of
x+(y-x)/2 (y-x)/2,THEN iffD2]])
            finally show measure L A m measure N (\bigcupa\inA. mball a y)+y.
                            have measure NA=\Pi (measure N'{C. openin mtopology C^A\subseteqC})
                            by(simp add: N.outer-regularD[OF N.outer-regular' }\mp@subsup{}{}{\prime}\mathrm{ [OF metrizable-space-mtopology
sets-MN(2)]])
                            also have ... \leq \ {measure L (\bigcupc\inC. mball c x') + x'|}|\mathrm{ . openin
mtopology C}\wedgeA\subseteqC
            using sets.sets-into-space[OF A]
            by(auto intro!: cInf-mono x'2 bdd-belowI[where m=0] simp: space-borel-of)
            also have ... \leq measure L (\bigcupa\in(\bigcupa\inA. mball a ((y-x)/2)). mball a x')
+ ('
            proof(safe intro!: cInf-lower bdd-belowI[where m=0])
            have }A\subseteq(\cupa\inA.mball a ((y-x)/2)
            using x(1) sets.sets-into-space[OF A] by(fastforce simp: space-borel-of)
                    thus \existsC. measure L (\bigcupb\in\bigcupa\inA. mball a ((y-x) / 2). mball b x})
x'
                    = measure L (\bigcupc\inC.mball c x') + (' }^\mathrm{ \ openin mtopology C ^
A\subseteqC
                    by(auto intro!: exI[where x=\bigcup a\inA. mball a ((y-x)/2)])
            qed(use measure-nonneg x'1 in auto)
            also have ... \leq measure L (\bigcupa\inA. mball a ((y-x)/\mathcal{L}+\mp@subsup{x}{}{\prime}))+\mp@subsup{x}{}{\prime}
            using nbh-add[of x' (y-x)/2 A] by(auto intro!: L.finite-measure-mono)
            also have ... = measure L ( \bigcup a\inA. mball a y) + x'
                by(auto simp: x'-def)
            also have .. \leq measure L (\bigcupa\inA. mball a y) + y
            using }x(1,2
                    by(auto simp: x'-def intro!: order.trans[OF le-add-same-cancel1[of
x+(y-x)/2 (y-x)/2,THEN iffD2]])
            finally show measure NA\leq measure L (\a\inA. mball a y) + y.
            qed(use }x\mathrm{ in auto)
            qed(insert LPm-ne[OF LN], auto intro!: bdd-belowI[where m=0])
            qed
}
thus ?thesis
```

```
    by (auto simp: LPm-def)
qed
lemma LPm-closed: LPm \(L N=(\) if \(L \in \mathcal{P} \wedge N \in \mathcal{P}\) then
                    \((\sqcap\{e . e>0 \wedge(\forall A \in\{U\). closedin mtopology \(U\}\).
                            measure \(L A \leq\) measure \(N(\bigcup a \in A\). mball
\(a e)+e \wedge\)
\(a e)+e)\}\) )
    else 0)
proof -
    \{
    assume \(L N: L \in \mathcal{P} N \in \mathcal{P}\)
    then have finite-measure \(L\) finite-measure \(N\)
    and sets-MN[measurable-cong]: sets (borel-of mtopology) \(=\) sets \(L\) sets (borel-of
mtopology) \(=\) sets \(N\)
            by (auto dest: inP-D)
    interpret \(L\) : finite-measure \(L\) by fact
    interpret \(N\) : finite-measure \(N\) by fact
    have \(\Pi\{e .0<e \wedge(\forall A \in\) sets (borel-of mtopology).
                                    measure \(L A \leq\) measure \(N(\bigcup a \in A\). mball a \(e)+e \wedge\)
                                    measure \(N A \leq\) measure \(L(\bigcup a \in A\). mball a e \()+e)\}\)
            \(=\Pi\{e .0<e \wedge(\forall\) A. closedin mtopology \(A \longrightarrow\)
                    measure \(L A \leq\) measure \(N(\bigcup a \in A\). mball a e \(e)+e \wedge\)
                    measure \(N A \leq\) measure \(L(\bigcup a \in A\). mball a e) \(+e)\}\) (is
\(? l h s=? r h s)\)
    proof (rule order.antisym)
        show ?rhs \(\leq\) ?lhs
        using LPm-ne[OF LN] by (auto intro!: cInf-superset-mono bdd-belowI[where
\(m=0]\) dest: borel-of-closed)
    next
        have ball-sets[measurable]: \(\bigwedge A e .(\bigcup a \in A\). mball a e \() \in\) sets \(L \bigwedge A e .(\bigcup a \in A\).
mball a e) \(\in\) sets \(N\)
            by(auto simp: sets- \(M N[\) symmetric \(]\) )
            show? ?hs \(\leq\) ?rhs
            proof (safe intro!: cInf-le-iff-less[where \(f=\) id,simplified,THEN iffD2])
            have ne:\{e. \(0<e \wedge(\forall A\). closedin mtopology \(A \longrightarrow\) measure \(L A \leq\) measure
\(N(\)
    \((\bigcup a \in A\). mball a e) \(+e\)
                            \(\wedge\) measure \(N A \leq\) measure \(L(\bigcup a \in A\). mball a e) +
\(e)\} \neq\{ \}\)
            using LPm-ne'[OF L.finite-measure-axioms \(N\).finite-measure-axioms] by
fastforce
            fix \(y\)
            assume \(y>\) ?rhs
            from cInf-less \(D[\) OF ne this] obtain \(x\) where \(x: x<y 0<x\)
                    \(\bigwedge A\). closedin mtopology \(A \Longrightarrow\) measure \(L A \leq\) measure \(N(\bigcup a \in A\). mball
\(a x)+x\)
                            \(\bigwedge\) A. closedin mtopology \(A \Longrightarrow\) measure \(N A \leq\) measure \(L(\bigcup a \in A\). mball
\(a x)+x\)
```

by auto
define x^{\prime} where $x^{\prime} \equiv x+(y-x) / 2$
have $x^{\prime} 1: x^{\prime}>0 x<x^{\prime}$
using $x(1,2)$ by (auto simp: x^{\prime}-def add-pos-pos)
with mball-subset-concentric[of x x]
have $x^{\prime 2}$: measure $L A \leq$ measure $N\left(\bigcup a \in A\right.$. mball a $\left.x^{\prime}\right)+x^{\prime}$ measure N $A \leq$ measure $L\left(\bigcup a \in A\right.$. mball $\left.a x^{\prime}\right)+x^{\prime}$
if closedin mtopology A for A
by (auto intro!: order.trans $[$ OF $x(3)[$ OF that $]]$ order.trans $[$ OF $x(4)[O F$ that]]
add-mono N.finite-measure-mono L.finite-measure-mono)
show $\exists i \in\{e .0<e \wedge(\forall A \in$ sets (borel-of mtopology). measure $L A \leq$ measure $N(\bigcup a \in A$. mball a $e)+e \wedge$
measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e) +
e) \}. $i \leq y$
proof (safe intro!: bexI[where $x=y]$)
fix A
assume $A: A \in$ sets (borel-of mtopology)
then have [measurable]: $A \in$ sets $L A \in$ sets N
by (auto simp: sets-MN[symmetric])
have measure $L A=(\square$ (measure L ' $\{C$. closedin mtopology $C \wedge C \subseteq$ A\}))
by(simp add: L.inner-regularD[OF L.inner-regular' $[$ OF metrizable-space-mtopology sets-MN(1)]])
also have $\ldots \leq\left(\bigsqcup\right.$ \{measure $N\left(\bigcup c \in C\right.$. mball c $\left.x^{\prime}\right)+x^{\prime} \mid C$. closedin mtopology $C \wedge C \subseteq A\}$)
using sets.sets-into-space[OF A]
by (auto intro!: cSup-mono $x^{\prime 2}$ 2 bdd-aboveI[where $M=$ measure N (space $N)+x] N$.bounded-measure simp: space-borel-of)
also have $\ldots \leq$ measure $N\left(\bigcup a \in(\bigcup a \in A\right.$. mball $a((y-x) / 2))$. mball a $\left.x^{\prime}\right)$ $+x^{\prime}$
proof(safe intro!: cSup-le-iff[THEN iffD2] bdd-aboveI[where $M=$ measure $N($ space $N)+x\rceil)$
fix C
assume $C \subseteq A$
then have $\left(\bigcup c \in C\right.$. mball $\left.c x^{\prime}\right) \subseteq(\bigcup b \in \bigcup a \in A$. mball $a((y-x) / 2)$. mball b x^{\prime})
using $x^{\prime} 1$ (2) x^{\prime}-def by fastforce
thus measure $N\left(\bigcup c \in C\right.$. mball c $\left.x^{\prime}\right)+x^{\prime} \leq$ measure $N(\bigcup b \in \bigcup a \in A$. mball $a\left((y-x) /\right.$ 2). mball $\left.b x^{\prime}\right)+x^{\prime}$
by (metis N.finite-measure-mono add.commute add-le-cancel-left ball-sets(2))
qed(auto intro!: N.bounded-measure)
also have $\ldots \leq$ measure $N\left(\bigcup a \in A\right.$. mball $\left.a\left((y-x) / 2+x^{\prime}\right)\right)+x^{\prime}$
using nbh-add[of $\left.x^{\prime}(y-x) / 2 A\right]$ by (auto intro!: N.finite-measure-mono)
also have $\ldots=$ measure $N(\bigcup a \in A$. mball a $y)+x^{\prime}$
by (auto simp: x^{\prime}-def)
also have $\ldots \leq$ measure $N(\bigcup a \in A$. mball a $y)+y$
using $x(1,2)$
by (auto simp: x^{\prime}-def intro!: order.trans[OF le-add-same-cancel1[of $x+(y-x) / 2(y-x) / 2, T H E N$ iffD2]] $)$
finally show measure $L A \leq$ measure $N(\bigcup a \in A$. mball a y $)+y$.
have measure $N A=\bigsqcup$ (measure N ' \{C. closedin mtopology $C \wedge C \subseteq$ A\})
by (simp add: N.inner-regular $D\left[\right.$ OF N.inner-regular ${ }^{\prime}$ [OF metrizable-space-mtopology sets-MN(2)]])
also have $\ldots \leq \bigsqcup$ \{ measure $L\left(\bigcup c \in C\right.$. mball c $\left.x^{\prime}\right)+x^{\prime} \mid C$. closedin mtopology $C \wedge C \subseteq A\}$
using sets.sets-into-space[OF A]
by (auto intro!: cSup-mono $x^{\prime 2}$ bdd-aboveI $[$ where $M=$ measure L (space $L)+x]$ L.bounded-measure simp: space-borel-of)
also have $\ldots \leq$ measure $L\left(\bigcup a \in(\bigcup a \in A\right.$. mball a $((y-x) / 2))$. mball a $\left.x^{\prime}\right)$ $+x^{\prime}$
proof(safe intro!: cSup-le-iff[THEN iffD2] bdd-aboveI[where $M=$ measure $L($ space $L)+x\rceil)$
fix C
assume $C \subseteq A$
then have $\left(\bigcup c \in C\right.$. mball $\left.c x^{\prime}\right) \subseteq(\bigcup b \in \bigcup a \in A$. mball $a((y-x) / 2)$.
mball b x^{\prime})
using $x^{\prime} 1$ (2) x^{\prime}-def by fastforce
thus measure $L\left(\bigcup c \in C\right.$. mball c $\left.x^{\prime}\right)+x^{\prime} \leq$ measure $L(\bigcup b \in \bigcup a \in A$. mball a $((y-x) / 2)$. mball b $\left.x^{\prime}\right)+x^{\prime}$
by (metis L.finite-measure-mono add.commute add-le-cancel-left ball-sets(1))
qed(auto intro!: L.bounded-measure)
also have $\ldots \leq$ measure $L\left(\bigcup a \in A\right.$. mball a $\left.\left((y-x) / 2+x^{\prime}\right)\right)+x^{\prime}$
using nbh-add $\left[\right.$ of $\left.x^{\prime}(y-x) / 2 A\right] \mathbf{b y}$ (auto intro!: L.finite-measure-mono)
also have $\ldots=$ measure $L(\bigcup a \in A$. mball a $y)+x^{\prime}$
by (auto simp: x^{\prime}-def)
also have $\ldots \leq$ measure $L(\bigcup a \in A$. mball $a y)+y$
using $x(1,2)$
by (auto simp: x^{\prime}-def intro!: order.trans[OF le-add-same-cancel1 [of $x+(y-x) / 2(y-x) /$ 2,THEN iffD2]] $)$
finally show measure $N A \leq$ measure $L(\bigcup a \in A$. mball a y) $+y$.
qed(use x in auto)
qed(insert LPm-ne[OF LN], auto intro!: bdd-belowI[where $m=0]$)
qed
\}
thus ?thesis
by (auto simp: LPm-def)
qed
lemma LPm-compact:
assumes separable-space mtopology mcomplete
shows $L P m L N=($ if $L \in \mathcal{P} \wedge N \in \mathcal{P}$ then
$(\sqcap\{e . e>0 \wedge(\forall A \in\{U$. compactin mtopology $U\}$.

measure $L A \leq$ measure $N(\bigcup a \in A$. mball a e)

$$
\begin{aligned}
& +e \wedge \\
& +e)\})
\end{aligned}
$$

measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e)
else 0)

proof -

\{
assume $L N: L \in \mathcal{P} N \in \mathcal{P}$
then have finite-measure L finite-measure N
and sets-MN[measurable-cong]: sets (borel-of mtopology) $=$ sets L sets (borel-of
mtopology) $=$ sets N
by (auto dest: inP-D)
interpret L : finite-measure L by fact
interpret N : finite-measure N by fact
have measure $L: A \in$ sets $L \Longrightarrow$ measure $L A=(\bigsqcup K \in\{K$. compactin mtopology $K \wedge K \subseteq A\}$. measure $L K$)
and measure $N: A \in$ sets $N \Longrightarrow$ measure $N A=(\bigsqcup K \in\{K$. compactin mtopology $K \wedge K \subseteq A\}$. measure $N K$) for A
by (auto intro!: inner-regular ${ }^{\prime \prime}$ L.tight-on-Polish N.tight-on-Polish Polish-space-mtopology assms

```
                simp: sets-MN[symmetric] metrizable-space-mtopology)
```

have $\Pi\{e .0<e \wedge(\forall A \in$ sets (borel-of mtopology).

$$
\text { measure } L A \leq \text { measure } N(\bigcup a \in A . \text { mball a e })+e \wedge
$$

measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e $)+e)\}$
$=\Pi\{e .0<e \wedge(\forall A$. compactin mtopology $A \longrightarrow$
measure $L A \leq$ measure $N(\bigcup a \in A$. mball a e $e)+e \wedge$
measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e $)+e)\}$
(is ?lhs =? $r h s$)
proof (rule order.antisym)
show ? $\mathrm{rhs} \leq$? lhs
using LPm-ne[OF LN] by (auto intro!: cInf-superset-mono bdd-belowI[where $m=0$]
dest: borel-of-compact[OF Hausdorff-space-mtopology])
next
have ball-sets[measurable]: $\bigwedge A e .(\bigcup a \in A$. mball a e $) \in$ sets $L \bigwedge A e .(\bigcup a \in A$. mball a e) \in sets N
by(auto simp: sets-MN[symmetric])
show ?lhs \leq ?rhs
proof (safe intro!: cInf-le-iff-less[where $f=$ id,simplified,THEN iffD2])
have $n e:\{e .0<e \wedge(\forall A$. compactin mtopology $A \longrightarrow$
measure $L A \leq$ measure $N(\bigcup a \in A$. mball a $e)+e \wedge$ measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e) +
$e)\} \neq\{ \}$
using LPm-ne'[OF L.finite-measure-axioms N.finite-measure-axioms $]$ by fastforce
fix y
assume $y>$?rhs
from cInf-less $D[O F$ ne this] obtain x where $x: x<y 0<x$
$\bigwedge A$. compactin mtopology $A \Longrightarrow$ measure $L A \leq$ measure $N(\bigcup a \in A$. mball
$a x)+x$
\bigwedge A. compactin mtopology $A \Longrightarrow$ measure $N A \leq$ measure $L(\bigcup a \in A$. mball $a x)+x$
by auto
define x^{\prime} where $x^{\prime} \equiv x+(y-x) / 2$
have $x^{\prime} 1$: $x^{\prime}>0 x<x^{\prime}$
using $x(1,2)$ by (auto simp: x^{\prime}-def add-pos-pos)
with mball-subset-concentric [of x x]
have $x^{\prime 2}$: measure $L A \leq$ measure $N\left(\bigcup a \in A\right.$. mball a $\left.x^{\prime}\right)+x^{\prime}$ measure N $A \leq$ measure $L\left(\bigcup a \in A\right.$. mball a $\left.x^{\prime}\right)+x^{\prime}$
if compactin mtopology A for A
by (auto intro!: order.trans $[$ OF $x(3)[$ OF that $]]$ order.trans $[$ OF $x(4)[O F$ that]]
add-mono N.finite-measure-mono L.finite-measure-mono)
show $\exists i \in\{e .0<e \wedge(\forall A \in$ sets (borel-of mtopology). measure $L A \leq$ measure $N(\bigcup a \in A$. mball a $e)+e \wedge$
measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e) + e) $\}$. $i \leq y$
proof (safe intro!: bexI[where $x=y]$)
fix A
assume $A: A \in$ sets (borel-of mtopology)
then have [measurable]: $A \in$ sets $L A \in$ sets N
by (auto simp: sets-MN[symmetric])
have measure $L A=(\bigsqcup$ (measure L ' $\{C$. compactin mtopology $C \wedge C \subseteq$ A\}))
by (simp add: measureL)
also have $\ldots \leq\left(\bigsqcup\right.$ \{measure $N\left(\bigcup c \in C\right.$. mball $\left.c x^{\prime}\right)+x^{\prime} \mid C$. compactin mtopology $C \wedge C \subseteq A\}$)
using sets.sets-into-space $[O F A]$
by (auto intro!: cSup-mono x'2 bdd-aboveI[where $M=$ measure N (space $N)+x] N$.bounded-measure simp: space-borel-of)
also have $\ldots \leq$ measure $N\left(\bigcup a \in(\bigcup a \in\right.$ A. mball $a((y-x) / 2))$. mball a $\left.x^{\prime}\right)$ $+x^{\prime}$
proof(safe intro!: cSup-le-iff[THEN iffD2] bdd-aboveI[where $M=$ measure $N($ space $N)+x\rceil)$
fix C
assume $C \subseteq A$
then have $\left(\bigcup c \in C\right.$. mball $\left.c x^{\prime}\right) \subseteq(\bigcup b \in \bigcup a \in A$. mball $a((y-x) / 2)$. mball b x^{\prime})
using $x^{\prime} 1$ (2) x^{\prime}-def by fastforce
thus measure $N\left(\bigcup c \in C\right.$. mball $\left.c x^{\prime}\right)+x^{\prime} \leq$ measure $N(\bigcup b \in \bigcup a \in A$. mball a $\left((y-x) /\right.$ 2). mball $\left.b x^{\prime}\right)+x^{\prime}$
by (metis N.finite-measure-mono add.commute add-le-cancel-left ball-sets(2))
qed(auto intro!: N.bounded-measure)
also have $\ldots \leq$ measure $N\left(\bigcup a \in A\right.$. mball a $\left.\left((y-x) / 2+x^{\prime}\right)\right)+x^{\prime}$
using nbh-add $\left[\right.$ of $\left.x^{\prime}(y-x) / 2 A\right]$ by(auto intro!: N.finite-measure-mono)
also have $\ldots=$ measure $N(\bigcup a \in A$. mball a $y)+x^{\prime}$
by (auto simp: x^{\prime}-def)
also have $\ldots \leq$ measure $N(\bigcup a \in$ A. mball a $y)+y$
using $x(1,2)$
by (auto simp: x^{\prime}-def intro!: order.trans[OF le-add-same-cancel1 [of $x+(y-x) / 2(y-x) / 2$, THEN iffD2]])
finally show measure $L A \leq$ measure $N(\bigcup a \in A$. mball a $y)+y$.
have measure $N A=\bigsqcup$ (measure N ' $\{C$. compactin mtopology $C \wedge C \subseteq$ A\})
by (simp add: measureN)
also have $\ldots \leq \bigsqcup$ \{ measure $L\left(\bigcup c \in C\right.$. mball $\left.c x^{\prime}\right)+x^{\prime} \mid C$. compactin mtopology $C \wedge C \subseteq A\}$
using sets.sets-into-space $[O F A]$
by (auto intro!: cSup-mono $x^{\prime 2} 2$ bdd-aboveI $[$ where $M=$ measure L (space $L)+x\rceil$ L.bounded-measure simp: space-borel-of)
also have $\ldots \leq$ measure $L\left(\bigcup a \in(\bigcup a \in A\right.$. mball $a((y-x) /$ 2 $))$. mball a $\left.x^{\prime}\right)$ $+x^{\prime}$
proof (safe intro!: cSup-le-iff[THEN iffD2] bdd-aboveI[where $M=$ measure $L($ space $L)+x\rceil)$
fix C
assume $C \subseteq A$
then have $\left(\bigcup c \in C\right.$. mball $\left.c x^{\prime}\right) \subseteq(\bigcup b \in \bigcup a \in A$. mball $a((y-x)$ / 2). mball b x^{\prime})
using $x^{\prime} 1$ (2) x^{\prime}-def by fastforce
thus measure $L\left(\bigcup c \in C\right.$. mball c $\left.x^{\prime}\right)+x^{\prime} \leq$ measure $L(\bigcup b \in \bigcup a \in A$. mball a $((y-x) / 2)$. mball b $\left.x^{\prime}\right)+x^{\prime}$
by (metis L.finite-measure-mono add.commute add-le-cancel-left ball-sets(1))
qed(auto intro!: L.bounded-measure)
also have $\ldots \leq$ measure $L\left(\bigcup a \in A\right.$. mball a $\left.\left((y-x) / 2+x^{\prime}\right)\right)+x^{\prime}$
using nbh-add[of $\left.x^{\prime}(y-x) / 2 A\right]$ by (auto intro!: L.finite-measure-mono)
also have $\ldots=$ measure $L(\bigcup a \in A$. mball a $y)+x^{\prime}$
by (auto simp: x^{\prime}-def)
also have $\ldots \leq$ measure $L(\bigcup a \in A$. mball a y) $+y$
using $x(1,2)$
by (auto simp: x^{\prime}-def intro!: order.trans[OF le-add-same-cancel1[of $x+(y-x) / 2(y-x) / 2$, THEN iffD2]] $)$
finally show measure $N A \leq$ measure $L(\bigcup a \in A$. mball a y) $+y$.
qed(use x in auto)
qed(insert LPm-ne[OF LN], auto intro!: bdd-belowI[where $m=0]$)
qed
\}
thus ?thesis
by (auto simp: LPm-def)
qed
sublocale LPm: Metric-space \mathcal{P} LPm
proof
show $0 \leq L P m M N$ for $M N$

```
    by(rule LPm-nonneg)
next
    fix }L
    assume MN:L\in\mathcal{P}N\in\mathcal{P}
    interpret L: finite-measure L
        by(rule inP-D(1)[OF MN(1)])
    interpret N: finite-measure N
    by(rule inP-D(1)[OF MN(2)])
    show LPm L N=0 \longleftrightarrowL=N
    proof safe
    have [simp]:{e. 0 <e ^(\forallA\insets (borel-of mtopology). measure N A \leqmeasure
N(\bigcupa\inA.mball a e) +e)}={0<..}
    proof safe
        fix }e:: real and 
        assume h':e> 0 A E sets (borel-of mtopology)
        show measure N A \leq measure N(\bigcupa\inA. mball a e) +e
            using nbh-sets[of e A] inP-D(2)[OF MN(2)] sets.sets-into-space[OF h'(2)]
h'(1)
        by(auto simp: space-borel-of intro!: order.trans[OF N.finite-measure-mono[OF
nbh-subset[of A e]]])
    qed
    show LPm N N=0
        by (simp add: LPm-def)
    next
    assume LPm L N=0
    then have h:\e e}.\mp@subsup{e}{}{\prime}>0
            \existsa\in{e.0<e^(\forallA\insets (borel-of mtopology).
                            measure L A \leq measure N (\bigcupa\inA. mball a e) +e^
                            measure NA\leqmeasure L (\bigcup a\inA. mball a e) +e)}.a< e'
        using cInf-le-iff[OF LPm-ne[OF MN] bdd-below-Levy-Prokhorov] by (auto
simp: MN LPm-def)
    show L}=
    proof(rule measure-eqI-generator-eq[where }E={U.closedin mtopology U} and
A=\lambdai.M and \Omega=M])
            show Int-stable {U. closedin mtopology U}
                by(auto simp: Int-stable-def)
    next
        show {U. closedin mtopology U}\subseteq Pow M
            using closedin-metric2 by auto
    next
        show }\bigwedgeX.X\in{U. closedin mtopology U}\Longrightarrow emeasure L X= emeasure 
X
    proof safe
            fix }
            assume closedin mtopology U
            then have US:U\subseteqM
                by (simp add: closedin-def)
            consider }U={}|U\not={} by aut
            then have measure L U = measure N U
```

```
        proof cases
    case U:2
    define an
        where an \equiv rec-nat (SOME e. 0 < e^e< / Suc 0
                                    \wedge (\forallA\insets (borel-of mtopology).
                                    measure L A m measure N(\bigcupa\inA. mball a
e)}+
    \measure N A \leq measure L (\bigcupa\inA. mball a
e)+e))
                                    (\lambdan an. SOME e. 0<e^e<an^e<1 / Suc (Suc n)
                                    \wedge ( \forall A \in \text { sets (borel-of mtopology).}
                            measure L A \leqmeasure N (\bigcupa\inA. mball
ae)}+e
    measure N A \leq measure L (\bigcupa\inA. mball
a e) +e))
have an-simp: an 0 = (SOME e. 0 <e^e<1 / Suc 0
                                    \wedge ( }\forall\mathrm{ A sets (borel-of mtopology).
                                    measure L A \leq measure N (\bigcupa\inA. mball a
e)+e^
                                    measure NA\leqmeasure L (\bigcupa\inA. mball a
e)+e))
            \n.an (Suc n)=(SOME e.0<e^e< (an n)^e<1/Suc
(Suc n)^
                                    ( }\forall\mathrm{ A sets (borel-of mtopology).
                                    measure L A \leq measure N (\bigcupa\inA. mball
a e) +e^
                                    measure NA\leqmeasure L (\bigcupa\inA. mball
a e)+e))
            by(simp-all add: an-def)
                        have *:an 0>0^ an 0<1 / Suc 0 ^
                    ( }\forall\mathrm{ A sets (borel-of mtopology).
                    measure L A m measure N (\bigcupa\inA. mball a (an 0)) + (an 0) ^
                    measure N A \leqmeasure L (\bigcupa\inA. mball a (an 0)) + (an 0))
            by(simp add: an-simp) (rule someI-ex,use h[of 1] in auto)
    moreover have **:an n>0 for n
    proof(induction n)
        case ih:(Suc n)
            have an (Suc n)>0^an (Suc n)<an n ^an (Suc n)< 1/ Suc
(Suc n)^
            ( }\forall\mathrm{ A sets (borel-of mtopology).
                            measure L A m measure N(\bigcupa\inA. mball a (an (Suc n))) +
(an (Suc n)) ^
                            measure N A \leq measure L (\bigcupa\inA. mball a (an (Suc n)))+
(an (Suc n)))
            by(simp add: an-simp,rule someI-ex) (use h[of min (an n) (1 / Suc
(Suc n))] ih in auto)
            thus ?case
                by auto
    qed(use * in auto)
```

moreover have an (Suc $n)>0 \wedge$ an $($ Suc $n)<a n n \wedge a n($ Suc $n)<1$ $/$ Suc (Suc n) \wedge
(\forall A sets (borel-of mtopology).
measure $L A \leq$ measure $N(\bigcup a \in A$. mball a (an (Suc
$n)))+($ an $($ Suc $n)) \wedge$
measure $N A \leq$ measure $L(\bigcup a \in A$. mball a (an (Suc
$n)))+($ an $($ Suc $n)))$ for n
by (simp add: an-simp,rule someI-ex) (use h[of min (an n) (1/Suc (Suc $n)$)] ** in auto)
ultimately have an $n>0 \wedge$ decseq an \wedge an $n<1 / \operatorname{Suc} n \wedge$
(\forall A sets (borel-of mtopology). measure $L A \leq$ measure $N(\bigcup a \in A$. mball a $($ an $n))+$
$(a n n) \wedge$ measure $N A \leq$ measure $L(\bigcup a \in A$. mball a $($ an $n))+$
(an $n)$) for n
by (cases n) (auto intro!: decseq-SucI order.strict-implies-order)
hence an: $\backslash n$. an $n>0$ decseq an $\bigwedge n$. an $n<1 /$ Suc n
$\bigwedge n A . A \in$ sets (borel-of mtopology) \Longrightarrow measure $L A \leq$ measure $N(\bigcup a \in A$. mball $a($ an $n))+$ an n
$\bigwedge n A . A \in$ sets (borel-of mtopology) \Longrightarrow measure $N A \leq$ measure $L(\bigcup a \in A$. mball $a(a n n))+a n n$
by auto
hence an-lim: an $\longrightarrow 0$
by (auto intro!: LIMSEQ-norm-0 simp: less-eq-real-def)
have $1: U \in$ sets (borel-of mtopology)
by (simp add: 〈closedin mtopology $U\rangle$ borel-of-closed)
have Uint $:(\bigcap i . \bigcup a \in U$. mball a (an i)) =U
by (simp add: nbh-Inter-closure-of[OF U US an(1,2) an-lim] clo-sure-of-closedin $[O F$ <closedin mtopology $U\rangle]$)
have $(\lambda n$. measure $L(\bigcup a \in U$. mball $a($ an $n))) \longrightarrow$ measure $L(\bigcap i$. $\bigcup a \in U$. mball $a(a n i))$
$(\lambda n$. measure $N(\bigcup a \in U$. mball $a($ an $n))) \longrightarrow$ measure $N(\bigcap i$. $\bigcup a \in U$. mball $a($ an $i))$
by (auto intro!: L.finite-Lim-measure-decseq[OF - nbh-decseq[OF an(2)]] N.finite-Lim-measure-decseq[OF - nbh-decseq[OF an(2)]]
simp: $M N$)
hence $M N$-lim: $(\lambda n$. measure $L(\bigcup a \in U$. mball a $($ an $n))+$ an $n) \longrightarrow$ measure $L U$
$(\lambda n$. measure $N(\bigcup a \in U$. mball $a($ an $n))+$ an $n) \longrightarrow$ measure $N U$
by (auto simp add: Uint intro!: tendsto-add[OF - an-lim,simplified $]$)
show ?thesis
proof (rule order.antisym)
show measure $L U \leq$ measure $N U$
by(rule Lim-bounded2[OF MN-lim(2)], auto simp: an 1)
next
show measure $N U \leq$ measure $L U$
by(rule Lim-bounded2[OF MN-lim(1)],auto simp: an 1)
qed
qed simp

