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Abstract

In a previous paper of mine, the notion of termination-sensitive
information flow security with respect to a level-based interference re-
lation, as studied by Volpano, Smith, and Irvine and formalized in
Nipkow and Klein’s book on formal programming language seman-
tics (in the version of February 2023), is generalized to the notion of
termination-sensitive information flow correctness with respect to an
interference function mapping program states to (generally) intransi-
tive interference relations.

This paper extends both the aforesaid information flow correctness
criterion and the related static type system to the case of an impera-
tive programming language supporting inputs, outputs, and nondeter-
minism. Regarding inputs and nondeterminism, Volpano, Smith, and
Irvine observe that their soundness theorem no longer holds if their
core language is extended with these features. This paper shows that
the difficulty can be solved by extending the inductive definition of
the language’s operational semantics, which enables to apply a suit-
ably extended information flow correctness criterion based on stateful
intransitive noninterference, as well as an extended static type system
enforcing this criterion, to such an extended programming language.
Although an extension with inputs, outputs, and nondeterminism of
the didactic programming language IMP employed in the book is used
for this purpose, the introduced concepts apply to larger, real-world
imperative programming languages as well.
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1 Extension of language IMP with inputs, out-
puts, and nondeterminism

theory Small-Step
imports

HOL−IMP.BExp
HOL−IMP.Star

begin

In a previous paper of mine [10], the notion of termination-sensitive infor-
mation flow security with respect to a level-based interference relation, as
studied in [12], [11] and formalized in [8], is generalized to the notion of
termination-sensitive information flow correctness with respect to an inter-
ference function mapping program states to (generally) intransitive interfer-
ence relations. Moreover, a static type system is specified and is proven to
be capable of enforcing such information flow correctness policies.
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The present paper extends both the aforesaid information flow correctness
criterion and the related static type system to the case of an imperative
programming language supporting inputs, outputs, and nondeterminism.
Regarding inputs and nondeterminism, [12], section 7.1, observes that “if we
try to extend the core language with a primitive random number generator
rand( ) and allow an assignment such as z := rand( ) to be well typed when z
is low, then the soundness theorem no longer holds”, and from this infers that
“new security models [...] should be explored as potential notions of type
soundness for new type systems that deal with nondeterministic programs”.
The present paper shows that this difficulty can be solved by extending the
inductive definition of the programming language’s operational semantics so
as to reflect the fact that, even though the input instruction z := rand( )
may set z to an arbitrary input value, the same program state is produced
whenever the input value is the same. As shown in this paper, this enables
to apply a suitably extended information flow correctness criterion based
on stateful intransitive noninterference, as well as an extended static type
system enforcing this criterion, to such an extended programming language.
The didactic imperative programming language IMP employed in [8], ex-
tended with an input instruction, an output instruction, and a control struc-
ture allowing for nondeterministic choice, will be used for this purpose. Yet,
in the same way as in my previous paper [10], the introduced concepts are
applicable to larger, real-world imperative programming languages, too, by
just affording the additional type system complexity arising from richer lan-
guage constructs.
For further information about the formal definitions and proofs contained
in this paper, refer to Isabelle documentation, particularly [9], [4], [2], [3],
and [1].
As mentioned above, the first task to be tackled, which is the subject of
this section, consists of extending the original syntax, big-step operational
semantics, and small-step operational semantics of language IMP, as formal-
ized in [6], [5], and [7], respectively.

1.1 Extended syntax

The starting point is extending the original syntax of language IMP with
the following additional constructs.

• An input instruction IN x, which sets variable x to an input value.

• An output instruction OUT x, which outputs the current value of
variable x.

• A control structure c1 OR c2, which allows for a nondeterministic
choice between commands c1 and c2.
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declare [[syntax-ambiguity-warning = false]]

datatype com =
SKIP |
Assign vname aexp (- ::= - [1000 , 61 ] 70 ) |
Input vname ((IN -) [61 ] 70 ) |
Output vname ((OUT -) [61 ] 70 ) |
Seq com com (-;;/ - [61 , 61 ] 70 ) |
Or com com ((- OR -) [61 , 61 ] 70 ) |
If bexp com com ((IF -/ THEN -/ ELSE -) [0 , 0 , 61 ] 70 ) |
While bexp com ((WHILE -/ DO -) [0 , 61 ] 70 )

1.2 Extended big-step semantics

The original big-step semantics of language IMP associates a pair formed by
a command and an initial program execution stage, consisting of a program
state, with a corresponding final program execution stage, consisting of a
program state as well. The extended big-step semantics defined here below
extends such program execution stage notion by considering, in addition to
a program state, the following additional parameters.

• A stream of input values, consisting of a function f mapping each pair
formed by a variable and a natural number with an integer value, where
f x n is the input value assigned to variable x by an input instruction
IN x after n previous such assignments to x.

• A trace of inputs, consisting of a list vs of pairs formed by a variable
and an integer value, to which a further element (x, i) is appended as
a result of the execution of an input instruction IN x, where i is the
input value assigned to variable x.

• A trace of outputs, consisting of a list ws of pairs formed by a variable
and an integer value, to which a further element (x, i) is appended as
a result of the execution of an output instruction OUT x, where i is
the current value of variable x being output.

Unlike the other components of a program execution stage, the stream of
input values is an invariant of the big-step semantics, and then also of the
small-step semantics defined subsequently, in that any two program execu-
tion stages associated with each other by either semantics share the same
stream of input values.

type-synonym stream = vname ⇒ nat ⇒ val
type-synonym inputs = (vname × val) list
type-synonym outputs = (vname × val) list
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type-synonym stage = state × stream × inputs × outputs

inductive big-step :: com × stage ⇒ stage ⇒ bool
(infix ⇒ 55 ) where

Skip:
(SKIP, p) ⇒ p |

Assign:
(x ::= a, s, p) ⇒ (s(x := aval a s), p) |

Input:
n = length [p←vs. fst p = x] =⇒ (IN x , s, f , vs, ws) ⇒

(s(x := f x n), f , vs @ [(x, f x n)], ws) |
Output:
(OUT x, s, f , vs, ws) ⇒ (s, f , vs, ws @ [(x, s x)]) |

Seq:
[[(c1, p1) ⇒ p2; (c2, p2) ⇒ p3]] =⇒ (c1;; c2, p1) ⇒ p3 |

Or1 :
(c1, p) ⇒ p ′ =⇒ (c1 OR c2, p) ⇒ p ′ |

Or2 :
(c2, p) ⇒ p ′ =⇒ (c1 OR c2, p) ⇒ p ′ |

IfTrue:
[[bval b s; (c1, s, p) ⇒ p ′]] =⇒

(IF b THEN c1 ELSE c2, s, p) ⇒ p ′ |
IfFalse:
[[¬ bval b s; (c2, s, p) ⇒ p ′]] =⇒

(IF b THEN c1 ELSE c2, s, p) ⇒ p ′ |
WhileFalse:
¬ bval b s =⇒ (WHILE b DO c, s, p) ⇒ (s, p) |

WhileTrue:
[[bval b s1; (c, s1, p1) ⇒ (s2, p2);

(WHILE b DO c, s2, p2) ⇒ (s3, p3)]] =⇒
(WHILE b DO c, s1, p1) ⇒ (s3, p3)

declare big-step.intros [intro]

inductive-cases SkipE [elim!]: (SKIP, p) ⇒ p ′

inductive-cases AssignE [elim!]: (x ::= a, p) ⇒ p ′

inductive-cases InputE [elim!]: (IN x , p) ⇒ p ′

inductive-cases OutputE [elim!]: (OUT x, p) ⇒ p ′

inductive-cases SeqE [elim!]: (c1;; c2, p) ⇒ p ′

inductive-cases OrE [elim!]: (c1 OR c2, p) ⇒ p ′

inductive-cases IfE [elim!]: (IF b THEN c1 ELSE c2, p) ⇒ p ′
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inductive-cases WhileE [elim]: (WHILE b DO c, p) ⇒ p ′

1.3 Extended small-step semantics

The original small-step semantics of language IMP associates a pair formed
by a command and a program execution stage, which consists of a program
state, with another such pair, formed by a command to be executed next
and a resulting program execution stage, which consists of a program state
as well. The extended small-step semantics defined here below rather uses
the same extended program execution stage notion as the extended big-step
semantics specified above, and is defined accordingly.

inductive small-step :: com × stage ⇒ com × stage ⇒ bool
(infix → 55 ) where

Assign:
(x ::= a, s, p) → (SKIP, s(x := aval a s), p) |

Input:
n = length [p←vs. fst p = x] =⇒ (IN x , s, f , vs, ws) →

(SKIP, s(x := f x n), f , vs @ [(x, f x n)], ws) |
Output:
(OUT x, s, f , vs, ws) → (SKIP, s, f , vs, ws @ [(x, s x)]) |

Seq1 :
(SKIP;; c2, p) → (c2, p) |

Seq2 :
(c1, p) → (c1 ′, p ′) =⇒ (c1;; c2, p) → (c1 ′;; c2, p ′) |

Or1 :
(c1 OR c2, p) → (c1, p) |

Or2 :
(c1 OR c2, p) → (c2, p) |

IfTrue:
bval b s =⇒ (IF b THEN c1 ELSE c2, s, p) → (c1, s, p) |

IfFalse:
¬ bval b s =⇒ (IF b THEN c1 ELSE c2, s, p) → (c2, s, p) |

WhileFalse:
¬ bval b s =⇒ (WHILE b DO c, s, p) → (SKIP, s, p) |

WhileTrue:
bval b s =⇒ (WHILE b DO c, s, p) → (c;; WHILE b DO c, s, p)

declare small-step.intros [simp, intro]

inductive-cases skipE [elim!]: (SKIP, p) → cf

inductive-cases assignE [elim!]: (x ::= a, p) → cf

inductive-cases inputE [elim!]: (IN x , p) → cf
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inductive-cases outputE [elim!]: (OUT x, p) → cf

inductive-cases seqE [elim!]: (c1;; c2, p) → cf

inductive-cases orE [elim!]: (c1 OR c2, p) → cf

inductive-cases ifE [elim!]: (IF b THEN c1 ELSE c2, p) → cf

inductive-cases whileE [elim]: (WHILE b DO c, p) → cf

abbreviation small-steps :: com × stage ⇒ com × stage ⇒ bool
(infix →∗ 55 ) where

cf →∗ cf ′ ≡ star small-step cf cf ′

function small-stepsl ::
com × stage ⇒ (com × stage) list ⇒ com × stage ⇒ bool
((- →∗ ′{- ′} -) [51 , 51 ] 55 )

where
cf →∗{[]} cf ′ = (cf = cf ′) |
cf →∗{cfs @ [cf ′]} cf ′′ = (cf →∗{cfs} cf ′ ∧ cf ′→ cf ′′)

by (atomize-elim, auto intro: rev-cases)
termination by lexicographic-order

1.4 Equivalence of big-step and small-step semantics
lemma star-seq2 :
(c1, p) →∗ (c1 ′, p ′) =⇒ (c1;; c2, p) →∗ (c1 ′;; c2, p ′)

proof (induction rule: star-induct)
case refl
thus ?case

by simp
next

case step
thus ?case

by (blast intro: star .step)
qed

lemma seq-comp:
[[(c1, p1) →∗ (SKIP, p2); (c2, p2) →∗ (SKIP, p3)]] =⇒

(c1;; c2, p1) →∗ (SKIP, p3)
by (blast intro: star .step star-seq2 star-trans)

lemma big-to-small:
cf ⇒ p =⇒ cf →∗ (SKIP, p)

proof (induction rule: big-step.induct)
fix c1 c2 p1 p2 p3

assume (c1, p1) →∗ (SKIP, p2) and (c2, p2) →∗ (SKIP, p3)
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thus (c1;; c2, p1) →∗ (SKIP, p3)
by (rule seq-comp)

next
fix c1 c2 p p ′

assume (c1, p) →∗ (SKIP, p ′)
thus (c1 OR c2, p) →∗ (SKIP, p ′)

by (blast intro: star .step)
next

fix c1 c2 p p ′

assume (c2, p) →∗ (SKIP, p ′)
thus (c1 OR c2, p) →∗ (SKIP, p ′)

by (blast intro: star .step)
next

fix b c1 c2 s p p ′

assume bval b s
hence (IF b THEN c1 ELSE c2, s, p) → (c1, s, p)

by simp
moreover assume (c1, s, p) →∗ (SKIP, p ′)
ultimately show
(IF b THEN c1 ELSE c2, s, p) →∗ (SKIP, p ′)
by (simp add: star .step)

next
fix b c1 c2 s p p ′

assume ¬ bval b s
hence (IF b THEN c1 ELSE c2, s, p) → (c2, s, p)

by simp
moreover assume (c2, s, p) →∗ (SKIP, p ′)
ultimately show
(IF b THEN c1 ELSE c2, s, p) →∗ (SKIP, p ′)
by (simp add: star .step)

next
fix b c s1 s2 s3 p1 p2 p3

assume bval b s1
hence (WHILE b DO c, s1, p1) →∗ (c;; WHILE b DO c, s1, p1)

by simp
moreover assume
(c, s1, p1) →∗ (SKIP, s2, p2) and
(WHILE b DO c, s2, p2) →∗ (SKIP, s3, p3)

hence (c;; WHILE b DO c, s1, p1) →∗ (SKIP, s3, p3)
by (rule seq-comp)

ultimately show (WHILE b DO c, s1, p1) →∗ (SKIP, s3, p3)
by (blast intro: star-trans)

qed fastforce+

lemma small1-big-continue:
[[cf → cf ′; cf ′⇒ p]] =⇒ cf ⇒ p

by (induction arbitrary: p rule: small-step.induct, force+)

lemma small-to-big:
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cf →∗ (SKIP, p) =⇒ cf ⇒ p
by (induction cf (SKIP, p) rule: star .induct,
auto intro: small1-big-continue)

lemma big-iff-small:
cf ⇒ p = cf →∗ (SKIP, p)

by (blast intro: big-to-small small-to-big)

end

2 Underlying concepts and formal definitions
theory Definitions

imports Small-Step
begin

2.1 Global context definitions

As compared with my previous paper [10]:

• Type flow, which models any potential program execution flow as a list
of instructions, occurring in their order of execution, is extended with
two additional instructions, namely an input instruction IN x and
an output instruction OUT x standing for the respective additional
commands of the considered extension of language IMP.

• Function run-flow, which used to map a pair formed by such a pro-
gram execution flow cs and a starting program state s to the resulting
program state, here takes two additional parameters, namely a start-
ing trace of inputs vs and a stream of input values f, since they are
required as well for computing the resulting program state according
to the semantics of the considered extension of language IMP.

declare [[syntax-ambiguity-warning = false]]

datatype com-flow =
Assign vname aexp (- ::= - [1000 , 61 ] 70 ) |
Input vname ((IN -) [61 ] 70 ) |
Output vname ((OUT -) [61 ] 70 ) |
Observe vname set (〈-〉 [61 ] 70 )

type-synonym flow = com-flow list
type-synonym tag = vname × nat
type-synonym config = state set × vname set
type-synonym scope = config set × bool
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type-synonym state-upd = vname × val option

definition eq-streams ::
stream ⇒ stream ⇒ inputs ⇒ inputs ⇒ tag set ⇒ bool
((- = - ′(⊆ -, -, - ′)) [51 , 51 ] 50 ) where

f = f ′ (⊆ vs, vs ′, T ) ≡ ∀ (x, n) ∈ T .
f x (length [p←vs. fst p = x] + n) =
f ′ x (length [p←vs ′. fst p = x] + n)

abbreviation eq-states :: state ⇒ state ⇒ vname set ⇒ bool
((- = - ′(⊆ - ′)) [51 , 51 ] 50 ) where

s = t (⊆ X) ≡ ∀ x ∈ X . s x = t x

abbreviation univ-states :: state set ⇒ vname set ⇒ state set
((Univ - ′(⊆ - ′)) [51 ] 75 ) where

Univ A (⊆ X) ≡ {s. ∃ t ∈ A. s = t (⊆ X)}

abbreviation univ-vars-if :: state set ⇒ vname set ⇒ vname set
((Univ?? - -) [51 , 75 ] 75 ) where

Univ?? A X ≡ if A = {} then UNIV else X

abbreviation tl2 xs ≡ tl (tl xs)

primrec avars :: aexp ⇒ vname set where
avars (N i) = {} |
avars (V x) = {x} |
avars (Plus a1 a2) = avars a1 ∪ avars a2

primrec bvars :: bexp ⇒ vname set where
bvars (Bc v) = {} |
bvars (Not b) = bvars b |
bvars (And b1 b2) = bvars b1 ∪ bvars b2 |
bvars (Less a1 a2) = avars a1 ∪ avars a2

fun no-upd :: flow ⇒ vname set ⇒ bool where
no-upd (x ::= - # cs) X = (x /∈ X ∧ no-upd cs X) |
no-upd (IN x # cs) X = (x /∈ X ∧ no-upd cs X) |
no-upd (OUT x # cs) X = (x /∈ X ∧ no-upd cs X) |
no-upd (- # cs) X = no-upd cs X |
no-upd - - = True

fun flow-aux :: com list ⇒ flow where
flow-aux (x ::= a # cs) = (x ::= a) # flow-aux cs |
flow-aux (IN x # cs) = IN x # flow-aux cs |
flow-aux (OUT x # cs) = OUT x # flow-aux cs |
flow-aux (IF b THEN - ELSE - # cs) = 〈bvars b〉 # flow-aux cs |
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flow-aux (WHILE b DO - # cs) = 〈bvars b〉 # flow-aux cs |
flow-aux (c;; - # cs) = flow-aux (c # cs) |
flow-aux (- # cs) = flow-aux cs |
flow-aux [] = []

definition flow :: (com × stage) list ⇒ flow where
flow cfs = flow-aux (map fst cfs)

function in-flow :: flow ⇒ inputs ⇒ stream ⇒ inputs where
in-flow (cs @ [- ::= -]) vs f = in-flow cs vs f |
in-flow (cs @ [IN x ]) vs f = in-flow cs vs f @ (let

n = length [p←vs. fst p = x] + length [c←cs. c = IN x]
in [(x, f x n)]) |

in-flow (cs @ [OUT -]) vs f = in-flow cs vs f |
in-flow (cs @ [〈-〉]) vs f = in-flow cs vs f |
in-flow [] - - = []

proof atomize-elim
fix p :: flow × inputs × stream
show
(∃ cs x a vs f . p = (cs @ [x ::= a], vs, f )) ∨
(∃ cs x vs f . p = (cs @ [IN x ], vs, f )) ∨
(∃ cs x vs f . p = (cs @ [OUT x], vs, f )) ∨
(∃ cs X vs f . p = (cs @ [〈X〉], vs, f )) ∨
(∃ vs f . p = ([], vs, f ))
by (cases p, metis com-flow.exhaust rev-exhaust)

qed auto

termination by lexicographic-order

function run-flow :: flow ⇒ inputs ⇒ state ⇒ stream ⇒ state where
run-flow (cs @ [x ::= a]) vs s f = (let t = run-flow cs vs s f

in t(x := aval a t)) |
run-flow (cs @ [IN x ]) vs s f = (let t = run-flow cs vs s f ;

n = length [p←vs. fst p = x] + length [c←cs. c = IN x]
in t(x := f x n)) |

run-flow (cs @ [OUT -]) vs s f = run-flow cs vs s f |
run-flow (cs @ [〈-〉]) vs s f = run-flow cs vs s f |
run-flow [] vs s - = s

proof atomize-elim
fix p :: flow × inputs × state × stream
show
(∃ cs x a vs s f . p = (cs @ [x ::= a], vs, s, f )) ∨
(∃ cs x vs s f . p = (cs @ [IN x ], vs, s, f )) ∨
(∃ cs x vs s f . p = (cs @ [OUT x], vs, s, f )) ∨
(∃ cs X vs s f . p = (cs @ [〈X〉], vs, s, f )) ∨
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(∃ vs s f . p = ([], vs, s, f ))
by (cases p, metis com-flow.exhaust rev-exhaust)

qed auto

termination by lexicographic-order

function out-flow :: flow ⇒ inputs ⇒ state ⇒ stream ⇒ outputs where
out-flow (cs @ [- ::= -]) vs s f = out-flow cs vs s f |
out-flow (cs @ [IN -]) vs s f = out-flow cs vs s f |
out-flow (cs @ [OUT x]) vs s f = (let t = run-flow cs vs s f

in out-flow cs vs s f @ [(x, t x)]) |
out-flow (cs @ [〈-〉]) vs s f = out-flow cs vs s f |
out-flow [] - - - = []

proof atomize-elim
fix p :: flow × inputs × state × stream
show
(∃ cs x a vs s f . p = (cs @ [x ::= a], vs, s, f )) ∨
(∃ cs x vs s f . p = (cs @ [IN x ], vs, s, f )) ∨
(∃ cs x vs s f . p = (cs @ [OUT x], vs, s, f )) ∨
(∃ cs X vs s f . p = (cs @ [〈X〉], vs, s, f )) ∨
(∃ vs s f . p = ([], vs, s, f ))
by (cases p, metis com-flow.exhaust rev-exhaust)

qed auto

termination by lexicographic-order

2.2 Local context definitions
locale noninterf =

fixes
interf :: state ⇒ ′d ⇒ ′d ⇒ bool
((-: -  -) [51 , 51 , 51 ] 50 ) and

dom :: vname ⇒ ′d and
state :: vname set

assumes
interf-state: s = t (⊆ state) =⇒ interf s = interf t

context noninterf
begin

As in my previous paper [10], function sources is defined along with an
auxiliary function sources-aux by means of mutual recursion. According to
this definition, the set of variables sources cs vs s f x, where:

• cs is a program execution flow,
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• vs is a trace of inputs,

• s is a program state,

• f is a stream of input values, and

• x is a variable,

contains a variable y if there exist a descending sequence of left sublists
csn+1, csn @ [cn], ..., cs1 @ [c1] of cs and a sequence of variables yn+1, ...,
y1, where n ≥ 1, csn+1 = cs, yn+1 = x, and y1 = y, satisfying the following
conditions.

• For each positive integer i ≤ n, the instruction ci is an assignment
yi+1 ::= ai such that:

– yi ∈ avars ai,
– run-flow csi vs s f : dom yi  dom yi+1, and
– the right sublist of csi+1 complementary to csi @ [ci] does not

comprise any assignment or input instruction setting variable
yi+1 (as the assignment ci would otherwise be irrelevant),

or else an observation 〈X i〉 such that:

– yi ∈ X i and
– run-flow csi vs s f : dom yi  dom yi+1.

• The program execution flow cs1 does not comprise any assignment or
input instruction setting variable y.

In addition, sources cs vs s f x contains variable x also if the program execu-
tion flow cs does not comprise any assignment or input instruction setting
variable x.

function
sources :: flow ⇒ inputs ⇒ state ⇒ stream ⇒ vname ⇒ vname set and
sources-aux :: flow ⇒ inputs ⇒ state ⇒ stream ⇒ vname ⇒ vname set

where

sources (cs @ [c]) vs s f x = (case c of
z ::= a ⇒ if z = x

then sources-aux cs vs s f x ∪
⋃
{sources cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ avars a}
else sources cs vs s f x |

IN z ⇒ if z = x
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then sources-aux cs vs s f x
else sources cs vs s f x |
〈X〉 ⇒

sources cs vs s f x ∪
⋃
{sources cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ X} |
- ⇒

sources cs vs s f x) |

sources [] - - - x = {x} |

sources-aux (cs @ [c]) vs s f x = (case c of
〈X〉 ⇒

sources-aux cs vs s f x ∪
⋃
{sources cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ X} |
- ⇒

sources-aux cs vs s f x) |

sources-aux [] - - - - = {}

proof atomize-elim
fix a :: flow × inputs × state × stream × vname +

flow × inputs × state × stream × vname
show
(∃ cs c vs s f x. a = Inl (cs @ [c], vs, s, f , x)) ∨
(∃ vs s f x. a = Inl ([], vs, s, f , x)) ∨
(∃ cs c vs s f x . a = Inr (cs @ [c], vs, s, f , x)) ∨
(∃ vs s f x. a = Inr ([], vs, s, f , x))
by (metis obj-sumE prod-cases3 rev-exhaust)

qed auto

termination by lexicographic-order

lemmas sources-induct = sources-sources-aux.induct

Function sources-out, defined here below, takes the same parameters cs, vs,
s, f, and x as function sources, and returns the set of the variables whose
values in the program state s are allowed to affect the outputs of variable x
possibly occurring as a result of the execution of flow cs if it starts from the
initial state s and the initial trace of inputs vs, and takes place according to
the stream of input values f.
In more detail, the set of variables sources-out cs vs s f x is defined as the
union of any set of variables sources csi vs s f x i, where csi @ [ci] is any left
sublist of cs such that the instruction ci is an output instruction OUT x, in
which case x i = x, or else an observation 〈X i〉 such that:

• x i ∈ X i and
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• run-flow csi vs s f : dom x i  dom x.

function
sources-out :: flow ⇒ inputs ⇒ state ⇒ stream ⇒ vname ⇒ vname set

where

sources-out (cs @ [c]) vs s f x = (case c of
OUT z ⇒

sources-out cs vs s f x ∪ (if z = x then sources cs vs s f x else {}) |
〈X〉 ⇒

sources-out cs vs s f x ∪
⋃
{sources cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ X} |
- ⇒

sources-out cs vs s f x) |

sources-out [] - - - - = {}

by (atomize-elim, auto intro: rev-cases)
termination by lexicographic-order

Function tags, defined here below, takes the same parameters cs, vs, s, f,
and x as the previous functions, and returns the set of the tags, namely of
the pairs (y, m) where y is a variable and m is a natural number, such that
the m-th input instruction IN y within flow cs is allowed to affect the value
of variable x resulting from the execution of cs if it starts from the initial
state s and the initial trace of inputs vs, and takes place according to the
stream of input values f.
In more detail, the set of tags tags cs vs s f x contains a tag (y, m) just
in case there exist a descending sequence of left sublists csn+1, csn @ [cn],
..., cs1 @ [c1] of cs and a sequence of variables yn+1, ..., y1, where n ≥ 1,
csn+1 = cs, yn+1 = x, y1 = y, and y = x if n = 1, satisfying the following
conditions.

• For each integer i, if any, such that 1 < i ≤ n, the instruction ci is an
assignment yi+1 ::= ai such that:

– yi ∈ avars ai,
– run-flow csi vs s f : dom yi  dom yi+1, and
– the right sublist of csi+1 complementary to csi @ [ci] does not

comprise any assignment or input instruction setting variable
yi+1 (as the assignment ci would otherwise be irrelevant),

or else an observation 〈X i〉 such that:
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– yi ∈ X i and
– run-flow csi vs s f : dom yi  dom yi+1.

• The instruction c1 is the m-th input instruction IN y within flow cs.

• The right sublist of cs2 complementary to cs1 @ [c1] does not comprise
any assignment or input instruction setting variable y (as the input
instruction c1 would otherwise be irrelevant).

function
tags :: flow ⇒ inputs ⇒ state ⇒ stream ⇒ vname ⇒ tag set and
tags-aux :: flow ⇒ inputs ⇒ state ⇒ stream ⇒ vname ⇒ tag set

where

tags (cs @ [c]) vs s f x = (case c of
z ::= a ⇒ if z = x

then tags-aux cs vs s f x ∪
⋃
{tags cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ avars a}
else tags cs vs s f x |

IN z ⇒ if z = x
then insert (x, length [c←cs. c = IN x ]) (tags-aux cs vs s f x)
else tags cs vs s f x |
〈X〉 ⇒

tags cs vs s f x ∪
⋃
{tags cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ X} |
- ⇒

tags cs vs s f x) |

tags [] - - - - = {} |

tags-aux (cs @ [c]) vs s f x = (case c of
〈X〉 ⇒

tags-aux cs vs s f x ∪
⋃
{tags cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ X} |
- ⇒

tags-aux cs vs s f x) |

tags-aux [] - - - - = {}

proof atomize-elim
fix a :: flow × inputs × state × stream × vname +

flow × inputs × state × stream × vname
show
(∃ cs c vs s f x. a = Inl (cs @ [c], vs, s, f , x)) ∨
(∃ vs s f x. a = Inl ([], vs, s, f , x)) ∨
(∃ cs c vs s f x . a = Inr (cs @ [c], vs, s, f , x)) ∨
(∃ vs s f x. a = Inr ([], vs, s, f , x))
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by (metis obj-sumE prod-cases3 rev-exhaust)
qed auto

termination by lexicographic-order

lemmas tags-induct = tags-tags-aux.induct

Finally, function tags-out, defined here below, takes the same parameters cs,
vs, s, f, and x as the previous functions, and returns the set of the tags (y, m)
such that the m-th input instruction IN y within flow cs is allowed to affect
the outputs of variable x possibly occurring as a result of the execution of
flow cs if it starts from the initial state s and the initial trace of inputs vs,
and takes place according to the stream of input values f.
In more detail, the set of tags tags-out cs vs s f x is defined as the union
of any set of tags tags csi vs s f x i, where csi @ [ci] is any left sublist of cs
such that the instruction ci is an output instruction OUT x, in which case
x i = x, or else an observation 〈X i〉 such that:

• x i ∈ X i and

• run-flow csi vs s f : dom x i  dom x.

function
tags-out :: flow ⇒ inputs ⇒ state ⇒ stream ⇒ vname ⇒ tag set

where

tags-out (cs @ [c]) vs s f x = (case c of
OUT z ⇒

tags-out cs vs s f x ∪ (if z = x then tags cs vs s f x else {}) |
〈X〉 ⇒

tags-out cs vs s f x ∪
⋃
{tags cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ X} |
- ⇒

tags-out cs vs s f x) |

tags-out [] - - - - = {}

by (atomize-elim, auto intro: rev-cases)
termination by lexicographic-order

Predicate correct, defined here below, formalizes the extended termination-
sensitive information flow correctness criterion. As in my previous paper
[10], its parameters consist of a program c, a set of program states A, and a
set of variables X.
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In more detail, for any state s agreeing with a state in A on the value of
each state variable contained in X, let the small-step semantics turn:

• the command c and the program execution stage (s, f , vs, ws) into a
command c1 and a program execution stage (s1, f , vs1, ws1), and

• the command c1 and the program execution stage (s1, f , vs1, ws1) into
a command c2 and a program execution stage (s2, f , vs2, ws2).

Furthermore, let:

• cs be the program execution flow leading from (c1, s1, f , vs1, ws1) to
(c2, s2, f , vs2, ws2), and

• (t1, f ′, vs1 ′, ws1 ′) be any program execution stage,

and assume that the following conditions hold.

• S is a nonempty subset of the set of the variables x such that state
t1 agrees with s1 on the value of each variable contained in sources cs
vs1 s1 f x.

• For each variable x contained in S, and each tag (y, n) contained in
tags cs vs1 s1 f x, the stream of input values f ′ agrees with f on the
input value assigned to variable y by an input instruction IN y after
n previous such assignments to y following any one tracked by the
starting trace of inputs vs1 ′ and vs1, respectively.

Then, the information flow is correct only if the small-step semantics turns
the command c1 and the program execution stage (t1, f ′, vs1 ′, ws1 ′) into a
command c2 ′ and a program execution stage (t2, f ′, vs2 ′, ws2 ′) satisfying
the following correctness conditions.

• c2 ′ = SKIP just in case c2 = SKIP; namely, program execution ter-
minates just in case it terminates as a result of the execution of flow
cs, so that the two program executions cannot be distinguished based
on program termination.

• The resulting sequence of input requests IN x being prompted, where
x is any variable contained in S, matches the one triggered by the
execution of flow cs, so that the two program executions cannot be
distinguished based on those sequences.

• States t2 and s2 agree on the value of each variable contained in S, so
that the two program executions cannot be distinguished based on the
resulting program states.
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Likewise, if the above assumptions hold for functions sources-out and tags-out
in place of functions sources and tags, respectively, then the information flow
correctness requires the first two correctness conditions listed above to hold
as well, plus the following one.

• The resulting sequence of outputs of any variable contained in S matches
the one produced by the execution of flow cs, so that the two program
executions cannot be distinguished based on those sequences.

abbreviation ok-flow-1 where
ok-flow-1 c1 c2 c2 ′ s1 s2 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ cs ≡
∀S ⊆ {x. s1 = t1 (⊆ sources cs vs1 s1 f x)}.

S 6= {} −→
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags cs vs1 s1 f x | x. x ∈ S}) −→

(c1, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c2 = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ] ∧
s2 = t2 (⊆ S)

abbreviation ok-flow-2 where
ok-flow-2 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ws1 ′ ws2 ws2 ′ cs ≡
∀S ⊆ {x. s1 = t1 (⊆ sources-out cs vs1 s1 f x)}.

S 6= {} −→
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags-out cs vs1 s1 f x | x. x ∈ S}) −→

(c1, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c2 = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ] ∧
[p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]

abbreviation ok-flow where
ok-flow c1 c2 s1 s2 f vs1 vs2 ws1 ws2 cs ≡
∀ t1 f ′ vs1 ′ ws1 ′. ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-1 c1 c2 c2 ′ s1 s2 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ cs ∧
ok-flow-2 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ws1 ′ ws2 ws2 ′ cs

definition correct :: com ⇒ state set ⇒ vname set ⇒ bool where
correct c A X ≡
∀ s ∈ Univ A (⊆ state ∩ X). ∀ c1 c2 s1 s2 f vs vs1 vs2 ws ws1 ws2 cfs.
(c, s, f , vs, ws) →∗ (c1, s1, f , vs1, ws1) ∧
(c1, s1, f , vs1, ws1) →∗{cfs} (c2, s2, f , vs2, ws2) −→

ok-flow c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs)

abbreviation noninterf-set :: state set ⇒ vname set ⇒ vname set ⇒ bool
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((-: -  | -) [51 , 51 , 51 ] 50 ) where
A: X  | Y ≡ ∀ y ∈ Y . ∃ s ∈ A. ∃ x ∈ X . ¬ s: dom x  dom y

abbreviation ok-flow-aux-1 where
ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ cs ≡
∀S ⊆ {x. s1 = t1 (⊆ sources-aux cs vs1 s1 f x)}.

