Interpolation Polynomials (in HOL-Algebra)

Emin Karayel

May 26, 2024

Abstract

A well known result from algebra is that, on any field, there is exactly one polynomial of degree less than n interpolating n points $[1$, §7].

This entry contains a formalization of the above result, as well as the following generalization in the case of finite fields F : There are $|F|^{m-n}$ polynomials of degree less than $m \geq n$ interpolating the same n points, where $|F|$ denotes the size of the domain of the field. To establish the result the entry also includes a formalization of Lagrange interpolation, which might be of independent interest.

The formalized results are defined on the algebraic structures from HOL-Algebra, which are distinct from the type-class based structures defined in HOL. Note that there is an existing formalization for polynomial interpolation and, in particular, Lagrange interpolation by Thiemann and Yamada [2] on the type-class based structures in HOL.

Contents

1 Bounded Degree Polynomials

2 Lagrange Interpolation

3 Cardinalities of Interpolation Polynomials

1 Bounded Degree Polynomials

This section contains a definition for the set of polynomials with a degree bound and establishes its cardinality.
theory Bounded-Degree-Polynomials
imports HOL-Algebra.Polynomial-Divisibility
begin
lemma (in ring) coeff-in-carrier: $p \in$ carrier (poly-ring R) \Longrightarrow coeff $p i \in$ carrier R
using poly-coeff-in-carrier carrier-is-subring by (simp add: univ-poly-carrier)
definition bounded-degree-polynomials
where bounded-degree-polynomials $F n=\{x . x \in$ carrier (poly-ring F) \wedge (degree $x<n \vee x=[])\}$

Note: The definition for bounded-degree-polynomials includes the zero polynomial in bounded-degree-polynomials $F 0$. The reason for this adjustment is that, contrary to definition in HOL Algebra, most authors set the degree of the zero polynomial to $-\infty[1, \S 7.2 .2]$. That definition make some identities, such as $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$ for polynomials f and g unconditionally true. In particular, it prevents an unnecessary corner case in the statement of the results established in this entry.
lemma bounded-degree-polynomials-length:
bounded-degree-polynomials $F n=\{x . x \in$ carrier $($ poly-ring $F) \wedge$ length $x \leq n\}$ unfolding bounded-degree-polynomials-def using leI order-less-le-trans by fast-
force
lemma (in ring) fin-degree-bounded:
assumes finite (carrier R)
shows finite (bounded-degree-polynomials $R n$)
proof -
have bounded-degree-polynomials $R n \subseteq\{p$. set $p \subseteq$ carrier $R \wedge$ length $p \leq n\}$ unfolding bounded-degree-polynomials-length using assms polynomial-incl univ-poly-carrier by blast
thus ?thesis using assms finite-lists-length-le finite-subset by fast
qed
lemma (in ring) non-empty-bounded-degree-polynomials:
bounded-degree-polynomials $R k \neq\{ \}$
proof -
have $\mathbf{0}_{\text {poly-ring } R} \in$ bounded-degree-polynomials $R k$
by (simp add: bounded-degree-polynomials-def univ-poly-zero univ-poly-zero-closed)
thus ?thesis by auto
qed
lemma in-image-by-witness:
assumes $\wedge x . x \in A \Longrightarrow g x \in B \wedge f(g x)=x$
shows $A \subseteq f^{\prime} B$
by (metis assms image-eqI subsetI)
lemma card-mostly-constant-maps:
assumes $y \in B$
shows card $\{f$. range $f \subseteq B \wedge(\forall x . x \geq n \longrightarrow f x=y)\}=\operatorname{card} B^{\wedge} n$ (is card
$? A=? B)$
proof -
define f where $f=(\lambda f k$. if $k<n$ then $f k$ else $y)$

```
have \(a: ? A \subseteq\left(f\right.\) ' \(\left.\left(\{0 . .<n\} \rightarrow_{E} B\right)\right)\)
    unfolding \(f\)-def
    by (rule in-image-by-witness[where \(g=\lambda f\). restrict \(f\{0 . .<n\}]\), auto)
    have \(b:\left(f\right.\) ' \(\left.\left(\{0 . .<n\} \rightarrow_{E} B\right)\right) \subseteq ? A\)
    using \(f\)-def assms by auto
    have \(c: \operatorname{inj}\)-on \(f\left(\{0 . .<n\} \rightarrow_{E} B\right)\)
    by (rule inj-onI, metis PiE-E atLeastLessThan-iff ext f-def)
    have \(\operatorname{card} ? A=\operatorname{card}\left(f\right.\) ' \(\left.\left(\{0 . .<n\} \rightarrow_{E} B\right)\right)\)
    using \(a b\) by auto
    also have \(\ldots=\operatorname{card}\left(\{0 . .<n\} \rightarrow_{E} B\right)\)
    by (metis c card-image)
    also have \(\ldots=\operatorname{card} B{ }^{\wedge} n\)
    by (simp add: card-PiE[OF finite-atLeastLessThan])
    finally show?thesis by simp
qed
definition (in ring) build-poly where
    build-poly \(f=\) normalize \((\operatorname{rev}(\operatorname{map} f[0 . .<n]))\)
lemma (in ring) poly-degree-bound-from-coeff:
    assumes \(x \in\) carrier (poly-ring \(R\) )
    assumes \(\bigwedge k . k \geq n \Longrightarrow\) coeff \(x k=\mathbf{0}\)
    shows degree \(x<n \vee x=\mathbf{0}_{\text {poly-ring } R}\)
proof (rule ccontr)
    assume \(a: \neg\left(\right.\) degree \(\left.x<n \vee x=\mathbf{0}_{\text {poly-ring } R}\right)\)
    hence b:lead-coeff \(x \neq \mathbf{0}_{R}\)
        by (metis assms(1) polynomial-def univ-poly-carrier univ-poly-zero)
    hence coeff \(x(\) degree \(x) \neq \mathbf{0}\)
    by (metis a lead-coeff-simp univ-poly-zero)
    moreover have degree \(x \geq n\) by (meson a not-le)
    ultimately show False using assms(2) by blast
qed
lemma (in ring) poly-degree-bound-from-coeff-1:
    assumes \(x \in\) carrier (poly-ring \(R\) )
    assumes \(\bigwedge k . k \geq n \Longrightarrow\) coeff \(x k=\mathbf{0}\)
    shows \(x \in\) bounded-degree-polynomials \(R n\)
    using poly-degree-bound-from-coeff [OF assms]
    by (simp add:bounded-degree-polynomials-def univ-poly-zero assms)
lemma (in ring) length-build-poly:
    length (build-poly \(f\) n) \(\leq n\)
    by (metis length-map build-poly-def normalize-length-le length-rev length-upt
        less-imp-diff-less linorder-not-less)
```

```
lemma (in ring) build-poly-degree:
    degree (build-poly f n) \leqn-1
    using length-build-poly diff-le-mono by presburger
lemma (in ring) build-poly-poly:
    assumes \bigwedgei. i<n\Longrightarrowfi\in carrier R
    shows build-poly f }n\in\mathrm{ carrier (poly-ring R)
    unfolding build-poly-def univ-poly-carrier[symmetric]
    by (rule normalize-gives-polynomial, simp add:image-subset-iff Ball-def assms)
lemma (in ring) build-poly-coeff:
    coeff (build-poly f n) i=(if i<n then f i else 0)
proof -
    show coeff (build-poly f n) i=(if i<n then fi else 0)
        unfolding build-poly-def normalize-coeff[symmetric]
        by (cases i < n, (simp add:coeff-nth rev-nth coeff-length)+)
qed
lemma (in ring) build-poly-bounded:
    assumes \k. k<n\Longrightarrowfk\in carrier R
    shows build-poly f n \in bounded-degree-polynomials R n
    unfolding bounded-degree-polynomials-length
    using build-poly-poly[OF assms] length-build-poly by auto
```