```
            thus emeasure L U = emeasure N U
                    by (simp add: L.emeasure-eq-measure N.emeasure-eq-measure)
        qed
    next
        show range (\lambdai.M)\subseteq{U. closedin mtopology U}
            by simp
    qed (simp-all add:MN sets-borel-of-closed inP-D(2))
    qed
next
    fix MNL
    assume MNL[simp]:M\in\mathcal{P}N\in\mathcal{P}L\in\mathcal{P}
    interpret M: finite-measure M
        by(rule inP-D(1)[OF MNL(1)])
    interpret N: finite-measure N
        by(rule inP-D(1)[OF MNL(2)])
    interpret L: finite-measure L
    by(rule inP-D(1)[OF MNL(3)])
    have ne:{e1 + e2 |e1 e2. 0 < e1 ^ 0 < e2 ^
                                    (}\forall\mathrm{ A sets (borel-of mtopology).
                                    measure M A \leq measure N (\bigcupa\inA. mball a e1) + e1 ^
                                    measure N A \leq measure M (\bigcupa\inA. mball a e1) + e1 ^
                                    measure N A \leq measure L (\bigcupa\inA. mball a e2) +e2 ^
                    measure L A m measure N(\bigcupa\inA. mball a e2) +e2)} }\not={
    (is {e1 +e2 | e1 e2. 0<e1 ^0<e2 ^ ?Pe1e2} f={})
    using N.bounded-measure M.bounded-measure L.bounded-measure
        by(auto intro!: exI[where x=max 1 (max (measure M (space M)) (max
(measure L (space L)) (measure N (space N))))]
                        add-increasing[OF measure-nonneg] simp: le-max-iff-disj)
    show LPm ML\leqLPm MN +LPm NL (is ?lhs \leq?rhs)
    proof -
    have ?lhs = \{e.e>0^(\forall A\insets (borel-of mtopology).
                                    measure M A \leq measure L (\bigcupa\inA. mball a e) +e^
                                    measure L A \leq measure M (\bigcupa\inA. mball a e) +e)}
        by(auto simp: LPm-def)
    also have .. \leq \{e1 +e2 |e1 e2.0<e1^0<e2 ^?P e1 e2} (is - \leqInf
?B)
    proof(rule cInf-superset-mono)
        show ?B\subseteq{e.e>0\wedge(\forallA\insets (borel-of mtopology).
                                    measure M A \leq measure L (\bigcupa\inA. mball a e) +e^
                                    measure L A \leqmeasure M (\bigcupa\inA. mball a e) +e)}
    proof safe
        fix e1 e2 A
        assume ?P e1 e2
            and A[measurable]: A \in sets (borel-of mtopology)
            then have mA:
            \A.A\in sets (borel-of mtopology) \Longrightarrow measure M A \leqmeasure N ( \bigcupa\inA.
mball a e1) + e1
    \ A . A \in \text { sets (borel-of mtopology) } \Longrightarrow \text { measure N A }
mball a e1) + e1
```

$\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure $N A \leq$ measure $L(\bigcup a \in A$. mball a e2 $)+e^{2}$
$\bigwedge A . A \in$ sets (borel-of mtopology $) \Longrightarrow$ measure $L A \leq$ measure $N(\bigcup a \in A$. mball a e2) $+e^{2}$
by auto
show measure $M A \leq$ measure $L(\bigcup a \in A$. mball $a(e 1+e 2))+(e 1+e 2)$

proof -

have measure $M A \leq$ measure $N(\bigcup a \in A$. mball a e1 $)+e 1$ by (simp add: $m A$)
also have $\ldots \leq$ measure $L(\bigcup a \in(\bigcup a \in$ A. mball a e1 $)$. mball a e2 $)+e^{2}$ $+e 1$
by (simp add: $m A(3)[$ of $\bigcup a \in A$. mball a e1,simplified $])$
also have $\ldots \leq$ measure $L(\bigcup a \in$ A. mball $a(e 1+e 2))+e 2+e 1$ by (simp add: L.finite-measure-mono[OF nbh-add,simplified])
finally show ?thesis by simp

qed

show measure $L A \leq$ measure $M(\bigcup a \in A$. mball $a(e 1+e 2))+(e 1+e 2)$ proof -
have measure $L A \leq$ measure $N(\bigcup$ a \in A. mball a e2 $)+e^{2}$ by (simp add: $m A$)
also have $\ldots \leq$ measure $M(\bigcup a \in(\bigcup a \in A$. mball a e2 $)$. mball a e1 $)+e 1$
$+e 2$
$\mathbf{b y}(\operatorname{simp}$ add: $m A(2)[$ of $\bigcup a \in A$. mball a e2,simplified $])$
also have $\ldots \leq$ measure $M(\bigcup a \in A$. mball $a(e 1+e 2))+e 1+e 2$
by (simp add: M.finite-measure-mono[OF nbh-add,simplified] add.commute[of e1])
finally show ?thesis
by simp
qed
qed simp
qed (use ne bdd-below-Levy-Prokhorov in auto)
also have $\ldots \leq$? rhs
proof (rule cInf-le-iff-less[where $f=$ id,simplified,THEN iffD2])
show $\forall y>L P m M N+L P m N L . \exists i \in\{e 1+e \mathcal{Z} \mid e 1 e 2.0<e 1 \wedge 0<e 2$
\wedge ? P e1 e2 \}. $i \leq y$
proof safe
fix e
assume $h: L P m M N+L P m N L<e$
define e^{\prime} where $e^{\prime} \equiv(e-(L P m M N+L P m N L)) / 2$
have $e^{\prime}[$ arith $]: e^{\prime}>0$
using h by (auto simp: e^{\prime}-def)
have
$\bigwedge y . y>L P m M N \Longrightarrow \exists i \in\{e .0<e \wedge(\forall A \in$ sets (borel-of mtopology). measure $M A \leq$ measure $N(\bigcup a \in A$. mball a
$e)+e \wedge$
$e)+e)\} . i \leq y$
$\bigwedge y . y>L P m N L \Longrightarrow \exists i \in\{e .0<e \wedge(\forall A \in$ sets (borel-of mtopology).
measure $N A \leq$ measure $L(\bigcup a \in A$. mball a
$e)+e \wedge$
measure $L A \leq$ measure $N(\bigcup a \in A$. mball a
$e)+e)\} \cdot i \leq y$
using cInf-le-iff-less[where $f=i d$,simplified,OF LPm-ne[OF MNL(2,3)],of $L P m$ N $L]$
cInf-le-iff-less[where $f=$ id,simplified, OF LPm-ne $[$ OF $\operatorname{MNL}(1,2)]$, of LPm $M N]$
by (simp-all add: LPm-def bdd-below-Levy-Prokhorov)
from this(1)[of LPm MN+e] this(2)[of LPm NL+e] obtain emn enl where emn: emn >0 emn $\leq L P m M N+e^{\prime}$
$\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure $M A \leq$ measure N $(\bigcup a \in A$. mball a emn $)+e m n$
$\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure $N A \leq$ measure M
$(\bigcup a \in A$. mball a emn $)+e m n$ and enl: enl >0 enl $\leq L P m N L+e^{\prime}$
$\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure $N A \leq$ measure $L(\bigcup a \in A$.
mball a enl) + enl
$\bigwedge A . A \in$ sets (borel-of mtopology) \Longrightarrow measure $L A \leq$ measure $N(\bigcup a \in A$.
mball a enl) + enl by auto
hence $e m n+e n l \leq e$
by (auto intro!: order.trans $\left[\right.$ of emn + enl LPm $M N+e^{\prime}+(L P m N L+$ $\left.\left.e^{\prime}\right) e\right]$)
(auto simp: e^{\prime}-def diff-divide-distrib)
show $\exists i \in\{e 1+e 2 \mid e 1 e 2.0<e 1 \wedge 0<e 2 \wedge ? P e 1 e 2\} . i \leq e$ apply (rule bexI $[$ where $x=e m n+e n l])$
apply fact
apply standard
apply (rule exI[where $x=e m n]$)
$\operatorname{apply}($ rule exI[where $x=e n l])$
apply (use emn enl in auto) done
qed
qed(insert ne,auto intro!: bdd-belowI[of-0])
finally show ?thesis .
qed
qed (simp add: LPm-def, meson)

4.2 Convervence and Weak Convergence

lemma converge-imp-mweak-conv:
assumes limitin LPm.mtopology Ni N F
shows mweak-conv Ni NF
$\operatorname{proof}($ cases $F=\perp$)
assume $F: F \neq \perp$
have $h: N \in \mathcal{P}((\lambda n . L P m(N i n) N) \longrightarrow 0) F \forall_{F}$ i in F. Ni $i \in \mathcal{P}$
using LPm.limitin-metric-dist-null assms(1) by auto
interpret N : finite-measure N
using h by (auto simp: inP-D)
interpret mweak-conv-fin MdNiN
by (auto intro!: h inP-mweak-conv-fin assms)
show ?thesis
unfolding mweak-conv-eq2
proof safe
show $((\lambda n$. measure $(N i n) M) \longrightarrow$ measure $N M) F$
unfolding tendsto-iff dist-real-def
proof safe
fix r :: real
assume $r: 0<r$
from half-gt-zero[OF this] h(2)
have $1: \forall_{F} n$ in $F . \operatorname{LPm}(N i n) N<r / 2$
unfolding tendsto-iff dist-real-def LPm.nonneg by fastforce
show $\forall_{F} n$ in F. |measure (Ni n) M - measure $N M \mid<r$
proof (safe intro!: eventually-mono[OF eventually-conj[OF h(3) 1]])
fix n
assume $n: \operatorname{LPm}(N i n) N<r / 2 N i n \in \mathcal{P}$
have $[$ simp $]:(\bigcup a \in M$. mball $a(r / 2))=M$
using r by auto
have [measurable]: $M \in$ sets (borel-of mtopology)
by (auto intro!: borel-of-open)
have measure (Ni n) $M \leq$ measure $N M+r / 2$ measure $N M \leq$ measure
(Nin) $M+r / 2$
using LPm-less-then[OF - $n(1)$,of M] $h(1) n(2)$ by auto
hence \mid measure (Ni n) M-measure $N M \mid \leq r / 2$
by linarith
also have ... $<r$
using r by auto
finally show \mid measure (Ni n) M-measure $N M \mid<r$.
qed
qed
next
define $b n$ where $b n \equiv(\lambda n . L P m(N i n) N)$
have bn-nonneg: $\wedge n$. bn $n \geq 0$
by (auto simp: bn-def)
have bn-tendsto: $(b n \longrightarrow 0) F$
using $h(2)$ by (auto simp: bn-def)
fix A
assume A :closedin mtopology A
then have A-meas[measurable]: $A \in$ sets (borel-of mtopology)
by (simp add: borel-of-closed)
show Limsup $F(\lambda x$. measure $(N i x) A) \leq($ measure $N A)$
proof $($ cases $A=\{ \})$
assume $A-n e: A \neq\{ \}$
have bdd:Limsup $F(\lambda n$. measure $(N i n) A) \leq($ measure $N(\bigcup a \in A$. mball a
$(2 / S u c m)))+1 / S u c m$ for m
proof -
have Limsup $F(\lambda n$. measure $(N i n) A)$
$\leq \operatorname{Limsup} F(\lambda n$. measure $N(\bigcup a \in A$. mball $a(b n n+1 /$ Suc $m))+$ ereal $(b n n+1 / S u c m))$
by (auto intro!: Limsup-mono eventually-mono[OF h(3)] LPm-less-then(1)[OF - h(1)] simp: bn-def)
also have $\ldots \leq$ Limsup $F(\lambda n$. measure $N(\bigcup a \in A$. mball $a(b n n+1 /$
Suc $m)))+$ Limsup $F(\lambda n$. bn $n+1 /$ Suc $m)$
by (rule ereal-Limsup-add-mono)
also have $\ldots=$ Limsup $F(\lambda n$. measure $N(\bigcup a \in A$. mball $a(b n n+1 /$ Suc m))) +1 /Suc m
using Limsup-add-ereal-right[OF F, of 1 / Suc mbn]
by (simp add: lim-imp-Limsup[OF F tendsto-ereal[OF bn-tendsto]])
also have $\ldots \leq \operatorname{ereal}($ measure $N(\bigcup a \in A$. mball a $(2 /$ Suc m $)))+1 /$ Suc
m

proof -

have Limsup $F(\lambda n$. measure $N(\bigcup a \in A$. mball $a(b n n+1 / S u c m)))$ \leq measure $N(\bigcup a \in A$. mball a (2 / Suc m))
using bn-nonneg
by (fastforce intro!: Limsup-bounded eventuallyI[THEN eventually-mp [OF - tendstoD[OF bn-tendsto, of 1 / Suc m]]]]
N.finite-measure-mono)
thus ?thesis
using add-mono by blast

qed

finally show?thesis by simp
qed
have lim: $(\lambda$ m. ereal $(($ measure $N(\bigcup a \in A$. mball a (2 / Suc m))) $+1 /$ Suc $m)) \longrightarrow$ measure $N A$
proof (safe intro!: tendsto-ereal $[$ where $x=$ measure $N A]$ tendsto-add $[$ where $b=0$,simplified $]$)
show $(\lambda m$. measure $N(\bigcup a \in A$. mball a $(2 /$ Suc $m))) \longrightarrow$ measure $N A$ proof -
have $1:(\bigcap m$. $(\bigcup a \in A$. mball $a(2 /$ Suc $m)))=A$
using tendsto-mult[OF tendsto-const[of 2] LIMSEQ-Suc[OF lim-inverse-n 1$]$ closedin-subset[OF A]
by (intro nbh-Inter-closure-of[OF A-ne,simplified closure-of-closedin $[O F$ A]] decseq-SucI)
(auto simp: frac-le)
have $(\lambda m$. measure $N(\bigcup a \in A$. mball a $(2 / S u c m))) \longrightarrow$ measure N $(\bigcap m .(\bigcup a \in A$. mball a (2 / Suc m)))
by (auto intro!: N.finite-Lim-measure-decseq nbh-decseq[OF decseq-SucI] simp: frac-le)
thus ?thesis
unfolding 1 .
qed
qed(rule LIMSEQ-Suc[OF lim-inverse-n $]$)
show ?thesis
using bdd by (auto intro!: Lim-bounded2[OF lim])
qed (simp add: Limsup-const $[$ OF F] $]$)
qed

```
next
    show F= \perp\Longrightarrow mweak-conv Ni N F
        using limitin-topspace[OF assms(1)] by(auto simp: inP-D mweak-conv-def)
qed
lemma mweak-conv-imp-converge:
    assumes separable-space mtopology
    and mweak-conv Ni NF
    shows limitin LPm.mtopology Ni N F
proof -
    have in-P:\forall F i in F. Ni i }\in\mathcal{P}N\in\mathcal{P
        using limitin-topspace[OF assms(2)]
    by(fastforce intro!: eventually-mono[OF limitinD[OF assms(2),
    of topspace (weak-conv-topology mtopology),OF openin-topspace limitin-topspace[OF
assms(2)]]] inP-I)+
    consider M = {}|F= | | M = {} F\not= \perp
    by blast
    thus ?thesis
    proof cases
    case 1
    then have 2:sets (borel-of mtopology) = {{}}
            by (metis space-borel-of space-empty-iff topspace-mtopology)
    have }\mp@subsup{\forall}{F}{}\mathrm{ i in F. space (Ni i) =M space N=M
            using inP-D in-P
            by(auto intro!: eventually-mono[OF in-P(1)] cong: sets-eq-imp-space-eq simp:
space-borel-of)
    then have }\mp@subsup{\forall}{F}{}i\mathrm{ in F. Ni i = count-space {} N= count-space {}
            using 1 by(auto simp: space-empty eventually-mono)
    thus ?thesis
            by(auto intro!: limitin-eventually inP-I finite-measureI simp: 2)
    next
        show F = \perp\Longrightarrow limitin LPm.mtopology Ni N F
            using limitin-topspace[OF assms(2)] by(auto intro!: limitin-trivial inP-I)
    next
        assume M-ne:M\not={} and F:F\not=\perp
        show ?thesis
            unfolding LPm.limitin-metric-dist-null dist-real-def tendsto-iff
        proof safe
            interpret mweak-conv-fin M d Ni N F
                by(auto intro!: inP-mweak-conv-fin in-P)
            have M[measurable]: M sets N }\mp@subsup{\forall}{F}{}\mathrm{ i in F. M { sets (Ni i)
                by(auto simp: sets-N borel-of-open eventually-mono[OF sets-Ni])
            fix r :: real
            assume r[arith]:0<r
            interpret N: finite-measure N
                using in-P by(auto simp: in P-D)
            define r' where r'
            have r'[arith]: r' 
                by(auto simp: r'-def)
```

obtain ai ri where airi: $(\bigcup$ i. mball (ai i) $($ ri $i))=M(\bigcup$ i. mcball (ai i) (ri i)) $=M$
\i::nat. ai $i \in M$ 亿i. $0<$ ri $i \bigwedge i$. ri $i<r^{\prime} / \mathcal{Z}$
^i. measure N (mtopology frontier-of mball (ai i) (ri i)) =0
$\bigwedge i$. measure N (mtopology frontier-of mcball (ai i) (ri i)) $=0$
using frontier-measure-zero-balls[OF sets- N N.finite-measure-axioms M-ne half-gt-zero[OF r'(2)] assms(1)]
by blast
have meas[measurable]: $\bigwedge a r$. mball a $r \in$ sets $N \forall_{F} j$ in $F . \forall$ ar. mball a r \in sets (Ni j)
\a r. mtopology frontier-of (mball a r) \in sets N
$\forall_{F} j$ in $F . \forall a r$. mtopology frontier-of (mball a r) $\operatorname{sets}(N i j)$
by (auto simp: eventually-mono[OF sets-Ni] sets- N borel-of-open closedin-frontier-of borel-of-closed)
have $\exists k . \forall l \geq k . \mid$ measure $N(\bigcup i \in\{. . l\}$. mball (ai i) (ri i)) - measure $N M \mid$ $<r^{\prime}$
proof -
have $(\lambda j$. measure $N(\bigcup i \in\{. . j\}$. mball (ai i) (ri i)))
\rightarrow measure $N(\bigcup($ range $(\lambda j$. $\bigcup i \in\{. . j\}$. mball (ai i) (ri i))))
by (rule N.finite-Lim-measure-incseq) (fastforce intro!: monoI) +
hence $(\lambda j$. measure $N(\bigcup i \in\{. . j\}$. mball (ai $i)($ ri $i))) \longrightarrow$ measure $N M$ by (metis UN-UN-flatten UN-atMost-UNIV airi(1))
thus ?thesis
using r^{\prime} by (auto simp: LIMSEQ-def dist-real-def)
qed
then obtain k where k : measure $N M-$ measure $N(\bigcup i \in\{. . k\}$. mball (ai i) $(r i i))<r^{\prime}$
using space- N N.bounded-measure by fastforce
define \mathcal{A} where $\mathcal{A}=(\lambda J . \bigcup j \in J$. mball (ai j) (rij))'Pow $\{. . k\}$
have \mathcal{A}-fin: finite \mathcal{A}
by (auto simp: \mathcal{A}-def)
have \mathcal{A}-ne: $\mathcal{A} \neq\{ \}$
by (auto simp: \mathcal{A}-def)
have $\forall_{F} n$ in F. |measure (Nin) $A-$ measure $N A \mid<r^{\prime}$ if $A \in \mathcal{A}$ for A
proof -
obtain J where $J: J \subseteq\{. . k\} A=(\bigcup j \in J$. mball $(a i j)(r i j))$
using $\langle A \in \mathcal{A}\rangle$ by (auto simp: \mathcal{A}-def)
hence J-fin: finite J
using finite-nat-iff-bounded-le by blast
have measure N (mtopology frontier-of A) measure N (mtopology frontier-of $(\bigcup j \in J . m b a l l(a i j)(r i j)))$
by (auto simp: J)
also have $\ldots \leq$ measure $N(\bigcup$ ((frontier-of) mtopology' $(\lambda j$. mball (ai j) $(r i j))$ ' J))
by (rule N.finite-measure-mono[OF frontier-of-Union-subset]) (use J-fin in auto)
also have $\ldots \leq\left(\sum j \in J\right.$. measure N (mtopology frontier-of mball (ai j) (ri j))
unfolding image-image by(rule N.finite-measure-subadditive-finite) (use
J-fin in auto)
also have $\ldots=0$
by (simp add: airi)
finally have measure N (mtopology frontier-of A) $=0$
by (simp add: measure-le-0-iff)
moreover have $A \in$ sets N
by (auto simp: $J(2)$)
ultimately show ?thesis
using mweak-conv-eq4 assms(2) by (fastforce simp: sets-N sets-Ni tendsto-iff dist-real-def)
qed
hence filter $1: \forall_{F} n$ in $F . \forall A \in \mathcal{A}$. |measure (Ni n) $A-$ measure $N A \mid<r^{\prime}$ by(auto intro!: \mathcal{A}-fin eventually-ball-finite)
have filter2: $\forall_{F} n$ in F. |measure (Ni n) M - measure $N M \mid<r^{\prime}$ using mweak-conv-imp-limit-space[OF assms(2)] by (auto simp: tendsto-iff dist-real-def)
show $\forall_{F} x$ in $F .|L P m(N i x) N-0|<r$
proof (safe intro!: eventually-mono[OF eventually-conj $[O F$
eventually-conj[OF finite-measure-Ni sets-Ni] eventually-conj $[$ OF
filter1 filter2]]])
fix n
assume $n: \forall A \in \mathcal{A}$. \mid measure (Ni n) $A-$ measure $N A\left|<r^{\prime}\right|$ measure (Ni n)
M - measure $N M \mid<r^{\prime}$
and sets-Ni[measurable-cong]: sets (Ni n) $=$ sets (borel-of mtopology) and
finite-measure (Ni n)
then have [measurable]: \backslash a r. mball a $r \in$ sets (Ni n)
$\bigwedge a r$. mtopology frontier-of mball a $r \in \operatorname{sets}($ Ni n) $M \in$ sets (Ni n)
using meas sets- N by auto
have space-Ni: space (Ni n) $=M$
by (simp add: sets-Ni space-borel-of cong: sets-eq-imp-space-eq)
interpret Ni: finite-measure Ni n by fact
have $L P m$ (Ni n) $N<r$
proof(safe intro!: order.strict-trans1[OF LPm-imp-le[of $\left.4 * r^{\prime}\right]$])
fix B
assume $B \in$ sets (borel-of mtopology)
hence [measurable]: $B \in$ sets $N B \in$ sets (Ni n)
by (auto simp: sets- N)
define A where $A \equiv \bigcup j \in\{. . k\} \cap\{j$. mball (aij) $($ ri $j) \cap B \neq\{ \}\}$. mball
(aij) (rij)
have A-in: $A \in \mathcal{A}$
by (auto simp: \mathcal{A}-def A-def)
have [measurable]: $A \in$ sets $N A \in$ sets (Ni n)
by (auto simp: A-def)
have 1: $A \subseteq\left(\bigcup a \in B\right.$. mball a $\left.r^{\prime}\right)$
proof
fix x
assume $x \in A$
then obtain j where $j: j \leq k$ mball $($ ai $j)(r i j) \cap B \neq\{ \} x \in \operatorname{mball}$ (ai
j) (rij)

```
        by(auto simp: A-def)
        then obtain b where b:b\in mball (aij) (rij) b\inB
        by blast
    have db x \leqdb (ai j)+d (ai j)x
        using b j by(auto intro!: triangle)
    also have ... < r'/2 + r' / 2
        by(rule add-strict-mono, insert b(1) airi(5)[of j] j(3)) (auto simp:
commute)
    also have ... = r' by auto
    finally show }x\in(\bigcupa\inB\mathrm{ . mball a r }\mp@subsup{r}{}{\prime
        using b(1) j(3) by(auto intro!: bexI[where x=b] b simp: mball-def)
    qed
    have 2: }B\subseteqA\cup(M-(\bigcupj\leqk.mball (ai j)(rij))
    proof -
        have B=B\cap(\bigcupj\leqk.mball (ai j) (rij))\cupB\cap(M-(\bigcupj\leqk. mball
    (ai j) (ri j)))
        using sets.sets-into-space[OF <B\in sets N`] by(auto simp: space-N)
        also have ...\subseteqA\cup(M-(\bigcupj\leqk. mball (ai j) (ri j)))
            by(auto simp: A-def)
        finally show ?thesis.
    qed
    have 3: measure N (M - (\bigcupj\leqk. mball (ai j) (ri j))) < r'
        using N.finite-measure-compl k space-N by auto
    have 4: measure (Ni n) (M-(\bigcupj\leqk.mball (aij) (rij)))<3* r'
    proof -
        have measure (Ni n) (M - (\bigcupj\leqk.mball (ai j) (ri j)))
                        = measure (Ni n)M - measure (Ni n) (\bigcupj\leqk.mball (ai j) (ri j))
            using Ni.finite-measure-compl space-Ni by auto
            also have ...< measure NM+ r'- (measure N(\bigcupj\leqk. mball (ai j)
        (rij)) - r')
            by(rule diff-strict-mono,insert n) (auto simp: abs-diff-less-iff \mathcal{A}
            also have ... = measure N (M - (\bigcupj\leqk.mball (ai j) (rij))) + 2 * r'
            using N.finite-measure-compl diff-add-cancel space-N by auto
            finally show ?thesis
            using 3 by auto
    qed
    show measure (Ni n) B\leqmeasure N (\bigcupa\inB.mball a (4* ' ( ) ) + 4* r'
    proof -
        have measure (Ni n) B\leqmeasure (Ni n) (A\cup(M-(\bigcupj\leqk. mball
(ai j)(ri j))))
            by(auto intro!: Ni.finite-measure-mono[OF 2])
                            also have ... \leqmeasure (Ni n) A + measure (Ni n) (M - (\bigcupj\leqk.mball
(ai j) (rij)))
            by(auto intro!: Ni.finite-measure-subadditive)
            also have ...< measure NA+4* r'
            using 4 A-in n by(auto simp: abs-diff-less-iff)
            also have .. \leq measure N(\bigcupa\inB. mball a r')+4* r'
            by(auto intro!: N.finite-measure-mono[OF 1] borel-of-open simp: sets-N)
            also have ... \leq measure N(\bigcupa\inB. mball a (4* ' }\\mathrm{ ) )+4* r'
```

```
                    using mball-subset-concentric[of r'4*r']
                    by(auto intro!: N.finite-measure-mono borel-of-open simp: sets-N)
            finally show ?thesis by simp
        qed
        show measure N B \leq measure (Ni n) (\bigcupa\inB. mball a (4* ' )})+4*\mp@subsup{r}{}{\prime
        proof -
            have measure NB\leqmeasure N(A\cup(M-(\bigcupj\leqk. mball (ai j)(ri
j))))
            by(auto intro!: N.finite-measure-mono[OF 2])
            also have ... \leq measure NA + measure N (M - (\bigcupj\leqk. mball (ai j)
(ri j)))
            by(auto intro!: N.finite-measure-subadditive)
                    also have ... < measure (Nin) A+2 * r'
                    using 3 A-in n by(auto simp: abs-diff-less-iff)
                        also have ... \leq measure (Ni n) (\bigcupa\inB. mball a r') + 2 * r'
                by(auto intro!: Ni.finite-measure-mono[OF 1] borel-of-open simp: sets-N)
                    also have .. \leq measure (Ni n) (\bigcupa\inB. mball a (4* r')) + 2 * r'
                    using mball-subset-concentric[of r'4*r']
                    by(auto intro!: Ni.finite-measure-mono borel-of-open simp: sets-N)
                    finally show ?thesis by simp
            qed
            qed (auto simp: r'-def)
            thus |LPm (Ni n) N - 0|<r
                by simp
            qed
    qed (use in-P in auto)
    qed
qed
```

corollary conv-iff-mweak-conv: separable-space mtopology \Longrightarrow limitin LPm.mtopology
Ni NF \longleftrightarrow mweak-conv Ni N F
using converge-imp-mweak-conv mweak-conv-imp-converge by blast

4.3 Separability

```
lemma LPm-countable-base:
    assumes ai:mdense (range ai)
    shows LPm.mdense
        (( }\lambda(k,bi).sum-measure
            (borel-of mtopology) {..k}
                        (\lambdai. scale-measure (ennreal (bi i)) (return (borel-of mtopology)
(ai i))))
            `(SIGMA k:(UNIV :: nat set). ({..k} ->' }\mp@subsup{E}{\mathbb{Q}}{\mathbb{Q}}\cap{0..})))(is LPm.mdens
?D)
proof -
    have sep:separable-space mtopology
        using ai by(auto simp: separable-space-def2 intro!: exI[where x=range ai])
    have ai-in: \i. ai i\inM
        by (meson ai mdense-def2 range-subsetD)
```

```
hence \(M\)-ne: \(M \neq\{ \}\)
    by blast
show ?thesis
    unfolding LPm.mdense-def3
proof
    show goal1:?D \(\subseteq \mathcal{P}\)
    proof safe
        fix \(b i::\) nat \(\Rightarrow\) real and \(k::\) nat
        assume \(h: b i \in\{. . k\} \rightarrow_{E} \mathbb{Q} \cap\{0 .\).
        show sum-measure (borel-of mtopology) \(\{. . k\}\)
```

 (\(\lambda i\). scale-measure (ennreal (bi i)) (return (borel-of mtopology)
 (ai i))) $\in \mathcal{P}$
$\mathbf{b y}($ auto simp: \mathcal{P}-def emeasure-sum-measure intro!: finite-measureI)
qed
show $\forall x \in \mathcal{P}$. \exists xn. range $x n \subseteq$? $D \wedge$ limitin LPm.mtopology $x n x$ sequentially
proof
fix N
assume $N \in \mathcal{P}$
then have sets- N [measurable-cong]: sets $N=$ sets (borel-of mtopology)
and space- N :space $N=M$ and finite-measure N
by (auto simp: \mathcal{P}-def space-borel-of cong: sets-eq-imp-space-eq)
then interpret N : finite-measure N by simp
have [measurable]: $\bigwedge a r$. mball a $r \in$ sets N
by (auto simp: sets- N borel-of-open)
have ai-in'[measurable]: \bigwedge i. ai $i \in$ space N
by (auto simp: ai-in space- N)
have $(\lambda i$. measure $N(\bigcup j \leq i$. mball $($ ai $j)(1 / S u c m))) \longrightarrow$ measure N
(space N) for m
proof -
have $1:(\bigcup i$. $(\bigcup j \leq i$. mball $($ ai $j)(1 /$ Suc $m)))=$ space N
using mdense-balls-cover[OF ai,of $1 /$ Suc m] by (auto simp: space- N)
have (λ i. measure $N(\bigcup j \leq i$. mball (ai j) (1/Suc m)))
\longrightarrow measure $N(\bigcup i .(\bigcup j \leq i$. mball $($ ai $j)(1 / S u c m)))$
by(rule N.finite-Lim-measure-incseq) (fastforce intro!: monoI)+
thus ?thesis
unfolding 1 .
qed
hence $\exists k$. $\forall i \geq k$. \mid measure $N(\bigcup j \leq i$. mball (aij) (1 / Suc m)) - measure
$N($ space $N) \mid<1 / S u c m$ for m
unfolding LIMSEQ-def dist-real-def by fastforce
then obtain k where
$\bigwedge i m . i \geq k m \Longrightarrow \mid$ measure $N(\bigcup j \leq i$. mball (aij) (1/Suc m)) - measure
$N($ space $N) \mid<1 /$ Suc m
by metis
hence k : $\bigwedge m$. measure $N($ space $N)-$ measure $N(\bigcup j \leq k m$. mball (ai $j)(1$
/ Suc m)) < 1 / Suc m
using N.bounded-measure by auto
define Ami
where $A m i \equiv(\lambda m i .(\bigcup j<S u c i$. mball $(a i j)(1 / S u c m))-(\bigcup j<i$. mball

