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Abstract

We formalise certain irrationality criteria for infinite series of the
form: ∑

n

bn∏
i≤n ai

where bn, ai are integers. The result is due to P. Erdős and E.G.
Straus [1], and in particular we formalise Theorem 2.1, Corollary 2.10
and Theorem 3.1. The latter is an application of Theorem 2.1 involving
the prime numbers.
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theory Irrational-Series-Erdos-Straus imports
Prime-Number-Theorem.Prime-Number-Theorem
Prime-Distribution-Elementary.PNT-Consequences

begin

1 Miscellaneous
lemma suminf-comparison:

assumes summable f and gf :
∧

n. norm (g n) ≤ f n
shows suminf g ≤ suminf f

proof (rule suminf-le)
show g n ≤ f n for n
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using gf [of n] by auto
show summable g

using assms summable-comparison-test ′ by blast
show summable f using assms(1 ) .

qed

lemma tendsto-of-int-diff-0 :
assumes (λn. f n − of-int(g n)) −−−−→ (0 ::real) ∀ F n in sequentially. f n > 0
shows ∀ F n in sequentially. 0 ≤ g n

proof −
have ∀ F n in sequentially. |f n − of-int(g n)| < 1 / 2

using assms(1 )[unfolded tendsto-iff ,rule-format,of 1/2 ] by auto
then show ?thesis using assms(2 )

by eventually-elim linarith
qed

lemma eventually-mono-sequentially:
assumes eventually P sequentially
assumes

∧
x. P (x+k) =⇒ Q (x+k)

shows eventually Q sequentially
using sequentially-offset[OF assms(1 ),of k]
apply (subst eventually-sequentially-seg[symmetric,of - k])
apply (elim eventually-mono)
by fact

lemma frequently-eventually-at-top:
fixes P Q:: ′a::linorder ⇒ bool
assumes frequently P at-top eventually Q at-top
shows frequently (λx. P x ∧ (∀ y≥x. Q y) ) at-top
using assms
unfolding frequently-def eventually-at-top-linorder
by (metis (mono-tags, opaque-lifting) le-cases order-trans)

lemma eventually-at-top-mono:
fixes P Q:: ′a::linorder ⇒ bool
assumes event-P:eventually P at-top
assumes PQ-imp:

∧
x. x≥z =⇒ ∀ y≥x. P y =⇒ Q x

shows eventually Q at-top
proof −

obtain N where ∀n≥N . P n
by (meson event-P eventually-at-top-linorder)

then have Q x when x ≥ max N z for x
using PQ-imp that by auto

then show ?thesis unfolding eventually-at-top-linorder
by blast

qed

lemma frequently-at-top-elim:
fixes P Q:: ′a::linorder ⇒ bool
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assumes ∃ F x in at-top. P x
assumes

∧
i. P i =⇒ ∃ j>i. Q j

shows ∃ F x in at-top. Q x
using assms unfolding frequently-def eventually-at-top-linorder
by (meson leD le-cases less-le-trans)

lemma less-Liminf-iff :
fixes X :: - ⇒ - :: complete-linorder
shows Liminf F X < C ←→ (∃ y<C . frequently (λx. y ≥ X x) F)
by (force simp: not-less not-frequently not-le le-Liminf-iff simp flip: Not-eq-iff )

lemma sequentially-even-odd-imp:
assumes ∀ F N in sequentially. P (2∗N ) ∀ F N in sequentially. P (2∗N+1 )
shows ∀ F n in sequentially. P n

proof −
obtain N where N-P:∀ x≥N . P (2 ∗ x) ∧ P (2 ∗ x + 1 )

using eventually-conj[OF assms]
unfolding eventually-at-top-linorder by auto

have P n when n ≥ 2∗N for n
proof −

define n ′ where n ′= n div 2
then have n ′ ≥ N using that by auto
then have P (2 ∗ n ′) ∧ P (2 ∗ n ′ + 1 )

using N-P by auto
then show ?thesis unfolding n ′-def

by (cases even n) auto
qed
then show ?thesis unfolding eventually-at-top-linorder by auto

qed

2 Theorem 2.1 and Corollary 2.10
context

fixes a b ::nat⇒int
assumes a-pos: ∀ n. a n >0 and a-large: ∀ F n in sequentially. a n > 1

and ab-tendsto: (λn. |b n| / (a (n−1 ) ∗ a n)) −−−−→ 0
begin

private lemma aux-series-summable: summable (λn. b n / (
∏

k≤n. a k))
proof −

have
∧

e. e>0 =⇒ ∀ F x in sequentially. |b x| / (a (x−1 ) ∗ a x) < e
using ab-tendsto[unfolded tendsto-iff ]
apply (simp add: abs-mult flip: of-int-abs)
by (subst (asm) (2 ) abs-of-pos,use ‹∀ n. a n > 0 › in auto)+

from this[of 1 ]
have ∀ F x in sequentially. |real-of-int(b x)| < (a (x−1 ) ∗ a x)

using ‹∀ n. a n > 0 › by auto
moreover have ∀n. (

∏
k≤n. real-of-int (a k)) > 0

using a-pos by (auto intro!:linordered-semidom-class.prod-pos)
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ultimately have ∀ F n in sequentially. |b n| / (
∏

k≤n. a k)
< (a (n−1 ) ∗ a n) / (

∏
k≤n. a k)

apply (elim eventually-mono)
by (auto simp:field-simps)

moreover have |b n| / (
∏

k≤n. a k) = norm (b n / (
∏

k≤n. a k)) for n
using ‹∀n. (

∏
k≤n. real-of-int (a k)) > 0 ›[rule-format,of n] by auto

ultimately have ∀ F n in sequentially. norm (b n / (
∏

k≤n. a k))
< (a (n−1 ) ∗ a n) / (

∏
k≤n. a k)

by algebra
moreover have summable (λn. (a (n−1 ) ∗ a n) / (

∏
k≤n. a k))

proof −
obtain s where a-gt-1 :∀ n≥s. a n >1

using a-large[unfolded eventually-at-top-linorder ] by auto
define cc where cc= (

∏
k<s. a k)

have cc>0
unfolding cc-def by (meson a-pos prod-pos)

have (
∏

k≤n+s. a k) ≥ cc ∗ 2^n for n
proof −

have prod a {s..<Suc (s + n)} ≥ 2^n
proof (induct n)

case 0
then show ?case using a-gt-1 by auto

next
case (Suc n)
moreover have a (s + Suc n) ≥ 2

by (smt (verit, ccfv-threshold) a-gt-1 le-add1 )
ultimately show ?case

apply (subst prod.atLeastLessThan-Suc,simp)
using mult-mono ′[of 2 a (Suc (s + n)) 2 ^ n prod a {s..<Suc (s + n)}]
by (simp add: mult.commute)

qed
moreover have prod a {0 ..(n + s)} = prod a {..<s} ∗ prod a {s..<Suc (s +

n)}
using prod.atLeastLessThan-concat[of 0 s s+n+1 a]
by (simp add: add.commute lessThan-atLeast0 prod.atLeastLessThan-concat

prod.head-if )
ultimately show ?thesis

using ‹cc>0 › unfolding cc-def by (simp add: atLeast0AtMost)
qed
then have 1/(

∏
k≤n+s. a k) ≤ 1/(cc ∗ 2^n) for n

proof −
assume asm:

∧
n. cc ∗ 2 ^ n ≤ prod a {..n + s}

then have real-of-int (cc ∗ 2 ^ n) ≤ prod a {..n + s} using of-int-le-iff by
blast

moreover have prod a {..n + s} >0 using ‹cc>0 › by (simp add: a-pos
prod-pos)

ultimately show ?thesis using ‹cc>0 ›
by (auto simp:field-simps simp del:of-int-prod)

qed
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moreover have summable (λn. 1/(cc ∗ 2^n))
proof −

have summable (λn. 1/(2 ::int)^n)
using summable-geometric[of 1/(2 ::int)] by (simp add:power-one-over)

from summable-mult[OF this,of 1/cc] show ?thesis by auto
qed
ultimately have summable (λn. 1 / (

∏
k≤n+s. a k))

apply (elim summable-comparison-test ′[where N=0 ])
apply (unfold real-norm-def , subst abs-of-pos)
by (auto simp: ‹∀n. 0 < (

∏
k≤n. real-of-int (a k))›)

then have summable (λn. 1 / (
∏

k≤n. a k))
apply (subst summable-iff-shift[where k=s,symmetric])
by simp

then have summable (λn. (a (n+1 ) ∗ a (n+2 )) / (
∏

k≤n+2 . a k))
proof −

assume asm:summable (λn. 1 / real-of-int (prod a {..n}))
have 1 / real-of-int (prod a {..n}) = (a (n+1 ) ∗ a (n+2 )) / (

∏
k≤n+2 . a

k) for n
proof −

have a (Suc (Suc n)) 6= 0 a (Suc n) 6=0
using a-pos by (metis less-irrefl)+

then show ?thesis
by (simp add: atLeast0-atMost-Suc atMost-atLeast0 )

qed
then show ?thesis using asm by auto

qed
then show summable (λn. (a (n−1 ) ∗ a n) / (

∏
k≤n. a k))

apply (subst summable-iff-shift[symmetric,of - 2 ])
by auto

qed
ultimately show ?thesis

apply (elim summable-comparison-test-ev[rotated])
by (simp add: eventually-mono)

qed

private fun get-c::(nat ⇒ int)⇒ (nat ⇒ int)⇒ int ⇒ nat ⇒ (nat ⇒ int) where
get-c a ′ b ′ B N 0 = round (B ∗ b ′ N / a ′ N )|
get-c a ′ b ′ B N (Suc n) = get-c a ′ b ′ B N n ∗ a ′ (n+N ) − B ∗ b ′ (n+N )

lemma ab-rationality-imp:
assumes ab-rational:(

∑
n. (b n / (

∏
i ≤ n. a i))) ∈ �

shows ∃ (B::int)>0 . ∃ c::nat⇒ int.
(∀ F n in sequentially. B∗b n = c n ∗ a n − c(n+1 ) ∧ |c(n+1 )|<a n/2 )
∧ (λn. c (Suc n) / a n) −−−−→ 0

proof −
have [simp]:a n 6= 0 for n using a-pos by (metis less-numeral-extra(3 ))
obtain A::int and B::int where

AB-eq:(
∑

n. real-of-int (b n) / real-of-int (prod a {..n})) = A / B and B>0
proof −
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obtain q::rat where (
∑

n. real-of-int (b n) / real-of-int (prod a {..n})) =
real-of-rat q

using ab-rational by (rule Rats-cases) simp
moreover obtain A::int and B::int where q = Rat.Fract A B B > 0 coprime

A B
by (rule Rat-cases) auto

ultimately show ?thesis by (auto intro!: that[of A B] simp:of-rat-rat)
qed
define f where f ≡ (λn. b n / real-of-int (prod a {..n}))
define R where R ≡ (λN . (

∑
n. B∗b (n+N+1 ) / prod a {N ..n+N+1}))

have all-e-ubound:∀ e>0 . ∀ F M in sequentially. ∀n. |B∗b (n+M+1 ) / prod a
{M ..n+M+1}| < e/4 ∗ 1/2^n

proof safe
fix e::real assume e>0
obtain N where N-a2 : ∀n ≥ N . a n ≥ 2

and N-ba: ∀n ≥ N . |b n| / (a (n−1 ) ∗ a n) < e/(4∗B)
proof −

have ∀ F n in sequentially. |b n| / (a (n − 1 ) ∗ a n) < e/(4∗B)
using order-topology-class.order-tendstoD[OF ab-tendsto,of e/(4∗B)] ‹B>0 ›

‹e>0 ›
by auto

moreover have ∀ F n in sequentially. a n ≥ 2
using a-large by (auto elim: eventually-mono)

ultimately have ∀ F n in sequentially. |b n| / (a (n − 1 ) ∗ a n) < e/(4∗B)
∧ a n ≥ 2

by eventually-elim auto
then show ?thesis unfolding eventually-at-top-linorder using that

by auto
qed
have geq-N-bound:|B∗b (n+M+1 ) / prod a {M ..n+M+1}| < e/4 ∗ 1/2^n

when M≥N for n M
proof −

define D where D = B∗b (n+M+1 )/ (a (n+M ) ∗ a (n+M+1 ))
have |B∗b (n+M+1 ) / prod a {M ..n+M+1}| = |D / prod a {M ..<n+M}|
proof −

have {M ..n+M+1} = {M ..<n+M} ∪ {n+M ,n+M+1} by auto
then have prod a {M ..n+M+1} = a (n+M ) ∗ a (n+M+1 )∗ prod a