The following establishes the total number of polynomials with a degree less than n. Unlike the results in the following sections, it is already possible to establish this property for polynomials with coefficients in a ring.

```
lemma (in ring) bounded-degree-polynomials-card:
    card (bounded-degree-polynomials R n)= card (carrier R) ^}
proof -
    have a:coeff 'bounded-degree-polynomials R n\subseteq{f.range f\subseteq(carrier R)}\wedge(\forall
\geqn.fk=0)}
    by (rule image-subsetI, auto simp add:bounded-degree-polynomials-def coeff-length
coeff-in-carrier)
    have b:{f.range f\subseteq(carrier R)}\wedge(\forallk\geqn.fk=\mathbf{0})}\subseteq\mathrm{ coeff'bounded-degree-polynomials
R n
    apply (rule in-image-by-witness[where g=\lambdax. build-poly x n])
    by (auto simp add:build-poly-coeff intro:build-poly-bounded)
    have inj-on coeff (carrier (poly-ring R))
    by (rule inj-onI, simp add: coeff-iff-polynomial-cond univ-poly-carrier)
    hence coeff-inj: inj-on coeff (bounded-degree-polynomials R n)
    using inj-on-subset bounded-degree-polynomials-def by blast
    have card (bounded-degree-polynomials R n) = card (coeff' bounded-degree-polynomials
R n)
    using coeff-inj card-image[symmetric] by blast
```

```
    also have ... = card {f. range f\subseteq(carrier R)\wedge(\forallk\geqn.fk=0 )}
    by (rule arg-cong[where f=card], rule order-antisym[OF a b])
    also have ... = card (carrier R)^n
    by (rule card-mostly-constant-maps, simp)
    finally show ?thesis by simp
qed
end
```


2 Lagrange Interpolation

This section introduces the function interpolate, which constructs the Lagrange interpolation polynomials for a given set of points, followed by a theorem of its correctness.

```
theory Lagrange-Interpolation
    imports HOL-Algebra.Polynomial-Divisibility
begin
```

