[rrationality Criteria for Series by Erdos and Straus

Angeliki Koutsoukou-Argyraki and Wenda Li

May 26, 2024
Abstract
We formalise certain irrationality criteria for infinite series of the
form:
by,
n Hign @;

where b, a; are integers. The result is due to P. Erdés and E.G.
Straus [1], and in particular we formalise Theorem 2.1, Corollary 2.10
and Theorem 3.1. The latter is an application of Theorem 2.1 involving
the prime numbers.

Contents

1 Miscellaneous

2 Theorem 2.1 and Corollary 2.10

3 Some auxiliary results on the prime numbers.

4 Theorem 3.1

5 Acknowledgements

theory Irrational-Series-Erdos-Straus imports
Prime-Number-Theorem. Prime- Number- Theorem
Prime-Distribution-Elementary. PNT-Consequences
begin

1 Miscellaneous

lemma suminf-comparison:
assumes summable f and gf: An. norm (gn) < fn
shows suminf g < suminf f

proof (rule suminf-le)
show gn < fn for n

21

23

42

using gf[of n] by auto
show summable g
using assms summable-comparison-test’ by blast
show summable f using assms(1) .
qed

lemma tendsto-of-int-diff-0:
assumes (An. fn — of-int(g n)) —— (0:=real) ¥V p n in sequentially. fn > 0
shows V p n in sequentially. 0 < gn
proof —
have V ¢ n in sequentially. |f n — of-int(g n)| < 1 / 2
using assms(1)[unfolded tendsto-iff ,rule-format,of 1/2] by auto
then show ?thesis using assms(2)
by eventually-elim linarith
qed

lemma eventually-mono-sequentially:
assumes cventually P sequentially
assumes Az. P (z+k) = Q (z+k)
shows eventually @ sequentially
using sequentially-offset| OF assms(1),of k]
apply (subst eventually-sequentially-seg[symmetric,of - k])
apply (elim eventually-mono)
by fact

lemma frequently-eventually-at-top:
fixes P Q::'a::linorder = bool
assumes frequently P at-top eventually Q at-top
shows frequently (Az. Pz A Vy>z. Q y)) at-top
using assms
unfolding frequently-def eventually-at-top-linorder
by (metis (mono-tags, opaque-lifting) le-cases order-trans)

lemma eventually-at-top-mono:
fixes P Q::'a::linorder = bool
assumes cvent-P:eventually P at-top
assumes PQ-imp:\z. 1>z = Vy>z. Py —= Q=
shows eventually @ at-top
proof —
obtain N where Vn>N. P n
by (meson event-P eventually-at-top-linorder)
then have Q x when z > maz N z for z
using PQ-imp that by auto
then show ?thesis unfolding eventually-at-top-linorder
by blast
qed

lemma frequently-at-top-elim:
fixes P Q::'a:linorder = bool

assumes 1 gz in at-top. P x

assumes Ai. Pi = 3j>i. Qj

shows 3 px in at-top. Q x

using assms unfolding frequently-def eventually-at-top-linorder
by (meson leD le-cases less-le-trans)

lemma less-Liminf-iff:
fixes X 1 - = - 1 complete-linorder
shows Liminf F X < C +— (3y<C. frequently (\x. y > X z) F)
by (force simp: not-less not-frequently not-le le-Liminf-iff simp flip: Not-eq-iff)

lemma sequentially-even-odd-imp:
assumes V g N in sequentially. P (2xN) ¥V g N in sequentially. P (2«+N+1)
shows V i n in sequentially. P n
proof —
obtain N where N-P:Vz>N. P (2+xz) AP (2xz+ 1)
using eventually-conj[OF assms]
unfolding cventually-at-top-linorder by auto
have P n when n > 2xN for n
proof —
define n’ where n'= n div 2
then have n’ > N using that by auto
then have P (2 x n) AP (2xn'+ 1)
using N-P by auto
then show ?thesis unfolding n’-def
by (cases even n) auto
qed
then show ?thesis unfolding eventually-at-top-linorder by auto
qed

2 Theorem 2.1 and Corollary 2.10

context
fixes a b ::nat=-int
assumes a-pos: V n. a n >0 and a-large: ¥V g n in sequentially. a n > 1
and ab-tendsto: (An. [bn| / (a (n—1) * an)) —— 0
begin

private lemma auz-series-summable: summable (An. b n / ([[k<n. a k))
proof —
have Ae. e>0 = YV z in sequentially. |b z| / (a (z—1) x ax) < e
using ab-tendsto[unfolded tendsto-iff]
apply (simp add: abs-mult flip: of-int-abs)
by (subst (asm) (2) abs-of-pos,use <V n. a n > 0» in auto)+
from this[of 1]
have V g z in sequentially. |real-of-int(b z)| < (a (z—1) * a z)
using <V n. a n > 0» by auto
moreover have Vn. ([[k<n. real-of-int (a k)) > 0
using a-pos by (auto introl:linordered-semidom-class.prod-pos)

ultimately have V g n in sequentially. |b n| / (J[k<n. a k)
<(a(n—1)*an)/ ([k<n. ak)
apply (elim eventually-mono)
by (auto simp:field-simps)
moreover have |b n| / ([[k<n. a k) = norm (bn / (][k<n. a k)) for n
using vV n. ([k<n. real-of-int (a k)) > 0>[rule-format,of n] by auto
ultimately have V p n in sequentially. norm (b n / ([[k<n. a k))
<(a(n—1)*an)/ ([k<n. ak)
by algebra
moreover have summable (An. (a (n—1) * an) / (J[[k<n. a k))
proof —
obtain s where a-gt-1:V n>s. an >1
using a-large[unfolded eventually-at-top-linorder] by auto
define cc where cc= (] k<s. a k)
have cc>0
unfolding cc-def by (meson a-pos prod-pos)
have ([[k<n+s. a k) > cc x 27n for n
proof —
have prod a {s..<Suc (s + n)} > 2™n
proof (induct n)
case 0
then show ?case using a-gt-1 by auto
next
case (Suc n)
moreover have a (s + Suc n) > 2
by (smt (verit, ccfv-threshold) a-gt-1 le-addl)
ultimately show ?case
apply (subst prod.atLeastLess Than-Suc,simp)
using mult-mono’lof 2 a (Suc (s + n)) 2 " n prod a {s..<Suc (s + n)}]
by (simp add: mult.commute)
qed
moreover have prod a {0..(n + s)} = prod a {..<s} * prod a {s..<Suc (s +
n)
using prod.atLeastLess Than-concat[of 0 s s+n+1 a]
by (simp add: add.commute lessThan-atLeast0 prod.atLeastLess Than-concat
prod.head-if)
ultimately show ?thesis
using <cc>0) unfolding cc-def by (simp add: atLeast0AtMost)
qed
then have 1/([[k<n+s. a k) < 1/(cc x 27n) for n
proof —
assume asm:\n. cc * 2 " n < prod a {.n + s}
then have real-of-int (cc x 2 ~n) < prod a {..n + s} using of-int-le-iff by
blast
moreover have prod a {..n + s} >0 using <cc>0> by (simp add: a-pos
prod-pos)
ultimately show ?thesis using <cc>0»
by (auto simp:field-simps simp del:of-int-prod)
qed

moreover have summable (An. 1/(cc * 27n))
proof —
have summable (An. 1/(2::int) n)
using summable-geometric[of 1/(2::int)] by (simp add:power-one-over)
from summable-mult[OF this,of 1/cc] show ?thesis by auto
qed
ultimately have summable (An. 1 / ([]k<n+s. a k))
apply (elim summable-comparison-test’[where N=0])
apply (unfold real-norm-def, subst abs-of-pos)
by (auto simp: <V n. 0 < ([] k<n. real-of-int (a k))»)
then have summable (An. 1 / (J[k<n. a k))
apply (subst summable-iff-shift[where k=s, symmetric])
by simp
then have summable (An. (a (n+1) * a (n+2)) / (J[k<n+2. a k))
proof —
assume asm:summable (An. 1 / real-of-int (prod a {..n}))
have 1 / real-of-int (prod a {..n}) = (a (n+1) * a (n+2)) / ([[k<n+2. a
k) for n
proof —
have a (Suc (Suc n)) # 0 a (Suc n) £0
using a-pos by (metis less-irrefl)+
then show ?thesis
by (simp add: atLeast0-atMost-Suc atMost-atLeast0)
qed
then show ?thesis using asm by auto
qged
then show summable (An. (a (n—1) x an) / ([[k<n. a k))
apply (subst summable-iff-shift[symmetric,of - 2])
by auto
qed
ultimately show “thesis
apply (elim summable-comparison-test-ev[rotated])
by (simp add: eventually-mono)
qed

private fun get-c::(nat = int) = (nat = int) = int = nat = (nat = int) where
get-ca’ b BN 0 = round (B * b’ N / o’ N)|
get-c a’ b’ B N (Suc n) = get-ca’ b’ BN n % a’ (n+N) — B % b’ (n+N)

lemma ab-rationality-imp:
assumes ab-rational:(d> n. (bn / ([[i < n. ai))) €Q
shows 3 (B:int)>0. 3 c:nat= int.
(V F nin sequentially. Bxbn =cn* an — c(nt+1) A |e(nt+1)|<a n/2)
A (An. ¢ (Sucn)/an) —— 0
proof —
have [simpl:a n # 0 for n using a-pos by (metis less-numeral-extra(3))
obtain A::int and B::int where
AB-eq:(>" n. real-of-int (b n) / real-of-int (prod a {..n})) = A / B and B>0
proof —

obtain ¢::rat where (> n. real-of-int (b n) / real-of-int (prod a {..n})) =
real-of-rat q
using ab-rational by (rule Rats-cases) simp
moreover obtain A::int and B::int where ¢ = Rat.Fract A B B > 0 coprime
A B
by (rule Rat-cases) auto
ultimately show ?thesis by (auto intro!: that[of A B] simp:of-rat-rat)
qed
define f where f = (An. b n / real-of-int (prod a {..n}))
define R where R = (AN. (3. n. Bxb (n+N+1) / prod a {N.n+N+1}))
have all-e-ubound:¥ e>0. ¥V g M in sequentially. ¥V n. |Bxb (n+M+1) / prod a
{M.n+M+1} < e/} *1/2™n
proof safe
fix e::real assume e>0
obtain N where N-a2:Vn > N.an > 2
and N-ba:Vn > N.|bn|/ (a(n—1)*an) < e/({*B)
proof —
have V p n in sequentially. |b n| / (a (n — 1) x a n) < e¢/(4*DB)
using order-topology-class.order-tendstoD[OF ab-tendsto,of e/(4*B)] «B>0>»
<e>0)»
by auto
moreover have V p n in sequentially. a n > 2
using a-large by (auto elim: eventually-mono)
ultimately have V g n in sequentially. |b n| / (a (n — 1) x a n) < e/(4*B)
ANan> 2
by eventually-elim auto
then show ?thesis unfolding eventually-at-top-linorder using that
by auto
qed
have geq-N-bound:|Bxb (n+M+1) / prod a {M..n+M+1}| < e/4 % 1/27n
when M>N for n M
proof —
define D where D = Bxb (n+M+1)/ (a (n+M) x a (n+M+1))
have |Bxb (n+M+1) / prod a {M..n+M+1}| = |D / prod a {M..<n+M}|
proof —
have {M.n+M+1} = {M.<n+M} U {n+M,n+M+1} by auto
then have prod a {M.n+M+1} = a (n+M) * a (n+M+1)* prod a
{M..<n+M} by simp
then show %thesis unfolding D-def by (simp add:algebra-simps)
qed
also have ... < |e/4 * (1/prod a {M..<n+M})]
proof —
have |D| < e//4
unfolding D-def using N-ba[rule-format, of n+M+1] «B>0s <M > N»
<e>0) a-pos
by (auto simp:field-simps abs-mult abs-of-pos)
from mult-strict-right-mono[OF this,of 1 /prod a {M..<n+M?}] a-pos <e>0>»
show ?thesis
apply (auto simp:abs-prod abs-mult prod-pos)