```
(aij) (1 / Suc m)) )
    have Ami-disj: \(\bigwedge m\). disjoint-family (Ami m)
        by(fastforce simp: Ami-def intro!: disjoint-family-Suc)
    have Ami-def': Ami \(=(\lambda m\) i. mball (ai \(i)(1 /\) Suc \(m)-(\bigcup j<i\). mball (ai
j) \((1 /\) Suc \(m))\) )
        by (standard, standard) (auto simp: Ami-def less-Suc-eq)
    have Ami-subs: Ami \(m i \subseteq m b a l l(a i ~ i)(1 / S u c m)\) for \(m i\)
        by(auto simp: Ami-def')
    have Ami-un: \((\bigcup i \leq j\). Ami m \(i)=(\bigcup i \leq j\). mball (ai \(i)(1 /\) Suc \(m)\) ) for \(m j\)
    proof
        show \((\bigcup i \leq j\). mball \((\) ai \(i)(1 / \operatorname{real}(S u c m))) \subseteq(\bigcup i \leq j\). Ami \(m i)\)
        proof (induction \(j\) )
            case 0
            then show ?case
                by (auto simp: Ami-def)
        next
                case \(i h:(S u c j)\)
                have \((\bigcup i \leq\) Suc \(j\). mball (ai i) ( 1 / real (Suc m)) )
                        \(=(\bigcup i \leq j\). mball (ai i) \((1 /(\) Suc \(m))) \cup\) mball \((\) ai \((\) Suc \(j))(1 /\) Suc
m)
            by (fastforce simp: le-Suc-eq)
        also have \(\ldots=(\bigcup i \leq j\). mball (ai i) \((1 /(\) Suc m) \()) \cup\)
```



```
i) \((1 /(\) Suc \(m))))\)
            by fastforce
        also have \(\ldots \subseteq(\bigcup i \leq S u c j\). Ami m \(i)\)
        proof -
            have (mball (ai (Suc j)) (1 / Suc m) - ( \(\bigcup\) i<Suc j. mball (ai i) (1 /
(Suc \(m)\) ))
                    \(\subseteq(\bigcup i \leq\) Suc \(j\). Ami mi)
                    using Ami-def' by blast
            thus ?thesis
                using ih by (fastforce simp: le-Suc-eq)
            qed
            finally show ?case .
        qed
    qed(use Ami-subs in auto)
    have sets-Ami[measurable]: \(\bigwedge m i\). Ami mi sets \(N\)
        by (auto simp: Ami-def)
    have \(\exists\) qmi. qmi \(\in\left(\{. . k m\} \rightarrow_{E} \mathbb{Q} \cap\{0 .\}.\right) \wedge\left(\sum i \leq k m\right.\). |measure \(N(\) Ami \(m\)
\(i)-q m i i \mid)<1 /\) Suc \(m\) for \(m\)
    proof -
        have \(\exists q m i \in \mathbb{Q} \cap\{0 .\).\(\} . measure N(\) Ami mi) \(-q m i<1 /(\) real \((\) Suc \(m)\)
* real \((S u c(k m))) \wedge\)
                \(q m i \leq\) measure \(N(A m i m i)\) if \(i \leq k m\) for \(i\)
        \(\operatorname{proof}(\) cases measure \(N(\) Ami mi) \(=0)\)
        case True
        then show?thesis
            by (auto intro!: bexI [where \(x=0]\) )
```


next

case False
hence $\max 0($ measure $N($ Ami mi) $-1 /($ real $(S u c m) *$ real $(S u c(k$ $m))$) $<$ measure $N($ Ami mi)
by (auto simp: zero-less-measure-iff)
from of-rat-dense $[O F$ this $]$ obtain q where
$q: 0<$ real-of-rat q measure $N($ Ami mi) $-1 /($ real $($ Suc $m) *$ real $(S u c$
$(k m)))<$ real-of-rat q
real-of-rat $q<$ measure $N($ Ami $m i)$
by auto
hence real-of-rat $q \in \mathbb{Q} \cap\{0$.. $\}$
by auto
with $q(2,3)$ show ?thesis by (auto intro!: bexI $[$ where $x=$ real-of-rat $q]$)
qed
then obtain $q m i$ where $q m i: \wedge i . i \leq k m \Longrightarrow q m i i \in \mathbb{Q} \cap\{0 .$.
$\bigwedge i . i \leq k m \Longrightarrow$ measure $N($ Ami $m i)-q m i i<1 /($ real $($ Suc $m) *$ real (Suc (km))
$\bigwedge i . i \leq k m \Longrightarrow q m i i \leq m e a s u r e N(A m i m i)$
by metis
have 2: $\left(\sum i \leq k m\right.$. |measure $N($ Ami mi) $-q m i i \mid)<1 /$ Suc m
proof -
have $\bigwedge i . i \leq k m \Longrightarrow \mid$ measure $N($ Ami m $i)-q m i i \mid<1 /($ real $(S u c$ $m) * \operatorname{real}(S u c(k m)))$
using qmi by auto
hence $\left(\sum i \leq k m\right.$. \mid measure $N($ Ami mi) $-q m i i \mid)<\left(\sum i \leq k m .1 /(\right.$ real $(S u c m) * \operatorname{real}(\operatorname{Suc}(k m))))$
by (intro sum-strict-mono) auto
also have $\ldots=1 /$ Suc m
by auto
finally show ?thesis.
qed
show ?thesis
using qmi 2 by (intro exI $[$ where $x=\lambda i \in\{. . k m\}$. qmi i] $)$ force qed
hence $\exists q m i . \forall m . q m i m \in\left(\{. . k m\} \rightarrow_{E} \mathbb{Q} \cap\{0 .\}.\right) \wedge\left(\sum i \leq k m\right.$. |measure N (Ami mi) -qmi mid) <1/Suc m
by (intro choice) auto
then obtain $q m i$ where $q m i: \wedge m . q m i m \in\left(\{. . k m\} \rightarrow_{E} \mathbb{Q} \cap\{0 .\}.\right)$
$\bigwedge m$. $\left(\sum i \leq k m\right.$. |measure $N($ Ami mi) qmi mi|)<1/Suc m by blast
define $N i$ where $N i \equiv(\lambda i$. sum-measure $N\{. . k i\}$ (λj. scale-measure (qmi i j) $($ return $N(a i j))))$
have NiD:Ni $i \in ? D$ for i
using qmi by(auto simp: Ni-def image-def intro!: exI[where $x=k i]$ bexI [where $x=q m i \quad i]$
cong: return-cong $[O F$ sets- $N]$ sum-measure-cong $[O F$ sets- N $r e f l]$
with goal1 have NiP: $\bigwedge i$. Ni $i \in \mathcal{P}$ by auto
hence Nifin: $\bigwedge i$. finite-measure (Ni i)
and sets-Ni' ${ }^{\prime}$ measurable-cong $]$: $\bigwedge i$. sets $(N i i)=$ borel-of mtopology
by (auto simp: inP-D)
interpret mweak-conv-fin Md Ni N sequentially
using NiP \mathcal{P}-def $\langle N \in \mathcal{P}\rangle$ inP-mweak-conv-fin-all by blast
show $\exists x n$. range $x n \subseteq ? D \wedge$ limitin LPm.mtopology $x n ~ N$ sequentially
proof (safe intro!: exI[where $x=N i]$ mweak-conv-imp-converge sep)
show mweak-conv-seq Ni N
unfolding mweak-conv-eq1 LIMSEQ-def
proof safe
fix $g::$ ' $a \Rightarrow$ real and $K r::$ real
assume h : uniformly-continuous-map Self euclidean-metric $g \forall x \in M .|g x|$
$\leq K$ and $r[$ arith $]: r>0$
have [measurable]: $g \in$ borel-measurable N
using continuous-map-measurable[OF uniformly-continuous-imp-continuous-map[OF
$h(1)]$]
by (auto simp: borel-of-euclidean mtopology-of-def cong: measurable-cong-sets sets- N)
have $g K: \bigwedge x . x \in$ space $N \Longrightarrow|g x| \leq K$
using h (2) by (auto simp: space- N)
have K-nonneg: $K \geq 0$ using $h(2) M$-ne by auto
have $\exists m$. 2 $* K /$ Suc $m<r / 2$
proof (cases $K=0$)
assume $K: K \neq 0$
then have $r / 2 *(1 /(2 * K))>0$
using K-nonneg by auto
then obtain m where $1 /$ Suc $m<r / 2 *(1 /(2 * K))$
by (meson nat-approx-posE)
from mult-strict-right-mono[OF this,of $2 * K]$ show ?thesis using $K K$-nonneg by auto
qed simp
then obtain $m 1$ where $m 1: 2 * K / S u c m 1<r / 2$ by auto
obtain δ where $\delta: \delta>0$
$\bigwedge x y . x \in M \Longrightarrow y \in M \Longrightarrow d x y<\delta \Longrightarrow|g x-g y|<r / 2 *(1 /$
$(1+$ measure $N($ space $N)))$
using conjunct2[OF h(1)[simplified uniformly-continuous-map-def],
rule-format, of $(r / 2) *(1 /(1+$ measure $N($ space $N)))]$
measure-nonneg[of N space N] r
unfolding mdist-Self mspace-Self mdist-euclidean-metric dist-real-def by
auto
obtain m2 where m2: 1 / Suc m2 $<\delta$
using $\delta(1)$ nat-approx-posE by blast
define m where $m \equiv \max m 1$ m2
then have m:1/Suc $m \leq 1 /$ real (Suc m1) $1 /$ Suc $m \leq 1 /$ real (Suc
by (simp-all add: frac-le)
show $\exists n o . \forall n \geq n o . \operatorname{dist}\left(\int x . g x \partial N i n\right)\left(\int x . g x \partial N\right)<r$
unfolding dist-real-def
proof(safe intro!: exI[where $x=m]$)
fix n
assume $n \geq m$
then have $n: 1 /$ Suc $n \leq 1 / \operatorname{real}($ Suc $m)$
by (simp add: frac-le)
have int1[measurable]: integrable (return $N($ ai $j)) g$ for j
unfolding integrable-iff-bounded
proof safe
show $\left(\int^{+}\right.$x. ennreal (norm $\left.(g x)\right)$ dreturn $N($ ai $\left.j)\right)<\infty$
by(rule order.strict-trans1[OF nn-integral-mono[where $v=\lambda$ x. ennreal
K]])
(auto simp: ai-in' gK intro!: ennreal-leI)
qed simp
have int2[measurable]: $\bigwedge A . A \in$ sets $N \Longrightarrow$ integrable N (indicat-real A)

have intg: integrable $N g$
by (auto intro!: N.integrable-const-bound $[$ where $B=K] g K$)
show $\left|\left(\int x . g x \partial N i n\right)-\left(\int x . g x \partial N\right)\right|<r$ (is ?lhs <-)
proof -
have ?lhs $=\mid\left(\sum i \leq k n . \int x . g x\right.$ Dscale-measure $(q m i n i)($ return N (ai i))) - ($\left.\int x . g x \partial N\right) \mid$
by (simp add: Ni-def integral-sum-measure[OF - integrable-scale-measure[OF
int1]])

```
also have \(\ldots=\mid\left(\sum i \leq k n\right.\). qmin \(i * g(\) ai \(\left.i)\right)-\left(\int x . g x \partial N\right) \mid\)
proof -
            \{
                fix \(i\)
                    assume \(i: i \leq k n\)
                            then have \(\left(\int x . g x\right.\) Dscale-measure \((q m i n i)(\) return \(N(\) ai \(\left.i))\right)=\)
```

$q m i n i * g(a i i)$
using integral-scale-measure[OF - int1, of qmi $n i] q m i(1)[o f n]$
int1
by(fastforce simp: integral-return ai-in')
\}
thus ?thesis
by simp
qed
also have $\ldots=\mid\left(\sum i \leq k n\right.$. qmi $n i * g($ ai $\left.i)\right)-\left(\sum i \leq k n\right.$. measure N
$(A m i n i) * g(a i i))$
$+\left(\left(\sum i \leq k n\right.\right.$. measure $N($ Ami $n i) * g($ ai $\left.i)\right)-\left(\int x . g\right.$
x $\partial N)$)|
by simp
also have $\ldots \leq \mid\left(\sum i \leq k n\right.$. measure $N($ Ami $n i) * g($ ai $\left.i)\right)-\left(\sum i \leq k\right.$ n. qmini*g(ai i))|
$+\mid\left(\sum i \leq k n\right.$. measure $N($ Ami $n i) * g($ ai $\left.i)\right)-\left(\int x . g\right.$
$x \partial N) \mid$
by auto
also have $\ldots=\mid \sum i \leq k n$. (measure $N($ Ami $\left.n i)-q m i n i\right) * g($ ai $i) \mid$

$$
+\mid\left(\sum i \leq k n . \text { measure } N(\text { Ami } n i) * g(\text { ai } i)\right)-\left(\int x . g\right.
$$

```
x \partialN)|
    by(simp add: sum-subtractf left-diff-distrib)
    also have .. \leq (\sumi\leqkn.|(measure N (Ami n i) - qmi n i)*g (ai
i)|)
x \partialN)|
    by simp
    also have ... =(\sumi\leqkn. |measure N(Ami n i) - qmi n i| * |g(ai i)|)
    +|(\sumi\leqkn.measure N(Amin i)*g(ai i)) - (\intx.g
x \partialN)|
    by (simp add: abs-mult)
    also have ... \leq (\sumi\leqkn. |measure N (Amini) - qmi ni|*K)
    +|(\sumi\leqkn.measure N(Amin i)*g(ai i)) - (\intx.g
x \partialN)|
    by(auto intro!: sum-mono mult-left-mono gK[OF ai-in \)
    also have ... = (\sumi\leqkn. |measure N (Ami n i) - qmi ni|)*K
    +|(\sumi\leqkn.measure N(Ami n i)*g(ai i)) - (\intx.g
x \partialN)|
    by (simp add: sum-distrib-right)
    also have ...\leq1/Suc n*K+|(\sumi\leqkn.measure N(Ami n i)*g
(ai i)) - (\intx.gx\partialN)
    proof -
            have (\sumi\leqkn.|measure N(Amin i) -qmi n i|)*K\leq1/Suc n
* K
            by(rule mult-right-mono) (use qmi(2)[of n] K-nonneg in auto)
            thus?thesis by simp
        qed
    also have ... =K/Suc n + | (\sumi\leqkn. (\intx.indicator (Ami n i) x*
g(ai i) \partialN)) - (\int x.g x \partialN)|
            by auto
    also have ... =K/Suc n + | (\intx. (\sumi\leqkn.indicator (Ami n i) x*
g(ai i))\partialN) - (\int x.g x \partialN)|
    proof -
            have (\sumi\leqkn.(\intx. indicator (Amin i) x*g(ai i)\partialN))
                =(\intx.(\sumi\leqkn. indicator (Amin i) x*g(ai i))\partialN)
            by(rule integral-sum'[symmetric]) (use int2 in auto)
            thus ?thesis
            by simp
    qed
    also have ... =K / Suc n
                                    +|(\intx.(\sumi\leqkn. indicat-real (Ami n i) x*g(ai i)) \partialN)
                                    - ((\intx.(\sumi\leqk n. indicat-real (Ami n i) x*gx)\partialN)
                                    + (\int x. indicat-real (space N - (\bigcupi\leqkn. Ami n i)) x
*g x \partialN))
    proof -
            have *:indicat-real (\bigcupi\leqkn.Ami n i) x = (\sumi\leqkn. indicat-real
(Ami n i) x) for x
    by(auto intro!: indicator-UN-disjoint Ami-disj disjoint-family-on-mono[OF
```

```
- Ami-disj[of n]])
    hence ( }\intx.(\sumi\leqkn. indicat-real (Ami n i) x*gx)\partialN
                                    + (\intx. indicat-real (space N-(Ui\leqkn.Amin i)) x*gx\partialN)
                                    =(\intx. indicat-real (\bigcupi\leqkn.Ami n i) x *gx\partialN)
                                    +(\intx. indicat-real (space N - (\bigcupi\leqkn. Ami n i)) x*g x \partialN)
                            by (simp add: sum-distrib-right)
                            also have ... = (\intx. indicat-real (Ui\leqkn.Ami ni) x*gx
                        + indicat-real (space N-(\bigcupi\leqkn.Amin i)) x*gx
\partialN)
            by(rule Bochner-Integration.integral-add[symmetric])
                            (auto intro!: integrable-mult-indicator[where 'b=real,simplified]
intg)
            also have ... = (\intx.g x \partialN)
                        by(auto intro!: Bochner-Integration.integral-cong) (auto simp:
indicator-def)
            finally show ?thesis by simp
            qed
            also have ... =K/Suc n
                                    +|(\sumi\leqkn. \intx. indicat-real (Ami n i) x*g(ai i)}\partialN
                                    - ((\sumi\leqkn. \intx. indicat-real (Ami n i) x*gx\partialN)
                                    + (\intx. indicat-real (space N-(\bigcupi\leqkn.Ami n i)) x
*g x \partialN))|
    proof -
            have *:(\intx. (\sumi\leqkn. indicat-real (Ami n i) x*g(ai i)) \partialN)
                        =(\sumi\leqkn. \intx. indicator (Ami n i) x*g(ai i)\partialN)
            by(rule Bochner-Integration.integral-sum) (use int2 in auto)
            have **: (\intx.(\sumi\leqkn. indicat-real (Ami n i) x*g x)\partialN)
                        =(\sumi\leqkn. \intx. indicat-real (Amini) x*gx\partialN)
            by(rule Bochner-Integration.integral-sum)
                    (auto intro!: integrable-mult-indicator[where 'b=real,simplified]
intg)
            show ?thesis
                        unfolding * ** by simp
            qed
            also have ... = K / Suc n
                            +|(\sumi\leqkn.(\intx. indicat-real (Ami n i) x*g(ai i)\partialN)-(\intx.
indicat-real (Ami n i) x*gx\partialN))
            - (\intx. indicat-real (space N - (\bigcupi\leqkn.Ami n i)) x*gx\partialN)|
            by(simp add: sum-subtractf)
            also have .. \leqK/Suc n
                            +|(\sumi\leqkn.(\intx. indicat-real (Ami n i) x*g(ai i)\partialN)-(\intx.
indicat-real (Ami n i) x*gx\partialN))|
            + |\intx. indicat-real (space N-(\bigcupi\leqkn.Ami n i)) x*gx\partialN|
            by linarith
            also have ... \leqK/Suc n
                    +| |i\leqkn.(\intx.indicat-real (Amin i) x*(g(ai i) - g
x) }\partialN)
                    + |\intx. indicat-real (space N-(\bigcupi\leqkn.Ami n i)) x*g
x \partialN|
```


proof -

have $\left(\sum i \leq k n .\left(\int x\right.\right.$. indicat-real $($ Ami $n i) x * g($ ai i $\left.) \partial N\right)-\left(\int x\right.$. indicat-real (Ami $n i) x * g x \partial N))=\left(\sum i \leq k n\right.$. ($\int x$. indicat-real (Ami ni) $x *$ $g($ ai i) - indicat-real (Ami n i) $x * g x \partial N)$)
by(rule Finite-Cartesian-Product.sum-cong-aux[OF Bochner-Integration.integral-diff [symmetric]])
(auto intro!: integrable-mult-indicator[where ' $b=$ real,simplified] intg int2)
also have $\ldots=\left(\sum i \leq k n .\left(\int x\right.\right.$. indicat-real $($ Ami $n i) x *(g($ ai $i)$
$-g x(\partial N))$
by (simp add: right-diff-distrib)
finally show? ?thesis by simp
qed
also have $\ldots \leq 1 /$ Suc $n * K+r / 2+1 / S u c n * K$
proof -
have $*: \mid \sum i \leq k n .\left(\int x\right.$. indicat-real $(A m i n i) x *(g($ ai $i)-g x)$
$\partial N) \mid \leq r / 2$
proof -
have $\mid \sum i \leq k n$. ($\int x$. indicat-real $($ Ami $n i) x *(g($ ai $\left.i)-g x) \partial N\right) \mid$ $\leq\left(\sum i \leq k n\right.$. $\mid \int x$.indicat-real $(A m i n i) x *(g(a i i)-g x)$
$\partial N \mid)$
by (rule sum-abs)
also have $\ldots \leq\left(\sum i \leq k n\right.$. $\left(\int x . \mid\right.$ indicat-real $(A m i n i) x *(g($ ai $i)$ $-g x) \mid \partial N))$
by (auto intro!: sum-mono)
also have $\ldots=\left(\sum i \leq k n\right.$. $\left(\int x\right.$. indicat-real $($ Ami $n i) x * \mid(g($ ai $i)$
$-g x) \mid \partial N))$
by (auto intro!: Finite-Cartesian-Product.sum-cong-aux Bochner-Integration.integral-cong simp: abs-mult)
also have $\ldots \leq\left(\sum i \leq k n\right.$. ($\int x$. indicat-real $($ Ami $n i) x *(\bigsqcup y \in A m i$ $n i . \mid g($ ai $i)-g y \mid) \partial N))$

```
proof(rule sum-mono[OF integral-mono \(]\) )
    fix \(i x\)
    show indicat-real (Ami n i) \(x * \mid g(\) ai \(i)-g x \mid\)
                            \(\leq\) indicat-real (Ami ni) \(x *(\bigsqcup y \in A m i n i .|g(a i i)-g y|)\)
using gK gK[OF ai-in'[of i]] sets.sets-into-space[OF sets-Ami[of
```

$n i]$]
by (fastforce simp: indicator-def intro!: cSUP-upper bdd-aboveI[where
$M=2 * K])$
qed(auto intro!: integrable-mult-indicator[where 'b=real,simplified]
intg int2)
also have $\ldots \leq\left(\sum i \leq k n\right.$. $\left(\int x\right.$. indicat-real $($ Ami $n i) x$ $*(r / 2 *(1 /(1+$ measure N (space
$N)$)) $\partial N)$)
$\operatorname{proof}($ rule sum-mono $[$ OF integral-mono $])$
fix $i x$
show indicat-real (Amini)x*($\downarrow y \in A m i n i .|g(a i i)-g y|)$
\leq indicat-real (Ami $n i) x *(r / 2 *(1 /(1+$ measure N
$($ space $N))$))
proof -
\{

```
    assume x:x\inAmi n i
    have (\bigsqcupy\inAmi n i. |g(ai i) - gy|)\leqr/2*(1/(1+
measure N(space N)))
                    proof(safe intro!: cSup-le-iff[THEN iffD2])
                        fix y
                            assume y:y\inAmi n i
                            with Ami-subs[of n i] have y mball (ai i) (1/real (Suc n))
                    by auto
                        with \delta(2) n m m2
                        show |g(ai i) - gy|\leqr/2*(1/(1+measure N (space
N)))
                            by fastforce
                            qed(insert x gK gK[OF ai-in'[of i]] sets.sets-into-space[OF
sets-Ami[of n i]],
                            fastforce intro!: bdd-aboveI[where M=2*K])+
        }
        thus ?thesis
                            by(auto simp: indicator-def)
        qed
            qed(auto intro!: integrable-mult-indicator[where 'b=real,simplified]
intg int2)
            also have .. \leq(\sumi\leqkn.measure N (Amini))*(r / 2*(1 / (1
+ measure N(space N))))
            by (simp only: sum-distrib-right) auto
                            also have ... = measure N(\bigcupi\leqkn. (Amin i))*(r / 2 * (1 / (1
+ measure N(space N))))
                            by(auto intro!: N.finite-measure-finite-Union[symmetric] dis-
joint-family-on-mono[OF - Ami-disj[of n]])
    also have \ldots.. \leq(r / 2) *(measure N (space N)*(1/(1+measure
N(space N))))
    using r measure-nonneg N.bounded-measure
    by(auto simp del: times-divide-eq-left times-divide-eq-right intro!:
mult-right-mono)
            also have ... \leqr / 2
            by(intro mult-left-le) (auto simp: divide-le-eq-1 intro!: add-pos-nonneg)
                finally show ?thesis.
            qed
                            have **: |\int x. indicat-real (space N-(\bigcupi\leqkn. Ami n i)) x*g x
\partialN|}\leq1/Sucn*
    proof -
                        have |\intx. indicat-real (space N-(\bigcupi\leqkn. Ami n i)) x*gx\partialN|
                        \leq (\intx. |indicat-real (space N-(\bigcupi\leqkn.Ami n i)) x*gx|
by \(\operatorname{simp}\)
also have \(\ldots=\left(\int x\right.\). indicat-real \((\) space \(N-(\bigcup i \leq k n\). Ami \(n i)) x\)
* |g x| \partialN)
            by(auto intro!: Bochner-Integration.integral-cong simp: abs-mult)
            also have ... \leq (\intx. indicat-real (space N-(\bigcupi\leqkn. Ami n i)) x
* K \partialN)
```

```
intg int2
                                    simp: ordered-semiring-class.mult-left-mono)
            also have \(\ldots=\) measure \(N(\) space \(N-(\bigcup i \leq k n\). Ami \(n i)) * K\)
                        by simp
            also have \(\ldots=(\) measure \(N(\) space \(N)-\) measure \(N(\bigcup j \leq k n\). mball
\((\) ai \(j)(1 / \operatorname{real}(\) Suc \(n)))) * K\)
                            unfolding Ami-un by (simp add: N.finite-measure-compl)
                    also have \(\ldots \leq 1 /\) Suc \(n * K\)
                                    by (metis \(k[\) of \(n] K\)-nonneg less-eq-real-def mult.commute
mult-left-mono)
            finally show ?thesis .
            qed
            show ?thesis
                            using \(* * *\) by auto
                    qed
                    also have \(\ldots=2 * K / S u c n+r / 2\)
                    by \(\operatorname{simp}\)
                    also have \(\ldots \leq 2 * K /\) Suc \(m+r / 2\)
                    using \(K\)-nonneg by (simp add: \(\langle m \leq n\rangle\) frac-le)
                    also have \(\ldots \leq 2 * K / S u c m 1+r / 2\)
                    using \(K\)-nonneg divide-inverse \(m(1)\) mult-left-mono by fastforce
                    also have \(\ldots<r\)
                    using \(m 1\) by auto
                    finally show ?thesis.
                qed
            qed
                qed
            qed (use \(N i D\) sep in auto)
        qed
    qed
qed
lemma separable-LPm:
    assumes separable-space mtopology
    shows separable-space LPm.mtopology
proof (cases \(M=\{ \}\) )
    case True
    from \(M\)-empty- \(P[O F\) this] show ?thesis
        by (intro countable-space-separable-space) auto
next
    case \(M\)-ne:False
    then obtain \(a i::\) nat \(\Rightarrow{ }^{\prime} a\) where ai:mdense (range ai)
        using assms mdense-empty-iff uncountable-def unfolding separable-space-def2
by blast
    have countable \((((\lambda(k, b i)\). sum-measure (borel-of mtopology) \(\{. . k\}\)
                                    ( \(\lambda\) i. scale-measure (ennreal (bi i)) (return (borel-of
mtopology) (ai i))))
```

thus ?thesis
using LPm-countable-base[OF ai] by (auto simp: separable-space-def2)
qed
lemma closedin-bounded-measures:
closedin LPm.mtopology $\{N$. sets $N=$ sets (borel-of mtopology) $\wedge N($ space $N)$ \leq ennreal $r\}$
unfolding LPm.metric-closedin-iff-sequentially-closed
proof (intro allI conjI uncurry impI)
show 1: $\{N$. sets $N=$ sets (borel-of mtopology) \wedge emeasure $N($ space $N) \leq$ ennreal $r\} \subseteq \mathcal{P}$
by(auto intro!: inP-I finite-measureI simp: top.extremum-unique)
fix $N i N$
assume h:range $N i \subseteq\{N$. sets $N=$ sets (borel-of mtopology) \wedge emeasure N $($ space $N) \leq$ ennreal $r\}$
limitin LPm.mtopology Ni N sequentially
then have sets-Ni: $\bigwedge i$. sets $(N i i)=$ sets (borel-of mtopology)
and Nir: $\wedge i$. Ni $i($ space $(N i i)) \leq$ ennreal r
by auto
interpret N : finite-measure N
using limitin-topspace[OF h(2)] unfolding LPm.topspace-mtopology by (simp add: \mathcal{P}-def)
interpret $N i$: finite-measure $N i$ i for i
using 1 h by (auto dest: inP-D)
have mweak-conv Ni N sequentially
using $h 1$ sets-Ni Nir by(auto intro!: converge-imp-mweak-conv)
hence Λf. continuous-map mtopology euclideanreal f

$$
\Longrightarrow(\exists B . \forall x \in M .|f x| \leq B) \Longrightarrow\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x\right.
$$

$\partial N)$
by (simp add: mweak-conv-def)
from this[of λx. 1] have (λ i. measure (Ni i) (space (Ni i))) \longrightarrow measure N (space N)
by auto
hence $(\lambda i . N i i($ space $(N i i))) \longrightarrow N($ space $N)$
by (simp add: N.emeasure-eq-measure Ni.emeasure-eq-measure)
from tendsto-upperbound [OF this,of ennreal r]
show $N \in\{N$. sets $N=$ sets (borel-of mtopology) \wedge emeasure $N($ space $N) \leq$ ennreal $r\}$
using limitin-topspace[OF h(2)] Nir unfolding LPm.topspace-mtopology
by (auto simp: \mathcal{P}-def)
qed
lemma closedin-subprobs:
closedin LPm.mtopology $\{N$. subprob-space $N \wedge$ sets $N=$ sets (borel-of mtopology) $\}$
unfolding LPm.metric-closedin-iff-sequentially-closed
proof (intro allI conjI uncurry impI)
show $1:\{N$. subprob-space $N \wedge$ sets $N=$ sets (borel-of mtopology) $\} \subseteq \mathcal{P}$
by (auto intro!: inP-I simp: top.extremum-unique subprob-space-def)
fix $N i N$
assume h :range $N i \subseteq\{N$. subprob-space $N \wedge$ sets $N=$ sets (borel-of mtopology) $\}$ limitin LPm.mtopology Ni N sequentially
then have sets-Ni: $\bigwedge i$. sets $(N i i)=$ sets (borel-of mtopology) and $N i: \bigwedge i$. sub-prob-space (Ni i)
by auto
have sets N :sets $N=$ sets (borel-of mtopology)
using limitin-topspace[OF h(2)] unfolding LPm.topspace-mtopology by (auto dest: inP-D)
interpret N : finite-measure N
using limitin-topspace[OF h(2)] unfolding LPm.topspace-mtopology by (simp add: $\mathcal{P}-$ def)
interpret Ni: subprob-space Ni i for i
by fact
have mweak-conv Ni N sequentially
using $h 1$ sets-Ni Ni by (auto intro!: converge-imp-mweak-conv)
hence $\wedge f$. continuous-map mtopology euclideanreal $f \Longrightarrow(\exists B . \forall x \in M .|f x| \leq$ B)

$$
\Longrightarrow\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)
$$

by (simp add: mweak-conv-def)
from this[of λx. 1] have $(\lambda i$. measure $(N i i)($ space $(N i i))) \longrightarrow$ measure N (space N)
by auto
hence $(\lambda i$. Ni i $($ space $(N i i))) \longrightarrow N($ space $N)$
by (simp add: N.emeasure-eq-measure Ni.emeasure-eq-measure)
from tendsto-upperbound[OF this,of 1]
have emeasure $N($ space $N) \leq 1$
using Ni.subprob-emeasure-le-1 by force
moreover have space $N \neq\{ \}$
using sets-eq-imp-space-eq[OF setsN] sets-eq-imp-space-eq[OF sets-Ni[of 0]]
using Ni.subprob-not-empty by fastforce
ultimately show $N \in\{N$. subprob-space $N \wedge$ sets $N=$ sets (borel-of mtopology) $\}$ using limitin-topspace $[$ OF $h(2)]$ unfolding LPm.topspace-mtopology by (auto intro!: subprob-spaceI setsN)
qed
lemma closedin-probs: closedin LPm.mtopology $\{N$. prob-space $N \wedge$ sets $N=$ sets (borel-of mtopology)\}
unfolding LPm.metric-closedin-iff-sequentially-closed
proof (intro allI conjI uncurry impI)
show $1:\{N$. prob-space $N \wedge$ sets $N=$ sets (borel-of mtopology) $\} \subseteq \mathcal{P}$
by (auto intro!: inP-I simp: top.extremum-unique prob-space-def)
fix $N i N$
assume $h:$ range $N i \subseteq\{N$. prob-space $N \wedge$ sets $N=$ sets (borel-of mtopology) $\}$ limitin LPm.mtopology Ni N sequentially
then have sets-Ni: $\bigwedge i$. sets $(N i i)=$ sets (borel-of mtopology) and Ni: $\bigwedge i$. prob-space (Ni i)
by auto
have sets N :sets $N=$ sets (borel-of mtopology)
using limitin-topspace[OF h(2)] unfolding LPm.topspace-mtopology by (auto dest: inP-D)
interpret N : finite-measure N
using limitin-topspace[OF h(2)] unfolding LPm.topspace-mtopology by (simp $a d d: \mathcal{P}-d e f)$
interpret $N i$: prob-space Ni i for i
by fact
have mweak-conv Ni N sequentially
using $h 1$ sets-Ni Ni by (auto intro!: converge-imp-mweak-conv)
hence $\bigwedge f$. continuous-map mtopology euclideanreal $f \Longrightarrow(\exists B . \forall x \in M .|f x| \leq$ B)

$$
\Longrightarrow\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)
$$

by (simp add: mweak-conv-def)
from this[of λx. 1] have (λ i. measure (Ni i) (space (Ni i))) \longrightarrow measure N (space N)
by auto
hence prob-space N
by (simp add: Ni.prob-space LIMSEQ-const-iff N.emeasure-eq-measure prob-spaceI)
thus $N \in\{N$. prob-space $N \wedge$ sets $N=$ sets (borel-of mtopology) $\}$
using limitin-topspace[OF h(2)] unfolding LPm.topspace-mtopology
by(auto intro!: sets N)
qed

4.4 The Lévy-Prokhorov Metric and Topology of Weak Convegence

lemma weak-conv-topology-le-LPm-topology:
assumesopenin (weak-conv-topology mtopology) S
shows openin LPm.mtopology S
$\operatorname{proof}($ rule weak-conv-topology-minimal $[O F-$-assms $])$
fix $f B$
assume f : continuous-map mtopology euclideanreal f and $B: \wedge x . x \in$ topspace
mtopology $\Longrightarrow|f x| \leq B$
show continuous-map LPm.mtopology euclideanreal $\left(\lambda N . \int x . f x \partial N\right)$
unfolding continuous-map-iff-limit-seq[OF LPm.first-countable-mtopology]
proof safe
fix $N i N$
assume limitin LPm.mtopology Ni N sequentially
then have $h^{\prime}:$ weak-conv-on Ni N sequentially mtopology
by (simp add: mtopology-of-def converge-imp-mweak-conv)
thus limitin euclideanreal ($\left.\lambda n . \int x . f x \partial N i n\right)\left(\int x . f x \partial N\right)$ sequentially using $f B$ by (fastforce simp: mweak-conv-seq-def)
qed
qed(unfold LPm.topspace-mtopology, simp add: \mathcal{P}-def)
lemma LPmtopology-eq-weak-conv-topology:
assumes separable-space mtopology