A finite product in a domain is 0 if and only if at least one factor is. This could be added to HOL-Algebra.FiniteProduct or HOL-Algebra.Ring.
lemma (in domain) finprod-zero-iff:
assumes finite A
assumes $\bigwedge a . a \in A \Longrightarrow f a \in \operatorname{carrier} R$
shows finprod $R f A=\mathbf{0} \longleftrightarrow(\exists x \in A . f x=\mathbf{0})$
using assms
proof (induct A rule: finite-induct)
case empty
then show? case by simp
next
case (insert y F)
moreover have $f \in F \rightarrow$ carrier R using insert by blast
ultimately show ?case by (simp add:integral-iff)
qed
lemma (in ring) poly-of-const-in-carrier:
assumes $s \in$ carrier R
shows poly-of-const $s \in$ carrier (poly-ring R)
using poly-of-const-def assms
by (simp add:univ-poly-carrier[symmetric] polynomial-def)
lemma (in ring) eval-poly-of-const:
assumes $x \in$ carrier R
shows eval (poly-of-const x) $y=x$
using assms by (simp add:poly-of-const-def)
lemma (in ring) eval-in-carrier-2:
assumes $x \in$ carrier (poly-ring R)

```
    assumes y \in carrier R
    shows eval x y f carrier R
    using eval-in-carrier univ-poly-carrier polynomial-incl assms by blast
lemma (in domain) poly-mult-degree-le-1:
    assumes }x\in\mathrm{ carrier (poly-ring R)
    assumes y \in carrier (poly-ring R)
    shows degree (x \otimes poly-ring R y)\leq degree }x+\mathrm{ degree }
proof -
    have degree ( }x\mp@subsup{\otimes}{\mathrm{ poly-ring R}}{R}y)=(\mathrm{ if }x=[]\veey=[] then 0 else degree x + degree
y)
        unfolding univ-poly-mult
    by (metis univ-poly-carrier assms(1,2) carrier-is-subring poly-mult-degree-eq)
    thus?thesis by (metis nat-le-linear zero-le)
qed
lemma (in domain) poly-mult-degree-le:
    assumes x carrier (poly-ring R)
    assumes }y\in\mathrm{ carrier (poly-ring R)
    assumes degree }x\leq
    assumes degree }y\leq
    shows degree ( }x\mp@subsup{\otimes}{\mathrm{ poly-ring R}}{}y)\leqn+
    using poly-mult-degree-le-1 assms add-mono by force
lemma (in domain) poly-add-degree-le:
    assumes }x\in\mathrm{ carrier (poly-ring R) degree }x\leq
    assumes }y\in\mathrm{ carrier (poly-ring R) degree }y\leq
    shows degree ( }x\mp@subsup{\oplus}{\mathrm{ poly-ring R }}{
    using assms poly-add-degree
    by (metis dual-order.trans max.bounded-iff univ-poly-add)
lemma (in domain) poly-sub-degree-le:
    assumes }x\in\mathrm{ carrier (poly-ring R) degree }x\leq
    assumes }y\in\mathrm{ carrier (poly-ring R) degree }y\leq
    shows degree ( }x\mp@subsup{\ominus}{\mathrm{ poly-ring R }}{
proof -
    interpret x:cring poly-ring R
    using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
    show ?thesis
    unfolding a-minus-def
    using assms univ-poly-a-inv-degree carrier-is-subring poly-add-degree-le x.a-inv-closed
    by simp
qed
lemma (in domain) poly-sum-degree-le:
    assumes finite A
    assumes }\x.x\inA\Longrightarrow\mathrm{ degree ( }fx\mathrm{ ( ) 
    assumes }\x.x\inA\Longrightarrowfx\incarrier (poly-ring R
```

```
    shows degree (finsum (poly-ring R)fA)}\leq
    using assms
proof (induct A rule:finite-induct)
    case empty
    interpret x:cring poly-ring R
    using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
    show ?case using empty by (simp add:univ-poly-zero)
next
    case (insert x F)
    interpret x:cring poly-ring R
        using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
    have a: degree (fx }\mp@subsup{\oplus}{\mathrm{ poly-ring R finsum (poly-ring R) f F)}\leqn}{n
    using insert poly-add-degree-le x.finsum-closed by auto
    show ?case using insert a by auto
qed
definition (in ring) lagrange-basis-polynomial-aux where
    lagrange-basis-polynomial-aux S=
```



```
lemma (in domain) lagrange-aux-eval:
    assumes finite S
    assumes S\subseteqcarrier R
    assumes x \in carrier R
    shows (eval (lagrange-basis-polynomial-aux S) x) =(囚s\inS.x\ominuss)
proof -
    interpret x:ring-hom-cring poly-ring R R ( }\lambda\mathrm{ p. eval p x)
        by (rule eval-cring-hom[OF carrier-is-subring assms(3)])
    have \bigwedgea. }\\inS\LongrightarrowX\mp@subsup{\ominus}{\mathrm{ poly-ring R poly-of-const a }\in\operatorname{carrier (poly-ring R)}}{\mathrm{ ( }
    by (meson poly-of-const-in-carrier carrier-is-subring assms(2) cring.cring-simprules(4)
                domain-def subsetD univ-poly-is-domain var-closed(1))
    moreover have \}\s.s\inS\Longrightarroweval (X Ө poly-ring R poly-of-const s) x=x\ominus
        using assms var-closed carrier-is-subring poly-of-const-in-carrier subsetD[OF
assms(2)]
    by (simp add:eval-var eval-poly-of-const)
    moreover have a-minus R x GS->carrier R
    using assms by blast
    ultimately show ?thesis
    by (simp add:lagrange-basis-polynomial-aux-def x.hom-finprod cong:finprod-cong')
qed
lemma (in domain) lagrange-aux-poly:
    assumes finite S
    assumes S\subseteqcarrier R
    shows lagrange-basis-polynomial-aux S carrier (poly-ring R)
```

```
proof -
    have a:subring (carrier R)R
        using carrier-is-subring assms by blast
    have b: \bigwedgea.a 
            by (meson poly-of-const-in-carrier a assms(2) cring.cring-simprules(4) do-
main-def subsetD
            univ-poly-is-domain var-closed(1))
    interpret x:cring poly-ring R
        using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
    show ?thesis
        using lagrange-basis-polynomial-aux-def b x.finprod-closed[OF Pi-I] by simp
qed
lemma (in domain) poly-prod-degree-le:
    assumes finite }
    assumes }\x.x\inA\Longrightarrowfx\incarrier (poly-ring R
    shows degree (finprod (poly-ring R) fA) \leq (\sumx\inA. degree (fx))
    using assms
proof (induct A rule:finite-induct)
    case empty
    interpret x:cring poly-ring R
        using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
    show ?case by (simp add:univ-poly-one)
next
    case (insert x F)
    interpret x:cring poly-ring R
        using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
    have a:f f F Carrier (poly-ring R)
        using insert by blast
    have b:f x carrier (poly-ring R)
        using insert by blast
```



```
finprod (poly-ring R)fF)
    using a b insert by simp
    also have ... \leq degree (fx) + degree (finprod (poly-ring R)fF)
    using poly-mult-degree-le x.finprod-closed[OF a] b by auto
    also have ... \leq degree (fx) + (\sumy \inF. degree (fy))
    using insert(3) a add-mono by auto
    also have \ldots. = (\sumy\in(insert x F). degree (fy)) using insert by simp
    finally show ?case by simp
qed
lemma (in domain) lagrange-aux-degree:
    assumes finite S
    assumes S\subseteqcarrier R
    shows degree (lagrange-basis-polynomial-aux S) \leq card S
```

```
proof -
```