by (subst (2) abs-of-pos,auto)+
qed
also have ... < e/4 x1/2™n
proof —
have prod a {M..<n+M} > 2™n
proof (induct n)
case (
then show ?case by simp
next
case (Suc n)
then show ?case
using <M >N> by (simp add: N-a2 mult.commute mult-mono’ prod.atLeastLess Than-Suc)
qged
then have real-of-int (prod a {M..<n+M?}) > 2™n
using numeral-power-le-of-int-cancel-iff by blast
then show ?thesis using <e>0» by (auto simp:divide-simps)
qed
finally show ?thesis .
qed
show V p M in sequentially. ¥ n. |real-of-int (B x b (n + M + 1))
/ real-of-int (prod a {M.n+ M+ 1})|<e/ 41 /2 n
apply (rule eventually-sequentiallyl[of NJ)
using geq-N-bound by blast
qed
have R-tendsto-0:R —— 0
proof (rule tendstol)
fix e::real assume e>(
show V i z in sequentially. dist (R x) 0 < e using all-e-ubound[rule-format, OF
e>0»)
proof eventually-elim
case (elim M)
define g where g = (An. Bxb (n+M+1) / prod a {M..n+M+1})
have g-lt:|]g n| < e/4 % 1/27n for n
using elim unfolding g¢-def by auto
have §: summable (An. (e/4) * (1/2)™n)
by simp
then have g-abs-summable:summable (An. |g n|)
apply (elim summable-comparison-test’)
by (metis abs-idempotent g-lt less-eq-real-def power-one-over real-norm-def
times-divide-eq-right)
have > n. g n| < (3 n. |g n|) by (rule summable-rabs|OF g-abs-summable])
also have ... <(>_n. e/4 * 1/27n)
proof (rule suminf-comparison)
show summable (An. e/4 x 1/27n)
using § unfolding power-divide by simp
show An. norm |[gn| < e/ 4 %1 / 2" n using g¢-lt less-eq-real-def by
auto
qed
also have ... = (e¢/4) * (O_n. (1/2)™n)

apply (subst suminf-mult[symmetric])
by (auto simp: algebra-simps power-divide)
also have ... = ¢/2 by (simp add:suminf-geometric[of 1/2])
finally have |> n. gn|<e/ 2.
then show dist (R M) 0 < e unfolding R-def g-def using <e>0) by auto
qed
qed

obtain N where R-N-bound:VM > N. |[R M| < 1/ 4
and N-geometric:N M>N.V n. |real-of-int (Bx b (n+ M + 1)) / (prod a {M..n
+M+1<1/2 n
proof —
obtain NI where NI:VM > NI. |[RM| < 1/ 4
using metric-LIMSEQ-D[OF R-tendsto-0,0f 1/4] all-e-ubound|rule-format,of
4 unfolded eventually-sequentially]
by (auto simp:less-eq-real-def)
obtain N2 where N2:¥ M>N2. V n. |real-of-int (B * b (n + M + 1))
/ (prod a {M..n+ M+ 1})|<1/2 " n
using all-e-ubound[rule-format,of 4 ,unfolded eventually-sequentially]
by (auto simp:less-eq-real-def)
define N where N=maz N1 N2
show ?thesis using that[of N] N1 N2 unfolding N-def by simp
qed

define C where C = B x prod a {..<N} % (3. n<N. fn)
have summable f
unfolding f-def using auz-series-summable .
have A« proda {.<N}=C+ B+«bN /aN + RN
proof —
have A * prod a {..<N} = B % prod a {.<N} x 3. n. fn)
unfolding AB-eq f-def using (B>0) by auto
also have ... = B * prod a {.<N} * (3. n<N+1. fn) + (O n. f (n+N+1)))
using suminf-split-initial-segment|OF <summable f5, of N+1] by auto
alsohave ... = Bxprod a {..<N} x (O n<N.fn)+fN+ O n.f(ntN+1)))
using sum.atLeast0-lessThan-Suc by simp

also have ... = C + Bx b N / a N + (3. n. Bxb (ntN+1) / prod a
{N.n+N+1})

proof —

have B x prod a {.<N} « fN=BxbN /aN

proof —

have {.N} = {.<N} U {N} using wi-disj-un-singleton(2) by blast
then show ?thesis unfolding f-def by auto
qed
moreover have B * prod a {.<N} * (3. n. f (n+N+1)) = O n. Bxb
(n+N+1) / prod a {N..n+N+1})
proof —
have summable (An. f (n + N + 1))
using «summable f> summable-iff-shift[of f N+1] by auto
moreover have prod a {.<N} xf(n+ N+ 1)=b(n+ N+ 1)/ prod

a{N.n+ N+ 1} for n
proof —
have {.n + N + 1} = {.<N} U {N..n + N + 1} by auto
then show ?thesis
unfolding f-def
apply simp
apply (subst prod.union-disjoint)
by auto
qed
ultimately show ?thesis
apply (subst suminf-mult[symmetric])
by (auto simp: mult.commute mult.left-commute)
qed
ultimately show ?thesis unfolding C-def by (auto simp:algebra-simps)
qed
also have ... = C +B+«bN /aN + RN
unfolding R-def by simp
finally show ?thesis .
qed
have R-bound:|R M| < 1 / 4 and R-Suc:R (Suc M) =a M « RM — B x b
(Suc M) / a (Suc M)
when M > N for M
proof —
define g where g = (An. Bxb (n+M—+1) / prod a {M..n+M+1})
have g-abs-summable:summable (An. |g n|)
proof —
have summable (An. (1/2::real) ~ n)
by simp
moreover have |[g n| < 1/27n for n
using N-geometric[rule-format,OF that] unfolding g-def by simp
ultimately show ?Zthesis
apply (elim summable-comparison-test’)
by (simp add: less-eg-real-def power-one-over)
qed
show |R M| < I / 4 using R-N-bound[rule-format,OF that] .
have R M = (>_ n. g n) unfolding R-def g-def by simp
also have ... = ¢ 0 + (3_n. g (Suc n))
apply (subst suminf-split-head)
using summable-rabs-cancel|OF g-abs-summable] by auto
also have ... = g 0 + 1/a M x (D n. a M x g (Suc n))
apply (subst suminf-mult)
by (auto simp: g-abs-summable summable-Suc-iff summable-rabs-cancel)
also have ... = g 0 + 1/a M * R (Suc M)
proof —
have a M % g (Sucn) =B xb(n+ M + 2) / prod a {Suc M..n + M + 2}
for n
proof —
have {M..Suc (Suc (M + n))} = {M} U {Suc M..Suc (Suc (M + n))} by

auto

then show ?thesis
unfolding g-def using 0) by (auto simp:algebra-simps)
qed
then have (3>_n. a M * g (Suc n)) = R (Suc M)
unfolding R-def by auto
then show ?thesis by auto
qed
finally have RM =g 0+ 1/ a M x R (Suc M) .
then have R (Suc M) =a M « RM — g0 xa M
by (auto simp:algebra-simps)
moreover have {M..Suc M} = {M,Suc M} by auto
ultimately show R (Suc M) =a M * R M — B x b (Suc M) / a (Suc M)
unfolding g¢-def by auto
qed

define ¢ where ¢ = (An. if n>N then get-c a b B N (n—N) else undefined)

have c-rec:c (n+1) =c¢cn*xan — Bxbn whenn > N for n
unfolding c-def using that by (auto simp:Suc-diff-le)

have c-R:c (Suc n) / an = R n when n > N for n

using that

proof (induct rule:nat-induct-at-least)
case base
have | ¢ (N+1) /a N | < 1/2
proof —

have ¢ N = round (B * b N / a N) unfolding c-def by simp
moreover have ¢ (N+1) /aN=¢cN —-BxbN /aN
using a-pos[rule-format,of N|
by (auto simp:c-rec[of N,simplified] divide-simps)
ultimately show ?thesis using of-int-round-abs-le by auto
qed
moreover have |R N| < 1 / 4 using R-bound[of N| by simp
ultimately have |¢ (N+1) / a N — R N | < I by linarith
moreover have ¢ (N+1) /aN — RN € Z
proof —
have ¢ (N+1) /JaN=¢cN —-BxbN /aN
using a-pos[rule-format,of N|
by (auto simp:c-rec[of N,simplified] divide-simps)
moreover have BxbN /a N+ RN €Z
proof —
have C = B % (}_n<N. prod a {.<N} = (bn / prod a {..n}))
unfolding C-def f-def by (simp add:sum-distrib-left algebra-simps)
also have ... = B * ()" n<N. prod a {n<..<N} % b n)
proof —
have {.<N} = {n<..<N} U {..n} if n<N for n
by (simp add: wl-disj-un-one(1) sup-commute that)
then show ?thesis
using (B> 0>
apply simp
apply (subst prod.union-disjoint)

10

by auto
qged
finally have C = real-of-int (B * (>, n<N. prod a {n<..<N} * bn)) .
then have C' € Z using Ints-of-int by blast
moreover note <A x prod a {.<N}=C +B*xbN /aN + RN
ultimately show ?thesis
by (metis Ints-diff Ints-of-int add.assoc add-diff-cancel-left”)
qed
ultimately show ?thesis by (simp add: diff-diff-add)
qed
ultimately have ¢ (N+1) /a N — RN =0
by (metis Ints-cases less-irrefl of-int-0 of-int-lessD)
then show ?case by simp
next
case (Suc n)
have ¢ (Suc (Suc n)) / a (Suc n) = ¢ (Sucn) — B * b (Sucn) / a (Suc n)
apply (subst c-rec[of Suc n,simplified])
using <N < n) by (auto simp: divide-simps)

also have ... = an* Rn — B b (Sucn) / a (Sucn)
using Suc by (auto simp: divide-simps)
also have ... = R (Suc n)

using R-Suc[OF <N < m)] by simp

finally show ?case .
qed
have ca-tendsto-zero:(An. ¢ (Suc n) / an) —— 0

using R-tendsto-0

apply (elim filterlim-mono-eventually)

using c¢-R by (auto introl:eventually-sequentiallyl[of NJ)
have ca-bound:|c (n + 1) < an / 2 when n > N for n

proof —
have |¢ (Suc n)| / an = |c (Suc n) / a n| using a-pos[rule-format,of n] by
auto
also have ... = |R n| using c-R[OF that] by auto

also have ... < 1/2 using R-bound[OF that] by auto

finally have |c (Sucn)| /an < 1/2.

then show ?thesis using a-pos[rule-format,of n] by auto
qged

show 3B>0. Jc. (Vp n in sequentially. Bx bn=cnxan—c(n+ 1)
A real-of-int |c (n + 1) <an/ 2) A (An.c (Sucn) /an) —— 0
unfolding eventually-at-top-linorder
apply (rule exI[of - Bl,use 0» in simp)
apply (intro exl|of -c] exI[of - NJ)
using c-rec ca-bound ca-tendsto-zero
by fastforce
qed

private lemma imp-ab-rational:

