Irrationality Criteria for Series by Erdős and Straus

Angeliki Koutsoukou-Argyraki and Wenda Li

May 26, 2024

Abstract

We formalise certain irrationality criteria for infinite series of the form: $$
\sum_{n} \frac{b_{n}}{\prod_{i \leq n} a_{i}}
$$

where b_{n}, a_{i} are integers. The result is due to P. Erdős and E.G. Straus [1], and in particular we formalise Theorem 2.1, Corollary 2.10 and Theorem 3.1. The latter is an application of Theorem 2.1 involving the prime numbers.

Contents

1 Miscellaneous 1
2 Theorem 2.1 and Corollary 2.103
3 Some auxiliary results on the prime numbers. 21
4 Theorem $3.1 \quad 23$
5 Acknowledgements 42
theory Irrational-Series-Erdos-Straus imports
Prime-Number-Theorem.Prime-Number-Theorem
Prime-Distribution-Elementary.PNT-Consequences
begin

1 Miscellaneous

lemma suminf-comparison:
assumes summable f and $g f: \bigwedge n$. norm $(g n) \leq f n$
shows suminf $g \leq$ suminf f
proof (rule suminf-le)
show $g n \leq f n$ for n
using $g f[o f n]$ by auto
show summable g
using assms summable-comparison-test' by blast
show summable f using assms(1).
qed
lemma tendsto-of-int-diff-0:
assumes $(\lambda n . f n-o f-\operatorname{int}(g n)) \longrightarrow(0::$ real $) \forall_{F} n$ in sequentially. $f n>0$
shows $\forall_{F} n$ in sequentially. $0 \leq g n$
proof -
have $\forall_{F} n$ in sequentially. $|f n-o f-\operatorname{int}(g n)|<1 / 2$
using assms(1)[unfolded tendsto-iff,rule-format,of 1/2] by auto
then show ?thesis using assms(2)
by eventually-elim linarith
qed
lemma eventually-mono-sequentially:
assumes eventually P sequentially
assumes $\bigwedge x . P(x+k) \Longrightarrow Q(x+k)$
shows eventually Q sequentially
using sequentially-offset[OF $\operatorname{assms}(1)$,of $k]$
apply (subst eventually-sequentially-seg[symmetric,of - k])
apply (elim eventually-mono)
by fact
lemma frequently-eventually-at-top:
fixes $P Q::^{\prime} a::$ linorder \Rightarrow bool
assumes frequently P at-top eventually Q at-top
shows frequently $(\lambda x . P x \wedge(\forall y \geq x . Q y))$ at-top
using assms
unfolding frequently-def eventually-at-top-linorder
by (metis (mono-tags, opaque-lifting) le-cases order-trans)
lemma eventually-at-top-mono:
fixes $P Q::{ }^{\prime} a:$:linorder \Rightarrow bool
assumes event- P :eventually P at-top
assumes $P Q$-imp: $\backslash x . x \geq z \Longrightarrow \forall y \geq x . P y \Longrightarrow Q x$
shows eventually Q at-top
proof -
obtain N where $\forall n \geq N$. $P n$
by (meson event- P eventually-at-top-linorder)
then have $Q x$ when $x \geq \max N z$ for x
using $P Q$-imp that by auto
then show ?thesis unfolding eventually-at-top-linorder
by blast
qed
lemma frequently-at-top-elim:
fixes $P Q:: ' a:: l i n o r d e r ~ \Rightarrow b o o l$

```
    assumes }\mp@subsup{\exists}{F}{}x\mathrm{ in at-top. P x
    assumes }\bigwedgei.Pi\Longrightarrow\existsj>i.Q
    shows }\mp@subsup{\exists}{F}{}x\mathrm{ in at-top. Q x
    using assms unfolding frequently-def eventually-at-top-linorder
    by (meson leD le-cases less-le-trans)
lemma less-Liminf-iff:
    fixes X :: - = - :: complete-linorder
    shows Liminf F X <C\longleftrightarrow }\longleftrightarrowy<C.frequently ( \lambdax. y\geqX x) F
    by (force simp: not-less not-frequently not-le le-Liminf-iff simp flip: Not-eq-iff)
lemma sequentially-even-odd-imp:
    assumes }\mp@subsup{\forall}{F}{}N\mathrm{ in sequentially. P(2*N) 壮N in sequentially. P (2*N+1)
    shows }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. P n
proof -
    obtain N where N-P:\forallx\geqN. P (2*x)^P(2*x+1)
        using eventually-conj[OF assms]
        unfolding eventually-at-top-linorder by auto
    have P n when n\geq2*N for }
    proof -
        define }\mp@subsup{n}{}{\prime}\mathrm{ where }\mp@subsup{n}{}{\prime}=n\mathrm{ div 2
        then have }\mp@subsup{n}{}{\prime}\geqN\mathrm{ using that by auto
        then have P(2* n')^P(2* n' + 1)
            using N-P by auto
        then show ?thesis unfolding n'-def
            by (cases even n) auto
    qed
    then show ?thesis unfolding eventually-at-top-linorder by auto
qed
```


2 Theorem 2.1 and Corollary 2.10

context

fixes $a b:: n a t \Rightarrow$ int
assumes a－pos：$\forall n . a n>0$ and a－large：$\forall_{F} n$ in sequentially．$a n>1$ and ab－tendsto：$(\lambda n .|b n| /(a(n-1) * a n)) \longrightarrow 0$
begin
private lemma aux－series－summable：summable（ $\left.\lambda n . b n /\left(\prod k \leq n . a k\right)\right)$
proof－
have $\bigwedge e . e>0 \Longrightarrow \forall_{F} x$ in sequentially．$|b x| /(a(x-1) * a x)<e$ using ab－tendsto［unfolded tendsto－iff］ apply（simp add：abs－mult flip：of－int－abs）
by（subst（asm）（2）abs－of－pos，use 〈 \forall n．a $n>0$ 〉in auto）＋
from this［of 1］
have $\forall_{F} x$ in sequentially． \mid real－of－int $(b x) \mid<(a(x-1) * a x)$ using $\langle\forall n . a n>0\rangle$ by auto
moreover have $\forall n$ ．$\left(\prod k \leq n\right.$ ．real－of－int $\left.(a k)\right)>0$ using a－pos by（auto intro！：linordered－semidom－class．prod－pos）
ultimately have $\forall_{F} n$ in sequentially. $|b n| /\left(\prod k \leq n\right.$. a $\left.k\right)$

$$
<(a(n-1) * a n) /\left(\prod k \leq n . a k\right)
$$

apply (elim eventually-mono)
by (auto simp:field-simps)
moreover have $|b n| /\left(\prod k \leq n\right.$. a $\left.k\right)=\operatorname{norm}\left(b n /\left(\prod k \leq n\right.\right.$. a $\left.k\right)$) for n
using $\langle\forall n$. ($\Pi k \leq n$. real-of-int $(a k))>0\rangle[$ rule-format, of $n]$ by auto
ultimately have $\forall_{F} n$ in sequentially. norm ($b n /\left(\prod k \leq n\right.$. a k))

$$
<(a(n-1) * a n) /\left(\prod k \leq n . a k\right)
$$

by algebra
moreover have summable $\left(\lambda n .(a(n-1) * a n) /\left(\prod k \leq n . a k\right)\right)$
proof -
obtain s where a-gt- $1: \forall n \geq s$. a $n>1$
using a-large[unfolded eventually-at-top-linorder] by auto
define $c c$ where $c c=\left(\prod k<s\right.$. a $\left.k\right)$
have $c c>0$
unfolding $c c$-def by (meson a-pos prod-pos)
have $\left(\prod k \leq n+s\right.$. a $\left.k\right) \geq c c * 2$ 人 n for n
proof -
have prod a $\{s . .<$ Suc $(s+n)\} \geq 2 \widehat{ } n$ proof (induct n)
case 0
then show ?case using a-gt-1 by auto
next
case (Suc n)
moreover have $a(s+$ Suc $n) \geq 2$
by (smt (verit, ccfv-threshold) a-gt-1 le-add1)
ultimately show ?case
apply (subst prod.atLeastLessThan-Suc,simp)
using mult-mono' $\left[\right.$ of 2 a $(S u c(s+n))$ 2 $\left.^{\wedge} n \operatorname{prod} a\{s . .<S u c(s+n)\}\right]$
by (simp add: mult.commute)
qed
moreover have prod $a\{0 . .(n+s)\}=\operatorname{prod} a\{. .<s\} * \operatorname{prod} a\{s . .<$ Suc $(s+$
n) $\}$
using prod.atLeastLessThan-concat[of $0 s s+n+1$ a]
by (simp add: add.commute lessThan-atLeast0 prod.atLeastLessThan-concat prod.head-if)
ultimately show ?thesis
using $\langle c c>0\rangle$ unfolding $c c$-def by (simp add: atLeastOAtMost)
qed
then have $1 /\left(\prod k \leq n+s . a k\right) \leq 1 /\left(c c * \mathcal{Z}^{\text {}} n\right)$ for n
proof -
assume asm: $\bigwedge n . c c * \mathcal{D}^{\wedge} n \leq \operatorname{prod} a\{. . n+s\}$
then have real-of-int $\left(c c * 2^{\wedge} n\right) \leq \operatorname{prod} a\{. . n+s\}$ using of-int-le-iff by blast
moreover have prod $a\{. . n+s\}>0$ using $\langle c c>0\rangle$ by (simp add: a-pos prod-pos)
ultimately show ?thesis using $\langle c c>0\rangle$
by (auto simp:field-simps simp del:of-int-prod)
qed

```
    moreover have summable ( }\lambdan.1/(cc*2`n)
    proof -
    have summable (\lambdan. 1/(2::int)^n)
        using summable-geometric[of 1/(2::int)] by (simp add:power-one-over)
    from summable-mult[OF this,of 1/cc] show ?thesis by auto
    qed
    ultimately have summable ( }\lambdan.1/(\prodk\leqn+s.a a )
    apply (elim summable-comparison-test'[where N=0])
    apply (unfold real-norm-def, subst abs-of-pos)
    by (auto simp: <\foralln. 0 < (\prodk\leqn. real-of-int (a k))〉)
    then have summable (\lambdan. 1/ (\Pik\leqn. a k))
    apply (subst summable-iff-shift[where k=s,symmetric])
    by simp
    then have summable (\lambdan. (a(n+1)*a(n+2)) / (\prodk\leqn+2.a k))
    proof -
    assume asm:summable (\lambdan. 1 / real-of-int (prod a {..n}))
        have 1/ real-of-int (prod a {..n})=(a(n+1)*a(n+2))/(\prodk\leqn+2.a
k) for n
            proof -
            have a (Suc (Suc n)) \not=0 a (Suc n) \not=0
                using a-pos by (metis less-irrefl)+
            then show ?thesis
                by (simp add: atLeast0-atMost-Suc atMost-atLeast0)
    qed
    then show ?thesis using asm by auto
    qed
    then show summable (\lambdan. (a (n-1)*a n)/(\prodk\leqn.a k))
        apply (subst summable-iff-shift[symmetric,of - 2])
        by auto
qed
ultimately show ?thesis
    apply (elim summable-comparison-test-ev[rotated])
    by (simp add: eventually-mono)
qed
private fun get-c::(nat => int) =>(nat => int) => int => nat => (nat => int) where
    get-c a' b' B N0 = round ( B* b
    get-c a' b' B N (Suc n) = get-c a' b' B Nn*a'(n+N) - B* b
lemma ab-rationality-imp:
    assumes ab-rational:(\sumn.(bn/(\prodi\leqn.ai))) \in\mathbb{Q}
    shows }\exists(B::\mathrm{ int )}>0.\exists c::nat => int
        (\forallF n in sequentially. B*b n=cn*an - c(n+1)\wedge |c(n+1)|<a n/2)
        \wedge(\lambdan.c (Suc n)/a n)\longrightarrow0
proof -
    have [simp]:a n\not=0 for n using a-pos by (metis less-numeral-extra(3))
    obtain }A::\mathrm{ int and }B::\mathrm{ int where
        AB-eq:(\sumn.real-of-int (b n) / real-of-int (prod a {..n})) = A / B and B>0
    proof -
```