S 6= {} −→
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags-aux cs vs1 s1 f x | x. x ∈ S}) −→

(c1, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c2 = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]

abbreviation ok-flow-aux-2 where
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ cs ≡
∀S ⊆ {x. s1 = t1 (⊆ sources cs vs1 s1 f x)}.

S 6= {} −→
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags cs vs1 s1 f x | x. x ∈ S}) −→

s2 = t2 (⊆ S)

abbreviation ok-flow-aux-3 where
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ cs ≡
∀S ⊆ {x. s1 = t1 (⊆ sources-out cs vs1 s1 f x)}.

S 6= {} −→
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags-out cs vs1 s1 f x | x. x ∈ S}) −→

[p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]

abbreviation ok-flow-aux :: config set ⇒ com ⇒ com ⇒ state ⇒ state ⇒
stream ⇒ inputs ⇒ inputs ⇒ outputs ⇒ outputs ⇒ flow ⇒ bool

where
ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 cs ≡
(∀ t1 f ′ vs1 ′ ws1 ′. ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ cs) ∧

(∀Y . (∃ (A, X) ∈ U . A: X  | Y ) −→ no-upd cs Y )

In addition to the equations handling the further constructs of the consid-
ered extension of language IMP, the auxiliary recursive function ctyping1-aux
used to define the idempotent type system ctyping1 differs from its coun-
terpart used in my previous paper [10] also in that it records any update
of a state variable using a pair of type vname × val option, where the first
component is the state variable being updated, and the latter one matches
Some i or None depending on whether its new value can be evaluated to an
integer i at compile time or not.
Apart from the aforesaid type change, the equations for the constructs in-
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cluded in the original language IMP are the same as in my previous paper
[10], whereas the equations for the additional constructs of the considered
language extension are as follows.

• The equation for an input instruction IN x, like the one handling as-
signments, records the update of variable x just in case it is a state
variable (as otherwise its update cannot change the applying interfer-
ence relation). If so, its update is recorded with (x, None), since input
values cannot be evaluated at compile time.

• The equation for an output instruction OUT x does not record any
update, since output instructions leave the program state unchanged.

• The equation for a nondeterministic choice c1 OR c2 sets the returned
value to ` c1 t ` c2, in the same way as the equation for a conditional
statement IF b THEN c1 ELSE c2 whose boolean condition b cannot
be evaluated at compile time.

As in my previous paper [10], the state set returned by ctyping1 is defined
so that any indeterminate state variable (namely, any state variable x with
a latest recorded update (x, None)) may take an arbitrary value. Of course,
a real-world implementation of this type system would not need to actually
return a distinct state for any such value, but rather just to mark any in-
determinate state variable in each returned state with some special value
standing for arbitrary.

primrec btyping1 :: bexp ⇒ bool option ((` -) [51 ] 55 ) where

` Bc v = Some v |

` Not b = (case ` b of
Some v ⇒ Some (¬ v) | - ⇒ None) |

` And b1 b2 = (case (` b1, ` b2) of
(Some v1, Some v2) ⇒ Some (v1 ∧ v2) | - ⇒ None) |

` Less a1 a2 = (if avars a1 ∪ avars a2 = {}
then Some (aval a1 (λx. 0 ) < aval a2 (λx. 0 )) else None)

inductive-set ctyping1-merge-aux :: state-upd list set ⇒
state-upd list set ⇒ (state-upd list × bool) list set
(infix

⊔
55 ) for A and B where

xs ∈ A =⇒ [(xs, True)] ∈ A
⊔

B |

ys ∈ B =⇒ [(ys, False)] ∈ A
⊔

B |
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[[ws ∈ A
⊔

B; ¬ snd (hd ws); xs ∈ A; (xs, True) /∈ set ws]] =⇒
(xs, True) # ws ∈ A

⊔
B |

[[ws ∈ A
⊔

B; snd (hd ws); ys ∈ B; (ys, False) /∈ set ws]] =⇒
(ys, False) # ws ∈ A

⊔
B

declare ctyping1-merge-aux.intros [intro]

definition ctyping1-append ::
state-upd list set ⇒ state-upd list set ⇒ state-upd list set
(infixl @ 55 ) where

A @ B ≡ {xs @ ys | xs ys. xs ∈ A ∧ ys ∈ B}

definition ctyping1-merge ::
state-upd list set ⇒ state-upd list set ⇒ state-upd list set
(infixl t 55 ) where

A t B ≡ {concat (map fst ws) | ws. ws ∈ A
⊔

B}

definition ctyping1-merge-append ::
state-upd list set ⇒ state-upd list set ⇒ state-upd list set
(infixl t@ 55 ) where

A t@ B ≡ (if card B = Suc 0 then A else A t B) @ B

primrec ctyping1-aux :: com ⇒ state-upd list set
((` -) [51 ] 60 ) where

` SKIP = {[]} |

` x ::= a = (if x ∈ state
then {[(x, if avars a = {} then Some (aval a (λx. 0 )) else None)]}
else {[]}) |

` IN x = (if x ∈ state then {[(x, None)]} else {[]}) |

` OUT x = {[]} |

` c1;; c2 = ` c1 t@ ` c2 |

` c1 OR c2 = ` c1 t ` c2 |

` IF b THEN c1 ELSE c2 = (let f = ` b in
(if f ∈ {Some True, None} then ` c1 else {}) t
(if f ∈ {Some False, None} then ` c2 else {})) |

` WHILE b DO c = (let f = ` b in
(if f ∈ {Some False, None} then {[]} else {}) ∪
(if f ∈ {Some True, None} then ` c else {}))
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definition ctyping1 :: com ⇒ state set ⇒ vname set ⇒ config
((` - ′(⊆ -, - ′)) [51 ] 55 ) where
` c (⊆ A, X) ≡ let F = {λx. [y←ys. fst y = x] | ys. ys ∈ ` c} in
({λx. if f x = []

then s x else case snd (last (f x)) of None ⇒ t x | Some i ⇒ i |
f s t. f ∈ F ∧ s ∈ A},

Univ?? A {x. ∀ f ∈ F . if f x = []
then x ∈ X else snd (last (f x)) 6= None})

Finally, in the recursive definition of the main type system ctyping2, the
equations dealing with the constructs included in the original language IMP
are the same as in my previous paper [10], whereas the equations for the
additional constructs of the considered language extension are as follows.

• The equation for an input instruction IN x sets the returned value to
a pass verdict Some (B, Y ) just in case each set of variables in the
current scope is allowed to affect variable x in the associated set of
program states. If so, then the sets B and Y are computed in the
same way as with an assignment whose right-hand expression cannot
be evaluated at compile time, since input values cannot be evaluated
at compile time, too.

• The equation for an output instruction OUT x sets the returned value
to a pass verdict Some (B, Y ) just in case each set of variables in
the current scope is allowed to affect variable x in the associated set
of program states. If so, then the sets B and Y are computed in the
same way as with a SKIP command, as output instructions leave the
program state unchanged, too.

• The equation for a nondeterministic choice c1 OR c2 sets the returned
value to a pass verdict Some (B, Y ) just in case pass verdicts are
returned for both branches. If so, then the sets B and Y are computed
in the same way as with a conditional statement IF b THEN c1 ELSE
c2 whose boolean condition b cannot be evaluated at compile time.

primrec btyping2-aux :: bexp ⇒ state set ⇒ vname set ⇒ state set option
((||= - ′(⊆ -, - ′)) [51 ] 55 ) where

||= Bc v (⊆ A, -) = Some (if v then A else {}) |

||= Not b (⊆ A, X) = (case ||= b (⊆ A, X) of
Some B ⇒ Some (A − B) | - ⇒ None) |

||= And b1 b2 (⊆ A, X) = (case (||= b1 (⊆ A, X), ||= b2 (⊆ A, X)) of
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(Some B1, Some B2) ⇒ Some (B1 ∩ B2) | - ⇒ None) |

||= Less a1 a2 (⊆ A, X) = (if avars a1 ∪ avars a2 ⊆ state ∩ X
then Some {s. s ∈ A ∧ aval a1 s < aval a2 s} else None)

definition btyping2 ::
bexp ⇒ state set ⇒ vname set ⇒ state set × state set
((|= - ′(⊆ -, - ′)) [51 ] 55 ) where
|= b (⊆ A, X) ≡ case ||= b (⊆ A, X) of

Some A ′⇒ (A ′, A − A ′) | - ⇒ (A, A)

abbreviation interf-set :: state set ⇒ vname set ⇒ vname set ⇒ bool
((-: -  -) [51 , 51 , 51 ] 50 ) where

A: X  Y ≡ ∀ s ∈ A. ∀ x ∈ X . ∀ y ∈ Y . s: dom x  dom y

abbreviation atyping :: bool ⇒ aexp ⇒ vname set ⇒ bool
((- |= - ′(⊆ - ′)) [51 , 51 ] 50 ) where

v |= a (⊆ X) ≡ avars a = {} ∨ avars a ⊆ state ∩ X ∧ v

definition univ-states-if :: state set ⇒ vname set ⇒ state set
((Univ? - -) [51 , 75 ] 75 ) where

Univ? A X ≡ if state ⊆ X then A else Univ A (⊆ {})

fun ctyping2 :: scope ⇒ com ⇒ state set ⇒ vname set ⇒ config option
((- |= - ′(⊆ -, - ′)) [51 , 51 ] 55 ) where

- |= SKIP (⊆ A, X) = Some (A, Univ?? A X) |

(U , v) |= x ::= a (⊆ A, X) =
(if ∀ (B, Y ) ∈ insert (Univ? A X , avars a) U . B: Y  {x}
then Some (if x ∈ state ∧ A 6= {}

then if v |= a (⊆ X)
then ({s(x := aval a s) | s. s ∈ A}, insert x X) else (A, X − {x})

else (A, Univ?? A X))
else None) |

(U , v) |= IN x (⊆ A, X) =
(if ∀ (B, Y ) ∈ U . B: Y  {x}
then Some (if x ∈ state ∧ A 6= {}

then (A, X − {x}) else (A, Univ?? A X))
else None) |

(U , v) |= OUT x (⊆ A, X) =
(if ∀ (B, Y ) ∈ U . B: Y  {x}
then Some (A, Univ?? A X)
else None) |
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(U , v) |= c1;; c2 (⊆ A, X) =
(case (U , v) |= c1 (⊆ A, X) of

Some (B, Y ) ⇒ (U , v) |= c2 (⊆ B, Y ) | - ⇒ None) |

(U , v) |= c1 OR c2 (⊆ A, X) =
(case ((U , v) |= c1 (⊆ A, X), (U , v) |= c2 (⊆ A, X)) of

(Some (C 1, Y 1), Some (C 2, Y 2)) ⇒ Some (C 1 ∪ C 2, Y 1 ∩ Y 2) |
- ⇒ None) |

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) =
(case (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) of (U ′, B1, B2) ⇒

case ((U ′, v) |= c1 (⊆ B1, X), (U ′, v) |= c2 (⊆ B2, X)) of
(Some (C 1, Y 1), Some (C 2, Y 2)) ⇒ Some (C 1 ∪ C 2, Y 1 ∩ Y 2) |
- ⇒ None) |

(U , v) |= WHILE b DO c (⊆ A, X) = (case |= b (⊆ A, X) of (B1, B2) ⇒
case ` c (⊆ B1, X) of (C , Y ) ⇒ case |= b (⊆ C , Y ) of (B1

′, B2
′) ⇒

if ∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U . B: W  UNIV
then case (({}, False) |= c (⊆ B1, X), ({}, False) |= c (⊆ B1

′, Y )) of
(Some -, Some -) ⇒ Some (B2 ∪ B2

′, Univ?? B2 X ∩ Y ) |
- ⇒ None

else None)

end

end

3 Idempotence of the auxiliary type system meant
for loop bodies

theory Idempotence
imports Definitions

begin

As in my previous paper [10], the purpose of this section is to prove that
the auxiliary type system ctyping1 used to simulate the execution of loop
bodies is idempotent, namely that if its output for a given input is the pair
formed by state set B and vname set Y, then the output is the same if B
and Y are fed back into the type system (lemma ctyping1-idem).

3.1 Local context proofs
context noninterf
begin

abbreviation ctyping1-idem-lhs where
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ctyping1-idem-lhs s t t ′ ys ys ′ x ≡
if [y←ys ′. fst y = x] = []
then if [y←ys. fst y = x] = []

then s x
else case snd (last [y←ys. fst y = x]) of None ⇒ t x | Some i ⇒ i

else case snd (last [y←ys ′. fst y = x]) of None ⇒ t ′ x | Some i ⇒ i

abbreviation ctyping1-idem-rhs where
ctyping1-idem-rhs f s t x ≡

if f x = []
then s x
else case snd (last (f x)) of None ⇒ t x | Some i ⇒ i

abbreviation ctyping1-idem-pred where
ctyping1-idem-pred s t t ′ ys ys ′ A (S :: state-upd list set) ≡ ∃ f s ′.
(∃ t ′′. ctyping1-idem-lhs s t t ′ ys ys ′ = ctyping1-idem-rhs f s ′ t ′′) ∧
(∀ x. (f x = [] ←→ [y←ys @ ys ′. fst y = x] = []) ∧
(f x 6= [] −→ last (f x) = last [y←ys @ ys ′. fst y = x])) ∧

(∃ ys ′′. f = (λx. [y←ys ′′. fst y = x]) ∧ ys ′′ ∈ S) ∧ s ′ ∈ A

lemma ctyping1-merge-aux-no-nil:
ws ∈ A

⊔
B =⇒ ws 6= []

by (erule ctyping1-merge-aux.cases, simp-all)

lemma ctyping1-merge-aux-empty-lhs:
{}

⊔
B = {[(ys, False)] | ys. ys ∈ B}

by (rule equalityI , clarify, erule ctyping1-merge-aux.induct, auto)

lemma ctyping1-merge-aux-empty-rhs:
A

⊔
{} = {[(xs, True)] | xs. xs ∈ A}

by (rule equalityI , clarify, erule ctyping1-merge-aux.induct, auto)

lemma ctyping1-merge-empty-lhs:
{} t B = B

by (force simp: ctyping1-merge-def ctyping1-merge-aux-empty-lhs)

lemma ctyping1-merge-empty-rhs:
A t {} = A

by (force simp: ctyping1-merge-def ctyping1-merge-aux-empty-rhs)

lemma ctyping1-aux-nonempty:
` c 6= {}

by (induction c, auto simp: Let-def ctyping1-merge-def
ctyping1-merge-append-def ctyping1-append-def , fastforce)

lemma ctyping1-merge-idem-fst:
assumes
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A:
∧

ys ys ′. ys ∈ ` c1 =⇒ ys ′ ∈ ` c1 =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c1) and

B:
∧

ys ys ′. ys ∈ ` c2 =⇒ ys ′ ∈ ` c2 =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c2) and

C : s ∈ A and
D: ys ∈ ` c1 t ` c2 and
E : ys ′ ∈ ` c1 t ` c2

shows ctyping1-idem-pred s t t ′ ys ys ′ A (` c1 t ` c2)
proof −

obtain ws where ws ∈ ` c1
⊔
` c2 and ys = concat (map fst ws)

using D by (auto simp: ctyping1-merge-def )
thus ?thesis
proof (induction ws arbitrary: ys rule: list.induct,
blast dest: ctyping1-merge-aux-no-nil)
fix w ws ys
assume

F :
∧

xs. ws ∈ ` c1
⊔
` c2 =⇒ xs = concat (map fst ws) =⇒

ctyping1-idem-pred s t t ′ xs ys ′ A (` c1 t ` c2) and
G: w # ws ∈ ` c1

⊔
` c2

assume ys = concat (map fst (w # ws))
hence H : ys = fst w @ concat (map fst ws)
(is ys = ?x @ ?xs)
by simp

have ctyping1-idem-pred s t t ′ ?xs ys ′ A (` c1 t ` c2)
proof (cases ws)

case Nil
show ?thesis

apply (rule exI [of - λx. [y←ys ′. fst y = x]])
apply (rule exI [of - s])
apply (rule conjI )
apply (rule exI [of - t ′])

by (auto simp: C E Nil)
next

case Cons
have ws ∈ ` c1

⊔
` c2

using G by (rule ctyping1-merge-aux.cases, simp-all add: Cons)
thus ?thesis

using F by simp
qed
then obtain f and s ′ and t ′′ and ys ′′ where

I : ctyping1-idem-lhs s t t ′ ?xs ys ′ =
ctyping1-idem-rhs f s ′ t ′′ and

J : ∀ x. (f x = [] ←→ [y←?xs @ ys ′. fst y = x] = []) ∧
(f x 6= [] −→ last (f x) = last [y←?xs @ ys ′. fst y = x]) and

K : f = (λx. [y←ys ′′. fst y = x]) and
L: ys ′′ ∈ ` c1 t ` c2 and
M : s ′ ∈ A
by auto

obtain ws ′′ where
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N : ws ′′ ∈ ` c1
⊔
` c2 and

O: ys ′′ = concat (map fst ws ′′)
using L by (auto simp: ctyping1-merge-def )

show ctyping1-idem-pred s t t ′ ys ys ′ A (` c1 t ` c2)
proof (cases w ∈ set ws ′′)

assume P: w ∈ set ws ′′

show ?thesis
apply (rule exI [of - f ])
apply (rule exI [of - s ′])
apply (rule conjI )
apply (rule exI [of - t ′′])
apply (rule ext)

subgoal for x
proof (cases [y←ys ′. fst y = x], cases [y←ys. fst y = x] = [])

case Cons
thus ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs f s ′ t ′′ x
by (insert fun-cong [OF I , of x], simp)

next
case Nil
moreover case True
ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs f s ′ t ′′ x
using H by (insert fun-cong [OF I , of x], simp)

next
case Nil
case False
hence [y←?x. fst y = x] 6= [] ∨ [y←?xs. fst y = x] 6= []

using H by simp
moreover {

assume [y←?x. fst y = x] 6= []
hence [y←ys ′′. fst y = x] 6= []

using O and P by (auto simp: filter-concat)
hence [y←?xs. fst y = x] 6= []

using J and K and Nil by simp
}
ultimately have Q: [y←?xs. fst y = x] 6= [] ..
hence (case snd (last [y←?xs. fst y = x]) of

None ⇒ t x | Some i ⇒ i) = ctyping1-idem-rhs f s ′ t ′′ x
using Nil by (insert fun-cong [OF I , of x], simp)

moreover have last [y←?xs. fst y = x] = last [y←ys. fst y = x]
using H and Q by simp

ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =
ctyping1-idem-rhs f s ′ t ′′ x
using Nil and False by simp

qed
apply (rule conjI )
subgoal
proof −
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show ∀ x. (f x = [] ←→ [y←ys @ ys ′. fst y = x] = []) ∧
(f x 6= [] −→ last (f x) = last [y←ys @ ys ′. fst y = x])
(is ∀ x. ?P x ∧ ?Q x)

proof
fix x
have ?P x
proof

assume Q: f x = []
hence [y←?xs @ ys ′. fst y = x] = []

using J by simp
moreover have [y←?x. fst y = x] = []

using K and O and P and Q by (simp add: filter-concat)
ultimately show [y←ys @ ys ′. fst y = x] = []

using H by simp
qed (insert H J , simp)
moreover have ?Q x

using J and H by simp
ultimately show ?P x ∧ ?Q x ..

qed
qed
by (insert K L M , blast)

next
assume P: w /∈ set ws ′′

let ?y = fst (hd ws ′′)
show ?thesis
proof (cases snd w = snd (hd ws ′′))

assume Q: snd w = snd (hd ws ′′)
hence snd w ∧ snd (hd ws ′′) ∨ ¬ snd w ∧ ¬ snd (hd ws ′′)
(is ?P ∨ ?Q)
by simp

moreover {
assume ?P
have ?x ∈ ` c1

using G by (rule ctyping1-merge-aux.cases, insert ‹?P›, simp-all)
moreover have ?y ∈ ` c1

using N by (rule ctyping1-merge-aux.cases, insert ‹?P›, simp-all)
ultimately have ctyping1-idem-pred s t t ′ ?x ?y A (` c1)

using A by simp
}
moreover {

assume ?Q
have ?x ∈ ` c2

using G by (rule ctyping1-merge-aux.cases, insert ‹?Q›, simp-all)
moreover have ?y ∈ ` c2

using N by (rule ctyping1-merge-aux.cases, insert ‹?Q›, simp-all)
ultimately have ctyping1-idem-pred s t t ′ ?x ?y A (` c2)

using B by simp
}
ultimately obtain f 0 and s0 and t0 and ys0 where
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R: ctyping1-idem-lhs s t t ′ ?x ?y =
ctyping1-idem-rhs f 0 s0 t0 and

S : ∀ x. (f 0 x = [] ←→ [y←?x @ ?y. fst y = x] = []) ∧
(f 0 x 6= [] −→ last (f 0 x) = last [y←?x @ ?y. fst y = x]) and

T : f 0 = (λx. [y←ys0. fst y = x]) and
U : ys0 ∈ ` c1 ∧ snd w ∨ ys0 ∈ ` c2 ∧ ¬ snd w
by auto

from U obtain w0 where
V : [w0] ∈ ` c1

⊔
` c2 and

W : ys0 = fst w0 and
X : snd w0 = snd w
by fastforce

show ?thesis
proof (cases w0 ∈ set ws ′′)

assume Y : w0 ∈ set ws ′′

show ?thesis
apply (rule exI [of - f ])
apply (rule exI [of - s ′])
apply (rule conjI )
apply (rule exI [of - t ′′])
apply (rule ext)

subgoal for x
proof (cases [y←ys ′. fst y = x], cases [y←ys. fst y = x] = [])

case Cons
thus ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs f s ′ t ′′ x
by (insert fun-cong [OF I , of x], simp)

next
case Nil
moreover case True
ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs f s ′ t ′′ x
using H by (insert fun-cong [OF I , of x], simp)

next
case Nil
case False
hence [y←?x. fst y = x] 6= [] ∨ [y←?xs. fst y = x] 6= []

using H by simp
moreover {

assume [y←?x. fst y = x] 6= []
hence [y←ys0. fst y = x] 6= []

using S and T by simp
hence [y←ys ′′. fst y = x] 6= []
using O and W and Y by (auto simp: filter-concat)
hence [y←?xs. fst y = x] 6= []

using J and K and Nil by simp
}
ultimately have Z : [y←?xs. fst y = x] 6= [] ..
hence (case snd (last [y←?xs. fst y = x]) of
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None ⇒ t x | Some i ⇒ i) = ctyping1-idem-rhs f s ′ t ′′ x
using Nil by (insert fun-cong [OF I , of x], simp)

moreover have last [y←?xs. fst y = x] = last [y←ys. fst y = x]
using H and Z by simp

ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =
ctyping1-idem-rhs f s ′ t ′′ x
using Nil and False by simp

qed
apply (rule conjI )
subgoal
proof −

show ∀ x. (f x = [] ←→ [y←ys @ ys ′. fst y = x] = []) ∧
(f x 6= [] −→ last (f x) = last [y←ys @ ys ′. fst y = x])
(is ∀ x. ?P x ∧ ?Q x)

proof
fix x
have ?P x
proof

assume Z : f x = []
hence [y←?xs @ ys ′. fst y = x] = []

using J by simp
moreover have [y←ys ′′. fst y = x] = []

using K and Z by simp
hence [y←ys0. fst y = x] = []

using O and W and Y by (simp add: filter-concat)
hence [y←?x. fst y = x] = []

using S and T by simp
ultimately show [y←ys @ ys ′. fst y = x] = []

using H by simp
qed (insert H J , simp)
moreover have ?Q x

using J and H by simp
ultimately show ?P x ∧ ?Q x ..

qed
qed
by (insert K L M , blast)

next
assume Y : w0 /∈ set ws ′′

let ?ws = w0 # tl ws ′′

{
assume Z : tl ws ′′ 6= []
have tl ws ′′ ∈ ` c1

⊔
` c2

using N by (rule ctyping1-merge-aux.cases, insert Z , simp-all)
moreover have snd (hd (tl ws ′′)) = (¬ snd w)

using N by (rule ctyping1-merge-aux.cases, insert Q Z , simp-all)
moreover have w0 /∈ set (tl ws ′′)

using Y by (cases ws ′′, simp-all)
ultimately have ?ws ∈ ` c1

⊔
` c2

by (cases w0, insert U W X , auto)
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}
hence Z : ?ws ∈ ` c1

⊔
` c2

by (cases tl ws ′′, insert V , simp-all)
let ?ys = concat (map fst (tl ws ′′))
let ?f = λx. [y←concat (map fst ?ws). fst y = x]
let ?t = λx. if f x = [] then t0 x else t ′′ x
have AA: ws ′′ = hd ws ′′ # tl ws ′′

by (insert ctyping1-merge-aux-no-nil [OF N ], simp)
have AB: ys ′′ = ?y @ ?ys

using O by (subst (asm) AA, simp)
have AC : ∀ x. [y←?ys. fst y = x] 6= [] −→

last (?f x) = last (f x)
using K and O by (subst (asm) AA, simp)

have AD: ∀ x. [y←?ys. fst y = x] = [] ∧ [y←?y. fst y = x] 6= [] −→
last (?f x) = last (f x)
(is ∀ x. ?P x ∧ ?Q x −→ -)

proof clarify
fix x
assume ?P x and ?Q x
moreover from this and S and T have
last [y←ys0. fst y = x] = last [y←?x @ ?y. fst y = x]
by simp

ultimately show last (?f x) = last (f x)
using K and W and AB by simp

qed
show ?thesis

apply (rule exI [of - ?f ])
apply (rule exI [of - s ′])
apply (rule conjI )
apply (rule exI [of - ?t])
apply (rule ext)

subgoal for x
proof (cases [y←ys ′. fst y = x], cases [y←?xs. fst y = x] = [])

case Cons
hence AE :
(case snd (last [y←ys ′. fst y = x]) of

None ⇒ t ′ x | Some i ⇒ i) =
(case snd (last (f x)) of None ⇒ ?t x | Some i ⇒ i)
using J by (insert fun-cong [OF I , of x], simp)

show ctyping1-idem-lhs s t t ′ ys ys ′ x =
ctyping1-idem-rhs ?f s ′ ?t x

proof (cases [y←?ys. fst y = x] 6= [])
case True
thus ?thesis

using AC and AE and Cons by simp
next

case False
moreover have [y←ys ′′. fst y = x] 6= []

using J and K and Cons by simp
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ultimately have [y←?y. fst y = x] 6= []
using AB by simp

moreover from this have ?f x 6= []
using S and T and W by simp

ultimately show ?thesis
using AD and AE and Cons and False by simp

qed
next

case Nil
moreover case False
ultimately have
(case snd (last [y←ys. fst y = x]) of

None ⇒ t x | Some i ⇒ i) =
(case snd (last (f x)) of None ⇒ ?t x | Some i ⇒ i)
using J and H by (insert fun-cong [OF I , of x], simp)

moreover have
AE : [y←?y. fst y = x] 6= [] ∨ [y←?ys. fst y = x] 6= []
(is - ∨ ?P)
using J and K and AB and False by auto

hence ?f x 6= []
using S and T and W by (cases ?P, simp-all)

moreover have last (?f x) = last (f x)
using AC and AD and AE by blast

ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =
ctyping1-idem-rhs ?f s ′ ?t x
using H and Nil and False by auto

next
case Nil
moreover case True
ultimately have AE : f x = []

using J by simp
hence AF : [y←?y @ ?ys. fst y = x] = []

using K and AB by simp
show ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs ?f s ′ ?t x
proof (cases [y←?x. fst y = x] = [])

assume AG: [y←?x. fst y = x] = []
moreover from J and AE have s x = s ′ x

by (insert fun-cong [OF I , of x], simp)
moreover have [y←ys0. fst y = x] = []

using S and T and AF and AG by simp
hence ?f x = []

using W and AF by simp
ultimately show ?thesis

using H and Nil and True by simp
next

assume AG: [y←?x. fst y = x] 6= []
moreover from this and S and AE and AF have
(case snd (last [y←?x. fst y = x]) of
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None ⇒ t x | Some i ⇒ i) =
(case snd (last (f 0 x)) of None ⇒ ?t x | Some i ⇒ i)
by (insert fun-cong [OF R, of x], simp)

moreover have [y←ys0. fst y = x] 6= []
using S and T and AG by simp

hence ?f x 6= []
using W by simp

moreover have last (?f x) = last (f 0 x)
using T and W and AF by simp

ultimately show ?thesis
using H and Nil and True by auto

qed
qed
apply (rule conjI )
subgoal
proof −

show ∀ x. (?f x = [] ←→ [y←ys @ ys ′. fst y = x] = []) ∧
(?f x 6= [] −→ last (?f x) = last [y←ys @ ys ′. fst y = x])
(is ∀ x. ?P x ∧ ?Q x)

proof
fix x
have AE : ?P x
proof

assume AF : ?f x = []
hence [y←?x @ ?y. fst y = x] = []

using S and T and W by simp
moreover from this and J and K and AB and AF have
[y←?xs @ ys ′. fst y = x] = []
by auto

ultimately show [y←ys @ ys ′. fst y = x] = []
using H by simp

next
assume [y←ys @ ys ′. fst y = x] = []
hence [y←?x @ ?y @ ?ys. fst y = x] = []

using H and J and K and AB by simp
moreover from this have [y←ys0. fst y = x] = []

using S and T by simp
ultimately show ?f x = []

using W by simp
qed
moreover have ?Q x
proof (clarify, cases [y←?y @ ?ys. fst y = x])

case Nil
hence last (?f x) = last (f 0 x)

using T and W by simp
moreover assume ?f x 6= []
hence [y←ys @ ys ′. fst y = x] 6= []

using AE by blast
hence [y←?x @ ?y @ ?ys. fst y = x] 6= []
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using H and J and K and AB by simp
ultimately have last (?f x) = last [y←?x. fst y = x]

using S and Nil by simp
moreover have [y←?xs @ ys ′. fst y = x] = []

using J and K and AB and Nil by simp
ultimately show
last (?f x) = last [y←ys @ ys ′. fst y = x]
using H by simp

next
case Cons
hence [y←?y. fst y = x] 6= [] ∨
[y←?ys. fst y = x] 6= []
by auto

hence last (?f x) = last (f x)
using AC and AD by blast

moreover have f x 6= []
using K and AB and Cons by simp

ultimately show
last (?f x) = last [y←ys @ ys ′. fst y = x]
using H and J by simp

qed
ultimately show ?P x ∧ ?Q x ..

qed
qed
by (rule conjI , rule exI [of - concat (map fst ?ws)],
insert M Z , auto simp only: ctyping1-merge-def )

qed
next

assume snd w 6= snd (hd ws ′′)
hence snd w ∧ ¬ snd (hd ws ′′) ∨ ¬ snd w ∧ snd (hd ws ′′)
(is ?P ∨ ?Q)
by simp

moreover {
assume ?P
moreover have ?x ∈ ` c1

using G by (rule ctyping1-merge-aux.cases, insert ‹?P›, simp-all)
moreover have (?x, True) /∈ set ws ′′

using P and ‹?P› by (cases w, simp)
ultimately have w # ws ′′ ∈ ` c1

⊔
` c2

using N by (cases w, auto)
}
moreover {

assume ?Q
moreover have ?x ∈ ` c2

using G by (rule ctyping1-merge-aux.cases, insert ‹?Q›, simp-all)
moreover have (?x, False) /∈ set ws ′′

using P and ‹?Q› by (cases w, simp)
ultimately have w # ws ′′ ∈ ` c1

⊔
` c2

using N by (cases w, auto)
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}
ultimately have Q: w # ws ′′ ∈ ` c1

⊔
` c2

(is ?ws ∈ -) ..
let ?f = λx. [y←concat (map fst ?ws). fst y = x]
let ?t = λx. if f x = [] then t x else t ′′ x
show ?thesis

apply (rule exI [of - ?f ])
apply (rule exI [of - s ′])
apply (rule conjI )
apply (rule exI [of - ?t])
apply (rule ext)

subgoal for x
proof (cases [y←ys ′. fst y = x], cases [y←?xs. fst y = x] = [])

case Cons
moreover from this have
(case snd (last [y←ys ′. fst y = x]) of

None ⇒ t ′ x | Some i ⇒ i) =
(case snd (last (f x)) of None ⇒ ?t x | Some i ⇒ i)
using J by (insert fun-cong [OF I , of x], simp)

moreover have ?f x 6= []
using J and K and O and Cons by simp

moreover have f x 6= []
using J and Cons by simp

hence last (?f x) = last (f x)
using K and O by simp

ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =
ctyping1-idem-rhs ?f s ′ ?t x
by auto

next
case Nil
moreover case False
ultimately have
(case snd (last [y←ys. fst y = x]) of

None ⇒ t x | Some i ⇒ i) =
(case snd (last (f x)) of None ⇒ ?t x | Some i ⇒ i)
using J and H by (insert fun-cong [OF I , of x], simp)

moreover have ?f x 6= []
using J and K and O and False by simp

moreover have f x 6= []
using J and False by simp

hence last (?f x) = last (f x)
using K and O by simp

ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =
ctyping1-idem-rhs ?f s ′ ?t x
using H and Nil and False by auto

next
case Nil
moreover case True
ultimately have R: f x = []
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using J by simp
show ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs ?f s ′ ?t x
proof (cases [y←?x. fst y = x] = [])

assume [y←?x. fst y = x] = []
moreover have [y←ys ′′. fst y = x] = []

using K and R by simp
ultimately have ?f x = []

using O by simp
moreover from J and R have s x = s ′ x

by (insert fun-cong [OF I , of x], simp)
ultimately show ?thesis

using H and Nil and True by simp
next

assume [y←?x. fst y = x] 6= []
moreover have last [y←ys. fst y = x] = last [y←?x. fst y = x]

using H and True by simp
moreover have last (?f x) = last [y←?x. fst y = x]

using K and O and R by simp
ultimately show ?thesis

using H and R and Nil by simp
qed

qed
apply (rule conjI )
subgoal
proof −

show ∀ x. (?f x = [] ←→ [y←ys @ ys ′. fst y = x] = []) ∧
(?f x 6= [] −→ last (?f x) = last [y←ys @ ys ′. fst y = x])
(is ∀ x. ?P x ∧ ?Q x)

proof
fix x
have ?P x
proof

assume ?f x = []
hence [y←?x @ ys ′′. fst y = x] = []

using O by simp
moreover from this have [y←?xs @ ys ′. fst y = x] = []

using J and K by simp
ultimately show [y←ys @ ys ′. fst y = x] = []

using H by simp
next

assume [y←ys @ ys ′. fst y = x] = []
hence [y←?x @ ?xs @ ys ′. fst y = x] = []

using H by simp
moreover from this have [y←ys ′′. fst y = x] = []

using J and K by simp
ultimately show ?f x = []

using O by simp
qed
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moreover have ?Q x
proof (clarify, cases [y←ys ′′. fst y = x])

case Nil
hence last (?f x) = last [y←?x. fst y = x]

using O by simp
moreover have [y←?xs @ ys ′. fst y = x] = []

using J and K and Nil by simp
hence
last [y←ys @ ys ′. fst y = x] = last [y←?x. fst y = x]
using H by simp

ultimately show
last (?f x) = last [y←ys @ ys ′. fst y = x]
by simp

next
case Cons
hence last (?f x) = last (f x)

using K and O by simp
moreover have R: f x 6= []

using K and Cons by simp
hence last [y←?xs @ ys ′. fst y = x] = last (f x)

using J by simp
moreover have [y←?xs @ ys ′. fst y = x] 6= []

using J and R by simp
ultimately show
last (?f x) = last [y←ys @ ys ′. fst y = x]
using H by simp

qed
ultimately show ?P x ∧ ?Q x ..