11

assumes 3 (B:int)>0. 3 c:nat= int.
(VY r nin sequentially. Bxbn = cn x an — c(nt+1) A |e(nt+1)|<a
n/2)
shows (> n. (bn / (J[i < n. ai))) €Q
proof —
obtain B:int and c::nat=int and N::nat where B>0 and
large-nNn>N. Bxbn=cn*an— c(n+ 1) A real-of-int |c (n+ 1)] < a
n/2

AN an>2
proof —
obtain B ¢ where B>(0 and event!:V p n in sequentially. Bx bn =cn * a
n—c(n+1)

A real-of-int |¢ (n + 1)| < real-of-int (a n) / 2
using assms by auto
from eventually-conj[OF event! a-large,unfolded eventually-at-top-linorder]
obtain N where Vn>N. (Bxbn=cn*an—c(n+ 1)
A real-of-int |¢ (n + 1)| < real-of-int (an) / 2) N2 <an
by fastforce
then show ?thesis using that[of B N c] «B>0) by auto
qed
define f where f=(An. real-of-int (b n) / real-of-int (prod a {..n}))
define S where S = (> n. fn)
have summable f
unfolding f-def by (rule auz-series-summable)
define C where C=Bxprod a {.<N} x (3 n<N. fn)
have Bxprod a {..<N} x S = C + real-of-int (¢ N)
proof —
define h! where h1 = (An. (¢ (n+N) % a (n+N)) / prod a {N..n+N?})
define h2 where h2 = (An. ¢ (n+N+1) / prod a {N..n+N})
have f-h12: B x prod a {.<N}xf (n+N) = hl n — h2 n for n
proof —
define g7 where g1 = (An. B * b (n+N))
define g2 where g2 = (An. prod a {.<N} / prod a {..n + N})
have B x prod a {..<N}xf (n+N) = (g1 n * g2 n)
unfolding f-def g1-def g2-def by (auto simp:algebra-simps)
moreover have gI n = ¢ (n+N) * a (n+N) — ¢ (n+N+1)
using large-n[rule-format,of n+N| unfolding gI-def by auto
moreover have g2 n = (1/prod a {N..n+N})
proof —
have prod a ({.<N} U{N..n + N}) = prod a {.<N} * prod a {N..n +
N}
apply (rule prod.union-disjoint[of {..<N} {N..n+N} a])
by auto
moreover have prod a ({..<N} U {N..n + N}) = prod a {..n+N}
by (simp add: l-disj-un-one(4))
ultimately show ?thesis
unfolding g¢2-def
apply simp
using a-pos by (metis less-irrefl)

12

qed
ultimately have Bxprod a {..<N}xf (n+N) = (¢ (n+N) x a (n+N) — ¢
(n+N+1)) / prod a {N..n+N}
by auto
also have ... = hin — h2n
unfolding hi-def h2-def by (auto simp:algebra-simps diff-divide-distrib)
finally show ?thesis by simp
qed
have Bxprod a {.<N} % S = Bxprod a {.<N} % (O_n<N. fn)+ O n. f
(n4+N)))
using suminf-split-initial-segment|OF <summable f»,of N]
unfolding S-def by (auto simp:algebra-simps)

also have ... = C + Bxprod a {.<N}x(>_n. f (n+N))
unfolding C-def by (auto simp:algebra-simps)
also have ... = C + (3> n. hin — h2n)

apply (subst suminf-mult[symmetric])
using «summable f» f-h12 by auto
also have ... = C + h1 0
proof —
have (An. Y i<n. hl1 i — h2i) —— (D i. h1 i — h214)
proof (rule summable-LIMSEQ')
have (Ai. h1 i — h2 %) = (Mi. real-of-int (B * prod a {.<N}) = f (i + N))
using f-h12 by auto
then show summable (Ai. h1 i — h2 1)
using «summable f» by (simp add: summable-mult)
qed
moreover have (> i<n. h1i — h2i) =h1 0 — h2nforn
proof (induct n)
case ()
then show Zcase by simp
next
case (Suc n)

have (> i<Sucn. hl i — h24) = (> i<n. hl1 i — h2i) + hl (n+1) — h2

(n+1)
by auto
also have ... = h1 0 — h2n + hi (n+1) — h2 (n+1) using Suc by auto
also have ... = i1 0 — h2 (n+1)
proof —

have h2 n = h! (n+1)
unfolding h2-def hi-def
apply (auto simp:prod.nat-ivl-Suc’)
using a-pos by (metis less-numeral-extra(3))
then show ?thesis by auto
qed
finally show ?Zcase by simp
qed
ultimately have (An. h1 0 — h2 n) —— (> 4. h1 i — h2 i) by simp
then have h2 —— (h1 0 — (D i. h1 i — h21%))
apply (elim metric-tendsto-imp-tendsto)

13

by (auto intro!:eventuallyl simp add:dist-real-def)
moreover have h2 —— 0
proof —
have h2-n:|h2 n| < (1 / 2) (n+1) for n
proof —
have |h2n| =|c (n + N + 1)| / prod a {N..n + N}
unfolding h2-def abs-divide
using a-pos by (simp add: abs-of-pos prod-pos)
also have ... < (a (N+n) / 2) / prod a {N..n + N}
unfolding h2-def
apply (rule divide-strict-right-mono)
subgoal using large-n[rule-format,of N+n| by (auto simp:algebra-simps)
subgoal using a-pos by (simp add: prod-pos)
done
also have ... = 1 / (2xprod a {N..<n + N})
apply (subst ivl-disj-un(6)[of N n+N,symmetric])
using a-pos[rule-format,of N+n] by (auto simp:algebra-simps)
also have ... < (1/2)(n+1)
proof (induct n)
case (
then show ?case by auto
next
case (Suc n)
define P where P=1 / real-of-int (2 % prod a {N..<n + N})
have 1 / real-of-int (2 * prod a {N..<Sucn + N}) =P / a (n+N)
unfolding P-def by (auto simp: prod.atLeastLess Than-Suc)
alsohave ... < ((1/2) "(n+ 1))/ a(n+N)
apply (rule divide-right-mono)
subgoal unfolding P-def using Suc by auto
subgoal by (simp add: a-pos less-imp-le)
done
alsohave ... < ((1/2) "(n+1))/ 2
apply (rule divide-left-mono)
using large-n[rule-format,of n+N,simplified] by auto

also have ... = (1 / 2) " (n + 2) by auto
finally show ?case by simp
qged
finally show ?thesis .
qed

have (An. (1 / 2) (n+1)) —— (0::real)
using tendsto-mult-right-zero| OF LIMSEQ-abs-realpow-zero2|of 1/2,simplified],of
1/2]
by auto
then show ?thesis
apply (elim Lim-null-comparison|[rotated])
using h2-n less-eq-real-def by (auto introl:eventuallyl)
qed
ultimately have (> i. hl i — h24) = h1 0
using LIMSEQ-unique by fastforce

14

then show ?thesis by simp
qed
also have ... = C + ¢ N
unfolding hi-def using a-pos
by auto (metis less-irrefl)
finally show ?%thesis .
qed
then have S = (C + real-of-int (¢ N)) / (Bxprod a {..<N})
by (metis <0 < B> a-pos less-irrefl mult.commaute mult-pos-pos
nonzero-mult-div-cancel-right of-int-eq-0-iff prod-pos)
moreover have ... € Q
unfolding C-def f-def by (intro Rats-divide Rats-add Rats-mult Rats-of-int
Rats-sum)
ultimately show S € Q by auto
qed

theorem theorem-2-1-Erdos-Straus :
Oon.(bn /([P < n.oai)) € Q<+ (T (Buint)>0. 3 cinat= int.
(V F nin sequentially. Bsbn=cn* an — c(nt+1) A |e(n+1)|<an/2))
using ab-rationality-imp imp-ab-rational by auto

The following is a Corollary to Theorem 2.1.

corollary corollary-2-10-Erdos-Straus:
assumes ab-event:V g n in sequentially. bn > 0 A a (n+1) > an
and ba-lim-leg:lim (An. (b(n+1) — bn)/an) <0
and ba-lim-exist:convergent (An. (b(n+1) — bn)/a n)
and liminf (An.an /bn) =0
shows (> n. (bn / (J[i < n.ai))) ¢ Q
proof
assume (> n. (bn /(J[i < n.ai)) €Q
then obtain B ¢ where B>0 and abc-event:¥V g n in sequentially. B * bn = ¢
nxan—c(n+ 1)
Ale(n+ 1) <an/ 2 and ca-vanish: (An. ¢ (Sucn) / an) —— 0
using ab-rationality-imp by auto

have bac-close:(An. Bxbn /an—cn) —— 0
proof —
have V p n in sequentially. Bx bn —cnxan+c(n+1)=20
using abc-event by (auto elim!:eventually-mono)
then have V r n in sequentially. (Bx bn —cn*xan—+c(nt+l))/an=20
apply eventually-elim
by auto
then have V i n in sequentially. Bxbn /an—cn +c(n+1)/an=20
apply eventually-elim
using a-pos by (auto simp:divide-simps) (metis less-irrefl)
then have (A\n. Bxbn/an—cn +c(n+1)/an) —— 0
by (simp add: eventually-mono tendsto-iff)
from tendsto-diff [OF this ca-vanish]
show ?thesis by auto

15

qed

have c-pos:V g n in sequentially. c n > 0
proof —
from bac-close have %V g n in sequentially. ¢ n > 0
apply (elim tendsto-of-int-diff-0)
using ab-event a-large apply (eventually-elim)
using 0) by auto
show ?thesis
proof (rule ccontr)
assume - (Vg n in sequentially. ¢ n > 0)
moreover have V g n in sequentially. ¢ (Suc n) > 0 A ¢ n>0
using * eventually-sequentially-Suc[of An. ¢ n>0]
by (metis (mono-tags, lifting) eventually-at-top-linorder le-Suc-eq)
ultimately have 3¢ n in sequentially. cn = 0 A ¢ (Sucn) > 0
using eventually-elim2 frequently-def by fastforce
moreover have V p n in sequentially. bn > 0 ANBxbn=cnxan— c
(n+1)
using ab-event abc-event by eventually-elim auto
ultimately have 3 p n in sequentially. cn =0 A ¢ (Sucn) > 0ANbn>0
ABxbn=cn*xan—c(n+1)
using frequently-eventually-frequently by fastforce
from frequently-ex[OF this]
obtain n where ¢cn = 0c¢ (Sucn) > 0bn >0
Bxbn=cn*xan—c(n+1)
by auto
then have B x b n < 0 by auto
then show Fulse using <b n>0> 0 using mult-pos-pos not-le by blast
qed
qed

have bc-epsilon:V g n in sequentially. b (n+1) / bn > (¢ (n+1) —¢e) / cn
when >0 <1 for e::real
proof —
have V g z in sequentially. |c (Suc z) / az| <e / 2
using ca-vanish[unfolded tendsto-iff ,rule-format, of /2] «>0> by auto
moreover then have V p z in sequentially. |c (z+2) / a (xz+1)] <e/ 2
apply (subst (asm) eventually-sequentially-Suc[symmetric])
by simp
moreover have V r n in sequentially. B x b (n+1) = ¢ (n+1) x a (n+1) —
c(n+ 2)
using abc-event
apply (subst (asm) eventually-sequentially-Suc[symmetric])
by (auto elim:eventually-mono)
moreover have V ¢ n in sequentially. cn > 0 A ¢ (n+1) > 0 A c (n+2) >0
proof —
have V p n in sequentially. 0 < ¢ (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp
moreover then have V r n in sequentially. 0 < ¢ (Suc (Suc n))