 interpret x:cring poly-ring \(R\)
 using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
 have degree \(X \leq 1\) by (simp add:var-def)
 moreover have \(\bigwedge y . y \in S \Longrightarrow\) degree (poly-of-const \(y\)) \(\leq 1\) by (simp add:poly-of-const-def)
 ultimately have \(a: \bigwedge y . y \in S \Longrightarrow\) degree \(\left(X \ominus_{\text {poly-ring }} R\right.\) poly-of-const \(\left.y\right) \leq 1\)
 by (meson assms(2) in-mono poly-of-const-in-carrier poly-sub-degree-le var-closed[OF
 carrier-is-subring])
have $b: \bigwedge y . y \in S \Longrightarrow\left(X \ominus_{\text {poly-ring }} R\right.$ poly-of-const $\left.y\right) \in$ carrier (poly-ring $\left.R\right)$
by (meson subsetD x.minus-closed var-closed (1)[OF carrier-is-subring] poly-of-const-in-carrier
assms(2))
have degree (lagrange-basis-polynomial-aux $S) \leq\left(\sum y \in S\right.$. degree $\left(X \ominus_{\text {poly-ring }} R\right.$ poly-of-const y))
using lagrange-basis-polynomial-aux-def b poly-prod-degree-le[OF assms(1)] by auto
also have $\ldots \leq\left(\sum y \in S .1\right)$
using sum-mono a by force
also have $\ldots=\operatorname{card} S$ by simp
finally show ?thesis by simp
qed
definition (in ring) lagrange-basis-polynomial where
lagrange-basis-polynomial $S x=$ lagrange-basis-polynomial-aux S
$\otimes_{\text {poly-ring } R}\left(\right.$ poly-of-const $\left(\right.$ inv $\left.\left._{R}(\otimes s \in S . x \ominus s)\right)\right)$
lemma (in field)
assumes finite S
assumes $S \subseteq$ carrier R
assumes $x \in$ carrier $R-S$
shows
lagrange-one: eval (lagrange-basis-polynomial $S x$) $x=\mathbf{1}$ and
lagrange-degree: degree (lagrange-basis-polynomial $S x$) \leq card S and
lagrange-zero: $\bigwedge s . s \in S \Longrightarrow$ eval (lagrange-basis-polynomial $S x$) $s=\mathbf{0}$ and
lagrange-poly: lagrange-basis-polynomial $S x \in \operatorname{carrier}$ (poly-ring R)
proof -
interpret x :ring-hom-cring poly-ring $R \quad(\lambda p$. eval $p x)$
using assms carrier-is-subring eval-cring-hom by blast
define p where $p=$ lagrange-basis-polynomial-aux S
have a:eval $p x=(\otimes s \in S . x \ominus s)$
using assms by (simp add:p-def lagrange-aux-eval)
have $b: p \in$ carrier (poly-ring R) using assms
by (simp add:p-def lagrange-aux-poly)
have $\bigwedge y . y \in S \Longrightarrow a$-minus $R x y \in \operatorname{carrier} R$
using assms by blast
hence $c:$ finprod R (a-minus $R x) S \in$ Units R
using finprod-closed $[$ OF Pi-I] assms
by (auto simp add:field-Units finprod-zero-iff)
have eval (lagrange-basis-polynomial $S x$) $x=$
$(\otimes s \in S . x \ominus s) \otimes$ eval (poly-of-const (inv finprod $R(a-m i n u s ~ R x) S)) x$
using poly-of-const-in-carrier Units-inv-closed c p-def[symmetric]
by (simp add: lagrange-basis-polynomial-def x.hom-mult[OF b] a)
also have $\ldots=1$
using poly-of-const-in-carrier Units-inv-closed c eval-poly-of-const by simp finally show eval (lagrange-basis-polynomial $S x$) $x=\mathbf{1}$ by simp
have degree (lagrange-basis-polynomial $S x$) \leq degree $p+$ degree (poly-of-const (inv finprod R (a-minus $R x) S$)
unfolding lagrange-basis-polynomial-def p-def[symmetric]
using poly-mult-degree-le[OF b] poly-of-const-in-carrier Units-inv-closed c by auto
also have $\ldots \leq \operatorname{card} S+0$
using add-mono lagrange-aux-degree[OF assms(1) assms(2)] p-def poly-of-const-def by auto
finally show degree (lagrange-basis-polynomial $S x$) \leq card S by simp
show $\bigwedge s . s \in S \Longrightarrow$ eval (lagrange-basis-polynomial $S x$) $s=\mathbf{0}$
proof -
fix s
assume $d: s \in S$
interpret s:ring-hom-cring poly-ring R (λ p. eval $p s$)
using eval-cring-hom carrier-is-subring assms d by blast
have eval $p s=$ finprod $R(a-m i n u s R s) S$
using subsetD[OF assms(2) d] assms
by (simp add:p-def lagrange-aux-eval)
also have $\ldots=0$
using subsetD[OF assms(2)] d assms by (simp add: finprod-zero-iff)
finally have eval $p s=\mathbf{0}_{R}$ by simp
moreover have eval (poly-of-const (inv finprod $R(a-m i n u s ~ R x) S)) s \in$ carrier R using s.hom-closed poly-of-const-in-carrier Units-inv-closed ch blast
ultimately show eval (lagrange-basis-polynomial $S x$) $s=\mathbf{0}$
using poly-of-const-in-carrier Units-inv-closed c
by (simp add:lagrange-basis-polynomial-def Let-def p-def[symmetric] s.hom-mult[OF b])
qed
interpret r :cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
show lagrange-basis-polynomial $S x \in$ carrier (poly-ring R)
using lagrange-basis-polynomial-def p-def[symmetric] poly-of-const-in-carrier
Units-inv-closed
abc by simp
qed
definition (in ring) interpolate where
interpolate $S f=$
$\left(\bigoplus_{\text {poly-ring }} R^{s} \in S\right.$. lagrange-basis-polynomial $(S-\{s\}) s \otimes_{\text {poly-ring } R}$ (poly-of-const $(f s))$)

Let f be a function and S be a finite subset of the domain of the field. Then interpolate $S f$ will return a polynomial with degree less than card S interpolating f on S.

```
theorem (in field)
    assumes finite S
    assumes S\subseteqcarrier R
    assumes f'S\subseteqcarrier R
    shows
        interpolate-poly: interpolate S f\incarrier (poly-ring R) and
        interpolate-degree:degree (interpolate S f) \leq card S-1 and
        interpolate-eval: \s. s\inS\Longrightarrow eval (interpolate S f) s=fs
proof -
    interpret r:cring poly-ring R
        using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
```

 have \(a: \bigwedge x . x \in S \Longrightarrow\) lagrange-basis-polynomial \((S-\{x\}) x \in\) carrier (poly-ring
 R)
by (meson lagrange-poly assms Diff-iff finite-Diff in-mono insertI1 subset-insertI2
subset-insert-iff)
have $b: \wedge x . x \in S \Longrightarrow f x \in$ carrier R using assms by blast
have $c: \wedge x . x \in S \Longrightarrow$ degree (lagrange-basis-polynomial $(S-\{x\}) x) \leq$ card S