qed
qed
by (rule conjI , rule exI [of - concat (map fst ?ws)],
insert M Q, auto simp only: ctyping1-merge-def )

qed
qed

qed
qed

lemma ctyping1-merge-append-idem-fst:
assumes

A:
∧

ys ys ′. ys ∈ ` c1 =⇒ ys ′ ∈ ` c1 =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c1) and

B:
∧

ys ys ′. ys ∈ ` c2 =⇒ ys ′ ∈ ` c2 =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c2) and

C : s ∈ A and
D: ys ∈ ` c1 t@ ` c2 and
E : ys ′ ∈ ` c1 t@ ` c2

shows ctyping1-idem-pred s t t ′ ys ys ′ A (` c1 t@ ` c2)
apply (subst ctyping1-merge-append-def )
apply (split if-split)
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apply (rule conjI )
subgoal
proof

assume F : card (` c2) = Suc 0
with D obtain ys1 and ys2 where

G: ys = ys1 @ ys2 and
H : ys1 ∈ ` c1 and
I : ys2 ∈ ` c2
by (auto simp: ctyping1-merge-append-def ctyping1-append-def )

from E and F obtain ys1 ′ and ys2 ′ where
J : ys ′ = ys1 ′ @ ys2 ′ and
K : ys1 ′ ∈ ` c1 and
L: ys2 ′ ∈ ` c2
by (auto simp: ctyping1-merge-append-def ctyping1-append-def )

have M : ys2 ′ = ys2
using F and I and L by (fastforce simp: card-1-singleton-iff )

obtain f and s ′ and t ′′ and ys1 ′′ where
N : ctyping1-idem-lhs s t t ′ ys1 ys1 ′ =

ctyping1-idem-rhs f s ′ t ′′ and
O: ∀ x. (f x = [] ←→ [y←ys1 @ ys1 ′. fst y = x] = []) ∧
(f x 6= [] −→ last (f x) = last [y←ys1 @ ys1 ′. fst y = x]) and

P: f = (λx. [y←ys1 ′′. fst y = x]) and
Q: ys1 ′′ ∈ ` c1 and
R: s ′ ∈ A
using A [OF H K ] by auto

let ?f = λx. [y←ys1 ′′ @ ys2. fst y = x]
let ?t = λx. if [y←ys2. fst y = x] = [] then t ′′ x else t ′ x
show ctyping1-idem-pred s t t ′ ys ys ′ A (` c1 @ ` c2)

apply (rule exI [of - ?f ])
apply (rule exI [of - s ′])
apply (rule conjI )
apply (rule exI [of - ?t])
apply (rule ext)

subgoal for x
proof (cases [y←ys2. fst y = x], cases f x = [])

case Nil
moreover case True
ultimately have s x = s ′ x

using O by (insert fun-cong [OF N , of x], simp)
moreover have [y←ys ′. fst y = x] = []

using J and M and O and Nil and True by simp
moreover have [y←ys. fst y = x] = []

using G and O and Nil and True by simp
moreover have ?f x = []

using P and Nil and True by simp
ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs ?f s ′ ?t x
by simp

next
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case Nil
moreover from this have
[y←ys ′. fst y = x] = [y←ys1 ′. fst y = x]
using J and M by simp

moreover have [y←ys. fst y = x] = [y←ys1. fst y = x]
using G and Nil by simp

moreover case False
moreover from this have ?f x 6= []

using P by simp
moreover have last (?f x) = last (f x)

using P and Nil by simp
ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs ?f s ′ ?t x
by (insert fun-cong [OF N , of x], auto)

next
case Cons
moreover from this have [y←ys ′. fst y = x] 6= []

using J and M by simp
moreover have
last [y←ys ′. fst y = x] = last [y←ys2. fst y = x]
using J and M and Cons by simp

ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =
ctyping1-idem-rhs ?f s ′ ?t x
by simp

qed
apply (rule conjI )
subgoal
proof −

show ∀ x. (?f x = [] ←→ [y←ys @ ys ′. fst y = x] = []) ∧
(?f x 6= [] −→ last (?f x) = last [y←ys @ ys ′. fst y = x])
(is ∀ x. ?P x ∧ ?Q x)

proof
fix x
have ?P x

using G and J and M and O and P by auto
moreover have ?Q x
proof (clarify, cases [y←ys2. fst y = x])

case Nil
moreover assume ?f x 6= []
ultimately have
last (?f x) = last [y←ys1 @ ys1 ′. fst y = x]
using O and P by simp

thus last (?f x) = last [y←ys @ ys ′. fst y = x]
using G and J and M and Nil by simp

next
case Cons
thus last (?f x) = last [y←ys @ ys ′. fst y = x]

using J and M by simp
qed
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ultimately show ?P x ∧ ?Q x ..
qed

qed
by (rule conjI , rule exI [of - ys1 ′′ @ ys2],
insert I Q R, auto simp: ctyping1-append-def )

qed
subgoal
proof

assume F : card (` c2) 6= Suc 0
with D obtain ws and xs where

G: ys = ws @ xs and
H : ws ∈ ` c1 t ` c2 and
I : xs ∈ ` c2
by (auto simp: ctyping1-merge-append-def ctyping1-append-def )

from E and F obtain ws ′ and xs ′ where
J : ys ′ = ws ′ @ xs ′ and
K : ws ′ ∈ ` c1 t ` c2 and
L: xs ′ ∈ ` c2
by (auto simp: ctyping1-merge-append-def ctyping1-append-def )

from I have [(xs, False)] ∈ ` c1
⊔
` c2 ..

hence M : xs ∈ ` c1 t ` c2
by (force simp: ctyping1-merge-def )

obtain f and s ′ and r and zs where
N : ctyping1-idem-lhs s t t ′ ws xs =

ctyping1-idem-rhs f s ′ r and
O: ∀ x. (f x = [] ←→ [y←ws @ xs. fst y = x] = []) ∧
(f x 6= [] −→ last (f x) = last [y←ws @ xs. fst y = x]) and

P: f = (λx. [y←zs. fst y = x]) and
Q: zs ∈ ` c1 t ` c2 and
R: s ′ ∈ A
using ctyping1-merge-idem-fst [OF A B C H M ] by auto

obtain f ′ and s ′′ and r ′ and zs ′ where
S : ctyping1-idem-lhs s t t ′ zs ws ′ =

ctyping1-idem-rhs f ′ s ′′ r ′ and
T : ∀ x. (f ′ x = [] ←→ [y←zs @ ws ′. fst y = x] = []) ∧
(f ′ x 6= [] −→ last (f ′ x) = last [y←zs @ ws ′. fst y = x]) and

U : f ′ = (λx. [y←zs ′. fst y = x]) and
V : zs ′ ∈ ` c1 t ` c2 and
W : s ′′ ∈ A
using ctyping1-merge-idem-fst [OF A B C Q K ] by auto

let ?f = λx. [y←zs ′ @ xs ′. fst y = x]
let ?t = λx. if [y←xs ′. fst y = x] = [] then r ′ x else t ′ x
show ctyping1-idem-pred s t t ′ ys ys ′ A (` c1 t ` c2 @ ` c2)

apply (rule exI [of - ?f ])
apply (rule exI [of - s ′′])
apply (rule conjI )
apply (rule exI [of - ?t])
apply (rule ext)

subgoal for x
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proof (cases [y←xs ′. fst y = x], cases f ′ x = [])
case Nil
moreover case True
hence s x = s ′′ x

using T by (insert fun-cong [OF S , of x], simp)
moreover have [y←ys ′. fst y = x] = []

using J and T and Nil and True by simp
moreover have [y←zs. fst y = x] = []

using T and True by simp
hence [y←ys. fst y = x] = []

using G and O and P by simp
moreover have ?f x = []

using U and Nil and True by simp
ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs ?f s ′′ ?t x
by simp

next
case Nil
moreover from this have

X : [y←ys ′. fst y = x] = [y←ws ′. fst y = x]
using J by simp

moreover case False
moreover have
[y←zs. fst y = x] 6= [] ∧ [y←ys. fst y = x] 6= [] ∧

last [y←ys. fst y = x] = last [y←zs. fst y = x]
(is ?P ∧ ?Q ∧ ?R) if
a: [y←ys ′. fst y = x] = []

proof −
have ?P

using T and X and False and a by simp
moreover from this have ?Q

using G and O and P by simp
moreover have ?R

using G and O and P and ‹?P› by simp
ultimately show ?thesis

by simp
qed
moreover have ?f x 6= []

using U and False by simp
moreover have last (?f x) = last (f ′ x)

using U and Nil by simp
ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =

ctyping1-idem-rhs ?f s ′′ ?t x
by (insert fun-cong [OF S , of x], auto)

next
case Cons
moreover from this have [y←ys ′. fst y = x] 6= []

using J by simp
moreover have
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last [y←ys ′. fst y = x] = last [y←xs ′. fst y = x]
using J and Cons by simp

ultimately show ctyping1-idem-lhs s t t ′ ys ys ′ x =
ctyping1-idem-rhs ?f s ′′ ?t x
by simp

qed
apply (rule conjI )
subgoal
proof −

show ∀ x. (?f x = [] ←→ [y←ys @ ys ′. fst y = x] = []) ∧
(?f x 6= [] −→ last (?f x) = last [y←ys @ ys ′. fst y = x])
(is ∀ x. ?P x ∧ ?Q x)

proof
fix x
have ?P x
proof

assume [y←zs ′ @ xs ′. fst y = x] = []
moreover from this have [y←zs @ ws ′. fst y = x] = []

using T and U by simp
moreover from this have [y←ws @ xs. fst y = x] = []

using O and P by simp
ultimately show [y←ys @ ys ′. fst y = x] = []

using G and J by simp
next

assume [y←ys @ ys ′. fst y = x] = []
hence [y←ws @ xs @ ws ′ @ xs ′. fst y = x] = []

using G and J by simp
moreover from this have [y←zs. fst y = x] = []

using O and P by simp
ultimately show [y←zs ′ @ xs ′. fst y = x] = []

using T and U by simp
qed
moreover have ?Q x
proof (clarify, cases [y←xs ′. fst y = x])

case Nil
moreover assume ?f x 6= []
ultimately have X : f ′ x 6= []

using U by simp
hence Y : last (?f x) = last [y←zs @ ws ′. fst y = x]

using T and U and Nil by simp
show last (?f x) = last [y←ys @ ys ′. fst y = x]
proof (cases [y←ws ′. fst y = x] = [])

case True
moreover from this have f x 6= []

using P and T and X by simp
ultimately have
last (?f x) = last [y←ws @ xs. fst y = x]
using O and P and Y by simp

thus ?thesis
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using G and J and Nil and True by simp
next

case False
thus ?thesis

using J and Y and Nil by simp
qed

qed (simp add: J )
ultimately show ?P x ∧ ?Q x ..

qed
qed
by (rule conjI , rule exI [of - zs ′ @ xs ′],
insert L V W , auto simp: ctyping1-append-def )

qed
done

lemma ctyping1-aux-idem-fst:
[[s ∈ A; ys ∈ ` c; ys ′ ∈ ` c]] =⇒

ctyping1-idem-pred s t t ′ ys ys ′ A (` c)
proof (induction c arbitrary: ys ys ′)

fix c1 c2 ys ys ′

show
[[
∧

ys ys ′. s ∈ A =⇒ ys ∈ ` c1 =⇒ ys ′ ∈ ` c1 =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c1);∧
ys ys ′. s ∈ A =⇒ ys ∈ ` c2 =⇒ ys ′ ∈ ` c2 =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c2);

s ∈ A; ys ∈ ` c1;; c2; ys ′ ∈ ` c1;; c2]] =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c1;; c2)

by (simp, rule ctyping1-merge-append-idem-fst [simplified])
next

fix c1 c2 ys ys ′

show
[[
∧

ys ys ′. s ∈ A =⇒ ys ∈ ` c1 =⇒ ys ′ ∈ ` c1 =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c1);∧
ys ys ′. s ∈ A =⇒ ys ∈ ` c2 =⇒ ys ′ ∈ ` c2 =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c2);

s ∈ A; ys ∈ ` c1 OR c2; ys ′ ∈ ` c1 OR c2]] =⇒
ctyping1-idem-pred s t t ′ ys ys ′ A (` c1 OR c2)

by (simp, rule ctyping1-merge-idem-fst [simplified])
next

fix b c1 c2 ys ys ′

assume
A:

∧
ys ys ′. s ∈ A =⇒ ys ∈ ` c1 =⇒ ys ′ ∈ ` c1 =⇒

ctyping1-idem-pred s t t ′ ys ys ′ A (` c1) and
B:

∧
ys ys ′. s ∈ A =⇒ ys ∈ ` c2 =⇒ ys ′ ∈ ` c2 =⇒

ctyping1-idem-pred s t t ′ ys ys ′ A (` c2) and
C : s ∈ A and
D: ys ∈ ` IF b THEN c1 ELSE c2 and
E : ys ′ ∈ ` IF b THEN c1 ELSE c2
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show ctyping1-idem-pred s t t ′ ys ys ′ A (` IF b THEN c1 ELSE c2)
proof (cases ` b)

case None
show ?thesis

by (insert A B C D E None, simp,
rule ctyping1-merge-idem-fst [simplified])

next
case (Some v)
show ?thesis
proof (cases v)

case True
thus ?thesis

by (insert A C D E Some, simp add: ctyping1-merge-empty-rhs)
next

case False
thus ?thesis

by (insert B C D E Some, simp add: ctyping1-merge-empty-lhs)
qed

qed
next

fix b c ys ys ′

assume
A:

∧
ys ys ′. s ∈ A =⇒ ys ∈ ` c =⇒ ys ′ ∈ ` c =⇒

ctyping1-idem-pred s t t ′ ys ys ′ A (` c) and
B: s ∈ A and
C : ys ∈ ` WHILE b DO c and
D: ys ′ ∈ ` WHILE b DO c

have E : ctyping1-idem-pred s t t ′ ys ys ′ A (` WHILE b DO c) if
a: ys ∈ ` c and
b: ys ′ ∈ ` c and
c: ` b ∈ {Some True, None}

proof −
have ctyping1-idem-pred s t t ′ ys ys ′ A (` c)

using A and B and a and b by simp
then obtain f and s ′ and t ′′ and ys ′′ where

E : ctyping1-idem-lhs s t t ′ ys ys ′ =
ctyping1-idem-rhs f s ′ t ′′ and

F : ∀ x. (f x = [] ←→ [y←ys @ ys ′. fst y = x] = []) ∧
(f x 6= [] −→ last (f x) = last [y←ys @ ys ′. fst y = x]) and

G: f = (λx. [y←ys ′′. fst y = x]) and
H : ys ′′ ∈ ` c and
I : s ′ ∈ A
by auto

show ?thesis
by (rule exI [of - f ], insert E F G H I c, force)

qed
show ctyping1-idem-pred s t t ′ ys ys ′ A (` WHILE b DO c)
proof (cases ` b)

case None
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show ?thesis
proof (cases ys ′)

case Nil
show ?thesis
proof (cases ys = [])

case True
thus ?thesis

by (insert B None Nil, force)
next

case False
thus ?thesis

by (insert B C None Nil, force)
qed

next
case Cons
show ?thesis
proof (cases ys = [])

case True
show ?thesis

apply (insert B D None Cons True)
apply (rule exI [of - λx. [y←ys ′. fst y = x]])
apply (rule exI [of - s])
apply (rule conjI )
apply fastforce

apply (rule conjI )
apply fastforce

apply (rule conjI )
apply (rule exI [of - ys ′])

by simp-all
next

case False
hence ys ∈ ` c ∧ ys ′ ∈ ` c

using C and D and None and Cons by simp
thus ?thesis

using None by (blast intro: E)
qed

qed
next

case (Some v)
show ?thesis
proof (cases v)

case True
hence ys ∈ ` c ∧ ys ′ ∈ ` c

using C and D and Some by simp
thus ?thesis

using Some and True by (fastforce intro: E)
next

case False
hence ys = [] ∧ ys ′ = []
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using C and D and Some by simp
thus ?thesis

by (insert B Some False, simp)
qed

qed
qed fastforce+

lemma ctyping1-idem-fst-1 :
[[s ∈ A; ys ∈ ` c; ys ′ ∈ ` c]] =⇒ ∃ f s ′.

(∃ t ′′. ctyping1-idem-lhs s t t ′ ys ys ′ = ctyping1-idem-rhs f s ′ t ′′) ∧
(∃ ys ′′. f = (λx. [y←ys ′′. fst y = x]) ∧ ys ′′ ∈ ` c) ∧ s ′ ∈ A

apply (drule ctyping1-aux-idem-fst [where ys ′ = ys ′], assumption+)
apply clarify
apply (rule exI , (rule conjI )?)+
apply assumption

by blast

lemma ctyping1-idem-fst-2 :
[[s ∈ A; ys ∈ ` c]] =⇒ ∃ f s ′.

(∃ t ′.
(λx. if [y←ys. fst y = x] = []

then s x
else case snd (last [y←ys. fst y = x]) of None ⇒ t x | Some i ⇒ i) =

(λx. if f x = []
then s ′ x
else case snd (last (f x)) of None ⇒ t ′ x | Some i ⇒ i)) ∧

(∃ ys ′. f = (λx. [y←ys ′. fst y = x]) ∧ ys ′ ∈ ` c) ∧
(∃ f ′ s ′′.
(∃ t ′′. s ′ = (λx. if f ′ x = []

then s ′′ x
else case snd (last (f ′ x)) of None ⇒ t ′′ x | Some i ⇒ i)) ∧

(∃ ys ′′. f ′ = (λx. [y←ys ′′. fst y = x]) ∧ ys ′′ ∈ ` c) ∧ s ′′ ∈ A)
(is [[-; -]] =⇒ ∃ - -. (∃ -. ?f = -) ∧ -)

by (rule exI , rule exI [of - ?f ], fastforce)

lemma ctyping1-idem-fst:
` c (⊆ A, X) = (B, Y ) =⇒ case ` c (⊆ B, Y ) of (B ′, Y ′) ⇒ B ′ = B

by (auto intro: ctyping1-idem-fst-1 ctyping1-idem-fst-2 simp: ctyping1-def )

lemma ctyping1-idem-snd-1 :
assumes

A: A 6= {} and
B: ∀ r f s.
(∀ t. r 6= (λx. if f x = [] then s x else case snd (last (f x)) of

None ⇒ t x | Some i ⇒ i)) ∨
(∀ ys. f = (λx. [y←ys. fst y = x]) −→ ys /∈ ` c) ∨ s /∈ A
(is ∀ r f s. (∀ t. r 6= ?r f s t) ∨ -)
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shows UNIV = S
proof −

obtain s where C : s ∈ A
using A by blast

obtain ys where D: ys ∈ ` c
by (insert ctyping1-aux-nonempty, blast)

let ?f = λx. [y←ys. fst y = x]
show ?thesis

using B [rule-format, of ?r ?f s (λx. 0 ) ?f s] and C and D by auto
qed

lemma ctyping1-idem-snd-2 :
{x. ∀ f .

(f x = [] −→ (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) −→
(∀ f .
(f x = [] −→ (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) −→

x ∈ X) ∧
(f x 6= [] −→ (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) −→
(∃ i. snd (last (f x)) = Some i)))) ∧

(f x 6= [] −→ (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) −→
(∃ i. snd (last (f x)) = Some i))} =

{x. ∀ f .
(f x = [] −→ (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) −→

x ∈ X) ∧
(f x 6= [] −→ (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) −→
(∃ i. snd (last (f x)) = Some i))}

by (rule equalityI , force+)

lemma ctyping1-idem-snd:
` c (⊆ A, X) = (B, Y ) =⇒ case ` c (⊆ B, Y ) of (B ′, Y ′) ⇒ Y ′ = Y

by (clarsimp simp: ctyping1-def ctyping1-idem-snd-1 ctyping1-idem-snd-2 )

lemma ctyping1-idem:
` c (⊆ A, X) = (B, Y ) =⇒ ` c (⊆ B, Y ) = (B, Y )

by (frule ctyping1-idem-fst, drule ctyping1-idem-snd, auto)

end

end

4 Overapproximation of program semantics by the
main type system

theory Overapproximation
imports Idempotence

begin
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As in my previous paper [10], the purpose of this section is to prove that
type system ctyping2 overapproximates program semantics, namely that if
(a) (c, s, p) ⇒ (t, q), (b) the type system outputs a state set B and a vname
set Y when it is input program c, state set A, and vname set X, and (c)
state s agrees with some state in A on the value of each state variable in X,
then t must agree with some state in B on the value of each state variable
in Y (lemma ctyping2-approx).
This proof makes use of the lemma ctyping1-idem proven in the previous
section.

4.1 Global context proofs
lemma avars-aval:
s = t (⊆ avars a) =⇒ aval a s = aval a t

by (induction a, simp-all)

4.2 Local context proofs
context noninterf
begin

lemma interf-set-mono:
[[A ′ ⊆ A; X ⊆ X ′; ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ;
∀ (B, Y ) ∈ insert (Univ? A X , Z ) U . B: Y  W ]] =⇒
∀ (B, Y ) ∈ insert (Univ? A ′ X ′, Z ) U ′. B: Y  W

by (subgoal-tac Univ? A ′ X ′ ⊆ Univ? A X , fastforce,
auto simp: univ-states-if-def )

lemma btyping1-btyping2-aux-1 [elim]:
assumes

A: avars a1 = {} and
B: avars a2 = {} and
C : aval a1 (λx. 0 ) < aval a2 (λx. 0 )

shows aval a1 s < aval a2 s
proof −

have aval a1 s = aval a1 (λx. 0 ) ∧ aval a2 s = aval a2 (λx. 0 )
using A and B by (blast intro: avars-aval)

thus ?thesis
using C by simp

qed

lemma btyping1-btyping2-aux-2 [elim]:
assumes

A: avars a1 = {} and
B: avars a2 = {} and
C : ¬ aval a1 (λx. 0 ) < aval a2 (λx. 0 ) and
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D: aval a1 s < aval a2 s
shows False

proof −
have aval a1 s = aval a1 (λx. 0 ) ∧ aval a2 s = aval a2 (λx. 0 )

using A and B by (blast intro: avars-aval)
thus ?thesis

using C and D by simp
qed

lemma btyping1-btyping2-aux:
` b = Some v =⇒ ||= b (⊆ A, X) = Some (if v then A else {})

by (induction b arbitrary: v, auto split: if-split-asm option.split-asm)

lemma btyping1-btyping2 :
` b = Some v =⇒ |= b (⊆ A, X) = (if v then (A, {}) else ({}, A))

by (simp add: btyping2-def btyping1-btyping2-aux)

lemma btyping2-aux-subset:
||= b (⊆ A, X) = Some A ′ =⇒ A ′ = {s. s ∈ A ∧ bval b s}

by (induction b arbitrary: A ′, auto split: if-split-asm option.split-asm)

lemma btyping2-aux-diff :
[[||= b (⊆ A, X) = Some B; ||= b (⊆ A ′, X ′) = Some B ′; A ′ ⊆ A; B ′ ⊆ B]] =⇒

A ′ − B ′ ⊆ A − B
by (blast dest: btyping2-aux-subset)

lemma btyping2-aux-mono:
[[||= b (⊆ A, X) = Some B; A ′ ⊆ A; X ⊆ X ′]] =⇒
∃B ′. ||= b (⊆ A ′, X ′) = Some B ′ ∧ B ′ ⊆ B

by (induction b arbitrary: B, auto dest: btyping2-aux-diff split:
if-split-asm option.split-asm)

lemma btyping2-mono:
[[|= b (⊆ A, X) = (B1, B2); |= b (⊆ A ′, X ′) = (B1

′, B2
′); A ′ ⊆ A; X ⊆ X ′]] =⇒

B1
′ ⊆ B1 ∧ B2

′ ⊆ B2

by (simp add: btyping2-def split: option.split-asm,
frule-tac [3−4 ] btyping2-aux-mono, auto dest: btyping2-aux-subset)

lemma btyping2-un-eq:
|= b (⊆ A, X) = (B1, B2) =⇒ B1 ∪ B2 = A

by (auto simp: btyping2-def dest: btyping2-aux-subset split: option.split-asm)

lemma btyping2-aux-eq:
[[||= b (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒ bval b s = bval b t

proof (induction b arbitrary: A ′)
fix A ′ v
show
[[||= Bc v (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒

bval (Bc v) s = bval (Bc v) t
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by simp
next

fix A ′ b
show
[[
∧

A ′. ||= b (⊆ A, X) = Some A ′ =⇒ s = t (⊆ state ∩ X) =⇒
bval b s = bval b t;
||= Not b (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒

bval (Not b) s = bval (Not b) t
by (simp split: option.split-asm)

next
fix A ′ b1 b2
show
[[
∧

A ′. ||= b1 (⊆ A, X) = Some A ′ =⇒ s = t (⊆ state ∩ X) =⇒
bval b1 s = bval b1 t;∧
A ′. ||= b2 (⊆ A, X) = Some A ′ =⇒ s = t (⊆ state ∩ X) =⇒
bval b2 s = bval b2 t;
||= And b1 b2 (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒

bval (And b1 b2) s = bval (And b1 b2) t
by (simp split: option.split-asm)

next
fix A ′ a1 a2

show
[[||= Less a1 a2 (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒

bval (Less a1 a2) s = bval (Less a1 a2) t
by (subgoal-tac aval a1 s = aval a1 t,
subgoal-tac aval a2 s = aval a2 t,
auto intro!: avars-aval split: if-split-asm)

qed

lemma ctyping1-mono-fst:
[[` c (⊆ A, X) = (B, Y ); ` c (⊆ A ′, X ′) = (B ′, Y ′); A ′ ⊆ A]] =⇒

B ′ ⊆ B
by (fastforce simp: ctyping1-def )

lemma ctyping1-mono:
assumes

A: ` c (⊆ A, X) = (B, Y ) and
B: ` c (⊆ A ′, X ′) = (B ′, Y ′) and
C : A ′ ⊆ A and
D: X ⊆ X ′

shows B ′ ⊆ B ∧ Y ⊆ Y ′

proof (rule conjI , rule ctyping1-mono-fst [OF A B C ])
{

fix x
assume x /∈ Univ?? A ′ {x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys. ys ∈ ` c}.

if f x = [] then x ∈ X ′ else snd (last (f x)) 6= None}
moreover from this have A ′ 6= {}

by (simp split: if-split-asm)
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ultimately have ¬ (∀ f .
(∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) −→
(if f x = [] then x ∈ X ′ else snd (last (f x)) 6= None))

(is ¬ ?P X ′)
by (auto split: if-split-asm)

moreover assume ?P X
hence ?P X ′

using D by fastforce
ultimately have False

by contradiction
}
with A and B and C show Y ⊆ Y ′

by (cases A = {}, auto simp: ctyping1-def )
qed

lemma ctyping2-mono-skip [elim!]:
[[(U , False) |= SKIP (⊆ A, X) = Some (C , Z ); A ′ ⊆ A; X ⊆ X ′]] =⇒
∃C ′ Z ′. (U ′, False) |= SKIP (⊆ A ′, X ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′

by (clarsimp, subgoal-tac Univ?? C X = X , force+)

lemma ctyping2-mono-assign [elim!]:
[[(U , False) |= x ::= a (⊆ A, X) = Some (C , Z ); A ′ ⊆ A; X ⊆ X ′;
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ]] =⇒
∃C ′ Z ′. (U ′, False) |= x ::= a (⊆ A ′, X ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′

by (frule interf-set-mono [where W = {x}], auto split: if-split-asm)

lemma ctyping2-mono-input [elim!]:
[[(U , False) |= IN x (⊆ A, X) = Some (C , Z ); A ′ ⊆ A; X ⊆ X ′;
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ]] =⇒
∃C ′ Z ′. (U ′, False) |= IN x (⊆ A ′, X ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′

by (frule interf-set-mono [where W = {x}], auto split: if-split-asm)

lemma ctyping2-mono-output [elim!]:
[[(U , False) |= OUT x (⊆ A, X) = Some (C , Z ); A ′ ⊆ A; X ⊆ X ′;
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ]] =⇒
∃C ′ Z ′. (U ′, False) |= OUT x (⊆ A ′, X ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′

by (frule interf-set-mono [where W = {x}], auto split: if-split-asm)

lemma ctyping2-mono-seq:
assumes

A:
∧

A ′ B X ′ Y U ′.
(U , False) |= c1 (⊆ A, X) = Some (B, Y ) =⇒ A ′ ⊆ A =⇒ X ⊆ X ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃B ′ Y ′. (U ′, False) |= c1 (⊆ A ′, X ′) = Some (B ′, Y ′) ∧
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B ′ ⊆ B ∧ Y ⊆ Y ′ and
B:

∧
p B Y B ′ C Y ′ Z U ′.

(U , False) |= c1 (⊆ A, X) = Some p =⇒ (B, Y ) = p =⇒
(U , False) |= c2 (⊆ B, Y ) = Some (C , Z ) =⇒ B ′ ⊆ B =⇒ Y ⊆ Y ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C ′ Z ′. (U ′, False) |= c2 (⊆ B ′, Y ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′ and
C : (U , False) |= c1;; c2 (⊆ A, X) = Some (C , Z ) and
D: A ′ ⊆ A and
E : X ⊆ X ′ and
F : ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y

shows ∃C ′ Z ′. (U ′, False) |= c1;; c2 (⊆ A ′, X ′) = Some (C ′, Z ′) ∧
C ′ ⊆ C ∧ Z ⊆ Z ′

proof −
obtain B Y where (U , False) |= c1 (⊆ A, X) = Some (B, Y ) ∧
(U , False) |= c2 (⊆ B, Y ) = Some (C , Z )
using C by (auto split: option.split-asm)

moreover from this obtain B ′ Y ′ where
G: (U ′, False) |= c1 (⊆ A ′, X ′) = Some (B ′, Y ′) ∧ B ′ ⊆ B ∧ Y ⊆ Y ′

using A and D and E and F by fastforce
ultimately obtain C ′ Z ′ where
(U ′, False) |= c2 (⊆ B ′, Y ′) = Some (C ′, Z ′) ∧ C ′ ⊆ C ∧ Z ⊆ Z ′

using B and F by fastforce
thus ?thesis

using G by simp
qed

lemma ctyping2-mono-or :
assumes

A:
∧

A ′ C 1 X ′ Y 1 U ′.
(U , False) |= c1 (⊆ A, X) = Some (C 1, Y 1) =⇒ A ′ ⊆ A =⇒ X ⊆ X ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C 1

′ Y 1
′. (U ′, False) |= c1 (⊆ A ′, X ′) = Some (C 1

′, Y 1
′) ∧

C 1
′ ⊆ C 1 ∧ Y 1 ⊆ Y 1

′ and
B:

∧
A ′ C 2 X ′ Y 2 U ′.

(U , False) |= c2 (⊆ A, X) = Some (C 2, Y 2) =⇒ A ′ ⊆ A =⇒ X ⊆ X ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C 2

′ Y 2
′. (U ′, False) |= c2 (⊆ A ′, X ′) = Some (C 2

′, Y 2
′) ∧

C 2
′ ⊆ C 2 ∧ Y 2 ⊆ Y 2

′ and
C : (U , False) |= c1 OR c2 (⊆ A, X) = Some (C , Y ) and
D: A ′ ⊆ A and
E : X ⊆ X ′ and
F : ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y

shows ∃C ′ Y ′. (U ′, False) |= c1 OR c2 (⊆ A ′, X ′) = Some (C ′, Y ′) ∧
C ′ ⊆ C ∧ Y ⊆ Y ′

proof −
obtain C 1 C 2 Y 1 Y 2 where

G: (C , Y ) = (C 1 ∪ C 2, Y 1 ∩ Y 2) ∧
Some (C 1, Y 1) = (U , False) |= c1 (⊆ A, X) ∧
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Some (C 2, Y 2) = (U , False) |= c2 (⊆ A, X)
using C by (simp split: option.split-asm prod.split-asm)

moreover have H : ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y
using F by simp

ultimately have ∃C 1
′ Y 1

′.
(U ′, False) |= c1 (⊆ A ′, X ′) = Some (C 1

′, Y 1
′) ∧ C 1

′ ⊆ C 1 ∧ Y 1 ⊆ Y 1
′

using A and D and E by simp
moreover have ∃C 2

′ Y 2
′.