{M ..<n+M} by simp
then show ?thesis unfolding D-def by (simp add:algebra-simps)

qed
also have ... < |e/4 ∗ (1/prod a {M ..<n+M})|
proof −

have |D| < e/4
unfolding D-def using N-ba[rule-format, of n+M+1 ] ‹B>0 › ‹M ≥ N ›

‹e>0 › a-pos
by (auto simp:field-simps abs-mult abs-of-pos)

from mult-strict-right-mono[OF this,of 1/prod a {M ..<n+M}] a-pos ‹e>0 ›
show ?thesis

apply (auto simp:abs-prod abs-mult prod-pos)
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by (subst (2 ) abs-of-pos,auto)+
qed
also have ... ≤ e/4 ∗ 1/2^n
proof −

have prod a {M ..<n+M} ≥ 2^n
proof (induct n)

case 0
then show ?case by simp

next
case (Suc n)
then show ?case

using ‹M≥N › by (simp add: N-a2 mult.commute mult-mono ′ prod.atLeastLessThan-Suc)
qed
then have real-of-int (prod a {M ..<n+M}) ≥ 2^n

using numeral-power-le-of-int-cancel-iff by blast
then show ?thesis using ‹e>0 › by (auto simp:divide-simps)

qed
finally show ?thesis .

qed
show ∀ F M in sequentially. ∀n. |real-of-int (B ∗ b (n + M + 1 ))

/ real-of-int (prod a {M ..n + M + 1})| < e / 4 ∗ 1 / 2 ^ n
apply (rule eventually-sequentiallyI [of N ])
using geq-N-bound by blast

qed
have R-tendsto-0 :R −−−−→ 0
proof (rule tendstoI )

fix e::real assume e>0
show ∀ F x in sequentially. dist (R x) 0 < e using all-e-ubound[rule-format,OF

‹e>0 ›]
proof eventually-elim

case (elim M )
define g where g = (λn. B∗b (n+M+1 ) / prod a {M ..n+M+1})
have g-lt:|g n| < e/4 ∗ 1/2^n for n

using elim unfolding g-def by auto
have §: summable (λn. (e/4 ) ∗ (1/2 )^n)

by simp
then have g-abs-summable:summable (λn. |g n|)

apply (elim summable-comparison-test ′)
by (metis abs-idempotent g-lt less-eq-real-def power-one-over real-norm-def

times-divide-eq-right)
have |

∑
n. g n| ≤ (

∑
n. |g n|) by (rule summable-rabs[OF g-abs-summable])

also have ... ≤(
∑

n. e/4 ∗ 1/2^n)
proof (rule suminf-comparison)

show summable (λn. e/4 ∗ 1/2^n)
using § unfolding power-divide by simp

show
∧

n. norm |g n| ≤ e / 4 ∗ 1 / 2 ^ n using g-lt less-eq-real-def by
auto

qed
also have ... = (e/4 ) ∗ (

∑
n. (1/2 )^n)
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apply (subst suminf-mult[symmetric])
by (auto simp: algebra-simps power-divide)

also have ... = e/2 by (simp add:suminf-geometric[of 1/2 ])
finally have |

∑
n. g n| ≤ e / 2 .

then show dist (R M ) 0 < e unfolding R-def g-def using ‹e>0 › by auto
qed

qed

obtain N where R-N-bound:∀M ≥ N . |R M | ≤ 1 / 4
and N-geometric:∀M≥N . ∀n. |real-of-int (B ∗ b (n + M + 1 )) / (prod a {M ..n

+ M + 1})| < 1 / 2 ^ n
proof −

obtain N1 where N1 :∀M ≥ N1 . |R M | ≤ 1 / 4
using metric-LIMSEQ-D[OF R-tendsto-0 ,of 1/4 ] all-e-ubound[rule-format,of

4 ,unfolded eventually-sequentially]
by (auto simp:less-eq-real-def )

obtain N2 where N2 :∀M≥N2 . ∀n. |real-of-int (B ∗ b (n + M + 1 ))
/ (prod a {M ..n + M + 1})| < 1 / 2 ^ n

using all-e-ubound[rule-format,of 4 ,unfolded eventually-sequentially]
by (auto simp:less-eq-real-def )

define N where N=max N1 N2
show ?thesis using that[of N ] N1 N2 unfolding N-def by simp

qed

define C where C = B ∗ prod a {..<N} ∗ (
∑

n<N . f n)
have summable f

unfolding f-def using aux-series-summable .
have A ∗ prod a {..<N} = C + B ∗ b N / a N + R N
proof −

have A ∗ prod a {..<N} = B ∗ prod a {..<N} ∗ (
∑

n. f n)
unfolding AB-eq f-def using ‹B>0 › by auto

also have ... = B ∗ prod a {..<N} ∗ ((
∑

n<N+1 . f n) + (
∑

n. f (n+N+1 )))
using suminf-split-initial-segment[OF ‹summable f ›, of N+1 ] by auto

also have ... = B ∗ prod a {..<N} ∗ ((
∑

n<N . f n) + f N + (
∑

n. f (n+N+1 )))
using sum.atLeast0-lessThan-Suc by simp
also have ... = C + B ∗ b N / a N + (

∑
n. B∗b (n+N+1 ) / prod a

{N ..n+N+1})
proof −

have B ∗ prod a {..<N} ∗ f N = B ∗ b N / a N
proof −

have {..N} = {..<N} ∪ {N} using ivl-disj-un-singleton(2 ) by blast
then show ?thesis unfolding f-def by auto

qed
moreover have B ∗ prod a {..<N} ∗ (

∑
n. f (n+N+1 )) = (

∑
n. B∗b

(n+N+1 ) / prod a {N ..n+N+1})
proof −

have summable (λn. f (n + N + 1 ))
using ‹summable f › summable-iff-shift[of f N+1 ] by auto

moreover have prod a {..<N} ∗ f (n + N + 1 ) = b (n + N + 1 ) / prod
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a {N ..n + N + 1} for n
proof −

have {..n + N + 1} = {..<N} ∪ {N ..n + N + 1} by auto
then show ?thesis

unfolding f-def
apply simp
apply (subst prod.union-disjoint)
by auto

qed
ultimately show ?thesis

apply (subst suminf-mult[symmetric])
by (auto simp: mult.commute mult.left-commute)

qed
ultimately show ?thesis unfolding C-def by (auto simp:algebra-simps)

qed
also have ... = C +B ∗ b N / a N + R N

unfolding R-def by simp
finally show ?thesis .

qed
have R-bound:|R M | ≤ 1 / 4 and R-Suc:R (Suc M ) = a M ∗ R M − B ∗ b

(Suc M ) / a (Suc M )
when M ≥ N for M

proof −
define g where g = (λn. B∗b (n+M+1 ) / prod a {M ..n+M+1})
have g-abs-summable:summable (λn. |g n|)
proof −

have summable (λn. (1/2 ::real) ^ n)
by simp

moreover have |g n| < 1/2^n for n
using N-geometric[rule-format,OF that] unfolding g-def by simp

ultimately show ?thesis
apply (elim summable-comparison-test ′)
by (simp add: less-eq-real-def power-one-over)

qed
show |R M | ≤ 1 / 4 using R-N-bound[rule-format,OF that] .
have R M = (

∑
n. g n) unfolding R-def g-def by simp

also have ... = g 0 + (
∑

n. g (Suc n))
apply (subst suminf-split-head)
using summable-rabs-cancel[OF g-abs-summable] by auto

also have ... = g 0 + 1/a M ∗ (
∑

n. a M ∗ g (Suc n))
apply (subst suminf-mult)
by (auto simp: g-abs-summable summable-Suc-iff summable-rabs-cancel)

also have ... = g 0 + 1/a M ∗ R (Suc M )
proof −

have a M ∗ g (Suc n) = B ∗ b (n + M + 2 ) / prod a {Suc M ..n + M + 2}
for n

proof −
have {M ..Suc (Suc (M + n))} = {M} ∪ {Suc M ..Suc (Suc (M + n))} by

auto
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then show ?thesis
unfolding g-def using ‹B>0 › by (auto simp:algebra-simps)

qed
then have (

∑
n. a M ∗ g (Suc n)) = R (Suc M )

unfolding R-def by auto
then show ?thesis by auto

qed
finally have R M = g 0 + 1 / a M ∗ R (Suc M ) .
then have R (Suc M ) = a M ∗ R M − g 0 ∗ a M

by (auto simp:algebra-simps)
moreover have {M ..Suc M} = {M ,Suc M} by auto
ultimately show R (Suc M ) = a M ∗ R M − B ∗ b (Suc M ) / a (Suc M )

unfolding g-def by auto
qed

define c where c = (λn. if n≥N then get-c a b B N (n−N ) else undefined)
have c-rec:c (n+1 ) = c n ∗ a n − B ∗ b n when n ≥ N for n

unfolding c-def using that by (auto simp:Suc-diff-le)
have c-R:c (Suc n) / a n = R n when n ≥ N for n

using that
proof (induct rule:nat-induct-at-least)

case base
have | c (N+1 ) / a N | ≤ 1/2
proof −

have c N = round (B ∗ b N / a N ) unfolding c-def by simp
moreover have c (N+1 ) / a N = c N − B ∗ b N / a N

using a-pos[rule-format,of N ]
by (auto simp:c-rec[of N ,simplified] divide-simps)

ultimately show ?thesis using of-int-round-abs-le by auto
qed
moreover have |R N | ≤ 1 / 4 using R-bound[of N ] by simp
ultimately have |c (N+1 ) / a N − R N | < 1 by linarith
moreover have c (N+1 ) / a N − R N ∈ �
proof −

have c (N+1 ) / a N = c N − B ∗ b N / a N
using a-pos[rule-format,of N ]
by (auto simp:c-rec[of N ,simplified] divide-simps)

moreover have B ∗ b N / a N + R N ∈ �
proof −

have C = B ∗ (
∑

n<N . prod a {..<N} ∗ (b n / prod a {..n}))
unfolding C-def f-def by (simp add:sum-distrib-left algebra-simps)

also have ... = B ∗ (
∑

n<N . prod a {n<..<N} ∗ b n)
proof −

have {..<N} = {n<..<N} ∪ {..n} if n<N for n
by (simp add: ivl-disj-un-one(1 ) sup-commute that)

then show ?thesis
using ‹B>0 ›
apply simp
apply (subst prod.union-disjoint)
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by auto
qed
finally have C = real-of-int (B ∗ (

∑
n<N . prod a {n<..<N} ∗ b n)) .

then have C ∈ � using Ints-of-int by blast
moreover note ‹A ∗ prod a {..<N} = C + B ∗ b N / a N + R N ›
ultimately show ?thesis

by (metis Ints-diff Ints-of-int add.assoc add-diff-cancel-left ′)
qed
ultimately show ?thesis by (simp add: diff-diff-add)

qed
ultimately have c (N+1 ) / a N − R N = 0

by (metis Ints-cases less-irrefl of-int-0 of-int-lessD)
then show ?case by simp

next
case (Suc n)
have c (Suc (Suc n)) / a (Suc n) = c (Suc n) − B ∗ b (Suc n) / a (Suc n)

apply (subst c-rec[of Suc n,simplified])
using ‹N ≤ n› by (auto simp: divide-simps)

also have ... = a n ∗ R n − B ∗ b (Suc n) / a (Suc n)
using Suc by (auto simp: divide-simps)

also have ... = R (Suc n)
using R-Suc[OF ‹N ≤ n›] by simp

finally show ?case .
qed
have ca-tendsto-zero:(λn. c (Suc n) / a n) −−−−→ 0

using R-tendsto-0
apply (elim filterlim-mono-eventually)
using c-R by (auto intro!:eventually-sequentiallyI [of N ])

have ca-bound:|c (n + 1 )| < a n / 2 when n ≥ N for n
proof −

have |c (Suc n)| / a n = |c (Suc n) / a n| using a-pos[rule-format,of n] by
auto

also have ... = |R n| using c-R[OF that] by auto
also have ... < 1/2 using R-bound[OF that] by auto
finally have |c (Suc n)| / a n < 1/2 .
then show ?thesis using a-pos[rule-format,of n] by auto

qed

show ∃B>0 . ∃ c. (∀ F n in sequentially. B ∗ b n = c n ∗ a n − c (n + 1 )
∧ real-of-int |c (n + 1 )| < a n / 2 ) ∧ (λn. c (Suc n) / a n) −−−−→ 0

unfolding eventually-at-top-linorder
apply (rule exI [of - B],use ‹B>0 › in simp)
apply (intro exI [of -c] exI [of - N ])
using c-rec ca-bound ca-tendsto-zero
by fastforce

qed

private lemma imp-ab-rational:
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assumes ∃ (B::int)>0 . ∃ c::nat⇒ int.
(∀ F n in sequentially. B∗b n = c n ∗ a n − c(n+1 ) ∧ |c(n+1 )|<a

n/2 )
shows (

∑
n. (b n / (

∏
i ≤ n. a i))) ∈ �

proof −
obtain B::int and c::nat⇒int and N ::nat where B>0 and

large-n:∀n≥N . B ∗ b n = c n ∗ a n − c (n + 1 ) ∧ real-of-int |c (n + 1 )| < a
n / 2