```
    shows LPm.mtopology = weak-conv-topology mtopology
    by(auto intro!: topology-eq-filter inP-I simp: conv-iff-mweak-conv[OF assms] inP-D)
end
corollary
    assumes metrizable-space X separable-space X
    shows metrizable-weak-conv-topology:metrizable-space (weak-conv-topology X)
    and separable-weak-conv-topology:separable-space (weak-conv-topology X)
proof -
    obtain d where d:Metric-space (topspace X) d Metric-space.mtopology (topspace
X) d=X
    by (metis Metric-space.topspace-mtopology assms(1) metrizable-space-def)
    then interpret Levy-Prokhorov topspace X d
    by(auto simp: Levy-Prokhorov-def)
    show g1:metrizable-space (weak-conv-topology X)
    using assms(2)d(2) LPm.metrizable-space-mtopology LPmtopology-eq-weak-conv-topology
by simp
    show g2:separable-space (weak-conv-topology X)
    using assms(2) d(2) LPmtopology-eq-weak-conv-topology separable-LPm by
simp
qed
end
```


5 Prokhorov's Theorem

theory Prokhorov-Theorem
imports Levy-Prokhorov-Distance
Alaoglu-Theorem
begin

```
5.1 Prokhorov's Theorem
context Levy-Prokhorov
begin
lemma relatively-compact-imp-tight-LP:
    assumes }\Gamma\subseteq\mathcal{P}\mathrm{ separable-space mtopology mcomplete
        and compactin LPm.mtopology (LPm.mtopology closure-of \Gamma)
    shows tight-on-set mtopology \Gamma
proof(cases M={})
    case True
    then have }\Gamma={}\vee\Gamma={null-measure (borel-of mtopology)
        using assms(1) M-empty-P' by auto
    thus ?thesis
        by(auto simp: tight-on-set-def intro!: finite-measureI)
next
    case M-ne:False
```

have 1: $\exists k . \forall N \in \Gamma$. measure $N(\bigcup m \leq k$. Ui $m)>$ measure $N M-e$
if Ui: $\bigwedge i::$ nat. openin mtopology $(U i i)(\bigcup i$. Ui $i)=M$ and $e: e>0$ for $U i$ e proof (rule ccontr)
assume $\nexists k . \forall N \in \Gamma$. measure $N(\bigcup m \leq k$. Ui $m)>$ measure $N M-e$
then have $h: \forall k . \exists N \in \Gamma$. measure $N(\bigcup m \leq k$. Ui m) \leq measure $N M-e$ by (auto simp: linorder-class.not-less)
then obtain $N k$ where $N k: \wedge k . N k k \in \Gamma \wedge k$. measure ($N k k$) $(\bigcup m \leq k$. Ui $m) \leq$ measure $(N k k) M-e$ by metis
obtain $N r$ where $N r: N \in L P m$.mtopology closure-of Γ strict-mono r limitin LPm.mtopology ($N k \circ r$) N sequentially
using $\operatorname{assms}(1,4) N k(1)$ closure-of-subset[of Γ LPm.mtopology] by (simp add: LPm.compactin-sequentially) (metis image-subset-iff subsetD)
then interpret mweak-conv-fin $M d \lambda i . N k$ ($r i$) N sequentially
using assms(1) Nk(1) closure-of-subset-topspace[of LPm.mtopology]
by (auto intro!: inP-mweak-conv-fin-all)
have sets- $N k[$ measurable-cong,simp]: $\backslash i$. sets $(N k(r i))=$ sets (borel-of mtopology)
using $N k$ (1) assms(1) inP-D(2) by blast
have wc: mweak-conv-seq (λi. $N k(r i)) N$
using converge-imp-mweak-conv[OF $N r(3)] \operatorname{Nk}(1)$ assms(1) by (auto simp:
comp-def)
interpret $N k$: finite-measure $N k k$ for k
using $N k$ (1) assms(1) inP-D by blast
interpret N : finite-measure N
using finite-measure $-N$ by blast
have 1:measure $N(\bigcup i \leq n$. Ui $i) \leq$ measure $N M-e$ for n
proof -
have measure $N(\bigcup i \leq n$. Ui $i) \leq \liminf (\lambda j$. measure $(N k(r j))(\bigcup i \leq n$. Ui i))
using Ui by (auto intro!: conjunct2[OF mweak-conv-eq3[THEN iffD1,OF $w c]$, rule-format $]$)
also have $\ldots \leq \liminf (\lambda j$. measure $(N k(r j))(\bigcup i \leq r j$. Ui $i))$
by(rule Liminf-mono)
(auto intro!: Ui(1) exI[where $x=n]$ Nk.finite-measure-mono[OF UN-mono] le-trans $[O F$ - strict-mono-imp-increasing $[$ OF $\operatorname{Nr}($ (2) $]]$ borel-of-open simp: eventually-sequentially sets- N)
also have $\ldots \leq \liminf (\lambda j$. measure $(N k(r j)) M+\operatorname{ereal}(-e))$
using $N k$ by(auto intro!: Liminf-mono eventuallyI)
also have $\ldots \leq \liminf (\lambda j$. measure $(N k(r j)) M)+\limsup (\lambda i .-e)$
by (rule ereal-liminf-limsup-add)
also have $\ldots=\liminf (\lambda j$. measure $(N k(r j)) M)+\operatorname{ereal}(-e)$ using Limsup-const[of sequentially - e] by simp
also have $\ldots=$ measure $N M+\operatorname{ereal}(-e)$
proof -
have $(\lambda k$. measure $(N k(r k)) M) \longrightarrow$ measure $N M$
using wc mweak-conv-eq2 by fastforce
from $\operatorname{limI}[$ OF tendsto-ereal $[$ OF this $]]$ convergent-liminf-cl $[$ OF convergentI[OF tendsto-ereal[OF this]]]

```
            show ?thesis by simp
            qed
            finally show ?thesis
        by simp
    qed
    have 2:(\lambdan. measure N(\bigcupi\leqn. Ui i))\longrightarrow measure N M
    proof -
            have (\lambdan. measure N(\bigcupi\leqn. Ui i))\longrightarrow measure N(U (range ( }\lambdan\mathrm{ .
\i\leqn.Ui i)))
                by(fastforce intro!: Ui(1) N.finite-Lim-measure-incseq borel-of-open inc-
seq-SucI simp: sets-N)
    moreover have U(range (\lambdan. \bigcupi\leqn. Ui i))=M
            using Ui(2) by blast
    ultimately show ?thesis
            by simp
    qed
    show False
        using e Lim-bounded[OF 2,of 0 measure NM-e] 1 by auto
qed
show ?thesis
    unfolding tight-on-set-def
proof safe
    fix e :: real
    assume e: 0 < e
    obtain }U\mathrm{ where }U\mathrm{ : countable }U\mathrm{ mdense }
        using assms(2) separable-space-def2 by blast
    let ?an = from-nat-into U
    have an: \n. ?an n \in M mdense (range ?an)
        by (metis M-ne U(2) from-nat-into mdense-def2 mdense-empty-iff subsetD)
            (metis M-ne U(1) U(2) mdense-empty-iff range-from-nat-into)
    have \existsk.\forallN\in\Gamma. measure N(Un\leqk. mball (?an n) (1 / Suc m)) > measure
NM-(e/2)* (1/2) ^Suc m for m
        by(rule 1) (use mdense-balls-cover[OF an(2)] e in auto)
    then obtain k where k:
        \ m N . N \in \Gamma \Longrightarrow ~ m e a s u r e ~ N ( \bigcup n \leq k ~ m . ~ m b a l l ~ ( ? a n ~ n ) ~ ( 1 ~ / ~ S u c ~ m ) ) \gg
measure NM-(e/2)*(1/2) ^Suc m
        by metis
    let ?K =\bigcapm. (\bigcup i\leqkm.mcball (?an i) (1 / Suc m))
    show }\existsK.compactin mtopology K ^(\forallM\in\Gamma. measure M (space M - K)<e
    proof(safe intro!: exI[where }x=\mathrm{ ? K] )
    have closedin mtopology ?K
        by(auto intro!: closedin-Union)
    moreover have ?K\subseteqM
        by auto
    moreover have mtotally-bounded ?K
        unfolding mtotally-bounded-def2
    proof safe
        fix e :: real
        assume e:0<e
```

```
    then obtain \(m\) where \(m: e>1 /\) Suc \(m\)
        using nat-approx-posE by blast
    have ? \(K \subseteq(\bigcup i \leq k m\). mcball \((\) ?an \(i)(1 / \operatorname{real}(S u c m)))\)
        by auto
    also have \(\ldots \subseteq(\bigcup x \in\) ? an ' \(\{. . k m\}\). mball \(x e)\)
        using mcball-subset-mball-concentric \([O F m]\) by blast
    finally show \(\exists K\). finite \(K \wedge K \subseteq M \wedge ? K \subseteq(\bigcup x \in K\). mball \(x\) e)
        using an(1) by(fastforce intro!: exI[where \(x=\) ? an' \(\{. . k m\}]\) )
    qed
    ultimately show compactin mtopology ? \(K\)
    using mtotally-bounded-eq-compact-closedin[OF assms(3)] by auto
next
    fix \(N\)
    assume \(N: N \in \Gamma\)
    then interpret \(N\) : finite-measure \(N\)
        using assms(1) inP-D by blast
    have sets- \(N\) : sets \(N=\) sets (borel-of mtopology)
        using \(N\) assms(1) by (auto simp: \(\mathcal{P}\)-def)
    hence space- \(N\) : space \(N=M\)
        by (auto cong: sets-eq-imp-space-eq simp: space-borel-of)
    have [measurable]: \(\bigwedge a b\). mcball \(a b \in\) sets \(N M \in\) sets \(N\)
        by (auto simp: sets- \(N\) intro!: borel-of-closed)
    have \(N e\) :measure \(N(M-(\bigcup i \leq k\) m. mcball \((\) ?an \(i)(1 / \operatorname{real}(\) Suc \(m))))<\)
\((e / 2) *(1 / 2)^{\wedge}\) Suc \(m\) for \(m\)
    proof -
    have measure \(N(M-(\bigcup i \leq k m\). mcball (?an \(i)(1 / \operatorname{real}(S u c ~ m))))\)
                \(=\) measure \(N M-\) measure \(N(\bigcup i \leq k\) m. mcball (?an i) (1 / real (Suc
m) ))
            by (auto simp: \(N\).finite-measure-compl[simplified space- \(N]\) )
        also have \(\ldots \leq\) measure \(N M-\) measure \(N(\bigcup i \leq k\) m. mball (?an i) (1 /
real (Suc m)))
            by (fastforce intro!: N.finite-measure-mono)
            also have \(\ldots<(e / 2) *(1 / 2) へ\) Suc \(m\)
            using \(k[\) OF \(N\), of \(m]\) by simp
        finally show ?thesis .
    qed
    have Ne-sum: summable \((\lambda m .(e / 2) *(1 / 2) \wedge\) Suc m)
        by auto
    have sum2: summable ( \(\lambda\) m. measure \(N(M-(\bigcup i \leq k m\). mcball (from-nat-into
\(U\) i) \((1 / \operatorname{real}(S u c m)))))\)
    using \(N e\) by (auto intro!: summable-comparison-test-ev[OF - Ne-sum] even-
tuallyI) (use less-eq-real-def in blast)
    show measure \(N(\) space \(N-? K)<e\)
    proof -
        have measure \(N(\) space \(N-\) ? \(K)=\) measure \(N(\bigcup m .(M-(\bigcup i \leq k m\).
mcball (?an i) (1 / Suc m) ) )
            by (auto simp: space- \(N\) )
    also have \(\ldots \leq\left(\sum m\right.\). measure \(N(M-(\bigcup i \leq k m\). mcball (?an i) (1 / Suc
\(m)\) ))
```

```
                    by(rule N.finite-measure-subadditive-countably)(use sum2 in auto)
            also have ... \leq (\summ. (e/2)*(1/2)^Suc m)
                by(rule suminf-le) (use Ne less-eq-real-def sum2 in auto)
            also have ... = (e/2)*(\summ. (1 / 2) ^Suc m)
                by(rule suminf-mult) auto
            also have ... =e / 2
                    using power-half-series sums-unique by fastforce
            also have ...<e
            using e by simp
            finally show ?thesis.
        qed
    qed
    qed(use assms inP-D in auto)
qed
lemma mcompact-imp-LPmcompact:
    assumes compact-space mtopology
    shows compactin LPm.mtopology {N. sets N = sets (borel-of mtopology) }\wedge
(space N)\leqennreal r}
    (is compactin - ?N)
proof -
    consider M = {} |r<0| r\geq0M\not={}
    by linarith
    then show ?thesis
    proof cases
    assume M={}
    then have finite (topspace LPm.mtopology)
        unfolding LPm.topspace-mtopology using M-empty-P by fastforce
    thus ?thesis
            using closedin-bounded-measures closedin-compact-space compact-space-def
finite-imp-compactin-eq by blast
    next
    assume r<0
    then have ?N = {null-measure (borel-of mtopology)}
            using emeasure-eq-0[OF - - sets.sets-into-space]
            by(safe,intro measure-eqI) (auto simp: ennreal-lt-0)
            thus ?thesis
                by(auto intro!: inP-I finite-measureI)
    next
    assume M-ne:M\not={} and r:r\geq0
    hence [simp]: mtopology }\not=\mathrm{ trivial-topology
            using topspace-mtopology by force
            define Cb where Cb\equivcfunspace mtopology (euclidean-metric :: real metric)
    define Cb' where Cb'\equiv powertop-real (mspace (cfunspace mtopology (euclidean-metric
:: real metric)))
    define B where
    B\equiv{\varphi\intopspace Cb'.}.\varphi(\lambdax\intopspace mtopology. 1) \leqr^ positive-linear-functional-on-CX
mtopology \varphi}
    define T :: 'a measure }=>\mathrm{ ('a }=>\mathrm{ real) }=>\mathrm{ real
```

where $T \equiv \lambda N . \lambda f \in$ mspace (cfunspace mtopology euclidean-metric). $\int x . f x$ ∂N
have compact: compactin $C b^{\prime} B$
unfolding B-def $C b^{\prime}$-def by(rule Alaoglu-theorem-real-functional[OF assms(1)]) (use M-ne in simp)
have metrizable: metrizable-space (subtopology $\mathrm{Cb}^{\prime} \mathrm{B}$)
unfolding B-def $C b^{\prime}$-def $\mathbf{b y}($ rule metrizable-functional[OF assms metriz-able-space-mtopology])
have homeo: homeomorphic-map (subtopology LPm.mtopology ?N) (subtopology $\left.\mathrm{Cb}^{\prime} \mathrm{B}\right) \mathrm{T}$
proof -
have T-cont': continuous-map (subtopology LPm.mtopology ?N) $C b^{\prime} T$
unfolding continuous-map-atin
proof safe
fix N
assume $N: N \in$ topspace (subtopology LPm.mtopology ? N)
show limitin $C b^{\prime} T(T N)($ atin (subtopology LPm.mtopology ? N) $N)$
unfolding $C b^{\prime}$-def limitin-componentwise
proof safe
fix $g::{ }^{\prime} a \Rightarrow$ real
assume $g: g \in$ mspace (cfunspace mtopology euclidean-metric)
then have g-bounded $: \exists B . \forall x \in M .|g x| \leq B$
by (auto simp: bounded-pos-less order-less-le)
show limitin euclideanreal ($\lambda c . T c g)(T N g)$ (atin (subtopology LPm.mtopology ? N) N)
unfolding limitin-canonical-iff
proof
fix e :: real
assume $e: 0<e$
have $N-i n: N \in ? N$
using N by simp
show $\forall_{F} c$ in atin (subtopology LPm.mtopology ? N) N. dist $(T c g)(T$
$N g)<e$
unfolding atin-subtopology-within[OF N-in]
proof (safe intro!: eventually-within-imp[THEN iffD2, OF LPm.eventually-atin-sequentially $[$ THEN iffD2]])
fix $N i$
assume Ni:range $N i \subseteq \mathcal{P}-\{N\}$ limitin LPm.mtopology Ni N sequentially with N interpret mweak-conv-fin Md Ni N sequentially
by (auto intro!: inP-mweak-conv-fin-all)
have wc:mweak-conv-seq Ni N
using $N i$ by (auto intro!: converge-imp-mweak-conv)
hence 1: $(\lambda n . T(N i n) g) \longrightarrow T N g$
unfolding T-def by(auto simp: g mweak-conv-def g-bounded)
show $\forall_{F} n$ in sequentially. Ni $n \in ? N \longrightarrow \operatorname{dist}(T(N i n) g)(T N g)$
$<e$
by (rule eventually-mp[OF - 1 [simplified tendsto-iff,rule-format, $O F$
e]]) simp
qed

```
            qed
        qed(auto simp:T-def)
    qed
    have T-cont: continuous-map (subtopology LPm.mtopology ?N) (subtopology
Cb' B)T
    unfolding continuous-map-in-subtopology
    proof
        show T' topspace (subtopology LPm.mtopology ?N) \subseteqB
        unfolding B-def Cb'-def
    proof safe
        fix N
        assume N:N \in topspace (subtopology LPm.mtopology ?N)
    then have finite-measure N and sets-N:sets N= sets (borel-of mtopology)
                and space-N:space N=M and N-r:emeasure N (space N) \leqennreal r
                by(auto intro!: inP-D)
    hence N-r':measure N (space N)\leqr
        by (simp add: finite-measure.emeasure-eq-measure r)
    interpret N: finite-measure N
            by fact
            have TN-def:TN(\lambdax\intopspace mtopology. f x ) = (\int x.fx \partialN) TN
(\lambdax\inM.fx)=(\intx.fx\partialN)
            if f:continuous-map mtopology euclideanreal f for f
                    using f Bochner-Integration.integral-cong[OF refl,of N \lambdax\inM. fx
f,simplified space-N]
            compact-imp-bounded[OF compactin-euclidean-iff[THEN iffD1,
                        OF image-compactin[OF assms[simplified compact-space-def] f]]]
            by(auto simp:T-def)
            have N-integrable[simp]: integrable Nf if f:continuous-map mtopology
euclideanreal f for f
            using compact-imp-bounded[OF compactin-euclidean-iff[THEN iffD1,OF
image-compactin[OF
                assms[simplified compact-space-def] f]]] continuous-map-measurable[OF
f]
            by(auto intro!: N.integrable-const-bound AE-I2[of N]
                        simp: bounded-iff measurable-cong-sets[OF sets-N] borel-of-euclidean
space-N)
show \(T N(\lambda x \in\) topspace mtopology. 1\() \leq r\)
            unfolding TN-def[OF continuous-map-canonical-const]
            using N-r' by simp
            show positive-linear-functional-on-CX mtopology (T N)
            unfolding positive-linear-functional-on-CX-compact[OF assms]
    proof safe
            fix fc
            assume f}\mathrm{ : continuous-map mtopology euclideanreal f
            show TN(\lambdax\intopspace mtopology. c*fx)=c*TN(\lambdax\intopspace
mtopology. fx)
    using f continuous-map-real-mult-left[OF f,of c] by(auto simp:TN-def)
    next
```

fix $f g$
assume fg: continuous-map mtopology euclideanreal f
continuous-map mtopology euclideanreal g
show $T N(\lambda x \in$ topspace mtopology. $f x+g x)$
$=T N(\lambda x \in$ topspace mtopology. $f x)+T N(\lambda x \in$ topspace mtopology.
using fg continuous-map-add[OF fg]
by (auto simp: TN-def intro!: Bochner-Integration.integral-add) next
fix f
assume continuous-map mtopology euclideanreal $f \forall x \in$ topspace mtopology. $0 \leq f x$
then show $0 \leq T N(\lambda x \in$ topspace mtopology. $f x)$
by (auto simp: TN-def space- N intro!: Bochner-Integration.integral-nonneg) qed
show $T N \in$ topspace (powertop-real (mspace (cfunspace mtopology euclidean-metric)))
by (auto simp: T-def)
qed
qed fact
define T-inv :: (('a \Rightarrow real $) \Rightarrow$ real $) \Rightarrow{ }^{\prime}$ a measure where
T-inv $\equiv(\lambda \varphi$. THE N. sets $N=$ sets (borel-of mtopology) \wedge finite-measure
$N \wedge$
($\forall f$. continuous-map mtopology euclideanreal f
$\longrightarrow \varphi($ restrict $f($ topspace mtopology $))=$ integral $\left.\left.^{L} N f\right)\right)$
have T-T-inv: $\forall N \in$ topspace (subtopology LPm.mtopology ?N). T-inv (TN) $=N$
proof safe
fix N
assume $N: N \in$ topspace (subtopology LPm.mtopology ? N)
from Pi-mem[OF continuous-map-funspace[OF T-cont] this]
have $T N: T N \in$ topspace (subtopology $\mathrm{Cb}^{\prime} \mathrm{B}$)
by blast
hence $\exists!N^{\prime}$. sets $N^{\prime}=$ sets (borel-of mtopology) \wedge finite-measure $N^{\prime} \wedge$
($\forall f$. continuous-map mtopology euclideanreal f
$\longrightarrow T N($ restrict $f($ topspace mtopology $))=$ integral $\left.^{L} N^{\prime} f\right)$
by (intro Riesz-representation-real-compact-metrizable[OF assms metriz-able-space-mtopology])
(auto simp del: topspace-mtopology restrict-apply simp: B-def)
moreover have sets $N=$ sets (borel-of mtopology) \wedge finite-measure $N \wedge$
($\forall f$. continuous-map mtopology euclideanreal f
$\longrightarrow T N($ restrict $f($ topspace mtopology $))=$ integral $\left.^{L} N f\right)$
using compact-imp-bounded[OF compactin-euclidean-iff[THEN iffD1,OF image-compactin $[O F$
assms[simplified compact-space-def] -]]] N
by (auto simp: T-def dest:inP-D cong: Bochner-Integration.integral-cong)
ultimately show $T-i n v(T N)=N$
unfolding T-inv-def $\mathbf{b y}$ (rule the1-equality)
qed

```
    have \(T\)-inv-T: \(\forall \varphi \in\) topspace (subtopology \(\left.C b^{\prime} B\right) . T(T\)-inv \(\varphi)=\varphi\)
```

 proof safe
 fix \(\varphi\)
 assume \(\varphi: \varphi \in\) topspace (subtopology \(C b^{\prime} B\))
 hence \(1: \exists!N^{\prime}\). sets \(N^{\prime}=\) sets (borel-of mtopology) \(\wedge\) finite-measure \(N^{\prime} \wedge\)
 (\(\forall f\). continuous-map mtopology euclideanreal \(f\)
 \(\longrightarrow \varphi(\) restrict \(f(\) topspace mtopology \())=\) integral \(\left.^{L} N^{\prime} f\right)\)
 by (intro Riesz-representation-real-compact-metrizable [OF assms metriz-
 able-space-mtopology])
(auto simp del: topspace-mtopology restrict-apply simp add: B-def)
have T-inv- φ :sets $(T$-inv $\varphi)=$ sets (borel-of mtopology) finite-measure (T-inv
$\varphi)$
$\bigwedge f$. continuous-map mtopology euclideanreal f
$\Longrightarrow \varphi(\lambda x \in$ topspace mtopology. $f x)=$ integral $^{L}(T$-inv $\varphi) f$
unfolding T-inv-def by(use theI ${ }^{\prime}\left[\begin{array}{ll}\text { OF 1] } & \text { in blast) }+ \\ \hline\end{array}\right.$
show $T(T$-inv $\varphi)=\varphi$
proof
fix f
consider $f \in$ mspace $C b \mid f \notin$ mspace $C b$
by fastforce
then show $T(T-i n v \varphi) f=\varphi f$
proof cases
case 1
then have $T(T$-inv $\varphi) f=$ integral $^{L}(T$-inv $\varphi) f$
by (auto simp: T-def $C b$-def)
also have $\ldots=\varphi(\lambda x \in$ topspace mtopology. $f x)$
by(rule T-inv- $\varphi(3)[$ symmetric]) (use 1 Cb-def in auto)
also have $\ldots=\varphi f$
proof -
have 2: $(\lambda x \in$ topspace mtopology. $f x)=f$
using 1 by (auto simp: extensional-def Cb-def)
show ?thesis
unfolding 2 by blast
qed
finally show ?thesis .
next
case 2
then have $T(T$-inv $\varphi) f=$ undefined
by (auto simp: Cb-def T-def)
also have $\ldots=\varphi f$
using $2 \varphi C b^{\prime}$-def $C b$-def PiE-arb by auto
finally show ?thesis.
qed
qed
qed
have T-inv-cont: continuous-map (subtopology $C b^{\prime} B$) (subtopology LPm.mtopology
?N) $T-i n v$
unfolding seq-continuous-iff-continuous-first-countable[OF metrizable-imp-first-countable[OF
metrizable],symmetric] seq-continuous-map
proof safe
fix $\varphi n \varphi$
assume limitin (subtopology $\left.C b^{\prime} B\right) \varphi n \varphi$ sequentially
then have $\varphi B: \varphi \in B$ and h:limitin $C b^{\prime} \varphi n \varphi$ sequentially $\forall_{F} n$ in sequentially. $\varphi n n \in B$
by (auto simp: limitin-subtopology)
then obtain $n 0$ where $n 0: \bigwedge n . n \geq n 0 \Longrightarrow \varphi n n \in B$
by (auto simp: eventually-sequentially)
have limit: $\Lambda f . f \in$ mspace (cfunspace mtopology euclidean-metric) $\Longrightarrow(\lambda n$. $\varphi n n f) \longrightarrow \varphi f$
using $h(1)$ by (auto simp: limitin-componentwise $C b^{\prime}$-def)
show limitin (subtopology LPm.mtopology ? N) $(\lambda n$. T-inv $(\varphi n n))(T-i n v$ φ) sequentially
proof (rule limitin-sequentially-offset-rev $[$ where $k=n 0]$)
from φB have $\exists!N$. sets $N=$ sets (borel-of mtopology) \wedge finite-measure $N \wedge$
($\forall f$. continuous-map mtopology euclideanreal f
$\longrightarrow \varphi($ restrict $f($ topspace mtopology $))=$ integral $\left.^{L} N f\right)$
by (intro Riesz-representation-real-compact-metrizable $[O F$ assms metriz-able-space-mtopology])
(auto simp del: topspace-mtopology restrict-apply simp: B-def)
hence sets $(T-i n v \varphi)=$ sets (borel-of mtopology) \wedge finite-measure $(T$-inv $\varphi) \wedge$
($\forall f$. continuous-map mtopology euclideanreal f
$\longrightarrow \varphi($ restrict $f($ topspace mtopology $))=$ integral $^{L}(T$-inv $\left.\varphi) f\right)$
unfolding T-inv-def by (rule the I^{\prime})
hence T-inv- φ : sets $(T$-inv $\varphi)=$ sets (borel-of mtopology) finite-measure (T-inv φ)
$\bigwedge f$. continuous-map mtopology euclideanreal f
$\Longrightarrow \varphi($ restrict $f($ topspace mtopology $))=\operatorname{integral}^{L}(T$-inv $\varphi) f$
by auto
from this(2) this(3)[of λx. 1] φB have T-inv- φ-r: T-inv φ (space (T-inv $\varphi)) \leq$ ennreal r
unfolding B-def by simp (metis ennreal-le-iff finite-measure.emeasure-eq-measure r)

\{

fix n
from $n 0[$ of $n+n 0$, simplified $]$ have $\exists!N$. sets $N=$ sets (borel-of mtopology) \wedge
finite-measure $N \wedge(\forall f$. continuous-map mtopology euclideanreal f $\longrightarrow \varphi n(n+n 0)($ restrict f (topspace mtopology))
$=$ integral $^{L} N f$)
by (intro Riesz-representation-real-compact-metrizable[OF assms metriz-able-space-mtopology])
(auto simp del: topspace-mtopology restrict-apply simp: B-def)
hence sets $(T-i n v(\varphi n(n+n 0)))=$ sets (borel-of mtopology) \wedge
finite-measure $(T-i n v(\varphi n(n+n 0))) \wedge$
$(\forall f$. continuous-map mtopology euclideanreal f
$\longrightarrow \varphi n(n+n 0)($ restrict $f($ topspace mtopology $))=$ integral $^{L}(T$-inv