(U ′, False) |= c2 (⊆ A ′, X ′) = Some (C 2
′, Y 2

′) ∧ C 2
′ ⊆ C 2 ∧ Y 2 ⊆ Y 2

′

using B and D and E and G and H by simp
ultimately show ?thesis

using G by auto
qed

lemma ctyping2-mono-if :
assumes

A:
∧

W p B1 B2 B1
′ C 1 X ′ Y 1 W ′. (W , p) =

(insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒ (B1, B2) = p =⇒
(W , False) |= c1 (⊆ B1, X) = Some (C 1, Y 1) =⇒ B1

′ ⊆ B1 =⇒
X ⊆ X ′ =⇒ ∀ (B ′, Y ′) ∈ W ′. ∃ (B, Y ) ∈ W . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C 1

′ Y 1
′. (W ′, False) |= c1 (⊆ B1

′, X ′) = Some (C 1
′, Y 1

′) ∧
C 1

′ ⊆ C 1 ∧ Y 1 ⊆ Y 1
′ and

B:
∧

W p B1 B2 B2
′ C 2 X ′ Y 2 W ′. (W , p) =

(insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒ (B1, B2) = p =⇒
(W , False) |= c2 (⊆ B2, X) = Some (C 2, Y 2) =⇒ B2

′ ⊆ B2 =⇒
X ⊆ X ′ =⇒ ∀ (B ′, Y ′) ∈ W ′. ∃ (B, Y ) ∈ W . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C 2

′ Y 2
′. (W ′, False) |= c2 (⊆ B2

′, X ′) = Some (C 2
′, Y 2

′) ∧
C 2

′ ⊆ C 2 ∧ Y 2 ⊆ Y 2
′ and

C : (U , False) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (C , Y ) and
D: A ′ ⊆ A and
E : X ⊆ X ′ and
F : ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y

shows ∃C ′ Y ′. (U ′, False) |= IF b THEN c1 ELSE c2 (⊆ A ′, X ′) =
Some (C ′, Y ′) ∧ C ′ ⊆ C ∧ Y ⊆ Y ′

proof −
let ?W = insert (Univ? A X , bvars b) U
let ?W ′ = insert (Univ? A ′ X ′, bvars b) U ′

obtain B1 B2 C 1 C 2 Y 1 Y 2 where
G: (C , Y ) = (C 1 ∪ C 2, Y 1 ∩ Y 2) ∧ (B1, B2) = |= b (⊆ A, X) ∧

Some (C 1, Y 1) = (?W , False) |= c1 (⊆ B1, X) ∧
Some (C 2, Y 2) = (?W , False) |= c2 (⊆ B2, X)

using C by (simp split: option.split-asm prod.split-asm)
moreover obtain B1

′ B2
′ where H : (B1

′, B2
′) = |= b (⊆ A ′, X ′)

by (cases |= b (⊆ A ′, X ′), simp)
ultimately have I : B1

′ ⊆ B1 ∧ B2
′ ⊆ B2

by (metis btyping2-mono D E)
moreover have J : ∀ (B ′, Y ′) ∈ ?W ′. ∃ (B, Y ) ∈ ?W . B ′ ⊆ B ∧ Y ′ ⊆ Y

using D and E and F by (auto simp: univ-states-if-def )
ultimately have ∃C 1

′ Y 1
′.
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(?W ′, False) |= c1 (⊆ B1
′, X ′) = Some (C 1

′, Y 1
′) ∧ C 1

′ ⊆ C 1 ∧ Y 1 ⊆ Y 1
′

using A and E and G by force
moreover have ∃C 2

′ Y 2
′.

(?W ′, False) |= c2 (⊆ B2
′, X ′) = Some (C 2

′, Y 2
′) ∧ C 2

′ ⊆ C 2 ∧ Y 2 ⊆ Y 2
′

using B and E and G and I and J by force
ultimately show ?thesis

using G and H by (auto split: prod.split)
qed

lemma ctyping2-mono-while:
assumes

A:
∧

B1 B2 C Y B1
′ B2

′ D1 E X ′ V U ′. (B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒ (B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: W  UNIV =⇒
({}, False) |= c (⊆ B1, X) = Some (E , V ) =⇒ D1 ⊆ B1 =⇒

X ⊆ X ′ =⇒ ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ {}. B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃E ′ V ′. (U ′, False) |= c (⊆ D1, X ′) = Some (E ′, V ′) ∧

E ′ ⊆ E ∧ V ⊆ V ′ and
B:

∧
B1 B2 C Y B1

′ B2
′ D1

′ F Y ′ W U ′. (B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒ (B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: W  UNIV =⇒
({}, False) |= c (⊆ B1

′, Y ) = Some (F , W ) =⇒ D1
′ ⊆ B1

′ =⇒
Y ⊆ Y ′ =⇒ ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ {}. B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃F ′ W ′. (U ′, False) |= c (⊆ D1

′, Y ′) = Some (F ′, W ′) ∧
F ′ ⊆ F ∧ W ⊆ W ′ and

C : (U , False) |= WHILE b DO c (⊆ A, X) = Some (B, Z ) and
D: A ′ ⊆ A and
E : X ⊆ X ′ and
F : ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y

shows ∃B ′ Z ′. (U ′, False) |= WHILE b DO c (⊆ A ′, X ′) = Some (B ′, Z ′) ∧
B ′ ⊆ B ∧ Z ⊆ Z ′

proof −
obtain B1 B1

′ B2 B2
′ C E F V W Y where G: (B1, B2) = |= b (⊆ A, X) ∧

(C , Y ) = ` c (⊆ B1, X) ∧ (B1
′, B2

′) = |= b (⊆ C , Y ) ∧
(∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U . B: W  UNIV ) ∧
Some (E , V ) = ({}, False) |= c (⊆ B1, X) ∧
Some (F , W ) = ({}, False) |= c (⊆ B1

′, Y ) ∧
(B, Z ) = (B2 ∪ B2

′, Univ?? B2 X ∩ Y )
using C by (force split: if-split-asm option.split-asm prod.split-asm)

moreover obtain D1 D2 where H : |= b (⊆ A ′, X ′) = (D1, D2)
by (cases |= b (⊆ A ′, X ′), simp)

ultimately have I : D1 ⊆ B1 ∧ D2 ⊆ B2

by (smt (verit) btyping2-mono D E)
moreover obtain C ′ Y ′ where J : ` c (⊆ D1, X ′) = (C ′, Y ′)

by (cases ` c (⊆ D1, X ′), simp)
ultimately have K : C ′ ⊆ C ∧ Y ⊆ Y ′

by (smt (verit) ctyping1-mono E G)
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moreover obtain D1
′ D2

′ where L: |= b (⊆ C ′, Y ′) = (D1
′, D2

′)
by (cases |= b (⊆ C ′, Y ′), simp)

ultimately have M : D1
′ ⊆ B1

′ ∧ D2
′ ⊆ B2

′

by (smt (verit) btyping2-mono G)
then obtain F ′ W ′ where
({}, False) |= c (⊆ D1

′, Y ′) = Some (F ′, W ′) ∧ F ′ ⊆ F ∧ W ⊆ W ′

using B and F and G and K by force
moreover obtain E ′ V ′ where
({}, False) |= c (⊆ D1, X ′) = Some (E ′, V ′) ∧ E ′ ⊆ E ∧ V ⊆ V ′

using A and E and F and G and I by force
moreover have Univ? A ′ X ′ ⊆ Univ? A X

using D and E by (auto simp: univ-states-if-def )
moreover have Univ? C ′ Y ′ ⊆ Univ? C Y

using K by (auto simp: univ-states-if-def )
ultimately have (U ′, False) |= WHILE b DO c (⊆ A ′, X ′) =

Some (D2 ∪ D2
′, Univ?? D2 X ′ ∩ Y ′)

using F and G and H and J and L by force
moreover have D2 ∪ D2

′ ⊆ B
using G and I and M by auto

moreover have Z ⊆ Univ?? D2 X ′ ∩ Y ′

using E and G and I and K by auto
ultimately show ?thesis

by simp
qed

lemma ctyping2-mono:
[[(U , False) |= c (⊆ A, X) = Some (C , Z ); A ′ ⊆ A; X ⊆ X ′;
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ]] =⇒
∃C ′ Z ′. (U ′, False) |= c (⊆ A ′, X ′) = Some (C ′, Z ′) ∧ C ′ ⊆ C ∧ Z ⊆ Z ′

apply (induction (U , False) c A X arbitrary: A ′ C X ′ Z U U ′

rule: ctyping2 .induct)
apply fastforce

apply fastforce
apply fastforce

apply fastforce
apply (erule ctyping2-mono-seq, assumption+)

apply (erule ctyping2-mono-or , assumption+)
apply (erule ctyping2-mono-if , assumption+)

apply (erule ctyping2-mono-while, assumption+)
done

lemma ctyping1-ctyping2-fst-assign [elim!]:
assumes

A: ` x ::= a (⊆ A, X) = (C , Z ) and
B: (U , False) |= x ::= a (⊆ A, X) = Some (C ′, Z ′)

shows C ′ ⊆ C
proof −

let ?F = λx ′ w. if x = x ′
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then (x, w) # [y←[]. fst y = x ′]
else [y←[]. fst y = x ′]

{
fix s ′

assume s ′ ∈ C ′

moreover assume x ∈ state and C : avars a = {}
ultimately obtain s where D: s ∈ A and E : s ′ = s(x := aval a s)

using B by (auto split: if-split-asm)
have ∃ s.
(∃ t. s ′ = (λx ′. if ?F x ′ (Some (aval a (λx. 0 ))) = []

then s x ′

else case snd (last (?F x ′ (Some (aval a (λx. 0 ))))) of
None ⇒ t x ′ | Some i ⇒ i)) ∧

s ∈ A
apply (insert C E)
apply (rule exI [of - s])
apply (rule conjI [OF - D])
apply (rule exI [of - λx. 0 ])
by (fastforce intro: avars-aval)

}
moreover {

fix s ′

assume s ′ ∈ C ′

moreover assume x ∈ state and avars a 6= {}
ultimately obtain s where C : s ∈ A and D: s ′ = s

using B by (simp split: if-split-asm)
have ∃ s.
(∃ t. s ′ = (λx ′. if ?F x ′ None = []

then s x ′

else case snd (last (?F x ′ None)) of
None ⇒ t x ′ | Some i ⇒ i)) ∧

s ∈ A
apply (insert D)
apply (rule exI [of - s])
apply (rule conjI [OF - C ])
apply (rule exI [of - s])
by auto

}
moreover {

fix s ′

assume s ′ ∈ C ′ and x /∈ state
hence s ′ ∈ A

using B by (simp split: if-split-asm)
}
ultimately show ?thesis

using A by (fastforce simp: ctyping1-def )
qed

lemma ctyping1-ctyping2-fst-input [elim!]:
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assumes
A: ` IN x (⊆ A, X) = (C , Z ) and
B: (U , False) |= IN x (⊆ A, X) = Some (C ′, Z ′)

shows C ′ ⊆ C
proof −

let ?F = λx ′. if x = x ′

then (x, None) # [y←[]. fst y = x ′]
else [y←[]. fst y = x ′]

{
fix s ′

assume s ′ ∈ C ′

moreover assume x ∈ state
ultimately obtain s where C : s ∈ A and D: s ′ = s

using B by (simp split: if-split-asm)
have ∃ s.
(∃ t. s ′ = (λx ′. if ?F x ′ = []

then s x ′

else case snd (last (?F x ′)) of
None ⇒ t x ′ | Some i ⇒ i)) ∧

s ∈ A
apply (insert D)
apply (rule exI [of - s])
apply (rule conjI [OF - C ])
apply (rule exI [of - s])
by auto

}
moreover {

fix s ′

assume s ′ ∈ C ′ and x /∈ state
hence s ′ ∈ A

using B by (simp split: if-split-asm)
}
ultimately show ?thesis

using A by (fastforce simp: ctyping1-def )
qed

lemma ctyping1-ctyping2-fst-output [elim!]:
[[` OUT x (⊆ A, X) = (C , Z );

(U , False) |= OUT x (⊆ A, X) = Some (C ′, Z ′)]] =⇒
C ′ ⊆ C

by (simp add: ctyping1-def split: if-split-asm)

lemma ctyping1-ctyping2-fst-seq:
assumes

A: ` c1;; c2 (⊆ A, X) = (C , Z ) and
B: (U , False) |= c1;; c2 (⊆ A, X) = Some (C ′, Z ′) and
C :

∧
B B ′ Y Y ′. ` c1 (⊆ A, X) = (B, Y ) =⇒

(U , False) |= c1 (⊆ A, X) = Some (B ′, Y ′) =⇒ B ′ ⊆ B and
D:

∧
p B ′ Y ′ D ′ C ′ W ′ Z ′.
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(U , False) |= c1 (⊆ A, X) = Some p =⇒ (B ′, Y ′) = p =⇒
` c2 (⊆ B ′, Y ′) = (D ′, W ′) =⇒
(U , False) |= c2 (⊆ B ′, Y ′) = Some (C ′, Z ′) =⇒ C ′ ⊆ D ′

shows C ′ ⊆ C
proof −

obtain B ′ Y ′ where E : (U , False) |= c1 (⊆ A, X) = Some (B ′, Y ′) and
(U , False) |= c2 (⊆ B ′, Y ′) = Some (C ′, Z ′)
using B by (auto split: option.split-asm)

moreover obtain D ′ W ′ where F : ` c2 (⊆ B ′, Y ′) = (D ′, W ′)
by (cases ` c2 (⊆ B ′, Y ′), simp)

ultimately have G: C ′ ⊆ D ′

using D by simp
obtain B Y where H : ` c1 (⊆ A, X) = (B, Y )

by (cases ` c1 (⊆ A, X), simp)
hence B ′ ⊆ B

using C and E by simp
moreover obtain D W where I : ` c2 (⊆ B, Y ) = (D, W )

by (cases ` c2 (⊆ B, Y ), simp)
ultimately have D ′ ⊆ D

using F by (blast dest: ctyping1-mono-fst)
moreover {

fix ys ys ′ s t and t ′ :: state
assume K : s ∈ A
assume ys ∈ ` c1 and ys ′ ∈ ` c2
hence L: ys @ ys ′ ∈ ` c1 t@ ` c2

by (force simp: ctyping1-merge-append-def
ctyping1-append-def ctyping1-merge-def )

let ?f = λx. [y←ys @ ys ′. fst y = x]
let ?t = λx. if [y←ys ′. fst y = x] = [] then t x else t ′ x
have ∃ f s ′.
(∃ t ′′.
(λx. if [y←ys ′. fst y = x] = []

then if [y←ys. fst y = x] = []
then s x
else case snd (last [y←ys. fst y = x]) of

None ⇒ t x | Some i ⇒ i
else case snd (last [y←ys ′. fst y = x]) of

None ⇒ t ′ x | Some i ⇒ i) =
(λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t ′′ x | Some i ⇒ i)) ∧

(∃ ys ′′. f = (λx. [y←ys ′′. fst y = x]) ∧ ys ′′ ∈ ` c1 t@ ` c2) ∧ s ′ ∈ A
apply (insert K L)
apply (rule exI [of - ?f ])
apply (rule exI [of - s])
apply (rule conjI )
apply (rule exI [of - ?t])
apply fastforce

apply (rule conjI )
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apply (rule exI [of - ys @ ys ′])
by simp-all

}
hence D ⊆ C

using A and H and I by (auto simp: ctyping1-def )
ultimately show ?thesis

using G by simp
qed

lemma ctyping1-ctyping2-fst-or :
assumes

A: ` c1 OR c2 (⊆ A, X) = (C , Y ) and
B: (U , False) |= c1 OR c2 (⊆ A, X) = Some (C ′, Y ′) and
C :

∧
C C ′ Y Y ′. ` c1 (⊆ A, X) = (C , Y ) =⇒

(U , False) |= c1 (⊆ A, X) = Some (C ′, Y ′) =⇒ C ′ ⊆ C and
D:

∧
C C ′ Y Y ′. ` c2 (⊆ A, X) = (C , Y ) =⇒

(U , False) |= c2 (⊆ A, X) = Some (C ′, Y ′) =⇒ C ′ ⊆ C
shows C ′ ⊆ C

proof −
obtain C 1

′ C 2
′ Y 1

′ Y 2
′ where

E : (C ′, Y ′) = (C 1
′ ∪ C 2

′, Y 1
′ ∩ Y 2

′) and
F : (U , False) |= c1 (⊆ A, X) = Some (C 1

′, Y 1
′) and

G: (U , False) |= c2 (⊆ A, X) = Some (C 2
′, Y 2

′)
using B by (auto split: option.split-asm prod.split-asm)

obtain C 1 Y 1 where H : ` c1 (⊆ A, X) = (C 1, Y 1)
by (cases ` c1 (⊆ A, X), simp)

hence C 1
′ ⊆ C 1

using C and F by simp
moreover obtain C 2 Y 2 where I : ` c2 (⊆ A, X) = (C 2, Y 2)

by (cases ` c2 (⊆ A, X), simp)
hence C 2

′ ⊆ C 2

using D and G by simp
ultimately have C ′ ⊆ C 1 ∪ C 2

using E by blast
moreover {

fix ys s t
assume s ∈ A
moreover assume ys ∈ ` c1
hence ys ∈ ` c1 t ` c2

by (force simp: ctyping1-merge-def )
ultimately have ∃ f s ′.
(∃ t ′.
(λx. if [y←ys. fst y = x] = []

then s x
else case snd (last [y←ys. fst y = x]) of

None ⇒ t x | Some i ⇒ i) =
(λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t ′ x | Some i ⇒ i)) ∧
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(∃ ys ′. f = (λx. [y←ys ′. fst y = x]) ∧ ys ′ ∈ ` c1 t ` c2) ∧ s ′ ∈ A
by fastforce

}
hence C 1 ⊆ C

using A and H by (auto simp: ctyping1-def )
moreover {

fix ys s t
assume s ∈ A
moreover assume ys ∈ ` c2
hence ys ∈ ` c1 t ` c2

by (force simp: ctyping1-merge-def )
ultimately have ∃ f s ′.
(∃ t ′.
(λx. if [y←ys. fst y = x] = []

then s x
else case snd (last [y←ys. fst y = x]) of

None ⇒ t x | Some i ⇒ i) =
(λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t ′ x | Some i ⇒ i)) ∧

(∃ ys ′. f = (λx. [y←ys ′. fst y = x]) ∧ ys ′ ∈ ` c1 t ` c2) ∧ s ′ ∈ A
by fastforce

}
hence C 2 ⊆ C

using A and I by (auto simp: ctyping1-def )
ultimately show ?thesis

by blast
qed

lemma ctyping1-ctyping2-fst-if :
assumes

A: ` IF b THEN c1 ELSE c2 (⊆ A, X) = (C , Y ) and
B: (U , False) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (C ′, Y ′) and
C :

∧
U ′ p B1 B2 C C ′ Y Y ′.

(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ ` c1 (⊆ B1, X) = (C , Y ) =⇒
(U ′, False) |= c1 (⊆ B1, X) = Some (C ′, Y ′) =⇒ C ′ ⊆ C and

D:
∧

U ′ p B1 B2 C C ′ Y Y ′.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ ` c2 (⊆ B2, X) = (C , Y ) =⇒
(U ′, False) |= c2 (⊆ B2, X) = Some (C ′, Y ′) =⇒ C ′ ⊆ C

shows C ′ ⊆ C
proof −

let ?U ′ = insert (Univ? A X , bvars b) U
obtain B1 B2 C 1

′ C 2
′ Y 1

′ Y 2
′ where

E : (C ′, Y ′) = (C 1
′ ∪ C 2

′, Y 1
′ ∩ Y 2

′) and
F : |= b (⊆ A, X) = (B1, B2) and
G: (?U ′, False) |= c1 (⊆ B1, X) = Some (C 1

′, Y 1
′) and

H : (?U ′, False) |= c2 (⊆ B2, X) = Some (C 2
′, Y 2

′)

61



using B by (auto split: option.split-asm prod.split-asm)
obtain C 1 Y 1 where I : ` c1 (⊆ B1, X) = (C 1, Y 1)

by (cases ` c1 (⊆ B1, X), simp)
hence C 1

′ ⊆ C 1

using C and F and G by simp
moreover obtain C 2 Y 2 where J : ` c2 (⊆ B2, X) = (C 2, Y 2)

by (cases ` c2 (⊆ B2, X), simp)
hence C 2

′ ⊆ C 2

using D and F and H by simp
ultimately have K : C ′ ⊆ C 1 ∪ C 2

using E by blast
{

fix ys s t
assume s ∈ B1

hence s ∈ A
using F by (blast dest: btyping2-un-eq)

moreover assume ys ∈ ` c1
hence ys ∈ ` c1 t ` c2

by (force simp: ctyping1-merge-def )
ultimately have ∃ f s ′.
(∃ t ′.
(λx. if [y←ys. fst y = x] = []

then s x
else case snd (last [y←ys. fst y = x]) of

None ⇒ t x | Some i ⇒ i) =
(λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t ′ x | Some i ⇒ i)) ∧

(∃ ys ′. f = (λx. [y←ys ′. fst y = x]) ∧ ys ′ ∈ ` c1 t ` c2) ∧ s ′ ∈ A
by fastforce

}
moreover {

fix ys s t
assume s ∈ B1

moreover assume ys ∈ ` c1
hence ys ∈ ` c1 t {}

by (force simp: ctyping1-merge-def )
ultimately have ∃ f s ′.
(∃ t ′.
(λx. if [y←ys. fst y = x] = []

then s x
else case snd (last [y←ys. fst y = x]) of

None ⇒ t x | Some i ⇒ i) =
(λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t ′ x | Some i ⇒ i)) ∧

(∃ ys ′. f = (λx. [y←ys ′. fst y = x]) ∧ ys ′ ∈ ` c1 t {}) ∧ s ′ ∈ B1

by fastforce
}
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ultimately have L: C 1 ⊆ C
using A and F and I by (cases ` b, auto
dest!: btyping1-btyping2 [of - - A X ] simp: ctyping1-def )

{
fix ys s t
assume s ∈ B2

hence s ∈ A
using F by (blast dest: btyping2-un-eq)

moreover assume ys ∈ ` c2
hence ys ∈ ` c1 t ` c2

by (force simp: ctyping1-merge-def )
ultimately have ∃ f s ′.
(∃ t ′.
(λx. if [y←ys. fst y = x] = []

then s x
else case snd (last [y←ys. fst y = x]) of

None ⇒ t x | Some i ⇒ i) =
(λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t ′ x | Some i ⇒ i)) ∧

(∃ ys ′. f = (λx. [y←ys ′. fst y = x]) ∧ ys ′ ∈ ` c1 t ` c2) ∧ s ′ ∈ A
by fastforce

}
moreover {

fix ys s t
assume s ∈ B2

moreover assume ys ∈ ` c2
hence ys ∈ {} t ` c2

by (force simp: ctyping1-merge-def )
ultimately have ∃ f s ′.
(∃ t ′.
(λx. if [y←ys. fst y = x] = []

then s x
else case snd (last [y←ys. fst y = x]) of

None ⇒ t x | Some i ⇒ i) =
(λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t ′ x | Some i ⇒ i)) ∧

(∃ ys ′. f = (λx. [y←ys ′. fst y = x]) ∧ ys ′ ∈ {} t ` c2) ∧ s ′ ∈ B2

by fastforce
}
ultimately have C 2 ⊆ C

using A and F and J by (cases ` b, auto
dest!: btyping1-btyping2 [of - - A X ] simp: ctyping1-def )

with K and L show ?thesis
by blast

qed

lemma ctyping1-ctyping2-fst-while:
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assumes
A: ` WHILE b DO c (⊆ A, X) = (B, Z ) and
B: (U , False) |= WHILE b DO c (⊆ A, X) = Some (B ′, Z ′)

shows B ′ ⊆ B
proof −

obtain B1 B1
′ B2 B2

′ C Y where
C : |= b (⊆ A, X) = (B1, B2) and
D: ` c (⊆ B1, X) = (C , Y ) and
E : |= b (⊆ C , Y ) = (B1

′, B2
′) and

F : (B ′, Z ′) = (B2 ∪ B2
′, Univ?? B2 X ∩ Y )

using B by (force split: if-split-asm option.split-asm prod.split-asm)
{

fix s
assume s ∈ B2

hence s ∈ A
using C by (blast dest: btyping2-un-eq)

hence ∃ f s ′.
(∃ t. s = (λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t x | Some i ⇒ i)) ∧

(∃ ys. f = (λx. [y←ys. fst y = x]) ∧ (ys = [] ∨ ys ∈ ` c)) ∧ s ′ ∈ A
by force

}
with A and C have G: B2 ⊆ B

by (cases ` b, auto dest!: btyping1-btyping2 [of - - A X ]
simp: ctyping1-def )

{
fix s
assume s ∈ B2

′

hence s ∈ C
using E by (blast dest: btyping2-un-eq)

then obtain f s ′ where H :
(∃ t. s = (λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t x | Some i ⇒ i)) ∧

(∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) ∧ s ′ ∈ B1

using D by (fastforce simp: ctyping1-def )
hence I : s ′ ∈ A

using C by (blast dest: btyping2-un-eq)
have ∃ f s ′.
(∃ t. s = (λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t x | Some i ⇒ i)) ∧

(∃ ys. f = (λx. [y←ys. fst y = x]) ∧ (ys = [] ∨ ys ∈ ` c)) ∧ s ′ ∈ A
by (rule exI [of - f ], insert H I , auto)

}
moreover {

fix s
assume s ∈ B2

′
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moreover assume ` b = Some True
ultimately have ∃ f s ′.
(∃ t. s = (λx. if f x = []

then s ′ x
else case snd (last (f x)) of None ⇒ t x | Some i ⇒ i)) ∧

(∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) ∧ s ′ ∈ A
using E by (auto dest: btyping1-btyping2 [of - - C Y ])

}
moreover {

fix s
assume s ∈ B2

′

hence C 6= {}
using E by (blast dest: btyping2-un-eq)

hence B1 6= {}
using D by (auto simp: ctyping1-def )

moreover assume ` b = Some False
ultimately have s ∈ A

using C by (auto dest: btyping1-btyping2 [of - - A X ])
}
ultimately have B2

′ ⊆ B
using A by (cases ` b, auto simp: ctyping1-def )

with F and G show ?thesis
by simp

qed

lemma ctyping1-ctyping2-fst:
[[` c (⊆ A, X) = (C , Z ); (U , False) |= c (⊆ A, X) = Some (C ′, Z ′)]] =⇒

C ′ ⊆ C
apply (induction (U , False) c A X arbitrary: C C ′ Z Z ′ U
rule: ctyping2 .induct)

apply (fastforce simp: ctyping1-def )
apply fastforce

apply fastforce
apply fastforce

apply (erule ctyping1-ctyping2-fst-seq, assumption+)
apply (erule ctyping1-ctyping2-fst-or , assumption+)

apply (erule ctyping1-ctyping2-fst-if , assumption+)
apply (erule ctyping1-ctyping2-fst-while, assumption+)
done

lemma ctyping1-ctyping2-snd-skip [elim!]:
[[` SKIP (⊆ A, X) = (C , Z );

(U , False) |= SKIP (⊆ A, X) = Some (C ′, Z ′)]] =⇒
Z ⊆ Z ′

by (simp add: ctyping1-def split: if-split-asm)

lemma ctyping1-ctyping2-snd-assign [elim!]:
[[` x ::= a (⊆ A, X) = (C , Z );
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(U , False) |= x ::= a (⊆ A, X) = Some (C ′, Z ′)]] =⇒
Z ⊆ Z ′

by (auto simp: ctyping1-def split: if-split-asm)

lemma ctyping1-ctyping2-snd-input [elim!]:
[[` IN x (⊆ A, X) = (C , Z );

(U , False) |= IN x (⊆ A, X) = Some (C ′, Z ′)]] =⇒
Z ⊆ Z ′

by (auto simp: ctyping1-def split: if-split-asm)

lemma ctyping1-ctyping2-snd-output [elim!]:
[[` OUT x (⊆ A, X) = (C , Z );

(U , False) |= OUT x (⊆ A, X) = Some (C ′, Z ′)]] =⇒
Z ⊆ Z ′

by (simp add: ctyping1-def split: if-split-asm)

lemma ctyping1-ctyping2-snd-seq:
assumes

A: ` c1;; c2 (⊆ A, X) = (C , Z ) and
B: (U , False) |= c1;; c2 (⊆ A, X) = Some (C ′, Z ′) and
C :

∧
B B ′ Y Y ′. ` c1 (⊆ A, X) = (B, Y ) =⇒

(U , False) |= c1 (⊆ A, X) = Some (B ′, Y ′) =⇒ Y ⊆ Y ′ and
D:

∧
p B ′ Y ′ D ′ C ′ W ′ Z ′.

(U , False) |= c1 (⊆ A, X) = Some p =⇒ (B ′, Y ′) = p =⇒
` c2 (⊆ B ′, Y ′) = (D ′, W ′) =⇒
(U , False) |= c2 (⊆ B ′, Y ′) = Some (C ′, Z ′) =⇒ W ′ ⊆ Z ′

shows Z ⊆ Z ′

proof −
obtain B ′ Y ′ where E : (U , False) |= c1 (⊆ A, X) = Some (B ′, Y ′) and
(U , False) |= c2 (⊆ B ′, Y ′) = Some (C ′, Z ′)
using B by (auto split: option.split-asm)

moreover obtain D ′ W ′ where F : ` c2 (⊆ B ′, Y ′) = (D ′, W ′)
by (cases ` c2 (⊆ B ′, Y ′), simp)

ultimately have G: W ′ ⊆ Z ′

using D by simp
obtain B Y where H : ` c1 (⊆ A, X) = (B, Y )

by (cases ` c1 (⊆ A, X), simp)
hence Y ⊆ Y ′

using C and E by simp
moreover have B ′ ⊆ B

using H and E by (rule ctyping1-ctyping2-fst)
moreover obtain D W where I : ` c2 (⊆ B, Y ) = (D, W )

by (cases ` c2 (⊆ B, Y ), simp)
ultimately have W ⊆ W ′

using F by (blast dest: ctyping1-mono)
moreover {

fix x
assume J : ∀ f . (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c1 t@ ` c2) −→
(if f x = [] then x ∈ X else snd (last (f x)) 6= None)
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{
fix ys ′ ys
assume ys ∈ ` c1 and ys ′ ∈ ` c2
hence ys @ ys ′ ∈ ` c1 t@ ` c2

by (force simp: ctyping1-merge-append-def
ctyping1-append-def ctyping1-merge-def )

moreover assume [y←ys. fst y = x] = [] and [y←ys ′. fst y = x] = []
ultimately have x ∈ X

using J by auto
}
moreover {

fix ys ys ′

assume ys ∈ ` c1 and ys ′ ∈ ` c2
hence ys @ ys ′ ∈ ` c1 t@ ` c2

by (force simp: ctyping1-merge-append-def
ctyping1-append-def ctyping1-merge-def )

moreover assume [y←ys. fst y = x] 6= [] and [y←ys ′. fst y = x] = []
ultimately have ∃ i. snd (last [y←ys. fst y = x]) = Some i

using J by auto
}
moreover {

fix ys ′

assume ys ′ ∈ ` c2
moreover obtain ys where ys ∈ ` c1

by (insert ctyping1-aux-nonempty, blast)
ultimately have ys @ ys ′ ∈ ` c1 t@ ` c2

by (force simp: ctyping1-merge-append-def
ctyping1-append-def ctyping1-merge-def )

moreover assume [y←ys ′. fst y = x] 6= []
ultimately have ∃ i. snd (last [y←ys ′. fst y = x]) = Some i

using J by auto
}
ultimately have x ∈ {x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys. ys ∈ ` c2}.

if f x = []
then x ∈ {x. ∀ f . (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c1) −→
(if f x = [] then x ∈ X else snd (last (f x)) 6= None)}

else snd (last (f x)) 6= None}
(is - ∈ ?X)
by auto

moreover assume x /∈ (if ∀ x f s.
(∀ t. x 6= (λx. if f x = [] then s x else case snd (last (f x)) of

None ⇒ t x | Some i ⇒ i)) ∨
(∀ ys. f = (λx. [y←ys. fst y = x]) −→ ys /∈ ` c1) ∨ s /∈ A

then UNIV else ?X)
hence x /∈ ?X

by (auto split: if-split-asm)
ultimately have False

by contradiction
}
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hence Z ⊆ W
using A and H and I by (cases A = {}, auto simp: ctyping1-def )

ultimately show ?thesis
using G by simp

qed

lemma ctyping1-ctyping2-snd-or :
assumes

A: ` c1 OR c2 (⊆ A, X) = (C , Y ) and
B: (U , False) |= c1 OR c2 (⊆ A, X) = Some (C ′, Y ′) and
C :

∧
C C ′ Y Y ′. ` c1 (⊆ A, X) = (C , Y ) =⇒

(U , False) |= c1 (⊆ A, X) = Some (C ′, Y ′) =⇒ Y ⊆ Y ′ and
D:

∧
C C ′ Y Y ′. ` c2 (⊆ A, X) = (C , Y ) =⇒

(U , False) |= c2 (⊆ A, X) = Some (C ′, Y ′) =⇒ Y ⊆ Y ′

shows Y ⊆ Y ′

proof −
obtain C 1

′ C 2
′ Y 1

′ Y 2
′ where

E : (C ′, Y ′) = (C 1
′ ∪ C 2

′, Y 1
′ ∩ Y 2

′) and
F : (U , False) |= c1 (⊆ A, X) = Some (C 1

′, Y 1
′) and

G: (U , False) |= c2 (⊆ A, X) = Some (C 2
′, Y 2

′)
using B by (auto split: option.split-asm prod.split-asm)

obtain C 1 Y 1 where H : ` c1 (⊆ A, X) = (C 1, Y 1)
by (cases ` c1 (⊆ A, X), simp)

hence Y 1 ⊆ Y 1
′

using C and F by simp
moreover obtain C 2 Y 2 where I : ` c2 (⊆ A, X) = (C 2, Y 2)

by (cases ` c2 (⊆ A, X), simp)
hence Y 2 ⊆ Y 2

′

using D and G by simp
ultimately have Y 1 ∩ Y 2 ⊆ Y ′

using E by blast
moreover {

fix x ys
assume ∀ f . (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c1 t ` c2) −→
(if f x = [] then x ∈ X else snd (last (f x)) 6= None)

moreover assume ys ∈ ` c1
hence ys ∈ ` c1 t ` c2

by (force simp: ctyping1-merge-def )
ultimately have if [y←ys. fst y = x] = []

then x ∈ X else snd (last [y←ys. fst y = x]) 6= None
(is ?P)
by blast

moreover assume ¬ ?P
ultimately have False

by contradiction
}
hence Y ⊆ Y 1

using A and H by (cases A = {}, auto simp: ctyping1-def )
moreover {
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fix x ys
assume ∀ f . (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c1 t ` c2) −→
(if f x = [] then x ∈ X else snd (last (f x)) 6= None)

moreover assume ys ∈ ` c2
hence ys ∈ ` c1 t ` c2

by (force simp: ctyping1-merge-def )
ultimately have if [y←ys. fst y = x] = []

then x ∈ X else snd (last [y←ys. fst y = x]) 6= None
(is ?P)
by blast

moreover assume ¬ ?P
ultimately have False

by contradiction
}
hence Y ⊆ Y 2

using A and I by (cases A = {}, auto simp: ctyping1-def )
ultimately show ?thesis

by blast
qed

lemma ctyping1-ctyping2-snd-if :
assumes

A: ` IF b THEN c1 ELSE c2 (⊆ A, X) = (C , Y ) and
B: (U , False) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (C ′, Y ′) and
C :

∧
U ′ p B1 B2 C C ′ Y Y ′.