∧ a n≥2
proof −

obtain B c where B>0 and event1 :∀ F n in sequentially. B ∗ b n = c n ∗ a
n − c (n + 1 )

∧ real-of-int |c (n + 1 )| < real-of-int (a n) / 2
using assms by auto

from eventually-conj[OF event1 a-large,unfolded eventually-at-top-linorder ]
obtain N where ∀n≥N . (B ∗ b n = c n ∗ a n − c (n + 1 )

∧ real-of-int |c (n + 1 )| < real-of-int (a n) / 2 ) ∧ 2 ≤ a n
by fastforce

then show ?thesis using that[of B N c] ‹B>0 › by auto
qed
define f where f=(λn. real-of-int (b n) / real-of-int (prod a {..n}))
define S where S = (

∑
n. f n)

have summable f
unfolding f-def by (rule aux-series-summable)

define C where C=B∗prod a {..<N} ∗ (
∑

n<N . f n)
have B∗prod a {..<N} ∗ S = C + real-of-int (c N )
proof −

define h1 where h1 ≡ (λn. (c (n+N ) ∗ a (n+N )) / prod a {N ..n+N})
define h2 where h2 ≡ (λn. c (n+N+1 ) / prod a {N ..n+N})
have f-h12 : B ∗ prod a {..<N}∗f (n+N ) = h1 n − h2 n for n
proof −

define g1 where g1 ≡ (λn. B ∗ b (n+N ))
define g2 where g2 ≡ (λn. prod a {..<N} / prod a {..n + N})
have B ∗ prod a {..<N}∗f (n+N ) = (g1 n ∗ g2 n)

unfolding f-def g1-def g2-def by (auto simp:algebra-simps)
moreover have g1 n = c (n+N ) ∗ a (n+N ) − c (n+N+1 )

using large-n[rule-format,of n+N ] unfolding g1-def by auto
moreover have g2 n = (1/prod a {N ..n+N})
proof −

have prod a ({..<N} ∪ {N ..n + N}) = prod a {..<N} ∗ prod a {N ..n +
N}

apply (rule prod.union-disjoint[of {..<N} {N ..n+N} a])
by auto

moreover have prod a ({..<N} ∪ {N ..n + N}) = prod a {..n+N}
by (simp add: ivl-disj-un-one(4 ))

ultimately show ?thesis
unfolding g2-def
apply simp
using a-pos by (metis less-irrefl)
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qed
ultimately have B∗prod a {..<N}∗f (n+N ) = (c (n+N ) ∗ a (n+N ) − c

(n+N+1 )) / prod a {N ..n+N}
by auto

also have ... = h1 n − h2 n
unfolding h1-def h2-def by (auto simp:algebra-simps diff-divide-distrib)

finally show ?thesis by simp
qed
have B∗prod a {..<N} ∗ S = B∗prod a {..<N} ∗ ((

∑
n<N . f n) + (

∑
n. f

(n+N )))
using suminf-split-initial-segment[OF ‹summable f ›,of N ]
unfolding S-def by (auto simp:algebra-simps)

also have ... = C + B∗prod a {..<N}∗(
∑

n. f (n+N ))
unfolding C-def by (auto simp:algebra-simps)

also have ... = C + (
∑

n. h1 n − h2 n)
apply (subst suminf-mult[symmetric])
using ‹summable f › f-h12 by auto

also have ... = C + h1 0
proof −

have (λn.
∑

i≤n. h1 i − h2 i) −−−−→ (
∑

i. h1 i − h2 i)
proof (rule summable-LIMSEQ ′)

have (λi. h1 i − h2 i) = (λi. real-of-int (B ∗ prod a {..<N}) ∗ f (i + N ))
using f-h12 by auto

then show summable (λi. h1 i − h2 i)
using ‹summable f › by (simp add: summable-mult)

qed
moreover have (

∑
i≤n. h1 i − h2 i) = h1 0 − h2 n for n

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
have (

∑
i≤Suc n. h1 i − h2 i) = (

∑
i≤n. h1 i − h2 i) + h1 (n+1 ) − h2

(n+1 )
by auto

also have ... = h1 0 − h2 n + h1 (n+1 ) − h2 (n+1 ) using Suc by auto
also have ... = h1 0 − h2 (n+1 )
proof −

have h2 n = h1 (n+1 )
unfolding h2-def h1-def
apply (auto simp:prod.nat-ivl-Suc ′)
using a-pos by (metis less-numeral-extra(3 ))

then show ?thesis by auto
qed
finally show ?case by simp

qed
ultimately have (λn. h1 0 − h2 n) −−−−→ (

∑
i. h1 i − h2 i) by simp

then have h2 −−−−→ (h1 0 − (
∑

i. h1 i − h2 i))
apply (elim metric-tendsto-imp-tendsto)
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by (auto intro!:eventuallyI simp add:dist-real-def )
moreover have h2 −−−−→ 0
proof −

have h2-n:|h2 n| < (1 / 2 )^(n+1 ) for n
proof −

have |h2 n| = |c (n + N + 1 )| / prod a {N ..n + N}
unfolding h2-def abs-divide
using a-pos by (simp add: abs-of-pos prod-pos)

also have ... < (a (N+n) / 2 ) / prod a {N ..n + N}
unfolding h2-def
apply (rule divide-strict-right-mono)

subgoal using large-n[rule-format,of N+n] by (auto simp:algebra-simps)
subgoal using a-pos by (simp add: prod-pos)
done

also have ... = 1 / (2∗prod a {N ..<n + N})
apply (subst ivl-disj-un(6 )[of N n+N ,symmetric])
using a-pos[rule-format,of N+n] by (auto simp:algebra-simps)

also have ... ≤ (1/2 )^(n+1 )
proof (induct n)

case 0
then show ?case by auto

next
case (Suc n)
define P where P=1 / real-of-int (2 ∗ prod a {N ..<n + N})
have 1 / real-of-int (2 ∗ prod a {N ..<Suc n + N}) = P / a (n+N )

unfolding P-def by (auto simp: prod.atLeastLessThan-Suc)
also have ... ≤ ( (1 / 2 ) ^ (n + 1 ) ) / a (n+N )

apply (rule divide-right-mono)
subgoal unfolding P-def using Suc by auto
subgoal by (simp add: a-pos less-imp-le)
done

also have ... ≤ ( (1 / 2 ) ^ (n + 1 ) ) / 2
apply (rule divide-left-mono)
using large-n[rule-format,of n+N ,simplified] by auto

also have ... = (1 / 2 ) ^ (n + 2 ) by auto
finally show ?case by simp

qed
finally show ?thesis .

qed
have (λn. (1 / 2 )^(n+1 )) −−−−→ (0 ::real)

using tendsto-mult-right-zero[OF LIMSEQ-abs-realpow-zero2 [of 1/2 ,simplified],of
1/2 ]

by auto
then show ?thesis

apply (elim Lim-null-comparison[rotated])
using h2-n less-eq-real-def by (auto intro!:eventuallyI )

qed
ultimately have (

∑
i. h1 i − h2 i) = h1 0

using LIMSEQ-unique by fastforce
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then show ?thesis by simp
qed
also have ... = C + c N

unfolding h1-def using a-pos
by auto (metis less-irrefl)

finally show ?thesis .
qed
then have S = (C + real-of-int (c N )) / (B∗prod a {..<N})

by (metis ‹0 < B› a-pos less-irrefl mult.commute mult-pos-pos
nonzero-mult-div-cancel-right of-int-eq-0-iff prod-pos)

moreover have ... ∈ �
unfolding C-def f-def by (intro Rats-divide Rats-add Rats-mult Rats-of-int

Rats-sum)
ultimately show S ∈ � by auto

qed

theorem theorem-2-1-Erdos-Straus :
(
∑

n. (b n / (
∏

i ≤ n. a i))) ∈ � ←→ (∃ (B::int)>0 . ∃ c::nat⇒ int.
(∀ F n in sequentially. B∗b n = c n ∗ a n − c(n+1 ) ∧ |c(n+1 )|<a n/2 ))

using ab-rationality-imp imp-ab-rational by auto

The following is a Corollary to Theorem 2.1.
corollary corollary-2-10-Erdos-Straus:

assumes ab-event:∀ F n in sequentially. b n > 0 ∧ a (n+1 ) ≥ a n
and ba-lim-leq:lim (λn. (b(n+1 ) − b n )/a n) ≤ 0
and ba-lim-exist:convergent (λn. (b(n+1 ) − b n )/a n)
and liminf (λn. a n / b n) = 0

shows (
∑

n. (b n / (
∏

i ≤ n. a i))) /∈ �
proof

assume (
∑

n. (b n / (
∏

i ≤ n. a i))) ∈ �
then obtain B c where B>0 and abc-event:∀ F n in sequentially. B ∗ b n = c

n ∗ a n − c (n + 1 )
∧ |c (n + 1 )| < a n / 2 and ca-vanish: (λn. c (Suc n) / a n) −−−−→ 0

using ab-rationality-imp by auto

have bac-close:(λn. B ∗ b n / a n − c n) −−−−→ 0
proof −

have ∀ F n in sequentially. B ∗ b n − c n ∗ a n + c (n + 1 ) = 0
using abc-event by (auto elim!:eventually-mono)

then have ∀ F n in sequentially. (B ∗ b n − c n ∗ a n + c (n+1 )) / a n = 0
apply eventually-elim
by auto

then have ∀ F n in sequentially. B ∗ b n / a n − c n + c (n + 1 ) / a n = 0
apply eventually-elim
using a-pos by (auto simp:divide-simps) (metis less-irrefl)

then have (λn. B ∗ b n / a n − c n + c (n + 1 ) / a n) −−−−→ 0
by (simp add: eventually-mono tendsto-iff )

from tendsto-diff [OF this ca-vanish]
show ?thesis by auto
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qed

have c-pos:∀ F n in sequentially. c n > 0
proof −

from bac-close have ∗:∀ F n in sequentially. c n ≥ 0
apply (elim tendsto-of-int-diff-0 )
using ab-event a-large apply (eventually-elim)
using ‹B>0 › by auto

show ?thesis
proof (rule ccontr)

assume ¬ (∀ F n in sequentially. c n > 0 )
moreover have ∀ F n in sequentially. c (Suc n) ≥ 0 ∧ c n≥0

using ∗ eventually-sequentially-Suc[of λn. c n≥0 ]
by (metis (mono-tags, lifting) eventually-at-top-linorder le-Suc-eq)

ultimately have ∃ F n in sequentially. c n = 0 ∧ c (Suc n) ≥ 0
using eventually-elim2 frequently-def by fastforce

moreover have ∀ F n in sequentially. b n > 0 ∧ B ∗ b n = c n ∗ a n − c
(n + 1 )

using ab-event abc-event by eventually-elim auto
ultimately have ∃ F n in sequentially. c n = 0 ∧ c (Suc n) ≥ 0 ∧ b n > 0

∧ B ∗ b n = c n ∗ a n − c (n + 1 )
using frequently-eventually-frequently by fastforce

from frequently-ex[OF this]
obtain n where c n = 0 c (Suc n) ≥ 0 b n > 0

B ∗ b n = c n ∗ a n − c (n + 1 )
by auto

then have B ∗ b n ≤ 0 by auto
then show False using ‹b n>0 › ‹B > 0 › using mult-pos-pos not-le by blast

qed
qed

have bc-epsilon:∀ F n in sequentially. b (n+1 ) / b n > (c (n+1 ) − ε) / c n
when ε>0 ε<1 for ε::real

proof −
have ∀ F x in sequentially. |c (Suc x) / a x| < ε / 2

using ca-vanish[unfolded tendsto-iff ,rule-format, of ε/2 ] ‹ε>0 › by auto
moreover then have ∀ F x in sequentially. |c (x+2 ) / a (x+1 )| < ε / 2

apply (subst (asm) eventually-sequentially-Suc[symmetric])
by simp

moreover have ∀ F n in sequentially. B ∗ b (n+1 ) = c (n+1 ) ∗ a (n+1 ) −
c (n + 2 )

using abc-event
apply (subst (asm) eventually-sequentially-Suc[symmetric])
by (auto elim:eventually-mono)

moreover have ∀ F n in sequentially. c n > 0 ∧ c (n+1 ) > 0 ∧ c (n+2 ) > 0
proof −

have ∀ F n in sequentially. 0 < c (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp

moreover then have ∀ F n in sequentially. 0 < c (Suc (Suc n))
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using c-pos by (subst eventually-sequentially-Suc) simp
ultimately show ?thesis using c-pos by eventually-elim auto

qed
ultimately show ?thesis using ab-event abc-event
proof eventually-elim

case (elim n)
define ε0 ε1 where ε0 = c (n+1 ) / a n and ε1 = c (n+2 ) / a (n+1 )
have ε0 > 0 ε1 > 0 ε0 < ε/2 ε1 < ε/2 using a-pos elim by (auto simp:

ε0-def ε1-def )
have (ε − ε1) ∗ c n > 0

using ‹ε1 < ε / 2 › elim(4 ) that(1 ) by auto
moreover have ε0 ∗ (c (n+1 ) − ε) > 0

using ‹0 < ε0› elim(4 ) that(2 ) by auto
ultimately have (ε − ε1) ∗ c n + ε0 ∗ (c (n+1 ) − ε) > 0 by auto
moreover have gt0 : c n − ε0 > 0 using ‹ε0 < ε / 2 › elim(4 ) that(2 ) by

linarith
moreover have c n > 0 by (simp add: elim(4 ))
ultimately have (c (n+1 ) − ε) / c n < (c (n+1 ) − ε1) / (c n − ε0)

by (auto simp: field-simps)
also have ... ≤ (c (n+1 ) − ε1) / (c n − ε0) ∗ (a (n+1 ) / a n)
proof −

have (c (n+1 ) − ε1) / (c n − ε0) > 0
using gt0 ‹ε1 < ε / 2 › elim(4 ) that(2 ) by force

moreover have (a (n+1 ) / a n) ≥ 1
using a-pos elim(5 ) by auto

ultimately show ?thesis by (metis mult-cancel-left1 mult-le-cancel-left-pos)
qed
also have ... = (B ∗ b (n+1 )) / (B ∗ b n)
proof −

have B ∗ b n = c n ∗ a n − c (n + 1 )
using elim by auto

also have ... = a n ∗ (c n − ε0)
using a-pos[rule-format,of n] unfolding ε0-def by (auto simp:field-simps)

finally have B ∗ b n = a n ∗ (c n − ε0) .
moreover have B ∗ b (n+1 ) = a (n+1 ) ∗ (c (n+1 ) − ε1)

unfolding ε1-def
using a-pos[rule-format,of n+1 ]
apply (subst ‹B ∗ b (n + 1 ) = c (n + 1 ) ∗ a (n + 1 ) − c (n + 2 )›)
by (auto simp:field-simps)

ultimately show ?thesis by (simp add: mult.commute)
qed
also have ... = b (n+1 ) / b n

using ‹B>0 › by auto
finally show ?case .

qed
qed

have eq-2-11 :∃ F n in sequentially. b (n+1 ) > b n + (1 − ε)^2 ∗ a n / B
when ε>0 ε<1 ¬ (∀ F n in sequentially. c (n+1 ) ≤ c n) for ε::real
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proof −
have ∃ F x in sequentially. c x < c (Suc x) using that(3 )

by (simp add:not-eventually frequently-elim1 )
moreover have ∀ F x in sequentially. |c (Suc x) / a x| < ε

using ca-vanish[unfolded tendsto-iff ,rule-format, of ε] ‹ε>0 › by auto
moreover have ∀ F n in sequentially. c n > 0 ∧ c (n+1 ) > 0
proof −

have ∀ F n in sequentially. 0 < c (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp

then show ?thesis using c-pos by eventually-elim auto
qed

ultimately show ?thesis using ab-event abc-event bc-epsilon[OF ‹ε>0 › ‹ε<1 ›]

proof (elim frequently-rev-mp,eventually-elim)
case (elim n)
then have c (n+1 ) / a n < ε

using a-pos[rule-format,of n] by auto
also have ... ≤ ε ∗ c n using elim(7 ) that(1 ) by auto
finally have c (n+1 ) / a n < ε ∗ c n .
then have c (n+1 ) / c n < ε ∗ a n

using a-pos[rule-format,of n] elim by (auto simp:field-simps)
then have (1 − ε) ∗ a n < a n − c (n+1 ) / c n

by (auto simp:algebra-simps)
then have (1 − ε)^2 ∗ a n / B < (1 − ε) ∗ (a n − c (n+1 ) / c n) / B

apply (subst (asm) mult-less-cancel-right-pos[symmetric, of (1−ε)/B])
using ‹ε<1 › ‹B>0 › by (auto simp: divide-simps power2-eq-square mult-less-cancel-right-pos)
then have b n + (1 − ε)^2 ∗ a n / B < b n + (1 − ε) ∗ (a n − c (n+1 ) /

c n) / B
using ‹B>0 › by auto

also have ... = b n + (1 − ε) ∗ ((c n ∗a n − c (n+1 )) / c n) / B
using elim by (auto simp:field-simps)

also have ... = b n + (1 − ε) ∗ (b n / c n)
proof −

have B ∗ b n = c n ∗ a n − c (n + 1 ) using elim by auto
from this[symmetric] show ?thesis

using ‹B>0 › by simp
qed
also have ... = (1+(1−ε)/c n) ∗ b n

by (auto simp:algebra-simps)
also have ... = ((c n+1−ε)/c n) ∗ b n

using elim by (auto simp:divide-simps)
also have ... ≤ ((c (n+1 ) −ε)/c n) ∗ b n
proof −

define cp where cp = c n+1
have c (n+1 ) ≥ cp unfolding cp-def using ‹c n < c (Suc n)› by auto
moreover have c n>0 b n>0 using elim by auto
ultimately show ?thesis

apply (fold cp-def )
by (auto simp:divide-simps)
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qed
also have ... < b (n+1 )

using elim by (auto simp:divide-simps)
finally show ?case .

qed
qed

have ∀ F n in sequentially. c (n+1 ) ≤ c n
proof (rule ccontr)

assume ¬ (∀ F n in sequentially. c (n + 1 ) ≤ c n)
from eq-2-11 [OF - - this,of 1/2 ]
have ∃ F n in sequentially. b (n+1 ) > b n + 1/4 ∗ a n / B

by (auto simp:algebra-simps power2-eq-square)
then have ∗:∃ F n in sequentially. (b (n+1 ) − b n) / a n > 1 / (B ∗ 4 )

apply (elim frequently-elim1 )
subgoal for n

using a-pos[rule-format,of n] by (auto simp:field-simps)
done

define f where f = (λn. (b (n+1 ) − b n) / a n)
have f −−−−→ lim f

using convergent-LIMSEQ-iff ba-lim-exist unfolding f-def by auto
from this[unfolded tendsto-iff ,rule-format, of 1 / (B∗4 )]
have ∀ F x in sequentially. |f x − lim f | < 1 / (B ∗ 4 )

using ‹B>0 › by (auto simp:dist-real-def )
moreover have ∃ F n in sequentially. f n > 1 / (B ∗ 4 )

using ∗ unfolding f-def by auto
ultimately have ∃ F n in sequentially. f n > 1 / (B ∗ 4 ) ∧ |f n − lim f | < 1

/ (B ∗ 4 )
by (auto elim:frequently-eventually-frequently[rotated])

from frequently-ex[OF this]
obtain n where f n > 1 / (B ∗ 4 ) |f n − lim f | < 1 / (B ∗ 4 )

by auto
moreover have lim f ≤ 0 using ba-lim-leq unfolding f-def by auto
ultimately show False by linarith

qed
then obtain N where N-dec:∀n≥N . c (n+1 ) ≤ c n by (meson eventually-at-top-linorder)
define max-c where max-c = (MAX n ∈ {..N}. c n)
have max-c:c n ≤ max-c for n
proof (cases n≤N )

case True
then show ?thesis unfolding max-c-def by simp

next
case False
then have n≥N by auto
then have c n≤c N
proof (induct rule:nat-induct-at-least)

case base
then show ?case by simp

next
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case (Suc n)
then have c (n+1 ) ≤ c n using N-dec by auto
then show ?case using ‹c n ≤ c N › by auto

qed
moreover have c N ≤ max-c unfolding max-c-def by auto
ultimately show ?thesis by auto

qed
have max-c > 0
proof −

obtain N where ∀n≥N . 0 < c n
using c-pos[unfolded eventually-at-top-linorder ] by auto

then have c N > 0 by auto
then show ?thesis using max-c[of N ] by simp

qed
have ba-limsup-bound:1/(B∗(B+1 )) ≤ limsup (λn. b n/a n)

limsup (λn. b n/a n) ≤ max-c / B + 1 / (B+1 )
proof −

define f where f = (λn. b n/a n)
from tendsto-mult-right-zero[OF bac-close,of 1/B]
have (λn. f n − c n / B) −−−−→ 0

unfolding f-def using ‹B>0 › by (auto simp:algebra-simps)
from this[unfolded tendsto-iff ,rule-format,of 1/(B+1 )]
have ∀ F x in sequentially. |f x − c x / B| < 1 / (B+1 )

using ‹B>0 › by auto
then have ∗:∀ F n in sequentially. 1/(B∗(B+1 )) ≤ ereal (f n) ∧ ereal (f n) ≤

max-c / B + 1 / (B+1 )
using c-pos

proof eventually-elim
case (elim n)
then have f n − c n / B < 1 / (B+1 ) by auto
then have f n < c n / B + 1 / (B+1 ) by simp
also have ... ≤ max-c / B + 1 / (B+1 )

using max-c[of n] using ‹B>0 › by (auto simp:divide-simps)
finally have ∗:f n < max-c / B + 1 / (B+1 ) .

have 1/(B∗(B+1 )) = 1/B − 1 / (B+1 )
using ‹B>0 › by (auto simp:divide-simps)

also have ... ≤ c n/B − 1 / (B+1 )
using ‹0 < c n› ‹B>0 › by (auto,auto simp:divide-simps)

also have ... < f n using elim by auto
finally have 1/(B∗(B+1 )) < f n .
with ∗ show ?case by simp

qed
show limsup f ≤ max-c / B + 1 / (B+1 )

apply (rule Limsup-bounded)
using ∗ by (auto elim:eventually-mono)

have 1/(B∗(B+1 )) ≤ liminf f
apply (rule Liminf-bounded)
using ∗ by (auto elim:eventually-mono)
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also have liminf f ≤ limsup f by (simp add: Liminf-le-Limsup)
finally show 1/(B∗(B+1 )) ≤ limsup f .

qed

have 0 < inverse (ereal (max-c / B + 1 / (B+1 )))
using ‹max-c > 0 › ‹B>0 ›
by (simp add: pos-add-strict)

also have ... ≤ inverse (limsup (λn. b n/a n))
proof (rule ereal-inverse-antimono[OF - ba-limsup-bound(2 )])

have 0<1/(B∗(B+1 )) using ‹B>0 › by auto
also have ... ≤ limsup (λn. b n/a n) using ba-limsup-bound(1 ) .
finally show 0≤limsup (λn. b n/a n) using zero-ereal-def by auto

qed
also have ... = liminf (λn. inverse (ereal ( b n/a n)))

apply (subst Liminf-inverse-ereal[symmetric])
using a-pos ab-event by (auto elim!:eventually-mono simp:divide-simps)

also have ... = liminf (λn. ( a n/b n))
apply (rule Liminf-eq)
using a-pos ab-event
apply (auto elim!:eventually-mono)
by (metis less-int-code(1 ))

finally have liminf (λn. ( a n/b n)) > 0 .
then show False using ‹liminf (λn. a n / b n) = 0 › by simp

qed

end

3 Some auxiliary results on the prime numbers.
lemma nth-prime-nonzero[simp]:nth-prime n 6= 0

by (simp add: prime-gt-0-nat prime-nth-prime)

lemma nth-prime-gt-zero[simp]:nth-prime n >0
by (simp add: prime-gt-0-nat prime-nth-prime)

lemma ratio-of-consecutive-primes:
(λn. nth-prime (n+1 )/nth-prime n) −−−−→1

proof −
define f where f=(λx. real (nth-prime (Suc x)) /real (nth-prime x))
define g where g=(λx. (real x ∗ ln (real x))

/ (real (Suc x) ∗ ln (real (Suc x))))
have p-n:(λx. real (nth-prime x) / (real x ∗ ln (real x))) −−−−→ 1

using nth-prime-asymptotics[unfolded asymp-equiv-def ,simplified] .
moreover have p-sn:(λn. real (nth-prime (Suc n))

/ (real (Suc n) ∗ ln (real (Suc n)))) −−−−→ 1
using nth-prime-asymptotics[unfolded asymp-equiv-def ,simplified