```
(\varphin(n+n0)))f)
            unfolding T-inv-def by(rule theI')
            hence sets (T-inv (\varphin (n+n0))) = sets (borel-of mtopology)
                finite-measure (T-inv (\varphin ( n + n0)))
            \f. continuous-map mtopology euclideanreal f
            \Longrightarrow \varphi n ( n + n 0 ) ( r e s t r i c t ~ f ~ ( t o p s p a c e ~ m t o p o l o g y ) ) ~ = ~ i n t e g r a l ~ L ~ ( T - i n v ~
(\varphin(n+n0)))f
            by auto
    }
    note T-inv-\varphin = this
    have T-inv-\varphin-r:T-inv (\varphin (n+n0)) (space (T-inv (\varphin (n+n0))))}
ennreal r for }
            using T-inv-\varphin(2)[of n] T-inv-\varphin(3)[of \lambdax. 1 n] n0[of n + n0,simplified]
    unfolding B-def by simp (metis ennreal-le-iff finite-measure.emeasure-eq-measure
r)
    show limitin (subtopology LPm.mtopology ?N) (\lambdan. T-inv (\varphin (n+n0)))
(T-inv \varphi) sequentially
                            proof(intro limitin-subtopology[THEN iffD2] mweak-conv-imp-converge
conjI)
            show mweak-conv-seq ( }\lambdan.T\mathrm{ -inv ( }\varphin(n+n0)))(T-inv \varphi
            unfolding mweak-conv-seq-def
            proof safe
                    fix f :: ' }a=>\mathrm{ real and B
                    assume f:continuous-map mtopology euclideanreal }f\mathrm{ and B: }\forallx\inM.|
x| \leqB
            hence f': restrict f (topspace mtopology) \in mspace (cfunspace mtopology
euclidean-metric)
                by (auto simp: bounded-pos-less intro!: exI[where }x=|B|+1]
            have 1:(\lambdan. \intx.fx\partial T-inv (\varphin (n+n0))) = (\lambdan.\varphin (n+n0)
(restrict f (topspace mtopology)))
                by(subst T-inv-\varphin(3)) (use f in auto)
                    have 2:(\intx.fx\partial T-inv \varphi)=\varphi(restrict f(topspace mtopology))
                by(subst T-inv-\varphi(3)) (use f in auto)
            show (\lambdan. \intx.fx\partialT-inv (\varphin(n+n0)))\longrightarrow(\intx.fx\partialT-inv \varphi)
                unfolding 12 using limit[OF f] LIMSEQ-ignore-initial-segment by
blast
            qed(use T-inv-\varphi(1,2) T-inv-\varphin(1,2) eventuallyI in auto)
            next
            show }\mp@subsup{\forall}{F}{}a\mathrm{ in sequentially. T-inv ( }\varphin(a+n0))\in?
            by (simp add:T-inv-\varphin(1) T-inv-\varphin-r)
        next
            show T-inv \varphi\in{N. sets N = sets (borel-of mtopology) ^ emeasure N
(space N) \leq ennreal r}
            using T-inv-\varphi(1) T-inv-\varphi-r by auto
        qed(use T-inv-\varphin(1) T-inv-\varphin-r T-inv-\varphi(1) T-inv-\varphi-r compact-space-imp-separable[OF
assms] in auto)
            qed
            qed
            show ?thesis
```

using T-inv-cont T-cont T-T-inv T-inv- T
by (auto intro!: homeomorphic-maps-imp-map[where $g=T$-inv $]$ simp: home-omorphic-maps-def)
qed
show ?thesis
using homeomorphic-compact-space[OF homeomorphic-map-imp-homeomorphic-space[OF homeo]]
compact-space-subtopology[OF compact] LPm.closedin-metric closedin-bounded-measures
compactin-subspace
by fastforce
qed
qed
lemma tight-imp-relatively-compact-LP:
assumes $\Gamma \subseteq\{N$. sets $N=$ sets (borel-of mtopology) $\wedge N($ space $N) \leq$ ennreal
$r\}$ separable-space mtopology
and tight-on-set mtopology Γ
shows compactin LPm.mtopology (LPm.mtopology closure-of Γ)
proof (cases $r<0$)
assume $r<0$
then have $*:\{N$. sets $N=$ sets (borel-of mtopology) $\wedge N($ space $N) \leq$ ennreal $r\}=\{$ null-measure (borel-of mtopology) $\}$
using emeasure-eq- $0[O F-$ - sets.sets-into-space $]$
by (safe,intro measure-eqI) (auto simp: ennreal-lt-0)
with $\operatorname{assms}(1)$ have $\Gamma=\{ \} \vee \Gamma=\{$ null-measure (borel-of mtopology) $\}$
by auto
hence LPm.mtopology closure-of $\Gamma=\{ \} \vee$ LPm.mtopology closure-of $\Gamma=$ \{null-measure (borel-of mtopology)\}
by (metis (no-types) * closedin-bounded-measures closure-of-empty closure-of-eq)
thus ?thesis
by (auto intro!: inP-I finite-measureI)
next
assume $\neg r<0$
then have r-nonneg: $r \geq 0$
by simp
have subst1: $\Gamma \subseteq \mathcal{P}$
using assms(1) linorder-not-le by (force intro!: finite-measureI inP-I)
have subst2: LPm.mtopology closure-of $\Gamma \subseteq\{N$. sets $N=$ sets (borel-of mtopology $) \wedge N($ space $N) \leq$ ennreal $r\}$
by (simp add: assms(1) closedin-bounded-measures closure-of-minimal)
have tight: tight-on-set mtopology (LPm.mtopology closure-of Γ)
unfolding tight-on-set-def
proof safe
fix e :: real
assume e : $0<e$
then obtain K where K : compactin mtopology $K \bigwedge N . N \in \Gamma \Longrightarrow$ measure
$N($ space $N-K)<e / 2$
by (metis assms(3) tight-on-set-def zero-less-divide-iff zero-less-numeral)
show $\exists K$. compactin mtopology $K \wedge(\forall M \in L P m$.mtopology closure-of Γ. mea-

```
sure M (space M - K)<e)
```

 proof (safe intro!: exI[where \(x=K]\))
 fix \(N\)
 assume \(N: N \in L P m . m t o p o l o g y ~ c l o s u r e-o f ~ \Gamma ~\)
 then obtain \(N n\) where \(N n: \bigwedge n . N n n \in \Gamma\) limitin LPm.mtopology \(N n N\)
 sequentially
unfolding LPm.closure-of-sequentially by auto
with N subst1 interpret mweak-conv-fin $M d N n N$ sequentially
using closure-of-subset-topspace by(fastforce intro!: inP-mweak-conv-fin-all
simp: closure-of-subset-topspace)
have space-Ni: $\bigwedge i$. space $(N n i)=M$
by (meson $N n(1)$ inP-D(3) subsetD subst1)
have openin mtopology $(M-K)$
using compactin-imp-closedin[OF Hausdorff-space-mtopology $K(1)]$ by blast
hence ereal $($ measure $N(M-K)) \leq \liminf (\lambda n$. ereal (measure $(N n n)(M$
$-K)$))
using mweak-conv-eq3 converge-imp-mweak-conv[OF Nn(2)] Nn(1) subst1
by blast
also have $\ldots \leq \operatorname{ereal}(e / 2)$
using $K(2) N n(1)$ space-Ni
by (intro Liminf-le eventuallyI ereal-less-eq(3)[THEN iffD2] order.strict-implies-order)
fastforce+
also have ... $<$ ereal e
using e by auto
finally show measure N (space $N-K)<e$
by (auto simp: space- N)
qed fact
qed(use closure-of-subset-topspace[of LPm.mtopology $\Gamma]$ inP-D in auto)
show ?thesis
unfolding LPm.compactin-sequentially
proof safe
fix Ni :: nat \Rightarrow 'a measure
assume $N i$: range $N i \subseteq L P m$.mtopology closure-of Γ
then have Ni2: $\bigwedge i$. finite-measure (Ni i) and Ni-le-r: $\bigwedge i$. Ni i (space (Ni i))
\leq ennreal r
and sets-Ni[measurable-cong]: $\backslash i$. sets $(N i i)=$ sets (borel-of mtopology)
and space-Ni: $\bigwedge i$. space $($ Ni $i)=M$
using closure-of-subset-topspace[of LPm.mtopology Γ] inP-D subst2 by fast-
force+
interpret $N i$: finite-measure $N i i$ for i
by fact
have metrizable-space Hilbert-cube-topology
by(auto simp: metrizable-space-product-topology metrizable-space-euclidean
intro!: metrizable-space-subtopology)
then obtain $d H$ where $d H:$ Metric-space $\left(U N I V \rightarrow_{E}\{0 . .1\}\right) d H$
Metric-space.mtopology (UNIV $\left.\rightarrow_{E}\{0 . .1\}\right) d H=$ Hilbert-cube-topology
by (metis Metric-space.topspace-mtopology metrizable-space-def topspace-Hilbert-cube)
then interpret $d H:$ Metric-space UNIV $\rightarrow_{E}\{0 . .1\} d H$
by auto

```
    have compact-dH:compact-space dH.mtopology
        unfolding dH(2) by(auto simp: compact-space-def compactin-PiE)
    from embedding-into-Hilbert-cube[OF metrizable-space-mtopology assms(2)]
    obtain A where A:A\subseteqtopspace Hilbert-cube-topology
        mtopology homeomorphic-space subtopology Hilbert-cube-topology A
        by auto
    then obtain T T-inv where T: continuous-map mtopology (subtopology Hilbert-cube-topology
A)}
        continuous-map (subtopology Hilbert-cube-topology A) mtopology T-inv
        \x.x topspace (subtopology Hilbert-cube-topology A)
            \Longrightarrow T ( T - i n v ~ x ) = x ~ \ x . ~ x ~ G ~ M \Longrightarrow T - i n v ~ ( T ~ x ) ~ = ~ x ~
        unfolding homeomorphic-space-def homeomorphic-maps-def by fastforce
    hence injT: inj-on T M
        by(intro inj-on-inverseI)
    have T-cont: continuous-map mtopology dH.mtopology T
        by (metis T(1) continuous-map-in-subtopology dH(2))
    from continuous-map-measurable[OF this]
    have T-meas[measurable]:T\in measurable (Ni n) (borel-of dH.mtopology) for
n
        by(auto simp: sets-Ni cong: measurable-cong-sets)
    define }\nun\mathrm{ where }\nun\equiv(\lambdai.distr (Ni i) (borel-of dH.mtopology)T
    have sets-\nun: \bigwedgen. sets (\nun n) = sets (borel-of dH.mtopology)
        unfolding }\nun\mathrm{ -def by simp
    hence space-\nun:\n. space (\nun n)=UNIV }\mp@subsup{->}{E}{}{0..1
        by(auto cong: sets-eq-imp-space-eq simp: space-borel-of)
    interpret \nun: finite-measure \nun n for n
    by(auto simp: \nun-def space-borel-of PiE-eq-empty-iff intro!: Ni.finite-measure-distr)
    have \nun-le-r:\nun n (space (\nun n)) \leq ennreal r for n
    by(auto simp: \nun-def emeasure-distr order.trans[OF emeasure-space Ni-le-r[of
n]])
    have measure-\nun-compact:measure (\nun n) (space (\nun n) - T' K) = measure
(Ni n) (space (Ni n) - K)
    if K: compactin mtopology K for K n
    proof -
    have compactin dH.mtopology (T' K)
            using T-cont image-compactin K by blast
    hence T'}K\in\mathrm{ sets (borel-of dH.mtopology)
    by(auto intro!: borel-of-closed compactin-imp-closedin dH.Hausdorff-space-mtopology)
    hence measure (\nun n) (space (\nun n) - T' K)
                =measure (Ni n) (T -` (space (\nun n) - T''K)\cap space (Nin))
            by(simp add: \nun-def measure-distr)
    also have ... = measure (Ni n) (space (Ni n) - K)
    using compactin-subset-topspace[OF K] T(4) Pi-mem[OF continuous-map-funspace[OF
T(1)]]
            by(auto intro!: arg-cong[where f=measure (Ni n)] simp: space-Ni subset-iff
space-\nun) metis
    finally show ?thesis.
    qed
    define HP where HP}\equiv{N. sets N= sets(borel-of dH.mtopology) \wedgeN(space
```

$N) \leq$ ennreal $r\}$
interpret $d H s$: Levy-Prokhorov UNIV $\rightarrow_{E}\{0 . .1\} d H$ using $d H(1) \mathbf{b y}$ (auto simp: HP-def Levy-Prokhorov-def)
have $H P: H P \subseteq\{N$. sets $N=$ sets (borel-of dH.mtopology) \wedge finite-measure $N\}$ by (auto simp: HP-def top.extremum-unique intro!: finite-measureI)
have νn - $H P$: range $\nu n \subseteq H P$ by (fastforce simp: HP-def sets- $\nu n \quad \nu n$-le-r)
then obtain $\nu^{\prime} a$ where $\nu^{\prime}: \nu^{\prime} \in H P$ strict-mono a limitin dHs.LPm.mtopology $(\nu n \circ a) \nu^{\prime}$ sequentially using dHs.mcompact-imp-LPmcompact[OF compact-dH,of r]

hence sets- $\nu^{\prime}\left[\right.$ measurable-cong]: sets $\nu^{\prime}=$ sets (borel-of dH.mtopology) and ν^{\prime}-le-r: $\nu^{\prime}\left(\right.$ space $\left.\nu^{\prime}\right) \leq$ ennreal r by (auto simp: HP-def space-borel-of)
have space- $\nu^{\prime}:$ space $\nu^{\prime}=U N I V \rightarrow_{E}\{0 . .1\}$ using sets-eq-imp-space-eq[OF sets- $\left.\nu^{\prime}\right] \mathbf{b y}($ simp add: space-borel-of)
interpret ν^{\prime} : finite-measure ν^{\prime}
using ν^{\prime}-le-r by (auto intro!: finite-measureI simp: top-unique)
interpret wc:mweak-conv-fin UNIV $\rightarrow_{E}\{0 . .1\} d H \nu n \circ a \nu^{\prime}$ sequentially
using νn-HP HP by (fastforce intro!: $d H$ s.inP-mweak-conv-fin-all $\left.\nu^{\prime} d H s . i n P-I\right)$
have claim: $\exists E \subseteq A$. $E \in$ sets (borel-of dH.mtopology) \wedge measure $\nu^{\prime}\left(\right.$ space ν^{\prime}
$-E)=0$
proof \{
fix n
have \exists Kn. compactin mtopology $K n \wedge(\forall N \in L P m$.mtopology closure-of Γ. measure $N($ space $N-K n)<1 /$ Suc n)
using tight by(auto simp: tight-on-set-def)
\}
then obtain $K n$ where $K n: \bigwedge n$. compactin mtopology (Kn n)
$\bigwedge N n . N \in L P m$.mtopology closure-of $\Gamma \Longrightarrow$ measure $N($ space $N-K n n)$
<1 / Suc n
by metis
have TKn-compact: $\backslash n$. compactin dH.mtopology $(T$ ' $(K n n))$
by (metis Kn(1) T-cont image-compactin)
hence [measurable]: $\bigwedge n$. T'Kn $n \in$ sets (borel-of dH.mtopology)
by (auto intro!: borel-of-closed compactin-imp-closedin dH.Hausdorff-space-mtopology)
have T-img: $\wedge n . T$ ' $(K n n) \subseteq A$
using continuous-map-image-subset-topspace[OF T(1)] compactin-subset-topspace[OF $K n(1)]$
by fastforce
define E where $E \equiv\left(\bigcup n . T^{\prime}(K n n)\right)$
have [measurable]: $E \in$ sets (borel-of dH.mtopology)
by (simp add: E-def)
show ?thesis
proof (safe intro!: exI [where $x=E]$)
show measure $\nu^{\prime}\left(\right.$ space $\left.\nu^{\prime}-E\right)=0$
proof (rule antisym[OF field-le-epsilon])
fix e :: real
assume e : $0<e$
then obtain $n 0$ where $n 0: 1 /($ Suc n0 $)<e$
using nat-approx-posE by blast
show measure $\nu^{\prime}\left(\right.$ space $\left.\nu^{\prime}-E\right) \leq 0+e$
proof -
have ereal (measure $\nu^{\prime}\left(\right.$ space $\left.\left.\nu^{\prime}-E\right)\right) \leq$ ereal $\left(\right.$ measure $\nu^{\prime}\left(\right.$ space $\nu^{\prime}-$ T'(Kn n0))) by (auto intro!: ν^{\prime}. finite-measure-mono simp: E-def)
also have $\ldots \leq \liminf \left(\lambda n\right.$. ereal (measure $((\nu n \circ a) n)\left(\right.$ space $\nu^{\prime}-T$ ‘ (Kn n0))))
proof -
have openin dH.mtopology (space $\nu^{\prime}-T^{\prime}($ Kn n0 $)$)
by (metis TKn-compact compactin-imp-closedin dH.Hausdorff-space-mtopology $d H . o p e n-i n-m s p a c e ~ o p e n i n-d i f f ~ w c . s p a c e-N)$
with wc.mweak-conv-eq3[THEN iffD1,OF dHs.converge-imp-mweak-conv[OF $\left.\left.\nu^{\prime}(3)\right]\right]$
show ?thesis
using $\nu n-H P H P \mathbf{b y}($ auto simp: $d H s$.inP-iff)
qed
also have $\ldots=\liminf (\lambda n$. ereal $($ measure $((\nu n \circ a) n)($ space $((\nu n \circ a)$
$\left.\left.\left.n)-T^{(}(K n n 0)\right)\right)\right)$
by(auto simp: space- νn space- ν ')
also have $\ldots=\liminf (\lambda n$. ereal (measure $((N i \circ a) n)($ space $((N i \circ a)$
$n)-K n n 0)$)
by (simp add: measure- νn-compact $[$ OF Kn(1)])
also have $\ldots \leq 1 /($ Suc n0)
using $N i$
by (intro Liminf-le eventuallyI ereal-less-eq(3)[THEN iffD2] or-
der.strict-implies-order Kn(2))
auto
also have ... < ereal e
using $n 0$ by auto
finally show ?thesis
by simp
qed
qed simp
qed (use E-def T-img in auto)
qed
then obtain E where $E[$ measurable $]: E \subseteq A$
$E \in$ sets (borel-of dH.mtopology) measure $\nu^{\prime}\left(\right.$ space $\left.\nu^{\prime}-E\right)=0$
by blast
have measure- ν^{\prime} : measure $\nu^{\prime}(B \cap E)=$ measure $\nu^{\prime} B$
if $B[$ measurable $]: B \in$ sets (borel-of $d H$.mtopology) for B
proof (rule antisym)
have measure $\nu^{\prime} B=$ measure $\nu^{\prime}\left(B \cap E \cup B \cap\left(\right.\right.$ space $\left.\left.\nu^{\prime}-E\right)\right)$
using sets.sets-into-space $[O F B]$
by (auto intro!: arg-cong[where $f=$ measure ν^{\prime}] simp: space- ν^{\prime} space-borel-of)
also have $\ldots \leq$ measure $\nu^{\prime}(B \cap E)+$ measure $\nu^{\prime}\left(B \cap\left(\right.\right.$ space $\left.\left.\nu^{\prime}-E\right)\right)$
by (auto intro!: measure-Un-le)

```
    also have \(\ldots \leq\) measure \(\nu^{\prime}(B \cap E)+\) measure \(\nu^{\prime}\left(\left(\right.\right.\) space \(\left.\left.\nu^{\prime}-E\right)\right)\)
        by (auto intro!: \(\nu^{\prime}\).finite-measure-mono)
    also have \(\ldots=\) measure \(\nu^{\prime}(B \cap E)\)
        by (simp add: E)
    finally show measure \(\nu^{\prime} B \leq\) measure \(\nu^{\prime}(B \cap E)\).
    qed (auto intro!: \(\nu^{\prime}\).finite-measure-mono)
    from this[of space \(\nu\) ] sets.sets-into-space[OF E(2)]
    have measure- \(\nu^{\prime} E\) :measure \(\nu^{\prime} E=\) measure \(\nu^{\prime}\) (space \(\left.\nu^{\prime}\right)\)
        by (auto simp: space- \(\nu^{\prime}\) borel-of-open space-borel-of inf.absorb-iff2)
    show \(\exists N r . N \in L P m . m t o p o l o g y ~ c l o s u r e-o f ~ \Gamma \wedge\) strict-mono \(r \wedge\) limitin
LPm.mtopology ( \(N i \circ r\) ) \(N\) sequentially
    proof -
            define \(\nu\) where \(\nu \equiv\) restrict-space \(\nu^{\prime} E\)
            interpret \(\nu\) : finite-measure \(\nu\)
                by (auto intro!: finite-measure-restrict-space \(\nu^{\prime}\).finite-measure-axioms simp:
\(\nu\)-def)
    have space- \(\nu:\) space \(\nu=E\)
            using \(E\) (2) \(\nu\)-def sets- \(\nu^{\prime}\) space-restrict-space2 by blast
    have \(\nu\)-le-r: \(\nu(\) space \(\nu) \leq\) ennreal \(r\)
            by (simp add: \(\nu\)-def emeasure-restrict-space order.trans[OF emeasure-space
        \(\left.\left.\nu^{\prime}-l e-r\right]\right)\)
            have measure- \(\nu\) '2: measure \(\nu^{\prime} B=\) measure \(\nu(B \cap E)\)
            if \(B[\) measurable \(]: B \in\) sets (borel-of \(d H\).mtopology) for \(B\)
            by (auto simp: \(\nu\)-def measure-restrict-space measure- \(\nu^{\prime}\) )
    have \(T\)-inv-measurable[measurable]: \(T\)-inv \(\in \nu \rightarrow_{M}\) borel-of mtopology
    using continuous-map-measurable[OF continuous-map-from-subtopology-mono[OF
\(T(2) E(1)]]\)
            by (auto simp: \(\nu\)-def borel-of-subtopology \(d H\)
                    cong: sets-restrict-space-cong[OF sets- \(\nu\) ] measurable-cong-sets)
    define \(N\) where \(N \equiv\) distr \(\nu\) (borel-of mtopology) T-inv
    have \(N\)-inP:N \(\in \mathcal{P}\)
            using Ni2[of 0 ,simplified subprob-space-def subprob-space-axioms-def]
            by (auto simp: \(\mathcal{P}\)-def \(N\)-def space-Ni emeasure-distr order.trans[OF emea-
                sure-space \(\nu\)-le-r] \(\nu\).finite-measure-distr)
            then interpret \(w c N\) :mweak-conv-fin \(M d N i \circ a N\) sequentially
            using subset-trans[OF Ni closure-of-subset-topspace] by(auto intro!: inP-mweak-conv-fin-all)
            show \(\exists N r . N \in L P m . m t o p o l o g y\) closure-of \(\Gamma \wedge\) strict-mono \(r \wedge\) limitin
LPm.mtopology ( \(N i \circ r\) ) \(N\) sequentially
    proof (safe intro!: exI [where \(x=N]\) exI [where \(x=a]\) )
            show limit: limitin LPm.mtopology \((N i \circ a) N\) sequentially
            proof (rule mweak-conv-imp-converge)
                show mweak-conv-seq (Ni○a) N
            unfolding \(w c N\).mweak-conv-eq2
            proof safe
            have [measurable]:UNIV \(\rightarrow_{E}\{0 . .1\} \in\) sets (borel-of dH.mtopology)
                    by(auto simp: borel-of-open)
                    have 1:measure \(((N i \circ a) n) M=\) measure \(((\nu n \circ a) n)\left(U N I V \rightarrow_{E}\right.\)
\(\{0 . .1\}\) ) for \(n\)
```

using continuous-map-funspace[OF T(1)]
by (auto simp: νn-def measure-distr space-Ni intro!: arg-cong[where $f=$ measure (Ni (an))])
have 2: measure $N M=$ measure $\nu^{\prime}\left(\right.$ space $\left.\nu^{\prime}\right)$
proof -
have [measurable]: $M \in$ sets (borel-of mtopology) by (auto intro!: borel-of-open)
have measure $N M=$ measure $\nu(T-i n v-‘ M \cap$ space $\nu)$ by (auto simp: N-def intro!: measure-distr)
also have $\ldots=$ measure $\nu($ space $\nu \cap E)$ using measurable-space[OF T-inv-measurable] by (auto intro!: arg-cong[where $f=$ measure $\nu]$ simp: space-borel-of space- ν)
also have $\ldots=$ measure $\nu^{\prime}($ space $\nu)$
by (rule measure- $\nu^{\prime} 2[$ symmetric $]$) (simp add: space- ν)
also have $\ldots=$ measure $\nu^{\prime}\left(\right.$ space $\left.\nu^{\prime}\right)$
by (simp add: measure- ν^{\prime} E space- ν)
finally show ?thesis .
qed
show $(\lambda n$. measure $((N i \circ a) n) M) \longrightarrow$ measure $N M$
unfolding 12 using $H P$ עn-HP wc.mweak-conv-eq2[THEN iffD1,OF
$\left.d H s . c o n v e r g e-i m p-m w e a k-c o n v\left[O F \quad \nu^{\prime}(3)\right]\right]$
by (auto simp: space- $\nu^{\prime} d H s . i n P$-iff)
next
fix C
assume C : closedin mtopology C
hence [measurable]: $C \in$ sets (borel-of mtopology)
by (auto intro!: borel-of-closed)
have closedin (subtopology dH.mtopology A) $\left(T^{\prime} C\right)$
proof -
have T ' $C=\{x \in$ topspace (subtopology Hilbert-cube-topology A).
T-inv $x \in C\}$
using closedin-subset[OF C] T(3,4) continuous-map-funspace $[O F$
$T(1)]$ continuous-map-funspace[OF $T(2)]$
by (auto simp: rev-image-eqI)
also note closedin-continuous-map-preimage $[$ OF T (2) $C]$
finally show ?thesis
by (simp add: $d H$)
qed
then obtain K where K : closedin dH.mtopology $K T{ }^{\prime} C=K \cap A$ by (meson closedin-subtopology)
hence [measurable]: $K \in$ sets (borel-of dH.mtopology) by (simp add: borel-of-closed)
have C-eq: $C=T-{ }^{`} K \cap M$
proof -
have $C=\left(T-{ }^{\prime} T ‘ C\right) \cap M$
using closedin-subset $[O F C]$ injT by (auto dest: inj-onD)
also have $\ldots=\left(T-{ }^{\prime}(K \cap A)\right) \cap M$
by (simp only: K(2))

```
            also have ... = T -' }K\cap
            using A(1) continuous-map-funspace[OF T(1)] by auto
            finally show ?thesis .
            qed
            hence 1:measure ((Ni\circa)n) C=measure ((\nun\circa) n) K for n
                            by(auto simp: \nun-def measure-distr space-Ni)
                            have limsup (\lambdan. ereal (measure ((Ni\circa) n)C)) = limsup ( }\lambdan.\mathrm{ ereal
(measure ((\nun\circa) n)K))
            unfolding 1 by simp
            also have ... \leqereal (measure \nu}\mp@subsup{\nu}{}{\prime}K\mathrm{ )
            using \nun-HP HP wc.mweak-conv-eq2[THEN iffD1,OF dHs.converge-imp-mweak-conv[OF
\nu}(3)]]K(1)dHs.inP-iff by aut
            also have ... = ereal (measure \nu ( }K\capE)\mathrm{ )
            by(simp add: measure-\nu'2)
            also have ... = ereal (measure \nu (T-inv - ' C\cap space \nu))
            using measurable-space[OF T-inv-measurable] K(2) E(1) closedin-subset[OF
K(1)] A(1) T(3,4)
                            by(fastforce intro!: arg-cong[where f=measure \nu] simp: space-\nu C-eq
space-borel-of subsetD)
            also have ... = ereal (measure NC)
                by(auto simp: N-def measure-distr)
                    finally show limsup (\lambdan. ereal (measure ((Ni\circa) n) C)) \leq ereal
(measure NC).
            qed
            qed(use N-inP Ni assms closure-of-subset-topspace[of LPm.mtopology \Gamma] in
auto)
            have range (Ni\circa)\subseteqLPm.mtopology closure-of \Gamma
            using Ni by auto
            thus N\inLPm.mtopology closure-of \Gamma
            using limit LPm.metric-closedin-iff-sequentially-closed[THEN iffD1,OF
closedin-closure-of[of - \Gamma]]
            by blast
            qed fact
            qed
                            qed(use assms(1) closedin-subset[OF closedin-closure-of[of LPm.mtopology]] in
auto)
qed
corollary Prokhorov-theorem-LP:
    assumes }\Gamma\subseteq{N.\mathrm{ sets N= sets (borel-of mtopology) ^ emeasure N (space N)
\leq ennreal r}
    and separable-space mtopology mcomplete
    shows compactin LPm.mtopology (LPm.mtopology closure-of \Gamma)\longleftrightarrow tight-on-set
mtopology \Gamma
proof -
    have }\Gamma\subseteq\mathcal{P
    using assms(1) by(auto intro!: finite-measureI inP-I simp: top.extremum-unique)
    thus ?thesis
    using assms by(auto simp: relatively-compact-imp-tight-LP tight-imp-relatively-compact-LP)
```


5.2 Completeness of the Lévy-Prokhorov Metric