obtain $q:$:rat where $\left(\sum n\right.$. real-of-int $(b n) /$ real-of-int $\left.(\operatorname{prod} a\{. . n\})\right)=$ real-of-rat q
using ab-rational by (rule Rats-cases) simp
moreover obtain $A::$ int and $B::$ int where $q=$ Rat.Fract $A B B>0$ coprime A B
by (rule Rat-cases) auto
ultimately show ?thesis by (auto intro!: that $\left[\begin{array}{l}\text { of } A B] \text { simp:of-rat-rat) }\end{array}\right.$
qed
define f where $f \equiv(\lambda n . b n /$ real-of-int $(\operatorname{prod} a\{. . n\}))$
define R where $R \equiv\left(\lambda N .\left(\sum n . B * b(n+N+1) / \operatorname{prod} a\{N . . n+N+1\}\right)\right)$
have all-e-ubound: $\forall e>0 . \forall_{F} M$ in sequentially. $\forall n . \mid B * b(n+M+1) / \operatorname{prod} a$ $\{M . . n+M+1\} \mid<e / 4 * 1 / 2 \widehat{2} n$
proof safe
fix $e:$:real assume $e>0$
obtain N where $N-a 2: \forall n \geq N . a n \geq 2$
and $N-b a: \forall n \geq N .|b n| /(a(n-1) * a n)<e /(4 * B)$
proof -
have $\forall_{F} n$ in sequentially. $|b n| /(a(n-1) * a n)<e /(4 * B)$
using order-topology-class.order-tendstoD $D O F$ ab-tendsto,of $e /(4 * B)]\langle B>0\rangle$〈e>0〉
by auto
moreover have $\forall_{F} n$ in sequentially. $a n \geq 2$
using a-large by (auto elim: eventually-mono)
ultimately have $\forall_{F} n$ in sequentially. $|b n| /(a(n-1) * a n)<e /(4 * B)$
$\wedge a n \geq 2$
by eventually-elim auto
then show ?thesis unfolding eventually-at-top-linorder using that by auto
qed
have geq- N-bound: $|B * b(n+M+1) / \operatorname{prod} a\{M . . n+M+1\}|<e / 4 * 1 / 2$ 2 n when $M \geq N$ for $n M$
proof -
define D where $D=B * b(n+M+1) /(a(n+M) * a(n+M+1))$
have $|B * b(n+M+1) / \operatorname{prod} a\{M . . n+M+1\}|=|D / \operatorname{prod} a\{M . .<n+M\}|$ proof -
have $\{M . . n+M+1\}=\{M . .<n+M\} \cup\{n+M, n+M+1\}$ by auto
then have prod a $\{M . . n+M+1\}=a(n+M) * a(n+M+1) *$ prod a $\{M . .<n+M\}$ by simp
then show ?thesis unfolding D-def by (simp add:algebra-simps)
qed
also have $\ldots<|e / 4 *(1 / \operatorname{prod} a\{M . .<n+M\})|$
proof -
have $|D|<e / 4$
unfolding D-def using N-ba[rule-format, of $n+M+1]\langle B\rangle 0\rangle\langle M \geq N\rangle$
$\langle e>0\rangle a-p o s$
by (auto simp:field-simps abs-mult abs-of-pos)
from mult-strict-right-mono[OF this,of $1 / \operatorname{prod} a\{M . .<n+M\}] a-p o s ~\langle e>0\rangle$ show ?thesis
apply (auto simp:abs-prod abs-mult prod-pos)

```
            by (subst (2) abs-of-pos,auto)+
        qed
        also have ... \leqe/4*1/2`n
        proof -
        have prod a {M..<n+M}\geq2^n
        proof (induct n)
            case 0
            then show?case by simp
        next
            case (Suc n)
            then show ?case
        using }\langleM\geqN\rangle\mathrm{ by (simp add:N-a2 mult.commute mult-mono' prod.atLeastLessThan-Suc)
        qed
        then have real-of-int (prod a {M..<n+M})\geq2`n
            using numeral-power-le-of-int-cancel-iff by blast
        then show ?thesis using {e>0\rangle by (auto simp:divide-simps)
    qed
    finally show ?thesis.
    qed
    show }\mp@subsup{\forall}{F}{}M\mathrm{ in sequentially. }\foralln.|\mathrm{ real-of-int ( }B*b(n+M+1)
                | real-of-int (prod a {M..n+M+1})|<e/4*1/2^n
    apply (rule eventually-sequentiallyI[of N])
    using geq-N-bound by blast
qed
have }R\mathrm{ -tendsto-0:R}\longrightarrow
proof (rule tendstoI)
    fix e::real assume e>0
    show }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. dist (R x) 0 <e using all-e-ubound[rule-format,OF
<e>0\rangle]
    proof eventually-elim
        case (elim M)
        define g}\mathrm{ where g=( \n. B*b (n+M+1) / prod a{M..n+M+1})
        have g-lt: |g n|<e/4*1/\mathscr{2`n}\mathrm{ for n}
            using elim unfolding g-def by auto
    have §: summable (\lambdan.(e/4)*(1/2)`n)
        by simp
    then have g-abs-summable:summable ( }\lambdan.|gn|
            apply (elim summable-comparison-test')
            by (metis abs-idempotent g-lt less-eq-real-def power-one-over real-norm-def
times-divide-eq-right)
    have }|\sumn.gn|\leq(\sumn. |gn|) by (rule summable-rabs[OF g-abs-summable]
    also have .. \leq(\sumn.e/4*1/2`n)
    proof (rule suminf-comparison)
            show summable (\lambdan. e/4*1/2`n)
                    using § unfolding power-divide by simp
            show \n. norm |gn|\leqe/4*1/2^nusing g-lt less-eq-real-def by
auto
    qed
    also have ... =(e/4)*(\sumn.(1/2)^n)
```

```
            apply (subst suminf-mult[symmetric])
            by (auto simp: algebra-simps power-divide)
        also have ... =e/2 by (simp add:suminf-geometric[of 1/2])
        finally have }|\sumn.gn|\leqe/ 2. 
        then show dist (R M) 0<e unfolding R-def g-def using <e>0\rangle by auto
        qed
    qed
    obtain N where R-N-bound:\forallM\geqN. }|RM|\leq1/
    and N-geometric:}\forallM\geqN.\foralln.|real-of-int (B*b (n+M+1))/(prod a {M..n
+M+1})|<1/ 2^n
    proof -
    obtain N1 where N1:\forallM\geqN1. }|RM|\leq1/
        using metric-LIMSEQ-D[OF R-tendsto-0,of 1/4] all-e-ubound[rule-format,of
4,unfolded eventually-sequentially]
            by (auto simp:less-eq-real-def)
    obtain N2 where N2:\forallM\geqN2.}\foralln.|real-of-int (B*b(n+M+1)
                        /(prod a {M..n+M+1})|<1/2`n
            using all-e-ubound[rule-format,of 4,unfolded eventually-sequentially]
            by (auto simp:less-eq-real-def)
    define N where N=max N1 N2
    show ?thesis using that[of N] N1 N2 unfolding N-def by simp
qed
define C where C=B* prod a {..<N}*(\sumn<N.fn)
have summable f
    unfolding f-def using aux-series-summable .
have}A*\operatorname{prod}a{..<N}=C+B*bN/aN+R
proof -
    have}A*\operatorname{prod}a{..<N}=B*\operatorname{prod}a{..<N}*(\sumn.fn
            unfolding }AB\mathrm{ -eq f-def using <B>0> by auto
    also have ... = B* prod a{..<N}*((\sumn<N+1.fn)+(\sumn.f(n+N+1)))
        using suminf-split-initial-segment[OF <summable f>, of N+1] by auto
    also have ... =B*\operatorname{prod}a{..<N}*((\sumn<N.fn)+fN+(\sumn.f(n+N+1)))
        using sum.atLeastO-lessThan-Suc by simp
        also have ... = C + B*bN/aN+(\sumn. B*b (n+N+1) / prod a
{N..n+N+1})
    proof -
        have B* prod a{..<N}*fN=B*bN/aN
        proof -
            have {..N}={..<N}\cup{N} using ivl-disj-un-singleton(2) by blast
            then show ?thesis unfolding f-def by auto
        qed
            moreover have B* prod a {..<N}* (\sumn.f (n+N+1)) = (\sumn. B*b
(n+N+1) / prod a {N..n+N+1})
    proof -
            have summable (\lambdan.f(n+N+1))
            using <summable f> summable-iff-shift[of f N+1] by auto
            moreover have prod a{..<N}*f(n+N+1)=b(n+N+1)/prod
```

```
\(a\{N . . n+N+1\}\) for \(n\)
    proof -
            have \(\{. . n+N+1\}=\{. .<N\} \cup\{N . . n+N+1\}\) by auto
            then show ?thesis
                unfolding \(f\)-def
                apply simp
                apply (subst prod.union-disjoint)
                by auto
            qed
            ultimately show ?thesis
                apply (subst suminf-mult[symmetric])
                by (auto simp: mult.commute mult.left-commute)
        qed
        ultimately show ?thesis unfolding \(C\)-def by (auto simp:algebra-simps)
    qed
    also have \(\ldots=C+B * b N / a N+R N\)
        unfolding \(R\)-def by simp
    finally show ?thesis .
qed
    have \(R\)-bound: \(|R M| \leq 1 / 4\) and \(R\)-Suc: \(R(\) Suc \(M)=a M * R M-B * b\)
(Suc M) / a (Suc M)
    when \(M \geq N\) for \(M\)
proof -
    define \(g\) where \(g=(\lambda n . B * b(n+M+1) / \operatorname{prod} a\{M . . n+M+1\})\)
    have \(g\)-abs-summable:summable \((\lambda n .|g n|)\)
    proof -
        have summable ( \(\lambda\). \((1 / 2::\) real \(){ }^{\wedge} n\) )
        by \(\operatorname{simp}\)
        moreover have \(|g n|<1 / 2 \widehat{ } n\) for \(n\)
            using \(N\)-geometric[rule-format, \(O F\) that \(]\) unfolding \(g\)-def by simp
        ultimately show ?thesis
            apply (elim summable-comparison-test')
            by (simp add: less-eq-real-def power-one-over)
    qed
    show \(|R M| \leq 1 / 4\) using \(R\) - \(N\)-bound \([\) rule-format, \(O F\) that \(]\).
    have \(R M=\left(\sum n . g n\right)\) unfolding \(R\)-def \(g\)-def by simp
    also have \(\ldots=g 0+\left(\sum n . g(\right.\) Suc \(\left.n)\right)\)
        apply (subst suminf-split-head)
        using summable-rabs-cancel[OF g-abs-summable \(]\) by auto
    also have \(\ldots=g 0+1 / a M *\left(\sum n . a M * g(\right.\) Suc \(\left.n)\right)\)
        apply (subst suminf-mult)
        by (auto simp: g-abs-summable summable-Suc-iff summable-rabs-cancel)
    also have \(\ldots=g 0+1 / a M * R(S u c M)\)
    proof -
        have \(a M * g(\) Suc \(n)=B * b(n+M+2) / \operatorname{prod} a\{S u c M . . n+M+2\}\)
for \(n\)
    proof -
        have \(\{M . . S u c(S u c(M+n))\}=\{M\} \cup\{\) Suc M..Suc \((S u c(M+n))\}\) by
auto
```

```
        then show ?thesis
            unfolding \(g\)-def using \(\langle B>0\rangle\) by (auto simp:algebra-simps)
    qed
    then have \(\left(\sum n . a M * g(\right.\) Suc \(\left.n)\right)=R(\) Suc \(M)\)
        unfolding \(R\)-def by auto
    then show ?thesis by auto
qed
finally have \(R M=g 0+1 / a M * R(S u c M)\).
then have \(R(\) Suc \(M)=a M * R M-g 0 * a M\)
    by (auto simp:algebra-simps)
    moreover have \(\{M\)..Suc \(M\}=\{M\), Suc \(M\}\) by auto
    ultimately show \(R(\) Suc \(M)=a M * R M-B * b(\) Suc \(M) / a(\) Suc \(M)\)
    unfolding \(g\)-def by auto
qed
define \(c\) where \(c=(\lambda n\). if \(n \geq N\) then get-c a b \(B N(n-N)\) else undefined \()\)
have \(c\)-rec:c \((n+1)=c n * a n-B * b n\) when \(n \geq N\) for \(n\)
    unfolding \(c\)-def using that by (auto simp:Suc-diff-le)
have \(c\)-R:c (Suc \(n\) )/an=Rn when \(n \geq N\) for \(n\)
    using that
proof (induct rule:nat-induct-at-least)
    case base
    have \(|c(N+1) / a N| \leq 1 / 2\)
    proof -
        have \(c N=\) round \((B * b N / a N)\) unfolding \(c\)-def by simp
        moreover have \(c(N+1) / a N=c N-B * b N / a N\)
            using \(a\)-pos[rule-format,of \(N]\)
            by (auto simp:c-rec[of \(N\),simplified] divide-simps)
        ultimately show ?thesis using of-int-round-abs-le by auto
    qed
    moreover have \(|R N| \leq 1 / 4\) using \(R\)-bound \([\) of \(N]\) by simp
    ultimately have \(|c(N+1) / a N-R N|<1\) by linarith
    moreover have \(c(N+1) / a N-R N \in \mathbb{Z}\)
    proof -
    have \(c(N+1) / a N=c N-B * b N / a N\)
            using \(a\)-pos[rule-format,of \(N\) ]
            by (auto simp:c-rec[of \(N\),simplified \(]\) divide-simps)
            moreover have \(B * b N / a N+R N \in \mathbb{Z}\)
            proof -
            have \(C=B *\left(\sum n<N . \operatorname{prod} a\{. .<N\} *(b n / \operatorname{prod} a\{. . n\})\right)\)
            unfolding \(C\)-def f-def by (simp add:sum-distrib-left algebra-simps)
            also have \(\ldots=B *\left(\sum n<N\right.\). prod \(\left.a\{n<. .<N\} * b n\right)\)
            proof -
                have \(\{. .<N\}=\{n<. .<N\} \cup\{. . n\}\) if \(n<N\) for \(n\)
                by (simp add: ivl-disj-un-one(1) sup-commute that)
            then show? thesis
                using \(\langle B>0\) 〉
                    apply simp
                    apply (subst prod.union-disjoint)
```

```
                by auto
            qed
            finally have C=real-of-int (B*(\sumn<N. prod a {n<..<N}*bn)).
            then have }C\in\mathbb{Z}\mathrm{ using Ints-of-int by blast
            moreover note }\langleA*\operatorname{prod}a{..<N}=C+B*bN/aN+RN
            ultimately show ?thesis
            by (metis Ints-diff Ints-of-int add.assoc add-diff-cancel-left')
        qed
        ultimately show ?thesis by (simp add: diff-diff-add)
    qed
    ultimately have c(N+1) / a N - R N=0
        by (metis Ints-cases less-irrefl of-int-0 of-int-lessD)
    then show ?case by simp
next
    case (Suc n)
    have c(Suc (Suc n)) / a (Suc n) =c (Suc n) - B*b (Suc n) / a (Suc n)
        apply (subst c-rec[of Suc n,simplified])
        using <N \leq n〉 by (auto simp: divide-simps)
    also have ... = an*Rn-B*b(Suc n) / a (Suc n)
        using Suc by (auto simp: divide-simps)
    also have ... = R (Suc n)
        using R-Suc[OF<N\leqn>] by simp
    finally show ?case.
qed
have ca-tendsto-zero:(\lambdan.c (Suc n)/a n)\longrightarrow0
    using R-tendsto-0
    apply (elim filterlim-mono-eventually)
    using }c\mathrm{ - }R\mathrm{ by (auto intro!:eventually-sequentiallyI[of N])
have ca-bound:|c(n+1)|<an/2 when }n\geqN\mathrm{ for n
proof -
    have |c (Suc n)| / a n = |c(Suc n) / a n| using a-pos[rule-format,of n] by
auto
    also have ... = |R n| using c-R[OF that] by auto
    also have ...<1/2 using R-bound[OF that] by auto
    finally have }|c(\mathrm{ Suc n)|/ a n<1/2.
    then show ?thesis using a-pos[rule-format,of n] by auto
qed
```

show $\exists B>0 . \exists c .\left(\forall_{F} n\right.$ in sequentially. $B * b n=c n * a n-c(n+1)$
\wedge real-of-int $|c(n+1)|<a n / 2) \wedge(\lambda n . c(S u c n) / a n) \longrightarrow 0$
unfolding eventually-at-top-linorder
apply (rule ex $[$ of - $B]$, use $\langle B>0\rangle$ in simp)
apply (intro exI[of -c] exI[of -N])
using c-rec ca-bound ca-tendsto-zero
by fastforce
qed
private lemma imp-ab-rational:
assumes $\exists(B::$ int $)>0 . \exists c:: n a t \Rightarrow$ int.