,THEN LIMSEQ-Suc] .
ultimately have (λx. f x ∗ g x) −−−−→ 1

using tendsto-divide[OF p-sn p-n]
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unfolding f-def g-def by (auto simp:algebra-simps)
moreover have g −−−−→ 1 unfolding g-def

by real-asymp
ultimately have (λx. if g x = 0 then 0 else f x) −−−−→ 1

apply (drule-tac tendsto-divide[OF - ‹g −−−−→ 1 ›])
by auto

then have f −−−−→ 1
proof (elim filterlim-mono-eventually)

have ∀ F x in sequentially. (if g (x+3 ) = 0 then 0
else f (x+3 )) = f (x+3 )

unfolding g-def by auto
then show ∀ F x in sequentially. (if g x = 0 then 0 else f x) = f x

apply (subst (asm) eventually-sequentially-seg)
by simp

qed auto
then show ?thesis unfolding f-def by auto

qed

lemma nth-prime-double-sqrt-less:
assumes ε > 0
shows ∀ F n in sequentially. (nth-prime (2∗n) − nth-prime n)

/ sqrt (nth-prime n) < n powr (1/2+ε)
proof −

define pp ll where
pp=(λn. (nth-prime (2∗n) − nth-prime n) / sqrt (nth-prime n)) and
ll=(λx::nat. x ∗ ln x)

have pp-pos:pp (n+1 ) > 0 for n
unfolding pp-def by simp

have (λx. nth-prime (2 ∗ x)) ∼[sequentially] (λx. (2 ∗ x) ∗ ln (2 ∗ x))
using nth-prime-asymptotics[THEN asymp-equiv-compose

,of (∗) 2 sequentially,unfolded comp-def ]
using mult-nat-left-at-top pos2 by blast

also have ... ∼[sequentially] (λx. 2 ∗x ∗ ln x)
by real-asymp

finally have (λx. nth-prime (2 ∗ x)) ∼[sequentially] (λx. 2 ∗x ∗ ln x) .
from this[unfolded asymp-equiv-def , THEN tendsto-mult-left,of 2 ]
have (λx. nth-prime (2 ∗ x) / (x ∗ ln x)) −−−−→ 2

unfolding asymp-equiv-def by auto
moreover have ∗:(λx. nth-prime x / (x ∗ ln x)) −−−−→ 1

using nth-prime-asymptotics unfolding asymp-equiv-def by auto
ultimately
have (λx. (nth-prime (2 ∗ x) − nth-prime x) / ll x) −−−−→ 1

unfolding ll-def
apply −
apply (drule (1 ) tendsto-diff )
apply (subst of-nat-diff ,simp)
by (subst diff-divide-distrib,simp)

moreover have (λx. sqrt (nth-prime x) / sqrt (ll x)) −−−−→ 1
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unfolding ll-def
using tendsto-real-sqrt[OF ∗]
by (auto simp: real-sqrt-divide)

ultimately have (λx. pp x ∗ (sqrt (ll x) / (ll x))) −−−−→ 1
apply −
apply (drule (1 ) tendsto-divide,simp)
by (auto simp:field-simps of-nat-diff pp-def )

moreover have ∀ F x in sequentially. sqrt (ll x) / ll x = 1/sqrt (ll x)
apply (subst eventually-sequentially-Suc[symmetric])
by (auto intro!:eventuallyI simp:ll-def divide-simps)

ultimately have (λx. pp x / sqrt (ll x)) −−−−→ 1
apply (elim filterlim-mono-eventually)
by (auto elim!:eventually-mono) (metis mult.right-neutral times-divide-eq-right)

moreover have (λx. sqrt (ll x) / x powr (1/2+ε)) −−−−→ 0
unfolding ll-def using ‹ε>0 › by real-asymp

ultimately have (λx. pp x / x powr (1/2+ε) ∗
(sqrt (ll x) / sqrt (ll x))) −−−−→ 0

apply −
apply (drule (1 ) tendsto-mult)
by (auto elim:filterlim-mono-eventually)

moreover have ∀ F x in sequentially. sqrt (ll x) / sqrt (ll x) = 1
apply (subst eventually-sequentially-Suc[symmetric])
by (auto intro!:eventuallyI simp:ll-def )

ultimately have (λx. pp x / x powr (1/2+ε)) −−−−→ 0
apply (elim filterlim-mono-eventually)
by (auto elim:eventually-mono)

from tendstoD[OF this, of 1 ,simplified]
show ∀ F x in sequentially. pp x < x powr (1 / 2 + ε)

apply (elim eventually-mono-sequentially[of - 1 ])
using pp-pos by auto

qed

4 Theorem 3.1
Theorem 3.1 is an application of Theorem 2.1 with the sequences considered
involving the prime numbers.
theorem theorem-3-10-Erdos-Straus:

fixes a::nat ⇒ int
assumes a-pos:∀ n. a n >0 and mono a

and nth-1 :(λn. nth-prime n / (a n)^2 ) −−−−→ 0
and nth-2 :liminf (λn. a n / nth-prime n) = 0

shows (
∑

n. (nth-prime n / (
∏

i ≤ n. a i))) /∈ �
proof

assume asm:(
∑

n. (nth-prime n / (
∏

i ≤ n. a i))) ∈ �

have a2-omega:(λn. (a n)^2 ) ∈ ω(λx. x ∗ ln x)
proof −

have (λn. real (nth-prime n)) ∈ o(λn. real-of-int ((a n)2))
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apply (rule smalloI-tendsto[OF nth-1 ])
using a-pos by (metis (mono-tags, lifting) less-int-code(1 )

not-eventuallyD of-int-0-eq-iff zero-eq-power2 )
moreover have (λx. real (nth-prime x)) ∈ Ω(λx. real x ∗ ln (real x))

using nth-prime-bigtheta
by blast

ultimately show ?thesis
using landau-omega.small-big-trans smallo-imp-smallomega by blast

qed

have a-gt-1 :∀ F n in sequentially. 1 < a n
proof −

have ∀ F x in sequentially. |x ∗ ln x| ≤ (a x)2
using a2-omega[unfolded smallomega-def ,simplified,rule-format,of 1 ]
by auto

then have ∀ F x in sequentially. |(x+3 ) ∗ ln (x+3 )| ≤ (a (x+3 ))2
apply (subst (asm) eventually-sequentially-seg[symmetric, of - 3 ])
by simp

then have ∀ F n in sequentially. 1 < a ( n+3 )
proof (elim eventually-mono)

fix x
assume |real (x + 3 ) ∗ ln (real (x + 3 ))| ≤ real-of-int ((a (x + 3 ))2)
moreover have |real (x + 3 ) ∗ ln (real (x + 3 ))| > 3
proof −

have ln (real (x + 3 )) > 1
using ln3-gt-1 ln-gt-1 by force

moreover have real(x+3 ) ≥ 3 by simp
ultimately have (x+3 )∗ln (real (x + 3 )) > 3∗1

by (smt (verit, best) mult-less-cancel-left1 )
then show ?thesis by auto

qed
ultimately have (a (x + 3 ))2 > 3

by linarith
then show 1 < a (x + 3 )

by (smt (verit) assms(1 ) one-power2 )
qed
then show ?thesis

using eventually-sequentially-seg[symmetric, of - 3 ]
by blast

qed

obtain B::int and c where
B>0 and Bc-large:∀ F n in sequentially. B ∗ nth-prime n

= c n ∗ a n − c (n + 1 ) ∧ |c (n + 1 )| < a n / 2
and ca-vanish: (λn. c (Suc n) / real-of-int (a n)) −−−−→ 0

proof −
note a-gt-1
moreover have (λn. real-of-int |int (nth-prime n)|

/ real-of-int (a (n − 1 ) ∗ a n)) −−−−→ 0
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proof −
define f where f=(λn. nth-prime (n+1 ) / (a n ∗ a (n+1 )))
define g where g=(λn. 2∗nth-prime n / (a n)^2 )
have ∀ F x in sequentially. norm (f x) ≤ g x
proof −

have ∀ F n in sequentially. nth-prime (n+1 ) < 2∗nth-prime n
using ratio-of-consecutive-primes[unfolded tendsto-iff

,rule-format,of 1 ,simplified]
apply (elim eventually-mono)
by (auto simp :divide-simps dist-norm)

moreover have ∀ F n in sequentially. real-of-int (a n ∗ a (n+1 ))
≥ (a n)^2

apply (rule eventuallyI )
using ‹mono a› by (auto simp:power2-eq-square a-pos incseq-SucD)

ultimately show ?thesis unfolding f-def g-def
apply eventually-elim
apply (subst norm-divide)
apply (rule-tac linordered-field-class.frac-le)
using a-pos[rule-format, THEN order .strict-implies-not-eq ]
by auto

qed
moreover have g −−−−→ 0

using nth-1 [THEN tendsto-mult-right-zero,of 2 ] unfolding g-def
by auto

ultimately have f −−−−→ 0
using Lim-null-comparison[of f g sequentially]
by auto

then show ?thesis
unfolding f-def
by (rule-tac LIMSEQ-imp-Suc) auto

qed
moreover have (

∑
n. real-of-int (int (nth-prime n))

/ real-of-int (prod a {..n})) ∈ �
using asm by simp

ultimately have ∃B>0 . ∃ c. (∀ F n in sequentially.
B ∗ int (nth-prime n) = c n ∗ a n − c (n + 1 ) ∧
real-of-int |c (n + 1 )| < real-of-int (a n) / 2 ) ∧

(λn. real-of-int (c (Suc n)) / real-of-int (a n)) −−−−→ 0
using ab-rationality-imp[OF a-pos,of nth-prime] by fast

then show thesis
apply clarify
apply (rule-tac c=c and B=B in that)
by auto

qed

have bac-close:(λn. B ∗ nth-prime n / a n − c n) −−−−→ 0
proof −

have ∀ F n in sequentially. B ∗ nth-prime n − c n ∗ a n + c (n + 1 ) = 0
using Bc-large by (auto elim!:eventually-mono)
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then have ∀ F n in sequentially. (B ∗ nth-prime n − c n ∗ a n + c (n+1 )) /
a n = 0

by eventually-elim auto
then have ∀ F n in sequentially. B ∗ nth-prime n / a n − c n + c (n + 1 ) /

a n = 0
apply eventually-elim
using a-pos by (auto simp:divide-simps) (metis less-irrefl)

then have (λn. B ∗ nth-prime n / a n − c n + c (n + 1 ) / a n) −−−−→ 0
by (simp add: eventually-mono tendsto-iff )

from tendsto-diff [OF this ca-vanish]
show ?thesis by auto

qed

have c-pos:∀ F n in sequentially. c n > 0
proof −

from bac-close have ∗:∀ F n in sequentially. c n ≥ 0
apply (elim tendsto-of-int-diff-0 )
using a-gt-1 apply (eventually-elim)
using ‹B>0 › by auto

show ?thesis
proof (rule ccontr)

assume ¬ (∀ F n in sequentially. c n > 0 )
moreover have ∀ F n in sequentially. c (Suc n) ≥ 0 ∧ c n≥0

using ∗ eventually-sequentially-Suc[of λn. c n≥0 ]
by (metis (mono-tags, lifting) eventually-at-top-linorder le-Suc-eq)

ultimately have ∃ F n in sequentially. c n = 0 ∧ c (Suc n) ≥ 0
using eventually-elim2 frequently-def by fastforce

moreover have ∀ F n in sequentially. nth-prime n > 0
∧ B ∗ nth-prime n = c n ∗ a n − c (n + 1 )

using Bc-large by eventually-elim auto
ultimately have ∃ F n in sequentially. c n = 0 ∧ c (Suc n) ≥ 0
∧ B ∗ nth-prime n = c n ∗ a n − c (n + 1 )

using frequently-eventually-frequently by fastforce
from frequently-ex[OF this]
obtain n where c n = 0 c (Suc n) ≥ 0

B ∗ nth-prime n = c n ∗ a n − c (n + 1 )
by auto

then have B ∗ nth-prime n ≤ 0 by auto
then show False using ‹B > 0 ›

by (simp add: mult-le-0-iff )
qed

qed

have B-nth-prime:∀ F n in sequentially. nth-prime n > B
proof −

have ∀ F x in sequentially. B+1 ≤ nth-prime x
using nth-prime-at-top[unfolded filterlim-at-top-ge[where c=nat B+1 ]