```
lemma mcomplete-tight-on-set:
    assumes }\Gamma\subseteq\mathcal{P}\mathrm{ mcomplete
        and }\bigwedgeef.e>0\Longrightarrowf>
            \Longrightarrow\existsan n. an' {..n::nat}}\subseteqM\wedge(\forallN\in\Gamma.measure N(M-(\bigcupi\leqn
mball (an i)f)) \leqe)
    shows tight-on-set mtopology \Gamma
    unfolding tight-on-set-def
proof safe
    fix e :: real
    assume e: 0<e
    then have \existsan n. an'{..n::nat}\subseteqM^
        (\forallN\in\Gamma.measure N (M - (\bigcupi\leqn.mball (an i) (1/(1 + real m)))) \leqe/2
* (1 / 2) ^ Suc m) for m
        using assms(3)[of e/2*(1 / 2) ^Suc m 1 / (1 + real m)] by fastforce
    then obtain anm nm where anm: \bigwedgem.anm m'{..nm m::nat} \subseteqM
        \mN.N\in\Gamma\Longrightarrow measure N(M- (\bigcupi\leqnm m.mball (anm mi) (1/(1+
real m))))}\leqe/2*(1/2)^Suc 
    by metis
    define K where K\equiv(\bigcapm. (\bigcupi\leqnm m.mcball (anm m i)(1/(1 + realm))))
    have K-closed: closedin mtopology K
        by(auto simp: K-def intro!: closedin-Union)
    show \existsK.compactin mtopology K}\wedge(\forallM\in\Gamma. measure M (space M - K)<e
    proof(safe intro!: exI[where }x=K]\mathrm{ )
        have mtotally-bounded K
            unfolding mtotally-bounded-def2
        proof safe
            fix }\varepsilon:: rea
            assume \varepsilon: 0<\varepsilon
            then obtain m}\mathrm{ where m:1/(1+real m)< 
                using nat-approx-posE by auto
            show \existsKa. finite Ka ^Ka\subseteqM^K\subseteq(\bigcupx\inKa. mball x \varepsilon)
            proof(safe intro!: exI[where x=anm m'{..nm m}])
                    fix }
                    assume }x\in
                    then have }x\in(\bigcupi\leqnmm.mcball (anm m i)(1/(1+ real m)))
                    by(auto simp: K-def)
                    also have ...\subseteq(\bigcupi\leqnm m. mball (anm mi)\varepsilon)
                        by(rule UN-mono) (use m in auto)
                    finally show }x\in(\bigcupx\inanm m'{..nm m}.mball x \varepsilon)
                    by auto
            qed(use anm in auto)
    qed
    thus compactin mtopology K
                by(simp add: mtotally-bounded-eq-compact-closedin[OF assms(2) K-closed])
    next
```

fix N
assume $N: N \in \Gamma$
then interpret N : finite-measure N
using assms(1) inP-D(1) by auto
have [measurable]: $M \in$ sets $N \bigwedge a b$. mcball $a b \in$ sets N
using N inP-D(2) assms(1) by (auto intro!: borel-of-closed)
have [measurable]: $\bigwedge a b$. mball $a b \in$ sets N
using N inP-D(2) assms(1) by (auto intro!: borel-of-open)
have [simp]: summable (λm. measure $N(M-(\bigcup i \leq n m$ m. mball (anm mi) $(1 /(1+$ real m)$))))$
using $\operatorname{anm}(2)[O F N]$
$\mathbf{b y}($ auto intro!: summable-comparison-test-ev[where $g=\lambda n . e / 2 *(1 / 2) ~ \sim ~$ Suc n
and $f=\lambda m$. measure $N(M-(\bigcup i \leq n m m$. mball (anm mi) $(1 /(1+$ real m))))] eventuallyI)
show measure $N($ space $N-K)<e$
proof -
have measure $N($ space $N-K)=$ measure $N(M-K)$
using N assms(1) inP-D(3) by auto
also have $\ldots=$ measure $N(\bigcup m . M-(\bigcup i \leq n m m$. mcball (anm mi) (1/ $(1+\operatorname{real} m))))$
by(auto simp: K-def)
also have $\ldots \leq\left(\sum m . e / 2 *(1 / 2) \wedge\right.$ Suc $\left.m\right)$
proof -
have $(\lambda k$. measure $N(\bigcup m \leq k . M-(\bigcup i \leq n m$ m. mcball (anm mi) (1/(1 + real $m)$)))
\longrightarrow measure $N(\bigcup i . \bigcup m \leq i . M-(\bigcup i \leq n m$ m. mcball (anm $m i)$ $(1 /(1+\operatorname{real} m))))$
by (rule N.finite-Lim-measure-incseq) (auto intro!: incseq-SucI)
moreover have $(\bigcup i . \bigcup m \leq i . M-(\bigcup i \leq n m$ m. mcball (anm mi) (1/(1 + real $m)$)))

$$
=(\bigcup m \cdot M-(\bigcup i \leq n m m . m c b a l l(\text { anm } m i)(1 /(1+\text { real }
$$

$m)$))
by blast
ultimately have $1:(\lambda k$. measure $N(\bigcup m \leq k . M-(\bigcup i \leq n m m$. mcball $(\operatorname{anm} m i)(1 /(1+$ real $m)))))$
i) $(1 /(1+$ real $m))))$
by simp
show ?thesis
proof(safe intro!: Lim-bounded [OF 1])
fix n
show measure $N(\bigcup m \leq n . M-(\bigcup i \leq n m m$. mcball (anm mi) (1/(1 + real $m)$))

$$
\leq\left(\sum m \cdot e / 2 *(1 / 2)^{\wedge} S u c m\right)(\text { is } ? l h s \leq ? r h s)
$$

proof -
have ?lhs $\leq\left(\sum m \leq n\right.$. measure $N(M-(\bigcup i \leq n m m$. mcball (anm mi) $(1 /(1+$ real $m)))))$
by(rule N.finite-measure-subadditive-finite) auto
also have $\ldots \leq\left(\sum m \leq n\right.$. measure $N(M-(\bigcup i \leq n m$ m. mball (anm m i) $(1 /(1+$ real $m))))$
by(rule sum-mono) (auto intro!: N.finite-measure-mono)
also have $\ldots \leq\left(\sum m\right.$. measure $N(M-(\bigcup i \leq n m$ m. mball (anm mi)
$(1 /(1+\operatorname{real} m)))))$
by(rule sum-le-suminf) auto
also have $\ldots \leq$? rhs
by (rule suminf-le) (use anm(2)[OF N] in auto)
finally show ?thesis.
qed
qed
qed
also have $\ldots=e / 2 *\left(\sum m .(1 / 2)\right.$ - Suc $\left.m\right)$
by(rule suminf-mult) auto
also have $\ldots=e / 2$
using power-half-series sums-unique by fastforce
also have $\ldots<e$
using e by simp
finally show ?thesis .
qed
qed
qed(use assms(1) inP-D in auto)
lemma mcomplete-LPmcomplete:
assumes mcomplete separable-space mtopology
shows LPm.mcomplete
proof -
consider $M=\{ \} \mid M \neq\{ \}$
by blast
then show ?thesis
proof cases
case 1
from M-empty- $P[$ OF this]
have $\mathcal{P}=\{ \} \vee \mathcal{P}=\{$ count-space $\{ \}\}$.
then show ?thesis
using LPm.compact-space-eq-Bolzano-Weierstrass LPm.compact-space-imp-mcomplete
finite-subset
by fastforce
next
case M-ne:2
show ?thesis
unfolding LPm.mcomplete-def
proof safe
fix $N i$
assume cauchy: LPm.MCauchy Ni
hence range- $N i$: range $N i \subseteq \mathcal{P}$
by (auto simp: LPm.MCauchy-def)
hence range-Ni2: range $N i \subseteq L P m . m t o p o l o g y ~ c l o s u r e-o f ~(r a n g e ~ N i) ~$
by (simp add: closure-of-subset)

```
    have Ni-inP: \i. Ni i 
        using cauchy by(auto simp: LPm.MCauchy-def)
    hence \nn.finite-measure (Ni n)
        and sets-Ni[measurable-cong]:\n. sets (Ni n) = sets(borel-of mtopology)
        and space-Ni: \n. space (Ni n)=M
        by(auto dest: inP-D)
    then interpret Ni: finite-measure Ni n for n
        by simp
    have \existsr\geq0.\foralli.Ni i(space (Ni i))\leq ennreal r
    proof -
        obtain N where N:\nm.n\geqN\Longrightarrowm\geqN\LongrightarrowLPm(Nin)(Nim)
< 1
        using LPm.MCauchy-def cauchy zero-less-one by blast
    define r where r=max (Max ((\lambdai.measure (Ni i) (space (Ni i)))'{..N}))
(measure (Ni N) (space (NiN)) + 1)
        show ?thesis
        proof(safe intro!: exI[where }x=r]\mathrm{ )
            fix }
            consider }i\leqN|N\leq
                by fastforce
        then show Ni i (space (Ni i)) \leq ennreal r
        proof cases
            assume i\leqN
            then have measure (Ni i) (space (Ni i)) \leqr
            by(auto simp: r-def intro!: max.coboundedI1)
            thus ?thesis
                by (simp add: measure-def enn2real-le)
        next
                assume }i:i\geq
                have measure (Ni i) (space (Ni i)) \leqr
                proof -
                have measure (Ni i) M \leq measure (Ni N) (\bigcupa\inM. mball a 1) + 1
                using range-Ni by(auto intro!: LPm-less-then[of Ni N] Ni borel-of-open)
                    also have ... \leqmeasure (Ni N) (space (NiN)) +1
                        using Ni.bounded-measure by auto
                also have ... \leqr
                by(auto simp: r-def)
                    finally show ?thesis
                        by(simp add: space-Ni)
            qed
            thus ?thesis
                by (simp add: Ni.emeasure-eq-measure ennreal-leI)
            qed
        qed(auto simp: r-def intro!: max.coboundedI2)
    qed
    then obtain r where r-nonneg: r \geq0 and r-bounded:\i. Ni i (space (Ni
i))}\leq\mathrm{ ennreal r
        by blast
    with sets-Ni have range-Ni':
```

```
    range Ni\subseteq{N. sets N = sets (borel-of mtopology) ^ emeasure N (space N)
\leq ennreal r}
        by blast
    have M-meas[measurable]: M \in sets (borel-of mtopology)
                by(simp add: borel-of-open)
    have mball-meas[measurable]: mball a e \in sets (borel-of mtopology) for a e
        by(auto intro!: borel-of-open)
    have Ni-Cauchy: \e.e>0\Longrightarrow\existsn0.\foralln n'.n0\leqn\longrightarrown0\leqn'\longrightarrowLPm
(Ni n) (Ni n') <e
            using cauchy by(auto simp: LPm.MCauchy-def)
    have tight-on-set mtopology (range Ni)
    proof(rule mcomplete-tight-on-set[OF range-Ni assms(1)])
        fix ef :: real
        assume e: e>0 and f:f>0
        with Ni-Cauchy[of min ef/2] obtain n0 where n0:
            \m.n0 \leqn\Longrightarrown0\leqm\LongrightarrowLPm(Nin)(Nim)<minef/2
            by fastforce
            obtain D where D: mdense D countable D
            using assms(2) separable-space-def2 by blast
        then obtain an where an:\n::nat. an n }\inD\mathrm{ range an = D
            by (metis M-ne mdense-empty-iff rangeI uncountable-def)
        have \existsn1.\foralli\leqn0.measure (Ni i) (M - (\bigcupi\leqn1.mball (an i) (f / 2)))
\leqminef/2
    proof -
            have \existsn1. measure (Ni i) (M- (\bigcupi\leqn1. mball (an i) (f/2))) \leqmin
ef/2 for i
            proof -
            have (\lambdan1. measure (Ni i) (M - (\bigcupi\leqn1.mball (an i) (f / 2))))}\longrightarrow
0
            proof -
                            have 1: (\lambdan1. measure (Ni i) (M - (\bigcupi\leqn1.mball (an i) (f / 2))))
                        = (\lambdan1. measure (Ni i)M - measure (Ni i) ((Ui\leqn1. mball
(an i)(f / 2))))
                using Ni.finite-measure-compl by(auto simp: space-Ni)
            have (\lambdan1. measure (Ni i) ((Ui\leqn1. mball (an i) (f / 2))))}
measure (Ni i)M
            proof -
            have (\lambdan1. measure (Ni i) ((\bigcupi\leqn1.mball (an i) (f / 2))))
                    measure (Ni i)(\bigcupn1. (\bigcupi\leqn1.mball (an i) (f / 2)))
                    by(intro Ni.finite-Lim-measure-incseq incseq-SucI UN-mono) auto
                    moreover have (\bigcupn1. (\bigcupi\leqn1. mball (an i) (f/2))) = M
                    using mdense-balls-cover[OF D(1)[simplified an(2)[symmetric]],of f
/ 2] f by auto
                    ultimately show ?thesis by argo
            qed
            from tendsto-diff[OF tendsto-const[where k=measure (Ni i) M] this]
show ?thesis
            unfolding 1 by simp
        qed
```

thus ?thesis
by (meson ef LIMSEQ-le-const half-gt-zero less-eq-real-def linorder-not-less min-less-iff-conj)
qed
then obtain $n i$ where $n i$: $\bigwedge i$. measure (Ni $i)(M-(\bigcup i \leq n i i$. mball (an
i) $(f / 2))) \leq \min \operatorname{ef} / 2$
by metis
define $n 1$ where $n 1 \equiv \operatorname{Max}(n i ‘\{. . n 0\})$
show ?thesis
proof (safe intro!: exI[where $x=n 1]$)
fix i
assume $i: i \leq n 0$
then have nií:ni $i \leq n 1$
by (simp add: n1-def)
show measure $($ Ni $i)(M-(\bigcup i \leq n 1 . \operatorname{mball}($ an $i)(f / 2))) \leq \min$ e f
proof -
have measure (Ni i) (M-($\left.\bigcup_{i \leq n 1 . ~ m b a l l ~(a n ~}\right)(f /$ 2 $\left.\left.)\right)\right)$
\leq measure $(N i i)(M-(\bigcup i \leq n i ~ i . ~ m b a l l ~(a n ~ i) ~(f / 2))) ~$
using nii by (fastforce intro!: Ni.finite-measure-mono)
also have $\ldots \leq \min$ ef / 2
by fact
finally show ?thesis.
qed
qed
qed
then obtain $n 1$ where $n 1$:
$\bigwedge i . i \leq n 0 \Longrightarrow$ measure $($ Ni $i)(M-(\bigcup i \leq n 1 . \operatorname{mball}($ an $i)(f / 2))) \leq$
e/2
ヘi. $i \leq n 0 \Longrightarrow$ measure $($ Ni $i)(M-(\bigcup i \leq n 1 . \operatorname{mball}($ an $i)(f / 2))) \leq f$
12
by auto
show \exists an n. an ' $\{. . n:: n a t\} \subseteq M \wedge(\forall N \in$ range $N i$. measure $N(M-$ $(\bigcup i \leq n . \operatorname{mball}($ an i) $f)) \leq e)$
proof (safe intro!: exI[where $x=a n] \operatorname{exI}[$ where $x=n 1]$)
fix n
consider $n \leq n 0 \mid n 0 \leq n$
by linarith
then show measure $(N i n)(M-(\bigcup i \leq n 1 . \operatorname{mball}($ an $i) f)) \leq e$
proof cases
case 1
have measure $(N i n)(M-(\bigcup i \leq n 1 . \operatorname{mball}(a n i) f))$
\leq measure $(N i n)(M-(\bigcup i \leq n 1 . \operatorname{mball}($ an $i)(f / 2)))$
using f by(fastforce intro!: Ni.finite-measure-mono)
also have $\ldots \leq e$
using $n 1[O F 1] e$ by linarith
finally show ?thesis.
next
case 2

```
    have measure (Ni n) (M - (\bigcupi\leqn1.mball (an i) f))
        \leqmeasure (Ni n0) (\bigcupa\inM - (\bigcupi\leqn1.mball (an i)f). mball a
(minef/2))+minef/2
            by(intro LPm-less-then(2) n0 2 Ni-inP) auto
        also have .. Smeasure (Ni n0) (M - (\bigcupi\leqn1.mball (an i)(f / 2)))
+ minef / 2
                proof -
                        have (\a\inM - (\bigcupi\leqn1.mball (an i) f). mball a (min e f / 2))
                        \subseteq M - ( \bigcup i \leq n 1 . m b a l l ~ ( a n ~ i ) ( f / 2 ) )
                    proof safe
                            fix x a i
                            assume x: x f mball a (min ef / 2) x m mball (an i) (f/2)
                                and a:a\inMa\not\in(\bigcupi\leqn1.mball (an i)f) and i:i\leqn1
                        hence d (an i) x<f/2dxa<f/2
                        by(auto simp: commute)
                        hence d (an i) a<f
                                using triangle[of an ix a] a(1)x(2) by auto
                    with a(2) }
                    show False
                                    using a(1) atMost-iff image-eqI x(2) by auto
                    qed simp
                    thus ?thesis
                            by(auto intro!: Ni.finite-measure-mono)
                    qed
                also have ... \leqe
                    using n1(1)[OF order.refl] by linarith
                    finally show ?thesis.
            qed
            qed(use an dense-in-subset[OF D(1)] in auto)
        qed
        from tight-imp-relatively-compact-LP[OF range-Ni' assms(2) this] range-Ni2
        obtain l N where strict-mono l limitin LPm.mtopology (Ni\circl) N sequentially
        unfolding LPm.compactin-sequentially by blast
        from LPm.MCauchy-convergent-subsequence[OF cauchy this]
        show \existsN. limitin LPm.mtopology Ni N sequentially
        by blast
    qed
    qed
qed
```


5.3 Equivalence of Separability, Completeness, and Compactness

lemma return-inP[simp]:return (borel-of mtopology) $x \in \mathcal{P}$
by (metis emeasure-empty ennreal-top-neq-zero finite-measureI inP-I infinity-ennreal-def sets-return space-return subprob-space.axioms(1) subprob-space-return-ne)
lemma LPm-return-eq:

```
    assumes x\inMy\inM
    shows LPm (return (borel-of mtopology) x) (return (borel-of mtopology) y)=
min 1 (dxy)
proof(rule antisym[OF min.boundedI])
    show LPm (return (borel-of mtopology) x) (return (borel-of mtopology) y) \leqdx
y
    proof(rule field-le-epsilon)
    fix e :: real
    assume e: e>0
    show LPm (return (borel-of mtopology) x) (return (borel-of mtopology) y) \leqd
xy+e
    proof(rule LPm-imp-le)
        fix B
        assume B[measurable]: B sets (borel-of mtopology)
        have }x\inB\Longrightarrowy\in(\bigcupa\inB\mathrm{ . mball a (d x y + e))
            using e assms by auto
        thus measure (return (borel-of mtopology) x) B
            \leqmeasure (return (borel-of mtopology) y) (\bigcupa\inB. mball a (dxy+e))
+(dxy+e)
            using e by(simp add: measure-return indicator-def)
        next
            fix }
            assume B[measurable]: B sets (borel-of mtopology)
            have }y\inB\Longrightarrowx\in(\bigcupa\inB. mball a (d x y +e)
            using e assms by (auto simp: commute)
            thus measure (return (borel-of mtopology) y) B
                \leqmeasure (return (borel-of mtopology) x) (\bigcupa\inB. mball a (d x y + e))
+(dxy+e)
            using e by(simp add: measure-return indicator-def)
            qed (simp add: add.commute add-pos-nonneg e)
    qed
next
    consider LPm (return (borel-of mtopology) x) (return (borel-of mtopology) y) <
1
            LPm (return (borel-of mtopology) x) (return (borel-of mtopology) y) \geq1
            by linarith
    then show min 1 (dxy)\leqLPm (return (borel-of mtopology) x) (return (borel-of
mtopology) y)
    proof cases
        case 1
        have 2:d x y<a if a:LPm (return (borel-of mtopology) x) (return (borel-of
mtopology) y) <a
            a<1 for a
        proof -
            have [measurable]: {x} \in sets (borel-of mtopology)
                using assms by(auto simp add: closedin-t1-singleton t1-space-mtopology
intro!: borel-of-closed)
            have measure (return (borel-of mtopology) x) {x}
                \leqmeasure (return (borel-of mtopology) y) (\bigcupb\in{x}. mball b a) +a
```

using assms subprob-space.subprob-emeasure-le-1[OF subprob-space-return-ne[of borel-of mtopology]]
by (intro LPm-less-then(1)[where $A=\{x\}, O F-a(1)])$
(auto simp: space-borel-of space-scale-measure)
thus ?thesis
using assms a(2) linorder-not-less by(fastforce simp: measure-return indi-cator-def)
qed
have $d x y<a$ if a :LPm (return (borel-of mtopology) x) (return (borel-of mtopology) y) <a for a
proof (cases $a<1$)
assume $r 1:^{\sim} a<1$
obtain k where $k: L P m$ (return (borel-of mtopology) x) (return (borel-of mtopology) y) $<k k<1$
using dense 1 by blast
show ?thesis
using $2[O F k] k(2) r 1$ by linarith
qed(use $2 a$ in auto)
thus ?thesis
by force
qed simp
next
show LPm (return (borel-of mtopology) $x)($ return $($ borel-of mtopology) $y) \leq 1$
by (rule order.trans[OF LPm-le-max-measure])
(metis assms(1) assms(2) indicator-simps(1) max.idem measure-return nle-le sets.top space-borel-of space-return topspace-mtopology)
qed
corollary LPm-return-eq-capped-dist:
assumes $x \in M y \in M$
shows LPm (return (borel-of mtopology) x)(return (borel-of mtopology) y) $=$ capped-dist $1 x y$
by (simp add: capped-dist-def assms LPm-return-eq)
corollary MCauchy-iff-MCauchy-return:
assumes range $x n \subseteq M$
shows MCauchy $x n \longleftrightarrow$ LPm.MCauchy $(\lambda n$. return (borel-of mtopology) (xn n))
proof -
interpret c : Metric-space M capped-dist 1
using capped-dist by blast
show ?thesis
using range-subsetD[OF assms(1)]
by (auto simp: MCauchy-capped-metric[of 1,symmetric] c.MCauchy-def LPm.MCauchy-def
LPm-return-eq-capped-dist)
qed
lemma conv-conv-return:
assumes limitin mtopology xn x sequentially
shows limitin LPm.mtopology (λ n. return (borel-of mtopology) (xn n)) (return

```
(borel-of mtopology) x) sequentially
proof -
    interpret c:Metric-space M capped-dist 1
    using capped-dist by blast
    have clim:limitin c.mtopology xn x sequentially
    using assms by (simp add: mtopology-capped-metric)
    show ?thesis
        using LPm-return-eq-capped-dist clim
    by(fastforce simp: c.limit-metric-sequentially LPm.limit-metric-sequentially)
qed
lemma conv-iff-conv-return:
    assumes range xn \subseteqMx\inM
    shows limitin mtopology xn x sequentially
        \longleftrightarrow l i m i t i n ~ L P m . m t o p o l o g y ~ ( \lambda n . ~ r e t u r n ~ ( b o r e l - o f ~ m t o p o l o g y ) ~ ( x n ~ n ) ) ,
                                    (return (borel-of mtopology) x) sequentially
proof -
    have xn: \bigwedgen. xn n\inM
        using assms by auto
    interpret c: Metric-space M capped-dist 1
        using capped-dist by blast
    have limitin mtopology xn x sequentially \longleftrightarrow limitin c.mtopology xn x sequentially
        by (simp add: mtopology-capped-metric)
    also have ...
        \longleftrightarrow ~ l i m i t i n ~ L P m . m t o p o l o g y ~ ( ~ \lambda n . ~ r e t u r n ~ ( b o r e l - o f ~ m t o p o l o g y ) ~ ( x n ~ n ) ) ~ ( r e t u r n ~
(borel-of mtopology) x) sequentially
    using xn assms by(auto simp: c.limit-metric-sequentially LPm.limit-metric-sequentially
LPm-return-eq-capped-dist)
    finally show ?thesis .
qed
lemma continuous-map-return: continuous-map mtopology LPm.mtopology ( }\lambdax\mathrm{ .
return (borel-of mtopology) x)
    by(auto simp: continuous-map-iff-limit-seq[OF first-countable-mtopology] conv-conv-return)
lemma homeomorphic-map-return:
    homeomorphic-map mtopology
                            (subtopology LPm.mtopology (( }\lambdax.r.return (borel-of mtopology) x)`
M))
                            ( }\lambdax.\mathrm{ return (borel-of mtopology) x)
proof(rule homeomorphic-maps-imp-map)
    define inv where inv \equiv( }\lambdaN.THEx.x\inM\wedgeN=return(borel-of mtopology
x)
    have inv-eq: inv (return (borel-of mtopology) x) =x if x: x\inM for }
    proof -
        have inv (return (borel-of mtopology) x) \in M ^ return (borel-of mtopology) x
                        = return (borel-of mtopology) (inv (return (borel-of mtopology) x))
            unfolding inv-def
    proof(rule theI)
```

fix y
assume $y \in M \wedge$ return (borel-of mtopology) $x=$ return (borel-of mtopology)
then show $y=x$
using LPm-return-eq[OF x,of $y] x$
by (auto intro!: zero[THEN iffD1] simp: commute simp del: zero)
qed(use x in auto)
thus ?thesis
by (metis LPm-return-eq-capped-dist Metric-space.zero capped-dist x)
qed
interpret s : Submetric \mathcal{P} LPm (λ x. return (borel-of mtopology) x) ' M
by standard auto
have continuous-map mtopology s.sub.mtopology (λ x. return (borel-of mtopology)
x)
using continuous-map-return
by (simp add: LPm.Metric-space-axioms metric-continuous-map s.sub.Metric-space-axioms)
moreover have continuous-map s.sub.mtopology mtopology inv
unfolding continuous-map-iff-limit-seq[OF s.sub.first-countable-mtopology]
proof safe
fix $N i N$
assume h:limitin s.sub.mtopology Ni N sequentially
then obtain x where $x: x \in M N=$ return (borel-of mtopology) x
using s.sub.limit-metric-sequentially by auto
interpret c : Metric-space M capped-dist 1
using capped-dist by blast
show limitin mtopology $(\lambda n$. inv $(N i n))(i n v N)$ sequentially
unfolding c.limit-metric-sequentially mtopology-capped-metric[of 1,symmetric]
proof safe
fix e :: real
assume $e>0$
then obtain $n 0$ where $n 0$:
$\bigwedge n . n \geq n 0 \Longrightarrow$ Ni $n \in(\lambda x$. return (borel-of mtopology) x)' M
$\bigwedge n . n \geq n 0 \Longrightarrow L P m$ (Ni n) $N<e$
by (metis h s.sub.limit-metric-sequentially)
then obtain $x n$ where $x n: \bigwedge n . n \geq n 0 \Longrightarrow x n n \in M$
$\bigwedge n . n \geq n 0 \Longrightarrow$ Ni $n=$ return (borel-of mtopology) (xn n)
unfolding image-def by simp metis
thus $\exists N a . \forall n \geq N a$.inv $(N i n) \in M \wedge$ capped-dist 1 (inv (Ni n)) (inv N) $<e$
using $n 0$ by (auto intro!: exI[where $x=n 0]$ simp: inv-eq x LPm-return-eq-capped-dist)
qed (simp add: inv-eq x)
qed
moreover have $\forall x \in$ topspace mtopology. inv (return (borel-of mtopology) x) $=x$
$\forall y \in$ topspace s.sub.mtopology. return (borel-of mtopology) $($ inv $y)=y$
by (auto simp: inv-eq)
ultimately show homeomorphic-maps mtopology (subtopology LPm.mtopology $\left.\left((\lambda x \text {. return (borel-of mtopology) } x)^{\prime} M\right)\right)$
(λx. return (borel-of mtopology) x) inv
by (simp add: s.mtopology-submetric homeomorphic-maps-def)
qed
corollary homeomorphic-space-mtopology-return:
mtopology homeomorphic-space (subtopology LPm.mtopology ($(\lambda x$. return (borel-of mtopology) x) (M))
using homeomorphic-map-return homeomorphic-space by fast
lemma closedin-returnM: closedin LPm.mtopology (λ x. return (borel-of mtopology) x) ' M)
unfolding LPm.metric-closedin-iff-sequentially-closed
proof safe
fix $N i N$
assume h :range $N i \subseteq(\lambda x$. return (borel-of mtopology) $x)$ ' M limitin LPm.mtopology Ni N sequentially
from range-subset $D[$ OF this(1)]
obtain $x i$ where $x i$: $\bigwedge i$. xi $i \in M N i=(\lambda i$. return (borel-of mtopology) $(x i i))$ unfolding image-def by simp metis
have sets- N [measurable-cong]: sets $N=$ sets (borel-of mtopology)
by (meson LPm.limitin-mspace $h(2)$ inP-D)
have $[$ measurable $]: \bigwedge n$. $\{$ xi $n\} \in$ sets N
by (simp add: Hausdorff-space-mtopology borel-of-closed closedin-Hausdorff-sing-eq sets- N xi(1))
interpret N : finite-measure N by (meson LPm.limitin-metric-dist-null h(2) inP-D(1))
interpret $N i$: prob-space $N i$ i for i
by (auto intro!: prob-space-return simp: xi space-borel-of)
have $N-r$: ereal (measure $N A$) \leq ereal 1 for A unfolding ereal-less-eq(3)
proof(rule order.trans[OF N.bounded-measure])
interpret mweak-conv-fin Md Ni N sequentially
using limitin-topspace[OF $h(2)] \mathbf{b y}$ (auto intro!: inP-mweak-conv-fin inP-I
return-inP simp: xi(2))
have mweak-conv-seq Ni N
using converge-imp-mweak-conv $h(2)$ xi(2) by force
from mweak-conv-imp-limit-space[OF this]
show measure $N($ space $N) \leq 1$
by (auto intro!: tendsto-upperbound $[$ where $F=$ sequentially and $f=\lambda n$. Ni.prob
n (space N)] simp: space- N space- $N i$)
qed
have \exists x. limitin mtopology xi x sequentially
proof (rule ccontr)
assume contr: $\ddagger x$. limitin mtopology xi x sequentially
have MCauchy-xi: MCauchy xi
using MCauchy-iff-MCauchy-return[THEN iffD2, of xi,
OF - LPm.convergent-imp-MCauchy[OF - h(2)[simplified xi(2)]]] xi by fastforce
have $0: \nexists x$. limitin mtopology $(x i \circ a) x$ sequentially if a : strict-mono a for a :: nat \Rightarrow nat
using MCauchy-convergent-subsequence[OF MCauchy-xi a] contr by blast
have inf: infinite (range xi)
by (metis 0 Bolzano-Weierstrass-property MCauchy-xi MCauchy-def finite-subset preorder-class.order.refl)
have cl: closedin mtopology (range (xi○a)) if a : strict-mono a for $a::$ nat \Rightarrow nat
unfolding closedin-metric
proof safe
fix x
assume $x: x \in M x \notin$ range $(x i \circ a)$
from $0 a$ have \neg limitin mtopology $(x i \circ a) x$ sequentially by blast
then obtain e where $e: e>0 \bigwedge n 0 . \exists n \geq n 0 . d((x i \circ a) n) x \geq e$
using $x i(1) x$ by (fastforce simp: limit-metric-sequentially)
then obtain $n 0$ where $n 0: \bigwedge n m . n \geq n 0 \Longrightarrow m \geq n 0 \Longrightarrow d((x i \circ a) n)$ $((x i \circ a) m)<e / 2$
using MCauchy-subsequence[OF a MCauchy-xi]
by (meson MCauchy-def zero-less-divide-iff zero-less-numeral)
obtain $n 1$ where $n 1: n 1 \geq n 0 d((x i \circ a) n 1) x \geq e$
using $e(2)$ by blast
define e^{\prime} where $e^{\prime} \equiv \operatorname{Min}\left((\lambda n . d x((x i \circ a) n))^{‘}\{. . n 0\}\right)$
have e^{\prime}-pos: $e^{\prime}>0$
unfolding e^{\prime}-def using x xi(1) by (subst linorder-class.Min-gr-iff) auto
have $d x((x i \circ a) n) \geq \min (e / 2) e^{\prime}$ for n
$\operatorname{proof}($ cases $n \leq n 0)$
assume $\neg n \leq n 0$
then have $d((x i \circ a) n)((x i \circ a) n 1)<e / 2$ using $n 1$ (1) n0 by simp
hence $e / 2 \leq d x((x i \circ a) n 1)-d((x i \circ a) n)((x i \circ a) n 1)$ using $n 1$ (2) by (simp add: commute)
also have $\ldots \leq d x((x i \circ a) n)$
using triangle $[$ OF $x(1) x i(1)[$ of a $n] x i(1)[$ of a n1]] by simp
finally show ?thesis
by simp
qed(auto intro!: linorder-class.Min-le min.coboundedI2 simp: e^{\prime}-def)
thus $\exists r>0$. disjnt (range (xi○a)) (mball $x r$)
using e^{\prime}-pos $e(1) x(1)$ xi(1) linorder-not-less
$\mathbf{b y}(f a s t f o r c e ~ i n t r o!: ~ e x I[w h e r e ~ x=\min (e / 2) e] ~ s i m p: ~ d i s j n t-d e f ~ s i m p ~ d e l: ~$
min-less-iff-conj)
qed(use xi in auto)
hence meas: strict-mono $a \Longrightarrow($ range $(x i \circ a)) \in$ sets (borel-of mtopology) for a :: nat \Rightarrow nat
by (auto simp: borel-of-closed)
have 1:measure $N($ range $(x i \circ a))=1$ if a : strict-mono a for $a::$ nat \Rightarrow nat
proof -
interpret mweak-conv-fin Md Ni N sequentially
using limitin-topspace[OF $h(2)]$ xi(1) by (auto intro!: inP-mweak-conv-fin simp: xi(2))
have mweak-conv-seq Ni N
using converge-imp-mweak-conv[OF $h(2)] x i(2)$ by simp
hence $*$: closedin mtopology $A \Longrightarrow \limsup (\lambda n$. ereal $($ measure $(N i n) A)) \leq$
ereal (measure $N A$) for A
using mweak-conv-eq2 by blast
have ereal $1 \leq \limsup (\lambda n$. ereal (measure $(N i n)($ range $(x i \circ a))))$ using meas $\left[\right.$ OF a] seq-suble $\left[\begin{array}{ll}O F & a\end{array}\right.$
by (auto simp: limsup-INF-SUP le-Inf-iff le-Sup-iff xi(2) measure-return indicator-def one-ereal-def)
also have $\ldots \leq \operatorname{ereal}($ measure $N($ range $(x i \circ a)))$ $\mathbf{b y}($ intro $* a \mathrm{cl})$
finally show ?thesis using $N-r$ by (auto intro!: antisym)
qed
have 2:measure $N\{x i n\}=0$ for n
proof -
have infinite $\{$. xi $i \neq x i n\}$
proof
assume finite $\{i$. xi $i \neq x i n\}$
then have finite (xi' $\{i$. xi $i \neq x i n\}$)
by blast
moreover have $(x i `\{i$. xi $i \neq x i n\})=$ range $x i-\{x i n\}$
by auto
ultimately show False
using inf by auto
qed
from infinite-enumerate[OF this]
obtain $a::$ nat \Rightarrow nat where r : strict-mono a \bigwedge i. a $i \in\{$ i. xi $i \neq$ xin\}
by blast
hence disj: range $(x i \circ a) \cap\{x i n\}=\{ \}$
by fastforce
from N.finite-measure-Union[OF - this]
have measure $N($ range $(x i \circ a) \cup\{x i n\})=1+$ measure $N\{x i n\}$
using meas $[$ OF r(1)] 1 [OF r(1)] by simp
thus ?thesis
using N-r $[$ of range $(x i \circ a) \cup\{x i n\}]$ measure-nonneg $[$ of $N\{x i n\}]$ by simp
qed
have measure N (range xi) $=0$
proof -
have count: countable (range xi)
by blast
define $X n$ where $X n \equiv(\lambda n$. $\{$ from-nat-into (range xi) $n\})$
have $U n$-Xn: range $x i=(\bigcup n$. Xn $n)$
using bij-betw-from-nat-into [OF count inf] by (simp add: UNION-singleton-eq-range
Xn-def)
have disjXn: disjoint-family Xn
using bij-betw-from-nat-into[OF count inf] by (simp add: inf disjoint-family-on-def
Xn-def)
have [measurable]: $\bigwedge n . X n n \in$ sets N
using bij-betw-from-nat-into[OF count inf]
by (metis UNIV-I Xn-def $\langle\backslash n$. $\{$ xi $n\} \in$ sets $N\rangle$ bij-betw-iff-bijections
image-iff)