$$
\left(\forall_{F} n \text { in sequentially. } B * b n=c n * a n-c(n+1) \wedge|c(n+1)|<a\right.
$$

n/2)
shows $\left(\sum n .\left(b n /\left(\prod i \leq n . a i\right)\right)\right) \in \mathbb{Q}$
proof -
obtain $B::$ int and $c:: n a t \Rightarrow$ int and $N::$ nat where $B>0$ and
large- $n: \forall n \geq N . B * b n=c n * a n-c(n+1) \wedge$ real-of-int $|c(n+1)|<a$
$n / 2$

$$
\wedge a n \geq 2
$$

proof -
obtain $B c$ where $B>0$ and event1 $: \forall_{F} n$ in sequentially. $B * b n=c n * a$
$n-c(n+1)$

$$
\wedge \text { real-of-int }|c(n+1)|<\text { real-of-int }(a n) / 2
$$

using assms by auto
from eventually-conj[OF event1 a-large,unfolded eventually-at-top-linorder]
obtain N where $\forall n \geq N .(B * b n=c n * a n-c(n+1)$

$$
\wedge \text { real-of-int }|c(n+1)|<\text { real-of-int }(a n) / 2) \wedge 2 \leq a n
$$

by fastforce
then show ?thesis using that $[$ of $B N c]\langle B\rangle 0\rangle$ by auto
qed
define f where $f=(\lambda n$. real-of-int (b n) / real-of-int (prod a $\{. . n\})$)
define S where $S=\left(\sum n\right.$. $\left.f n\right)$
have summable f
unfolding f-def by (rule aux-series-summable)
define C where $C=B * \operatorname{prod} a\{. .<N\} *\left(\sum n<N . f n\right)$
have $B * \operatorname{prod}$ a $\{. .<N\} * S=C+$ real-of-int $(c N)$
proof -
define $h 1$ where $h 1 \equiv(\lambda n .(c(n+N) * a(n+N)) / \operatorname{prod} a\{N . . n+N\})$
define $h 2$ where $h 2 \equiv(\lambda n . c(n+N+1) / \operatorname{prod} a\{N . . n+N\})$
have $f-h 12: B * \operatorname{prod} a\{. .<N\} * f(n+N)=h 1 n-h 2 n$ for n proof -
define $g 1$ where $g 1 \equiv(\lambda n . B * b(n+N))$
define $g 2$ where $g 2 \equiv(\lambda n . \operatorname{prod} a\{. .<N\} / \operatorname{prod} a\{. . n+N\})$
have $B * \operatorname{prod} a\{. .<N\} * f(n+N)=(g 1 n * g 2 n)$
unfolding f-def g1-def g2-def by (auto simp:algebra-simps)
moreover have $g 1 n=c(n+N) * a(n+N)-c(n+N+1)$
using large- $n[$ rule-format, of $n+N$] unfolding g1-def by auto
moreover have g2 $n=(1 / \operatorname{prod} a\{N . . n+N\})$
proof -
have prod $a(\{. .<N\} \cup\{N . . n+N\})=\operatorname{prod} a\{. .<N\} * \operatorname{prod} a\{N . . n+$
$N\}$
apply (rule prod.union-disjoint $[o f\{. .<N\}\{N . . n+N\} a]$)
by auto
moreover have prod $a(\{. .<N\} \cup\{N . . n+N\})=\operatorname{prod} a\{. . n+N\}$
by (simp add: ivl-disj-un-one(4))
ultimately show ?thesis
unfolding 92 -def
apply simp
using a-pos by (metis less-irrefl)

```
    qed
    ultimately have B*prod a {..<N}*f(n+N)=(c(n+N)*a(n+N) - c
(n+N+1)) / prod a {N..n+N}
        by auto
    also have ... = h1 n - h2 n
            unfolding h1-def h2-def by (auto simp:algebra-simps diff-divide-distrib)
            finally show ?thesis by simp
    qed
    have B*prod a {..<N}*S=B*prod a {..<N}*((\sumn<N.fn)+(\sumn.f
(n+N)))
            using suminf-split-initial-segment[OF <summable f>,of N]
            unfolding S-def by (auto simp:algebra-simps)
    also have ... =C + B*prod a {..<N}*(\sumn.f(n+N))
            unfolding C-def by (auto simp:algebra-simps)
    also have ... = C + (\sumn. h1 n - h2 n)
            apply (subst suminf-mult[symmetric])
            using <summable f>f-h12 by auto
    also have ... = C +h1 0
    proof -
        have (\lambdan. \sumi\leqn.h1 i-h2 i)}\longrightarrow(\sumi.h1i-h2 i
        proof (rule summable-LIMSEQ')
            have (\lambdai.h1 i - h2 i) =(\lambdai. real-of-int (B* prod a {..<N})*f(i+N))
                using f-h12 by auto
            then show summable (\lambdai.h1 i-h2 i)
            using «summable f> by (simp add: summable-mult)
    qed
    moreover have (\sumi\leqn.h1 i-h2 i)=h1 0-h2 n for n
    proof (induct n)
            case 0
            then show ?case by simp
        next
            case (Suc n)
            have (\sumi\leqSuc n. h1 i-h2 i)=(\sumi\leqn.h1 i-h2 i) +h1 (n+1)-h2
(n+1)
            by auto
            also have ... = h1 0 - h2 n +h1 (n+1) - h2 (n+1) using Suc by auto
            also have ... = h1 0 - h2 (n+1)
            proof -
                have h2 n = h1 ( }n+1
                    unfolding h2-def h1-def
                    apply (auto simp:prod.nat-ivl-Suc')
                    using a-pos by (metis less-numeral-extra(3))
                    then show ?thesis by auto
            qed
            finally show ?case by simp
qed
ultimately have (\lambdan.h1 0-h2 n) \longrightarrow(\sumi.h1i-h2 i) by simp
then have h2 \longrightarrow(h1 0- (\sumi.h1i-h2 i))
apply (elim metric-tendsto-imp-tendsto)
```

by (auto intro!:eventuallyI simp add:dist-real-def)
moreover have $h 2 \longrightarrow 0$
proof -
have $h 2-n:|h 2 n|<(1 / 2) \uparrow(n+1)$ for n
proof -
have $|h 2 n|=|c(n+N+1)| / \operatorname{prod} a\{N . . n+N\}$
unfolding h2-def abs-divide
using a-pos by (simp add: abs-of-pos prod-pos)
also have $\ldots<(a(N+n) / 2) / \operatorname{prod} a\{N . . n+N\}$ unfolding h2-def apply (rule divide-strict-right-mono)
subgoal using large- $n[$ rule-format, of $N+n]$ by (auto simp:algebra-simps) subgoal using a-pos by (simp add: prod-pos)
done
also have $\ldots=1 /(2 * \operatorname{prod} a\{N . .<n+N\})$
apply (subst ivl-disj-un(6$)[$ of $N n+N$,symmetric $]$)
using a-pos[rule-format, of $N+n]$ by (auto simp:algebra-simps)
also have $\ldots \leq(1 / 2) \uparrow(n+1)$
proof (induct n)
case 0
then show? case by auto
next
case (Suc n)
define P where $P=1 /$ real-of-int (2 * prod $a\{N . .<n+N\}$)
have $1 /$ real-of-int $(2 * \operatorname{prod} a\{N . .<$ Suc $n+N\})=P / a(n+N)$
unfolding P-def by (auto simp: prod.atLeastLessThan-Suc)
also have $\ldots \leq((1 / 2) \wedge(n+1)) / a(n+N)$
apply (rule divide-right-mono)
subgoal unfolding P-def using $S u c$ by auto
subgoal by (simp add: a-pos less-imp-le)
done
also have $\ldots \leq\left((1 / 2)^{\wedge}(n+1)\right) / 2$
apply (rule divide-left-mono)
using large- $n[$ rule-format, of $n+N$, simplified $]$ by auto
also have $\ldots=(1 / 2)^{\wedge}(n+2)$ by auto
finally show? ?case by simp
qed
finally show? ?thesis.
qed
have $(\lambda n .(1 / 2) \uparrow(n+1)) \longrightarrow(0::$ real $)$
using tendsto-mult-right-zero[OF LIMSEQ-abs-realpow-zero2[of 1/2,simplified],of
by auto
then show?thesis
apply (elim Lim-null-comparison[rotated])
using h2-n less-eq-real-def by (auto intro!:eventuallyI)
qed
ultimately have $\left(\sum i . h 1 i-h 2 i\right)=h 10$
using LIMSEQ-unique by fastforce
then show?thesis by simp
qed
also have $\ldots=C+c N$
unfolding h1-def using a-pos
by auto (metis less-irrefl)
finally show ?thesis.

qed

then have $S=(C+$ real-of-int $(c N)) /(B * \operatorname{prod} a\{. .<N\})$
by (metis $\langle 0<B\rangle$ a-pos less-irrefl mult.commute mult-pos-pos
nonzero-mult-div-cancel-right of-int-eq-0-iff prod-pos)
moreover have $\ldots \in \mathbb{Q}$
unfolding C-def f-def by (intro Rats-divide Rats-add Rats-mult Rats-of-int
Rats-sum)
ultimately show $S \in \mathbb{Q}$ by auto
qed
theorem theorem-2-1-Erdos-Straus :
$\left(\sum n .\left(b n /\left(\prod i \leq n . a i\right)\right)\right) \in \mathbb{Q} \longleftrightarrow(\exists(B::$ int $)>0 . \exists c:: n a t \Rightarrow$ int.
$\left(\forall_{F} n\right.$ in sequentially. $\left.\left.B * b n=c n * a n-c(n+1) \wedge|c(n+1)|<a n / 2\right)\right)$
using ab-rationality-imp imp-ab-rational by auto
The following is a Corollary to Theorem 2.1.
corollary corollary-2-10-Erdos-Straus:
assumes ab-event $: \forall_{F} n$ in sequentially. $b n>0 \wedge a(n+1) \geq a n$
and ba-lim-leq:lim $(\lambda n .(b(n+1)-b n) / a n) \leq 0$
and ba-lim-exist:convergent $(\lambda n .(b(n+1)-b n) / a n)$
and $\liminf (\lambda n . a n / b n)=0$
shows $\left(\sum n .\left(b n /\left(\prod i \leq n . a i\right)\right)\right) \notin \mathbb{Q}$
proof
assume $\left(\sum n .\left(b n /\left(\prod i \leq n . a i\right)\right)\right) \in \mathbb{Q}$
then obtain $B c$ where $B>0$ and abc-event: $\forall_{F} n$ in sequentially. $B * b n=c$ $n * a n-c(n+1)$
$\wedge|c(n+1)|<a n / 2$ and ca-vanish: $(\lambda n . c(S u c n) / a n) \longrightarrow 0$
using ab-rationality-imp by auto
have bac-close: $(\lambda n . B * b n / a n-c n) \longrightarrow 0$
proof -
have $\forall_{F} n$ in sequentially. $B * b n-c n * a n+c(n+1)=0$
using abc-event by (auto elim! :eventually-mono)
then have $\forall_{F} n$ in sequentially. $(B * b n-c n * a n+c(n+1)) / a n=0$ apply eventually-elim
by auto
then have $\forall_{F} n$ in sequentially. $B * b n / a n-c n+c(n+1) / a n=0$ apply eventually-elim using a-pos by (auto simp:divide-simps) (metis less-irrefl)
then have $(\lambda n . B * b n / a n-c n+c(n+1) / a n) \longrightarrow 0$
by (simp add: eventually-mono tendsto-iff)
from tendsto-diff[OF this ca-vanish]
show ?thesis by auto
qed
have c-pos: $\forall_{F} n$ in sequentially. $c n>0$
proof -
from bac-close have $*: \forall_{F} n$ in sequentially. c $n \geq 0$
apply (elim tendsto-of-int-diff-0)
using ab-event a-large apply (eventually-elim)
using $\langle B\rangle 0\rangle$ by auto
show ?thesis
proof (rule ccontr)
assume $\neg\left(\forall_{F} n\right.$ in sequentially. c $\left.n>0\right)$
moreover have $\forall_{F} n$ in sequentially. $c($ Suc $n) \geq 0 \wedge c n \geq 0$
using $*$ eventually-sequentially-Suc[of λn. c $n \geq 0]$
by (metis (mono-tags, lifting) eventually-at-top-linorder le-Suc-eq)
ultimately have $\exists_{F} n$ in sequentially. $c n=0 \wedge c($ Suc $n) \geq 0$
using eventually-elim2 frequently-def by fastforce
moreover have $\forall_{F} n$ in sequentially. $b n>0 \wedge B * b n=c n * a n-c$ $(n+1)$
using ab-event abc-event by eventually-elim auto
ultimately have $\exists_{F} n$ in sequentially. $c n=0 \wedge c($ Suc $n) \geq 0 \wedge b n>0$

$$
\wedge B * b n=c n * a n-c(n+1)
$$

using frequently-eventually-frequently by fastforce
from frequently-ex[OF this]
obtain n where $c n=0 c($ Suc $n) \geq 0 b n>0$
$B * b n=c n * a n-c(n+1)$
by auto
then have $B * b n \leq 0$ by auto
then show False using $\langle b n>0\rangle\langle B>0\rangle$ using mult-pos-pos not-le by blast qed
qed
have bc-epsilon: $\forall_{F} n$ in sequentially. $b(n+1) / b n>(c(n+1)-\varepsilon) / c n$ when $\varepsilon>0 \varepsilon<1$ for $\varepsilon:$:real