,rule-format,of nat B + 1 ,simplified]
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apply (elim eventually-mono)
using ‹B>0 › by auto

then show ?thesis
by (auto elim: eventually-mono)

qed

have bc-epsilon:∀ F n in sequentially. nth-prime (n+1 )
/ nth-prime n > (c (n+1 ) − ε) / c n when ε>0 ε<1 for ε::real

proof −
have ∀ F x in sequentially. |c (Suc x) / a x| < ε / 2

using ca-vanish[unfolded tendsto-iff ,rule-format, of ε/2 ] ‹ε>0 › by auto
moreover then have ∀ F x in sequentially. |c (x+2 ) / a (x+1 )| < ε / 2

apply (subst (asm) eventually-sequentially-Suc[symmetric])
by simp

moreover have ∀ F n in sequentially. B ∗ nth-prime (n+1 ) = c (n+1 ) ∗ a
(n+1 ) − c (n + 2 )

using Bc-large
apply (subst (asm) eventually-sequentially-Suc[symmetric])
by (auto elim:eventually-mono)

moreover have ∀ F n in sequentially. c n > 0 ∧ c (n+1 ) > 0 ∧ c (n+2 ) > 0
proof −

have ∀ F n in sequentially. 0 < c (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp

moreover then have ∀ F n in sequentially. 0 < c (Suc (Suc n))
using c-pos by (subst eventually-sequentially-Suc) simp

ultimately show ?thesis using c-pos by eventually-elim auto
qed
ultimately show ?thesis using Bc-large
proof eventually-elim

case (elim n)
define ε0 ε1 where ε0 = c (n+1 ) / a n and ε1 = c (n+2 ) / a (n+1 )
have ε0 > 0 ε1 > 0 ε0 < ε/2 ε1 < ε/2

using a-pos elim ‹mono a›
by (auto simp: ε0-def ε1-def abs-of-pos)

have (ε − ε1) ∗ c n > 0
using ‹ε1 > 0 › ‹ε1 < ε/2 › ‹ε>0 › elim by auto

moreover have A: ε0 ∗ (c (n+1 ) − ε) > 0
using ‹ε0 > 0 › elim(4 ) that(2 ) by force

ultimately have (ε − ε1) ∗ c n + ε0 ∗ (c (n+1 ) − ε) > 0 by auto
moreover have B: c n − ε0 > 0 using ‹ε0 < ε / 2 › elim(4 ) that(2 ) by

linarith
moreover have c n > 0 by (simp add: elim(4 ))
ultimately have (c (n+1 ) − ε) / c n < (c (n+1 ) − ε1) / (c n − ε0)

by (auto simp:field-simps)
also have ... ≤ (c (n+1 ) − ε1) / (c n − ε0) ∗ (a (n+1 ) / a n)
proof −

have (c (n+1 ) − ε1) / (c n − ε0) > 0
using A ‹0 < ε0› B ‹ε1 < ε / 2 › divide-pos-pos that(1 ) by force

moreover have (a (n+1 ) / a n) ≥ 1
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using a-pos ‹mono a› by (simp add: mono-def )
ultimately show ?thesis by (metis mult-cancel-left1 mult-le-cancel-left-pos)

qed
also have ... = (B ∗ nth-prime (n+1 )) / (B ∗ nth-prime n)
proof −

have B ∗ nth-prime n = c n ∗ a n − c (n + 1 )
using elim by auto

also have ... = a n ∗ (c n − ε0)
using a-pos[rule-format,of n] unfolding ε0-def by (auto simp:field-simps)

finally have B ∗ nth-prime n = a n ∗ (c n − ε0) .
moreover have B ∗ nth-prime (n+1 ) = a (n+1 ) ∗ (c (n+1 ) − ε1)

unfolding ε1-def
using a-pos[rule-format,of n+1 ]
apply (subst ‹B ∗ nth-prime (n + 1 ) = c (n + 1 ) ∗ a (n + 1 ) − c (n +

2 )›)
by (auto simp:field-simps)

ultimately show ?thesis by (simp add: mult.commute)
qed
also have ... = nth-prime (n+1 ) / nth-prime n

using ‹B>0 › by auto
finally show ?case .

qed
qed

have c-ubound:∀ x. ∃n. c n > x
proof (rule ccontr)

assume ¬ (∀ x. ∃n. x < c n)
then obtain ub where ∀n. c n ≤ ub ub > 0

by (meson dual-order .trans int-one-le-iff-zero-less le-cases not-le)
define pa where pa = (λn. nth-prime n / a n)
have pa-pos:

∧
n. pa n > 0 unfolding pa-def by (simp add: a-pos)

have liminf (λn. 1 / pa n) = 0
using nth-2 unfolding pa-def by auto

then have (∃ y<ereal (real-of-int B / real-of-int (ub + 1 )).
∃ F x in sequentially. ereal (1 / pa x) ≤ y)
apply (subst less-Liminf-iff [symmetric])
using ‹0 < B› ‹0 < ub› by auto

then have ∃ F x in sequentially. 1 / pa x < B/(ub+1 )
by (meson frequently-mono le-less-trans less-ereal.simps(1 ))

then have ∃ F x in sequentially. B∗pa x > (ub+1 )
apply (elim frequently-elim1 )
by (metis ‹0 < ub› mult.left-neutral of-int-0-less-iff pa-pos pos-divide-less-eq

pos-less-divide-eq times-divide-eq-left zless-add1-eq)
moreover have ∀ F x in sequentially. c x ≤ ub

using ‹∀n. c n ≤ ub› by simp
ultimately have ∃ F x in sequentially. B∗pa x − c x > 1

by (elim frequently-rev-mp eventually-mono) linarith
moreover have (λn. B ∗ pa n − c n) −−−−→0
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unfolding pa-def using bac-close by auto
from tendstoD[OF this,of 1 ]
have ∀ F n in sequentially. |B ∗ pa n − c n| < 1

by auto
ultimately have ∃ F x in sequentially. B∗pa x − c x > 1 ∧ |B ∗ pa x − c x|

< 1
using frequently-eventually-frequently by blast

then show False
by (simp add: frequently-def )

qed

have eq-2-11 :∀ F n in sequentially. c (n+1 )>c n −→
nth-prime (n+1 ) > nth-prime n + (1 − ε)^2 ∗ a n / B

when ε>0 ε<1 for ε::real
proof −

have ∀ F x in sequentially. |c (Suc x) / a x| < ε
using ca-vanish[unfolded tendsto-iff ,rule-format, of ε] ‹ε>0 › by auto

moreover have ∀ F n in sequentially. c n > 0 ∧ c (n+1 ) > 0
proof −

have ∀ F n in sequentially. 0 < c (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp

then show ?thesis using c-pos by eventually-elim auto
qed
ultimately show ?thesis using Bc-large bc-epsilon[OF ‹ε>0 › ‹ε<1 ›]
proof (eventually-elim, rule-tac impI )

case (elim n)
assume c n < c (n + 1 )
have c (n+1 ) / a n < ε

using a-pos[rule-format,of n] using elim(1 ,2 ) by auto
also have ... ≤ ε ∗ c n using elim(2 ) that(1 ) by auto
finally have c (n+1 ) / a n < ε ∗ c n .
then have c (n+1 ) / c n < ε ∗ a n

using a-pos[rule-format,of n] elim by (auto simp:field-simps)
then have (1 − ε) ∗ a n < a n − c (n+1 ) / c n

by (auto simp:algebra-simps)
then have (1 − ε)^2 ∗ a n / B < (1 − ε) ∗ (a n − c (n+1 ) / c n) / B

apply (subst (asm) mult-less-cancel-right-pos[symmetric, of (1−ε)/B])
using ‹ε<1 › ‹B>0 › by (auto simp: divide-simps power2-eq-square mult-less-cancel-right-pos)
then have nth-prime n + (1 − ε)^2 ∗ a n / B < nth-prime n + (1 − ε) ∗

(a n − c (n+1 ) / c n) / B
using ‹B>0 › by auto

also have ... = nth-prime n + (1 − ε) ∗ ((c n ∗a n − c (n+1 )) / c n) / B
using elim by (auto simp:field-simps)

also have ... = nth-prime n + (1 − ε) ∗ (nth-prime n / c n)
proof −

have B ∗ nth-prime n = c n ∗ a n − c (n + 1 ) using elim by auto
from this[symmetric] show ?thesis

using ‹B>0 › by simp
qed
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also have ... = (1+(1−ε)/c n) ∗ nth-prime n
by (auto simp:algebra-simps)

also have ... = ((c n+1−ε)/c n) ∗ nth-prime n
using elim by (auto simp:divide-simps)

also have ... ≤ ((c (n+1 ) −ε)/c n) ∗ nth-prime n
proof −

define cp where cp = c n+1
have c (n+1 ) ≥ cp unfolding cp-def using ‹c n < c (n + 1 )› by auto
moreover have c n>0 nth-prime n>0 using elim by auto
ultimately show ?thesis

apply (fold cp-def )
by (auto simp:divide-simps)

qed
also have ... < nth-prime (n+1 )

using elim by (auto simp:divide-simps)
finally show real (nth-prime n) + (1 − ε)2 ∗ real-of-int (a n)

/ real-of-int B < real (nth-prime (n + 1 )) .
qed

qed

have c-neq-large:∀ F n in sequentially. c (n+1 ) 6= c n
proof (rule ccontr)

assume ¬ (∀ F n in sequentially. c (n + 1 ) 6= c n)
then have that:∃ F n in sequentially. c (n + 1 ) = c n

unfolding frequently-def .
have ∀ F x in sequentially. (B ∗ int (nth-prime x) = c x ∗ a x − c (x + 1 )
∧ |real-of-int (c (x + 1 ))| < real-of-int (a x) / 2 ) ∧ 0 < c x ∧ B < int

(nth-prime x)
∧ (c (x+1 )>c x −→ nth-prime (x+1 ) > nth-prime x + a x / (2∗ B))

using Bc-large c-pos B-nth-prime eq-2-11 [of 1−1/ sqrt 2 ,simplified]
by eventually-elim (auto simp:divide-simps)

then have ∃ F m in sequentially. nth-prime (m+1 ) > (1+1/(2∗B))∗nth-prime
m

proof (elim frequently-eventually-at-top[OF that, THEN frequently-at-top-elim])
fix n
assume c (n + 1 ) = c n ∧

(∀ y≥n. (B ∗ int (nth-prime y) = c y ∗ a y − c (y + 1 ) ∧
|real-of-int (c (y + 1 ))| < real-of-int (a y) / 2 ) ∧

0 < c y ∧ B < int (nth-prime y) ∧ (c y < c (y + 1 ) −→
real (nth-prime y) + real-of-int (a y) / real-of-int (2 ∗ B)
< real (nth-prime (y + 1 ))))

then have c (n + 1 ) = c n
and Bc-eq:∀ y≥n. B ∗ int (nth-prime y) = c y ∗ a y − c (y + 1 ) ∧ 0 < c y

∧ |real-of-int (c (y + 1 ))| < real-of-int (a y) / 2
∧ B < int (nth-prime y)
∧ (c y < c (y + 1 ) −→

real (nth-prime y) + real-of-int (a y) / real-of-int (2 ∗ B)
< real (nth-prime (y + 1 )))

by auto
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obtain m where n<m c m ≤ c n c n<c (m+1 )
proof −

have ∃N . N > n ∧ c N > c n
using c-ubound[rule-format, of MAX x∈{..n}. c x]
by (metis Max-ge atMost-iff dual-order .trans finite-atMost finite-imageI

image-eqI
linorder-not-le order-refl)

then obtain N where N>n c N>c n by auto
define A m where A={m. n<m ∧ (m+1 )≤N ∧ c (m+1 ) > c n} and m