16

using c-pos by (subst eventually-sequentially-Suc) simp
ultimately show ?thesis using c-pos by eventually-elim auto
qed
ultimately show ?thesis using ab-event abc-event
proof eventually-elim
case (elim n)
define ¢y 1 where g = ¢ (n+1) / anand ey = ¢ (n+2) / a (n+1)
have ¢g > 0 1 > 0 g9 < €/2 &1 < €/2 using a-pos elim by (auto simp:
eo-def €1-def)
have (¢ —e1) x cn > 0
using «¢; < e / 2y elim(4) that(1) by auto
moreover have ¢y * (¢ (n+1) —) > 0
using <0 < go» elim(4) that(2) by auto
ultimately have (¢ — 1) * ¢ n + €9 * (¢ (n+1) — €) > 0 by auto
moreover have gt0: ¢ n — g > 0 using g < € / 2 elim(4) that(2) by
linarith
moreover have ¢ n > 0 by (simp add: elim(4))
ultimately have (¢ (n+1) —¢) / cn < (c(nt+1) —e1) / (¢ n — &o)
by (auto simp: field-simps)
also have ... < (¢ (n+1) —e1) / (e n — &9) * (a (n+1) / an)
proof —
have (¢ (n+1) —e1) / (en — €9) > 0
using gt0 <1 < e / 2> elim(4) that(2) by force
moreover have (a (n+1) / an) > 1
using a-pos elim(5) by auto
ultimately show ?thesis by (metis mult-cancel-left1 mult-le-cancel-left-pos)
qed
also have ... = (B x b (n+1)) / (B * bn)
proof —
have Bxbn=cn*xan—c(n+ 1)
using elim by auto
also have ... = an x (¢ n — &)
using a-pos[rule-format,of n] unfolding eo-def by (auto simp:field-simps)
finally have Bx bn=an * (cn — &) .
moreover have B x b (n+1) = a (n+1) * (¢ (n+1) — 1)
unfolding &1 -def
using a-pos|rule-format,of n+1]
apply (subst <Bxb(n+ 1)=c(n+1)xa(n+1)—c(n+ 2)»)
by (auto simp:field-simps)
ultimately show ?thesis by (simp add: mult.commute)
qed
also have ... = b (n+1) / bn
using «B>0> by auto
finally show ?case .
qed
qed

have eg-2-11:3 r n in sequentially. b (n+1) >bn+ (I —¢) 2*an/ B
when >0 e<1 = (Vg n in sequentially. ¢ (n+1) < ¢ n) for e::real

17

proof —
have 3y z in sequentially. ¢ v < ¢ (Suc z) using that(3)
by (simp add:not-eventually frequently-elim1)
moreover have Vg z in sequentially. |c (Suc z) [a z| < e
using ca-vanish[unfolded tendsto-iff ,rule-format, of €] <€>0» by auto
moreover have V r n in sequentially. cn > 0 N ¢ (n+1) > 0
proof —
have V p n in sequentially. 0 < ¢ (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp
then show ?thesis using c-pos by eventually-elim auto
qed
ultimately show ?thesis using ab-event abc-event be-epsilon|OF <> 0y «e<15]

proof (elim frequently-rev-mp,eventually-elim)
case (elim n)
then have ¢ (n+1) /an<e
using a-pos|[rule-format,of n| by auto
also have ... < ¢ % ¢ n using elim(7) that(1) by auto
finally have ¢ (n+1) /an<excn.
then have ¢ (n+1) /ecn<exan
using a-pos[rule-format,of n] elim by (auto simp:field-simps)
then have (I —¢)*xan<an—c(nt+l)/cn
by (auto simp:algebra-simps)
then have (I —¢) 2*xan/B< (Il —¢)x(an—c(nt+1)/cn)/ B
apply (subst (asm) mult-less-cancel-right-pos[symmetric, of (1—¢)/B])
using €< 1> «B>0>» by (auto simp: divide-simps power2-eq-square mult-less-cancel-right-pos)
thenhave bn+ (I —¢) 2*xan/B<bn+ (I —¢)*(an—c(nt+1)/

cn)/ B
using «B>0) by auto
alsohave ... =bn+ (1 —¢)* ((cn*xan —c(n+1))/cn)/ B
using elim by (auto simp:field-simps)
alsohave ... =bn+ (1 —¢)*x(bn/cn)
proof —

have Bxbn=cnx*an — c(n+ 1) using elim by auto
from this[symmetric] show ?thesis
using (B>0) by simp

qed

also have ... = (1+(1—¢)/cn) x bn
by (auto simp:algebra-simps)

also have ... = ((¢ n+1—¢)/cn) * bn

using elim by (auto simp:divide-simps)
also have ... < ((¢ (n+1) —g)/ecn) x bn
proof —
define cp where cp = ¢ n+1
have ¢ (n+1) > cp unfolding cp-def using <c n < ¢ (Suc n)> by auto
moreover have ¢ n>0 b n>0 using elim by auto
ultimately show ?thesis

apply (fold cp-def)
by (auto simp:divide-simps)

18

qed
also have ... < b (n+1)
using elim by (auto simp:divide-simps)
finally show ?case .
qed
qed

have V p n in sequentially. ¢ (n+1) < cn
proof (rule ccontr)
assume — (Vg n in sequentially. ¢ (n + 1) < ¢ n)
from eq-2-11[OF - - this,of 1/2]
have 3 p n in sequentially. b (n+1) >bn+ 1/4 xan/ B
by (auto simp:algebra-simps power2-eq-square)
then have *:3 g n in sequentially. (b (n+1) —bn) /an>1/(Bx*4)
apply (elim frequently-elim1)
subgoal for n
using a-pos|[rule-format,of n| by (auto simp:field-simps)
done
define f where f = (An. (b (n+1) — bn) / an)
have f —— lim f
using convergent-LIMSEQ-iff ba-lim-exist unfolding f-def by auto
from this[unfolded tendsto-iff ,rule-format, of 1 | (Bx4)]
have V p z in sequentially. |[fz — lim f| < 1 / (B * 4)
using 0» by (auto simp:dist-real-def)
moreover have 3 p n in sequentially. fn > 1/ (B * 4)
using * unfolding f-def by auto
ultimately have 3 g n in sequentially. fn > 1/ (B* 4) A |fn — limf| < 1
/(B +4)
by (auto elim:frequently-eventually-frequently[rotated))
from frequently-ex|OF this]
obtain n where fn > 1 /(B 4)|fn—limf| <1/ (B=x*4)
by auto
moreover have lim f < 0 using ba-lim-leq unfolding f-def by auto
ultimately show Fulse by linarith
qed
then obtain N where N-dec:Vn>N. ¢ (n+1) < ¢ n by (meson eventually-at-top-linorder)
define maz-c where maz-c = (MAX n € {.N}. ¢ n)
have maz-c:c n < maz-c for n
proof (cases n<N)
case True
then show ?thesis unfolding maz-c-def by simp
next
case Fulse
then have n>N by auto
then have ¢ n<¢ N
proof (induct rule:nat-induct-at-least)
case base
then show ?case by simp
next

19

case (Suc n)
then have ¢ (n+1) < ¢ n using N-dec by auto
then show ?case using (¢ n < ¢ N» by auto
qed
moreover have ¢ N < mazx-c unfolding maz-c-def by auto
ultimately show #thesis by auto
qed
have maz-c > 0
proof —
obtain N where Vn>N. 0 < c¢cn
using c-pos[unfolded eventually-at-top-linorder] by auto
then have ¢ N > 0 by auto
then show %thesis using maz-c[of N] by simp
qed
have ba-limsup-bound:1/(Bx(B+1)) < lim.
limsup (An. b n/an) < maz-c/ B+ 1/
proof —
define f where f = (An. b n/a n)
from tendsto-mult-right-zero| OF bac-close,of 1/ B|
have (An. fn—c¢n / B) —— 0
unfolding f-def using <«B>0) by (auto simp:algebra-simps)
from this[unfolded tendsto-iff ,rule-format,of 1/(B+1)]
have V p z in sequentially. |fx — cx / B| < 1 / (B+1)
using 0) by auto
then have *:V r n in sequentially. 1/(Bx(B+1)) < ereal (f n) A ereal (fn) <
maz-¢c /| B+ 1 / (B+1)
using c-pos
proof eventually-elim
case (elim n)
then have fn — c¢cn / B< 1/ (B+1) by auto
then have fn<cn/ B+ 1/ (B+1) by simp
also have ... < maz-c / B+ 1 / (B+1)
using maz-c[of n| using «(B>0» by (auto simp:divide-simps)
finally have x:f n < maz-c / B+ 1 / (B+1) .

sup (An. bn/an)
(B+1)

have 1/(Bx(B+1))=1/B — 1 / (B+1)
using 0» by (auto simp:divide-simps)
also have ... < ¢n/B — 1/ (B+1)
using <0 < ¢ n» «B>0> by (auto,auto simp:divide-simps)
also have ... < f n using elim by auto
finally have 1/(Bx(B+1)) < fn.
with x show ?case by simp
qed
show limsup f < maz-c / B+ 1/ (B+1)
apply (rule Limsup-bounded)
using * by (auto elim:eventually-mono)
have 1/(Bx(B+1)) < liminf f
apply (rule Liminf-bounded)
using * by (auto elim:eventually-mono)

20

also have liminf f < limsup f by (simp add: Liminf-le-Limsup)
finally show 1/(Bx(B+1)) < limsup f .
qed

have 0 < inverse (ereal (maz-c /| B+ 1 / (B+1)))
using <(maz-c > 0> «(B>0»
by (simp add: pos-add-strict)
also have ... < inverse (limsup (An. b n/a n))
proof (rule ereal-inverse-antimono|OF - ba-limsup-bound(2)])
have 0<1/(B%(B+1)) using «B>0> by auto
also have ... < limsup (An. b n/a n) using ba-limsup-bound(1) .
finally show 0<limsup (An. b n/a n) using zero-ereal-def by auto
qed
also have ... = liminf (An. inverse (ereal (b n/a n)))
apply (subst Liminf-inverse-ereal[symmetric])
using a-pos ab-event by (auto elim!:eventually-mono simp:divide-simps)
also have ... = liminf (An. (a n/b n))
apply (rule Liminf-eq)
using a-pos ab-event
apply (auto elim!:eventually-mono)
by (metis less-int-code(1))
finally have liminf (An. (a n/bn)) > 0 .
then show Fulse using <liminf (An. an / b n) = 0> by simp
qed

end

3 Some auxiliary results on the prime numbers.

lemma nth-prime-nonzero[simp|:nth-prime n # 0
by (simp add: prime-gt-0-nat prime-nth-prime)

lemma nth-prime-gt-zero[simp|:nth-prime n >0
by (simp add: prime-gt-0-nat prime-nth-prime)

lemma ratio-of-consecutive-primes:
(An. nth-prime (n+1)/nth-prime n) ——1
proof —
define f where f=(\z. real (nth-prime (Suc x)) /real (nth-prime x))
define g where g=(\z. (real z * In (real x))
/ (real (Suc z) * In (real (Suc x))))
have p-n:(Az. real (nth-prime x) / (real z * In (real x))) —— 1
using nth-prime-asymptotics[unfolded asymp-equiv-def,simplified] .
moreover have p-sn:(An. real (nth-prime (Suc n))
/ (real (Suc n) = In (real (Suc n)))) —— 1
using nth-prime-asymptotics|unfolded asymp-equiv-def,simplified
,THEN LIMSEQ-Suc] .
ultimately have (Az. fz % g z) —— 1
using tendsto-divide[OF p-sn p-n]