```
    have eq0: \n. measure \(N(X n n)=0\)
    by (metis bij-betw-from-nat-into[OF count inf] 2 UNIV-I Xn-def bij-betw-imp-surj-on
image-iff)
    have measure \(N(\) range xi \()=\) measure \(N(\bigcup n\). Xn n)
            by (simp add: Un-Xn)
    also have \(\ldots=\left(\sum n\right.\). measure \(\left.N(X n n)\right)\)
            using \(N\).suminf-measure \([O F-\operatorname{disjXn}]\) by fastforce
    also have \(\ldots=0\)
        by ( simp add: eq0)
    finally show ?thesis .
    qed
    with 1 [OF strict-mono-id] show False by simp
qed
    then obtain \(x\) where \(x\) : limitin mtopology \(x i x\) sequentially
    by blast
    show \(N \in(\lambda x\). return (borel-of mtopology) \(x)\) ' \(M\)
    using limitin-topspace \([\) OF \(x]\) by (simp add: LPm.limitin-metric-unique \([\) OF h(2)[simplified
xi(2)] conv-conv-return [OF \(x]\) ])
qed simp
corollary separable-iff-LPm-separable: separable-space mtopology \(\longleftrightarrow\) separable-space
LPm.mtopology
    using homeomorphic-space-second-countability[OF homeomorphic-space-mtopology-return]
separable-LPm
    by (auto simp: separable-space-iff-second-countable LPm.separable-space-iff-second-countable
second-countable-subtopology)
corollary LPmcomplete-mcomplete:
    assumes LPm.mcomplete
    shows mcomplete
    unfolding mcomplete-def
proof safe
    fix \(x n\)
    assume \(h\) : MCauchy xn
    hence 1: range \(x n \subseteq M\)
        using MCauchy-def by blast
    interpret Submetric \(\mathcal{P}\) LPm ( \(\lambda\) x. return (borel-of mtopology) x) ' \(M\)
        by (metis LPm.Metric-space-axioms LPm.topspace-mtopology Submetric.intro
Submetric-axioms.intro closedin-returnM closedin-subset)
    have sub.mcomplete
        using assms(1) closedin-eq-mcomplete closedin-returnM by blast
    moreover have sub.MCauchy ( \(\lambda n\). return (borel-of mtopology) (xn \(n\) ))
        using MCauchy-iff-MCauchy-return[OF 1] 1 by (simp add: MCauchy-submetric
\(h\) image-subset-iff)
    ultimately obtain \(x\) where
        \(x: x \in M\) limitin LPm.mtopology ( \(\lambda n\). return (borel-of mtopology) \((x n n)\) )
                            (return (borel-of mtopology) x) sequentially
        unfolding sub.mcomplete-def limitin-submetric-iff by blast
    thus \(\exists x\). limitin mtopology xn \(x\) sequentially
```

```
    by (auto simp: conv-iff-conv-return[OF \(1 x(1)\),symmetric])
qed
corollary mcomplete-iff-LPmcomplete: separable-space mtopology \(\Longrightarrow\) mcomplete
\(\longleftrightarrow\) LPm.mcomplete
    by(auto simp add: mcomplete-LPmcomplete LPmcomplete-mcomplete)
```

lemma LPmcompact-imp-mcompact: compact-space LPm.mtopology \Longrightarrow compact-space mtopology
by (meson closedin-compact-space closedin-returnM compact-space-subtopology homeomorphic-compact-space homeomorphic-space-mtopology-return)
end
corollary Polish-space-weak-conv-topology:
assumes Polish-space X
shows Polish-space (weak-conv-topology X)
proof -
obtain d where d :Metric-space (topspace X) d Metric-space.mcomplete (topspace
X) d

Metric-space.mtopology (topspace X) $d=X$
by (metis Metric-space.topspace-mtopology assms completely-metrizable-space-def
Polish-space-imp-completely-metrizable-space)
then interpret Levy-Prokhorov topspace $X d$
by (auto simp: Levy-Prokhorov-def)
have separable-space mtopology
by (simp add: assms d(3) Polish-space-imp-separable-space)
thus ?thesis
using LPm.Polish-space-mtopology LPmtopology-eq-weak-conv-topology d(2)
$d(3)$ mcomplete-LPmcomplete separable-LPm by force
qed

5.4 Prokhorov Theorem for Topology of Weak Convergence

lemma relatively-compact-imp-tight:
assumes Polish-space $X \Gamma \subseteq\{N$. sets $N=$ sets (borel-of X) \wedge finite-measure $N\}$
and compactin (weak-conv-topology X) (weak-conv-topology X closure-of Γ)
shows tight-on-set X Г
proof -
obtain d where d :Metric-space (topspace X) d Metric-space.mcomplete (topspace
X) d

Metric-space.mtopology (topspace X) $d=X$
by (metis Metric-space.topspace-mtopology assms(1) completely-metrizable-space-def
Polish-space-imp-completely-metrizable-space)
note sep $=$ Polish-space-imp-separable-space[OF assms(1)]
hence sep':separable-space (Metric-space.mtopology (topspace X) d)
by (simp add: d)
interpret Levy-Prokhorov topspace X d

```
    by(auto simp:d Levy-Prokhorov-def)
    show ?thesis
    using relatively-compact-imp-tight-LP[of \Gamma] assms sep inP-iff
    by(fastforce simp add: d LPmtopology-eq-weak-conv-topology[OF sep ])
qed
lemma tight-imp-relatively-compact:
    assumes metrizable-space X separable-space X
        \Gamma\subseteq{N.N(space N)\leqennreal r ^ sets N = sets (borel-of X)}
        and tight-on-set X \Gamma
    shows compactin (weak-conv-topology X) (weak-conv-topology X closure-of \Gamma)
proof -
    obtain d}\mathrm{ where d:Metric-space (topspace X) d Metric-space.mtopology (topspace
X) d=X
    by (metis Metric-space.topspace-mtopology assms(1) metrizable-space-def)
    hence sep':separable-space (Metric-space.mtopology (topspace X) d)
    by(simp add:d assms)
    show ?thesis
    proof(cases r\leq0)
    assume r\leq0
        then have {N.N (space N)\leq ennreal r ^ sets N= sets (borel-of X)}=
{null-measure (borel-of X)}
    by(fastforce simp: ennreal-neg le-zero-eq[THEN iffD1,OF order.trans[OF emea-
sure-space]] intro!: measure-eqI)
    then have }\Gamma={}\vee\Gamma={null-measure (borel-of X)
        using assms(3) by auto
    moreover have weak-conv-topology X closure-of {null-measure (borel-of X)}
= {null-measure (borel-of X)}
    by(intro closure-of-eq[THEN iffD2] closedin-Hausdorff-singleton metrizable-imp-Hausdorff-space
                metrizable-space-subtopology metrizable-weak-conv-topology assms)
                (auto intro!: finite-measureI)
    ultimately show ?thesis
            by (auto intro!: finite-measureI)
    next
    assume }\negr\leq
    then interpret Levy-Prokhorov topspace X d
            by(auto simp:d Levy-Prokhorov-def)
    show ?thesis
            using tight-imp-relatively-compact-LP[of \Gamma] assms
            by(auto simp add: d LPmtopology-eq-weak-conv-topology[OF sep }]\mathrm{ )
    qed
qed
lemma Prokhorov:
    assumes Polish-space X \Gamma\subseteq{N.N (space N)\leqennreal r ^ sets N = sets
(borel-of X)}
    shows tight-on-set X \Gamma\longleftrightarrow compactin (weak-conv-topology X) (weak-conv-topology
X closure-of \Gamma)
proof -
```

```
    have }\Gamma\subseteq{N.sets N= sets (borel-of X) ^ finite-measure N
    using assms(2) by(auto intro!: finite-measureI simp: top.extremum-unique)
    thus ?thesis
    using relatively-compact-imp-tight tight-imp-relatively-compact assms
        Polish-space-imp-metrizable-space Polish-space-imp-separable-space
    by (metis (mono-tags, lifting))
qed
corollary tight-on-set-imp-convergent-subsequence:
    fixes Ni :: nat }=>\mathrm{ - measure
    assumes metrizable-space X separable-space X
    and tight-on-set X (range Ni) \bigwedgei.(Ni i) (space (Ni i))\leq ennreal r
    shows \existsaN. strict-mono a ^ finite-measure N}\wedge\mathrm{ sets N= sets (borel-of X)
                \wedgeN(space N)\leq ennreal r ^ weak-conv-on (Ni\circa) N sequentially X
proof(cases r\leq0)
    case True
    then have Ni=(\lambdai.null-measure (borel-of X))
    using assms(3) order.trans[OF emeasure-space assms(4)]
    by(auto simp: tight-on-set-def ennreal-neg intro!: measure-eqI)
    thus?thesis
    using weak-conv-on-const[of Ni]
            by(auto intro!: exI[where x=id] exI[where x=null-measure (borel-of X)]
strict-mono-id finite-measureI)
next
    case False
    then have r[arith]:r>0 by linarith
    obtain d where d: Metric-space (topspace X) d Metric-space.mtopology (topspace
X) d=X
    by (metis Metric-space.topspace-mtopology assms(1) metrizable-space-def)
    then interpret d: Metric-space topspace X d
        by blast
    interpret Levy-Prokhorov topspace X d
    by(auto simp:Levy-Prokhorov-def d )
    have range-Ni: range Ni\subseteq{N.N (space N)\leqennreal r ^ sets N = sets (borel-of
X)}
    using assms(3,4) by(auto simp: tight-on-set-def)
    hence Ni-fin: \i. finite-measure (Ni i)
    by (meson assms(3) range-eqI tight-on-set-def)
    have range-Ni':LPm.mtopology closure-of range Ni
                \subseteq \{ N . N ( \text { space N) < ennreal r ^ sets N = sets (borel-of X)\}}
    by (metis (no-types, lifting) Collect-cong closedin-bounded-measures closure-of-minimal
d(2) range-Ni)
    have compactin LPm.mtopology (LPm.mtopology closure-of (range Ni))
            using assms(2,3) range-Ni by(auto intro!: tight-imp-relatively-compact-LP
simp:d(2))
    from LPm.compactin-sequentially[THEN iffD1,OF this] range-Ni
    obtain a N where N\inLPm.mtopology closure-of range Ni strict-mono a
    limitin LPm.mtopology (Ni ○ a) N sequentially
    by (metis (no-types, lifting) LPm.topspace-mtopology assms(3) closure-of-subset
```

```
d(2) inP-I subsetI tight-on-set-def)
    moreover hence finite-measure N sets N= sets (borel-of X)N (space N)\leq
ennreal r
    using range-Ni' by (auto simp add: LPm.limitin-metric inP-iff)
    ultimately show ?thesis
    using range-Ni Ni-fin assms(4)
            by(fastforce intro!: converge-imp-mweak-conv[simplified d] exI[where x=a]
exI[where x=N] inP-I
                        simp: image-subset-iff d(2))
qed
end
theory Space-of-Finite-Measures
    imports Prokhorov-Theorem
begin
```


6 Measurable Space of Finite Measures

6.1 Measurable Space of Finite Measures

We define the measurable space of all finite measures in the same way as subprob-algebra.
definition finite-measure-algebra :: ' a measure $\Rightarrow{ }^{\prime}$ ' a measure measure where finite-measure-algebra $K=$
(SUP $A \in$ sets K. vimage-algebra $\{M$. finite-measure $M \wedge$ sets $M=$ sets $K\}$ (λM. emeasure $M A$) borel)
lemma space-finite-measure-algebra:
space $($ finite-measure-algebra $A)=\{M$. finite-measure $M \wedge$ sets $M=$ sets $A\}$
by (auto simp add:finite-measure-algebra-def space-Sup-eq-UN)
lemma finite-measure-algebra-cong: sets $M=$ sets $N \Longrightarrow$ finite-measure-algebra $M=$ finite-measure-algebra N
by (simp add: finite-measure-algebra-def)
lemma measurable-emeasure-finite-measure-algebra[measurable]:
$a \in$ sets $A \Longrightarrow(\lambda M$. emeasure $M a) \in$ borel-measurable (finite-measure-algebra
A)
by (auto intro!: measurable-Sup1 measurable-vimage-algebra1 simp: finite-measure-algebra-def)
lemma measurable-measure-finite-measure-algebra[measurable]:
$a \in$ sets $A \Longrightarrow(\lambda M$. measure $M a) \in$ borel-measurable (finite-measure-algebra A)
unfolding measure-def by measurable
lemma finite-measure-measurableD:
assumes $N: N \in$ measurable M (finite-measure-algebra S) and $x: x \in$ space M

```
    shows space (Nx)= space S
    and sets (Nx)= sets S
    and measurable ( N x) K= measurable S K
    and measurable K (Nx) = measurable K S
    using measurable-space[OF N x]
    by (auto simp: space-finite-measure-algebra intro!: measurable-cong-sets dest:
sets-eq-imp-space-eq)
ML <
fun finite-measure-cong thm ctxt =(
    let
        val thm' = Thm.transfer' ctxt thm
        val free =thm}\mp@subsup{}{}{\prime}|>\mathrm{ Thm.concl-of }|>\mathrm{ HOLogic.dest-Trueprop }|>\mathrm{ dest-comb }|>fs
|>
            dest-comb |> snd |> strip-abs-body |> head-of |> is-Free
    in
    if free then ([], Measurable.add-local-cong (thm'RS @{thm finite-measure-measurableD(2)})
ctxt)
            else ([], ctxt)
    end
    handle THM - => ([],ctxt)| TERM - => ([],ctxt))
,
setup <
    Context.theory-map (Measurable.add-preprocessor finite-measure-cong subprob-cong)
,
context
    fixes KMN assumes K: K\in measurable M (finite-measure-algebra N)
begin
lemma finite-measure-space-kernel: }a\in\mathrm{ space M \ finite-measure ( }K\mathrm{ K a)
    using measurable-space[OF K] by (simp add: space-finite-measure-algebra)
lemma sets-finite-kernel: a }\in\mathrm{ space M > sets (K a) = sets N
    using measurable-space[OF K] by (simp add: space-finite-measure-algebra)
lemma measurable-emeasure-finite-kernel[measurable]:
    A sets }N\Longrightarrow(\lambdaa.emeasure (Ka) A) \in borel-measurable M
    using measurable-compose[OF K measurable-emeasure-finite-measure-algebra].
end
lemma measurable-finite-measure-algebra:
\((\bigwedge a . a \in\) space \(M \Longrightarrow\) finite-measure \((K a)) \Longrightarrow\)
\(\left(\bigwedge a . a \in\right.\) space \(M \Longrightarrow\) sets \(\left(\begin{array}{l}K a)=\text { sets } N) \Longrightarrow\end{array}\right.\)
\(\left(\bigwedge A . A \in\right.\) sets \(N \Longrightarrow\left(\lambda a\right.\). emeasure \(\left(\begin{array}{ll}K & a) A) \in \text { borel-measurable } M) \Longrightarrow\end{array}\right.\)
```


$K \in$ measurable M (finite-measure-algebra N)

by (auto intro!: measurable-Sup2 measurable-vimage-algebra2 simp: finite-measure-algebra-def)

```
lemma measurable-finite-markov:
    K\in measurable M (finite-measure-algebra M)\longleftrightarrow
        (\forallx\inspace M. finite-measure (Kx)^ sets (Kx)= sets M)^
    (}\forallA\in\mathrm{ sets M. ( }\lambdax.\mathrm{ emeasure (K x) A) 的easurable M borel)
proof
    assume (\forallx\inspace M. finite-measure (K x) ^ sets (K x) = sets M)^
        (\forallA\insets M. (\lambdax. emeasure (K x) A) \in borel-measurable M)
    then show }K\in\mathrm{ measurable M (finite-measure-algebra M)
        by (intro measurable-finite-measure-algebra) auto
next
    assume }K\in\mathrm{ measurable M (finite-measure-algebra M)
    then show ( }\forallx\in\mathrm{ space M. finite-measure ( }Kx)\wedge\mathrm{ sets (Kx)= sets M)}
        ( }\forall\mathrm{ A sets M. ( }\lambdax.\mathrm{ emeasure ( }Kx)A)\in\mathrm{ borel-measurable M)
        by (auto dest: finite-measure-space-kernel sets-finite-kernel)
qed
lemma measurable-finite-measure-algebra-generated:
    assumes eq: sets N= sigma-sets \Omega G and Int-stable GG\subseteqPow \Omega
    assumes subsp: \a. a \in space M\Longrightarrow finite-measure (K a)
    assumes sets: \a. a f space M\Longrightarrow sets (Ka)= sets N
    assumes }\A.A\inG\Longrightarrow(\lambdaa. emeasure (Ka)A)\in borel-measurable M
    assumes \Omega: (\lambdaa. emeasure ( 
    shows K measurable M (finite-measure-algebra N)
proof (rule measurable-finite-measure-algebra)
    fix a assume a f space M then show finite-measure (Ka) sets (Ka) = sets
N by fact+
next
    interpret G: sigma-algebra }\Omega\mathrm{ sigma-sets }\Omega
        using <G\subseteqPow \Omega> by (rule sigma-algebra-sigma-sets)
    fix A assume A sets N with assms(2,3) show (\lambdaa. emeasure (Ka) A) \in
borel-measurable M
    unfolding <sets N = sigma-sets \OmegaG
    proof (induction rule: sigma-sets-induct-disjoint)
        case (basic A) then show ?case by fact
    next
        case empty then show ?case by simp
    next
        case (compl A)
        have (\lambdaa. emeasure (Ka) (\Omega-A)) \in borel-measurable M \longleftrightarrow
            (\lambdaa. emeasure ( }
            using G.top G.sets-into-space sets eq compl finite-measure.emeasure-finite[OF
subsp]
            by (intro measurable-cong emeasure-Diff) auto
            with compl \Omega show ?case
            by simp
    next
```

```
    case (union F)
    moreover have (\lambdaa. emeasure (Ka) (\bigcupi.F i)) \in borel-measurable M\longleftrightarrow
            (\lambdaa. \sumi. emeasure (Ka) (Fi)) \in borel-measurable M
        using sets union eq
        by (intro measurable-cong suminf-emeasure[symmetric]) auto
    ultimately show ?case
        by auto
    qed
qed
lemma space-finite-measure-algebra-empty: space \(N=\{ \} \Longrightarrow\) space (finite-measure-algebra \(N)=\{\) null-measure \(N\}\)
by (fastforce simp: space-finite-measure-algebra space-empty-iff intro!: measure-eqI finite-measureI)
lemma sets-subprob-algebra-restrict:
sets (subprob-algebra \(M\) ) sets (restrict-space (finite-measure-algebra \(M\) ) \(\{N\).
subprob-space \(N\}\) )
(is sets ? \(L=\) sets ? \(R\) )
proof -
have \(1: i d \in\) measurable ? \(L\) ?R
using sets.sets-into-space[of - M]
by (auto intro!: measurable-restrict-space2 Int-stableI measurable-finite-measure-algebra-generated \([\) where \(\Omega=\) space \(M\)
and \(G=\) sets \(M]\) simp: space-subprob-algebra subprob-space-def sets.sigma-sets-eq)
have 2:id \(\in\) measurable ? \(R\) ? \(L\)
using sets.sets-into-space \([o f-M]\)
by (auto intro!: measurable-subprob-algebra-generated \([\) where \(\Omega=\) space \(M\) and \(G=\) sets \(M]\) Int-stableI
simp: sets.sigma-sets-eq space-restrict-space space-finite-measure-algebra mea-surable-restrict-space1)
have 3: space ? \(L=\) space ? \(R\)
by (auto simp: space-restrict-space space-subprob-algebra space-finite-measure-algebra subprob-space-def)
have \([\) simp \(]: \wedge A . A \in\) sets \(? L \Longrightarrow A \cap\) space \(? R=A \bigwedge A . A \in\) sets \(? R \Longrightarrow A \cap\)
space ? \(L=A\)
using 3 sets.sets-into-space by auto
show ?thesis
using measurable-sets[OF 1] measurable-sets[OF 2] by auto
qed
```


6.2 Equivalence between Spaces of Finite Measures

Corollary 17.21 [2].
lemma(in Levy-Prokhorov) openin-lower-semicontinuous:
assumes openin mtopology U
shows lower-semicontinuous-map LPm.mtopology (λN. measure $N U$)
unfolding lower-semicontinuous-map-liminf-real[OF LPm.first-countable-mtopology]

```
proof safe
    fix Ni N
    assume h:limitin LPm.mtopology Ni N sequentially
    then obtain K where K: \n. n\geqK\LongrightarrowNi n \mathcal{P}
        by(simp add:mtopology-of-def LPm.limit-metric-sequentially)
            (meson LPm.mbounded-alt-pos LPm.mbounded-empty)
    have h':limitin LPm.mtopology (\lambdan.Ni (n+K)) N sequentially
        by (simp add: h limitin-sequentially-offset)
    interpret mweak-conv-fin Md \lambdan. Ni (n+K)N sequentially
        using Kh by(auto intro!: inP-mweak-conv-fin simp: mtopology-of-def dest:
LPm.limitin-mspace)
    have mweak-conv-seq (\lambdan.Ni (n+K)) N
        using K LPm.Self-def converge-imp-mweak-conv h' by auto
    hence ereal (measure N U)\leqliminf ( }\lambda\mathrm{ x. ereal (measure (Ni (x+K))U))
        using assms by(simp add: mweak-conv-eq3)
    thus ereal (measure N U) \leqliminf (\lambdax. ereal (measure (Ni x) U))
        unfolding liminf-shift-k[of \lambdax. ereal (measure (Ni x) U)K].
qed
lemma(in Levy-Prokhorov) closedin-upper-semicontinuous:
    assumes closedin mtopology A
    shows upper-semicontinuous-map LPm.mtopology ( }\lambdaN.measure N A)
    unfolding upper-semicontinuous-map-limsup-real[OF LPm.first-countable-mtopology]
proof safe
    fix Ni N
    assume h:limitin LPm.mtopology Ni N sequentially
    then obtain K where K: \n. n\geqK\LongrightarrowNi n \mathcal{P}
        by(simp add: mtopology-of-def LPm.limit-metric-sequentially)
            (meson LPm.mbounded-alt-pos LPm.mbounded-empty)
    have }\mp@subsup{h}{}{\prime}\mathrm{ : limitin LPm.mtopology ( }\lambdan.Ni(n+K))N sequentially
        by (simp add: h limitin-sequentially-offset)
    interpret mweak-conv-fin Md \lambdan.Ni (n+K)N sequentially
        using Kh by(auto intro!: inP-mweak-conv-fin simp: mtopology-of-def dest:
LPm.limitin-mspace)
    have mweak-conv-seq (\lambdan.Ni (n+K)) N
        using K LPm.Self-def converge-imp-mweak-conv h' by auto
    hence limsup ( }\lambdax\mathrm{ . ereal (measure (Ni (x+K)) A)) }\leq\operatorname{ereal (measure N A)
        using assms by(auto simp: mweak-conv-eq2)
    thus limsup ( }\lambdax.\mathrm{ ereal (measure (Ni x) A)) < ereal (measure N A)
        unfolding limsup-shift-k[of \lambdax. ereal (measure (Ni x) A)K].
qed
context Levy-Prokhorov
begin
We show that the measurable space generated from LPm.mtopology is equal to finite-measure-algebra (borel-of LPm.mtopology).
lemma sets-LPm1: sets (finite-measure-algebra (borel-of mtopology)) \(\subseteq\) sets (borel-of LPm.mtopology) (is sets ?Giry \(\subseteq\) sets ?Levy)
```