proof -

have $\forall_{F} x$ in sequentially. $\mid c($ Suc $x) / a x \mid<\varepsilon / 2$
using ca-vanish[unfolded tendsto-iff,rule-format, of $\varepsilon / 2]\langle\varepsilon>0\rangle$ by auto
moreover then have $\forall_{F} x$ in sequentially. $|c(x+2) / a(x+1)|<\varepsilon / 2$
apply (subst (asm) eventually-sequentially-Suc[symmetric])
by simp
moreover have $\forall_{F} n$ in sequentially. $B * b(n+1)=c(n+1) * a(n+1)-$ $c(n+2)$
using abc-event
apply (subst (asm) eventually-sequentially-Suc[symmetric])
by (auto elim:eventually-mono)
moreover have $\forall_{F} n$ in sequentially. $c n>0 \wedge c(n+1)>0 \wedge c(n+2)>0$
proof -
have $\forall_{F} n$ in sequentially. $0<c$ (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp
moreover then have $\forall_{F} n$ in sequentially. $0<c(S u c$ (Suc $\left.n)\right)$
using c-pos by (subst eventually-sequentially-Suc) simp
ultimately show ?thesis using c-pos by eventually-elim auto
qed
ultimately show ?thesis using ab-event abc-event
proof eventually-elim
case (elim n)
define $\varepsilon_{0} \varepsilon_{1}$ where $\varepsilon_{0}=c(n+1) / a n$ and $\varepsilon_{1}=c(n+2) / a(n+1)$
have $\varepsilon_{0}>0 \varepsilon_{1}>0 \varepsilon_{0}<\varepsilon / 2 \varepsilon_{1}<\varepsilon / 2$ using a-pos elim by (auto simp: $\left.\varepsilon_{0}-d e f \varepsilon_{1}-d e f\right)$
have $\left(\varepsilon-\varepsilon_{1}\right) * c n>0$
using $\left\langle\varepsilon_{1}<\varepsilon / 2\right\rangle \operatorname{elim}(4)$ that(1) by auto
moreover have $\varepsilon_{0} *(c(n+1)-\varepsilon)>0$
using $\left\langle 0<\varepsilon_{0}\right\rangle \operatorname{elim}(4)$ that(2) by auto
ultimately have $\left(\varepsilon-\varepsilon_{1}\right) * c n+\varepsilon_{0} *(c(n+1)-\varepsilon)>0$ by auto
moreover have gt0: c $n-\varepsilon_{0}>0$ using $\left\langle\varepsilon_{0}<\varepsilon / 2\right\rangle \operatorname{elim}(4)$ that(2) by
linarith
moreover have $c n>0$ by (simp add: $\operatorname{elim}(4)$)
ultimately have $(c(n+1)-\varepsilon) / c n<\left(c(n+1)-\varepsilon_{1}\right) /\left(c n-\varepsilon_{0}\right)$
by (auto simp: field-simps)
also have $\ldots \leq\left(c(n+1)-\varepsilon_{1}\right) /\left(c n-\varepsilon_{0}\right) *(a(n+1) / a n)$
proof -
have $\left(c(n+1)-\varepsilon_{1}\right) /\left(c n-\varepsilon_{0}\right)>0$
using gt0 $\left\langle\varepsilon_{1}<\varepsilon /\right.$ 2〉 elim(4) that(2) by force
moreover have $(a(n+1) / a n) \geq 1$
using a-pos elim(5) by auto
ultimately show ?thesis by (metis mult-cancel-left1 mult-le-cancel-left-pos)
qed
also have $\ldots=(B * b(n+1)) /(B * b n)$
proof -
have $B * b n=c n * a n-c(n+1)$
using elim by auto
also have $\ldots=a n *\left(c n-\varepsilon_{0}\right)$
using a-pos[rule-format, of $n]$ unfolding ε_{0}-def by (auto simp:field-simps)
finally have $B * b n=a n *\left(c n-\varepsilon_{0}\right)$.
moreover have $B * b(n+1)=a(n+1) *\left(c(n+1)-\varepsilon_{1}\right)$
unfolding ε_{1}-def
using a-pos[rule-format,of $n+1$]
apply (subst $\langle B * b(n+1)=c(n+1) * a(n+1)-c(n+2)\rangle)$
by (auto simp:field-simps)
ultimately show ?thesis by (simp add: mult.commute)
qed
also have $\ldots=b(n+1) / b n$
using $\langle B>0\rangle$ by auto
finally show ?case .
qed
qed
have eq-2-11: $\exists_{F} n$ in sequentially. $b(n+1)>b n+(1-\varepsilon) \subset 2 * a n / B$ when $\varepsilon>0 \quad \varepsilon<1 \neg\left(\forall_{F} n\right.$ in sequentially. $\left.c(n+1) \leq c n\right)$ for $\varepsilon::$ real

```
proof -
    have \(\exists_{F} x\) in sequentially. \(c x<c\) (Suc \(x\) ) using that(3)
        by (simp add:not-eventually frequently-elim1)
    moreover have \(\forall_{F} x\) in sequentially. \(\mid c(\) Suc \(x) / a x \mid<\varepsilon\)
        using ca-vanish[unfolded tendsto-iff,rule-format, of \(\varepsilon]\langle\varepsilon>0\rangle\) by auto
    moreover have \(\forall_{F} n\) in sequentially. \(c n>0 \wedge c(n+1)>0\)
    proof -
        have \(\forall_{F} n\) in sequentially. \(0<c(S u c n)\)
            using c-pos by (subst eventually-sequentially-Suc) simp
        then show ?thesis using c-pos by eventually-elim auto
    qed
    ultimately show ?thesis using ab-event abc-event bc-epsilon \([O F\langle\varepsilon>0\rangle\langle\varepsilon<1\rangle]\)
    proof (elim frequently-rev-mp,eventually-elim)
        case (elim n)
        then have \(c(n+1) / a n<\varepsilon\)
            using a-pos[rule-format, of \(n]\) by auto
        also have \(\ldots \leq \varepsilon * c n\) using elim(7) that(1) by auto
        finally have \(c(n+1) / a n<\varepsilon * c n\).
        then have \(c(n+1) / c n<\varepsilon * a n\)
            using a-pos[rule-format, of \(n\) ] elim by (auto simp:field-simps)
        then have \((1-\varepsilon) * a n<a n-c(n+1) / c n\)
        by (auto simp:algebra-simps)
        then have \((1-\varepsilon)\) へ \(2 * a n / B<(1-\varepsilon) *(a n-c(n+1) / c n) / B\)
            apply (subst (asm) mult-less-cancel-right-pos[symmetric, of \((1-\varepsilon) / B])\)
    using \(\langle\varepsilon<1\rangle\langle B\rangle 0\rangle\) by (auto simp: divide-simps power2-eq-square mult-less-cancel-right-pos)
    then have \(b n+(1-\varepsilon) \uparrow 2 * a n / B<b n+(1-\varepsilon) *(a n-c(n+1) /\)
c n) / B
        using \(\langle B\rangle 0\) 〉 by auto
        also have \(\ldots=b n+(1-\varepsilon) *((c n * a n-c(n+1)) / c n) / B\)
        using elim by (auto simp:field-simps)
        also have \(\ldots=b n+(1-\varepsilon) *(b n / c n)\)
        proof -
        have \(B * b n=c n * a n-c(n+1)\) using elim by auto
        from this[symmetric] show ?thesis
            using \(\langle B\rangle 0\rangle\) by \(\operatorname{simp}\)
        qed
    also have \(\ldots=(1+(1-\varepsilon) / c n) * b n\)
        by (auto simp:algebra-simps)
        also have \(\ldots=((c n+1-\varepsilon) / c n) * b n\)
        using elim by (auto simp:divide-simps)
    also have \(\ldots \leq((c(n+1)-\varepsilon) / c n) * b n\)
    proof -
        define \(c p\) where \(c p=c n+1\)
        have \(c(n+1) \geq c p\) unfolding cp-def using \(\langle c n<c(S u c n)\rangle\) by auto
        moreover have \(c n>0 b n>0\) using elim by auto
        ultimately show ?thesis
            apply (fold cp-def)
            by (auto simp:divide-simps)
```

```
    qed
    also have ... < b (n+1)
        using elim by (auto simp:divide-simps)
    finally show??ase.
    qed
qed
have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. c ( n+1) <cn
proof (rule ccontr)
    assume }\neg(\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. c(n+1) \c n)
    from eq-2-11[OF -- this,of 1/2]
    have}\mp@subsup{\exists}{F}{}n\mathrm{ in sequentially. b (n+1)>bn+1/4*an/B
        by (auto simp:algebra-simps power2-eq-square)
    then have *:\exists ` F n in sequentially. (b(n+1)-bn)/an>1/(B*4)
        apply (elim frequently-elim1)
        subgoal for n
            using a-pos[rule-format,of n] by (auto simp:field-simps)
        done
    define f}\mathrm{ where f=( \n.(b(n+1)-bn)/an)
    have f\longrightarrowlimf
        using convergent-LIMSEQ-iff ba-lim-exist unfolding f-def by auto
    from this[unfolded tendsto-iff,rule-format, of 1/( }B*4)
    have }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. |f x - lim f|<1/(B*4)
        using \B>0\rangle by (auto simp:dist-real-def)
    moreover have }\mp@subsup{\exists}{F}{}n\mathrm{ in sequentially.f }n>1/(B*4
        using * unfolding f-def by auto
    ultimately have }\mp@subsup{\exists}{F}{}n\mathrm{ in sequentially.fn>1/(B*4)^ |fn-lim f | < 1
/ (B*4)
        by (auto elim:frequently-eventually-frequently[rotated])
    from frequently-ex[OF this]
    obtain n}\mathrm{ where fn>1/(B*4)|fn-limf|<1/(B*4)
        by auto
    moreover have lim f\leq0 using ba-lim-leq unfolding f}f\mathrm{ -def by auto
    ultimately show False by linarith
qed
then obtain N where N-dec:\foralln\geqN.c(n+1)\leqcn by (meson eventually-at-top-linorder)
define max-c where max-c = (MAX n { {..N}.c n)
have max-c:c n\leq max-c for n
proof (cases n\leqN)
    case True
    then show ?thesis unfolding max-c-def by simp
next
    case False
    then have }n\geqN\mathrm{ by auto
    then have c n\leqcN
    proof (induct rule:nat-induct-at-least)
        case base
        then show ?case by simp
    next
```

```
    case (Suc n)
    then have c(n+1)\leqcn using N-dec by auto
    then show ?case using <c n\leq cN` by auto
    qed
    moreover have c N\leqmax-c unfolding max-c-def by auto
    ultimately show ?thesis by auto
qed
have max-c > 0
proof -
    obtain N where }\foralln\geqN.0<c
        using c-pos[unfolded eventually-at-top-linorder] by auto
    then have c N>0 by auto
    then show ?thesis using max-c[of N] by simp
qed
have ba-limsup-bound:1/(B*(B+1))}\leqlimsup (\lambdan.b n/a n
    limsup (\lambdan.b n/a n) \leqmax-c / B + 1/(B+1)
proof -
    define f}\mathrm{ where f}=(\lambdan.bn/an
    from tendsto-mult-right-zero[OF bac-close,of 1/B]
    have ( }\lambdan.fn-cn/B)\longrightarrow
        unfolding f-def using \langleB>0\rangle by (auto simp:algebra-simps)
    from this[unfolded tendsto-iff,rule-format,of 1/(B+1)]
    have }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. }|fx-cx/B|<1/(B+1
        using \langleB>0\rangle by auto
    then have *:\forall}\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. 1/(B*(B+1)) < ereal (fn)^ ereal (fn) 
max-c / B + 1 / (B+1)
        using c-pos
    proof eventually-elim
        case (elim n)
        then have fn-cn/B<1/(B+1) by auto
        then have fn<cn/B+1/(B+1) by simp
        also have ... \leq max-c / B+1/(B+1)
            using max-c[of n] using \langleB>0\rangle by (auto simp:divide-simps)
            finally have *:f n< max-c / B+1/(B+1).
    have 1/(B*(B+1))=1/B-1/(B+1)
        using }\langleB\rangle0\rangle\mathrm{ by (auto simp:divide-simps)
    also have .. \leq c n/B-1/(B+1)
        using <0<c n\rangle\langleB>0\rangle by (auto,auto simp:divide-simps)
    also have ...<fn using elim by auto
    finally have 1/(B*(B+1))<fn.
    with * show ?case by simp
    qed
    show limsup f}\leq\operatorname{max-c}/B+1/(B+1
        apply (rule Limsup-bounded)
        using * by (auto elim:eventually-mono)
    have 1/(B*(B+1))\leqliminf f
        apply (rule Liminf-bounded)
        using * by (auto elim:eventually-mono)
```

```
    also have liminf f}\leqlimsup f by (simp add: Liminf-le-Limsup)
    finally show 1/(B*(B+1))\leqlimsup f.
qed
have 0< inverse (ereal (max-c / B + 1 / (B+1)))
    using <max-c>0\rangle\langleB>0\rangle
    by (simp add: pos-add-strict)
also have ... \leqinverse (limsup ( \lambdan. b n/a n))
proof (rule ereal-inverse-antimono[OF - ba-limsup-bound(2)])
    have 0<1/( }B*(B+1))\mathrm{ using <B>0> by auto
    also have ...\leq limsup ( }\lambdan.bn/a n) using ba-limsup-bound(1)
    finally show 0\leqlimsup ( }\lambdan.bn/an)\mathrm{ using zero-ereal-def by auto
qed
also have ... = liminf ( }\lambdan\mathrm{ . inverse (ereal ( b n/a n)))
    apply (subst Liminf-inverse-ereal[symmetric])
    using a-pos ab-event by (auto elim!:eventually-mono simp:divide-simps)
also have ... = liminf ( }\lambdan.(an/bn)
    apply (rule Liminf-eq)
    using a-pos ab-event
    apply (auto elim!:eventually-mono)
    by (metis less-int-code(1))
finally have liminf (\lambdan. (a n/b n)) >0.
then show False using <liminf (\lambdan.a n / b n)=0` by simp
qed
end
```