21

unfolding f-def g-def by (auto simp:algebra-simps)
moreover have ¢ —— 1 unfolding g-def
by real-asymp
ultimately have (Az. if g © = 0 then 0 else fz) —— 1
apply (drule-tac tendsto-divide|OF - <g —— 1)])
by auto
then have f —— 1
proof (elim filterlim-mono-eventually)
have V r z in sequentially. (if g (z+3) = 0 then 0
else f (z43)) = f (z+3)
unfolding g-def by auto
then show V z in sequentially. (if g x = 0 then 0 else fz) = fz
apply (subst (asm) eventually-sequentially-seq)
by simp
qed auto
then show ?thesis unfolding f-def by auto
qed

lemma nth-prime-double-sqrt-less:
assumes € > (
shows V r n in sequentially. (nth-prime (2xn) — nth-prime n)
/ sqrt (nth-prime n) < n powr (1/2+¢)
proof —
define pp [l where
pp=(An. (nth-prime (2%n) — nth-prime n) / sqrt (nth-prime n)) and
ll=(Az::nat. z * In x)
have pp-pos:pp (n+1) > 0 for n
unfolding pp-def by simp

have (Az. nth-prime (2 * x)) ~[sequentially] (Az. (2 * z) * In (2 * z))
using nth-prime-asymptotics] THEN asymp-equiv-compose
,of (%) 2 sequentially,unfolded comp-def]
using mult-nat-left-at-top pos2 by blast
also have ... ~[sequentially] (A\z. 2 xz x In x)
by real-asymp
finally have (A\z. nth-prime (2 * x)) ~[sequentially] (A\z. 2 xx x In z) .
from this[unfolded asymp-equiv-def, THEN tendsto-mult-left,of 2]
have (\z. nth-prime (2 *) / (x x Inz)) —— 2
unfolding asymp-equiv-def by auto
moreover have x:(\z. nth-prime z / (z * In z)) —— 1
using nth-prime-asymptotics unfolding asymp-equiv-def by auto
ultimately
have (Az. (nth-prime (2 * x) — nth-prime z) / ll z) —— 1
unfolding [l-def
apply —
apply (drule (1) tendsto-diff)
apply (subst of-nat-diff ,simp)
by (subst diff-divide-distrib,simp)
moreover have (Az. sqrt (nth-prime x) / sqrt (ll z)) —— 1

22

unfolding [l-def
using tendsto-real-sqrt| OF %]
by (auto simp: real-sqrt-divide)
ultimately have (Az. pp = * (sqrt (Il z) / (Il x))) —— 1
apply —
apply (drule (1) tendsto-divide,simp)
by (auto simp:field-simps of-nat-diff pp-def)
moreover have V p z in sequentially. sqrt (Il z) / llz = 1/sqrt (Il)
apply (subst eventually-sequentially-Suclsymmetric])
by (auto introl:eventuallyl simp:ll-def divide-simps)
ultimately have (Az. pp = / sqrt (ll x)) —— 1
apply (elim filterlim-mono-eventually)
by (auto elim!:eventually-mono) (metis mult.right-neutral times-divide-eq-right)
moreover have (Az. sqrt (Il z) / = powr (1/24¢)) —— 0
unfolding [l-def using «¢>0) by real-asymp
ultimately have (Az. pp « / z powr (1/2+¢€) *
(sqrt (Ll z) / sqrt (Il x))) —— 0
apply —
apply (drule (1) tendsto-mult)
by (auto elim:filterlim-mono-eventually)
moreover have V p z in sequentially. sqrt (Il z) / sqrt (Il x) = 1
apply (subst eventually-sequentially-Suc[symmetric])
by (auto intro!:eventuallyl simp:ll-def)
ultimately have (Az. pp z / = powr (1/2+¢)) —— 0
apply (elim filterlim-mono-eventually)
by (auto elim:eventually-mono)
from tendstoD[OF this, of 1,simplified)
show V g z in sequentially. pp x < x powr (1 / 2 + ¢)
apply (elim eventually-mono-sequentially[of - 1])
using pp-pos by auto
qed

4 Theorem 3.1

Theorem 3.1 is an application of Theorem 2.1 with the sequences considered
involving the prime numbers.

theorem theorem-3-10-Erdos-Straus:
fixes a::nat = int
assumes a-pos:V n. a n >0 and mono a
and nth-1:(An. nth-prime n / (a n)"2) —— 0
and nth-2:liminf (An. a n / nth-prime n) = 0
shows (> n. (nth-prime n / (J[i < n. a4))) ¢ Q
proof
assume asm:(>_ n. (nth-prime n / ([[i < n. a i))) € Q

have a2-omega:(An. (a n)"2) € w(Az. T * In)

proof —
have (An. real (nth-prime n)) € o(An. real-of-int ((a n)?))

23

apply (rule smallol-tendsto] OF nth-1])
using a-pos by (metis (mono-tags, lifting) less-int-code(1)
not-eventuallyD of-int-0-eq-iff zero-eq-power2)
moreover have (Az. real (nth-prime z)) € Q(Az. real z * In (real x))
using nth-prime-bigtheta
by blast
ultimately show ¢thesis
using landau-omega.small-big-trans smallo-imp-smallomega by blast
qed

have a-gt-1:V p n in sequentially. 1 < an
proof —
have V r x in sequentially. |z * In z| < (a x)?
using a2-omega[unfolded smallomega-def ,simplified,rule-format,of 1]
by auto
then have V ¢ in sequentially. |(z+3) * In (z+3)| < (a (z+3))?
apply (subst (asm) eventually-sequentially-seg[symmetric, of - 3])
by simp
then have V p n in sequentially. 1 < a (n+3)
proof (elim eventually-mono)
fix z
assume |real (x + 3) * In (real (z + 8))| < real-of-int ((a (z + 3))?)
moreover have |real (z + 3) * In (real (z + 3))| > 3
proof —
have In (real (z + 3)) > 1
using In3-gt-1 In-gt-1 by force
moreover have real(z+3) > 3 by simp
ultimately have (z+3)*In (real (z + 3)) > 3x1
by (smt (verit, best) mult-less-cancel-left1)
then show ?thesis by auto
qed
ultimately have (a (z + 3))? > 3
by linarith
then show 1 < a (z + 3)
by (smt (verit) assms(1) one-power2)
qed
then show ?thesis
using eventually-sequentially-seg[symmetric, of - 3]
by blast
qed

obtain B:int and c where

B>0 and Bc-large:Y g n in sequentially. B x nth-prime n

=cnxan—cn+ 1) ANjle(n+ 1)< an/2

and ca-vanish: (An. ¢ (Suc n) / real-of-int (a n)) —— 0
proof —

note a-gt-1

moreover have (An. real-of-int |int (nth-prime n)|

/ real-of-int (a (n — 1) * an)) —— 0

24

proof —
define f where f=(An. nth-prime (n+1) / (an x a (n+1)))
define g where g=(An. 2xnth-prime n / (a n) " 2)
have V g z in sequentially. norm (fz) < g x
proof —
have V r n in sequentially. nth-prime (n+1) < 2xnth-prime n
using ratio-of-consecutive-primes[unfolded tendsto-iff
,rule-format,of 1,simplified)
apply (elim eventually-mono)
by (auto simp :divide-simps dist-norm)
moreover have V r n in sequentially. real-of-int (a n x a (n+1))
> (an) 2
apply (rule eventuallyl)
using <mono a» by (auto simp:power2-eq-square a-pos incseq-SucD)
ultimately show ?thesis unfolding f-def g-def
apply eventually-elim
apply (subst norm-divide)
apply (rule-tac linordered-field-class.frac-le)
using a-pos[rule-format, THEN order.strict-implies-not-eq |
by auto
qed
moreover have ¢ —— 0
using nth-1[THEN tendsto-mult-right-zero,of 2] unfolding g-def
by auto
ultimately have f —— 0
using Lim-null-comparison|of f g sequentially]
by auto
then show ?thesis
unfolding f-def
by (rule-tac LIMSEQ-imp-Suc) auto
qed
moreover have (> n. real-of-int (int (nth-prime n))
/ real-of-int (prod a {..n})) € Q
using asm by simp
ultimately have 3B>0. J¢. (V¥ n in sequentially.
B x int (nth-primen) = cn*xan —c(n+ 1) A
real-of-int |c¢ (n + 1)| < real-of-int (an) / 2) A
(An. real-of-int (¢ (Suc n)) / real-of-int (a n)) — 0
using ab-rationality-imp|OF a-pos,of nth-prime] by fast
then show thesis
apply clarify
apply (rule-tac c=c and B=B in that)
by auto
qed

have bac-close:(An. B * nth-primen / an — ¢ n) — 0
proof —
have V ¢ n in sequentially. B x nth-primen — cn*xan+c(n+ 1) =0
using Bc-large by (auto elim!:eventually-mono)

25

then have V r n in sequentially. (B * nth-prime n — c¢nx an + ¢ (n+1)) /
an=70
by eventually-elim auto
then have V r n in sequentially. B x nth-primen /[an —cn +c(n+ 1)/
an =70
apply eventually-elim
using a-pos by (auto simp:divide-simps) (metis less-irrefl)
then have (An. B x nth-primen [an —cn +c(n+ 1)/ an) —— 0
by (simp add: eventually-mono tendsto-iff)
from tendsto-diff [OF this ca-vanish]
show ?thesis by auto
qed

have c-pos:V n in sequentially. c n > 0
proof —
from bac-close have %V g n in sequentially. ¢ n > 0
apply (elim tendsto-of-int-diff-0)
using a-gt-1 apply (eventually-elim)
using 0) by auto
show ?thesis
proof (rule ccontr)
assume — (Vg n in sequentially. ¢ n > 0)
moreover have V p n in sequentially. ¢ (Suc n) > 0 A ¢ n>0
using * eventually-sequentially-Suclof An. ¢ n>0]
by (metis (mono-tags, lifting) eventually-at-top-linorder le-Suc-eq)
ultimately have 3¢ n in sequentially. cn = 0 A ¢ (Sucn) > 0
using eventually-elim2 frequently-def by fastforce
moreover have V p n in sequentially. nth-prime n > 0
A B x nth-primen =cn+an —c(n+ 1)
using Bc-large by eventually-elim auto
ultimately have 3 r n in sequentially. cn = 0 A ¢ (Suc n) > 0
A B x nth-primen=cn*an—c(n+ 1)
using frequently-eventually-frequently by fastforce
from frequently-ex[OF this]
obtain n where ¢ n = 0 ¢ (Sucn) > 0
B % nth-primen = cn*an — c (n+ 1)
by auto
then have B x nth-prime n < 0 by auto
then show Fulse using 0>
by (simp add: mult-le-0-iff)
qed
qed

have B-nth-prime:¥Y p n in sequentially. nth-prime n > B
proof —
have V ¢ z in sequentially. B+1 < nth-prime x
using nth-prime-at-top[unfolded filterlim-at-top-ge[where c=nat B+1]
,rule-format,of nat B + 1,simplified)