(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ ` c1 (⊆ B1, X) = (C , Y ) =⇒
(U ′, False) |= c1 (⊆ B1, X) = Some (C ′, Y ′) =⇒ Y ⊆ Y ′ and

D:
∧

U ′ p B1 B2 C C ′ Y Y ′.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ ` c2 (⊆ B2, X) = (C , Y ) =⇒
(U ′, False) |= c2 (⊆ B2, X) = Some (C ′, Y ′) =⇒ Y ⊆ Y ′

shows Y ⊆ Y ′

proof −
let ?U ′ = insert (Univ? A X , bvars b) U
obtain B1 B2 C 1

′ C 2
′ Y 1

′ Y 2
′ where

E : (C ′, Y ′) = (C 1
′ ∪ C 2

′, Y 1
′ ∩ Y 2

′) and
F : |= b (⊆ A, X) = (B1, B2) and
G: (?U ′, False) |= c1 (⊆ B1, X) = Some (C 1

′, Y 1
′) and

H : (?U ′, False) |= c2 (⊆ B2, X) = Some (C 2
′, Y 2

′)
using B by (auto split: option.split-asm prod.split-asm)

obtain C 1 Y 1 where I : ` c1 (⊆ B1, X) = (C 1, Y 1)
by (cases ` c1 (⊆ B1, X), simp)

hence Y 1 ⊆ Y 1
′

using C and F and G by simp
moreover obtain C 2 Y 2 where J : ` c2 (⊆ B2, X) = (C 2, Y 2)

by (cases ` c2 (⊆ B2, X), simp)
hence Y 2 ⊆ Y 2

′

using D and F and H by simp
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ultimately have Y 1 ∩ Y 2 ⊆ Y ′

using E by blast
moreover have K : B1 ∪ B2 = A

using F by (rule btyping2-un-eq)
{

fix x x ′ ys
assume x ∈ (if B1 = {} ∧ B2 = {} then UNIV else
{x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys. ys ∈ ` c1 t ` c2}.

if f x = [] then x ∈ X else snd (last (f x)) 6= None}) and
x ′ ∈ B1

hence ∀ f . (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c1 t ` c2) −→
(if f x = [] then x ∈ X else snd (last (f x)) 6= None)
by (auto split: if-split-asm)

moreover assume ys ∈ ` c1
hence ys ∈ ` c1 t ` c2

by (force simp: ctyping1-merge-def )
ultimately have if [y←ys. fst y = x] = []

then x ∈ X else snd (last [y←ys. fst y = x]) 6= None
(is ?P)
by blast

moreover assume ¬ ?P
ultimately have False

by contradiction
}
note L = this
{

fix x x ′ ys v
assume x ∈ (if B1 = {} ∧ B2 = {} then UNIV else
{x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys.

ys ∈ (if v then ` c1 else {}) t (if ¬ v then ` c2 else {})}.
if f x = [] then x ∈ X else snd (last (f x)) 6= None})

moreover assume M : x ′ ∈ B1 and
(if v then (B1 ∪ B2, {}) else ({}, B1 ∪ B2)) = (B1, B2)

hence v
by (simp split: if-split-asm)

ultimately have
∀ f . (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c1 t {}) −→

(if f x = [] then x ∈ X else snd (last (f x)) 6= None)
using M by (auto split: if-split-asm)

moreover assume ys ∈ ` c1
hence ys ∈ ` c1 t {}

by (force simp: ctyping1-merge-def )
ultimately have if [y←ys. fst y = x] = []

then x ∈ X else snd (last [y←ys. fst y = x]) 6= None
(is ?P)
by blast

moreover assume ¬ ?P
ultimately have False

by contradiction
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}
note M = this
from A and F and I and K have Y ⊆ Y 1

apply (cases B1 = {})
apply (fastforce simp: ctyping1-def )

apply (cases ` b)
by (auto dest!: btyping1-btyping2 [of - - A X ] L M simp: ctyping1-def )

moreover {
fix x x ′ ys
assume x ∈ (if B1 = {} ∧ B2 = {} then UNIV else
{x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys. ys ∈ ` c1 t ` c2}.

if f x = [] then x ∈ X else snd (last (f x)) 6= None}) and
x ′ ∈ B2

hence ∀ f . (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c1 t ` c2) −→
(if f x = [] then x ∈ X else snd (last (f x)) 6= None)
by (auto split: if-split-asm)

moreover assume ys ∈ ` c2
hence ys ∈ ` c1 t ` c2

by (force simp: ctyping1-merge-def )
ultimately have if [y←ys. fst y = x] = []

then x ∈ X else snd (last [y←ys. fst y = x]) 6= None
(is ?P)
by blast

moreover assume ¬ ?P
ultimately have False

by contradiction
}
note N = this
{

fix x x ′ ys v
assume x ∈ (if B1 = {} ∧ B2 = {} then UNIV else
{x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys.

ys ∈ (if v then ` c1 else {}) t (if ¬ v then ` c2 else {})}.
if f x = [] then x ∈ X else snd (last (f x)) 6= None})

moreover assume O: x ′ ∈ B2 and
(if v then (B1 ∪ B2, {}) else ({}, B1 ∪ B2)) = (B1, B2)

hence ¬ v
by (simp split: if-split-asm)

ultimately have
∀ f . (∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ {} t ` c2) −→

(if f x = [] then x ∈ X else snd (last (f x)) 6= None)
using O by (auto split: if-split-asm)

moreover assume ys ∈ ` c2
hence ys ∈ {} t ` c2

by (force simp: ctyping1-merge-def )
ultimately have if [y←ys. fst y = x] = []

then x ∈ X else snd (last [y←ys. fst y = x]) 6= None
(is ?P)
by blast
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moreover assume ¬ ?P
ultimately have False

by contradiction
}
note O = this
from A and F and J and K have Y ⊆ Y 2

apply (cases B2 = {})
apply (fastforce simp: ctyping1-def )

apply (cases ` b)
by (auto dest!: btyping1-btyping2 [of - - A X ] N O simp: ctyping1-def )

ultimately show ?thesis
by blast

qed

lemma ctyping1-ctyping2-snd-while:
assumes

A: ` WHILE b DO c (⊆ A, X) = (B, Z ) and
B: (U , False) |= WHILE b DO c (⊆ A, X) = Some (B ′, Z ′)

shows Z ⊆ Z ′

proof −
obtain B1 B1

′ B2 B2
′ C Y where

C : |= b (⊆ A, X) = (B1, B2) and
D: ` c (⊆ B1, X) = (C , Y ) and
E : |= b (⊆ C , Y ) = (B1

′, B2
′) and

F : (B ′, Z ′) = (B2 ∪ B2
′, Univ?? B2 X ∩ Y )

using B by (force split: if-split-asm option.split-asm prod.split-asm)
have G: B1 ∪ B2 = A

using C by (rule btyping2-un-eq)
{

fix x x ′

assume x ∈ (if B1 = {} ∧ B2 = {} then UNIV else
{x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys. ys = [] ∨ ys ∈ ` c}.

if f x = [] then x ∈ X else snd (last (f x)) 6= None}) and
x ′ ∈ B2

hence ∀ f ∈ {λx. [y←ys. fst y = x] | ys. ys = [] ∨ ys ∈ ` c}.
(if f x = [] then x ∈ X else snd (last (f x)) 6= None)
by (auto split: if-split-asm)

hence x ∈ X
by fastforce

moreover assume x /∈ X
ultimately have False

by contradiction
}
note H = this
{

fix x x ′ v
assume x ∈ (if B1 = {} ∧ B2 = {} then UNIV else
{x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys.

ys ∈ (if ¬ v then {[]} else {}) ∨ ys ∈ (if v then ` c else {})}.
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if f x = [] then x ∈ X else snd (last (f x)) 6= None})
moreover assume H : x ′ ∈ B2 and
(if v then (B1 ∪ B2, {}) else ({}, B1 ∪ B2)) = (B1, B2)

hence ¬ v
by (simp split: if-split-asm)

ultimately have x ∈ X
using H by (auto split: if-split-asm)

moreover assume x /∈ X
ultimately have False

by contradiction
}
note I = this
from A and C and G have Z ⊆ Univ?? B2 X

apply (cases B2 = {})
apply fastforce

apply (cases ` b)
by (auto dest!: btyping1-btyping2 [of - - A X ] H I simp: ctyping1-def )

moreover {
fix x
assume x /∈ Univ?? B1 {x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys. ys ∈ ` c}.

if f x = [] then x ∈ X else snd (last (f x)) 6= None}
moreover from this have B1 6= {}

by (simp split: if-split-asm)
ultimately have ¬ (∀ f .
(∃ ys. f = (λx. [y←ys. fst y = x]) ∧ (ys = [] ∨ ys ∈ ` c)) −→
(if f x = [] then x ∈ X else snd (last (f x)) 6= None))

(is ¬ ?P)
by (auto split: if-split-asm)

moreover assume ?P
ultimately have False

by contradiction
}
note J = this
{

fix x v
assume x /∈ Univ?? B1 {x. ∀ f ∈ {λx. [y←ys. fst y = x] | ys. ys ∈ ` c}.

if f x = [] then x ∈ X else snd (last (f x)) 6= None}
moreover from this have K : B1 6= {}

by (simp split: if-split-asm)
ultimately have L: ¬ (∀ f .
(∃ ys. f = (λx. [y←ys. fst y = x]) ∧ ys ∈ ` c) −→
(if f x = [] then x ∈ X else snd (last (f x)) 6= None))

(is ¬ ?P)
by (auto split: if-split-asm)

assume ` b = Some v
with C and K have v

by (auto dest: btyping1-btyping2 [of - - A X ])
moreover assume ∀ f . (∃ ys. f = (λx. [y←ys. fst y = x]) ∧
(ys ∈ (if ¬ v then {[]} else {}) ∨ ys ∈ (if v then ` c else {}))) −→
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(if f x = [] then x ∈ X else snd (last (f x)) 6= None)
ultimately have ?P

by simp
with L have False

by contradiction
}
note K = this
from A and D and G have Z ⊆ Y

apply (cases A = {})
apply (fastforce simp: ctyping1-def )

apply (cases ` b)
by (auto dest: J K simp: ctyping1-def )

ultimately show ?thesis
using F by simp

qed

lemma ctyping1-ctyping2-snd:
[[` c (⊆ A, X) = (C , Z ); (U , False) |= c (⊆ A, X) = Some (C ′, Z ′)]] =⇒

Z ⊆ Z ′

apply (induction (U , False) c A X arbitrary: C C ′ Z Z ′ U
rule: ctyping2 .induct)

apply fastforce
apply fastforce

apply fastforce
apply fastforce

apply (erule ctyping1-ctyping2-snd-seq, assumption+)
apply (erule ctyping1-ctyping2-snd-or , assumption+)

apply (erule ctyping1-ctyping2-snd-if , assumption+)
apply (erule ctyping1-ctyping2-snd-while, assumption+)
done

lemma ctyping1-ctyping2 :
[[` c (⊆ A, X) = (C , Z ); (U , False) |= c (⊆ A, X) = Some (C ′, Z ′)]] =⇒

C ′ ⊆ C ∧ Z ⊆ Z ′

by (blast dest: ctyping1-ctyping2-fst ctyping1-ctyping2-snd)

lemma btyping2-aux-approx-1 [elim]:
assumes

A: ||= b1 (⊆ A, X) = Some B1 and
B: ||= b2 (⊆ A, X) = Some B2 and
C : bval b1 s and
D: bval b2 s and
E : r ∈ A and
F : s = r (⊆ state ∩ X)

shows ∃ r ′ ∈ B1 ∩ B2. r = r ′ (⊆ state ∩ X)
proof −

from A and C and E and F have r ∈ B1
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by (frule-tac btyping2-aux-subset, drule-tac btyping2-aux-eq, auto)
moreover from B and D and E and F have r ∈ B2

by (frule-tac btyping2-aux-subset, drule-tac btyping2-aux-eq, auto)
ultimately show ?thesis

by blast
qed

lemma btyping2-aux-approx-2 [elim]:
assumes

A: avars a1 ⊆ state and
B: avars a2 ⊆ state and
C : avars a1 ⊆ X and
D: avars a2 ⊆ X and
E : aval a1 s < aval a2 s and
F : r ∈ A and
G: s = r (⊆ state ∩ X)

shows ∃ r ′. r ′ ∈ A ∧ aval a1 r ′ < aval a2 r ′ ∧ r = r ′ (⊆ state ∩ X)
proof −

have aval a1 s = aval a1 r ∧ aval a2 s = aval a2 r
using A and B and C and D and G by (blast intro: avars-aval)

thus ?thesis
using E and F by auto

qed

lemma btyping2-aux-approx-3 [elim]:
assumes

A: avars a1 ⊆ state and
B: avars a2 ⊆ state and
C : avars a1 ⊆ X and
D: avars a2 ⊆ X and
E : ¬ aval a1 s < aval a2 s and
F : r ∈ A and
G: s = r (⊆ state ∩ X)

shows ∃ r ′ ∈ A − {s ∈ A. aval a1 s < aval a2 s}. r = r ′ (⊆ state ∩ X)
proof −

have aval a1 s = aval a1 r ∧ aval a2 s = aval a2 r
using A and B and C and D and G by (blast intro: avars-aval)

thus ?thesis
using E and F by auto

qed

lemma btyping2-aux-approx:
[[||= b (⊆ A, X) = Some A ′; s ∈ Univ A (⊆ state ∩ X)]] =⇒

s ∈ Univ (if bval b s then A ′ else A − A ′) (⊆ state ∩ X)
by (induction b arbitrary: A ′, auto dest: btyping2-aux-subset
split: if-split-asm option.split-asm)

lemma btyping2-approx:
[[|= b (⊆ A, X) = (B1, B2); s ∈ Univ A (⊆ state ∩ X)]] =⇒
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s ∈ Univ (if bval b s then B1 else B2) (⊆ state ∩ X)
by (drule sym, simp add: btyping2-def split: option.split-asm,
drule btyping2-aux-approx, auto)

lemma ctyping2-approx-assign [elim!]:
[[∀ t ′. aval a s = t ′ x −→ (∀ s. t ′ = s(x := aval a s) −→ s /∈ A) ∨

(∃ y ∈ state ∩ X . y 6= x ∧ t y 6= t ′ y);
v |= a (⊆ X); t ∈ A; s = t (⊆ state ∩ X)]] =⇒ False

by (drule spec [of - t(x := aval a t)], cases a,
(fastforce simp del: aval.simps(3 ) intro: avars-aval)+)

lemma ctyping2-approx-if-1 :
[[bval b s; |= b (⊆ A, X) = (B1, B2); r ∈ A; s = r (⊆ state ∩ X);

(insert (Univ? A X , bvars b) U , v) |= c1 (⊆ B1, X) = Some (C 1, Y 1);∧
A B X Y U v. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ r ∈ A. s = r (⊆ state ∩ X) =⇒ ∃ r ′ ∈ B. t = r ′ (⊆ state ∩ Y )]] =⇒

∃ r ′ ∈ C 1 ∪ C 2. t = r ′ (⊆ state ∩ (Y 1 ∩ Y 2))
by (drule btyping2-approx, blast, fastforce)

lemma ctyping2-approx-if-2 :
[[¬ bval b s; |= b (⊆ A, X) = (B1, B2); r ∈ A; s = r (⊆ state ∩ X);

(insert (Univ? A X , bvars b) U , v) |= c2 (⊆ B2, X) = Some (C 2, Y 2);∧
A B X Y U v. (U , v) |= c2 (⊆ A, X) = Some (B, Y ) =⇒
∃ r ∈ A. s = r (⊆ state ∩ X) =⇒ ∃ r ′ ∈ B. t = r ′ (⊆ state ∩ Y )]] =⇒

∃ r ′ ∈ C 1 ∪ C 2. t = r ′ (⊆ state ∩ (Y 1 ∩ Y 2))
by (drule btyping2-approx, blast, fastforce)

lemma ctyping2-approx-while-1 [elim]:
[[¬ bval b s; r ∈ A; s = r (⊆ state ∩ X); |= b (⊆ A, X) = (B, {})]] =⇒
∃ t ∈ C . s = t (⊆ state ∩ Y )

by (drule btyping2-approx, blast, simp)

lemma ctyping2-approx-while-2 [elim]:
[[∀ t ∈ B2 ∪ B2

′. ∃ x ∈ state ∩ (X ∩ Y ). r x 6= t x; ¬ bval b s;
r ∈ A; s = r (⊆ state ∩ X); |= b (⊆ A, X) = (B1, B2)]] =⇒ False

by (drule btyping2-approx, blast, auto)

lemma ctyping2-approx-while-aux:
assumes

A: |= b (⊆ A, X) = (B1, B2) and
B: ` c (⊆ B1, X) = (C , Y ) and
C : |= b (⊆ C , Y ) = (B1

′, B2
′) and

D: ({}, False) |= c (⊆ B1, X) = Some (D, Z ) and
E : ({}, False) |= c (⊆ B1

′, Y ) = Some (D ′, Z ′) and
F : r1 ∈ A and
G: s1 = r1 (⊆ state ∩ X) and
H : bval b s1 and
I :

∧
C B Y W U . (case |= b (⊆ C , Y ) of (B1

′, B2
′) ⇒
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case ` c (⊆ B1
′, Y ) of (C ′, Y ′) ⇒

case |= b (⊆ C ′, Y ′) of (B1
′′, B2

′′) ⇒ if
(∀ s ∈ Univ? C Y ∪ Univ? C ′ Y ′. ∀ x ∈ bvars b. ∀ y. s: dom x  dom y) ∧
(∀ p ∈ U . case p of (B, W ) ⇒ ∀ s ∈ B. ∀ x ∈ W . ∀ y. s: dom x  dom y)
then case ({}, False) |= c (⊆ B1

′, Y ) of
None ⇒ None | Some - ⇒ case ({}, False) |= c (⊆ B1

′′, Y ′) of
None ⇒ None | Some - ⇒ Some (B2

′ ∪ B2
′′, Univ?? B2

′ Y ∩ Y ′)
else None) = Some (B, W ) =⇒
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ B. s3 = r (⊆ state ∩ W )

(is
∧

C B Y W U . ?P C B Y W U =⇒ - =⇒ -) and
J :

∧
A B X Y U v. (U , v) |= c (⊆ A, X) = Some (B, Y ) =⇒

∃ r ∈ A. s1 = r (⊆ state ∩ X) =⇒ ∃ r ∈ B. s2 = r (⊆ state ∩ Y ) and
K : ∀ s ∈ Univ? A X ∪ Univ? C Y . ∀ x ∈ bvars b. ∀ y. s: dom x  dom y and
L: ∀ p ∈ U . ∀B W . p = (B, W ) −→
(∀ s ∈ B. ∀ x ∈ W . ∀ y. s: dom x  dom y)

shows ∃ r ∈ B2 ∪ B2
′. s3 = r (⊆ state ∩ Univ?? B2 X ∩ Y )

proof −
obtain C ′ Y ′ where M : ` c (⊆ B1

′, Y ) = (C ′, Y ′)
by (cases ` c (⊆ B1

′, Y ), simp)
obtain B1

′′ B2
′′ where N : (B1

′′, B2
′′) = |= b (⊆ C ′, Y ′)

by (cases |= b (⊆ C ′, Y ′), simp)
let ?B = B2

′ ∪ B2
′′

let ?W = Univ?? B2
′ Y ∩ Y ′

have ` c (⊆ C , Y ) = (C , Y )
using ctyping1-idem and B by auto

moreover have B1
′ ⊆ C

using C by (blast dest: btyping2-un-eq)
ultimately have O: C ′ ⊆ C ∧ Y ⊆ Y ′

by (rule ctyping1-mono [OF - M ], simp)
hence Univ? C ′ Y ′ ⊆ Univ? C Y

by (auto simp: univ-states-if-def )
moreover from I have ?P C ?B Y ?W U =⇒
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ ?B. s3 = r (⊆ state ∩ ?W ) .

ultimately have (case ({}, False) |= c (⊆ B1
′′, Y ′) of

None ⇒ None | Some - ⇒ Some (?B, ?W )) = Some (?B, ?W ) =⇒
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ ?B. s3 = r (⊆ state ∩ ?W )

using C and E and K and L and M and N
by (fastforce split: if-split-asm prod.split-asm)

moreover have P: B1
′′ ⊆ B1

′ ∧ B2
′′ ⊆ B2

′

by (metis btyping2-mono C N O)
hence ∃D ′′ Z ′′. ({}, False) |= c (⊆ B1

′′, Y ′) =
Some (D ′′, Z ′′) ∧ D ′′ ⊆ D ′ ∧ Z ′ ⊆ Z ′′

using E and O by (auto intro: ctyping2-mono)
ultimately have
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ ?B. s3 = r (⊆ state ∩ ?W )
by fastforce

moreover from A and D and F and G and H and J obtain r2 where
r2 ∈ D and s2 = r2 (⊆ state ∩ Z )
by (drule-tac btyping2-approx, blast, force)
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moreover have D ⊆ C ∧ Y ⊆ Z
using B and D by (rule ctyping1-ctyping2 )

ultimately obtain r3 where Q: r3 ∈ ?B and R: s3 = r3 (⊆ state ∩ ?W )
by blast

show ?thesis
proof (rule bexI [of - r3])

show s3 = r3 (⊆ state ∩ Univ?? B2 X ∩ Y )
using O and R by auto

next
show r3 ∈ B2 ∪ B2

′

using P and Q by blast
qed

qed

lemmas ctyping2-approx-while-3 =
ctyping2-approx-while-aux [where B2 = {}, simplified]

lemma ctyping2-approx-while-4 :
[[|= b (⊆ A, X) = (B1, B2);
` c (⊆ B1, X) = (C , Y );
|= b (⊆ C , Y ) = (B1

′, B2
′);

({}, False) |= c (⊆ B1, X) = Some (D, Z );
({}, False) |= c (⊆ B1

′, Y ) = Some (D ′, Z ′);
r1 ∈ A; s1 = r1 (⊆ state ∩ X); bval b s1;∧

C B Y W U . (case |= b (⊆ C , Y ) of (B1
′, B2

′) ⇒
case ` c (⊆ B1

′, Y ) of (C ′, Y ′) ⇒
case |= b (⊆ C ′, Y ′) of (B1

′′, B2
′′) ⇒

if (∀ s ∈ Univ? C Y ∪ Univ? C ′ Y ′. ∀ x ∈ bvars b. ∀ y. s: dom x  dom y) ∧
(∀ p ∈ U . case p of (B, W ) ⇒ ∀ s ∈ B. ∀ x ∈ W . ∀ y. s: dom x  dom y)

then case ({}, False) |= c (⊆ B1
′, Y ) of

None ⇒ None | Some - ⇒ case ({}, False) |= c (⊆ B1
′′, Y ′) of

None ⇒ None | Some - ⇒ Some (B2
′ ∪ B2

′′, Univ?? B2
′ Y ∩ Y ′)

else None) = Some (B, W ) =⇒
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ B. s3 = r (⊆ state ∩ W );∧
A B X Y U v. (U , v) |= c (⊆ A, X) = Some (B, Y ) =⇒
∃ r ∈ A. s1 = r (⊆ state ∩ X) =⇒ ∃ r ∈ B. s2 = r (⊆ state ∩ Y );
∀ s ∈ Univ? A X ∪ Univ? C Y . ∀ x ∈ bvars b. ∀ y. s: dom x  dom y;
∀ p ∈ U . ∀B W . p = (B, W ) −→ (∀ s ∈ B. ∀ x ∈ W . ∀ y. s: dom x  dom y);
∀ r ∈ B2 ∪ B2

′. ∃ x ∈ state ∩ (X ∩ Y ). s3 x 6= r x]] =⇒
False

by (drule ctyping2-approx-while-aux, assumption+, auto)

lemma ctyping2-approx:
[[(c, s, p) ⇒ (t, q); (U , v) |= c (⊆ A, X) = Some (B, Y );

s ∈ Univ A (⊆ state ∩ X)]] =⇒ t ∈ Univ B (⊆ state ∩ Y )
proof (induction (c, s, p) (t, q) arbitrary: A B X Y U v c s p t q
rule: big-step.induct)
fix A C X Z U v c1 c2 s p t q and p ′ :: stage
show
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[[
∧

r q A B X Y U v. p ′ = (r , q) =⇒
(U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒ r ∈ Univ B (⊆ state ∩ Y );∧
r q B C Y Z U v. p ′ = (r , q) =⇒
(U , v) |= c2 (⊆ B, Y ) = Some (C , Z ) =⇒
r ∈ Univ B (⊆ state ∩ Y ) =⇒ t ∈ Univ C (⊆ state ∩ Z );

(U , v) |= c1;; c2 (⊆ A, X) = Some (C , Z );
s ∈ Univ A (⊆ state ∩ X)]] =⇒

t ∈ Univ C (⊆ state ∩ Z )
by (cases p ′, auto split: option.split-asm prod.split-asm)

next
fix A C X Y U v c1 c2 s p t q
show
[[
∧

A C X Y U v. (U , v) |= c1 (⊆ A, X) = Some (C , Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒ t ∈ Univ C (⊆ state ∩ Y );

(U , v) |= c1 OR c2 (⊆ A, X) = Some (C , Y );
s ∈ Univ A (⊆ state ∩ X)]] =⇒

t ∈ Univ C (⊆ state ∩ Y )
by (fastforce split: option.split-asm)

next
fix A C X Y U v c1 c2 s p t q
show
[[
∧

A C X Y U v. (U , v) |= c2 (⊆ A, X) = Some (C , Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒ t ∈ Univ C (⊆ state ∩ Y );

(U , v) |= c1 OR c2 (⊆ A, X) = Some (C , Y );
s ∈ Univ A (⊆ state ∩ X)]] =⇒

t ∈ Univ C (⊆ state ∩ Y )
by (fastforce split: option.split-asm)

next
fix A B X Y U v b c1 c2 s p t q
show
[[bval b s; (c1, s, p) ⇒ (t, q);∧

A C X Y U v. (U , v) |= c1 (⊆ A, X) = Some (C , Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒ t ∈ Univ C (⊆ state ∩ Y );

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y );
s ∈ Univ A (⊆ state ∩ X)]] =⇒

t ∈ Univ B (⊆ state ∩ Y )
by (auto split: option.split-asm prod.split-asm,
rule ctyping2-approx-if-1 )

next
fix A B X Y U v b c1 c2 s p t q
show
[[¬ bval b s; (c2, s, p) ⇒ (t, q);∧

A C X Y U v. (U , v) |= c2 (⊆ A, X) = Some (C , Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒ t ∈ Univ C (⊆ state ∩ Y );

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y );
s ∈ Univ A (⊆ state ∩ X)]] =⇒

t ∈ Univ B (⊆ state ∩ Y )
by (auto split: option.split-asm prod.split-asm,
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rule ctyping2-approx-if-2 )
next

fix A B X Y U v b c s1 p1 s2 p2 s3 p3

show
[[bval b s1; (c, s1, p1) ⇒ (s2, p2);∧

A B X Y U v. (U , v) |= c (⊆ A, X) = Some (B, Y ) =⇒
s1 ∈ Univ A (⊆ state ∩ X) =⇒ s2 ∈ Univ B (⊆ state ∩ Y );

(WHILE b DO c, s2, p2) ⇒ (s3, p3);∧
A B X Y U v. (U , v) |= WHILE b DO c (⊆ A, X) = Some (B, Y ) =⇒
s2 ∈ Univ A (⊆ state ∩ X) =⇒ s3 ∈ Univ B (⊆ state ∩ Y );

(U , v) |= WHILE b DO c (⊆ A, X) = Some (B, Y );
s1 ∈ Univ A (⊆ state ∩ X)]] =⇒

s3 ∈ Univ B (⊆ state ∩ Y )
by (auto split: if-split-asm option.split-asm prod.split-asm,
erule-tac [2 ] ctyping2-approx-while-4 ,
erule ctyping2-approx-while-3 )

qed (auto split: if-split-asm option.split-asm prod.split-asm)

end

end

5 Sufficiency of well-typedness for information flow
correctness: propaedeutic lemmas

theory Correctness-Lemmas
imports Overapproximation

begin

The purpose of this section is to prove some further lemmas used in the
proof of the main theorem, which is the subject of the next section.
The proof of one of these lemmas uses the lemmas ctyping1-idem and ctyp-
ing2-approx proven in the previous sections.

5.1 Global context proofs
lemma bvars-bval:
s = t (⊆ bvars b) =⇒ bval b s = bval b t

by (induction b, simp-all, rule arg-cong2 , auto intro: avars-aval)

lemma eq-streams-subset:
[[f = f ′ (⊆ vs, vs ′, T ); T ′ ⊆ T ]] =⇒ f = f ′ (⊆ vs, vs ′, T ′)

by (auto simp: eq-streams-def )

lemma flow-append-1 :
assumes A:

∧
cfs ′ :: (com × stage) list.