3 Some auxiliary results on the prime numbers.

lemma nth-prime-nonzero $[$ simp $]$:nth-prime $n \neq 0$
by (simp add: prime-gt-0-nat prime-nth-prime)
lemma nth-prime-gt-zero[simp]:nth-prime $n>0$
by (simp add: prime-gt-0-nat prime-nth-prime)
lemma ratio-of-consecutive-primes:
(λn. nth-prime $(n+1) /$ nth-prime $n) \longrightarrow 1$
proof -
define f where $f=(\lambda x$. real (nth-prime (Suc $x)$) /real (nth-prime $x)$)
define g where $g=(\lambda x$. (real $x * \ln ($ real $x))$
$/($ real $($ Suc $x) * \ln ($ real $($ Suc $x))))$
have $p-n:(\lambda x$. real $(n t h-p r i m e ~ x) /($ real $x * \ln ($ real $x))) \longrightarrow 1$ using nth-prime-asymptotics[unfolded asymp-equiv-def,simplified].
moreover have p-sn: $(\lambda n$. real (nth-prime (Suc n))

$$
/(\operatorname{real}(\text { Suc } n) * \ln (\text { real }(\text { Suc } n)))) \longrightarrow 1
$$

using nth-prime-asymptotics[unfolded asymp-equiv-def,simplified ,THEN LIMSEQ-Suc] .
ultimately have $(\lambda x . f x * g x) \longrightarrow 1$
using tendsto-divide[OF p-sn p-n]
unfolding f-def g-def by (auto simp:algebra-simps)
moreover have $g \longrightarrow 1$ unfolding g-def
by real-asymp
ultimately have $(\lambda x$. if $g x=0$ then 0 else $f x) \longrightarrow 1$
apply (drule-tac tendsto-divide $[O F-\langle g \longrightarrow 1\rangle]$)
by auto
then have $f \longrightarrow 1$
proof (elim filterlim-mono-eventually)
have $\forall_{F} x$ in sequentially. (if $g(x+3)=0$ then 0 else $f(x+3))=f(x+3)$
unfolding g-def by auto
then show $\forall_{F} x$ in sequentially. (if $g x=0$ then 0 else $\left.f x\right)=f x$
apply (subst (asm) eventually-sequentially-seg)
by simp
qed auto
then show ?thesis unfolding f-def by auto
qed
lemma nth-prime-double-sqrt-less:
assumes $\varepsilon>0$
shows $\forall_{F} n$ in sequentially. (n th-prime $(2 * n)$ - nth-prime n)
/ sqrt (nth-prime n) $<n$ powr $(1 / 2+\varepsilon)$
proof -
define $p p l l$ where
$p p=(\lambda n$. (nth-prime $(2 * n)-n t h$-prime $n) /$ sqrt $(n t h-p r i m e ~ n))$ and $l l=(\lambda x:: n a t . x * \ln x)$
have $p p$-pos:pp $(n+1)>0$ for n unfolding $p p$-def by simp
have $(\lambda x$. nth-prime $(2 * x)) \sim[$ sequentially $](\lambda x .(2 * x) * \ln (2 * x))$ using nth-prime-asymptotics[THEN asymp-equiv-compose
,of (*) 2 sequentially,unfolded comp-def]
using mult-nat-left-at-top pos2 by blast
also have $\ldots \sim[$ sequentially $](\lambda x .2 * x * \ln x)$
by real-asymp
finally have $(\lambda x$. nth-prime $(2 * x)) \sim[$ sequentially $](\lambda x .2 * x * \ln x)$.
from this[unfolded asymp-equiv-def, THEN tendsto-mult-left,of 2]
have $(\lambda x$. nth-prime $(2 * x) /(x * \ln x)) \longrightarrow 2$
unfolding asymp-equiv-def by auto
moreover have $*:(\lambda x$. nth-prime $x /(x * \ln x)) \longrightarrow 1$
using nth-prime-asymptotics unfolding asymp-equiv-def by auto
ultimately
have $(\lambda x$. (nth-prime $(2 * x)-n t h$-prime $x) / l l x) \longrightarrow 1$ unfolding $l l$-def
apply -
apply (drule (1) tendsto-diff)
apply (subst of-nat-diff,simp)
by (subst diff-divide-distrib,simp)
moreover have $(\lambda x$. sqrt (nth-prime $x) / \operatorname{sqrt}(l l x)) \longrightarrow 1$

```
    unfolding ll-def
    using tendsto-real-sqrt[OF *]
    by (auto simp: real-sqrt-divide)
ultimately have (\lambdax.ppx*(sqrt (ll x) / (ll x))) \longrightarrow 1
    apply -
    apply (drule (1) tendsto-divide,simp)
    by (auto simp:field-simps of-nat-diff pp-def)
moreover have }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. sqrt (ll x)/llx=1/sqrt (ll x)
    apply (subst eventually-sequentially-Suc[symmetric])
    by (auto intro!:eventuallyI simp:ll-def divide-simps)
ultimately have ( }\lambdax.ppx/\operatorname{sqrt}(llx))\longrightarrow
    apply (elim filterlim-mono-eventually)
    by (auto elim!:eventually-mono) (metis mult.right-neutral times-divide-eq-right)
moreover have ( }\lambdax.\operatorname{sqrt}(llx)/x powr (1/2+\varepsilon))\longrightarrow
    unfolding ll-def using < <>0\rangle by real-asymp
ultimately have ( }\lambdax.ppx/x\mathrm{ powr (1/2+&)*
                            (sqrt (ll x) / sqrt (ll x)))\longrightarrow0
    apply -
    apply (drule (1) tendsto-mult)
    by (auto elim:filterlim-mono-eventually)
moreover have }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. sqrt (ll x) / sqrt (ll x)=1
    apply (subst eventually-sequentially-Suc[symmetric])
    by (auto intro!:eventuallyI simp:ll-def )
ultimately have }(\lambdax.ppx/x powr (1/2+\varepsilon))\longrightarrow
    apply (elim filterlim-mono-eventually)
    by (auto elim:eventually-mono)
from tendstoD[OF this, of 1,simplified]
show }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. pp x<x powr (1/2 + |)
    apply (elim eventually-mono-sequentially[of - 1])
    using pp-pos by auto
qed
```


4 Theorem 3.1

Theorem 3.1 is an application of Theorem 2.1 with the sequences considered involving the prime numbers.

```
theorem theorem-3-10-Erdos-Straus:
    fixes \(a:: n a t \Rightarrow\) int
    assumes \(a-p o s: \forall\) n. a \(n>0\) and mono a
        and nth-1: \(\left(\lambda n\right.\). nth-prime \(\left.n /(a n)^{\wedge} 2\right) \longrightarrow 0\)
        and nth-2:liminf \((\lambda n\). a \(n / n t h-p r i m e ~ n)=0\)
    shows \(\left(\sum n\right.\). \(\left(n t h\right.\)-prime \(\left.\left.n /\left(\prod i \leq n . a i\right)\right)\right) \notin \mathbb{Q}\)
proof
    assume asm: \(\left(\sum n .\left(n t h-p r i m e ~ n /\left(\prod i \leq n . a i\right)\right)\right) \in \mathbb{Q}\)
    have a2-omega: \(\left(\lambda n .(a n)^{\wedge} 2\right) \in \omega(\lambda x . x * \ln x)\)
    proof -
        have \((\lambda n\). real \((n t h-p r i m e ~ n)) \in o\left(\lambda n\right.\). real-of-int \(\left.\left((a n)^{2}\right)\right)\)
```

apply (rule smalloI-tendsto[OF nth-1])
using a-pos by (metis (mono-tags, lifting) less-int-code(1)
not-eventually D of-int-0-eq-iff zero-eq-power2)
moreover have $(\lambda x$. real $($ nth-prime $x)) \in \Omega(\lambda x$. real $x * \ln ($ real $x))$
using nth-prime-bigtheta
by blast
ultimately show ?thesis
using landau-omega.small-big-trans smallo-imp-smallomega by blast qed
have $a-g t-1: \forall_{F} n$ in sequentially. $1<a n$
proof -
have $\forall_{F} x$ in sequentially. $|x * \ln x| \leq(a x)^{2}$
using a2-omega[unfolded smallomega-def,simplified,rule-format,of 1]
by auto
then have $\forall_{F} x$ in sequentially. $|(x+3) * \ln (x+3)| \leq(a(x+3))^{2}$
apply (subst (asm) eventually-sequentially-seg[symmetric, of - 3])
by simp
then have $\forall_{F} n$ in sequentially. $1<a(n+3)$
proof (elim eventually-mono)
fix x
assume \mid real $(x+3) * \ln ($ real $(x+3)) \mid \leq$ real-of-int $\left((a(x+3))^{2}\right)$
moreover have \mid real $(x+3) * \ln ($ real $(x+3)) \mid>3$
proof -
have $\ln (\operatorname{real}(x+3))>1$
using ln3-gt-1 ln-gt-1 by force
moreover have $\operatorname{real}(x+3) \geq 3$ by simp
ultimately have $(x+3) * \ln ($ real $(x+3))>3 * 1$
by (smt (verit, best) mult-less-cancel-left1)
then show ?thesis by auto
qed
ultimately have $(a(x+3))^{2}>3$
by linarith
then show $1<a(x+3)$
by (smt (verit) assms(1) one-power2)
qed
then show ?thesis
using eventually-sequentially-seg[symmetric, of - 3]
by blast
qed
obtain $B::$ int and c where
$B>0$ and $B c$-large: $\forall_{F} n$ in sequentially. $B *$ nth-prime n

$$
=c n * a n-c(n+1) \wedge|c(n+1)|<a n / 2
$$

and ca-vanish: $(\lambda n . c(S u c ~ n) /$ real-of-int $(a n)) \longrightarrow 0$
proof -
note $a-g t-1$
moreover have (λ n. real-of-int \mid int (nth-prime $n) \mid$
$/$ real-of-int $(a(n-1) * a n)) \longrightarrow 0$

```
proof -
    define f}\mathrm{ where f=( }\lambdan\mathrm{ . nth-prime (n+1) / (an*a(n+1)))
    define g}\mathrm{ where g=(\n. 2*nth-prime n / (a n)^2)
    have }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially.norm (fx) sgx
    proof -
        have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially.nth-prime (n+1)<2*nth-prime n
        using ratio-of-consecutive-primes[unfolded tendsto-iff
                ,rule-format,of 1,simplified]
        apply (elim eventually-mono)
        by (auto simp:divide-simps dist-norm)
    moreover have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. real-of-int (an*a(n+1))
                    \geq(an)`2
        apply (rule eventuallyI)
        using <mono a〉 by (auto simp:power2-eq-square a-pos incseq-SucD)
    ultimately show ?thesis unfolding f
        apply eventually-elim
        apply (subst norm-divide)
        apply (rule-tac linordered-field-class.frac-le)
        using a-pos[rule-format, THEN order.strict-implies-not-eq]
        by auto
    qed
    moreover have g\longrightarrow0
        using nth-1[THEN tendsto-mult-right-zero,of 2] unfolding g-def
        by auto
    ultimately have }f\longrightarrow
        using Lim-null-comparison[of fg}\mathrm{ sequentially]
        by auto
    then show ?thesis
        unfolding f-def
        by (rule-tac LIMSEQ-imp-Suc) auto
qed
moreover have (\sumn. real-of-int (int (nth-prime n))
                    / real-of-int (prod a {..n})) \in\mathbb{Q}
    using asm by simp
ultimately have }\existsB>0.\existsc.(\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially.
        B*int (nth-prime n)=cn*an-c(n+1)^
        real-of-int |c (n+1)|< real-of-int (a n) / 2) ^
        (\lambdan. real-of-int (c (Suc n)) / real-of-int (a n))\longrightarrow0
    using ab-rationality-imp[OF a-pos,of nth-prime] by fast
then show thesis
    apply clarify
    apply (rule-tac c=c and B=B in that)
    by auto
qed
have bac-close:(\lambdan. B* nth-prime n / a n-cn)\longrightarrow0
proof -
    have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. }B*\mathrm{ nth-prime n - c n*an +c (n+1)=0
    using Bc-large by (auto elim!:eventually-mono)
```