26

apply (elim eventually-mono)
using 0) by auto
then show ?thesis
by (auto elim: eventually-mono)
qed

have bc-epsilon:V g n in sequentially. nth-prime (n+1)
/ nth-prime n > (c (n+1) —€) / ¢ n when e>0 e<1 for e::real
proof —
have V p z in sequentially. |c¢ (Sucz) / a x| <e / 2
using ca-vanish[unfolded tendsto-iff ,rule-format, of /2] «>0> by auto
moreover then have V p z in sequentially. |c (z+2) / a (z+1)] <e/ 2
apply (subst (asm) eventually-sequentially-Suc|symmetric))
by simp
moreover have Vg n in sequentially. B x nth-prime (n+1) = ¢ (n+1) % a
(nt+1) —c(n+ 2)
using Bc-large
apply (subst (asm) eventually-sequentially-Suc|symmetric))
by (auto elim:eventually-mono)
moreover have V r n in sequentially. cn > 0 A ¢ (nt+1) >0 N c (n+2) >0
proof —
have V p n in sequentially. 0 < ¢ (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp
moreover then have V p n in sequentially. 0 < ¢ (Suc (Suc n))
using c-pos by (subst eventually-sequentially-Suc) simp
ultimately show ?thesis using c-pos by eventually-elim auto
qed
ultimately show ¢thesis using Bc-large
proof eventually-elim
case (elim n)
define ¢y 1 where g = ¢ (n+1) / anand ey = ¢ (n+2) / a (n+1)
have ey > 0e; > 0eg <e/2e <e/2
using a-pos elim <mono a)
by (auto simp: eo-def e1-def abs-of-pos)
have (¢ — 1) xcn > 0
using «¢1 > 0» €1 < /2> «e>0> elim by auto
moreover have A: gy * (¢ (n+1) —¢g) > 0
using «cg > 0y elim(4) that(2) by force
ultimately have (¢ — ¢1) x ¢ n 4+ €9 * (¢ (n+1) —) > 0 by auto

moreover have B: ¢ n — gy > 0 using g < ¢ / 2> elim(4) that(2) by
linarith

moreover have ¢ n > 0 by (simp add: elim(4))
ultimately have (¢ (n+1) —¢) / cn < (c(n+1) —e1) / (¢ n — &o)
by (auto simp:field-simps)
also have ... < (¢ (n+1) —e1) / (¢ n — €o) * (a (n+1) / an)
proof —
have (¢ (n+1) —e1) / (en — &) > 0
using A <0 < ep> B <e1 < ¢ / 2) divide-pos-pos that(1) by force
moreover have (a (n+1) / an) > 1

27

using a-pos <mono a)> by (simp add: mono-def)
ultimately show ?thesis by (metis mult-cancel-left1 mult-le-cancel-left-pos)
qed
also have ... = (B * nth-prime (n+1)) / (B * nth-prime n)
proof —
have B * nth-primen=cn*an —c(n+ 1)
using elim by auto
also have ... = an * (¢ n — &)
using a-pos[rule-format,of n] unfolding eo-def by (auto simp:field-simps)
finally have B x nth-prime n = an x (¢ n — &) .
moreover have B x nth-prime (n+1) = a (n+1) % (¢ (n+1) — 1)
unfolding ¢, -def
using a-pos[rule-format,of n+1]
apply (subst «<B x nth-prime (n + 1) =c(n+ 1)*xa(n+ 1) —c (n +

by (auto simp:field-simps)
ultimately show ?thesis by (simp add: mult.commute)
qed
also have ... = nth-prime (n+1) / nth-prime n
using «B>0) by auto
finally show ?Zcase .
qed
qed

have c-ubound:Vzx. I3n. cn > z
proof (rule ccontr)
assume — (Vz.3In.z < cn)
then obtain ub where Vn. ¢ n < ub ub > 0
by (meson dual-order.trans int-one-le-iff-zero-less le-cases not-le)
define pa where pa = (An. nth-prime n / a n)
have pa-pos: An. pa n > 0 unfolding pa-def by (simp add: a-pos)
have liminf (An. 1 / pan) =10
using nth-2 unfolding pa-def by auto
then have (3 y<ereal (real-of-int B | real-of-int (ub + 1)).
IF z in sequentially. ereal (1 / pa x) < y)
apply (subst less-Liminf-iff [symmetric])
using <0 < By <0 < ub> by auto
then have 3 p = in sequentially. 1 / pa x < B/(ub+1)
by (meson frequently-mono le-less-trans less-ereal.simps(1))
then have 3 = in sequentially. Bxpa © > (ub+1)
apply (elim frequently-elim1)
by (metis <0 < uby mult.left-neutral of-int-0-less-iff pa-pos pos-divide-less-eq
pos-less-divide-eq times-divide-eq-left zless-addl-eq)
moreover have V r x in sequentially. ¢ < ub
using <Vn. ¢ n < ub> by simp
ultimately have Jdp z in sequentially. Bxpa x — c x > 1
by (elim frequently-rev-mp eventually-mono) linarith
moreover have (An. B x pan — ¢n) ——0

28

unfolding pa-def using bac-close by auto
from tendstoD[OF this,of 1]
have V n in sequentially. |B * pan — ¢ n| < 1
by auto
ultimately have 3 p z in sequentially. Bxpa x — cx > 1 AN |B*xpazx — cx
< 1
using frequently-eventually-frequently by blast
then show Fulse
by (simp add: frequently-def)
qged

have eg-2-11:V p n in sequentially. ¢ (n+1)>cn —
nth-prime (n+1) > nth-primen + (I —¢) 2*xan / B
when >0 <1 for e::real
proof —
have V p z in sequentially. |c¢ (Suc z) / a x| < €
using ca-vanish[unfolded tendsto-iff ,rule-format, of €] <«€>0> by auto
moreover have V p n in sequentially. cn > 0 A ¢ (n+1) > 0
proof —
have V p n in sequentially. 0 < ¢ (Suc n)
using c-pos by (subst eventually-sequentially-Suc) simp
then show ?thesis using c-pos by eventually-elim auto
qed
ultimately show ?thesis using Be-large be-epsilon|OF >0y e<1))
proof (eventually-elim, rule-tac impl)
case (elim n)
assume cn < ¢ (n + 1)
have ¢ (n+1) /an <e
using a-pos|[rule-format,of n| using elim(1,2) by auto
also have ... < ¢ x ¢ n using elim(2) that(1) by auto
finally have ¢ (n+1) /an<excn.
then have ¢ (nt+1) /ecn<e*xan
using a-pos|[rule-format,of n| elim by (auto simp:field-simps)
then have (I —¢)xan<an—c(n+l)/cn
by (auto simp:algebra-simps)
then have (I —e)2%xan/B< (Il —¢)x(an—c(nt+l)/cn)/ B
apply (subst (asm) mult-less-cancel-right-pos[symmetric, of (1—¢)/B])
using «e<1» «(B>0» by (auto simp: divide-simps power2-eq-square mult-less-cancel-right-pos)
then have nth-prime n + (1 —¢)"2 * an / B < nth-prime n + (1 — €) *
(an—c(n+1)/cn)/ B
using «B>0) by auto

also have ... = nth-primen + (I —) x ((cn*an — ¢ (n+1)) / cn) / B
using elim by (auto simp:field-simps)

also have ... = nth-prime n + (1 — €) * (nth-prime n / ¢ n)

proof —

have B x nth-prime n = ¢n *x an — ¢ (n + 1) using elim by auto
from this[symmetric] show ?thesis
using «B>0) by simp
qed

29

also have ... = (14+(1—¢)/c n) * nth-prime n
by (auto simp:algebra-simps)
also have ... = ((¢ n+1—¢)/c n) * nth-prime n
using elim by (auto simp:divide-simps)
also have ... < ((¢ (n+1) —e)/c n) * nth-prime n
proof —
define cp where cp = ¢ n+1
have ¢ (n+1) > cp unfolding cp-def using <c n < ¢ (n + 1)) by auto
moreover have ¢ n>0 nth-prime n>0 using elim by auto
ultimately show ?thesis
apply (fold cp-def)
by (auto simp:divide-simps)
qed
also have ... < nth-prime (n+1)
using elim by (auto simp:divide-simps)
finally show real (nth-prime n) + (1 — €)? * real-of-int (a n)
/ real-of-int B < real (nth-prime (n + 1)) .
qed
qed

have c-neg-large:¥ g n in sequentially. ¢ (n+1) # ¢ n
proof (rule ccontr)
assume — (Vg n in sequentially. ¢ (n + 1) # ¢ n)
then have that:3 g n in sequentially. ¢ (n + 1) = cn
unfolding frequently-def .
have V p z in sequentially. (B * int (nth-prime z) = cz*x ax — ¢ (z + 1)
A lreal-of-int (¢ (z + 1))| < real-of-int (a) / 2) AN 0 < cx N B < int
(nth-prime x)
A (¢ (z+1)>c x — nth-prime (z+1) > nth-prime x + a z / (2% B))
using Bc-large c-pos B-nth-prime eq-2-11[of 1—1/ sqrt 2,simplified]
by eventually-elim (auto simp:divide-simps)
then have 3 p m in sequentially. nth-prime (m+1) > (141 /(2%B))xnth-prime
m
proof (elim frequently-eventually-at-top[OF that, THEN frequently-at-top-elim])
fix n
assume ¢ (n+ 1) =cn A
(Vy>n. (B« int (nth-prime y) = cy*xay—c(y+ 1) A
|real-of-int (¢ (y + 1))| < real-of-int (a y) / 2) A
0 <cyA B<int (nth-prime y) A (cy <c(y+ 1) —
real (nth-prime y) + real-of-int (a y) / real-of-int (2 % B)
< real (nth-prime (y + 1))))
then have ¢ (n + 1) =cn
and Bce-eq:Vy>n. B x int (nth-primey) = cyxay—c(y+ 1) A0 <cy
A |real-of-int (¢ (y + 1))| < real-of-int (a y) / 2
A B < int (nth-prime y)
ANey<ec(y+1) —
real (nth-prime y) + real-of-int (a y) / real-of-int (2 % B)
< real (nth-prime (y + 1)))
by auto

30

obtain m where n<m ¢ m < ¢ n ¢ n<c (m+1)
proof —
have AIN. N >nAcN >cn
using c-ubound[rule-format, of MAX ze{..n}. c]
by (metis Maz-ge atMost-iff dual-order.trans finite-atMost finite-imagel
image-eql
linorder-not-le order-refl)
then obtain N where N>n ¢ N>c n by auto
define 4 m where A={m. n<m A (m+1)<N A ¢ (m+1) > ¢n} and m
= Min A
have finite A unfolding A-def
by (metis (no-types, lifting) A-def add-leE finite-nat-set-iff-bounded-le
mem-Collect-eq)
moreover have N—1¢€A unfolding A-def
using ¢ n < ¢ Ny <n < N» <c (n + 1) = ¢ n» nat-less-le by force
ultimately have me A
using Min-in unfolding m-def by auto
then have n<m ¢ n<c (m+1) m>0
unfolding m-def A-def by auto
moreover have ¢ m < ¢cn
proof (rule ccontr)
assume " cm < cn
then have m—1€A4
using «meA> ¢ (n+ 1) = ¢ n» le-eq-less-or-eq less-diff-conv by (fastforce
simp: A-def)
from Min-le[OF «<finite A this,folded m-def] «<m>0> show Fulse by auto
ged
ultimately show ?thesis using that[of m| by auto
qed
have (I + 1 / (2 x B)) = nth-prime m < nth-prime m + a m / (2«B)
proof —
have nth-prime m < a m
proof —
have B x int (nth-prime m) < ¢ m * (a m — 1)
using Bc-eq[rule-format,of m] <cm < cm <cn<c(m+ 1) n < m
by (auto simp:algebra-simps)
also have ... < cnx*(am — 1)
by (simp add: <¢c m < ¢ n) a-pos mult-right-mono)
finally have B x int (nth-prime m) < ¢cn* (am — 1) .
moreover have ¢ n<B
proof —
have B: B * int (nth-prime n) = ¢ n * (a n — 1) B < int (nth-prime n)
and c-a: |real-of-int (¢ (n + 1))| < real-of-int (a n) / 2
using Bc-eq[rule-format,of n] <c (n + 1) = ¢ n» by (auto simp:algebra-simps)
from this(1) have ¢ n dvd (B * int (nth-prime n))
by simp
moreover have coprime (¢ n) (int (nth-prime n))
proof —
have ¢ n < int (nth-prime n)