= Min A
have finite A unfolding A-def

by (metis (no-types, lifting) A-def add-leE finite-nat-set-iff-bounded-le
mem-Collect-eq)

moreover have N−1∈A unfolding A-def
using ‹c n < c N › ‹n < N › ‹c (n + 1 ) = c n› nat-less-le by force

ultimately have m∈A
using Min-in unfolding m-def by auto

then have n<m c n<c (m+1 ) m>0
unfolding m-def A-def by auto

moreover have c m ≤ c n
proof (rule ccontr)

assume ¬ c m ≤ c n
then have m−1∈A
using ‹m∈A› ‹c (n + 1 ) = c n› le-eq-less-or-eq less-diff-conv by (fastforce

simp: A-def )
from Min-le[OF ‹finite A› this,folded m-def ] ‹m>0 › show False by auto

qed
ultimately show ?thesis using that[of m] by auto

qed
have (1 + 1 / (2 ∗ B)) ∗ nth-prime m < nth-prime m + a m / (2∗B)
proof −

have nth-prime m < a m
proof −

have B ∗ int (nth-prime m) < c m ∗ (a m − 1 )
using Bc-eq[rule-format,of m] ‹c m ≤ c n› ‹c n < c (m + 1 )› ‹n < m›
by (auto simp:algebra-simps)

also have ... ≤ c n ∗ (a m − 1 )
by (simp add: ‹c m ≤ c n› a-pos mult-right-mono)

finally have B ∗ int (nth-prime m) < c n ∗ (a m − 1 ) .
moreover have c n≤B
proof −
have B: B ∗ int (nth-prime n) = c n ∗ (a n − 1 ) B < int (nth-prime n)

and c-a: |real-of-int (c (n + 1 ))| < real-of-int (a n) / 2
using Bc-eq[rule-format,of n] ‹c (n + 1 ) = c n› by (auto simp:algebra-simps)

from this(1 ) have c n dvd (B ∗ int (nth-prime n))
by simp

moreover have coprime (c n) (int (nth-prime n))
proof −

have c n < int (nth-prime n)
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proof (rule ccontr)
assume ¬ c n < int (nth-prime n)
then have asm:c n ≥ int (nth-prime n) by auto
then have a n > 2 ∗ nth-prime n

using c-a ‹c (n + 1 ) = c n› by auto
then have a n −1 ≥ 2 ∗ nth-prime n

by simp
then have a n − 1 > 2 ∗ B

using ‹B < int (nth-prime n)› by auto
from mult-le-less-imp-less[OF asm this] ‹B>0 ›
have int (nth-prime n) ∗ (2 ∗ B) < c n ∗ (a n − 1 )

by auto
then show False using B

by (smt (verit, best) ‹0 < B› mult.commute mult-right-mono)
qed
then have ¬ nth-prime n dvd c n

by (simp add: Bc-eq zdvd-not-zless)
then have coprime (int (nth-prime n)) (c n)

by (auto intro!:prime-imp-coprime-int)
then show ?thesis using coprime-commute by blast

qed
ultimately have c n dvd B

using coprime-dvd-mult-left-iff by auto
then show ?thesis using ‹0 < B› zdvd-imp-le by blast

qed
moreover have c n > 0 using Bc-eq by blast
ultimately show ?thesis

using ‹B>0 › by (smt (verit) a-pos mult-mono)
qed
then show ?thesis using ‹B>0 › by (auto simp:field-simps)

qed
also have ... < nth-prime (m+1 )

using Bc-eq[rule-format, of m] ‹n<m› ‹c m ≤ c n› ‹c n < c (m+1 )›
by linarith

finally show ∃ j>n. (1 + 1 / real-of-int (2 ∗ B)) ∗ real (nth-prime j)
< real (nth-prime (j + 1 )) using ‹m>n› by auto

qed
then have ∃ F m in sequentially. nth-prime (m+1 )/nth-prime m > (1+1/(2∗B))

by (auto elim:frequently-elim1 simp:field-simps)
moreover have ∀ F m in sequentially. nth-prime (m+1 )/nth-prime m <

(1+1/(2∗B))
using ratio-of-consecutive-primes[unfolded tendsto-iff ,rule-format,of 1/(2∗B)]

‹B>0 ›
unfolding dist-real-def
by (auto elim!:eventually-mono simp:algebra-simps)

ultimately show False by (simp add: eventually-mono frequently-def )
qed

have c-gt-half :∀ F N in sequentially. card {n∈{N ..<2∗N}. c n > c (n+1 )} >
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N / 2
proof −

define h where h=(λn. (nth-prime (2∗n) − nth-prime n)
/ sqrt (nth-prime n))

have ∀ F n in sequentially. h n < n / 2
proof −

have ∀ F n in sequentially. h n < n powr (5/6 )
using nth-prime-double-sqrt-less[of 1/3 ]
unfolding h-def by auto

moreover have ∀ F n in sequentially. n powr (5/6 ) < (n /2 )
by real-asymp

ultimately show ?thesis
by eventually-elim auto

qed
moreover have ∀ F n in sequentially. sqrt (nth-prime n) / a n < 1 / (2∗B)

using nth-1 [THEN tendsto-real-sqrt,unfolded tendsto-iff
,rule-format,of 1/(2∗B)] ‹B>0 › a-pos

by (auto simp:real-sqrt-divide abs-of-pos)
ultimately have ∀ F x in sequentially. c (x+1 ) 6= c x
∧ sqrt (nth-prime x) / a x < 1 / (2∗B)
∧ h x < x / 2
∧ (c (x+1 )>c x −→ nth-prime (x+1 ) > nth-prime x + a x / (2∗ B))

using c-neq-large B-nth-prime eq-2-11 [of 1−1/ sqrt 2 ,simplified]
by eventually-elim (auto simp:divide-simps)

then show ?thesis
proof (elim eventually-at-top-mono)

fix N assume N≥1 and N-asm:∀ y≥N . c (y + 1 ) 6= c y ∧
sqrt (real (nth-prime y)) / real-of-int (a y)
< 1 / real-of-int (2 ∗ B) ∧ h y < y / 2 ∧
(c y < c (y + 1 ) −→
real (nth-prime y) + real-of-int (a y) / real-of-int (2 ∗ B)
< real (nth-prime (y + 1 )))

define S where S={n ∈ {N ..<2 ∗ N}. c n < c (n + 1 )}
define g where g=(λn. (nth-prime (n+1 ) − nth-prime n)

/ sqrt (nth-prime n))
define f where f=(λn. nth-prime (n+1 ) − nth-prime n)
have g-gt-1 :g n>1 when n≥N c n < c (n + 1 ) for n
proof −

have nth-prime n + sqrt (nth-prime n) < nth-prime (n+1 )
proof −

have nth-prime n + sqrt (nth-prime n) < nth-prime n + a n / (2∗B)
using N-asm[rule-format,OF ‹n≥N ›] a-pos
by (auto simp:field-simps)

also have ... < nth-prime (n+1 )
using N-asm[rule-format,OF ‹n≥N ›] ‹c n < c (n + 1 )› by auto

finally show ?thesis .
qed
then show ?thesis unfolding g-def
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using ‹c n < c (n + 1 )› by auto
qed
have g-geq-0 :g n ≥ 0 for n

unfolding g-def by auto

have finite S ∀ x∈S . x≥N ∧ c x<c (x+1 )
unfolding S-def by auto

then have card S ≤ sum g S
proof (induct S)

case empty
then show ?case by auto

next
case (insert x F)
moreover have g x>1
proof −

have c x < c (x+1 ) x≥N using insert(4 ) by auto
then show ?thesis using g-gt-1 by auto

qed
ultimately show ?case by simp

qed
also have ... ≤ sum g {N ..<2∗N}

apply (rule sum-mono2 )
unfolding S-def using g-geq-0 by auto

also have ... ≤ sum (λn. f n/sqrt (nth-prime N )) {N ..<2∗N}
unfolding f-def g-def by (auto intro!:sum-mono divide-left-mono)

also have ... = sum f {N ..<2∗N} / sqrt (nth-prime N )
unfolding sum-divide-distrib[symmetric] by auto

also have ... = (nth-prime (2∗N ) − nth-prime N ) / sqrt (nth-prime N )
proof −

have sum f {N ..<2 ∗ N} = nth-prime (2 ∗ N ) − nth-prime N
proof (induct N )

case 0
then show ?case by simp

next
case (Suc N )
have ?case if N=0
proof −

have sum f {Suc N ..<2 ∗ Suc N} = sum f {1}
using that by (simp add: numeral-2-eq-2 )

also have ... = nth-prime 2 − nth-prime 1
unfolding f-def by (simp add:numeral-2-eq-2 )

also have ... = nth-prime (2 ∗ Suc N ) − nth-prime (Suc N )
using that by auto

finally show ?thesis .
qed
moreover have ?case if N 6=0
proof −

have sum f {Suc N ..<2 ∗ Suc N} = sum f {N ..<2 ∗ Suc N} − f N
apply (subst (2 ) sum.atLeast-Suc-lessThan)
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using that by auto
also have ... = sum f {N ..<2 ∗ N}+ f (2∗N ) + f (2∗N+1 ) − f N

by auto
also have ... = nth-prime (2 ∗ Suc N ) − nth-prime (Suc N )

using Suc unfolding f-def by auto
finally show ?thesis .

qed
ultimately show ?case by blast

qed
then show ?thesis by auto

qed
also have ... = h N

unfolding h-def by auto
also have ... < N/2

using N-asm by auto
finally have card S < N/2 .

define T where T={n ∈ {N ..<2 ∗ N}. c n > c (n + 1 )}
have T ∪ S = {N ..<2 ∗ N} T ∩ S = {} finite T

unfolding T-def S-def using N-asm by fastforce+

then have card T + card S = card {N ..<2 ∗ N}
using card-Un-disjoint ‹finite S› by metis

also have ... = N
by simp

finally have card T + card S = N .
with ‹card S < N/2 ›
show card T > N/2 by linarith

qed
qed

Inequality (3.5) in the original paper required a slight modification:
have a-gt-plus:∀ F n in sequentially. c n > c (n+1 ) −→a (n+1 ) > a n + (a n
− c(n+1 ) − 1 ) / c (n+1 )

proof −
note a-gt-1 [THEN eventually-all-ge-at-top] c-pos[THEN eventually-all-ge-at-top]
moreover have ∀ F n in sequentially.

B ∗ int (nth-prime (n+1 )) = c (n+1 ) ∗ a (n+1 ) − c (n + 2 )
using Bc-large
apply (subst (asm) eventually-sequentially-Suc[symmetric])
by (auto elim:eventually-mono)

moreover have ∀ F n in sequentially.
B ∗ int (nth-prime n) = c n ∗ a n − c (n + 1 ) ∧ |c (n + 1 )|

< a n / 2
using Bc-large by (auto elim:eventually-mono)

ultimately show ?thesis
apply (eventually-elim)

proof (rule impI )
fix n
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assume ∀ y≥n. 1 < a y ∀ y≥n. 0 < c y
and
Suc-n-eq:B ∗ int (nth-prime (n + 1 )) = c (n + 1 ) ∗ a (n + 1 ) − c (n +

2 ) and
B ∗ int (nth-prime n) = c n ∗ a n − c (n + 1 ) ∧

real-of-int |c (n + 1 )| < real-of-int (a n) / 2
and c (n + 1 ) < c n

then have n-eq:B ∗ int (nth-prime n) = c n ∗ a n − c (n + 1 ) and
c-less-a: real-of-int |c (n + 1 )| < real-of-int (a n) / 2
by auto

from ‹∀ y≥n. 1 < a y› ‹∀ y≥n. 0 < c y›
have ∗:a n>1 a (n+1 ) > 1 c n > 0

c (n+1 ) > 0 c (n+2 ) > 0
by auto

then have (1+1/c (n+1 ))∗ (a n − 1 )/a (n+1 ) = (c (n+1 )+1 ) ∗ ((a n −
1 ) / (c (n+1 ) ∗ a (n+1 )))

by (auto simp:field-simps)
also have ... ≤ c n ∗ ((a n − 1 ) / (c (n+1 ) ∗ a (n+1 )))
by (smt (verit) ∗(4 ) ‹c (n + 1 ) < c n› a-pos divide-nonneg-nonneg mult-mono

mult-nonneg-nonneg of-int-0-le-iff of-int-le-iff )
also have ... = (c n ∗ (a n − 1 )) / (c (n+1 ) ∗ a (n+1 )) by auto
also have ... < (c n ∗ (a n − 1 )) / (c (n+1 ) ∗ a (n+1 ) − c (n+2 ))

apply (rule divide-strict-left-mono)
subgoal using ‹c (n+2 ) > 0 › by auto
unfolding Suc-n-eq[symmetric] using ∗ ‹B>0 › by auto

also have ... < (c n ∗ a n − c (n+1 )) / (c (n+1 ) ∗ a (n+1 ) − c (n+2 ))
apply (rule frac-less)
unfolding Suc-n-eq[symmetric] using ∗ ‹B>0 › ‹c (n + 1 ) < c n›
by (auto simp:algebra-simps)

also have ... = nth-prime n / nth-prime (n+1 )
unfolding Suc-n-eq[symmetric] n-eq[symmetric] using ‹B>0 › by auto

also have ... < 1 by auto
finally have (1 + 1 / real-of-int (c (n + 1 ))) ∗ real-of-int (a n − 1 )
/ real-of-int (a (n + 1 )) < 1 .