- 1
by (metis (full-types) lagrange-degree DiffI Diff-insert-absorb assms(1) assms(2)
card-Diff-singleton finite-insert insert-subset mk-disjoint-insert)
have $d: \wedge x . x \in S \Longrightarrow$
degree (lagrange-basis-polynomial $(S-\{x\}) x \otimes_{\text {poly-ring } R}$ poly-of-const $\left.(f x)\right)$
$\leq(\operatorname{card} S-1)+0$
using poly-of-const-in-carrier[OF b] poly-mult-degree-le[OF a] c poly-of-const-def
by fastforce
show interpolate $S f \in$ carrier (poly-ring R)
using interpolate-def poly-of-const-in-carrier a b by simp

```
    show degree (interpolate Sf) \leq card S - 1
    using poly-sum-degree-le[OF assms(1) d] poly-of-const-in-carrier[OF b] inter-
polate-def a by simp
    have e:subring (carrier R) R
    using carrier-is-subring assms by blast
    show \s. s\inS\Longrightarrow eval (interpolate Sf) s=fs
    proof -
    fix }
    assume f:s }\in
    interpret s:ring-hom-cring poly-ring R R ( }\lambda\mathrm{ p. eval p s)
        using eval-cring-hom[OF e] assms }f\mathrm{ by blast
    have g:\bigwedgei. i\inS\Longrightarrow
        eval (lagrange-basis-polynomial (S - {i})i }\mp@subsup{\otimes}{\mathrm{ poly-ring R poly-of-const (f i))}}{\mathrm{ ( }
s=
        (if s=i then fs else 0)
    proof -
        fix }
        assume i-in-S:i\inS
        have eval (lagrange-basis-polynomial (S - {i}) i \otimes poly-ring R poly-of-const ( }
i)) }s
            eval (lagrange-basis-polynomial (S-{i})i)s\otimesfi
            using b i-in-S poly-of-const-in-carrier
            by (simp add: s.hom-mult[OF a] eval-poly-of-const)
        also have ... = (if s=i then fs else 0)
            using b i-in-S poly-of-const-in-carrier assms f
            apply (cases s=i, simp, subst lagrange-one, auto)
            by (subst lagrange-zero, auto)
        finally show
            eval (lagrange-basis-polynomial (S - {i}) i * #poly-ring R poly-of-const (f i))
s=
            (if s=i then fs else 0) by simp
        qed
    have eval (interpolate Sf) s=
    (\bigoplusx\inS. eval (lagrange-basis-polynomial }(S-{x})x\mp@subsup{\otimes}{poly-ring R poly-of-const}{
(fx)) s)
        using poly-of-const-in-carrier[OF b] a e
        by (simp add: interpolate-def s.hom-finsum[OF Pi-I] comp-def)
    also have ... = (\bigoplusx\inS. if s=x then f s else 0)
        using b g by (simp cong: finsum-cong)
    also have ... = fs
        using finsum-singleton[OF f assms(1)] f assms by auto
    finally show eval (interpolate Sf)s=fs by simp
    qed
qed
```

end

3 Cardinalities of Interpolation Polynomials

This section establishes the cardinalities of the set of polynomials with a degree bound interpolating a given set of points.
theory Interpolation-Polynomial-Cardinalities
imports Bounded-Degree-Polynomials Lagrange-Interpolation
begin
lemma (in ring) poly-add-coeff:
assumes $x \in$ carrier (poly-ring R)
assumes $y \in$ carrier (poly-ring R)
shows coeff $\left(x \oplus_{\text {poly-ring }} R y\right) k=$ coeff $x k \oplus$ coeff $y k$
by (metis assms univ-poly-carrier polynomial-incl univ-poly-add poly-add-coeff)
lemma (in domain) poly-neg-coeff:
assumes $x \in$ carrier (poly-ring R)
shows coeff $\left(\ominus_{\text {poly-ring }} R x\right) k=\ominus$ coeff $x k$
proof -
interpret x :cring poly-ring R
using assms cring-def carrier-is-subring domain.univ-poly-is-cring domain-axioms
by auto
have $a: \mathbf{0}_{\text {poly-ring }} R=x \ominus_{\text {poly-ring }} R^{x}$
by (metis x.r-right-minus-eq assms(1))
have $\mathbf{0}=$ coeff $\left(\mathbf{0}_{\text {poly-ring } R}\right) k$ by (simp add:univ-poly-zero)
also have $\ldots=$ coeff $x k \oplus$ coeff $\left(\ominus_{\text {poly-ring }} R x\right) k$ using a assms
by (simp add:a-minus-def poly-add-coeff)
finally have $\mathbf{0}=$ coeff $x k$ coeff $\left(\ominus_{\text {poly-ring }} R x\right) k$ by simp
thus ?thesis
by (metis local.minus-minus x.a-inv-closed sum-zero-eq-neg coeff-in-carrier assms)
qed
lemma (in domain) poly-substract-coeff:
assumes $x \in$ carrier (poly-ring R)
assumes $y \in$ carrier (poly-ring R)
shows coeff $\left(x \ominus_{\text {poly-ring }} R y\right) k=$ coeff $x k \ominus$ coeff $y k$
proof -
interpret x :cring poly-ring R
using assms cring-def carrier-is-subring domain.univ-poly-is-cring domain-axioms
by auto
show ?thesis
using assms by (simp add:a-minus-def poly-add-coeff poly-neg-coeff)
qed