31

proof (rule ccontr)
assume - ¢ n < int (nth-prime n)
then have asm:c n > int (nth-prime n) by auto
then have a n > 2 x nth-prime n
using c-a ¢ (n + 1) = ¢ n» by auto
then have a n —1 > 2 * nth-prime n
by simp
then have an — 1 > 2 % B
using «B < int (nth-prime n)> by auto
from mult-le-less-imp-less|OF asm this] 0»
have int (nth-primen) * (2 * B) < cnx (an — 1)
by auto
then show Fulse using B
by (smt (verit, best) <0 < By mult.commute mult-right-mono)
qed
then have — nth-prime n dvd ¢ n
by (simp add: Bc-eq zdvd-not-zless)
then have coprime (int (nth-prime n)) (¢ n)
by (auto introl:prime-imp-coprime-int)
then show ?thesis using coprime-commute by blast
qed
ultimately have ¢ n dvd B
using coprime-dvd-mult-left-iff by auto
then show ?thesis using <0 < B) zdvd-imp-le by blast
qed
moreover have ¢ n > (0 using Bc-eq by blast
ultimately show #thesis
using «B>0> by (smt (verit) a-pos mult-mono)
qed
then show ?thesis using «B>0) by (auto simp:field-simps)
qed
also have ... < nth-prime (m+1)
using Bc-eq[rule-format, of m] «<n<my <c¢cm < c¢ny <¢cn < ¢ (m+1)
by linarith
finally show 3j>n. (1 + 1 / real-of-int (2 % B)) * real (nth-prime j)
< real (nth-prime (j + 1)) using <m>n> by auto
qged
then have 3 p m in sequentially. nth-prime (m+1)/nth-prime m > (1+1/(2xB))
by (auto elim:frequently-elim1 simp:field-simps)
moreover have Vr m in sequentially. nth-prime (m+1)/nth-prime m <
(1+1/(2+B))
using ratio-of-consecutive-primes[unfolded tendsto-iff ,rule-format,of 1 /(2%B)]
«0»
unfolding dist-real-def
by (auto elim!:eventually-mono simp:algebra-simps)
ultimately show Fulse by (simp add: eventually-mono frequently-def)
qed

have c-gt-half:V p N in sequentially. card {n€{N..<2xN}. c¢n > ¢ (n+1)} >

32

N/ 2
proof —
define h where h=(An. (nth-prime (2xn) — nth-prime n)
/ sqrt (nth-prime n))
have YV g n in sequentially. hn < n / 2
proof —
have V g n in sequentially. h n < n powr (5/6)
using nth-prime-double-sqrt-less|of 1/3)]
unfolding h-def by auto
moreover have V g n in sequentially. n powr (5/6) < (n /2)
by real-asymp
ultimately show ?thesis
by eventually-elim auto
qed
moreover have V g n in sequentially. sqrt (nth-prime n) / an < 1 / (2%B)
using nth-1[THEN tendsto-real-sqrt,unfolded tendsto-iff
,;rule-format,of 1/(2%B)] «0) a-pos
by (auto simp:real-sqrt-divide abs-of-pos)
ultimately have V p z in sequentially. ¢ (z+1) # c x
A sqrt (nth-prime z) [a © < 1 / (2%B)
ANhz<z/2
A (¢ (z+1)>c © — nth-prime (z+1) > nth-prime = + a z / (2% B))
using c-neg-large B-nth-prime eq-2-11[of 1—1/ sqrt 2,simplified]
by eventually-elim (auto simp:divide-simps)
then show ?thesis
proof (elim eventually-at-top-mono)
fix N assume N>1 and N-asm:Vy>N.c (y + 1) #cy A
sqrt (real (nth-prime y)) / real-of-int (a y)
< 1/ real-of-int (2« B)A hy<vy/ 2 A
(cy<ec(y+1) —
real (nth-prime y) + real-of-int (a y) / real-of-int (2 % B)
< real (nth-prime (y + 1)))

define S where S={n € {N.<2x N}. cn<c(n+ 1)}
define g where g=(An. (nth-prime (n+1) — nth-prime n)
/ sqrt (nth-prime n))
define f where f=(\n. nth-prime (n+1) — nth-prime n)
have g-gt-1:g n>1 when n>Ncn < c(n+ 1) for n
proof —
have nth-prime n + sqrt (nth-prime n) < nth-prime (n+1)
proof —
have nth-prime n + sqrt (nth-prime n) < nth-prime n + a n / (2+B)
using N-asm|[rule-format,OF <n>N>] a-pos
by (auto simp:field-simps)
also have ... < nth-prime (n+1)
using N-asm|[rule-format,OF <n>N>] <cn < ¢ (n + 1) by auto
finally show ?thesis .
qged
then show ?thesis unfolding g-def

33

using «¢n < ¢ (n + 1)» by auto
qed
have g-geq-0:g n > 0 for n
unfolding g¢-def by auto

have finite S Vz€S. z>N A c z<c (z+1)
unfolding S-def by auto
then have card S < sum g S
proof (induct S)
case empty
then show ?Zcase by auto
next
case (insert z F)
moreover have g z>1
proof —
have ¢ z < ¢ (z+1) >N using insert(4) by auto
then show ?thesis using g-gt-1 by auto
qed
ultimately show ?case by simp
qed
also have ... < sum g {N..<2xN}
apply (rule sum-mono2)
unfolding S-def using g-geq-0 by auto
also have ... < sum (An. f n/sqrt (nth-prime N)) {N..<2xN}
unfolding f-def g-def by (auto introl:sum-mono divide-left-mono)

also have ... = sum f {N..<2%N} / sqrt (nth-prime N)

unfolding sum-divide-distrib[symmetric] by auto
also have ... = (nth-prime (2xN) — nth-prime N) / sqrt (nth-prime N)
proof —

have sum f {N..<2 x N} = nth-prime (2 * N) — nth-prime N
proof (induct N)

case (

then show Zcase by simp
next

case (Suc N)

have ?case if N=0

proof —

have sum f {Suc N..<2 x Suc N} = sum f {1}
using that by (simp add: numeral-2-eq-2)

also have ... = nth-prime 2 — nth-prime 1
unfolding f-def by (simp add:numeral-2-eq-2)
also have ... = nth-prime (2 * Suc N) — nth-prime (Suc N)

using that by auto
finally show ¢thesis .
qed
moreover have Zcase if N#£0
proof —
have sum f {Suc N..<2 % Suc N} = sum f {N..<2 * Suc N} — f N
apply (subst (2) sum.atLeast-Suc-lessThan)

34

using that by auto

also have ... = sum f {N..<2 x N}+ f (2«N) + f(2xN+1) — f N
by auto

also have ... = nth-prime (2 * Suc N) — nth-prime (Suc N)
using Suc unfolding f-def by auto

finally show ?thesis .

qed
ultimately show ?case by blast
qed
then show ?thesis by auto
qed
also have ... = h N

unfolding h-def by auto
also have ... < N/2

using N-asm by auto
finally have card S < N/2 .

define T where T={n € {N.<2* N}. cn>c(n+ 1)}
have TU S ={N.<2x N} TN S ={} finite T
unfolding T-def S-def using N-asm by fastforce+

then have card T + card S = card {N..<2 = N}
using card-Un-disjoint <finite S» by metis

also have ... = N
by simp

finally have card T + card S = N .

with «card S < N/2»

show card T > N/2 by linarith

qed
qed

Inequality (3.5) in the original paper required a slight modification:

have a-gt-plus:¥Y p n in sequentially. ¢ n > ¢ (n+1) —a (n+1) > an + (an
—c¢(n+1)— 1)/ c(n+1)
proof —
note a-gt-1[THEN eventually-all-ge-at-top] c-pos| THEN eventually-all-ge-at-top]
moreover have V r n in sequentially.
B x int (nth-prime (n+1)) = ¢ (n+1) x a (n+1) — ¢ (n + 2)
using Bc-large
apply (subst (asm) eventually-sequentially-Suc[symmetric])
by (auto elim:eventually-mono)
moreover have V r n in sequentially.
B x int (nth-primen) =cn+xan—c(n+ 1) Alc(n+ 1)
< an/2
using Bc-large by (auto elim:eventually-mono)
ultimately show ?thesis
apply (eventually-elim)
proof (rule impl)
fix n

35

assume Vy>n. I < ayVy>n. 0 < cy
and
Suc-n-eq:B * int (nth-prime (n + 1)) =c(n+ 1) *xa(n+ 1) —c(n +
2) and
B x int (nth-primen) = cn*xan —c(n+ 1) A
real-of-int |c¢ (n + 1)| < real-of-int (a n) / 2
andc(n+1)<cn
then have n-eq:B * int (nth-prime n) = cn*an — ¢ (n + 1) and
c-less-a: real-of-int |¢ (n + 1)| < real-of-int (an) / 2
by auto
from Vy>n. 1 <ay VMy>n. 0 < cy
have x:a n>1a (n+1) > 1cn >0
c(n+1)>0 c(nt+2)>0
by auto
then have (1+1/c (n+1))x (an — 1)/a (n+1) = (¢ (n+1)+1) * ((a n —
1) / (¢ (n+1) * a (n+1)))
by (auto simp:field-simps)
also have ... < cnx* ((an — 1) / (¢ (n+1) x a (n+1)))
by (smt (verit) x(4) <c (n+ 1) < ¢ n» a-pos divide-nonneg-nonneg mult-mono
mult-nonneg-nonneg of-int-0-le-iff of-int-le-iff)
also have ... = (cnx (an — 1)) / (¢ (n+1) x a (n+1)) by auto
also have ... < (cn* (an — 1)) / (c (n+1) * a (n+1) — ¢ (n+2))
apply (rule divide-strict-left-mono)
subgoal using <c (n+2) > 0> by auto
unfolding Suc-n-eq[symmetric] using x 0» by auto
also have ... < (cn*xan — c(n+1))/ (¢ (n+1) x a (n+1) — ¢ (n+2))
apply (rule frac-less)
unfolding Suc-n-eq[symmetric] using x «0» ¢ (n + 1) < ¢ n»
by (auto simp:algebra-simps)
also have ... = nth-prime n / nth-prime (n+1)
unfolding Suc-n-eq[symmetric] n-eq[symmetric] using «B>0> by auto
also have ... < 1 by auto
finally have (1 + 1 / real-of-int (¢ (n + 1))) * real-of-int (an — 1)
/ real-of-int (a (n + 1)) < 1 .
thenshow an+ (an—c(n+1)—1)/ (c(n+ 1)) <(a(n+ 1))
using * by (auto simp:field-simps)
qged
qed
have a-gt-1:¥ g n in sequentially. ¢ n > ¢ (n+1) — a (n+1) > an + 1
using Bc-large a-gt-plus c-pos| THEN eventually-all-ge-at-top)
apply eventually-elim
proof (rule impl)
fix n assume
cn+1)<en—an+ (an—cn+1)—1)/c(n+1)< a(n+
1)
¢(n+ 1)< cnand B-eq:B x int (nth-primen) = cn*xan —c(n+ 1) A
|real-of-int (¢ (n + 1))| < real-of-int (a n) / 2 and c-pos:Vy>n. 0 < cy
from this(1,2)
havean+ (an—c(n+1)—1)/c(n+ 1)< a(n+ 1) by auto