then have $\forall_{F} n$ in sequentially. $(B * n t h$-prime $n-c n * a n+c(n+1)) /$ a $n=0$
by eventually-elim auto
then have $\forall_{F} n$ in sequentially. $B *$ nth-prime $n / a n-c n+c(n+1) /$ a $n=0$
apply eventually-elim
using a-pos by (auto simp:divide-simps) (metis less-irrefl)
then have $(\lambda n . B *$ nth-prime $n / a n-c n+c(n+1) / a n) \longrightarrow 0$
by (simp add: eventually-mono tendsto-iff)
from tendsto-diff[OF this ca-vanish]
show ?thesis by auto
qed
have c-pos: $\forall_{F} n$ in sequentially. c $n>0$
proof -
from bac-close have $*: \forall_{F} n$ in sequentially. c $n \geq 0$
apply (elim tendsto-of-int-diff-0)
using a-gt-1 apply (eventually-elim)
using $\langle B\rangle 0\rangle$ by auto
show ?thesis
proof (rule ccontr)
assume $\neg\left(\forall_{F} n\right.$ in sequentially. c $\left.n>0\right)$
moreover have $\forall_{F} n$ in sequentially. $c($ Suc $n) \geq 0 \wedge c n \geq 0$
using $*$ eventually-sequentially-Suc[of λn. c $n \geq 0$]
by (metis (mono-tags, lifting) eventually-at-top-linorder le-Suc-eq)
ultimately have $\exists_{F} n$ in sequentially. $c n=0 \wedge c(S u c n) \geq 0$
using eventually-elim2 frequently-def by fastforce
moreover have $\forall_{F} n$ in sequentially. nth-prime $n>0$
$\wedge B * n$ th-prime $n=c n * a n-c(n+1)$
using Bc-large by eventually-elim auto
ultimately have $\exists_{F} n$ in sequentially. $c n=0 \wedge c($ Suc $n) \geq 0$
$\wedge B *$ nth-prime $n=c n * a n-c(n+1)$
using frequently-eventually-frequently by fastforce
from frequently-ex[OF this]
obtain n where $c n=0$ c (Suc $n) \geq 0$
$B * n t h$-prime $n=c n * a n-c(n+1)$
by auto
then have $B *$ nth-prime $n \leq 0$ by auto
then show False using $\langle B>0\rangle$
by (simp add: mult-le-0-iff)
qed
qed
have B-nth-prime $: \forall_{F} n$ in sequentially. nth-prime $n>B$
proof -
have $\forall_{F} x$ in sequentially. $B+1 \leq$ nth-prime x
using nth-prime-at-top[unfolded filterlim-at-top-ge[where $c=n a t B+1]$,rule-format, of nat $B+1$,simplified]
apply（elim eventually－mono）
using $\langle B\rangle 0\rangle$ by auto
then show ？thesis
by（auto elim：eventually－mono）
qed
have bc－epsilon：$\forall_{F} n$ in sequentially．nth－prime $(n+1)$
$/$ nth－prime $n>(c(n+1)-\varepsilon) / c n$ when $\varepsilon>0 \varepsilon<1$ for $\varepsilon::$ real
proof－
have $\forall_{F} x$ in sequentially． $\mid c($ Suc $x) / a x \mid<\varepsilon /$ 2
using ca－vanish［unfolded tendsto－iff，rule－format，of $\varepsilon / 2]$ 2 $\varepsilon>0\rangle$ by auto
moreover then have $\forall_{F} x$ in sequentially．$|c(x+2) / a(x+1)|<\varepsilon / 2$ apply（subst（asm）eventually－sequentially－Suc［symmetric］）
by simp
moreover have $\forall_{F} n$ in sequentially．$B *$ nth－prime $(n+1)=c(n+1) * a$
$(n+1)-c(n+2)$
using Bc－large
apply（subst（asm）eventually－sequentially－Suc［symmetric］）
by（auto elim：eventually－mono）
moreover have $\forall_{F} n$ in sequentially．$c n>0 \wedge c(n+1)>0 \wedge c(n+2)>0$
proof－
have $\forall_{F} n$ in sequentially． $0<c(S u c n)$
using c－pos by（subst eventually－sequentially－Suc）simp
moreover then have $\forall_{F} n$ in sequentially． $0<c$（Suc（Suc n））
using c－pos by（subst eventually－sequentially－Suc）simp
ultimately show ？thesis using c－pos by eventually－elim auto
qed
ultimately show ？thesis using Bc－large
proof eventually－elim
case（elim n）
define $\varepsilon_{0} \varepsilon_{1}$ where $\varepsilon_{0}=c(n+1) / a n$ and $\varepsilon_{1}=c(n+2) / a(n+1)$
have $\varepsilon_{0}>0 \varepsilon_{1}>0 \varepsilon_{0}<\varepsilon / 2 \varepsilon_{1}<\varepsilon / 2$
using a－pos elim 〈mono a〉
by（auto simp：ε_{0}－def ε_{1}－def abs－of－pos）
have $\left(\varepsilon-\varepsilon_{1}\right) * c n>0$
using $\left.\left\langle\varepsilon_{1}>0\right\rangle\left\langle\varepsilon_{1}<\varepsilon / 2\right\rangle\langle\varepsilon\rangle 0\right\rangle$ elim by auto
moreover have $A: \varepsilon_{0} *(c(n+1)-\varepsilon)>0$
using $\left\langle\varepsilon_{0}>0\right\rangle \operatorname{elim}(4)$ that（2）by force
ultimately have $\left(\varepsilon-\varepsilon_{1}\right) * c n+\varepsilon_{0} *(c(n+1)-\varepsilon)>0$ by auto
moreover have $B: c n-\varepsilon_{0}>0$ using $\left\langle\varepsilon_{0}<\varepsilon /\right.$ 2〉 $\operatorname{elim}(4)$ that（2）by
linarith
moreover have $c n>0$ by（simp add： $\operatorname{elim}(4))$
ultimately have $(c(n+1)-\varepsilon) / c n<\left(c(n+1)-\varepsilon_{1}\right) /\left(c n-\varepsilon_{0}\right)$
by（auto simp：field－simps）
also have $\ldots \leq\left(c(n+1)-\varepsilon_{1}\right) /\left(c n-\varepsilon_{0}\right) *(a(n+1) / a n)$
proof－
have $\left(c(n+1)-\varepsilon_{1}\right) /\left(c n-\varepsilon_{0}\right)>0$
using $A\left\langle 0<\varepsilon_{0}\right\rangle B\left\langle\varepsilon_{1}<\varepsilon / 2\right\rangle$ divide－pos－pos that（1）by force
moreover have $(a(n+1) / a n) \geq 1$
using a－pos 〈mono a〉 by（simp add：mono－def）
ultimately show ？thesis by（metis mult－cancel－left1 mult－le－cancel－left－pos）
qed
also have $\ldots=(B *$ nth－prime $(n+1)) /(B *$ nth－prime $n)$
proof－
have $B * n t h$－prime $n=c n * a n-c(n+1)$
using elim by auto
also have $\ldots=a n *\left(c n-\varepsilon_{0}\right)$
using a－pos［rule－format，of $n]$ unfolding ε_{0}－def by（auto simp：field－simps）
finally have $B *$ nth－prime $n=a n *\left(c n-\varepsilon_{0}\right)$ ．
moreover have $B * n$ th－prime $(n+1)=a(n+1) *\left(c(n+1)-\varepsilon_{1}\right)$
unfolding ε_{1}－def
using a－pos［rule－format，of $n+1$ ］
apply（subst $\langle B *$ nth－prime $(n+1)=c(n+1) * a(n+1)-c(n+$
by（auto simp：field－simps）
ultimately show ？thesis by（simp add：mult．commute）
qed
also have $\ldots=n$ th－prime $(n+1) / n$ th－prime n
using $\langle B\rangle 0\rangle$ by auto
finally show ？case ．
qed
qed
have c－ubound：$\forall x . \exists n . c n>x$
proof（rule ccontr）
assume $\neg(\forall x . \exists n . x<c n)$
then obtain $u b$ where $\forall n . c n \leq u b u b>0$
by（meson dual－order．trans int－one－le－iff－zero－less le－cases not－le）
define $p a$ where $p a=(\lambda n$ ．nth－prime $n / a n)$
have $p a-p o s: \wedge n$ ．pa $n>0$ unfolding pa－def by（simp add：a－pos）
have $\liminf (\lambda n .1 / p a n)=0$
using nth－2 unfolding pa－def by auto
then have $(\exists y<$ ereal（real－of－int $B /$ real－of－int $(u b+1)$ ）．
$\exists_{F} x$ in sequentially．ereal $\left.(1 / p a x) \leq y\right)$
apply（subst less－Liminf－iff［symmetric］）
using $\langle 0<B\rangle\langle 0<u b\rangle$ by auto
then have $\exists_{F} x$ in sequentially． $1 / p a x<B /(u b+1)$
by（meson frequently－mono le－less－trans less－ereal．simps（1））
then have $\exists_{F} x$ in sequentially．$B * p a x>(u b+1)$
apply（elim frequently－elim1）
by（metis $\langle 0<u b\rangle$ mult．left－neutral of－int－0－less－iff pa－pos pos－divide－less－eq
pos－less－divide－eq times－divide－eq－left zless－add1－eq）
moreover have $\forall_{F} x$ in sequentially．$c x \leq u b$
using 〈 $\forall n$ ．c $n \leq u b\rangle$ by simp
ultimately have $\exists_{F} x$ in sequentially．$B * p a x-c x>1$
by（elim frequently－rev－mp eventually－mono）linarith
moreover have $(\lambda n . B * p a n-c n) \longrightarrow 0$
unfolding pa-def using bac-close by auto
from tendsto $D[$ OF this, of 1]
have $\forall_{F} n$ in sequentially. $|B * p a n-c n|<1$
by auto
ultimately have $\exists_{F} x$ in sequentially. $B * p a x-c x>1 \wedge|B * p a x-c x|$ <1
using frequently-eventually-frequently by blast
then show False
by (simp add: frequently-def)
qed
have eq-2-11: $\forall_{F} n$ in sequentially. $c(n+1)>c n \longrightarrow$

$$
\text { nth-prime }(n+1)>\text { nth-prime } n+(1-\varepsilon) \bumpeq 2 * a n / B
$$

when $\varepsilon>0 \varepsilon<1$ for $\varepsilon:$:real
proof -
have $\forall_{F} x$ in sequentially. $\mid c($ Suc $x) / a x \mid<\varepsilon$
using ca-vanish[unfolded tendsto-iff,rule-format, of $\varepsilon]\langle\varepsilon\rangle 0\rangle$ by auto
moreover have $\forall_{F} n$ in sequentially. $c n>0 \wedge c(n+1)>0$
proof -
have $\forall_{F} n$ in sequentially. $0<c$ (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp
then show ?thesis using c-pos by eventually-elim auto
qed
ultimately show ?thesis using Bc-large bc-epsilon[OF $\langle\varepsilon>0\rangle\langle\varepsilon<1\rangle]$
proof (eventually-elim, rule-tac impI)
case (elim n)
assume $c n<c(n+1)$
have $c(n+1) / a n<\varepsilon$
using a-pos $[$ rule-format, of $n]$ using $\operatorname{elim}(1,2)$ by auto
also have $\ldots \leq \varepsilon * c n$ using elim(2) that(1) by auto
finally have $c(n+1) / a n<\varepsilon * c n$.
then have $c(n+1) / c n<\varepsilon * a n$
using a-pos[rule-format, of n] elim by (auto simp:field-simps)
then have $(1-\varepsilon) * a n<a n-c(n+1) / c n$ by (auto simp:algebra-simps)
then have $(1-\varepsilon)^{\wedge} 2 * a n / B<(1-\varepsilon) *(a n-c(n+1) / c n) / B$
apply (subst (asm) mult-less-cancel-right-pos[symmetric, of $(1-\varepsilon) / B])$
using $\langle\varepsilon<1\rangle\langle B\rangle 0\rangle$ by (auto simp: divide-simps power2-eq-square mult-less-cancel-right-pos)
then have nth-prime $n+(1-\varepsilon) \wedge 2 * a n / B<n$ th-prime $n+(1-\varepsilon) *$
using $\langle B>0\rangle$ by auto
also have $\ldots=n$ th-prime $n+(1-\varepsilon) *((c n * a n-c(n+1)) / c n) / B$
using elim by (auto simp:field-simps)
also have $\ldots=$ nth-prime $n+(1-\varepsilon) *(n t h$-prime $n / c n)$
proof -
have $B *$ nth-prime $n=c n * a n-c(n+1)$ using elim by auto
from this[symmetric] show ?thesis
using $\langle B\rangle 0\rangle$ by simp
qed

```
        also have ... = (1+(1-\varepsilon)/c n)* nth-prime n
            by (auto simp:algebra-simps)
    also have ... = ((cn+1-\varepsilon)/c n)* nth-prime n
    using elim by (auto simp:divide-simps)
    also have ...\leq((c(n+1)-\varepsilon)/cn)* nth-prime n
    proof -
    define cp where cp=c n+1
    have c(n+1)\geqcp unfolding cp-def using <c n <cc(n+1)> by auto
    moreover have c n>0 nth-prime n>0 using elim by auto
    ultimately show ?thesis
        apply (fold cp-def)
        by (auto simp:divide-simps)
    qed
    also have ... < nth-prime ( }n+1\mathrm{ )
    using elim by (auto simp:divide-simps)
    finally show real (nth-prime n) + (1-\varepsilon) * real-of-int (a n)
        / real-of-int B<real (nth-prime (n+1)).
    qed
qed
have c-neq-large:}\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. c ( }n+1)\not=c
proof (rule ccontr)
    assume }\neg(\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. c (n+1)}=cn
    then have that: }\mp@subsup{\exists}{F}{}n\mathrm{ in sequentially. c (n+1)=cn
        unfolding frequently-def.
    have }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. ( }B*\mathrm{ int (nth-prime x) =cx*ax-c(x+1)
        \wedge |real-of-int (c(x+1))|<real-of-int (a x)/ 2) ^ 0<cx^B< int
(nth-prime x)
        \wedge(c(x+1)>cx\longrightarrow nth-prime }(x+1)>\mathrm{ nth-prime }x+ax/(2*B)
        using Bc-large c-pos B-nth-prime eq-2-11[of 1-1/ sqrt 2,simplified]
        by eventually-elim (auto simp:divide-simps)
    then have }\mp@subsup{\exists}{F}{}m\mathrm{ in sequentially.nth-prime (m+1)>(1+1/(2*B))*nth-prime
m
    proof (elim frequently-eventually-at-top[OF that, THEN frequently-at-top-elim])
        fix n
        assume c (n+1)=cn^
            (\forally\geqn.(B*int (nth-prime y) =cy*ay-c(y+1)^
                            |real-of-int (c (y + 1))|< real-of-int (a y) / 2) ^
                    0<cy^B<int (nth-prime y) ^(cy<c(y+1)\longrightarrow
                    real (nth-prime y) + real-of-int (a y) / real-of-int (2 * B)
                        <real (nth-prime (y + 1))))
        then have c(n+1)=cn
            and Bc-eq:\forally\geqn.B*int (nth-prime y)=cy*ay-c(y+1)^0<cy
                    \wedge |real-of-int (c (y + 1))|< real-of-int (a y)/ 2
                    \wedge B<int (nth-prime y)
                    \wedge ( c y < c ( y + 1 ) \longrightarrow
    real (nth-prime y) + real-of-int (a y)/ real-of-int (2 * B)
    <real (nth-prime (y+1)))
```

 by auto
 obtain m where $n<m$ c $m \leq c n c n<c(m+1)$
proof -
have $\exists N . N>n \wedge c N>c n$
using c-ubound[rule-format, of MAX $x \in\{. . n\}$. c $x]$
by (metis Max-ge atMost-iff dual-order.trans finite-atMost finite-imageI image-eqI
linorder-not-le order-refl)
then obtain N where $N>n c N>c n$ by auto
define $A m$ where $A=\{m, n<m \wedge(m+1) \leq N \wedge c(m+1)>c n\}$ and m $=\operatorname{Min} A$
have finite A unfolding A-def
by (metis (no-types, lifting) A-def add-leE finite-nat-set-iff-bounded-le mem-Collect-eq)
moreover have $N-1 \in A$ unfolding A-def
using $\langle c n\langle c N\rangle\langle n<N\rangle\langle c(n+1)=c$ n〉 nat-less-le by force
ultimately have $m \in A$
using Min-in unfolding m-def by auto
then have $n<m \quad c \quad n<c(m+1) m>0$
unfolding m-def A-def by auto
moreover have $c m \leq c n$
proof (rule ccontr)
assume $\neg c m \leq c n$
then have $m-1 \in A$
using $\langle m \in A\rangle\langle c(n+1)=c n\rangle$ le-eq-less-or-eq less-diff-conv by (fastforce simp: A-def)
from Min-le $[O F\langle$ finite $A\rangle$ this,folded m-def $]\langle m>0\rangle$ show False by auto qed
ultimately show ?thesis using that [of m] by auto