A polynomial with more zeros than its degree is the zero polynomial.

```
lemma (in field) max-roots:
    assumes \(p \in\) carrier (poly-ring \(R\) )
    assumes \(K \subseteq\) carrier \(R\)
    assumes finite \(K\)
    assumes degree \(p<\) card \(K\)
    assumes \(\bigwedge x . x \in K \Longrightarrow\) eval \(p x=\mathbf{0}\)
    shows \(p=\mathbf{0}_{\text {poly-ring } R}\)
proof (rule ccontr)
    assume \(p \neq \mathbf{0}_{\text {poly-ring }} R\)
    hence \(a: p \neq[]\) by (simp add: univ-poly-zero)
    have \(\wedge x\). count (mset-set \(K\) ) \(x \leq\) count (roots \(p\) ) \(x\)
    proof -
        fix \(x\)
        show count (mset-set \(K\) ) \(x \leq\) count (roots \(p\) ) \(x\)
        proof (cases \(x \in K\) )
            case True
            hence \(i s\)-root \(p x\)
                by (meson a assms \((2,5)\) is-ring is-root-def subsetD)
        hence \(x \in\) set-mset (roots \(p\) )
            using assms(1) roots-mem-iff-is-root field-def by force
            hence \(1 \leq\) count (roots \(p\) ) \(x\) by simp
            moreover have count (mset-set \(K\) ) \(x=1\) using True assms(3) by simp
            ultimately show ?thesis by presburger
        next
            case False
            hence count (mset-set \(K\) ) \(x=0\) by simp
            then show ?thesis by presburger
        qed
    qed
    hence mset-set \(K \subseteq \#\) roots \(p\)
    by (simp add: subseteq-mset-def)
    hence card \(K \leq\) size (roots \(p\) )
        by (metis size-mset-mono size-mset-set)
    moreover have size (roots \(p\) ) \(\leq\) degree \(p\)
        using a size-roots-le-degree assms by auto
    ultimately show False using assms(4)
        by (meson leD less-le-trans)
qed
definition (in ring) split-poly
    where split-poly \(K p=(\) restrict \((\) eval \(p) K, \lambda k\). coeff \(p(k+\) card \(K))\)
```

To establish the count of the number of polynomials of degree less than n interpolating a function f on K where $|K| \leq n$, the function split-poly K establishes a bijection between the polynomials of degree less than n and the values of the polynomials on K in combination with the coefficients of order $|K|$ and greater.

For the injectivity: Note that the difference of two polynomials whose coefficients of order $|K|$ and larger agree must have a degree less than $|K|$ and because their values agree on k points, it must have $|K|$ zeros and hence is the zero polynomial.
For the surjectivty: Let p be a polynomial whose coefficients larger than $|K|$ are chosen, and all other coefficients be 0 . Now it is possible to find a polynomial q interpolating $f-p$ on K using Lagrange interpolation. Then $p+q$ will interpolate f on K and because the degree of q is less than $|K|$ its coefficients of order $|K|$ will be the same as those of p.
A tempting question is whether it would be easier to instead establish a bijection between the polynomials of degree less than n and its values on $K \cup K^{\prime}$ where K^{\prime} are arbitrarily chosen $n-|K|$ points in the field. This approach is indeed easier, however, it fails for the case where the size of the field is less than n.

```
lemma (in field) split-poly-inj:
    assumes finite K
    assumes K\subseteqcarrier R
    shows inj-on (split-poly K) (carrier (poly-ring R))
proof
    fix }
    fix y
    assume a1:x \in carrier (poly-ring R)
    assume a2:y \in carrier (poly-ring R)
    assume a3:split-poly K x = split-poly K y
    interpret x:cring poly-ring R
        using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
    have x-y-carrier: x Ө 年ly-ring R}y\incarrier (poly-ring R) using a1 a2 by simp
    have }\k.\mathrm{ coeff }x(k+\mathrm{ card K) = coeff y ( k+card K)
        using a3 by (simp add:split-poly-def, meson)
    hence }\k.\mathrm{ coeff (x Ө poly-ring R y) (k+card K) = 0
        using coeff-in-carrier a1 a2 by (simp add:poly-substract-coeff)
    hence degree ( }x\mp@subsup{\ominus}{\mathrm{ poly-ring R }}{\mathrm{ L}
        by (metis poly-degree-bound-from-coeff add.commute le-iff-add x-y-carrier)
    moreover have }\k.k\inK\Longrightarrow\mathrm{ eval x }k=\mathrm{ eval y }
        using a3 by (simp add:split-poly-def restrict-def, meson)
    hence }\k.k\inK\Longrightarrow\mathrm{ eval x k }\ominus\mathrm{ eval y k=0
        by (metis eval-in-carrier univ-poly-carrier polynomial-incl a1 assms(2) in-mono
r-right-minus-eq)
    hence }\k.k\inK\Longrightarrow\mathrm{ eval ( }x\mp@subsup{\ominus}{\mathrm{ poly-ring R }}{
        using a1 a2 subsetD[OF assms(2)] carrier-is-subring
        by (simp add: ring-hom-cring.hom-sub[OF eval-cring-hom])
    ultimately have }x\mp@subsup{\ominus}{\mathrm{ poly-ring }R}{}y=\mp@subsup{\mathbf{0}}{\mathrm{ poly-ring }}{}
        using max-roots x-y-carrier assms by blast
    then show }x=
```