36

moreover have an — 2 x ¢ (n+1) > 0
using B-eq c-pos[rule-format,of n+1] by auto
then have an — 2 x ¢ (n+1) > 1 by simp
then have (an—c(n+1)—1)/c(n+1)>1
using c-pos|rule-format,of n+1] by (auto simp:field-simps)
ultimately show a n + 1 < a (n + 1) by auto
qed

The following corresponds to inequality (3.6) in the paper, which had to
be slightly corrected:

have a-gt-sqrt:¥ g n in sequentially. ¢ n > ¢ (n+1) — a (n+1) > a n + (sqrt
n— 2)
proof —
have a-2N:V p N in sequentially. a (2xN) > N /2 +1
using c-gt-half a-gt-1[THEN eventually-all-ge-at-top]
proof eventually-elim
case (elim N)
define S where S={n € {N..<2 x N}. ¢ (n+ 1) < c¢n}
define f where f = (An. a (Suc n) — a n)

have f-1:VzeS. fz>1 and f-0:Vz. f2>0
subgoal using elim unfolding S-def f-def by auto
subgoal using «mono a)[THEN incseq-SucD] unfolding f-def by auto
done
have N / 2 < card S
using elim unfolding S-def by auto
also have ... < sum f S
unfolding of-int-sum
apply (rule sum-bounded-below[of - 1,simplified])
using f-1 by auto
also have ... < sum f {N..<2 x N}
unfolding of-int-sum
apply (rule sum-mono2)
unfolding S-def using f-0 by auto
also have ... = a (2xN) — a N
unfolding of-int-sum f-def of-int-diff
apply (rule sum-Suc-diff”’)
by auto
finally have N / 2 < a (2«N) — a N .
then show ?case using a-pos|[rule-format,of N| by linarith
qed

have a-nj:V p n in sequentially. a n > n/4
proof —
obtain N where a-N:Vn>N. a (2xn) > n /2+1
using a-2N unfolding eventually-at-top-linorder by auto
have a n>n// when n>2xN for n
proof —
define n’ where n'=n div 2

37

have n’>N unfolding n’-def using that by auto
have n/4 < n' /2+1
unfolding n'-def by auto
also have ... < a (2%n’)
using a-N «(n’>N> by auto
also have ... <a n unfolding n'-def
apply (cases even n)
subgoal by simp
subgoal by (simp add: assms(2) incseqD)
done
finally show ?thesis .
qed
then show ?thesis
unfolding eventually-at-top-linorder by auto
qed

have c-sqrt:V g n in sequentially. ¢ n < sqrt n / 4
proof —
have V p z in sequentially. x>1 by simp
moreover have V p z in sequentially. real (nth-prime x) / (real z * In (real
z)) < 2
using nth-prime-asymptotics|unfolded asymp-equiv-def , THEN order-tendstoD(2),of

2]

by simp

ultimately have V p n in sequentially. ¢ n < Bx8 xin n + 1 using a-n4
Bce-large

proof eventually-elim
case (elim n)
from this(4) have ¢ n=(Bx*nth-prime n+c (n+1))/a n
using a-pos[rule-format,of n]
by (auto simp:divide-simps)
also have ... = (Bxnth-prime n)/a nt+c (n+1)/a n
by (auto simp:divide-simps)
also have ... < (Bxnth-prime n)/a n + 1
proof —
have ¢ (n+1)/an < 1 using elim(4) by auto
then show “thesis by auto
qed
also have ... < Bx8 x Ilnn + 1
proof —
have Bxnth-prime n < 2xBsnxin n
using <real (nth-prime n) / (real n * In (real n)) < 2> 0> ¢ 1 < m»
by (auto simp:divide-simps)
moreover have real n / 4 < real-of-int (a n) by fact
ultimately have (Bxnth-prime n) / a n < (2x«Bxnxln n) / (n/4)
apply (rule-tac frac-less)
using 0)> « 1 < n» by auto
also have ... = Bx8 x Inn
using < I < n» by auto

38

finally show ?thesis by auto

qged
finally show ?Zcase .

qed

moreover have V r n in sequentially. Bx8 xinn + 1 < sqrtn / 4
by real-asymp

ultimately show ?thesis
by eventually-elim auto

qed

have
Y nin sequentially. 0 < ¢ (n+1)
Y nin sequentially. ¢ (n+1) < sqrt (n+1) / 4
VY nin sequentially. n > 4
YV nin sequentially. (n — 4) / sqrt (n + 1) + 1 > sqrt n
subgoal using c-pos| THEN eventually-all-ge-at-top]
by eventually-elim auto
subgoal using c¢-sqrt|[THEN eventually-all-ge-at-top)
by eventually-elim (use le-add1 in blast)
subgoal by simp
subgoal
by real-asymp
done
then show ?thesis using a-gt-plus a-n4
apply eventually-elim
proof (rule impl)
fix n assume asm:0 < ¢ (n+ 1) ¢ (n + 1) < sqrt (real (
a-inegic(n + 1) <ecn—an+ (an—c(n+1)—1
a(n+1)
cn+1)<cnandn/ 4 <ann>}
and n-neq: sqrt (real n) < real (n — 4) / sqrt (real (n + 1)) + 1

+ 1))/ 4 and
/ cn+1)<

)

have (n—4) / sqri(nt+1) = (n/4 — 1)/ (sqrt (real (n + 1)) / 4)
using «n>4» by (auto simp:divide-simps)
also have ... < (an—1)/ c¢(n+ 1)
apply (rule frac-less)
using «n > 4y «n /4 <am <0 <c(n+ 1)< (n+ 1)< sgrt (real (n
)/
by auto
alsohave ... — 1 =(an—c(n+1)—1)/ c(n+ 1)
using <0 < ¢ (n + 1)» by (auto simp:field-simps)
also have a n + ... < a (n+1)
using a-ineq by auto
finally have an + ((n — 4) / sqgrt (n + 1) — 1) < a (n + 1) by simp
moreover have (n — 4) / sqrt (n + 1) — 1 > sqrt n — 2
using n-neq| THEN diff-strict-right-mono,of 2] <n>4»
by (auto simp:algebra-simps of-nat-diff)
ultimately show real-of-int (a n) + (sqrt (real n) — 2) < real-of-int (a (n
1))

39

by argo
qed
qed

The following corresponds to inequality asy > N3/2 /2 in the paper,
which had to be slightly corrected:

have a-2N-sqrt:¥ p N in sequentially. a (2xN) > real N * (sqrt (real N)/2 —
1)

4]
proof eventually-elim
case (elim N)
define S where S={n € {N..<2 « N}. ¢ (n+ 1) < c¢n}
define f where f = (An. a (Suc n) — a n)

using c-gt-half a-gt-sqrt[THEN eventually-all-ge-at-top] eventually-gt-at-top|of

have f-N:VzeS. faz>sqrt N — 2
proof
fix z assume z€S
then have sqrt (real z) — 2 < fz a>N
using elim unfolding S-def f-def by auto
moreover have sqrt x — 2 > sqrt N — 2
using «z>N) by simp
ultimately show sqrt (real N) — 2 < real-of-int (f z) by argo
qed
have f-0:Vz. fx>0
using <mono a>)[THEN incseq-SucD] unfolding f-def by auto

have (N / 2) * (sqrt N — 2) < card S x (sqrt N — 2)
apply (rule mult-strict-right-mono)
subgoal using elim unfolding S-def by auto
subgoal using «(N>/»
by (metis diff-gt-0-iff-gt numeral-less-real-of-nat-iff real-sqri-four real-sqrt-less-iff)
done
also have ... < sum fS
unfolding of-int-sum
apply (rule sum-bounded-below)
using f-N by auto
also have ... < sum f {N..<2 = N}
unfolding of-int-sum
apply (rule sum-mono?2)
unfolding S-def using f-0 by auto
also have ... = a (2xN) — a N
unfolding of-int-sum f-def of-int-diff
apply (rule sum-Suc-diff")
by auto
finally have real N / 2 % (sqrt (real N) — 2) < real-of-int (a (2 * N) — a N)

then have real N / 2 * (sqrt (real N) — 2) < a (2 * N)
using a-pos[rule-format,of N| by linarith

40

then show ?case by (auto simp:field-simps)
qed

The following part is required to derive the final contradiction of the
proof.

have a-n-sqrt:¥Y g n in sequentially. a n > (((n—1)/2) powr (3/2) — (n—1)) /2
proof (rule sequentially-even-odd-imp)
define f where f=(AN. ((real (2 x N — 1) / 2) powr (3 / 2) — real (2 x N
— 1))/ 2)
define g where g=(AN. real N * (sqrt (real N) / 2 — 1))
have V i N in sequentially. ¢ N > f N
unfolding f-def g-def
by real-asymp
moreover have V r N in sequentially. a (2 x N) > g N
unfolding g-def using a-2N-sqrt .
ultimately show V g N in sequentially. f N < a (2 % N)
by eventually-elim auto
next
define f where f=(AN. ((real (2 x N + 1 — 1)
—real (2x N +1—1))
define g where g=(AN. real N * (sqrt (real N) /
have V i N in sequentially. ¢ N = f N
using eventually-gt-at-top[of 0]
apply eventually-elim
unfolding f-def g-def
by (auto simp:algebra-simps powr-half-sqrt[symmetric] powr-mult-base)
moreover have Vi N in sequentially. a (2 x N) > g N
unfolding g-def using a-2N-sqrt .
moreover have V p N in sequentially. a (2 * N + 1) > a (2xN)
apply (rule eventuallyl)
using <mono a> by (simp add: incsegD)
ultimately show V g N in sequentially. f N < (a (2 x N + 1))
by eventually-elim auto
qed

/ 2) powr (3] 2)
/2
2 — 1))

have a-nth-prime-gt:v g n in sequentially. a n / nth-prime n > 1
proof —
define f where f=(An:nat. ((n—1)/2) powr (3/2) — (n—1)) /2)
have V p z in sequentially. real (nth-prime x) / (real z * In (real x)) < 2
using nth-prime-asymptotics|unfolded asymp-equiv-def , THEN order-tendstoD(2),of

by simp
from this eventually-gt-at-toplof 1]
have V p n in sequentially. real (nth-prime n) < 2x(real n x In n)
by eventually-elim (auto simp:field-simps)
moreover have %V N in sequentially. f N >0
unfolding f-def
by real-asymp
moreover have Vg n in sequentially. fn < an

41

using a-n-sqrt unfolding f-def .
ultimately have V p n in sequentially. a n / nth-prime n > fn / (2x(real n
* Inn))
proof eventually-elim
case (elim n)
then show ?case
by (auto intro: frac-less2)
qed
moreover have V g n in sequentially. (f n)/ (2x(real n x In n)) > 1
unfolding f-def by real-asymp
ultimately show #thesis
by eventually-elim argo
qed

have a-nth-prime-lt:3 p n in sequentially. a n / nth-prime n < 1
proof —
have liminf (Az. a x / nth-prime z) < 1
using nth-2 by auto
from this|unfolded less-Liminf-iff]
show ?thesis
by (smt (verit) ereal-less(8) frequently-elim1 le-less-trans)
qed

from a-nth-prime-gt a-nth-prime-lt show Fulse
by (simp add: eventually-mono frequently-def)
qed

5 Acknowledgements

A.K.-A. and W.L. were supported by the ERC Advanced Grant ALEXAN-
DRIA (Project 742178) funded by the European Research Council and led
by Professor Lawrence Paulson at the University of Cambridge, UK.

end

References

[1] P. Erdds and E. Straus. On the irrationality of certain series. Pacific
journal of mathematics, 55(1):85-92, 1974.

42

	Miscellaneous
	Theorem 2.1 and Corollary 2.10
	Some auxiliary results on the prime numbers.
	Theorem 3.1
	Acknowledgements