then show a n + (a n − c (n + 1 ) − 1 ) / (c (n + 1 )) < (a (n + 1 ))
using ∗ by (auto simp:field-simps)

qed
qed
have a-gt-1 :∀ F n in sequentially. c n > c (n+1 ) −→ a (n+1 ) > a n + 1

using Bc-large a-gt-plus c-pos[THEN eventually-all-ge-at-top]
apply eventually-elim

proof (rule impI )
fix n assume

c (n + 1 ) < c n −→ a n + (a n − c (n + 1 ) − 1 ) / c (n + 1 ) < a (n +
1 )

c (n + 1 ) < c n and B-eq:B ∗ int (nth-prime n) = c n ∗ a n − c (n + 1 ) ∧
|real-of-int (c (n + 1 ))| < real-of-int (a n) / 2 and c-pos:∀ y≥n. 0 < c y

from this(1 ,2 )
have a n + (a n − c (n + 1 ) − 1 ) / c (n + 1 ) < a (n + 1 ) by auto
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moreover have a n − 2 ∗ c (n+1 ) > 0
using B-eq c-pos[rule-format,of n+1 ] by auto

then have a n − 2 ∗ c (n+1 ) ≥ 1 by simp
then have (a n − c (n + 1 ) − 1 ) / c (n + 1 ) ≥ 1

using c-pos[rule-format,of n+1 ] by (auto simp:field-simps)
ultimately show a n + 1 < a (n + 1 ) by auto

qed

The following corresponds to inequality (3.6) in the paper, which had to
be slightly corrected:

have a-gt-sqrt:∀ F n in sequentially. c n > c (n+1 ) −→ a (n+1 ) > a n + (sqrt
n − 2 )

proof −
have a-2N :∀ F N in sequentially. a (2∗N ) ≥ N /2 +1

using c-gt-half a-gt-1 [THEN eventually-all-ge-at-top]
proof eventually-elim

case (elim N )
define S where S={n ∈ {N ..<2 ∗ N}. c (n + 1 ) < c n}
define f where f = (λn. a (Suc n) − a n)

have f-1 :∀ x∈S . f x≥1 and f-0 :∀ x. f x≥0
subgoal using elim unfolding S-def f-def by auto
subgoal using ‹mono a›[THEN incseq-SucD] unfolding f-def by auto
done

have N / 2 < card S
using elim unfolding S-def by auto

also have ... ≤ sum f S
unfolding of-int-sum
apply (rule sum-bounded-below[of - 1 ,simplified])
using f-1 by auto

also have ... ≤ sum f {N ..<2 ∗ N}
unfolding of-int-sum
apply (rule sum-mono2 )
unfolding S-def using f-0 by auto

also have ... = a (2∗N ) − a N
unfolding of-int-sum f-def of-int-diff
apply (rule sum-Suc-diff ′)
by auto

finally have N / 2 < a (2∗N ) − a N .
then show ?case using a-pos[rule-format,of N ] by linarith

qed

have a-n4 :∀ F n in sequentially. a n > n/4
proof −

obtain N where a-N :∀n≥N . a (2∗n) ≥ n /2+1
using a-2N unfolding eventually-at-top-linorder by auto

have a n>n/4 when n≥2∗N for n
proof −

define n ′ where n ′=n div 2
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have n ′≥N unfolding n ′-def using that by auto
have n/4 < n ′ /2+1

unfolding n ′-def by auto
also have ... ≤ a (2∗n ′)

using a-N ‹n ′≥N › by auto
also have ... ≤a n unfolding n ′-def

apply (cases even n)
subgoal by simp
subgoal by (simp add: assms(2 ) incseqD)
done

finally show ?thesis .
qed
then show ?thesis

unfolding eventually-at-top-linorder by auto
qed

have c-sqrt:∀ F n in sequentially. c n < sqrt n / 4
proof −

have ∀ F x in sequentially. x>1 by simp
moreover have ∀ F x in sequentially. real (nth-prime x) / (real x ∗ ln (real

x)) < 2
using nth-prime-asymptotics[unfolded asymp-equiv-def ,THEN order-tendstoD(2 ),of

2 ]
by simp

ultimately have ∀ F n in sequentially. c n < B∗8 ∗ln n + 1 using a-n4
Bc-large

proof eventually-elim
case (elim n)
from this(4 ) have c n=(B∗nth-prime n+c (n+1 ))/a n

using a-pos[rule-format,of n]
by (auto simp:divide-simps)

also have ... = (B∗nth-prime n)/a n+c (n+1 )/a n
by (auto simp:divide-simps)

also have ... < (B∗nth-prime n)/a n + 1
proof −

have c (n+1 )/a n < 1 using elim(4 ) by auto
then show ?thesis by auto

qed
also have ... < B∗8 ∗ ln n + 1
proof −

have B∗nth-prime n < 2∗B∗n∗ln n
using ‹real (nth-prime n) / (real n ∗ ln (real n)) < 2 › ‹B>0 › ‹ 1 < n›
by (auto simp:divide-simps)

moreover have real n / 4 < real-of-int (a n) by fact
ultimately have (B∗nth-prime n) / a n < (2∗B∗n∗ln n) / (n/4 )

apply (rule-tac frac-less)
using ‹B>0 › ‹ 1 < n› by auto

also have ... = B∗8 ∗ ln n
using ‹ 1 < n› by auto
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finally show ?thesis by auto
qed
finally show ?case .

qed
moreover have ∀ F n in sequentially. B∗8 ∗ln n + 1 < sqrt n / 4

by real-asymp
ultimately show ?thesis

by eventually-elim auto
qed

have
∀ F n in sequentially. 0 < c (n+1 )
∀ F n in sequentially. c (n+1 ) < sqrt (n+1 ) / 4
∀ F n in sequentially. n > 4
∀ F n in sequentially. (n − 4 ) / sqrt (n + 1 ) + 1 > sqrt n
subgoal using c-pos[THEN eventually-all-ge-at-top]

by eventually-elim auto
subgoal using c-sqrt[THEN eventually-all-ge-at-top]

by eventually-elim (use le-add1 in blast)
subgoal by simp
subgoal

by real-asymp
done

then show ?thesis using a-gt-plus a-n4
apply eventually-elim

proof (rule impI )
fix n assume asm:0 < c (n + 1 ) c (n + 1 ) < sqrt (real (n + 1 )) / 4 and

a-ineq:c (n + 1 ) < c n −→ a n + (a n − c (n + 1 ) − 1 ) / c (n + 1 ) <
a (n + 1 )

c (n + 1 ) < c n and n / 4 < a n n > 4
and n-neq: sqrt (real n) < real (n − 4 ) / sqrt (real (n + 1 )) + 1

have (n−4 ) / sqrt(n+1 ) = (n/4 − 1 )/ (sqrt (real (n + 1 )) / 4 )
using ‹n>4 › by (auto simp:divide-simps)

also have ... < (a n − 1 ) / c (n + 1 )
apply (rule frac-less)
using ‹n > 4 › ‹n / 4 < a n› ‹0 < c (n + 1 )› ‹c (n + 1 ) < sqrt (real (n

+ 1 )) / 4 ›
by auto

also have ... − 1 = (a n − c (n + 1 ) − 1 ) / c (n + 1 )
using ‹0 < c (n + 1 )› by (auto simp:field-simps)

also have a n + ... < a (n+1 )
using a-ineq by auto

finally have a n + ((n − 4 ) / sqrt (n + 1 ) − 1 ) < a (n + 1 ) by simp
moreover have (n − 4 ) / sqrt (n + 1 ) − 1 > sqrt n − 2

using n-neq[THEN diff-strict-right-mono,of 2 ] ‹n>4 ›
by (auto simp:algebra-simps of-nat-diff )

ultimately show real-of-int (a n) + (sqrt (real n) − 2 ) < real-of-int (a (n
+ 1 ))
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by argo
qed

qed

The following corresponds to inequality a2N > N3/2/2 in the paper,
which had to be slightly corrected:

have a-2N-sqrt:∀ F N in sequentially. a (2∗N ) > real N ∗ (sqrt (real N )/2 −
1 )

using c-gt-half a-gt-sqrt[THEN eventually-all-ge-at-top] eventually-gt-at-top[of
4 ]

proof eventually-elim
case (elim N )
define S where S={n ∈ {N ..<2 ∗ N}. c (n + 1 ) < c n}
define f where f = (λn. a (Suc n) − a n)

have f-N :∀ x∈S . f x≥sqrt N − 2
proof

fix x assume x∈S
then have sqrt (real x) − 2 < f x x≥N

using elim unfolding S-def f-def by auto
moreover have sqrt x − 2 ≥ sqrt N − 2

using ‹x≥N › by simp
ultimately show sqrt (real N ) − 2 ≤ real-of-int (f x) by argo

qed
have f-0 :∀ x. f x≥0

using ‹mono a›[THEN incseq-SucD] unfolding f-def by auto

have (N / 2 ) ∗ (sqrt N − 2 ) < card S ∗ (sqrt N − 2 )
apply (rule mult-strict-right-mono)
subgoal using elim unfolding S-def by auto
subgoal using ‹N>4 ›
by (metis diff-gt-0-iff-gt numeral-less-real-of-nat-iff real-sqrt-four real-sqrt-less-iff )
done

also have ... ≤ sum f S
unfolding of-int-sum
apply (rule sum-bounded-below)
using f-N by auto

also have ... ≤ sum f {N ..<2 ∗ N}
unfolding of-int-sum
apply (rule sum-mono2 )
unfolding S-def using f-0 by auto

also have ... = a (2∗N ) − a N
unfolding of-int-sum f-def of-int-diff
apply (rule sum-Suc-diff ′)
by auto

finally have real N / 2 ∗ (sqrt (real N ) − 2 ) < real-of-int (a (2 ∗ N ) − a N )
.

then have real N / 2 ∗ (sqrt (real N ) − 2 ) < a (2 ∗ N )
using a-pos[rule-format,of N ] by linarith

40



then show ?case by (auto simp:field-simps)
qed

The following part is required to derive the final contradiction of the
proof.

have a-n-sqrt:∀ F n in sequentially. a n > (((n−1 )/2 ) powr (3/2 ) − (n−1 )) /2
proof (rule sequentially-even-odd-imp)

define f where f=(λN . ((real (2 ∗ N − 1 ) / 2 ) powr (3 / 2 ) − real (2 ∗ N
− 1 )) / 2 )

define g where g=(λN . real N ∗ (sqrt (real N ) / 2 − 1 ))
have ∀ F N in sequentially. g N > f N

unfolding f-def g-def
by real-asymp

moreover have ∀ F N in sequentially. a (2 ∗ N ) > g N
unfolding g-def using a-2N-sqrt .

ultimately show ∀ F N in sequentially. f N < a (2 ∗ N )
by eventually-elim auto

next
define f where f=(λN . ((real (2 ∗ N + 1 − 1 ) / 2 ) powr (3 / 2 )

− real (2 ∗ N + 1 − 1 )) / 2 )
define g where g=(λN . real N ∗ (sqrt (real N ) / 2 − 1 ))
have ∀ F N in sequentially. g N = f N

using eventually-gt-at-top[of 0 ]
apply eventually-elim
unfolding f-def g-def
by (auto simp:algebra-simps powr-half-sqrt[symmetric] powr-mult-base)

moreover have ∀ F N in sequentially. a (2 ∗ N ) > g N
unfolding g-def using a-2N-sqrt .

moreover have ∀ F N in sequentially. a (2 ∗ N + 1 ) ≥ a (2∗N )
apply (rule eventuallyI )
using ‹mono a› by (simp add: incseqD)

ultimately show ∀ F N in sequentially. f N < (a (2 ∗ N + 1 ))
by eventually-elim auto

qed

have a-nth-prime-gt:∀ F n in sequentially. a n / nth-prime n > 1
proof −

define f where f=(λn::nat. (((n−1 )/2 ) powr (3/2 ) − (n−1 )) /2 )
have ∀ F x in sequentially. real (nth-prime x) / (real x ∗ ln (real x)) < 2
using nth-prime-asymptotics[unfolded asymp-equiv-def ,THEN order-tendstoD(2 ),of

2 ]
by simp

from this eventually-gt-at-top[of 1 ]
have ∀ F n in sequentially. real (nth-prime n) < 2∗(real n ∗ ln n)

by eventually-elim (auto simp:field-simps)
moreover have ∗:∀ F N in sequentially. f N >0

unfolding f-def
by real-asymp

moreover have ∀ F n in sequentially. f n < a n
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using a-n-sqrt unfolding f-def .
ultimately have ∀ F n in sequentially. a n / nth-prime n > f n / (2∗(real n

∗ ln n))
proof eventually-elim

case (elim n)
then show ?case

by (auto intro: frac-less2 )
qed
moreover have ∀ F n in sequentially. (f n)/ (2∗(real n ∗ ln n)) > 1

unfolding f-def by real-asymp
ultimately show ?thesis

by eventually-elim argo
qed

have a-nth-prime-lt:∃ F n in sequentially. a n / nth-prime n < 1
proof −

have liminf (λx. a x / nth-prime x) < 1
using nth-2 by auto

from this[unfolded less-Liminf-iff ]
show ?thesis

by (smt (verit) ereal-less(3 ) frequently-elim1 le-less-trans)
qed

from a-nth-prime-gt a-nth-prime-lt show False
by (simp add: eventually-mono frequently-def )

qed
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