```
proof safe
    have space-eq: space ?Levy \(=\) space? Giry
    by (simp add: space-finite-measure-algebra space-borel-of) (auto simp add: \(\mathcal{P}\)-def)
    have 1:\A. openin mtopology \(A \Longrightarrow(\lambda N\). measure \(N A) \in\) borel-measurable
?Levy
    by(auto intro!: lower-semicontinuous-map-measurable openin-lower-semicontinuous)
    have m:id \(\in\) ? Levy \(\rightarrow_{M}\) ? Giry
    proof (rule measurable-finite-measure-algebra-generated \([\) where \(\Omega=M\) and \(G=\{U\)
openin mtopology U\}])
    show sets (borel-of mtopology) \(=\) sigma-sets \(M\{U\). openin mtopology \(U\}\)
        using sets-borel-of[of mtopology] by simp
    next
        show Int-stable \(\{U\). openin mtopology \(U\}\)
        by (auto intro!: Int-stableI)
    next
        show \(\{U\). openin mtopology \(U\} \subseteq\) Pow \(M\)
            using openin-subset[of mtopology] by auto
    next
        show \(\bigwedge a . a \in\) space (borel-of LPm.mtopology) \(\Longrightarrow\) finite-measure (id a)
        by (simp add: space-borel-of) (simp add: \(\mathcal{P}\)-def)
    next
        show \(\bigwedge a . a \in\) space (borel-of LPm.mtopology) \(\Longrightarrow\) sets \((i d a)=\) sets (borel-of
mtopology)
        by (simp add: space-borel-of) (simp add: \(\mathcal{P}\)-def)
    next
        fix \(A\)
        assume \(A \in\{U\). openin mtopology \(U\}\)
    then have \((\lambda N\). measure \((i d N) A) \in\) borel-measurable (borel-of LPm.mtopology)
                by (simp add: 1)
        then have \(1:(\lambda N\). ennreal (measure \((i d N) A)) \in\) borel-measurable (borel-of
LPm.mtopology)
                by \(\operatorname{simp}\)
    have \(2: \bigwedge N . N \in\) space (borel-of LPm.mtopology) \(\Longrightarrow\) ennreal (measure (id \(N\) )
\(A)=\) emeasure \((i d N) A\)
                unfolding measure-def
                by (rule ennreal-enn2real)
                (simp add: finite-measure.emeasure-eq-measure space-eq space-finite-measure-algebra)
    show \((\lambda N\). emeasure \((i d N) A) \in\) borel-measurable (borel-of LPm.mtopology)
                using 1 measurable-cong[THEN iffD1,OF 2 1] by auto
    next
        have openin mtopology \(M\)
                by simp
    then have \((\lambda N\). measure \((i d N) M) \in\) borel-measurable (borel-of LPm.mtopology)
                by (simp add: 1)
                            then have \(1:(\lambda N\). ennreal (measure \((i d N) M)) \in\) borel-measurable (borel-of
LPm.mtopology)
            by \(\operatorname{simp}\)
    have 2: \(\backslash N . N \in\) space (borel-of LPm.mtopology) \(\Longrightarrow\) ennreal (measure (id \(N\) )
\(M)=\) emeasure \((i d N) M\)
```

unfolding measure-def by(rule ennreal-enn2real)
(simp add: finite-measure.emeasure-eq-measure space-eq space-finite-measure-algebra)
show $(\lambda N$. emeasure $(i d N) M) \in$ borel-measurable (borel-of LPm.mtopology)
using 1 measurable-cong[THEN iffD1,OF 2 1] by auto
qed
fix A
assume $A: A \in$ sets ?Giry
from measurable-sets[OF m this] have $A \cap$ space ?Levy \in sets ?Levy by simp
moreover have $A \cap$ space ?Levy $=A$
by (simp add: A space-eq)
ultimately show $A \in$ sets? Levy
by simp
qed
lemma sets-LPm2:
assumes mcomplete separable-space mtopology
shows sets (borel-of LPm.mtopology) \subseteq sets (finite-measure-algebra (borel-of mtopology))
(is sets ?Levy \subseteq sets ?Giry)
proof -
obtain \mathcal{O} where base: countable \mathcal{O} base-in mtopology \mathcal{O}
using assms(2) second-countable-base-in separable-space-imp-second-countable by blast
define funion-of-base where funion-of-base $\equiv \bigcup$ ' $\{U$. finite $U \wedge U \subseteq \mathcal{O}\}$
have funion-of-base-ne: funion-of-base $\neq\{ \}$
by (auto simp: funion-of-base-def)
have open-funion-of-base: $\bigwedge A . A \in$ funion-of-base \Longrightarrow openin mtopology A
using base-in-openin[OF base(2)] by(auto simp: funion-of-base-def)
hence meas-funion-of-base[measurable]: $\bigwedge A . A \in$ funion-of-base $\Longrightarrow A \in$ sets
(borel-of mtopology)
by(auto simp: borel-of-open)
have countable-funion-of-base: countable funion-of-base
using countable-Collect-finite-subset[OF base(1)] by (auto simp: funion-of-base-def)
have sets ? Levy $=$ sigma-sets $\mathcal{P}\{$ LPm.mball $a \varepsilon \mid a \varepsilon . a \in \mathcal{P} \wedge 0<\varepsilon\}$
by (auto simp: borel-of-second-countable' $[$ OF separable-LPm[OF assms(2), simplified LPm.separable-space-iff-second-countable]
base-is-subbase[OF LPm.mtopology-base-in-balls]] intro!: sets-measure-of)
also have $\ldots=$ sigma-sets $\mathcal{P}\{$ LPm.mcball $a \varepsilon \mid a \varepsilon . a \in \mathcal{P} \wedge 0 \leq \varepsilon\}$
proof (safe intro!: sigma-sets-eqI)
fix L and e :: real
assume $h: L \in \mathcal{P}$ and $0<e$
have LPm.mball $L e=(\bigcup n$. LPm.mcball $L(e-1 /($ Suc $n)))$
proof safe
fix N
assume $N: N \in L P m$.mball $L e$
then obtain n where $1 /$ Suc $n<e-L P m L N$
by (meson LPm.in-mball diff-gt-0-iff-gt nat-approx-posE)
thus $N \in(\bigcup n$. LPm.mcball $L(e-1 / \operatorname{real}(S u c n)))$
using N by(auto intro!: exI[where $x=n]$ simp: LPm.mcball-def)
next
fix $N n$
assume $N: N \in L P m . m c b a l l L(e-1 /(S u c n))$
with order.strict-trans1[of LPm L Ne-1/(Suc n)e]
show $N \in L P m$.mball Le
by auto
qed
also have $\ldots \in$ sigma-sets $\mathcal{P}\{$ LPm.mcball $a \varepsilon \mid a \varepsilon . a \in \mathcal{P} \wedge 0 \leq \varepsilon\}$
proof (rule Union)
fix n
consider $e-1 /$ real $($ Suc $n)<0 \mid 0 \leq e-1 /$ real (Suc n) by fastforce
then show LPm.mcball $L(e-1 / \operatorname{real}(S u c n)) \in$ sigma-sets $\mathcal{P}\{$ LPm.mcball $a \varepsilon \mid a \varepsilon . a \in \mathcal{P} \wedge 0 \leq \varepsilon\}$
proof cases
case 2
then show? ?thesis
using h by fast
qed(use LPm.mcball-eq-empty[of $-e-1 /$ real (Suc n)] sigma-sets.Empty in auto)
qed
finally show LPm.mball $L e \in$ sigma-sets $\mathcal{P}\{L P m . m c b a l l a \varepsilon \mid a \varepsilon . a \in \mathcal{P} \wedge$ $0 \leq \varepsilon\}$.
next
fix L and e :: real
assume $h: L \in \mathcal{P} 0 \leq e$
have LPm.mcball $L \bar{e}=(\bigcap n$. LPm.mball $L(e+1 /$ Suc $n))$
proof safe
fix $N n$
assume $N \in L P m . m c b a l l ~ L e$
with order.strict-trans1[of LPm LNee+1/(Suc n)]
show $N \in L P m$.mball $L(e+1 /($ Suc $n))$
by auto
next
fix N
assume hn:N $\in(\bigcap n$.LPm.mball $L(e+1 / \operatorname{real}(S u c n)))$
then have $N: N \in \mathcal{P}$
by auto
show $N \in L P m . m c b a l l L e$
proof -
have $L P m L N \leq e$
proof(rule field-le-epsilon)
fix l :: real
assume $l>0$
then obtain n where $1 /(1+$ real $n)<l$
using nat-approx-posE by auto
with $h n$ show $L P m L N \leq e+l$
by (auto intro!: order.trans[of LPm $L N e+1 /(1+$ real $n) e+l, O F$ less-imp-le])
qed
thus ?thesis using $h n$ by auto
qed
qed
also have $\ldots \in$ sigma-sets $\mathcal{P}\{$ LPm.mball $a \varepsilon \mid a \varepsilon . a \in \mathcal{P} \wedge 0<\varepsilon\}$
proof (rule sigma-sets-Inter)
fix n
show LPm.mball $L(e+1 / \operatorname{real}($ Suc $n)) \in$ sigma-sets $\mathcal{P}\{$ LPm.mball a ε $\mid a \varepsilon . a \in \mathcal{P} \wedge 0<\varepsilon\}$
using h by (auto intro!: exI[where $x=L]$ exI[where $x=e+1 /(1+$ real n)] add-nonneg-pos)
qed auto
finally show LPm.mcball $L e \in$ sigma-sets $\mathcal{P}\{$ LPm.mball $a \varepsilon \mid a \varepsilon . a \in \mathcal{P} \wedge$ $0<\varepsilon\}$.
qed
also have $\ldots=$ sigma-sets (space ?Giry) $\{$ LPm.mcball $a \varepsilon \mid a \varepsilon$. $a \in \mathcal{P} \wedge 0 \leq \varepsilon\}$
unfolding space-finite-measure-algebra \mathcal{P}-def by meson
also have..\subseteq sets ?Giry
proof(rule sigma-sets-le-sets-iff[THEN iffD2])
show $\{$ LPm.mcball $a \varepsilon \mid a \varepsilon . a \in \mathcal{P} \wedge 0 \leq \varepsilon\} \subseteq$ sets?Giry proof safe
fix L and e :: real
assume $L: L \in \mathcal{P}$ and $e: 0 \leq e$
then have sets-L: sets (borel-of mtopology) $=$ sets L and finite-measure L by (auto simp: inP-D)
interpret L : finite-measure L by fact
have LPm.mcball Le
$=(\bigcap A \in$ funion-of-base.
($\cap \mathrm{n} .(\lambda N$. measure $N A)-$
$\{.$. measure $L(\bigcup a \in A$. mball a $(e+1 /(1+$ real $n)))+(e+1 /$ $(1+\operatorname{real} n))\} \cap \mathcal{P})$
$\cap(\bigcap n .(\lambda N$. measure N
$(\bigcup a \in A . \operatorname{mball} a(e+1 /(1+$ real $n))))-{ }^{`}\{$ measure $L A-(e+$ $1 /(1+\operatorname{real} n)) ..\} \cap \mathcal{P}))$
(is - = ? rhs)
unfolding set-eq-iff
$\operatorname{proof}($ intro allI iffI)
fix N
assume $N: N \in L P m . m c b a l l L e$
have sets- N : sets (borel-of mtopology) $=$ sets N and finite-measure N
using N by simp-all (auto simp: inP-D)
then interpret N : finite-measure N by simp
show $N \in$?rhs
proof safe
fix $A n$
assume [measurable]: $A \in$ funion-of-base

```
    have LPm L N<e+1/(1 + real n)
    by(rule order.strict-trans1[of LPm LNee+1/(1 + real n)]) (use N
in auto)
    thus N\in(\lambdaN. measure NA) -' {..measure L ( \bigcup a\inA. mball a (e+1/
(1 + real n))) +(e+1/(1 + real n))}
            N\in(\lambdaN. measure N(Ua\inA. mball a (e+1/(1+ real n)))) -'
{measure L A - (e+1/(1+real n))..}
            using LPm-less-then[of LNe+1/(1+real n)A]NL by auto
            qed(use N in auto)
next
                            fix }
                            assume N\in?rhs
    then have N:N\in\mathcal{P}
            An.A funion-of-base
            \Longrightarrow \text { measure N A m measure L ( \ a,A. mball a (e+1/(1 + real n))) +}
(e+1/(1+real n))
            \A n. A \in funion-of-base
            \Longrightarrow \text { measure L A m measure N( \a,A. mball a (e+1/(1 + real n)))}
+(e+1/(1 + real n))
            using funion-of-base-ne by (auto simp: diff-le-eq)
            then have sets-N: sets (borel-of mtopology) = sets N
                by(auto simp: inP-D)
            interpret N: finite-measure N
            using N by(auto simp: inP-D)
                            have [measurable]: \A e. ( \bigcup a\inA. mball a e) \in sets N \Ae. ( \ a\inA. mball
a e) \in sets L
            by(auto simp: sets-L[symmetric] sets-N[symmetric])
    have ne: {e. e> 0^(\forallA\in{U. openin mtopology U}.
                                    measure L A \leqmeasure N(\bigcupa\inA. mball a e) +e^
                                    measure N A \leq measure L ( \bigcup a\inA. mball a e) +e)}
# {}
            using LPm-ne'[OF L.finite-measure-axioms N.finite-measure-axioms] by
fastforce
    have ( }\Pi{e.e>0\wedge(\forallA\in{U. openin mtopology U}
                                    measure L A \leq measure N(\bigcupa\inA. mball a e) +e^
                                    measure NA\leqmeasure L ( \bigcup a\inA. mball a e) +e)})
\leqe
            proof(safe intro!: cInf-le-iff-less[where f=id,simplified,THEN iffD2,OF
ne])
        fix }
        assume y:e<y
        then obtain n where 1/ Suc n<y-e
            by (meson diff-gt-0-iff-gt nat-approx-posE)
        hence n: e+1/(1+ real n)<y by simp
        show }\existsi\in{e.0<e\wedge(\forallA\in{U. openin mtopology U}
                                    measure L A \leq measure N (\bigcupa\inA. mball a e) +e^
                                    measure NA\leqmeasure L ( \bigcup a\inA. mball a e) +e)}.
i\leqy
            proof(safe intro!: bexI[where x=e+1/(1 + real n)])
```

fix A
assume A : openin mtopology A
then have $A^{\prime}[$ measurable $]: A \in$ sets $L \quad A \in$ sets N
by (auto simp: borel-of-open sets- N [symmetric] sets- $[$ symmetric])
have measure $L A=\bigsqcup$ (measure L ' $\{K$. compactin mtopology $K \wedge K$ $\subseteq A\})$
by(auto intro!: L.inner-regular-Polish[OF Polish-space-mtopology[OF assms] sets-L])
also have $\ldots \leq \bigsqcup$ (measure L ' $\{U . U \in$ funion-of-base $\wedge U \subseteq A\}$)
proof(safe intro!: cSup-mono bdd-aboveI[where $M=$ measure L (space
L)] L.bounded-measure)
fix K
assume K :compactin mtopology $K K \subseteq A$
obtain \mathcal{U} where Aun: $A=\bigcup \mathcal{U} \mathcal{U} \subseteq \mathcal{O}$
using A base by (auto simp: base-in-def)
obtain \mathcal{F} where F : finite $\mathcal{F} \mathcal{F} \subseteq \mathcal{U} K \subseteq \bigcup \mathcal{F}$
using compactinD $[$ OF $K(1)$, of $\overline{\mathcal{U}}]$ Aun K base-in-openin[OF base(2)]
by blast
hence Ffunion: $\bigcup \mathcal{F} \in$ funion-of-base $\bigcup \mathcal{F} \subseteq A$
using F Aun K by (auto simp: funion-of-base-def)
with $F(3)$ show $\exists a \in$ measure L ' $\{U \in$ funion-of-base. $U \subseteq A\}$.
measure $L K \leq a$
by (auto intro!: exI $[$ where $x=\bigcup \mathcal{F}]$ L.finite-measure-mono meas-funion-of-base[simplified sets- $L]$)
qed auto
also have $\ldots \leq \bigsqcup$ \{measure $N(\bigcup a \in U$. mball $a(e+1 /(1+$ real $n)))+(e+1 /(1+$ real $n))$
| $U . U \in$ funion-of-base $\wedge U \subseteq A\}$
by (force intro!: cSup-mono N bdd-aboveI $[$ where $M=$ measure N (space $N)+(e+1 /(1+$ real $n))]$
N.bounded-measure simp: funion-of-base-def)
also have $\ldots \leq$ measure $N(\bigcup a \in A$. mball $a(e+1 /(1+$ real $n)))+$ $(e+1 /(1+$ real $n))$ by (fastforce intro!:
cSup-le-iff[THEN iffD2] bdd-aboveI[where $M=$ measure N (space
$N)+(e+1 /(1+$ real $n))]$
N.bounded-measure N.finite-measure-mono
simp: funion-of-base-def)
finally show measure $L A$

$$
\leq \text { measure } N(\bigcup a \in A . \text { mball } a(e+1 /(1+\text { real } n)))+(e
$$

$+1 /(1+$ real $n)$.
have measure $N A=\bigsqcup$ (measure N ' $\{K$. compactin mtopology $K \wedge K$
by (auto intro!: N.inner-regular-Polish[OF Polish-space-mtopology sets-N]
assms)
also have $\ldots \leq \bigsqcup$ (measure N ' $\{U . U \in$ funion-of-base $\wedge U \subseteq A\}$)
proof (safe intro!: cSup-mono bdd-aboveI[where $M=$ measure N (space
$N)$] N.bounded-measure) fix K

```
assume \(K\) :compactin mtopology \(K K \subseteq A\)
obtain \(\mathcal{U}\) where Aun: \(A=\bigcup \mathcal{U} \mathcal{U} \subseteq \mathcal{O}\)
    using \(A\) base by (auto simp: base-in-def)
obtain \(\mathcal{F}\) where \(F\) : finite \(\mathcal{F} \mathcal{F} \subseteq \mathcal{U} K \subseteq \bigcup \mathcal{F}\)
    using compactinD[OF \(K(1)\), of \(\mathcal{U}]\) Aun \(K\) base-in-openin[OF base(2)]
```

by blast
hence Ffunion: $\bigcup \mathcal{F} \in$ funion-of-base $\bigcup \mathcal{F} \subseteq A$
using F Aun K by (auto simp: funion-of-base-def)
with $F(3)$ show $\exists y \in$ measure N ' $\{U \in$ funion-of-base. $U \subseteq A\}$.
measure $N K \leq y$
by (auto intro!: exI[where $x=\bigcup \mathcal{F}] N$.finite-measure-mono meas-funion-of-base[simplified
sets-N])
qed auto
also have $\ldots \leq \bigsqcup\{$ measure $L(\bigcup a \in U$. mball $a(e+1 /(1+$ real $n)))$
$+(e+1 /(1+\operatorname{real} n))$
$\mid U . U \in$ funion-of-base $\wedge U \subseteq A\}$
by(force intro!: cSup-mono N bdd-aboveI[where $M=$ measure L (space $L)+(e+1 /(1+$ real $n))]$
L.bounded-measure simp: funion-of-base-def)
also have $\ldots \leq$ measure $L(\bigcup a \in A$. mball $a(e+1 /(1+$ real $n)))+$ $(e+1 /(1+$ real $n))$
by (fastforce intro!:
cSup-le-iff[THEN iffD2] bdd-aboveI[where $M=$ measure L (space L)
$+(e+1 /(1+\operatorname{real} n))]$
L.bounded-measure L.finite-measure-mono
simp: funion-of-base-def)
finally show measure $N A \leq$ measure $L(\bigcup a \in A$. mball $a(e+1 /(1$

+ real $n)))+(e+1 /(1+$ real $n))$.
qed(insert e n, auto intro!: add-nonneg-pos)
qed(fastforce intro!: bdd-belowI[where $m=0]$)
thus $N \in L P m$.mcball $L e$
using $N(1) L$ by (auto simp: LPm-open)
qed
also have ... \in sets ?Giry
proof -
have $h:(\lambda N$. measure $N A)-‘$
$\{$..measure $L(\bigcup a \in A$. mball a $(e+1 /(1+$ real $n)))+(e+1 /$
$(1+$ real $n))\} \cap \mathcal{P}$
\in sets ?Giry (is ?m1)
(λN. measure N
$(\bigcup a \in$. mball $a(e+1 /(1+$ real $n))))-{ }^{`}\{$ measure $L A-(e+$ $1 /(1+$ real $n)) ..\} \cap \mathcal{P}$
\in sets?Giry (is ?m2) if $A \in$ funion-of-base for $A n$
proof -
have $P: \mathcal{P}=$ space ?Giry unfolding \mathcal{P}-def space-finite-measure-algebra by
auto
have [measurable]: $A \in$ sets (borel-of mtopology)
$(\bigcup a \in A$. mball $a(e+1 /(1+$ real $n))) \in$ sets (borel-of mtopology)
using that by simp (auto intro!: borel-of-open)

```
                show ?m1 ?m2
                    by(auto intro!: measurable-sets simp: P)
                qed
                show ?thesis
                by(rule sets.countable-INT'[OF countable-funion-of-base funion-of-base-ne])
(use h in blast)
            qed
            finally show LPm.mcball L e\in sets ?Giry .
    qed
    qed
    finally show ?thesis .
qed
corollary sets-LPm-eq-sets-finite-measure-algebra:
    assumes mcomplete separable-space mtopology
    shows sets (borel-of LPm.mtopology) = sets (finite-measure-algebra (borel-of
mtopology))
    using sets-LPm1 sets-LPm2[OF assms] by simp
end
corollary weak-conv-topology-eq-finite-measure-algebra:
    assumes Polish-space X
    shows sets (borel-of (weak-conv-topology X)) = sets (finite-measure-algebra (borel-of
X))
proof -
    obtain d where d:Metric-space (topspace X) d Metric-space.mcomplete (topspace
X) d
    Metric-space.mtopology (topspace X) d = X
    by (metis Metric-space.topspace-mtopology assms completely-metrizable-space-def
Polish-space-imp-completely-metrizable-space)
    then interpret Levy-Prokhorov topspace X d
    by (auto simp add: Levy-Prokhorov-def)
    have sep: separable-space mtopology
    by (simp add: assms d(3) Polish-space-imp-separable-space)
    show ?thesis
    using sets-LPm-eq-sets-finite-measure-algebra[OF d(2) sep] LPmtopology-eq-weak-conv-topology[OF
sep]
    by(simp add:d)
qed
corollary weak-conv-topology-eq-subprob-algebra:
    assumes Polish-space X
    shows sets (borel-of (subtopology (weak-conv-topology X) {N. subprob-space N ^
sets N = sets (borel-of X)}))
    = sets (subprob-algebra (borel-of X)) (is ?lhs = ?rhs)
proof -
    have ?lhs = sets (borel-of (subtopology (weak-conv-topology X) {N. sets N =
sets (borel-of X) ^ subprob-space N}))
```

```
    by meson
    also have ... = sets (borel-of (subtopology (weak-conv-topology X) {N. sub-
prob-space N}))
    using subtopology-restrict[of weak-conv-topology X {N. subprob-space N}]
    by(auto intro!: arg-cong[where f=\lambdax. sets (borel-of x)] simp: Collect-conj-eq[symmetric]
subprob-space-def)
    also have ... = ?rhs
    by(auto simp: borel-of-subtopology sets-subprob-algebra-restrict
                weak-conv-topology-eq-finite-measure-algebra[OF assms]
                intro!: sets-restrict-space-cong)
    finally show ?thesis.
qed
corollary weak-conv-topology-eq-prob-algebra:
    assumes Polish-space X
    shows sets (borel-of (subtopology (weak-conv-topology X) {N. prob-space N}
sets N = sets (borel-of X)}))
    = sets (prob-algebra (borel-of X)) (is ?lhs = ?rhs)
proof -
    have ?lhs = sets (borel-of (subtopology
                            (subtopology (weak-conv-topology X) {N. subprob-space N ^
sets N = sets (borel-of X)})
                            {N. prob-space N}))
    by(auto simp: subtopology-subtopology Collect-conj-eq[symmetric] dest:prob-space-imp-subprob-space
        intro!: arg-cong[where f=\lambdax. sets (borel-of (subtopology - x) )])
    also have ... = sets (restrict-space (borel-of (subtopology (weak-conv-topology X)
                                    {N. subprob-space N}\wedge sets N = sets (borel-of X)})) {N
prob-space N})
    by(simp add: borel-of-subtopology)
    also have ... = sets (restrict-space (subprob-algebra (borel-of X)) {N. prob-space
N})
    by(simp cong: sets-restrict-space-cong add: weak-conv-topology-eq-subprob-algebra[OF
assms])
    also have ... = ?rhs
        by(simp add: prob-algebra-def)
    finally show ?thesis.
qed
```


6.3 Standardness

```
lemma closedin-weak-conv-topology-r:
    closedin (weak-conv-topology X) {N. sets N = sets (borel-of X)}\wedgeN(\mathrm{ space N)
sennreal r}
proof(rule closedin-limitin)
    fix Ni N
    assume h:\U. Ni U \intopspace (weak-conv-topology X)
        limitin (weak-conv-topology X) Ni N (nhdsin-sets (weak-conv-topology X) N)
                \U.N\inU\Longrightarrow openin (weak-conv-topology X) U
                    \Longrightarrow N i U \in \{ N . ~ s e t s ~ N = ~ s e t s ~ ( b o r e l - o f ~ X ) \wedge ~ e m e a s u r e ~ N ~ ( s p a c e ~ N )
```

```
\(\leq\) ennreal \(r\}\)
    have \(x\) : sets \(N=\) sets (borel-of \(X\) ) finite-measure \(N\)
        using limitin-topspace[OF h(2)] by auto
    interpret \(N\) : finite-measure \(N\)
        by fact
    interpret \(N i\) : finite-measure \(N i\) i for \(i\)
        using \(h(1)\) by simp
    have \(\bigwedge f\). continuous-map \(X\) euclideanreal \(f \Longrightarrow(\exists B . \forall x \in\) topspace \(X\). abs \((f x)\)
\(\leq B\) )
            \(\Longrightarrow\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right)\) (nhdsin-sets (weak-conv-topology
X) \(N\) )
        using \(h(2)\) by (auto simp: weak-conv-on-def)
    from this[of \(\lambda x\). 1]
    have \(((\lambda n\). measure \((N i n)(\) space \((N i n))) \longrightarrow\) measure \(N(\) space \(N))(n h d s i n\)-sets
(weak-conv-topology X) N)
    by auto
    hence \(((\lambda n\). Ni \(n(\) space \((\) Nin \())) \longrightarrow N(\) space \(N))\) (nhdsin-sets (weak-conv-topology
X) \(N\) )
        by (simp add: N.emeasure-eq-measure Ni.emeasure-eq-measure)
    hence emeasure \(N(\) space \(N) \leq\) ennreal \(r\)
    using limitin-topspace[OF h(2)] h(3) by (auto intro!: tendsto-upperbound even-
tually-nhdsin-setsI)
    thus \(N \in\{N\). sets \(N=\) sets (borel-of \(X) \wedge\) emeasure \(N(\) space \(N) \leq\) ennreal \(r\}\)
        using \(x\) by blast
qed (auto intro!: finite-measureI simp: top.extremum-unique)
lemma closedin-weak-conv-topology-subprob:
    closedin (weak-conv-topology \(X\) ) \(\{N\). subprob-space \(N \wedge\) sets \(N=\) sets (borel-of
\(X)\) \}
proof (rule closedin-limitin)
    fix \(N i N\)
    assume \(h: \bigwedge U\). Ni \(U \in\) topspace (weak-conv-topology \(X\) )
        limitin (weak-conv-topology X) Ni \(N\) (nhdsin-sets (weak-conv-topology X) N)
            \(\bigwedge U . N \in U \Longrightarrow\) openin (weak-conv-topology X) \(U\)
                        \(\Longrightarrow N i U \in\{N\). subprob-space \(N \wedge\) sets \(N=\) sets \((\) borel-of \(X)\}\)
    have \(x\) : sets \(N=\) sets (borel-of \(X\) ) finite-measure \(N\)
        using limitin-topspace [OF h(2)] by auto
    have \(X\) :topspace \(X \neq\{ \}\)
        using \(h(3)\) [OF limitin-topspace[OF \(h(2)]\),simplified openin-topspace]
        by (auto simp: subprob-space-def space-borel-of subprob-space-axioms-def cong:
sets-eq-imp-space-eq)
    interpret \(N\) : finite-measure \(N\)
        by fact
    interpret \(N i\) : finite-measure Ni \(i\) for \(i\)
        using \(h(1)\) by simp
    have \(\bigwedge f\). continuous-map \(X\) euclideanreal \(f \Longrightarrow(\exists B . \forall x \in\) topspace \(X\). abs \((f x)\)
\(\leq B\) )
    \(\Longrightarrow\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right)(\) nhdsin-sets (weak-conv-topology
X) \(N\) )
```

using h by (auto simp: weak-conv-on-def)
from this[of λx. 1]
have $((\lambda n$. measure $(N i n)($ space $(N i n))) \longrightarrow$ measure $N($ space $N))(n h d s i n$-sets
(weak-conv-topology X) N)
by auto
hence $1:((\lambda n$. Nin $($ space $(N i n))) \longrightarrow N($ space $N))$ (nhdsin-sets (weak-conv-topology
X) N)
by (simp add: N.emeasure-eq-measure Ni.emeasure-eq-measure)
hence emeasure $N($ space $N) \leq 1$
using limitin-topspace[OF h(2)] h(3)
by (auto intro!: tendsto-upperbound[OF 1] eventually-nhdsin-setsI dest:subprob-space.subprob-emeasure-le-1)
hence subprob-space N
using X by (auto intro!: subprob-spaceI simp: sets-eq-imp-space-eq[OF $x(1)]$
space-borel-of)
thus $N \in\{N$. subprob-space $N \wedge$ sets $N=$ sets $($ borel-of $X)\}$
using $x h(3)$ by fast
qed (auto simp: subprob-space-def)
lemma closedin-weak-conv-topology-prob:
closedin (weak-conv-topology X) $\{N$. prob-space $N \wedge$ sets $N=$ sets (borel-of X) $\}$
proof(rule closedin-limitin)
fix $N i N$
assume $h: \bigwedge U$. Ni $U \in$ topspace (weak-conv-topology X)
limitin (weak-conv-topology X) Ni N (nhdsin-sets (weak-conv-topology X) N)
$\bigwedge U . N \in U \Longrightarrow$ openin (weak-conv-topology X) U
\Longrightarrow Ni $U \in\{N$. prob-space $N \wedge$ sets $N=$ sets (borel-of $X)\}$
have x : sets $N=$ sets (borel-of X) finite-measure N
using limitin-topspace[OF h(2)] by auto
interpret N : finite-measure N
by fact
interpret $N i$: finite-measure $N i i$ for i
using $h(1)$ by simp
have $\bigwedge f$. continuous-map X euclideanreal $f \Longrightarrow(\exists B . \forall x \in$ topspace X. abs $(f x)$ $\leq B$)

$$
\Longrightarrow\left(\left(\lambda n . \int x . f x \partial N i n\right) \longrightarrow\left(\int x . f x \partial N\right)\right)(n h d s i n \text {-sets (weak-conv-topology }
$$

X) N)
using h by (auto simp: weak-conv-on-def)
from this[of λx. 1]
have $((\lambda n$. measure $($ Ni $n)($ space $(N i n))) \longrightarrow$ measure $N($ space $N))(n h d s i n$-sets
(weak-conv-topology X) N)
by auto
hence $((\lambda n .1) \longrightarrow$ measure $N($ space $N))(n h d s i n-s e t s($ weak-conv-topology $X)$
N)
using $x h$
by (auto intro!: tendsto-cong[where $f=\lambda n$. measure (Ni n) (space (Ni n)) and $g=\lambda n .1, T H E N$ iffD1] eventually-nhdsin-setsI prob-space.prob-space)
hence measure $N($ space $N)=1$
by (metis nhdsin-sets-bot h(2) limitin-topspace tendsto-const-iff)
hence prob-space N

```
    by (simp add: N.emeasure-eq-measure prob-spaceI)
    thus }N\in{N. prob-space N\wedge sets N= sets (borel-of X)
    using x by blast
qed (auto simp: prob-space.finite-measure)
```


corollary

assumes standard-borel M
shows standard-borel-finite-measure-algebra: standard-borel (finite-measure-algebra M)
and standard-borel-ne-finite-measure-algebra: standard-borel-ne (finite-measure-algebra M)
and standard-borel-subprob-algebra: standard-borel (subprob-algebra M)
and standard-borel-prob-algebra: standard-borel (prob-algebra M)
proof -
interpret sbn: standard-borel M by fact
obtain X where X : Polish-space X sets $M=$ sets (borel-of X)
using sbn.Polish-space by blast
show 1:standard-borel (finite-measure-algebra M)
by (metis X finite-measure-algebra-cong Polish-space-weak-conv-topology stan-
dard-borel.intro weak-conv-topology-eq-finite-measure-algebra)
moreover have null-measure $M \in$ space (finite-measure-algebra M)
by (auto simp: space-finite-measure-algebra intro!: finite-measureI)
ultimately show standard-borel-ne (finite-measure-algebra M)
using standard-borel-ne-axioms-def standard-borel-ne-def by force
show standard-borel (subprob-algebra M)
using Polish-space-closedin[OF Polish-space-weak-conv-topology[OF X (1)] closedin-weak-conv-topology-subp
by (auto cong: subprob-algebra-cong
simp: X(2) weak-conv-topology-eq-subprob-algebra[OF X(1),symmetric]
standard-borel-def)
show standard-borel (prob-algebra M)
using Polish-space-closedin[OF Polish-space-weak-conv-topology[OF X (1)] closedin-weak-conv-topology-prob
by (auto cong: prob-algebra-cong
simp: X(2) weak-conv-topology-eq-prob-algebra[OF X(1),symmetric]
standard-borel-def)
qed
corollary
assumes standard-borel-ne M
shows standard-borel-ne-subprob-algebra: standard-borel-ne (subprob-algebra M)
and standard-borel-ne-prob-algebra: standard-borel-ne (prob-algebra M)
proof -
obtain x where $x: x \in$ space M
using assms standard-borel-ne.space-ne by auto
then have return $M x \in$ space (subprob-algebra M) return $M x \in$ space (prob-algebra M)
using prob-space-return

```
    by(auto intro!: prob-space-imp-subprob-space simp: space-subprob-algebra space-prob-algebra)
    thus standard-borel-ne (subprob-algebra M) standard-borel-ne (prob-algebra M)
    using assms standard-borel-subprob-algebra standard-borel-prob-algebra
    by(auto simp: standard-borel-ne-def standard-borel-ne-axioms-def)
qed
end
```


References

[1] C. E. Heil. Lecture note on math 6338 (real analysis ii) at Georgia Institute of Technology. https://heil.math.gatech.edu/6338/summer08/, 2008. Accessed November 17th 2023.
[2] A. S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics. Springer New York, 1995.
[3] M. Shi. Nets and filters. https://www.uvm.edu/~smillere/TProjects/ MShi20s.pdf, 2020. Accessed November 17th 2023.
[4] O. van Gaans. Probability measures on metric spaces. https://www. math.leidenuniv.nl/~vangaans/jancol1.pdf. Accessed: March 2. 2023.