80



c # map fst (cfs :: (com × stage) list) = map fst cfs ′ =⇒
flow-aux (map fst cfs ′ @ map fst cfs ′′) =
flow-aux (map fst cfs ′) @ flow-aux (map fst cfs ′′)

shows flow-aux (c # map fst cfs @ map fst cfs ′′) =
flow-aux (c # map fst cfs) @ flow-aux (map fst cfs ′′)

using A [of (c, λx. 0 , λx n. 0 , [], []) # cfs] by simp

lemma flow-append:
flow (cfs @ cfs ′) = flow cfs @ flow cfs ′

by (simp add: flow-def , induction map fst cfs arbitrary: cfs
rule: flow-aux.induct, auto, rule flow-append-1 )

lemma flow-cons:
flow (cf # cfs) = flow-aux (fst cf # []) @ flow cfs

by (subgoal-tac cf # cfs = [cf ] @ cfs, simp only: flow-append,
simp-all add: flow-def )

lemma in-flow-length:
length [p←in-flow cs vs f . fst p = x] = length [c←cs. c = IN x]

by (induction cs vs f rule: in-flow.induct, simp-all)

lemma in-flow-append:
in-flow (cs @ cs ′) vs f =

in-flow cs vs f @ in-flow cs ′ (vs @ in-flow cs vs f ) f
by (induction cs ′ vs f rule: in-flow.induct,
(simp only: append-assoc [symmetric] in-flow.simps,
simp add: in-flow-length ac-simps)+)

lemma in-flow-one:
in-flow [c] vs f = (case c of

IN x ⇒ [(x, f x (length [p←vs. fst p = x]))] | - ⇒ [])
by (subst append-Nil [symmetric], cases c, simp-all only: in-flow.simps,
simp-all)

lemma run-flow-append:
run-flow (cs @ cs ′) vs s f =

run-flow cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f
by (induction cs ′ vs s f rule: run-flow.induct,
(simp only: append-assoc [symmetric] run-flow.simps,
simp add: in-flow-length ac-simps)+)

lemma run-flow-one:
run-flow [c] vs s f = (case c of

x ::= a ⇒ s(x := aval a s) |
IN x ⇒ s(x := f x (length [p←vs. fst p = x])) |
- ⇒ s)

by (subst append-Nil [symmetric], cases c, simp-all only: run-flow.simps,
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simp-all)

lemma run-flow-observe:
run-flow (〈X〉 # cs) vs s f = run-flow cs vs s f
apply (rule subst [of ([] @ [〈X〉]) @ cs -
λcs ′. run-flow cs ′ vs s f = run-flow cs vs s f ])
apply fastforce

by (subst run-flow-append, simp only: in-flow.simps run-flow.simps, simp)

lemma out-flow-append:
out-flow (cs @ cs ′) vs s f =

out-flow cs vs s f @
out-flow cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f

by (induction cs ′ vs s f rule: out-flow.induct,
(simp only: append-assoc [symmetric] out-flow.simps,
simp add: run-flow-append)+)

lemma out-flow-one:
out-flow [c] vs s f = (case c of

OUT x ⇒ [(x, s x)] | - ⇒ [])
by (subst append-Nil [symmetric], cases c, simp-all only: out-flow.simps,
simp-all)

lemma no-upd-empty:
no-upd cs {}

by (induction cs {} :: vname set rule: no-upd.induct, simp-all)

lemma no-upd-append:
no-upd (cs @ cs ′) X = (no-upd cs X ∧ no-upd cs ′ X)

by (induction cs X rule: no-upd.induct, simp-all)

lemma no-upd-in-flow:
no-upd cs X =⇒ [p←in-flow cs vs f . fst p ∈ X ] = []

by (induction cs vs f rule: in-flow.induct, simp-all add: no-upd-append)

lemma no-upd-run-flow:
no-upd cs X =⇒ run-flow cs vs s f = s (⊆ X)

by (induction cs vs s f rule: run-flow.induct, auto simp: Let-def no-upd-append)

lemma no-upd-out-flow:
no-upd cs X =⇒ [p←out-flow cs vs s f . fst p ∈ X ] = []

by (induction cs vs s f rule: out-flow.induct, simp-all add: no-upd-append)

lemma small-stepsl-append:
[[cf →∗{cfs} cf ′; cf ′→∗{cfs ′} cf ′′]] =⇒ cf →∗{cfs @ cfs ′} cf ′′

by (induction cf ′ cfs ′ cf ′′ rule: small-stepsl.induct, simp,
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simp only: append-assoc [symmetric] small-stepsl.simps)

lemma small-step-stream:
(c, s, f , vs, ws) → (c ′, p) =⇒ ∃ s ′ vs ′ ws ′. p = (s ′, f , vs ′, ws ′)

by (induction (c, s, f , vs, ws) (c ′, p) arbitrary: c s f vs ws c ′ p
rule: small-step.induct, simp-all)

lemma small-stepsl-stream:
(c, s, f , vs, ws) →∗{cfs} (c ′, p) =⇒ ∃ s ′ vs ′ ws ′. p = (s ′, f , vs ′, ws ′)

by (induction (c, s, f , vs, ws) cfs (c ′, p) arbitrary: c s f vs ws c ′ p
rule: small-stepsl.induct, auto dest: small-step-stream)

lemma small-steps-stepsl-1 :
∃ cfs. cf →∗{cfs} cf

by (rule exI [of - []], simp)

lemma small-steps-stepsl-2 :
[[cf → cf ′; cf ′→∗{cfs} cf ′′]] =⇒ ∃ cfs ′. cf →∗{cfs ′} cf ′′

by (rule exI [of - [cf ] @ cfs], rule small-stepsl-append,
subst append-Nil [symmetric], simp only: small-stepsl.simps)

lemma small-steps-stepsl:
cf →∗ cf ′ =⇒ ∃ cfs. cf →∗{cfs} cf ′

by (induction cf cf ′ rule: star .induct, rule small-steps-stepsl-1 ,
blast intro: small-steps-stepsl-2 )

lemma small-stepsl-steps:
cf →∗{cfs} cf ′ =⇒ cf →∗ cf ′

by (induction cf cfs cf ′ rule: small-stepsl.induct, auto intro: star-trans)

lemma small-steps-stream:
(c, s, f , vs, ws) →∗ (c ′, p) =⇒ ∃ s ′ vs ′ ws ′. p = (s ′, f , vs ′, ws ′)

by (blast dest: small-steps-stepsl intro: small-stepsl-stream)

lemma small-stepsl-cons-1 :
cf →∗{[cf ′]} cf ′′ =⇒ cf ′ = cf ∧ (∃ cf ′. cf → cf ′ ∧ cf ′→∗{[]} cf ′′)

by (subst (asm) append-Nil [symmetric], simp only: small-stepsl.simps,
cases cf ′′, simp)

lemma small-stepsl-cons-2 :
[[cf →∗{cf ′ # cfs} cf ′′ =⇒

cf ′ = cf ∧ (∃ cf ′. cf → cf ′ ∧ cf ′→∗{cfs} cf ′′);
cf →∗{cf ′ # cfs @ [cf ′′]} cf ′′′]] =⇒

cf ′ = cf ∧ (∃ cf ′. cf → cf ′ ∧ cf ′→∗{cfs @ [cf ′′]} cf ′′′)
by (simp only: append-Cons [symmetric], simp only: small-stepsl.simps, simp)

lemma small-stepsl-cons:
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cf →∗{cf ′ # cfs} cf ′′ =⇒
cf ′ = cf ∧
(∃ cf ′. cf → cf ′ ∧ cf ′→∗{cfs} cf ′′)

by (induction cf cfs cf ′′ rule: small-stepsl.induct,
erule small-stepsl-cons-1 , rule small-stepsl-cons-2 )

lemma small-stepsl-skip:
(SKIP, p) →∗{cfs} cf =⇒ cf = (SKIP, p) ∧ flow cfs = []

by (induction (SKIP, p) cfs cf rule: small-stepsl.induct,
auto simp: flow-def )

lemma small-stepsl-assign:
(x ::= a, s, p) →∗{cfs} cf =⇒

cf = (x ::= a, s, p) ∧
flow cfs = [] ∨

cf = (SKIP, s(x := aval a s), p) ∧
flow cfs = [x ::= a]

by (induction (x ::= a :: com, s, p) cfs cf rule: small-stepsl.induct,
force simp: flow-def , auto simp: flow-append, simp-all add: flow-def )

lemma small-stepsl-input:
(IN x , s, f , vs, ws) →∗{cfs} cf =⇒

cf = (IN x , s, f , vs, ws) ∧
flow cfs = [] ∨

(let n = length [p←vs. fst p = x]
in cf = (SKIP, s(x := f x n), f , vs @ [(x, f x n)], ws) ∧

flow cfs = [IN x ])
by (induction (IN x :: com, s, f , vs, ws) cfs cf rule:
small-stepsl.induct, force simp: flow-def , auto simp: Let-def flow-append,
simp-all add: flow-def )

lemma small-stepsl-output:
(OUT x, s, f , vs, ws) →∗{cfs} cf =⇒

cf = (OUT x, s, f , vs, ws) ∧
flow cfs = [] ∨

cf = (SKIP, s, f , vs, ws @ [(x, s x)]) ∧
flow cfs = [OUT x]

by (induction (OUT x :: com, s, f , vs, ws) cfs cf rule:
small-stepsl.induct, force simp: flow-def , auto simp: flow-append,
simp-all add: flow-def )

lemma small-stepsl-seq-1 :
(c1;; c2, p) →∗{[]} (c, q) =⇒

(∃ c ′ cfs ′. c = c ′;; c2 ∧
(c1, p) →∗{cfs ′} (c ′, q) ∧
flow [] = flow cfs ′) ∨

(∃ p ′ cfs ′ cfs ′′. length cfs ′′ < length [] ∧
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(c1, p) →∗{cfs ′} (SKIP, p ′) ∧
(c2, p ′) →∗{cfs ′′} (c, q) ∧
flow [] = flow cfs ′ @ flow cfs ′′)

by force

lemma small-stepsl-seq-2 :
assumes A:

∧
c ′ q ′. cf = (c ′, q ′) =⇒

(c1;; c2, p) →∗{cfs} (c ′, q ′) =⇒
(∃ c ′′ cfs ′. c ′ = c ′′;; c2 ∧
(c1, p) →∗{cfs ′} (c ′′, q ′) ∧
flow cfs = flow cfs ′) ∨

(∃ p ′ cfs ′ cfs ′′. length cfs ′′ < length cfs ∧
(c1, p) →∗{cfs ′} (SKIP, p ′) ∧
(c2, p ′) →∗{cfs ′′} (c ′, q ′) ∧
flow cfs = flow cfs ′ @ flow cfs ′′)

(is
∧

c ′ q ′. - =⇒ - =⇒
(∃ c ′′ cfs ′. ?P c ′ q ′ c ′′ cfs ′) ∨
(∃ p ′ cfs ′ cfs ′′. ?Q c ′ q ′ p ′ cfs ′ cfs ′′))

assumes B: (c1;; c2, p) →∗{cfs @ [cf ]} (c, q)
shows
(∃ c ′ cfs ′. c = c ′;; c2 ∧

(c1, p) →∗{cfs ′} (c ′, q) ∧
flow (cfs @ [cf ]) = flow cfs ′) ∨

(∃ p ′ cfs ′ cfs ′′. length cfs ′′ < length (cfs @ [cf ]) ∧
(c1, p) →∗{cfs ′} (SKIP, p ′) ∧
(c2, p ′) →∗{cfs ′′} (c, q) ∧
flow (cfs @ [cf ]) = flow cfs ′ @ flow cfs ′′)

(is ?T ∨ ?U )
proof (cases cf )

fix c ′ q ′

assume C : cf = (c ′, q ′)
moreover {

assume D: (c ′, q ′) → (c, q)
assume
(∃ c ′′ cfs ′. ?P c ′ q ′ c ′′ cfs ′) ∨
(∃ p ′ cfs ′ cfs ′′. ?Q c ′ q ′ p ′ cfs ′ cfs ′′)

hence ?thesis
proof

assume ∃ c ′′ cfs ′. ?P c ′ q ′ c ′′ cfs ′

then obtain c ′′ and cfs ′ where
E : c ′ = c ′′;; c2 and
F : (c1, p) →∗{cfs ′} (c ′′, q ′) and
G: flow cfs = flow cfs ′

by blast
hence (c ′′;; c2, q ′) → (c, q)

using D by simp
moreover {

assume
H : c ′′ = SKIP and
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I : (c, q) = (c2, q ′)
have ?U
proof (rule exI [of - q ′], rule exI [of - cfs ′],
rule exI [of - []])
from C and E and F and G and H and I show
length [] < length (cfs @ [cf ]) ∧
(c1, p) →∗{cfs ′} (SKIP, q ′) ∧
(c2, q ′) →∗{[]} (c, q) ∧
flow (cfs @ [cf ]) = flow cfs ′ @ flow []
by (simp add: flow-append, simp add: flow-def )

qed
}
moreover {

fix d q ′′

assume
H : (c ′′, q ′) → (d, q ′′) and
I : (c, q) = (d;; c2, q ′′)

have ?T
proof (rule exI [of - d],
rule exI [of - cfs ′ @ [(c ′′, q ′)]])
from C and E and F and G and H and I show
c = d;; c2 ∧
(c1, p) →∗{cfs ′ @ [(c ′′, q ′)]} (d, q) ∧
flow (cfs @ [cf ]) = flow (cfs ′ @ [(c ′′, q ′)])
by (simp add: flow-append, simp add: flow-def )

qed
}
ultimately show ?thesis

by blast
next

assume ∃ p ′ cfs ′ cfs ′′. ?Q c ′ q ′ p ′ cfs ′ cfs ′′

then obtain p ′ and cfs ′ and cfs ′′ where
E : length cfs ′′ < length cfs and
F : (c1, p) →∗{cfs ′} (SKIP, p ′) and
G: (c2, p ′) →∗{cfs ′′} (c ′, q ′) and
H : flow cfs = flow cfs ′ @ flow cfs ′′

by blast
show ?thesis
proof (rule disjI2 , rule exI [of - p ′], rule exI [of - cfs ′],
rule exI [of - cfs ′′ @ [(c ′, q ′)]])
from C and D and E and F and G and H show
length (cfs ′′ @ [(c ′, q ′)]) < length (cfs @ [cf ]) ∧
(c1, p) →∗{cfs ′} (SKIP, p ′) ∧
(c2, p ′) →∗{cfs ′′ @ [(c ′, q ′)]} (c, q) ∧
flow (cfs @ [cf ]) = flow cfs ′ @ flow (cfs ′′ @ [(c ′, q ′)])
by (simp add: flow-append)

qed
qed

}
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ultimately show ?thesis
using A and B by simp

qed

lemma small-stepsl-seq:
(c1;; c2, p) →∗{cfs} (c, q) =⇒

(∃ c ′ cfs ′. c = c ′;; c2 ∧
(c1, p) →∗{cfs ′} (c ′, q) ∧
flow cfs = flow cfs ′) ∨

(∃ p ′ cfs ′ cfs ′′. length cfs ′′ < length cfs ∧
(c1, p) →∗{cfs ′} (SKIP, p ′) ∧ (c2, p ′) →∗{cfs ′′} (c, q) ∧
flow cfs = flow cfs ′ @ flow cfs ′′)

by (induction (c1;; c2, p) cfs (c, q) arbitrary: c1 c2 p c q
rule: small-stepsl.induct, erule small-stepsl-seq-1 ,
rule small-stepsl-seq-2 )

lemma small-stepsl-or-1 :
assumes A: (c1 OR c2, p) →∗{cfs} cf =⇒

cf = (c1 OR c2, p) ∧
flow cfs = [] ∨

(c1, p) →∗{tl cfs} cf ∧
flow cfs = flow (tl cfs) ∨

(c2, p) →∗{tl cfs} cf ∧
flow cfs = flow (tl cfs)

(is - =⇒ ?P ∨ ?Q ∨ ?R)
assumes B: (c1 OR c2, p) →∗{cfs @ [cf ]} cf ′

shows
cf ′ = (c1 OR c2, p) ∧

flow (cfs @ [cf ]) = [] ∨
(c1, p) →∗{tl (cfs @ [cf ])} cf ′ ∧

flow (cfs @ [cf ]) = flow (tl (cfs @ [cf ])) ∨
(c2, p) →∗{tl (cfs @ [cf ])} cf ′ ∧

flow (cfs @ [cf ]) = flow (tl (cfs @ [cf ]))
(is - ∨ ?T )

proof −
{

assume
C : (c1 OR c2, p) →∗{cfs} cf and
D: cf → cf ′

assume ?P ∨ ?Q ∨ ?R
hence ?T
proof (rule disjE , erule-tac [2 ] disjE)

assume ?P
moreover from this have (c1 OR c2, p) → cf ′

using D by simp
ultimately show ?thesis

using C by (auto dest: small-stepsl-cons
simp: tl-append flow-cons split: list.split)
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next
assume ?Q
with C and D show ?thesis

by (auto simp: tl-append flow-cons split: list.split)
next

assume ?R
with C and D show ?thesis

by (auto simp: tl-append flow-cons split: list.split)
qed

}
with A and B show ?thesis

by simp
qed

lemma small-stepsl-or :
(c1 OR c2, p) →∗{cfs} cf =⇒

cf = (c1 OR c2, p) ∧
flow cfs = [] ∨

(c1, p) →∗{tl cfs} cf ∧
flow cfs = flow (tl cfs) ∨

(c2, p) →∗{tl cfs} cf ∧
flow cfs = flow (tl cfs)

by (induction (c1 OR c2, p) cfs cf rule: small-stepsl.induct,
force simp: flow-def , rule small-stepsl-or-1 )

lemma small-stepsl-if-1 :
assumes A: (IF b THEN c1 ELSE c2, s, p) →∗{cfs} cf =⇒

cf = (IF b THEN c1 ELSE c2, s, p) ∧
flow cfs = [] ∨

bval b s ∧ (c1, s, p) →∗{tl cfs} cf ∧
flow cfs = 〈bvars b〉 # flow (tl cfs) ∨
¬ bval b s ∧ (c2, s, p) →∗{tl cfs} cf ∧

flow cfs = 〈bvars b〉 # flow (tl cfs)
(is - =⇒ ?P ∨ ?Q ∨ ?R)

assumes B: (IF b THEN c1 ELSE c2, s, p) →∗{cfs @ [cf ]} cf ′

shows
cf ′ = (IF b THEN c1 ELSE c2, s, p) ∧

flow (cfs @ [cf ]) = [] ∨
bval b s ∧ (c1, s, p) →∗{tl (cfs @ [cf ])} cf ′ ∧

flow (cfs @ [cf ]) = 〈bvars b〉 # flow (tl (cfs @ [cf ])) ∨
¬ bval b s ∧ (c2, s, p) →∗{tl (cfs @ [cf ])} cf ′ ∧

flow (cfs @ [cf ]) = 〈bvars b〉 # flow (tl (cfs @ [cf ]))
(is - ∨ ?T )

proof −
{

assume
C : (IF b THEN c1 ELSE c2, s, p) →∗{cfs} cf and
D: cf → cf ′
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assume ?P ∨ ?Q ∨ ?R
hence ?T
proof (rule disjE , erule-tac [2 ] disjE)

assume ?P
moreover from this have (IF b THEN c1 ELSE c2, s, p) → cf ′

using D by simp
ultimately show ?thesis

using C by (auto dest: small-stepsl-cons
simp: tl-append flow-cons split: list.split)

next
assume ?Q
with D show ?thesis

by (auto simp: tl-append flow-cons split: list.split)
next

assume ?R
with D show ?thesis

by (auto simp: tl-append flow-cons split: list.split)
qed

}
with A and B show ?thesis

by simp
qed

lemma small-stepsl-if :
(IF b THEN c1 ELSE c2, s, p) →∗{cfs} cf =⇒

cf = (IF b THEN c1 ELSE c2, s, p) ∧
flow cfs = [] ∨

bval b s ∧ (c1, s, p) →∗{tl cfs} cf ∧
flow cfs = 〈bvars b〉 # flow (tl cfs) ∨
¬ bval b s ∧ (c2, s, p) →∗{tl cfs} cf ∧

flow cfs = 〈bvars b〉 # flow (tl cfs)
by (induction (IF b THEN c1 ELSE c2, s, p) cfs cf rule:
small-stepsl.induct, force simp: flow-def , rule small-stepsl-if-1 )

lemma small-stepsl-while-1 :
assumes A: (WHILE b DO c, s, p) →∗{cfs} cf =⇒

cf = (WHILE b DO c, s, p) ∧
flow cfs = [] ∨

bval b s ∧ (c;; WHILE b DO c, s, p) →∗{tl cfs} cf ∧
flow cfs = 〈bvars b〉 # flow (tl cfs) ∨
¬ bval b s ∧ cf = (SKIP, s, p) ∧

flow cfs = [〈bvars b〉]
(is - =⇒ ?P ∨ ?Q ∨ ?R)

assumes B: (WHILE b DO c, s, p) →∗{cfs @ [cf ]} cf ′

shows
cf ′ = (WHILE b DO c, s, p) ∧

flow (cfs @ [cf ]) = [] ∨
bval b s ∧ (c;; WHILE b DO c, s, p) →∗{tl (cfs @ [cf ])} cf ′ ∧
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flow (cfs @ [cf ]) = 〈bvars b〉 # flow (tl (cfs @ [cf ])) ∨
¬ bval b s ∧ cf ′ = (SKIP, s, p) ∧

flow (cfs @ [cf ]) = [〈bvars b〉]
(is - ∨ ?T )

proof −
{

assume
C : (WHILE b DO c, s, p) →∗{cfs} cf and
D: cf → cf ′

assume ?P ∨ ?Q ∨ ?R
hence ?T
proof (rule disjE , erule-tac [2 ] disjE)

assume ?P
moreover from this have (WHILE b DO c, s, p) → cf ′

using D by simp
ultimately show ?thesis

using C by (auto dest: small-stepsl-cons
simp: tl-append flow-cons split: list.split)

next
assume ?Q
with D show ?thesis

by (auto simp: tl-append flow-cons split: list.split)
next

assume ?R
with D show ?thesis

by blast
qed

}
with A and B show ?thesis

by simp
qed

lemma small-stepsl-while:
(WHILE b DO c, s, p) →∗{cfs} cf =⇒

cf = (WHILE b DO c, s, p) ∧
flow cfs = [] ∨

bval b s ∧ (c;; WHILE b DO c, s, p) →∗{tl cfs} cf ∧
flow cfs = 〈bvars b〉 # flow (tl cfs) ∨
¬ bval b s ∧ cf = (SKIP, s, p) ∧

flow cfs = [〈bvars b〉]
by (induction (WHILE b DO c, s, p) cfs cf rule: small-stepsl.induct,
force simp: flow-def , rule small-stepsl-while-1 )

lemma small-steps-in-flow-1 :
[[(c, s, f , vs, ws) → (c ′, s ′, f ′, vs ′, ws ′);

vs ′′ = vs ′ @ drop (length vs ′) vs ′′]] =⇒
vs ′′ = vs @ drop (length vs) vs ′′

by (induction (c, s, f , vs, ws) (c ′, s ′, f ′, vs ′, ws ′)
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arbitrary: c c ′ s s ′ f f ′ vs vs ′ ws ws ′ rule: small-step.induct,
auto elim: ssubst)

lemma small-steps-in-flow:
(c, s, f , vs, ws) →∗ (c ′, s ′, f ′, vs ′, ws ′) =⇒

vs ′ = vs @ drop (length vs) vs ′

by (induction (c, s, f , vs, ws) (c ′, s ′, f ′, vs ′, ws ′)
arbitrary: c c ′ s s ′ f f ′ vs vs ′ ws ws ′ rule: star .induct,
auto intro: small-steps-in-flow-1 )

lemma small-steps-out-flow-1 :
[[(c, s, f , vs, ws) → (c ′, s ′, f ′, vs ′, ws ′);

ws ′′ = ws ′ @ drop (length ws ′) ws ′′]] =⇒
ws ′′ = ws @ drop (length ws) ws ′′

by (induction (c, s, f , vs, ws) (c ′, s ′, f ′, vs ′, ws ′)
arbitrary: c c ′ s s ′ f f ′ vs vs ′ ws ws ′ rule: small-step.induct,
auto elim: ssubst)

lemma small-steps-out-flow:
(c, s, f , vs, ws) →∗ (c ′, s ′, f ′, vs ′, ws ′) =⇒

ws ′ = ws @ drop (length ws) ws ′

by (induction (c, s, f , vs, ws) (c ′, s ′, f ′, vs ′, ws ′)
arbitrary: c c ′ s s ′ f f ′ vs vs ′ ws ws ′ rule: star .induct,
auto intro: small-steps-out-flow-1 )

lemma small-stepsl-in-flow-1 :
assumes

A: (c, s, f , vs, ws) →∗{cfs} (c ′, s ′, f ′, vs @ vs ′, ws ′) and
B: (c ′, s ′, f ′, vs @ vs ′, ws ′) → (c ′′, s ′′, f ′′, vs ′′, ws ′′)

shows vs ′′ = vs @ vs ′ @
in-flow (flow [(c ′, s ′, f ′, vs @ vs ′, ws ′)]) (vs @ vs ′) f

using small-stepsl-stream [OF A] and B
by (induction [c ′] arbitrary: c ′ c ′′ rule: flow-aux.induct,
auto simp: flow-def in-flow-one)

lemma small-stepsl-in-flow:
(c, s, f , vs, ws) →∗{cfs} (c ′, s ′, f ′, vs ′, ws ′) =⇒

vs ′ = vs @ in-flow (flow cfs) vs f
by (induction (c, s, f , vs, ws) cfs (c ′, s ′, f ′, vs ′, ws ′)
arbitrary: c ′ s ′ f ′ vs ′ ws ′ rule: small-stepsl.induct, simp add: flow-def ,
auto intro: small-stepsl-in-flow-1 simp: flow-append in-flow-append)

lemma small-stepsl-run-flow-1 :
assumes

A: (c, s, f , vs, ws) →∗{cfs}
(c ′, run-flow (flow cfs) vs s f , f ′, vs ′, ws ′) and
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B: (c ′, run-flow (flow cfs) vs s f , f ′, vs ′, ws ′) →
(c ′′, s ′′, f ′′, vs ′′, ws ′′)

shows s ′′ = run-flow (flow [(c ′, run-flow (flow cfs) vs s f , f ′, vs ′, ws ′)])
(vs @ in-flow (flow cfs) vs f ) (run-flow (flow cfs) vs s f ) f

using small-stepsl-stream [OF A] and small-stepsl-in-flow [OF A] and B
by (induction [c ′] arbitrary: c ′ c ′′ rule: flow-aux.induct,
auto simp: flow-def run-flow-one)

lemma small-stepsl-run-flow:
(c, s, f , vs, ws) →∗{cfs} (c ′, s ′, f ′, vs ′, ws ′) =⇒

s ′ = run-flow (flow cfs) vs s f
by (induction (c, s, f , vs, ws) cfs (c ′, s ′, f ′, vs ′, ws ′)
arbitrary: c ′ s ′ f ′ vs ′ ws ′ rule: small-stepsl.induct, simp add: flow-def ,
auto intro: small-stepsl-run-flow-1 simp: flow-append run-flow-append)

lemma small-stepsl-out-flow-1 :
assumes

A: (c, s, f , vs, ws) →∗{cfs} (c ′, s ′, f ′, vs ′, ws @ ws ′) and
B: (c ′, s ′, f ′, vs ′, ws @ ws ′) → (c ′′, s ′′, f ′′, vs ′′, ws ′′)

shows ws ′′ = ws @ ws ′ @
out-flow (flow [(c ′, s ′, f ′, vs ′, ws @ ws ′)]) (vs @ in-flow (flow cfs) vs f )
(run-flow (flow cfs) vs s f ) f

using small-stepsl-run-flow [OF A] and B
by (induction [c ′] arbitrary: c ′ c ′′ rule: flow-aux.induct,
auto simp: flow-def out-flow-one)

lemma small-stepsl-out-flow:
(c, s, f , vs, ws) →∗{cfs} (c ′, s ′, f ′, vs ′, ws ′) =⇒

ws ′ = ws @ out-flow (flow cfs) vs s f
by (induction (c, s, f , vs, ws) cfs (c ′, s ′, f ′, vs ′, ws ′)
arbitrary: c ′ s ′ f ′ vs ′ ws ′ rule: small-stepsl.induct, simp add: flow-def ,
auto intro: small-stepsl-out-flow-1 simp: flow-append out-flow-append)

lemma small-steps-inputs:
assumes

A: (c, s, f , vs0, ws0) →∗{cfs1} (c0, s1, f , vs1, ws1) and
B: (c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2) and
C : (c, s ′, f ′, vs0 ′, ws0 ′) →∗ (c0 ′, s1 ′, f ′, vs1 ′, ws1 ′) and
D: (c1 ′, s1 ′, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, s2 ′, f ′, vs2 ′, ws2 ′) and
E : map fst [p←drop (length vs0) vs1. P p] =

map fst [p←drop (length vs0 ′) vs1 ′. P p] and
F : map fst [p←drop (length vs1) vs2. P p] =

map fst [p←drop (length vs1 ′) vs2 ′. P p]
shows map fst [p←drop (length vs0) vs2. P p] =

map fst [p←drop (length vs0 ′) vs2 ′. P p]
proof −

have G: vs1 = vs0 @ drop (length vs0) vs1
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using small-stepsl-steps [OF A] by (rule small-steps-in-flow)
have vs2 = vs1 @ drop (length vs1) vs2

using small-stepsl-steps [OF B] by (rule small-steps-in-flow)
hence H : vs2 = vs0 @ drop (length vs0) vs1 @ drop (length vs1) vs2

by (subst (asm) G, simp)
have I : vs1 ′ = vs0 ′ @ drop (length vs0 ′) vs1 ′

using C by (rule small-steps-in-flow)
have vs2 ′ = vs1 ′ @ drop (length vs1 ′) vs2 ′

using D by (rule small-steps-in-flow)
hence J : vs2 ′ = vs0 ′ @ drop (length vs0 ′) vs1 ′ @ drop (length vs1 ′) vs2 ′

by (subst (asm) I , simp)
from E and F show ?thesis

by (subst H , subst J , simp)
qed

lemma small-steps-outputs:
assumes

A: (c, s, f , vs0, ws0) →∗{cfs1} (c0, s1, f , vs1, ws1) and
B: (c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2) and
C : (c, s ′, f ′, vs0 ′, ws0 ′) →∗ (c0 ′, s1 ′, f ′, vs1 ′, ws1 ′) and
D: (c1 ′, s1 ′, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, s2 ′, f ′, vs2 ′, ws2 ′) and
E : [p←drop (length ws0) ws1. P p] =
[p←drop (length ws0 ′) ws1 ′. P p] and

F : [p←drop (length ws1) ws2. P p] =
[p←drop (length ws1 ′) ws2 ′. P p]

shows [p←drop (length ws0) ws2. P p] =
[p←drop (length ws0 ′) ws2 ′. P p]

proof −
have G: ws1 = ws0 @ drop (length ws0) ws1

using small-stepsl-steps [OF A] by (rule small-steps-out-flow)
have ws2 = ws1 @ drop (length ws1) ws2

using small-stepsl-steps [OF B] by (rule small-steps-out-flow)
hence H : ws2 = ws0 @ drop (length ws0) ws1 @ drop (length ws1) ws2

by (subst (asm) G, simp)
have I : ws1 ′ = ws0 ′ @ drop (length ws0 ′) ws1 ′

using C by (rule small-steps-out-flow)
have ws2 ′ = ws1 ′ @ drop (length ws1 ′) ws2 ′

using D by (rule small-steps-out-flow)
hence J : ws2 ′ = ws0 ′ @ drop (length ws0 ′) ws1 ′ @ drop (length ws1 ′) ws2 ′

by (subst (asm) I , simp)
from E and F show ?thesis

by (subst H , subst J , simp)
qed

5.2 Local context proofs
context noninterf
begin
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lemma no-upd-sources:
no-upd cs X =⇒ ∀ x ∈ X . x ∈ sources cs vs s f x

by (induction cs rule: rev-induct, auto simp: no-upd-append
split: com-flow.split)

lemma sources-aux-append:
sources-aux cs vs s f x ⊆ sources-aux (cs @ cs ′) vs s f x

by (induction cs ′ rule: rev-induct, simp, subst append-assoc [symmetric],
auto simp del: append-assoc split: com-flow.split)

lemma sources-out-append:
sources-out cs vs s f x ⊆ sources-out (cs @ cs ′) vs s f x

by (induction cs ′ rule: rev-induct, simp, subst append-assoc [symmetric],
auto simp del: append-assoc split: com-flow.split)

lemma sources-aux-sources:
sources-aux cs vs s f x ⊆ sources cs vs s f x

by (induction cs rule: rev-induct, auto split: com-flow.split)

lemma sources-aux-sources-out:
sources-aux cs vs s f x ⊆ sources-out cs vs s f x

by (induction cs rule: rev-induct, auto split: com-flow.split)

lemma sources-aux-observe-hd-1 :
∀ y ∈ X . s: dom y  dom x =⇒ X ⊆ sources-aux [〈X〉] vs s f x

by (subst append-Nil [symmetric], subst sources-aux.simps, auto)

lemma sources-aux-observe-hd-2 :
[[∀ y ∈ X . s: dom y  dom x =⇒ X ⊆ sources-aux (〈X〉 # xs) vs s f x;
∀ y ∈ X . s: dom y  dom x]] =⇒

X ⊆ sources-aux (〈X〉 # xs @ [x ′]) vs s f x
by (subst append-Cons [symmetric], subst sources-aux.simps,
auto split: com-flow.split)

lemma sources-aux-observe-hd:
∀ y ∈ X . s: dom y  dom x =⇒ X ⊆ sources-aux (〈X〉 # cs) vs s f x

by (induction cs rule: rev-induct,
erule sources-aux-observe-hd-1 , rule sources-aux-observe-hd-2 )

lemma sources-aux-bval:
assumes

A: S ⊆ {x. s = t (⊆ sources-aux (〈bvars b〉 # cs) vs s f x)} and
B: s ∈ Univ A (⊆ state ∩ X) and
C : bval b s 6= bval b t

shows Univ? A X : bvars b  | S
proof −

have ¬ s = t (⊆ bvars b)
using A and C by (erule-tac contrapos-nn, auto dest: bvars-bval)
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hence ∀ x ∈ S . ¬ bvars b ⊆ sources-aux (〈bvars b〉 # cs) vs s f x
using A by blast

hence D: {s}: bvars b  | S
by (fastforce dest: sources-aux-observe-hd)

{
fix r y
assume r ∈ A and y ∈ S
moreover assume s = r (⊆ state ∩ X) and state ⊆ X
hence interf s = interf r

by (blast intro: interf-state)
ultimately have A: bvars b  | {y}

using D by fastforce
}
with B and D show ?thesis

by (fastforce simp: univ-states-if-def )
qed

lemma ok-flow-aux-degen:
assumes A: @S . S 6= {} ∧ S ⊆ {x. s1 = t1 (⊆ sources-aux cs vs1 s1 f x)}
shows ∀ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ cs
(is ∀ c2 ′ t2 vs2 ′ ws2 ′. ?P1 c2 ′ t2 vs2 ′ ws2 ′ ∧ ?P2 t2 ∧ ?P3 ws2 ′)

proof clarify
fix c2 ′ t2 vs2 ′ ws2 ′

{
fix S
assume S 6= {} and S ⊆ {x. s1 = t1 (⊆ sources-aux cs vs1 s1 f x)}
hence ?P1 c2 ′ t2 vs2 ′ ws2 ′

using A by blast
}
moreover {

fix S
assume S ⊆ {x. s1 = t1 (⊆ sources cs vs1 s1 f x)}
moreover have ∀ x. sources-aux cs vs1 s1 f x ⊆ sources cs vs1 s1 f x

by (blast intro: subsetD [OF sources-aux-sources])
ultimately have S ⊆ {x. s1 = t1 (⊆ sources-aux cs vs1 s1 f x)}

by blast
moreover assume S 6= {}
ultimately have ?P2 t2

using A by blast
}
moreover {

fix S
assume S ⊆ {x. s1 = t1 (⊆ sources-out cs vs1 s1 f x)}
moreover have ∀ x. sources-aux cs vs1 s1 f x ⊆ sources-out cs vs1 s1 f x

by (blast intro: subsetD [OF sources-aux-sources-out])
ultimately have S ⊆ {x. s1 = t1 (⊆ sources-aux cs vs1 s1 f x)}
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by blast
moreover assume S 6= {}
ultimately have ?P3 ws2 ′

using A by blast
}
ultimately show ?P1 c2 ′ t2 vs2 ′ ws2 ′ ∧ ?P2 t2 ∧ ?P3 ws2 ′

by auto
qed

lemma tags-aux-append:
tags-aux cs vs s f x ⊆ tags-aux (cs @ cs ′) vs s f x

by (induction cs ′ rule: rev-induct, simp, subst append-assoc [symmetric],
auto simp del: append-assoc split: com-flow.split)

lemma tags-out-append:
tags-out cs vs s f x ⊆ tags-out (cs @ cs ′) vs s f x

by (induction cs ′ rule: rev-induct, simp, subst append-assoc [symmetric],
auto simp del: append-assoc split: com-flow.split)

lemma tags-aux-tags:
tags-aux cs vs s f x ⊆ tags cs vs s f x

by (induction cs rule: rev-induct, auto split: com-flow.split)

lemma tags-aux-tags-out:
tags-aux cs vs s f x ⊆ tags-out cs vs s f x

by (induction cs rule: rev-induct, auto split: com-flow.split)

lemma tags-ubound-1 :
assumes

A: (y, Suc (length [c←cs. c = IN y] + n)) ∈ tags-aux cs vs s f x and
B:

∧
z n. y = z =⇒

(z, length [c←cs. c = IN z ] + n) /∈ tags-aux cs vs s f x
shows False

proof −
have (y, length [c←cs. c = IN y] + Suc n) /∈ tags-aux cs vs s f x

using B by blast
thus ?thesis

using A by simp
qed

lemma tags-ubound-2 :
assumes

A: (y, Suc (length [c←cs. c = IN y] + n)) ∈ tags cs vs s f x and
B:

∧
z n. y = z =⇒ z 6= x =⇒

(z, length [c←cs. c = IN z ] + n) /∈ tags cs vs s f x and
C : y 6= x

shows False
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proof −
have (y, length [c←cs. c = IN y] + Suc n) /∈ tags cs vs s f x

using B and C by blast
thus ?thesis

using A by simp
qed

lemma tags-ubound:
(y, length [c←cs. c = IN y] + n) /∈ tags cs vs s f x

and tags-aux-ubound:
(y, length [c←cs. c = IN y] + n) /∈ tags-aux cs vs s f x

by (induction cs vs s f x and cs vs s f x arbitrary: n and n
rule: tags-induct, auto intro: tags-ubound-1 tags-ubound-2
split: if-split-asm com-flow.split-asm)

lemma tags-out-ubound-1 :
assumes

A: (y, Suc (length [c←cs. c = IN y] + n)) ∈ tags-out cs vs s f x and
B:

∧
z n. y = z =⇒

(z, length [c←cs. c = IN z ] + n) /∈ tags-out cs vs s f x
shows False

proof −
have (y, length [c←cs. c = IN y] + Suc n) /∈ tags-out cs vs s f x

using B by blast
thus ?thesis

using A by simp
qed

lemma tags-out-ubound:
(y, length [c←cs. c = IN y] + n) /∈ tags-out cs vs s f x

by (induction cs vs s f x arbitrary: n rule: tags-out.induct, auto
intro: notE [OF tags-ubound] tags-out-ubound-1
split: if-split-asm com-flow.split-asm)

lemma tags-less:
(y, n) ∈ tags cs vs s f x =⇒ n < length [c←cs. c = IN y]
apply (rule ccontr)
apply (drule add-diff-inverse-nat)
apply (drule ssubst, assumption)

by (simp add: tags-ubound)

lemma tags-aux-less:
(y, n) ∈ tags-aux cs vs s f x =⇒ n < length [c←cs. c = IN y]
apply (rule ccontr)
apply (drule add-diff-inverse-nat)
apply (drule ssubst, assumption)

by (simp add: tags-aux-ubound)
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lemma tags-out-less:
(y, n) ∈ tags-out cs vs s f x =⇒ n < length [c←cs. c = IN y]
apply (rule ccontr)
apply (drule add-diff-inverse-nat)
apply (drule ssubst, assumption)

by (simp add: tags-out-ubound)

lemma sources-observe-tl-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒ z = x =⇒
sources-aux cs vs s f x ⊆ sources-aux (〈X〉 # cs) vs s f x and

B:
∧

z a b w. c = (z ::= a :: com-flow) =⇒ z = x =⇒
sources cs vs s f w ⊆ sources (〈X〉 # cs) vs s f w and

C :
∧

z a. c = (z ::= a :: com-flow) =⇒ z 6= x =⇒
sources cs vs s f x ⊆ sources (〈X〉 # cs) vs s f x and

D:
∧

z. c = (IN z :: com-flow) =⇒ z = x =⇒
sources-aux cs vs s f x ⊆ sources-aux (〈X〉 # cs) vs s f x and

E :
∧

z. c = (IN z :: com-flow) =⇒ z 6= x =⇒
sources cs vs s f x ⊆ sources (〈X〉 # cs) vs s f x and

F :
∧

z. c = (OUT z :: com-flow) =⇒
sources cs vs s f x ⊆ sources (〈X〉 # cs) vs s f x and

G:
∧

Y b w. c = 〈Y 〉 =⇒
sources cs vs s f w ⊆ sources (〈X〉 # cs) vs s f w

shows sources (cs @ [c]) vs s f x ⊆ sources (〈X〉 # cs @ [c]) vs s f x
(is - ⊆ ?F c)

apply (subst sources.simps)
apply (split com-flow.split)
apply (rule conjI )
subgoal
proof −

show ∀ z a. c = z ::= a −→ (if z = x
then sources-aux cs vs s f x ∪

⋃
{sources cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ avars a}
else sources cs vs s f x) ⊆ ?F c
(is ∀ - a. - −→ (if - then ?A ∪ ?G a else ?B) ⊆ -)

proof (clarify, split if-split-asm)
fix y z a
assume H : c = z ::= a and I : z = x
hence ?F (z ::= a) = sources-aux (〈X〉 # cs) vs s f x ∪⋃

{sources (〈X〉 # cs) vs s f y | y.
run-flow cs vs s f : dom y  dom x ∧ y ∈ avars a}

(is - = ?A ′ ∪ ?G ′ a)
by (simp only: append-Cons [symmetric] sources.simps,
simp add: run-flow-observe)

moreover assume y ∈ ?A ∪ ?G a
moreover {

assume y ∈ ?A
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hence y ∈ ?A ′

using A and H and I by blast
}
moreover {

assume y ∈ ?G a
hence y ∈ ?G ′ a

using B and H and I by blast
}
ultimately show y ∈ ?F (z ::= a)

by blast
next

fix y z a
assume c = z ::= a and z 6= x
moreover from this have ?F (z ::= a) = sources (〈X〉 # cs) vs s f x

by (simp only: append-Cons [symmetric] sources.simps, simp)
moreover assume y ∈ ?B
ultimately show y ∈ ?F (z ::= a)

using C by blast
qed

qed
apply (rule conjI )
subgoal
proof −

show ∀ z. c = IN z −→ (if z = x
then sources-aux cs vs s f x else sources cs vs s f x) ⊆ ?F c
(is ∀ -. - −→ (if - then ?A else ?B) ⊆ -)

proof (clarify, split if-split-asm)
fix y z
assume c = IN z and z = x
moreover from this have ?F (IN z) = sources-aux (〈X〉 # cs) vs s f x

by (simp only: append-Cons [symmetric] sources.simps, simp)
moreover assume y ∈ ?A
ultimately show y ∈ ?F (IN z)

using D by blast
next

fix y z
assume c = IN z and z 6= x
moreover from this have ?F (IN z) = sources (〈X〉 # cs) vs s f x

by (simp only: append-Cons [symmetric] sources.simps, simp)
moreover assume y ∈ ?B
ultimately show y ∈ ?F (IN z)

using E by blast
qed

qed
apply (rule conjI )
subgoal by (simp only: append-Cons [symmetric] sources.simps, simp add: F)
subgoal
proof −

show ∀Y . c = 〈Y 〉 −→ sources cs vs s f x ∪
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⋃
{sources cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ Y } ⊆ ?F c
(is ∀Y . - −→ ?A ∪ ?G Y ⊆ -)

proof clarify
fix y Y
assume H : c = 〈Y 〉
hence ?F (〈Y 〉) = sources (〈X〉 # cs) vs s f x ∪⋃

{sources (〈X〉 # cs) vs s f y | y.
run-flow cs vs s f : dom y  dom x ∧ y ∈ Y }

(is - = ?A ′ ∪ ?G ′ Y )
by (simp only: append-Cons [symmetric] sources.simps,
simp add: run-flow-observe)

moreover assume y ∈ ?A ∪ ?G Y
moreover {

assume y ∈ ?A
hence y ∈ ?A ′

using G and H by blast
}
moreover {

assume y ∈ ?G Y
hence y ∈ ?G ′ Y

using G and H by blast
}
ultimately show y ∈ ?F (〈Y 〉)

by blast
qed

qed
done

lemma sources-observe-tl-2 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
sources-aux cs vs s f x ⊆ sources-aux (〈X〉 # cs) vs s f x and

B:
∧

z. c = (IN z :: com-flow) =⇒
sources-aux cs vs s f x ⊆ sources-aux (〈X〉 # cs) vs s f x and

C :
∧

z. c = (OUT z :: com-flow) =⇒
sources-aux cs vs s f x ⊆ sources-aux (〈X〉 # cs) vs s f x and

D:
∧

Y . c = 〈Y 〉 =⇒
sources-aux cs vs s f x ⊆ sources-aux (〈X〉 # cs) vs s f x and

E :
∧

Y b w. c = 〈Y 〉 =⇒
sources cs vs s f w ⊆ sources (〈X〉 # cs) vs s f w

shows sources-aux (cs @ [c]) vs s f x ⊆
sources-aux (〈X〉 # cs @ [c]) vs s f x
(is - ⊆ ?F c)

apply (subst sources-aux.simps)
apply (split com-flow.split)
apply (rule conjI )
defer
apply (rule conjI )
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defer
apply (rule conjI )
defer

subgoal
proof −

show ∀Y . c = 〈Y 〉 −→ sources-aux cs vs s f x ∪⋃
{sources cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ Y } ⊆ ?F c
(is ∀Y . - −→ ?A ∪ ?G Y ⊆ -)

proof clarify
fix y Y
assume F : c = 〈Y 〉
hence ?F (〈Y 〉) = sources-aux (〈X〉 # cs) vs s f x ∪⋃

{sources (〈X〉 # cs) vs s f y | y.
run-flow cs vs s f : dom y  dom x ∧ y ∈ Y }

(is - = ?A ′ ∪ ?G ′ Y )
by (simp only: append-Cons [symmetric] sources-aux.simps,
simp add: run-flow-observe)

moreover assume y ∈ ?A ∪ ?G Y
moreover {

assume y ∈ ?A
hence y ∈ ?A ′

using D and F by blast
}
moreover {

assume y ∈ ?G Y
hence y ∈ ?G ′ Y

using E and F by blast
}
ultimately show y ∈ ?F (〈Y 〉)

by blast
qed

qed
by (simp only: append-Cons [symmetric] sources-aux.simps, simp add: A B C )+

lemma sources-observe-tl:
sources cs vs s f x ⊆ sources (〈X〉 # cs) vs s f x

and sources-aux-observe-tl:
sources-aux cs vs s f x ⊆ sources-aux (〈X〉 # cs) vs s f x

apply (induction cs vs s f x and cs vs s f x rule: sources-induct)
subgoal by (erule sources-observe-tl-1 , assumption+)
subgoal by (simp, subst append-Nil [symmetric], subst sources.simps, simp)
subgoal by (erule sources-observe-tl-2 , assumption+)
by simp

lemma sources-out-observe-tl-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
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sources-out cs vs s f x ⊆ sources-out (〈X〉 # cs) vs s f x and
B:

∧
z. c = (IN z :: com-flow) =⇒

sources-out cs vs s f x ⊆ sources-out (〈X〉 # cs) vs s f x and
C :

∧
z. c = (OUT z :: com-flow) =⇒

sources-out cs vs s f x ⊆ sources-out (〈X〉 # cs) vs s f x and
D:

∧
Y . c = 〈Y 〉 =⇒

sources-out cs vs s f x ⊆ sources-out (〈X〉 # cs) vs s f x
shows sources-out (cs @ [c]) vs s f x ⊆

sources-out (〈X〉 # cs @ [c]) vs s f x
(is - ⊆ ?F c)

apply (subst sources-out.simps)
apply (split com-flow.split)
apply (rule conjI )
defer
apply (rule conjI )
defer

subgoal
proof

show ∀ z. c = OUT z −→ sources-out cs vs s f x ∪
(if z = x then sources cs vs s f x else {}) ⊆ ?F c
(is ∀ -. - −→ ?A ∪ (if - then ?B else -) ⊆ -)

proof (clarify, split if-split-asm)
fix y z
assume E : c = OUT z and F : z = x
assume y ∈ ?A ∪ ?B
moreover {

assume y ∈ ?A
hence y ∈ sources-out (〈X〉 # cs) vs s f x

using C and E by blast
}
moreover {

assume y ∈ ?B
hence y ∈ sources (〈X〉 # cs) vs s f x

by (rule subsetD [OF sources-observe-tl])
}
ultimately show y ∈ ?F (OUT z)

using F by (simp only: append-Cons [symmetric] sources-out.simps,
auto)

next
fix y z
assume c = OUT z and y ∈ sources-out cs vs s f x ∪ {}
hence y ∈ sources-out (〈X〉 # cs) vs s f x

using C by blast
thus y ∈ ?F (OUT z)

by (simp only: append-Cons [symmetric] sources-out.simps, simp)
qed

next
show ∀Y . c = 〈Y 〉 −→ sources-out cs vs s f x ∪⋃

{sources cs vs s f y | y.
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run-flow cs vs s f : dom y  dom x ∧ y ∈ Y } ⊆ ?F c
(is ∀Y . - −→ ?A ∪ ?G Y ⊆ -)

proof clarify
fix y Y
assume E : c = 〈Y 〉
assume y ∈ ?A ∪ ?G Y
moreover {

assume y ∈ ?A
hence y ∈ sources-out (〈X〉 # cs) vs s f x

using D and E by blast
}
moreover {

assume y ∈ ?G Y
hence y ∈

⋃
{sources (〈X〉 # cs) vs s f y | y.

run-flow (〈X〉 # cs) vs s f : dom y  dom x ∧ y ∈ Y }
by (auto intro: subsetD [OF sources-observe-tl]
simp: run-flow-observe)

}
ultimately show y ∈ ?F (〈Y 〉)

by (simp only: append-Cons [symmetric] sources-out.simps, auto)
qed

qed
by (simp only: append-Cons [symmetric] sources-out.simps, simp add: A B)+

lemma sources-out-observe-tl:
sources-out cs vs s f x ⊆ sources-out (〈X〉 # cs) vs s f x

by (induction cs vs s f x rule: sources-out.induct,
erule sources-out-observe-tl-1 , simp-all)

lemma tags-observe-tl-1 :
[[
∧

z a. c = z ::= a =⇒ z = x =⇒
tags-aux (〈X〉 # cs) vs s f x = tags-aux cs vs s f x;∧
z a b w. c = z ::= a =⇒ z = x =⇒
tags (〈X〉 # cs) vs s f w = tags cs vs s f w;∧
z a. c = z ::= a =⇒ z 6= x =⇒
tags (〈X〉 # cs) vs s f x = tags cs vs s f x ;∧
z. c = IN z =⇒ z = x =⇒
tags-aux (〈X〉 # cs) vs s f x = tags-aux cs vs s f x;∧
z. c = IN z =⇒ z 6= x =⇒
tags (〈X〉 # cs) vs s f x = tags cs vs s f x ;∧
z. c = OUT z =⇒
tags (〈X〉 # cs) vs s f x = tags cs vs s f x ;∧
Y b w. c = 〈Y 〉 =⇒
tags (〈X〉 # cs) vs s f w = tags cs vs s f w]] =⇒

tags (〈X〉 # cs @ [c]) vs s f x = tags (cs @ [c]) vs s f x
by (subst tags.simps, split com-flow.split, simp-all only: append-Cons
[symmetric] tags.simps, simp-all add: run-flow-observe)
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lemma tags-observe-tl-2 :
[[
∧

z a. c = z ::= a =⇒
tags-aux (〈X〉 # cs) vs s f x = tags-aux cs vs s f x;∧
z. c = IN z =⇒
tags-aux (〈X〉 # cs) vs s f x = tags-aux cs vs s f x;∧
z. c = OUT z =⇒
tags-aux (〈X〉 # cs) vs s f x = tags-aux cs vs s f x;∧
Y . c = 〈Y 〉 =⇒
tags-aux (〈X〉 # cs) vs s f x = tags-aux cs vs s f x;∧
Y b w. c = 〈Y 〉 =⇒
tags (〈X〉 # cs) vs s f w = tags cs vs s f w]] =⇒

tags-aux (〈X〉 # cs @ [c]) vs s f x = tags-aux (cs @ [c]) vs s f x
by (subst tags-aux.simps, split com-flow.split, simp-all only: append-Cons
[symmetric] tags-aux.simps, simp-all add: run-flow-observe)

lemma tags-observe-tl:
tags (〈X〉 # cs) vs s f x = tags cs vs s f x

and tags-aux-observe-tl:
tags-aux (〈X〉 # cs) vs s f x = tags-aux cs vs s f x

apply (induction cs vs s f x and cs vs s f x rule: tags-induct)
subgoal by (erule tags-observe-tl-1 , assumption+)
subgoal by (subst append-Nil [symmetric], subst tags.simps tags-aux.simps, simp)
subgoal by (erule tags-observe-tl-2 , assumption+)
subgoal by (subst append-Nil [symmetric], subst tags.simps tags-aux.simps, simp)
done

lemma tags-out-observe-tl-1 :
[[
∧

z a. c = z ::= a =⇒
tags-out (〈X〉 # cs) vs s f x = tags-out cs vs s f x ;∧
z. c = IN z =⇒
tags-out (〈X〉 # cs) vs s f x = tags-out cs vs s f x ;∧
z. c = OUT z =⇒
tags-out (〈X〉 # cs) vs s f x = tags-out cs vs s f x ;∧
Y . c = 〈Y 〉 =⇒
tags-out (〈X〉 # cs) vs s f x = tags-out cs vs s f x ]] =⇒

tags-out (〈X〉 # cs @ [c]) vs s f x = tags-out (cs @ [c]) vs s f x
by (subst tags-out.simps, split com-flow.split, simp-all only: append-Cons
[symmetric] tags-out.simps, simp-all add: run-flow-observe tags-observe-tl)

lemma tags-out-observe-tl:
tags-out (〈X〉 # cs) vs s f x = tags-out cs vs s f x
apply (induction cs vs s f x rule: tags-out.induct)
apply (erule tags-out-observe-tl-1 , assumption+)

by (subst append-Nil [symmetric], subst tags-out.simps, simp)

lemma tags-sources-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒ z = x =⇒
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(y, n) ∈ tags-aux cs vs s f x =⇒
let m = Suc (Max {k. k ≤ length cs ∧

length [c←take k cs. c = IN y] ≤ n})
in y ∈ sources-aux (drop m cs) (vs @ in-flow (take m cs) vs f )
(run-flow (take m cs) vs s f ) f x

(is
∧

- -. - =⇒ - =⇒ - =⇒ let m = Suc (Max (?F cs)) in
- ∈ sources-aux - (?G m cs) (?H m cs) - -)

assumes
B:

∧
z a b w. c = (z ::= a :: com-flow) =⇒ z = x =⇒

(y, n) ∈ tags cs vs s f w =⇒ let m = Suc (Max (?F cs)) in
y ∈ sources (drop m cs) (?G m cs) (?H m cs) f w and

C :
∧

z a. c = (z ::= a :: com-flow) =⇒ z 6= x =⇒
(y, n) ∈ tags cs vs s f x =⇒ let m = Suc (Max (?F cs)) in

y ∈ sources (drop m cs) (?G m cs) (?H m cs) f x and
D:

∧
z. c = (IN z :: com-flow) =⇒ z = x =⇒

(y, n) ∈ tags-aux cs vs s f x =⇒ let m = Suc (Max (?F cs)) in
y ∈ sources-aux (drop m cs) (?G m cs) (?H m cs) f x and

E :
∧

z. c = (IN z :: com-flow) =⇒ z 6= x =⇒
(y, n) ∈ tags cs vs s f x =⇒ let m = Suc (Max (?F cs)) in

y ∈ sources (drop m cs) (?G m cs) (?H m cs) f x and
F :

∧
z. c = (OUT z :: com-flow) =⇒

(y, n) ∈ tags cs vs s f x =⇒ let m = Suc (Max (?F cs)) in
y ∈ sources (drop m cs) (?G m cs) (?H m cs) f x and

G:
∧

X b w. c = 〈X〉 =⇒
(y, n) ∈ tags cs vs s f w =⇒ let m = Suc (Max (?F cs)) in

y ∈ sources (drop m cs) (?G m cs) (?H m cs) f w and
H : (y, n) ∈ tags (cs @ [c]) vs s f x

shows let m = Suc (Max (?F (cs @ [c]))) in
y ∈ sources (drop m (cs @ [c])) (?G m (cs @ [c])) (?H m (cs @ [c])) f x

proof −
have I : n < length [c←cs @ [c]. c = IN y]

using H by (rule tags-less)
hence ?F (cs @ [c]) = ?F cs

using le-Suc-eq by auto
moreover have c 6= IN y ∨ n < length [c←cs. c = IN y] =⇒

Suc (Max (?F cs)) ≤ length cs
(is - =⇒ ?m ≤ -)
using I by (subst Suc-le-eq, subst Max-less-iff ,
auto elim: le-neq-implies-less)

ultimately have J : c 6= IN y ∨ n < length [c←cs. c = IN y] =⇒
take (Suc (Max (?F (cs @ [c])))) (cs @ [c]) = take ?m cs ∧
drop (Suc (Max (?F (cs @ [c])))) (cs @ [c]) = drop ?m cs @ [c]
by simp

from H show ?thesis
proof (subst (asm) tags.simps, split com-flow.split-asm)

fix z a
assume K : c = z ::= a
show (y, n) ∈ (if z = x

then tags-aux cs vs s f x ∪
⋃
{tags cs vs s f y | y.
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run-flow cs vs s f : dom y  dom x ∧ y ∈ avars a}
else tags cs vs s f x) =⇒ ?thesis
(is - ∈ (if - then ?A ∪ ?B else ?C ) =⇒ -)

proof (split if-split-asm)
assume L: z = x and (y, n) ∈ ?A ∪ ?B
moreover {

assume (y, n) ∈ ?A
hence y ∈ sources-aux (drop ?m cs) (?G ?m cs) (?H ?m cs) f x

using A and K and L by simp
}
moreover {

assume (y, n) ∈ ?B
hence y ∈

⋃
{sources (drop ?m cs) (?G ?m cs) (?H ?m cs) f y | y.

run-flow (drop ?m cs) (?G ?m cs) (?H ?m cs) f :
dom y  dom x ∧ y ∈ avars a}

using B and K and L by (auto simp: run-flow-append [symmetric])
}
ultimately show ?thesis

using J and K by auto
next

assume z 6= x and (y, n) ∈ ?C
moreover from this have
y ∈ sources (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using C and K by simp

ultimately show ?thesis
using J and K by simp

qed
next

fix z
assume K : c = IN z
show (y, n) ∈ (if z = x

then insert (x, length [c←cs. c = IN x ]) (tags-aux cs vs s f x)
else tags cs vs s f x) =⇒ ?thesis
(is - ∈ (if - then insert - ?A else ?B) =⇒ -)

proof (split if-split-asm, erule insertE)
assume (y, n) = (x, length [c←cs. c = IN x]) and z = x
moreover from this have Max (?F (cs @ [c])) = length cs

using K by (subst Max-eq-iff , auto elim: le-SucE)
ultimately show ?thesis

by simp
next

assume L: (y, n) ∈ tags-aux cs vs s f x and z = x
moreover from this have
y ∈ sources-aux (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using D and K by simp

moreover have n < length [c←cs. c = IN y]
using L by (rule tags-aux-less)

ultimately show ?thesis
using J and K by simp

106



next
assume L: (y, n) ∈ tags cs vs s f x and z 6= x
moreover from this have
y ∈ sources (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using E and K by simp

moreover have n < length [c←cs. c = IN y]
using L by (rule tags-less)

ultimately show ?thesis
using J and K by simp

qed
next

fix z
assume c = OUT z and (y, n) ∈ tags cs vs s f x
moreover from this have
y ∈ sources (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using F by simp

ultimately show ?thesis
using J by simp

next
fix X
assume K : c = 〈X〉
assume (y, n) ∈ tags cs vs s f x ∪

⋃
{tags cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ X}
(is - ∈ ?A ∪ ?B)

moreover {
assume (y, n) ∈ ?A
hence y ∈ sources (drop ?m cs) (?G ?m cs) (?H ?m cs) f x

using G and K by simp
}
moreover {

assume (y, n) ∈ ?B
hence y ∈

⋃
{sources (drop ?m cs) (?G ?m cs) (?H ?m cs) f y | y.

run-flow (drop ?m cs) (?G ?m cs) (?H ?m cs) f :
dom y  dom x ∧ y ∈ X}

using G and K by (auto simp: run-flow-append [symmetric])
}
ultimately show ?thesis

using J and K by auto
qed

qed

lemma tags-sources-2 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
(y, n) ∈ tags-aux cs vs s f x =⇒

let m = Suc (Max {k. k ≤ length cs ∧
length [c←take k cs. c = IN y] ≤ n})

in y ∈ sources-aux (drop m cs) (vs @ in-flow (take m cs) vs f )
(run-flow (take m cs) vs s f ) f x
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(is
∧

- -. - =⇒ - =⇒ let m = Suc (Max (?F cs)) in
- ∈ sources-aux - (?G m cs) (?H m cs) - -)

assumes
B:

∧
z. c = (IN z :: com-flow) =⇒

(y, n) ∈ tags-aux cs vs s f x =⇒ let m = Suc (Max (?F cs)) in
y ∈ sources-aux (drop m cs) (?G m cs) (?H m cs) f x and

C :
∧

z. c = (OUT z :: com-flow) =⇒
(y, n) ∈ tags-aux cs vs s f x =⇒ let m = Suc (Max (?F cs)) in

y ∈ sources-aux (drop m cs) (?G m cs) (?H m cs) f x and
D:

∧
X . c = 〈X〉 =⇒

(y, n) ∈ tags-aux cs vs s f x =⇒ let m = Suc (Max (?F cs)) in
y ∈ sources-aux (drop m cs) (?G m cs) (?H m cs) f x and

E :
∧

X b w. c = 〈X〉 =⇒
(y, n) ∈ tags cs vs s f w =⇒ let m = Suc (Max (?F cs)) in

y ∈ sources (drop m cs) (?G m cs) (?H m cs) f w and
F : (y, n) ∈ tags-aux (cs @ [c]) vs s f x

shows let m = Suc (Max (?F (cs @ [c]))) in
y ∈ sources-aux (drop m (cs @ [c])) (?G m (cs @ [c])) (?H m (cs @ [c])) f x

proof −
have G: n < length [c←cs @ [c]. c = IN y]

using F by (rule tags-aux-less)
hence ?F (cs @ [c]) = ?F cs

using le-Suc-eq by auto
moreover have c 6= IN y ∨ n < length [c←cs. c = IN y] =⇒

Suc (Max (?F cs)) ≤ length cs
(is - =⇒ ?m ≤ -)
using G by (subst Suc-le-eq, subst Max-less-iff ,
auto elim: le-neq-implies-less)

ultimately have H : c 6= IN y ∨ n < length [c←cs. c = IN y] =⇒
take (Suc (Max (?F (cs @ [c])))) (cs @ [c]) = take ?m cs ∧
drop (Suc (Max (?F (cs @ [c])))) (cs @ [c]) = drop ?m cs @ [c]
by simp

from F show ?thesis
proof (subst (asm) tags-aux.simps, split com-flow.split-asm)

fix z a
assume c = z ::= a and (y, n) ∈ tags-aux cs vs s f x
moreover from this have
y ∈ sources-aux (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using A by simp

ultimately show ?thesis
using H by simp

next
fix z
assume c = IN z and I : (y, n) ∈ tags-aux cs vs s f x
moreover from this have
y ∈ sources-aux (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using B by simp

moreover have n < length [c←cs. c = IN y]
using I by (rule tags-aux-less)
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ultimately show ?thesis
using H by simp

next
fix z
assume c = OUT z and (y, n) ∈ tags-aux cs vs s f x
moreover from this have
y ∈ sources-aux (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using C by simp

ultimately show ?thesis
using H by simp

next
fix X
assume I : c = 〈X〉
assume (y, n) ∈ tags-aux cs vs s f x ∪

⋃
{tags cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ X}
(is - ∈ ?A ∪ ?B)

moreover {
assume (y, n) ∈ ?A
hence y ∈ sources-aux (drop ?m cs) (?G ?m cs) (?H ?m cs) f x

using D and I by simp
}
moreover {

assume (y, n) ∈ ?B
hence y ∈

⋃
{sources (drop ?m cs) (?G ?m cs) (?H ?m cs) f y | y.

run-flow (drop ?m cs) (?G ?m cs) (?H ?m cs) f :
dom y  dom x ∧ y ∈ X}

using E and I by (auto simp: run-flow-append [symmetric])
}
ultimately show ?thesis

using H and I by auto
qed

qed

lemma tags-sources:
(y, n) ∈ tags cs vs s f x =⇒

let m = Suc (Max {k. k ≤ length cs ∧
length [c←take k cs. c = IN y] ≤ n})

in y ∈ sources (drop m cs) (vs @ in-flow (take m cs) vs f )
(run-flow (take m cs) vs s f ) f x

and tags-aux-sources-aux:
(y, n) ∈ tags-aux cs vs s f x =⇒

let m = Suc (Max {k. k ≤ length cs ∧
length [c←take k cs. c = IN y] ≤ n})

in y ∈ sources-aux (drop m cs) (vs @ in-flow (take m cs) vs f )
(run-flow (take m cs) vs s f ) f x

by (induction cs vs s f x and cs vs s f x rule: tags-induct,
erule-tac [3 ] tags-sources-2 , erule tags-sources-1 , simp-all)
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lemma tags-out-sources-out-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
(y, n) ∈ tags-out cs vs s f x =⇒

let m = Suc (Max {k. k ≤ length cs ∧
length [c←take k cs. c = IN y] ≤ n})

in y ∈ sources-out (drop m cs) (vs @ in-flow (take m cs) vs f )
(run-flow (take m cs) vs s f ) f x

(is
∧

- -. - =⇒ - =⇒ let m = Suc (Max (?F cs)) in
- ∈ sources-out - (?G m cs) (?H m cs) - -)

assumes
B:

∧
z. c = (IN z :: com-flow) =⇒

(y, n) ∈ tags-out cs vs s f x =⇒ let m = Suc (Max (?F cs)) in
y ∈ sources-out (drop m cs) (?G m cs) (?H m cs) f x and

C :
∧

z. c = (OUT z :: com-flow) =⇒
(y, n) ∈ tags-out cs vs s f x =⇒ let m = Suc (Max (?F cs)) in

y ∈ sources-out (drop m cs) (?G m cs) (?H m cs) f x and
D:

∧
X . c = 〈X〉 =⇒

(y, n) ∈ tags-out cs vs s f x =⇒ let m = Suc (Max (?F cs)) in
y ∈ sources-out (drop m cs) (?G m cs) (?H m cs) f x and

E : (y, n) ∈ tags-out (cs @ [c]) vs s f x
shows let m = Suc (Max (?F (cs @ [c]))) in

y ∈ sources-out (drop m (cs @ [c])) (?G m (cs @ [c])) (?H m (cs @ [c])) f x
proof −

have F : n < length [c←cs @ [c]. c = IN y]
using E by (rule tags-out-less)

hence ?F (cs @ [c]) = ?F cs
using le-Suc-eq by auto

moreover have c 6= IN y ∨ n < length [c←cs. c = IN y] =⇒
Suc (Max (?F cs)) ≤ length cs
(is - =⇒ ?m ≤ -)
using F by (subst Suc-le-eq, subst Max-less-iff ,
auto elim: le-neq-implies-less)

ultimately have G: c 6= IN y ∨ n < length [c←cs. c = IN y] =⇒
take (Suc (Max (?F (cs @ [c])))) (cs @ [c]) = take ?m cs ∧
drop (Suc (Max (?F (cs @ [c])))) (cs @ [c]) = drop ?m cs @ [c]
by simp

from E show ?thesis
proof (subst (asm) tags-out.simps, split com-flow.split-asm)

fix z a
assume c = z ::= a and (y, n) ∈ tags-out cs vs s f x
moreover from this have
y ∈ sources-out (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using A by simp

ultimately show ?thesis
using G by simp

next
fix z
assume c = IN z and H : (y, n) ∈ tags-out cs vs s f x
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moreover from this have
y ∈ sources-out (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using B by simp

moreover have n < length [c←cs. c = IN y]
using H by (rule tags-out-less)

ultimately show ?thesis
using G by simp

next
fix z
assume H : c = OUT z
show (y, n) ∈ tags-out cs vs s f x ∪
(if z = x then tags cs vs s f x else {}) =⇒ ?thesis
(is - ∈ ?A ∪ (if - then ?B else -) =⇒ -)

proof (split if-split-asm)
assume z = x and (y, n) ∈ ?A ∪ ?B
moreover {

assume (y, n) ∈ ?A
hence y ∈ sources-out (drop ?m cs) (?G ?m cs) (?H ?m cs) f x

using C and H by simp
}
moreover {

assume (y, n) ∈ ?B
hence y ∈ sources (drop ?m cs) (?G ?m cs) (?H ?m cs) f x

by (auto dest: tags-sources)
}
ultimately show ?thesis

using G and H by auto
next

assume (y, n) ∈ ?A ∪ {}
moreover from this have
y ∈ sources-out (drop ?m cs) (?G ?m cs) (?H ?m cs) f x
using C and H by simp

ultimately show ?thesis
using G and H by simp

qed
next

fix X
assume H : c = 〈X〉
assume (y, n) ∈ tags-out cs vs s f x ∪

⋃
{tags cs vs s f y | y.

run-flow cs vs s f : dom y  dom x ∧ y ∈ X}
(is - ∈ ?A ∪ ?B)

moreover {
assume (y, n) ∈ ?A
hence y ∈ sources-out (drop ?m cs) (?G ?m cs) (?H ?m cs) f x

using D and H by simp
}
moreover {

assume (y, n) ∈ ?B
hence y ∈

⋃
{sources (drop ?m cs) (?G ?m cs) (?H ?m cs) f y | y.
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run-flow (drop ?m cs) (?G ?m cs) (?H ?m cs) f :
dom y  dom x ∧ y ∈ X}

by (fastforce dest: tags-sources simp: run-flow-append [symmetric])
}
ultimately show ?thesis

using G and H by auto
qed

qed

lemma tags-out-sources-out:
(y, n) ∈ tags-out cs vs s f x =⇒

let m = Suc (Max {k. k ≤ length cs ∧
length [c←take k cs. c = IN y] ≤ n})

in y ∈ sources-out (drop m cs) (vs @ in-flow (take m cs) vs f )
(run-flow (take m cs) vs s f ) f x

by (induction cs vs s f x rule: tags-out.induct,
erule tags-out-sources-out-1 , simp-all)

lemma sources-member-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒ z = x =⇒
y ∈ sources-aux cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

sources cs vs s f y ⊆ sources-aux (cs @ cs ′) vs s f x
(is

∧
- -. - =⇒ - =⇒ - ∈ sources-aux - ?vs ′ ?s ′ - - =⇒

- ⊆ sources-aux ?cs - - - -)
assumes

B:
∧

z a b w. c = (z ::= a :: com-flow) =⇒ z = x =⇒
y ∈ sources cs ′ ?vs ′ ?s ′ f w =⇒

sources cs vs s f y ⊆ sources ?cs vs s f w and
C :