using x.r-right-minus-eq[OF a1 a2] by simp
qed
lemma (in field) split-poly-image:
assumes finite K
assumes $K \subseteq$ carrier R
shows split-poly K 'carrier (poly-ring R) \supseteq
$\left(K \rightarrow_{E}\right.$ carrier $\left.R\right) \times\left\{f\right.$. range $f \subseteq$ carrier $\left.R \wedge\left(\exists n . \forall k \geq n . f k=\mathbf{0}_{R}\right)\right\}$
proof (rule subsetI)
fix x
assume $a: x \in\left(K \rightarrow_{E}\right.$ carrier $\left.R\right) \times\{f$. range $f \subseteq$ carrier $R \wedge(\exists(n:: n a t) . \forall k \geq$ n. $f k=\mathbf{0})\}$
have a1: fst $x \in\left(K \rightarrow_{E}\right.$ carrier $\left.R\right)$
using a by (simp add:mem-Times-iff)
obtain n where a2: snd $x \in\{f$. range $f \subseteq$ carrier $R \wedge(\forall k \geq n$.f $k=\mathbf{0})\}$ using a mem-Times-iff by force
have a3: $\bigwedge y$. snd $x y \in$ carrier R using a2 by blast
define w where $w=$ build-poly $(\lambda i$. if $i \geq$ card K then $(\operatorname{snd} x(i-\operatorname{card} K))$ else 0) (card $K+n)$
have w-carr: $w \in$ carrier (poly-ring R)
unfolding w-def by (rule build-poly-poly, simp add:a3)
have w-eval-range: $\bigwedge x . x \in$ carrier $R \Longrightarrow$ local.eval $w x \in$ carrier R
proof -
fix x
assume w-eval-range-1:x \in carrier R
interpret x:ring-hom-cring poly-ring R (λ p. eval $p x$)
using eval-cring-hom [OF carrier-is-subring] assms w-eval-range-1 by blast
show eval $w x \in$ carrier R
by (rule x.hom-closed $[$ OF w-carr $]$)
qed
interpret r :cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
define y where $y=$ interpolate $K(\lambda k$. fst $x k \ominus$ eval $w k)$
define r where $r=y \oplus_{\text {poly-ring }} R w$
have x-minus-w-in-carrier: $\bigwedge z . z \in K \Longrightarrow f s t x z$ eval $w z \in$ carrier R
using a1 PiE-def Pi-def minus-closed subsetD[OF assms(2)] w-eval-range by auto
have y-poly: $y \in$ carrier (poly-ring R) unfolding y-def
using x-minus-w-in-carrier interpolate-poly[OF assms(1) assms(2)] image-subsetI by force
have y-degree: degree $y \leq$ card $K-1$
unfolding y-def
using x-minus-w-in-carrier interpolate-degree $[$ OF assms(1) assms(2)] image-subsetI by force
have y-len: length $y \leq$ card K
proof (cases $K=\{ \}$)
case True
then show ?thesis
by (simp add:y-def interpolate-def univ-poly-zero)
next
case False
then show ?thesis
by (metis y-degree Suc-le-D assms(1) card-gt-0-iff diff-Suc-1 not-less-eq-eq order.strict-iff-not)
qed
have r-poly: $r \in$ carrier (poly-ring R)
using r-def y-poly w-carr by simp
have coeff- r : $\bigwedge k$. coeff $r(k+\operatorname{card} K)=\operatorname{snd} x k$
proof -
fix $k::$ nat
have y-len': length $y \leq k+$ card K using y-len trans-le-add2 by blast
have coeff $r(k+$ card $K)=$ coeff $y(k+$ card $K) \oplus$ coeff $w(k+$ card $K)$
by (simp add:r-def poly-add-coeff[OF y-poly w-carr])
also have $\ldots=\mathbf{0} \oplus$ coeff $w(k+$ card $K)$
using coeff-length[OF y-len $]$ by simp
also have $\ldots=$ coeff $w(k+$ card $K)$
using coeff-in-carrier[OF w-carr] by simp
also have $\ldots=\operatorname{snd} x k$
using a2 by (simp add:w-def build-poly-coeff not-less)
finally show coeff $r(k+\operatorname{card} K)=\operatorname{snd} x k$ by simp
qed
have eval-r: $\bigwedge k . k \in K \Longrightarrow$ eval $r k=$ fst $x k$
proof -
fix k
assume $b: k \in K$
interpret s:ring-hom-cring poly-ring R (λ p. eval $p k)$
using eval-cring-hom[OF carrier-is-subring] assms b by blast
have k-carr: $k \in$ carrier R using assms(2) b by blast
have fst-x-k-carr: $\bigwedge k . k \in K \Longrightarrow f s t x k \in$ carrier R using a1 PiE-def Pi-def by blast
have eval $r k=$ eval $y \in$ eval $w k$ using y-poly w-carr by (simp add:r-def)
also have $\ldots=$ fst $x k$ local.eval $w k \oplus$ local.eval $w k$
using assms b x-minus-w-in-carrier
by (simp add:y-def interpolate-eval[OF - image-subsetI])

```
    also have ... = fst x k\oplus(\ominus local.eval w k\oplus local.eval w k)
        using fst-x-k-carr[OF b] w-eval-range[OF k-carr]
        by (simp add:a-minus-def a-assoc)
    also have ... = fst x k
        using fst-x-k-carr[OF b] w-eval-range[OF k-carr]
        by (simp add:a-comm r-neg)
    finally show eval rk=fst x k by simp
qed
have r (carrier (poly-ring R))
    by (metis r-poly)
moreover have }\y.(\mathrm{ if }y\inK\mathrm{ then eval r y else undefined) = fst x y
    using a1 eval-r PiE-E by auto
hence split-poly Kr=x
    by (simp add:split-poly-def prod-eq-iff coeff-r restrict-def)
ultimately show }x\in\mathrm{ split-poly K'(carrier (poly-ring R))
    by blast
qed
```

This is like card-vimage-inj but supports inj-on instead.

```
lemma card-vimage-inj-on:
    assumes inj-on \(f B\)
    assumes \(A \subseteq f^{\prime} B\)
    shows \(\operatorname{card}(f-‘ A \cap B)=\operatorname{card} A\)
proof -
    have \(A=f^{`}(f-` A \cap B)\) using assms(2) by auto
    thus ?thesis using assms card-image
        by (metis inf-le2 inj-on-subset)
qed
lemma inv-subsetI:
    assumes \(\bigwedge x . x \in A \Longrightarrow f x \in B \Longrightarrow x \in C\)
    shows \(f-{ }^{\prime} B \cap A \subseteq C\)
    using assms by force
```

The following establishes the main result of this section: There are $|F|^{n-k}$ polynomials of degree less than n interpolating $k \leq n$ points.

```
lemma restrict-eq-imp:
    assumes restrict \(f A=\) restrict \(g A\)
    assumes \(x \in A\)
    shows \(f x=g x\)
    by (metis restrict-def assms)
theorem (in field) interpolating-polynomials-card:
    assumes finite \(K\)
    assumes \(K \subseteq\) carrier \(R\)
    assumes \(f^{\prime} K \subseteq\) carrier \(R\)
    shows card \(\{\omega \in\) bounded-degree-polynomials \(R\) (card \(K+n) .(\forall k \in K\). eval \(\omega\)
\(k=f k)\}=\operatorname{card}(\) carrier \(R){ }^{\wedge} n\)
```