qed

have $(1+1 /(2 * B)) *$ nth-prime $m<n$ th-prime $m+a m /(2 * B)$
proof -
have n th-prime $m<a m$
proof -
have $B *$ int (n th-prime m) $<c m *(a m-1)$
using $B c$-eq[rule-format, of $m]\langle c m \leq c n\rangle\langle c n<c(m+1)\rangle\langle n<m\rangle$ by (auto simp:algebra-simps)
also have $\ldots \leq c n *(a m-1)$
by (simp add: $\langle c m \leq c$ $n\rangle$ a-pos mult-right-mono)
finally have $B * \operatorname{int}(n t h-p r i m e m)<c n *(a m-1)$.
moreover have $c n \leq B$
proof -
have B : $B *$ int (n th-prime n) $=c n *(a n-1) B<\operatorname{int}(n t h$-prime $n)$ and c - a: \mid real-of-int $(c(n+1)) \mid<$ real-of-int $(a n) / 2$
using Bc-eq[rule-format, of $n]\langle c(n+1)=c n\rangle$ by (auto simp:algebra-simps)
from this(1) have $c n d v d(B *$ int (nth-prime $n))$
by simp
moreover have coprime ($\left.\begin{array}{c} \\ n\end{array}\right)$ (int (n th-prime n))
proof -
have $c n<$ int (n th-prime n)

```
                    proof (rule ccontr)
                    assume \(\neg c n<\) int ( \(n\) th-prime \(n\) )
                    then have asm:c \(n \geq\) int ( \(n\) th-prime \(n\) ) by auto
                    then have \(a n>2 *\) nth-prime \(n\)
                        using \(c-a\langle c(n+1)=c\) \(n 〉\) by auto
                    then have a \(n-1 \geq 2 *\) nth-prime \(n\)
                        by simp
                    then have \(a n-1>2 * B\)
                        using \(\langle B<\) int (nth-prime \(n\) ) 〉 by auto
                            from mult-le-less-imp-less [OF asm this] \(\langle B>0\rangle\)
                            have int (nth-prime \(n) *(2 * B)<c n *(a n-1)\)
                        by auto
                    then show False using \(B\)
                        by (smt (verit, best) \(\langle 0<B\rangle\) mult.commute mult-right-mono)
                    qed
                    then have \(\neg\) nth-prime \(n\) dvd \(c n\)
                            by (simp add: Bc-eq zdvd-not-zless)
                    then have coprime (int ( \(n\) th-prime \(n\) )) ( \(c\) n)
                    by (auto intro!:prime-imp-coprime-int)
                    then show ?thesis using coprime-commute by blast
                    qed
                ultimately have \(c n d v d B\)
                    using coprime-dvd-mult-left-iff by auto
                    then show ?thesis using \(\langle 0<B\rangle z d v d\)-imp-le by blast
            qed
            moreover have \(c n>0\) using \(B c-e q\) by blast
            ultimately show ?thesis
                using \(\langle B\rangle 0\rangle\) by (smt (verit) a-pos mult-mono)
            qed
            then show ?thesis using \(\langle B\rangle 0\rangle\) by (auto simp:field-simps)
        qed
        also have...\(<n\) th-prime \((m+1)\)
            using \(B c\)-eq[rule-format, of \(m]\langle n<m\rangle\langle c m \leq c n\rangle\langle c n<c(m+1)\rangle\)
            by linarith
                            finally show \(\exists j>n .(1+1 /\) real-of-int \((2 * B)) *\) real \((n t h\)-prime \(j)\)
                                    \(<\) real (nth-prime \((j+1)\) ) using \(\langle m>n\rangle\) by auto
    qed
    then have \(\exists_{F} m\) in sequentially. nth-prime \((m+1) / n\) th-prime \(m>(1+1 /(2 * B))\)
    by (auto elim:frequently-elim1 simp:field-simps)
    moreover have \(\forall_{F} m\) in sequentially. nth-prime \((m+1) / n t h\)-prime \(m<\)
\((1+1 /(2 * B))\)
    using ratio-of-consecutive-primes[unfolded tendsto-iff,rule-format,of \(1 /(2 * B)\) ]
        \(\langle B>0\) 〉
        unfolding dist-real-def
        by (auto elim! :eventually-mono simp:algebra-simps)
    ultimately show False by (simp add: eventually-mono frequently-def)
qed
have c-gt-half: \(\forall_{F} N\) in sequentially. card \(\{n \in\{N . .<2 * N\} . c n>c(n+1)\}>\)
```

```
N / 2
    proof -
    define }h\mathrm{ where }h=(\lambdan.(nth-prime (2*n) - nth-prime n
                / sqrt (nth-prime n))
    have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. }hn<n/
    proof -
        have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. }hn<n\mathrm{ powr (5/6)
            using nth-prime-double-sqrt-less[of 1/3]
            unfolding h-def by auto
        moreover have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. n powr (5/6)<(n/2)
            by real-asymp
        ultimately show ?thesis
            by eventually-elim auto
    qed
    moreover have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. sqrt (nth-prime n)/an<1/(2*B)
        using nth-1[THEN tendsto-real-sqrt,unfolded tendsto-iff
            ,rule-format, of 1/(2*B)] <B>0\rangle a-pos
        by (auto simp:real-sqrt-divide abs-of-pos)
    ultimately have }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. c (x+1)}=c
            \sqrt(nth-prime x) / a x<1/(2*B)
            \wedge hx<x/2
            \wedge(c(x+1)>c x \longrightarrow nth-prime (x+1)> nth-prime }x+ax/(2*B)
        using c-neq-large B-nth-prime eq-2-11[of 1-1/ sqrt 2,simplified]
        by eventually-elim (auto simp:divide-simps)
    then show ?thesis
    proof (elim eventually-at-top-mono)
        fix N assume N\geq1 and N-asm:\forally\geqN.c (y+1)\not=c y^
                    sqrt (real (nth-prime y)) / real-of-int (a y)
                    < 1/ real-of-int (2*B)^hy<y/2 ^
                    (cy<c(y+1)\longrightarrow
                        real (nth-prime y) + real-of-int (a y) / real-of-int (2 * B)
                        <real (nth-prime (y+1)))
    define S where S={n\in{N..<2*N}.c n<c(n+1)}
    define }g\mathrm{ where }g=(\lambdan\mathrm{ . (nth-prime (n+1) - nth-prime n)
                        / sqrt (nth-prime n))
    define f}\mathrm{ where f=( }\lambdan\mathrm{ . nth-prime ( }n+1)\mathrm{ - nth-prime n)
    have g-gt-1:g n>1 when n\geqN c n<c(n+1) for n
    proof -
        have nth-prime n + sqrt (nth-prime n)<nth-prime ( }n+1
        proof -
            have nth-prime n + sqrt (nth-prime n) < nth-prime n +an / (2*B)
                using N-asm[rule-format,OF< }n\geqN\rangle] a-po
                by (auto simp:field-simps)
            also have ... < nth-prime ( }n+1
                using N-asm[rule-format,OF<n\geqN`]<c n<c(n+1)\rangle by auto
            finally show ?thesis.
            qed
            then show ?thesis unfolding g-def
```

```
    using <c n<c(n+1)` by auto
qed
have g-geq-0:g n\geq0 for n
    unfolding g-def by auto
have finite S \forallx\inS. x\geqN^cx<c(x+1)
    unfolding S-def by auto
then have card S\leq sum g S
proof (induct S)
    case empty
    then show ?case by auto
next
    case (insert x F)
    moreover have g x>1
    proof -
        have cx<c(x+1) x\geqN using insert(4) by auto
        then show ?thesis using g-gt-1 by auto
    qed
    ultimately show ?case by simp
qed
also have ... sum g {N..<2*N}
    apply (rule sum-mono2)
    unfolding S-def using g-geq-0 by auto
also have ... \leq sum (\lambdan.fn/sqrt (nth-prime N)) {N..<2*N}
    unfolding f}f\mathrm{ -def g-def by (auto intro!:sum-mono divide-left-mono)
also have ... = sum f {N..<2*N} / sqrt (nth-prime N)
    unfolding sum-divide-distrib[symmetric] by auto
also have ... = (nth-prime (2*N) - nth-prime N)/ sqrt (nth-prime N)
proof -
    have sum f{N..<2*N}=nth-prime (2*N) - nth-prime N
    proof (induct N)
    case 0
    then show ?case by simp
    next
        case (Suc N)
        have ?case if N=0
        proof -
            have sumf {Suc N..<2*Suc N}=sum f {1}
                using that by (simp add: numeral-2-eq-2)
            also have ... = nth-prime 2 - nth-prime 1
            unfolding f-def by (simp add:numeral-2-eq-2)
            also have ... = nth-prime (2 * Suc N) - nth-prime (Suc N)
                using that by auto
            finally show ?thesis.
    qed
    moreover have ?case if N\not=0
    proof -
        have sum f{Suc N..<2*Suc N}=sumf {N..<2*Suc N}-fN
            apply (subst (2) sum.atLeast-Suc-lessThan)
```

```
                    using that by auto
            also have \ldots. = sumf{N..<2 *N}+f(2*N)+f(2*N+1) - fN
                    by auto
            also have ... = nth-prime (2 * Suc N) - nth-prime (Suc N)
            using Suc unfolding f-def by auto
            finally show ?thesis.
        qed
        ultimately show ?case by blast
        qed
        then show ?thesis by auto
    qed
    also have ... = h N
        unfolding h-def by auto
    also have ... < N/2
        using N-asm by auto
    finally have card S<N/2 .
    define T where T={n\in{N..<2*N}.c n>c(n+1)}
    have T\cupS={N..<2*N} T\capS={} finite T
        unfolding T-def S-def using N-asm by fastforce+
    then have card T + card S = card {N..<2 *N}
    using card-Un-disjoint <finite S` by metis
    also have ... = N
    by simp
    finally have card T + card S=N .
    with <card S < N/2>
    show card T>N/2 by linarith
qed
qed
```

Inequality (3.5) in the original paper required a slight modification:
have a-gt-plus: $\forall_{F} n$ in sequentially. $c n>c(n+1) \longrightarrow a(n+1)>a n+(a n$ $-c(n+1)-1) / c(n+1)$
proof -
note a-gt-1 [THEN eventually-all-ge-at-top] c-pos[THEN eventually-all-ge-at-top]
moreover have $\forall_{F} n$ in sequentially. $B * \operatorname{int}(n t h-p r i m e ~(n+1))=c(n+1) * a(n+1)-c(n+2)$
using Bc-large
apply (subst (asm) eventually-sequentially-Suc[symmetric])
by (auto elim:eventually-mono)
moreover have $\forall_{F} n$ in sequentially.

$$
B * \text { int }(\text { nth-prime } n)=c n * a n-c(n+1) \wedge|c(n+1)|
$$

<an/2
using Bc-large by (auto elim:eventually-mono)
ultimately show ?thesis
apply (eventually-elim)
proof (rule impI)
fix n

```
assume \(\forall y \geq n .1<a y \forall y \geq n .0<c y\)
```

 and
 Suc-n-eq:B*int (nth-prime \((n+1))=c(n+1) * a(n+1)-c(n+\)
 2) and

$$
B * \text { int }(\text { nth-prime } n)=c n * a n-c(n+1) \wedge
$$

$$
\text { real-of-int }|c(n+1)|<\text { real-of-int }(a n) / 2
$$

and $c(n+1)<c n$
then have n-eq: $B *$ int (nth-prime $n)=c n * a n-c(n+1)$ and
c-less-a: real-of-int $|c(n+1)|<$ real-of-int $(a n) / 2$
by auto
from $\langle\forall y \geq n .1<a y\rangle\langle\forall y \geq n .0<c y\rangle$
have $*: a n>1 a(n+1)>1$ c $n>0$
$c(n+1)>0 \quad c(n+2)>0$
by auto
then have $(1+1 / c(n+1)) *(a n-1) / a(n+1)=(c(n+1)+1) *((a n-$ 1) $/(c(n+1) * a(n+1)))$
by (auto simp:field-simps)
also have $\ldots \leq c n *((a n-1) /(c(n+1) * a(n+1)))$
by $($ smt $($ verit $) *(4)\langle c(n+1)<c n\rangle a-p o s$ divide-nonneg-nonneg mult-mono mult-nonneg-nonneg of-int-0-le-iff of-int-le-iff)
also have $\ldots=(c n *(a n-1)) /(c(n+1) * a(n+1))$ by auto
also have $\ldots<(c n *(a n-1)) /(c(n+1) * a(n+1)-c(n+2))$
apply (rule divide-strict-left-mono)
subgoal using $\langle c(n+2)>0\rangle$ by auto
unfolding Suc-n-eq[symmetric] using $*\langle B\rangle 0\rangle$ by auto
also have $\ldots<(c n * a n-c(n+1)) /(c(n+1) * a(n+1)-c(n+2))$
apply (rule frac-less)
unfolding Suc-n-eq[symmetric] using $*\langle B>0\rangle\langle c(n+1)<c n\rangle$
by (auto simp:algebra-simps)
also have $\ldots=$ nth-prime n / n th-prime $(n+1)$
unfolding Suc-n-eq[symmetric] n-eq[symmetric] using $\langle B>0\rangle$ by auto
also have $\ldots<1$ by auto
finally have $(1+1 /$ real-of-int $(c(n+1))) *$ real-of-int $(a n-1)$
\mid real-of-int $(a(n+1))<1$.
then show $a n+(a n-c(n+1)-1) /(c(n+1))<(a(n+1))$
using $*$ by (auto simp:field-simps)
qed
qed
have $a-g t-1: \forall_{F} n$ in sequentially. $c n>c(n+1) \longrightarrow a(n+1)>a n+1$
using Bc-large a-gt-plus c-pos[THEN eventually-all-ge-at-top]
apply eventually-elim
proof (rule impI)
fix n assume
$c(n+1)<c n \longrightarrow a n+(a n-c(n+1)-1) / c(n+1)<a(n+$ 1)
$c(n+1)<c n$ and B-eq:B*int (nth-prime $n)=c n * a n-c(n+1) \wedge$ \mid real-of-int $(c(n+1)) \mid<$ real-of-int $(a n) / 2$ and c-pos: $\forall y \geq n .0<c y$
from $\operatorname{this}(1,2)$
have $a n+(a n-c(n+1)-1) / c(n+1)<a(n+1)$ by auto

```
    moreover have a n - 2*c (n+1)>0
    using }B\mathrm{ -eq c-pos[rule-format,of n+1] by auto
    then have an-2*c(n+1)\geq1 by simp
    then have (an-c(n+1)-1)/c(n+1)\geq1
        using c-pos[rule-format,of n+1] by (auto simp:field-simps)
    ultimately show a n+1<a(n+1) by auto
qed
```