(is card ? $A=? B$)
proof -
define z where $z=$ restrict $f K$
define M where $M=\{f$. range $f \subseteq$ carrier $R \wedge(\forall k \geq n$. $f k=\mathbf{0})\}$
hence inj-on-bounded: inj-on (split-poly K) (carrier (poly-ring R))
using split-poly-inj[OF assms(1) assms(2)] by blast
have ? A \subseteq split-poly $K-‘(\{z\} \times M)$ unfolding split-poly-def z-def M-def bounded-degree-polynomials-length by (rule subsetI, auto intro!:coeff-in-carrier coeff-length)
moreover have ?A \subseteq carrier (poly-ring R)
unfolding bounded-degree-polynomials-length by blast
ultimately have $a: ? A \subseteq$ split-poly $K-‘(\{z\} \times M) \cap$ carrier (poly-ring R) by blast
have $\bigwedge x k .(\lambda k$. coeff $x(k+$ card $K)) \in M \Longrightarrow k \geq n+$ card $K \Longrightarrow$ coeff $x k$ $=0$
by (simp add:M-def, metis Nat.le-diff-conv2 Nat.le-imp-diff-is-add add-leD2)
hence split-poly $K-{ }^{\prime}(\{z\} \times M) \cap$ carrier $($ poly-ring $R) \subseteq$ bounded-degree-polynomials
$R(\operatorname{card} K+n)$
unfolding split-poly-def z-def using poly-degree-bound-from-coeff-1 inv-subsetI
by force
moreover have $\Lambda \omega k . \omega \in$ split-poly $K-‘(\{z\} \times M) \cap$ carrier (poly-ring R)
$\Longrightarrow k \in K \Longrightarrow$ eval $\omega k=f k$
unfolding split-poly-def z-def using restrict-eq-imp by fastforce
ultimately have b:split-poly $K-{ }^{\prime}(\{z\} \times M) \cap$ carrier $($ poly-ring $R) \subseteq$? A
by blast
have $z \in K \rightarrow_{E}$ carrier R
unfolding z-def using assms(3) by auto
moreover have $M \subseteq\{f$. range $f \subseteq$ carrier $R \wedge(\exists n .(\forall k \geq n . f k=\mathbf{0}))\}$ unfolding M-def by blast
ultimately have $c:\{z\} \times M \subseteq$ split-poly K ' carrier (poly-ring R)
using split-poly-image $[O F$ assms(1) assms(2)] by fast
have card ? A $=$ card $($ split-poly $K-‘(\{z\} \times M) \cap \operatorname{carrier}($ poly-ring $R))$
using order-antisym $[O F a b]$ by simp
also have $\ldots=\operatorname{card}(\{z\} \times M)$
using card-vimage-inj-on[OF inj-on-bounded] c by blast
also have $\ldots=\operatorname{card}($ carrier $R) \uparrow n$
by (simp add:card-cartesian-product M-def card-mostly-constant-maps)
finally show ?thesis by simp
qed
A corollary is the classic result [1, Theorem 7.15] that there is exactly one polynomial of degree less than n interpolating n points:
corollary (in field) interpolating-polynomial-one:
assumes finite K

```
    assumes \(K \subseteq\) carrier \(R\)
    assumes \(f^{\prime} K \subseteq\) carrier \(R\)
    shows card \(\{\omega \in\) bounded-degree-polynomials \(R\) (card \(K) .(\forall k \in K\). eval \(\omega k=\)
\(f k)\}=1\)
    using interpolating-polynomials-card[OF assms(1) assms(2) assms(3), where
\(n=0\) ]
    by \(\operatorname{simp}\)
```

In the case of fields with infinite carriers, it is possible to conclude that there are infinitely many polynomials of degree less than n interpolating $k<n$ points.

```
corollary (in field) interpolating-polynomial-inf:
    assumes infinite (carrier \(R\) )
    assumes finite \(K K \subseteq\) carrier \(R f^{\text {' }} K \subseteq\) carrier \(R\)
    assumes \(n>0\)
    shows infinite \(\{\omega \in\) bounded-degree-polynomials \(R\) (card \(K+n) .(\forall k \in K\). eval
\(\omega k=f k)\}\)
            (is infinite? A)
proof -
    have \(\} \subset\{\omega \in\) bounded-degree-polynomials \(R(\) card \(K) .(\forall k \in K\). eval \(\omega k=f\)
k) \(\}\)
            using interpolating-polynomial-one[OF assms(2) assms(3) assms(4)] by fast-
force
    also have \(\ldots \subseteq\) ? \(A\)
            unfolding bounded-degree-polynomials-def by auto
    finally have \(a: ? A \neq\{ \}\) by auto
    have card ? \(A=\operatorname{card}(\operatorname{carrier} R) \widehat{n}\)
            using interpolating-polynomials-card \([\) OF \(\operatorname{assms}(2) \operatorname{assms}(3) \operatorname{assms}(4)\), where
\(n=n\) ] by \(\operatorname{simp}\)
    also have...\(=0\)
            using \(\operatorname{assms}(1) \operatorname{assms}(5)\) by \(\operatorname{simp}\)
    finally have \(b:\) card ? \(A=0\) by \(\operatorname{simp}\)
    show ?thesis using a b card-0-eq by blast
qed
```

The following is an additional independent result: The evaluation homomorphism is injective for degree one polynomials.
lemma (in field) eval-inj-if-degree-1:
assumes $p \in$ carrier (poly-ring R) degree $p=1$
shows inj-on (eval p) (carrier R)
proof -
obtain $u v$ where p-def: $p=[u, v]$ using assms
by (cases p, cases (tl p), auto)
have $u \in$ carrier $R-\{\mathbf{0}\}$ using p-def assms by blast
moreover have $v \in$ carrier R using p-def assms by blast
ultimately show ?thesis by (simp add:p-def field-Units inj-on-def)

References

[1] V. Shoup. A Computational Introduction to Number theory and Algebra. Cambridge university press, 2009.
[2] R. Thiemann and A. Yamada. Polynomial interpolation. Archive of Formal Proofs, Jan. 2016. https://isa-afp.org/entries/Polynomial Interpolation.html, Formal proof development.