The following corresponds to inequality (3.6) in the paper, which had to be slightly corrected:
have a-gt-sqrt: $\forall_{F} n$ in sequentially. $c n>c(n+1) \longrightarrow a(n+1)>a n+(s q r t$ $n-2$)
proof -
have $a-2 N: \forall_{F} N$ in sequentially. $a(2 * N) \geq N / 2+1$
using c-gt-half a-gt-1[THEN eventually-all-ge-at-top]
proof eventually-elim
case (elim N)
define S where $S=\{n \in\{N . .<2 * N\} . c(n+1)<c n\}$
define f where $f=(\lambda n . a($ Suc $n)-a n)$
have $f-1: \forall x \in S . f x \geq 1$ and $f-0: \forall x . f x \geq 0$
subgoal using elim unfolding S-def f-def by auto
subgoal using <mono $a\rangle[T H E N$ incseq-SucD] unfolding f-def by auto done
have $N / 2<\operatorname{card} S$
using elim unfolding S-def by auto
also have $\ldots \leq \operatorname{sum} f S$
unfolding of-int-sum
apply (rule sum-bounded-below[of - 1, simplified $]$)
using $f-1$ by auto
also have $\ldots \leq \operatorname{sum} f\{N . .<2 * N\}$
unfolding of-int-sum
apply (rule sum-mono2)
unfolding S-def using f - 0 by auto
also have $\ldots=a(2 * N)-a N$
unfolding of-int-sum f-def of-int-diff
apply (rule sum-Suc-diff')
by auto
finally have $N / 2<a(2 * N)-a N$.
then show? ?ase using a-pos[rule-format, of N] by linarith
qed
have $a-n_{4}: \forall_{F} n$ in sequentially. $a n>n / 4$
proof -
obtain N where $a-N: \forall n \geq N . a(2 * n) \geq n / 2+1$
using a-2N unfolding eventually-at-top-linorder by auto
have $a n>n / 4$ when $n \geq 2 * N$ for n
proof -
define n^{\prime} where $n^{\prime}=n$ div 2

```
    have }\mp@subsup{n}{}{\prime}\geqN unfolding n'-def using that by aut
    have n/4< n'/2+1
        unfolding n'-def by auto
        also have ... \leqa(2*n')
        using a-N< <n'\geqN\rangle by auto
        also have ... \leqa n unfolding n'-def
        apply (cases even n)
        subgoal by simp
        subgoal by (simp add: assms(2) incseqD)
        done
        finally show ?thesis .
    qed
        then show ?thesis
        unfolding eventually-at-top-linorder by auto
    qed
    have c-sqrt: }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially.c n< sqrt n / 4
    proof -
    have }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. x>1 by simp
    moreover have }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. real (nth-prime x) / (real x * ln (real
x))<2
    using nth-prime-asymptotics[unfolded asymp-equiv-def,THEN order-tendstoD(2),of
2]
            by simp
    ultimately have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. с n< < < 8 * ln n + 1 using a-n4
Bc-large
    proof eventually-elim
            case (elim n)
            from this(4) have c n=(B*nth-prime n+c(n+1))/an
            using a-pos[rule-format,of n]
            by (auto simp:divide-simps)
            also have \ldots. = (B*nth-prime n)/a n+c (n+1)/a n
            by (auto simp:divide-simps)
            also have ...<(B*nth-prime n)/an+1
            proof -
            have c(n+1)/a n<1 using elim(4) by auto
            then show ?thesis by auto
        qed
        also have ...<B*8*ln n + 1
        proof -
            have }B*nth\mathrm{ -prime n < 2*B*n*ln n
                using <real (nth-prime n) / (real n*ln (real n)) <2\rangle\langleB>0\rangle< 1<n>
                by (auto simp:divide-simps)
            moreover have real n / 4 < real-of-int (a n) by fact
            ultimately have (B*nth-prime n) / a n< (2*B*n*ln n)/(n/4)
            apply (rule-tac frac-less)
            using \langleB>0\rangle\langle1<n\rangle by auto
            also have ... = B*8* ln n
                using < 1 < n> by auto
```

```
            finally show ?thesis by auto
            qed
            finally show ?case.
    qed
    moreover have }\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. B*8 *ln n + 1< sqrt n / 4
        by real-asymp
    ultimately show ?thesis
    by eventually-elim auto
    qed
    have
    \forall}\mp@subsup{F}{F}{}n\mathrm{ in sequentially. 0<c(n+1)
    \forall
    \forall}\mp@subsup{F}{F}{}n\mathrm{ in sequentially. n>4
    \forall}\mp@subsup{F}{F}{}n\mathrm{ in sequentially. }(n-4)/\operatorname{sqrt}(n+1)+1>sqrt 
    subgoal using c-pos[THEN eventually-all-ge-at-top]
        by eventually-elim auto
    subgoal using c-sqrt[THEN eventually-all-ge-at-top]
        by eventually-elim (use le-add1 in blast)
    subgoal by simp
    subgoal
        by real-asymp
    done
    then show ?thesis using a-gt-plus a-n4
    apply eventually-elim
    proof (rule impI)
    fix n assume asm:0<c(n+1)c(n+1)<sqrt (real (n+1))/4 and
        a-ineq:c(n+1)<cn\longrightarrowan+(an-c(n+1)-1)/c(n+1)<
a(n+1)
            c(n+1)<cn and n/4<ann>4
    and n-neq: sqrt (real n)<real (n-4)/ sqrt (real }(n+1))+
    have (n-4)/ sqrt (n+1)=(n/4 - 1)/(sqrt (real (n+1))/4)
        using \langlen>4\rangle by (auto simp:divide-simps)
    also have ...<(an-1)/c(n+1)
        apply (rule frac-less)
        using<n>4\rangle\langlen/4<an\rangle\langle0<c(n+1)\rangle\langlec(n+1)< sqrt (real (n
+ 1))/4>
        by auto
    also have ... - 1 = (an-c(n+1)-1)/c(n+1)
        using <0<c(n+1)\rangle by (auto simp:field-simps)
    also have a n+\ldots<a(n+1)
        using a-ineq by auto
    finally have a n+((n-4)/ sqrt (n+1) - 1)<a(n+1) by simp
    moreover have (n-4)/\operatorname{sqrt}(n+1)-1>\operatorname{sqrt }n-2
        using n-neq[THEN diff-strict-right-mono,of 2] 〈n>4\rangle
        by (auto simp:algebra-simps of-nat-diff)
    ultimately show real-of-int (an) + (sqrt (real n) - 2) < real-of-int (a (n
+1))
```

```
        by argo
    qed
qed
```

The following corresponds to inequality $a_{2 N}>N^{3 / 2} / 2$ in the paper, which had to be slightly corrected:

```
have a-2N-sqrt:\forall}\mp@subsup{|}{F}{}N\mathrm{ in sequentially. a (2*N)> real N* (sqrt (real N)/2 -
1)
    using c-gt-half a-gt-sqrt[THEN eventually-all-ge-at-top] eventually-gt-at-top[of
4]
proof eventually-elim
    case (elim N)
    define S where S={n\in{N..<2*N}.c(n+1)<cn}
    define f}\mathrm{ where f}=(\lambdan.a(Suc n) - a n
    have f-N:\forallx\inS.f x\geqsqrt N-2
    proof
        fix }x\mathrm{ assume }x\in
        then have sqrt (real x) - 2 < f x x\geqN
            using elim unfolding S-def f-def by auto
        moreover have sqrt x-2 2 sqrt N-2
            using \langlex\geqN\rangle by simp
        ultimately show sqrt (real N) - 2 \leq real-of-int (fx) by argo
    qed
    have f-0:\forallx.f x\geq0
        using <mono a`[THEN incseq-SucD] unfolding f-def by auto
```

 have \((N / 2) *(\operatorname{sqrt} N-2)<\operatorname{card} S *(\operatorname{sqrt} N-2)\)
 apply (rule mult-strict-right-mono)
 subgoal using elim unfolding \(S\)-def by auto
 subgoal using \(\langle N>4\) 〉
 by (metis diff-gt-O-iff-gt numeral-less-real-of-nat-iff real-sqrt-four real-sqrt-less-iff)
 done
 also have ... \(\leq \operatorname{sum} f S\)
 unfolding of-int-sum
 apply (rule sum-bounded-below)
 using \(f-N\) by auto
 also have \(\ldots \leq \operatorname{sum} f\{N . .<2 * N\}\)
 unfolding of-int-sum
 apply (rule sum-mono2)
 unfolding \(S\)-def using \(f-0\) by auto
 also have \(\ldots=a(2 * N)-a N\)
 unfolding of-int-sum f-def of-int-diff
 apply (rule sum-Suc-diff')
 by auto
 finally have real \(N / 2 *(\operatorname{sqrt}(\) real \(N)-2)<\operatorname{real-of-int}(a(2 * N)-a N)\)
 then have real \(N / 2 *(\operatorname{sqrt}(\) real \(N)-2)<a(2 * N)\)
 using a-pos[rule-format,of \(N]\) by linarith
    ```
    then show ?case by (auto simp:field-simps)
qed
```

The following part is required to derive the final contradiction of the proof.
have $a-n$-sqrt: \forall_{F} n in sequentially. a $n>(((n-1) / 2)$ powr (3/2) - ($n-1)$)/2 proof (rule sequentially-even-odd-imp)
define f where $f=(\lambda N$. ((real $(2 * N-1) / 2)$ powr (3/2)-real (2 $* N$

- 1)) / 2)
define g where $g=(\lambda N$. real $N *(\operatorname{sqrt}($ real $N) / 2-1))$
have $\forall_{F} N$ in sequentially. $g N>f N$
unfolding f-def g-def
by real-asymp
moreover have $\forall_{F} N$ in sequentially. $a(2 * N)>g N$
unfolding g-def using a - $2 N$-sqrt.
ultimately show $\forall_{F} N$ in sequentially. $f N<a(2 * N)$
by eventually-elim auto
next
define f where $f=(\lambda N$. $(($ real $(2 * N+1-1) / 2)$ powr (3/2)
$-\operatorname{real}(2 * N+1-1)) / 2)$
define g where $g=(\lambda N$. real $N *($ sqrt (real $N) / 2-1))$
have $\forall_{F} N$ in sequentially. g $N=f N$
using eventually-gt-at-top[of 0]
apply eventually-elim
unfolding f-def g-def
by (auto simp:algebra-simps powr-half-sqrt[symmetric] powr-mult-base)
moreover have $\forall_{F} N$ in sequentially. $a(2 * N)>g N$
unfolding g-def using a-2 $2 N$-sqrt .
moreover have $\forall_{F} N$ in sequentially. $a(2 * N+1) \geq a(2 * N)$
apply (rule eventuallyI)
using «mono a by (simp add: incseqD)
ultimately show $\forall_{F} N$ in sequentially. $f N<(a(2 * N+1))$
by eventually-elim auto
qed
have a-nth-prime-gt: $\forall_{F} n$ in sequentially. a $n /$ nth-prime $n>1$
proof -
define f where $f=(\lambda n$::nat. $(((n-1) / 2)$ powr (3/2) - (n-1))/2)
have $\forall_{F} x$ in sequentially. real (nth-prime $\left.x\right) /($ real $x * \ln ($ real $x))<2$
using n th-prime-asymptotics[unfolded asymp-equiv-def,THEN order-tendstoD(2),of
2]
by simp
from this eventually-gt-at-top[of 1]
have $\forall_{F} n$ in sequentially. real (nth-prime $\left.n\right)<2 *($ real $n * \ln n)$
by eventually-elim (auto simp:field-simps)
moreover have $*: \forall_{F} N$ in sequentially. $f N>0$
unfolding f-def
by real-asymp
moreover have $\forall_{F} n$ in sequentially. $f n<a n$
using a - n-sqrt unfolding f-def .
ultimately have $\forall_{F} n$ in sequentially. a $n /$ nth-prime $n>f n /(2 *($ real n * $\ln n)$)
proof eventually-elim
case (elim n)
then show ?case
by (auto intro: frac-less2)
qed
moreover have $\forall_{F} n$ in sequentially. $(f n) /(2 *($ real $n * \ln n))>1$ unfolding f-def by real-asymp
ultimately show ?thesis by eventually-elim argo
qed
have a-nth-prime-lt: $\exists_{F} n$ in sequentially. a n / n th-prime $n<1$
proof -
have $\liminf (\lambda x$. a $x /$ nth-prime $x)<1$
using nth-2 by auto
from this[unfolded less-Liminf-iff]
show ?thesis
by (smt (verit) ereal-less(3) frequently-elim1 le-less-trans)
qed
from a-nth-prime-gt a-nth-prime-lt show False
by (simp add: eventually-mono frequently-def)
qed

5 Acknowledgements

A.K.-A. and W.L. were supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council and led by Professor Lawrence Paulson at the University of Cambridge, UK.
end

References

[1] P. Erdős and E. Straus. On the irrationality of certain series. Pacific journal of mathematics, 55(1):85-92, 1974.