∧
z a. c = (z ::= a :: com-flow) =⇒ z 6= x =⇒

y ∈ sources cs ′ ?vs ′ ?s ′ f x =⇒
sources cs vs s f y ⊆ sources ?cs vs s f x and

D:
∧

z. c = (IN z :: com-flow) =⇒ z = x =⇒
y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x =⇒

sources cs vs s f y ⊆ sources-aux ?cs vs s f x and
E :

∧
z. c = (IN z :: com-flow) =⇒ z 6= x =⇒

y ∈ sources cs ′ ?vs ′ ?s ′ f x =⇒
sources cs vs s f y ⊆ sources ?cs vs s f x and

F :
∧

z. c = (OUT z :: com-flow) =⇒
y ∈ sources cs ′ ?vs ′ ?s ′ f x =⇒

sources cs vs s f y ⊆ sources ?cs vs s f x and
G:

∧
X b w. c = 〈X〉 =⇒

y ∈ sources cs ′ ?vs ′ ?s ′ f w =⇒
sources cs vs s f y ⊆ sources ?cs vs s f w

shows y ∈ sources (cs ′ @ [c]) ?vs ′ ?s ′ f x =⇒
sources cs vs s f y ⊆ sources (cs @ cs ′ @ [c]) vs s f x

proof (subst (asm) sources.simps, split com-flow.split-asm)
fix z a
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assume H : c = z ::= a
show y ∈ (if z = x

then sources-aux cs ′ ?vs ′ ?s ′ f x ∪
⋃
{sources cs ′ ?vs ′ ?s ′ f w | w.

run-flow cs ′ ?vs ′ ?s ′ f : dom w  dom x ∧ w ∈ avars a}
else sources cs ′ ?vs ′ ?s ′ f x) =⇒ ?thesis
(is - ∈ (if - then ?A ∪ ?B else ?C ) =⇒ -)

proof (split if-split-asm)
assume I : z = x and y ∈ ?A ∪ ?B
moreover {

assume y ∈ ?A
hence sources cs vs s f y ⊆ sources-aux ?cs vs s f x

using A and H and I by simp
}
moreover {

assume y ∈ ?B
hence sources cs vs s f y ⊆

⋃
{sources ?cs vs s f w | w.

run-flow ?cs vs s f : dom w  dom x ∧ w ∈ avars a}
using B and H and I by (fastforce simp: run-flow-append)

}
ultimately show ?thesis

using H by (simp only: append-assoc [symmetric] sources.simps, auto)
next

assume z 6= x and y ∈ ?C
moreover from this have sources cs vs s f y ⊆ sources ?cs vs s f x

using C and H by simp
ultimately show ?thesis

using H by (simp only: append-assoc [symmetric] sources.simps, auto)
qed

next
fix z
assume H : c = IN z
show y ∈ (if z = x

then sources-aux cs ′ ?vs ′ ?s ′ f x
else sources cs ′ ?vs ′ ?s ′ f x) =⇒ ?thesis
(is - ∈ (if - then ?A else ?B) =⇒ -)

proof (split if-split-asm)
assume z = x and y ∈ ?A
moreover from this have sources cs vs s f y ⊆ sources-aux ?cs vs s f x

using D and H by simp
ultimately show ?thesis

using H by (simp only: append-assoc [symmetric] sources.simps, auto)
next

assume z 6= x and y ∈ ?B
moreover from this have sources cs vs s f y ⊆ sources ?cs vs s f x

using E and H by simp
ultimately show ?thesis

using H by (simp only: append-assoc [symmetric] sources.simps, auto)
qed

next
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fix z
assume c = OUT z and y ∈ sources cs ′ ?vs ′ ?s ′ f x
moreover from this have sources cs vs s f y ⊆ sources ?cs vs s f x

using F by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] sources.simps, auto)
next

fix X
assume H : c = 〈X〉
assume y ∈ sources cs ′ ?vs ′ ?s ′ f x ∪

⋃
{sources cs ′ ?vs ′ ?s ′ f w | w.

run-flow cs ′ ?vs ′ ?s ′ f : dom w  dom x ∧ w ∈ X}
(is - ∈ ?A ∪ ?B)

moreover {
assume y ∈ ?A
hence sources cs vs s f y ⊆ sources ?cs vs s f x

using G and H by simp
}
moreover {

assume y ∈ ?B
hence sources cs vs s f y ⊆

⋃
{sources ?cs vs s f w | w.

run-flow ?cs vs s f : dom w  dom x ∧ w ∈ X}
using G and H by (auto simp: run-flow-append)

}
ultimately show ?thesis

using H by (simp only: append-assoc [symmetric] sources.simps, auto)
qed

lemma sources-member-2 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
y ∈ sources-aux cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

sources cs vs s f y ⊆ sources-aux (cs @ cs ′) vs s f x
(is

∧
- -. - =⇒ - ∈ sources-aux - ?vs ′ ?s ′ - - =⇒

- ⊆ sources-aux ?cs - - - -)
assumes

B:
∧

z. c = (IN z :: com-flow) =⇒
y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x =⇒

sources cs vs s f y ⊆ sources-aux ?cs vs s f x and
C :

∧
z. c = (OUT z :: com-flow) =⇒

y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x =⇒
sources cs vs s f y ⊆ sources-aux ?cs vs s f x and

D:
∧

X . c = 〈X〉 =⇒
y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x =⇒

sources cs vs s f y ⊆ sources-aux ?cs vs s f x and
E :

∧
X b w. c = 〈X〉 =⇒

y ∈ sources cs ′ ?vs ′ ?s ′ f w =⇒
sources cs vs s f y ⊆ sources ?cs vs s f w

shows y ∈ sources-aux (cs ′ @ [c]) ?vs ′ ?s ′ f x =⇒
sources cs vs s f y ⊆ sources-aux (cs @ cs ′ @ [c]) vs s f x
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proof (subst (asm) sources-aux.simps, split com-flow.split-asm)
fix z a
assume c = z ::= a and y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x
moreover from this have sources cs vs s f y ⊆ sources-aux ?cs vs s f x

using A by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] sources-aux.simps, auto)
next

fix z
assume c = IN z and y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x
moreover from this have sources cs vs s f y ⊆ sources-aux ?cs vs s f x

using B by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] sources-aux.simps, auto)
next

fix z
assume c = OUT z and y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x
moreover from this have sources cs vs s f y ⊆ sources-aux ?cs vs s f x

using C by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] sources-aux.simps, auto)
next

fix X
assume F : c = 〈X〉
assume y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x ∪

⋃
{sources cs ′ ?vs ′ ?s ′ f w | w.

run-flow cs ′ ?vs ′ ?s ′ f : dom w  dom x ∧ w ∈ X}
(is - ∈ ?A ∪ ?B)

moreover {
assume y ∈ ?A
hence sources cs vs s f y ⊆ sources-aux ?cs vs s f x

using D and F by simp
}
moreover {

assume y ∈ ?B
hence sources cs vs s f y ⊆

⋃
{sources ?cs vs s f w | w.

run-flow ?cs vs s f : dom w  dom x ∧ w ∈ X}
using E and F by (auto simp: run-flow-append)

}
ultimately show ?thesis

using F by (simp only: append-assoc [symmetric] sources-aux.simps, auto)
qed

lemma sources-member :
y ∈ sources cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

sources cs vs s f y ⊆ sources (cs @ cs ′) vs s f x
and sources-aux-member :
y ∈ sources-aux cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

sources cs vs s f y ⊆ sources-aux (cs @ cs ′) vs s f x
by (induction cs ′ vs s f x and cs ′ vs s f x rule: sources-induct,
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erule-tac [3 ] sources-member-2 , erule sources-member-1 , simp-all)

lemma sources-out-member-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
y ∈ sources-out cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

sources cs vs s f y ⊆ sources-out (cs @ cs ′) vs s f x
(is

∧
- -. - =⇒ - ∈ sources-out - ?vs ′ ?s ′ - - =⇒

- ⊆ sources-out ?cs - - - -)
assumes

B:
∧

z. c = (IN z :: com-flow) =⇒
y ∈ sources-out cs ′ ?vs ′ ?s ′ f x =⇒

sources cs vs s f y ⊆ sources-out ?cs vs s f x and
C :

∧
z. c = (OUT z :: com-flow) =⇒

y ∈ sources-out cs ′ ?vs ′ ?s ′ f x =⇒
sources cs vs s f y ⊆ sources-out ?cs vs s f x and

D:
∧

X . c = 〈X〉 =⇒
y ∈ sources-out cs ′ ?vs ′ ?s ′ f x =⇒

sources cs vs s f y ⊆ sources-out ?cs vs s f x
shows y ∈ sources-out (cs ′ @ [c]) ?vs ′ ?s ′ f x =⇒

sources cs vs s f y ⊆ sources-out (cs @ cs ′ @ [c]) vs s f x
proof (subst (asm) sources-out.simps, split com-flow.split-asm)

fix z a
assume c = z ::= a and y ∈ sources-out cs ′ ?vs ′ ?s ′ f x
moreover from this have sources cs vs s f y ⊆ sources-out ?cs vs s f x

using A by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] sources-out.simps, auto)
next

fix z
assume c = IN z and y ∈ sources-out cs ′ ?vs ′ ?s ′ f x
moreover from this have sources cs vs s f y ⊆ sources-out ?cs vs s f x

using B by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] sources-out.simps, auto)
next

fix z
assume E : c = OUT z
show y ∈ sources-out cs ′ ?vs ′ ?s ′ f x ∪
(if z = x then sources cs ′ ?vs ′ ?s ′ f x else {}) =⇒ ?thesis
(is - ∈ ?A ∪ (if - then ?B else -) =⇒ -)

proof (split if-split-asm)
assume z = x and y ∈ ?A ∪ ?B
moreover {

assume y ∈ ?A
hence sources cs vs s f y ⊆ sources-out ?cs vs s f x

using C and E by simp
}
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moreover {
assume y ∈ ?B
hence sources cs vs s f y ⊆ sources ?cs vs s f x

by (rule sources-member)
}
ultimately show ?thesis

using E by (simp only: append-assoc [symmetric] sources-out.simps, auto)
next

assume y ∈ ?A ∪ {}
moreover from this have sources cs vs s f y ⊆ sources-out ?cs vs s f x

using C and E by simp
ultimately show ?thesis

using E by (simp only: append-assoc [symmetric] sources-out.simps, auto)
qed

next
fix X
assume E : c = 〈X〉
assume y ∈ sources-out cs ′ ?vs ′ ?s ′ f x ∪

⋃
{sources cs ′ ?vs ′ ?s ′ f w | w.

run-flow cs ′ ?vs ′ ?s ′ f : dom w  dom x ∧ w ∈ X}
(is - ∈ ?A ∪ ?B)

moreover {
assume y ∈ ?A
hence sources cs vs s f y ⊆ sources-out ?cs vs s f x

using D and E by simp
}
moreover {

assume y ∈ ?B
hence sources cs vs s f y ⊆

⋃
{sources ?cs vs s f w | w.

run-flow ?cs vs s f : dom w  dom x ∧ w ∈ X}
by (auto dest: sources-member simp: run-flow-append)

}
ultimately show ?thesis

using E by (simp only: append-assoc [symmetric] sources-out.simps, auto)
qed

lemma sources-out-member :
y ∈ sources-out cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

sources cs vs s f y ⊆ sources-out (cs @ cs ′) vs s f x
by (induction cs ′ vs s f x rule: sources-out.induct,
erule sources-out-member-1 , simp-all)

lemma tags-member-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒ z = x =⇒
y ∈ sources-aux cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

tags cs vs s f y ⊆ tags-aux (cs @ cs ′) vs s f x
(is

∧
- -. - =⇒ - =⇒ - ∈ sources-aux - ?vs ′ ?s ′ - - =⇒

- ⊆ tags-aux ?cs - - - -)
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assumes
B:

∧
z a b w. c = (z ::= a :: com-flow) =⇒ z = x =⇒

y ∈ sources cs ′ ?vs ′ ?s ′ f w =⇒
tags cs vs s f y ⊆ tags ?cs vs s f w and

C :
∧

z a. c = (z ::= a :: com-flow) =⇒ z 6= x =⇒
y ∈ sources cs ′ ?vs ′ ?s ′ f x =⇒

tags cs vs s f y ⊆ tags ?cs vs s f x and
D:

∧
z. c = (IN z :: com-flow) =⇒ z = x =⇒

y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x =⇒
tags cs vs s f y ⊆ tags-aux ?cs vs s f x and

E :
∧

z. c = (IN z :: com-flow) =⇒ z 6= x =⇒
y ∈ sources cs ′ ?vs ′ ?s ′ f x =⇒

tags cs vs s f y ⊆ tags ?cs vs s f x and
F :

∧
z. c = (OUT z :: com-flow) =⇒

y ∈ sources cs ′ ?vs ′ ?s ′ f x =⇒
tags cs vs s f y ⊆ tags ?cs vs s f x and

G:
∧

X b w. c = 〈X〉 =⇒
y ∈ sources cs ′ ?vs ′ ?s ′ f w =⇒

tags cs vs s f y ⊆ tags ?cs vs s f w
shows y ∈ sources (cs ′ @ [c]) ?vs ′ ?s ′ f x =⇒

tags cs vs s f y ⊆ tags (cs @ cs ′ @ [c]) vs s f x
proof (subst (asm) sources.simps, split com-flow.split-asm)

fix z a
assume H : c = z ::= a
show y ∈ (if z = x

then sources-aux cs ′ ?vs ′ ?s ′ f x ∪
⋃
{sources cs ′ ?vs ′ ?s ′ f w | w.

run-flow cs ′ ?vs ′ ?s ′ f : dom w  dom x ∧ w ∈ avars a}
else sources cs ′ ?vs ′ ?s ′ f x) =⇒ ?thesis
(is - ∈ (if - then ?A ∪ ?B else ?C ) =⇒ -)

proof (split if-split-asm)
assume I : z = x and y ∈ ?A ∪ ?B
moreover {

assume y ∈ ?A
hence tags cs vs s f y ⊆ tags-aux ?cs vs s f x

using A and H and I by simp
}
moreover {

assume y ∈ ?B
hence tags cs vs s f y ⊆

⋃
{tags ?cs vs s f w | w.

run-flow ?cs vs s f : dom w  dom x ∧ w ∈ avars a}
using B and H and I by (fastforce simp: run-flow-append)

}
ultimately show ?thesis

using H by (simp only: append-assoc [symmetric] tags.simps, auto)
next

assume z 6= x and y ∈ ?C
moreover from this have tags cs vs s f y ⊆ tags ?cs vs s f x

using C and H by simp
ultimately show ?thesis
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using H by (simp only: append-assoc [symmetric] tags.simps, auto)
qed

next
fix z
assume H : c = IN z
show y ∈ (if z = x

then sources-aux cs ′ ?vs ′ ?s ′ f x
else sources cs ′ ?vs ′ ?s ′ f x) =⇒ ?thesis
(is - ∈ (if - then ?A else ?B) =⇒ -)

proof (split if-split-asm)
assume z = x and y ∈ ?A
moreover from this have tags cs vs s f y ⊆ tags-aux ?cs vs s f x

using D and H by simp
ultimately show ?thesis

using H by (simp only: append-assoc [symmetric] tags.simps, auto)
next

assume z 6= x and y ∈ ?B
moreover from this have tags cs vs s f y ⊆ tags ?cs vs s f x

using E and H by simp
ultimately show ?thesis

using H by (simp only: append-assoc [symmetric] tags.simps, auto)
qed

next
fix z
assume c = OUT z and y ∈ sources cs ′ ?vs ′ ?s ′ f x
moreover from this have tags cs vs s f y ⊆ tags ?cs vs s f x

using F by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] tags.simps, auto)
next

fix X
assume H : c = 〈X〉
assume y ∈ sources cs ′ ?vs ′ ?s ′ f x ∪

⋃
{sources cs ′ ?vs ′ ?s ′ f w | w.

run-flow cs ′ ?vs ′ ?s ′ f : dom w  dom x ∧ w ∈ X}
(is - ∈ ?A ∪ ?B)

moreover {
assume y ∈ ?A
hence tags cs vs s f y ⊆ tags ?cs vs s f x

using G and H by simp
}
moreover {

assume y ∈ ?B
hence tags cs vs s f y ⊆

⋃
{tags ?cs vs s f w | w.

run-flow ?cs vs s f : dom w  dom x ∧ w ∈ X}
using G and H by (auto simp: run-flow-append)

}
ultimately show ?thesis

using H by (simp only: append-assoc [symmetric] tags.simps, auto)
qed
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lemma tags-member-2 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
y ∈ sources-aux cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

tags cs vs s f y ⊆ tags-aux (cs @ cs ′) vs s f x
(is

∧
- -. - =⇒ - ∈ sources-aux - ?vs ′ ?s ′ - - =⇒

- ⊆ tags-aux ?cs - - - -)
assumes

B:
∧

z. c = (IN z :: com-flow) =⇒
y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x =⇒

tags cs vs s f y ⊆ tags-aux ?cs vs s f x and
C :

∧
z. c = (OUT z :: com-flow) =⇒

y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x =⇒
tags cs vs s f y ⊆ tags-aux ?cs vs s f x and

D:
∧

X . c = 〈X〉 =⇒
y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x =⇒

tags cs vs s f y ⊆ tags-aux ?cs vs s f x and
E :

∧
X b w. c = 〈X〉 =⇒

y ∈ sources cs ′ ?vs ′ ?s ′ f w =⇒
tags cs vs s f y ⊆ tags ?cs vs s f w

shows y ∈ sources-aux (cs ′ @ [c]) ?vs ′ ?s ′ f x =⇒
tags cs vs s f y ⊆ tags-aux (cs @ cs ′ @ [c]) vs s f x

proof (subst (asm) sources-aux.simps, split com-flow.split-asm)
fix z a
assume c = z ::= a and y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x
moreover from this have tags cs vs s f y ⊆ tags-aux ?cs vs s f x

using A by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] tags-aux.simps, auto)
next

fix z
assume c = IN z and y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x
moreover from this have tags cs vs s f y ⊆ tags-aux ?cs vs s f x

using B by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] tags-aux.simps, auto)
next

fix z
assume c = OUT z and y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x
moreover from this have tags cs vs s f y ⊆ tags-aux ?cs vs s f x

using C by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] tags-aux.simps, auto)
next

fix X
assume F : c = 〈X〉
assume y ∈ sources-aux cs ′ ?vs ′ ?s ′ f x ∪

⋃
{sources cs ′ ?vs ′ ?s ′ f w | w.

run-flow cs ′ ?vs ′ ?s ′ f : dom w  dom x ∧ w ∈ X}
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(is - ∈ ?A ∪ ?B)
moreover {

assume y ∈ ?A
hence tags cs vs s f y ⊆ tags-aux ?cs vs s f x

using D and F by simp
}
moreover {

assume y ∈ ?B
hence tags cs vs s f y ⊆

⋃
{tags ?cs vs s f w | w.

run-flow ?cs vs s f : dom w  dom x ∧ w ∈ X}
using E and F by (auto simp: run-flow-append)

}
ultimately show ?thesis

using F by (simp only: append-assoc [symmetric] tags-aux.simps, auto)
qed

lemma tags-member :
y ∈ sources cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

tags cs vs s f y ⊆ tags (cs @ cs ′) vs s f x
and tags-aux-member :
y ∈ sources-aux cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

tags cs vs s f y ⊆ tags-aux (cs @ cs ′) vs s f x
by (induction cs ′ vs s f x and cs ′ vs s f x rule: tags-induct,
erule-tac [3 ] tags-member-2 , erule tags-member-1 , simp-all)

lemma tags-out-member-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
y ∈ sources-out cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

tags cs vs s f y ⊆ tags-out (cs @ cs ′) vs s f x
(is

∧
- -. - =⇒ - ∈ sources-out - ?vs ′ ?s ′ - - =⇒

- ⊆ tags-out ?cs - - - -)
assumes

B:
∧

z. c = (IN z :: com-flow) =⇒
y ∈ sources-out cs ′ ?vs ′ ?s ′ f x =⇒

tags cs vs s f y ⊆ tags-out ?cs vs s f x and
C :

∧
z. c = (OUT z :: com-flow) =⇒

y ∈ sources-out cs ′ ?vs ′ ?s ′ f x =⇒
tags cs vs s f y ⊆ tags-out ?cs vs s f x and

D:
∧

X . c = 〈X〉 =⇒
y ∈ sources-out cs ′ ?vs ′ ?s ′ f x =⇒

tags cs vs s f y ⊆ tags-out ?cs vs s f x
shows y ∈ sources-out (cs ′ @ [c]) ?vs ′ ?s ′ f x =⇒

tags cs vs s f y ⊆ tags-out (cs @ cs ′ @ [c]) vs s f x
proof (subst (asm) sources-out.simps, split com-flow.split-asm)

fix z a
assume c = z ::= a and y ∈ sources-out cs ′ ?vs ′ ?s ′ f x
moreover from this have tags cs vs s f y ⊆ tags-out ?cs vs s f x
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using A by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] tags-out.simps, auto)
next

fix z
assume c = IN z and y ∈ sources-out cs ′ ?vs ′ ?s ′ f x
moreover from this have tags cs vs s f y ⊆ tags-out ?cs vs s f x

using B by simp
ultimately show ?thesis

by (simp only: append-assoc [symmetric] tags-out.simps, auto)
next

fix z
assume E : c = OUT z
show y ∈ sources-out cs ′ ?vs ′ ?s ′ f x ∪
(if z = x then sources cs ′ ?vs ′ ?s ′ f x else {}) =⇒ ?thesis
(is - ∈ ?A ∪ (if - then ?B else -) =⇒ -)

proof (split if-split-asm)
assume z = x and y ∈ ?A ∪ ?B
moreover {

assume y ∈ ?A
hence tags cs vs s f y ⊆ tags-out ?cs vs s f x

using C and E by simp
}
moreover {

assume y ∈ ?B
hence tags cs vs s f y ⊆ tags ?cs vs s f x

by (rule tags-member)
}
ultimately show ?thesis

using E by (simp only: append-assoc [symmetric] tags-out.simps, auto)
next

assume y ∈ ?A ∪ {}
moreover from this have tags cs vs s f y ⊆ tags-out ?cs vs s f x

using C and E by simp
ultimately show ?thesis

using E by (simp only: append-assoc [symmetric] tags-out.simps, auto)
qed

next
fix X
assume E : c = 〈X〉
assume y ∈ sources-out cs ′ ?vs ′ ?s ′ f x ∪

⋃
{sources cs ′ ?vs ′ ?s ′ f w | w.

run-flow cs ′ ?vs ′ ?s ′ f : dom w  dom x ∧ w ∈ X}
(is - ∈ ?A ∪ ?B)

moreover {
assume y ∈ ?A
hence tags cs vs s f y ⊆ tags-out ?cs vs s f x

using D and E by simp
}
moreover {
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assume y ∈ ?B
hence tags cs vs s f y ⊆

⋃
{tags ?cs vs s f w | w.

run-flow ?cs vs s f : dom w  dom x ∧ w ∈ X}
by (auto dest: tags-member simp: run-flow-append)

}
ultimately show ?thesis

using E by (simp only: append-assoc [symmetric] tags-out.simps, auto)
qed

lemma tags-out-member :
y ∈ sources-out cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =⇒

tags cs vs s f y ⊆ tags-out (cs @ cs ′) vs s f x
by (induction cs ′ vs s f x rule: tags-out.induct,
erule tags-out-member-1 , simp-all)

lemma tags-suffix-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒ z = x =⇒
tags-aux cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-aux (cs @ cs ′) vs s f x}

(is
∧

- -. - =⇒ - =⇒ tags-aux - ?vs ′ ?s ′ - - = -)
assumes

B:
∧

z a b y. c = (z ::= a :: com-flow) =⇒ z = x =⇒
tags cs ′ ?vs ′ ?s ′ f y =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags (cs @ cs ′) vs s f y} and

C :
∧

z a. c = (z ::= a :: com-flow) =⇒ z 6= x =⇒
tags cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags (cs @ cs ′) vs s f x} and

D:
∧

z. c = (IN z :: com-flow) =⇒ z = x =⇒
tags-aux cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-aux (cs @ cs ′) vs s f x} and

E :
∧

z. c = (IN z :: com-flow) =⇒ z 6= x =⇒
tags cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags (cs @ cs ′) vs s f x} and

F :
∧

z. c = (OUT z :: com-flow) =⇒
tags cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags (cs @ cs ′) vs s f x} and

G:
∧

X b y. c = 〈X〉 =⇒
tags cs ′ ?vs ′ ?s ′ f y =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags (cs @ cs ′) vs s f y}

shows tags (cs ′ @ [c]) ?vs ′ ?s ′ f x =
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{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags (cs @ cs ′ @ [c]) vs s f x}

(is - = {p. case p of (w, n) ⇒ ?P w n c})
apply (subst tags.simps)
apply (split com-flow.split)
apply (rule conjI )
subgoal
proof −

show ∀ z a. c = z ::= a −→ (if z = x
then tags-aux cs ′ ?vs ′ ?s ′ f x ∪

⋃
{tags cs ′ ?vs ′ ?s ′ f y | y.

run-flow cs ′ ?vs ′ ?s ′ f : dom y  dom x ∧ y ∈ avars a}
else tags cs ′ ?vs ′ ?s ′ f x) =
{(w, n). ?P w n c}
(is ∀ - a. - −→ (if - then ?A ∪ ?F a else ?B) = -)
apply clarify
apply (split if-split)
apply (rule conjI )
subgoal for z a
proof

assume H : z = x and I : c = z ::= a
hence ?A = {(w, n). (w, length [c←cs. c = IN w] + n)
∈ tags-aux (cs @ cs ′) vs s f x}
using A by simp

moreover have ∀ y. tags cs ′ ?vs ′ ?s ′ f y = {(w, n).
(w, length [c←cs. c = IN w] + n) ∈ tags (cs @ cs ′) vs s f y}
using B and H and I by simp

hence ?F a = {(w, n). (w, length [c←cs. c = IN w] + n)
∈

⋃
{tags (cs @ cs ′) vs s f y | y.

run-flow cs ′ ?vs ′ ?s ′ f : dom y  dom x ∧ y ∈ avars a}}
by blast

ultimately show ?A ∪ ?F a = {(w, n). ?P w n (z ::= a)}
using H by (subst append-assoc [symmetric], subst tags.simps,
auto simp: run-flow-append)

qed
subgoal for z a
proof

assume z 6= x and c = z ::= a
moreover from this have ?B = {(w, n).
(w, length [c←cs. c = IN w] + n) ∈ tags (cs @ cs ′) vs s f x}
using C by simp

ultimately show ?B = {(w, n). ?P w n (z ::= a)}
by (subst append-assoc [symmetric], subst tags.simps, simp)

qed
done

qed
apply (rule conjI )
subgoal
proof −

show ∀ z. c = IN z −→ (if z = x
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then insert (x, length [c←cs ′. c = IN x ]) (tags-aux cs ′ ?vs ′ ?s ′ f x)
else tags cs ′ ?vs ′ ?s ′ f x) =
{(w, n). ?P w n c}
(is ∀ -. - −→ (if - then insert ?p ?A else ?B) = -)
apply clarify
apply (split if-split)
apply (rule conjI )
subgoal for z
proof

assume z = x and c = IN z
moreover from this have ?A = {(w, n).
(w, length [c←cs. c = IN w] + n) ∈ tags-aux (cs @ cs ′) vs s f x}
using D by simp

ultimately show insert ?p ?A = {(w, n). ?P w n (IN z)}
by (subst append-assoc [symmetric], subst tags.simps, auto)

qed
subgoal for z
proof

assume z 6= x and c = IN z
moreover from this have ?B = {(w, n).
(w, length [c←cs. c = IN w] + n) ∈ tags (cs @ cs ′) vs s f x}
using E by simp

ultimately show ?B = {(w, n). ?P w n (IN z)}
by (subst append-assoc [symmetric], subst tags.simps, simp)

qed
done

qed
apply (rule conjI )
subgoal by (subst append-assoc [symmetric], subst tags.simps, simp add: F)
subgoal
proof −

show ∀X . c = 〈X〉 −→
tags cs ′ ?vs ′ ?s ′ f x ∪

⋃
{tags cs ′ ?vs ′ ?s ′ f y | y.

run-flow cs ′ ?vs ′ ?s ′ f : dom y  dom x ∧ y ∈ X} =
{(w, n). ?P w n c}
(is ∀X . - −→ ?A ∪ ?F X = -)

proof clarify
fix X
assume H : c = 〈X〉
hence ?A = {(w, n). (w, length [c←cs. c = IN w] + n)
∈ tags (cs @ cs ′) vs s f x}
using G by simp

moreover have ∀ y. tags cs ′ ?vs ′ ?s ′ f y = {(w, n).
(w, length [c←cs. c = IN w] + n) ∈ tags (cs @ cs ′) vs s f y}
using G and H by simp

hence ?F X = {(w, n). (w, length [c←cs. c = IN w] + n)
∈

⋃
{tags (cs @ cs ′) vs s f y | y.

run-flow cs ′ ?vs ′ ?s ′ f : dom y  dom x ∧ y ∈ X}}
by blast
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ultimately show ?A ∪ ?F X = {(w, n). ?P w n (〈X〉)}
by (subst append-assoc [symmetric], subst tags.simps,
auto simp: run-flow-append)

qed
qed
done

lemma tags-suffix-2 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
tags-aux cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-aux (cs @ cs ′) vs s f x}

(is
∧

- -. - =⇒ tags-aux - ?vs ′ ?s ′ - - = -)
assumes

B:
∧

z. c = (IN z :: com-flow) =⇒
tags-aux cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-aux (cs @ cs ′) vs s f x} and

C :
∧

z. c = (OUT z :: com-flow) =⇒
tags-aux cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-aux (cs @ cs ′) vs s f x} and

D:
∧

X . c = 〈X〉 =⇒
tags-aux cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-aux (cs @ cs ′) vs s f x} and

E :
∧

X b y. c = 〈X〉 =⇒
tags cs ′ ?vs ′ ?s ′ f y =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags (cs @ cs ′) vs s f y}

shows tags-aux (cs ′ @ [c]) ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-aux (cs @ cs ′ @ [c]) vs s f x}

(is - = {p. case p of (w, n) ⇒ ?P w n c})
apply (subst tags-aux.simps)
apply (split com-flow.split)
apply (rule conjI )
defer
apply (rule conjI )
defer
apply (rule conjI )
defer

subgoal
proof −

show ∀X . c = 〈X〉 −→
tags-aux cs ′ ?vs ′ ?s ′ f x ∪

⋃
{tags cs ′ ?vs ′ ?s ′ f y | y.

run-flow cs ′ ?vs ′ ?s ′ f : dom y  dom x ∧ y ∈ X} =
{(w, n). ?P w n c}
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(is ∀X . - −→ ?A ∪ ?F X = -)
proof clarify

fix X
assume F : c = 〈X〉
hence ?A = {(w, n). (w, length [c←cs. c = IN w] + n)
∈ tags-aux (cs @ cs ′) vs s f x}
using D by simp

moreover have ∀ y. tags cs ′ ?vs ′ ?s ′ f y = {(w, n).
(w, length [c←cs. c = IN w] + n) ∈ tags (cs @ cs ′) vs s f y}
using E and F by simp

hence ?F X = {(w, n). (w, length [c←cs. c = IN w] + n)
∈

⋃
{tags (cs @ cs ′) vs s f y | y.

run-flow cs ′ ?vs ′ ?s ′ f : dom y  dom x ∧ y ∈ X}}
by blast

ultimately show ?A ∪ ?F X = {(w, n). ?P w n (〈X〉)}
by (subst append-assoc [symmetric], subst tags-aux.simps,
auto simp: run-flow-append)

qed
qed

by (subst append-assoc [symmetric], subst tags-aux.simps, simp add: A B C )+

lemma tags-suffix:
tags cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x = {(w, n).

(w, length [c←cs. c = IN w] + n) ∈ tags (cs @ cs ′) vs s f x}
and tags-aux-suffix:
tags-aux cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x = {(w, n).

(w, length [c←cs. c = IN w] + n) ∈ tags-aux (cs @ cs ′) vs s f x}
by (induction cs ′ vs s f x and cs ′ vs s f x rule: tags-induct,
erule-tac [3 ] tags-suffix-2 , erule tags-suffix-1 , simp-all
add: tags-ubound tags-aux-ubound)

lemma tags-out-suffix-1 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
tags-out cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-out (cs @ cs ′) vs s f x}

(is
∧

- -. - =⇒ tags-out - ?vs ′ ?s ′ - - = -)
assumes

B:
∧

z. c = (IN z :: com-flow) =⇒
tags-out cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-out (cs @ cs ′) vs s f x} and

C :
∧

z. c = (OUT z :: com-flow) =⇒
tags-out cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-out (cs @ cs ′) vs s f x} and

D:
∧

X . c = 〈X〉 =⇒
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tags-out cs ′ ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-out (cs @ cs ′) vs s f x}

shows tags-out (cs ′ @ [c]) ?vs ′ ?s ′ f x =
{p. case p of (w, n) ⇒ (w, length [c←cs. c = IN w] + n)
∈ tags-out (cs @ cs ′ @ [c]) vs s f x}

(is - = {p. case p of (w, n) ⇒ ?P w n c})
apply (subst tags-out.simps)
apply (split com-flow.split)
apply (rule conjI )
defer
apply (rule conjI )
defer

subgoal
proof

show ∀ z. c = OUT z −→
tags-out cs ′ ?vs ′ ?s ′ f x ∪
(if z = x then tags cs ′ ?vs ′ ?s ′ f x else {}) =
{(w, n). ?P w n c}
(is ∀ -. - −→ ?A ∪ (if - then ?B else -) = -)
apply clarify
apply (split if-split)
apply (rule conjI )
subgoal for z
proof

assume c = OUT z and z = x
moreover from this have ?A = {p. case p of (w, n) ⇒
(w, length [c←cs. c = IN w] + n) ∈ tags-out (cs @ cs ′) vs s f x}
using C by simp

moreover have ?B = {(w, n).
(w, length [c←cs. c = IN w] + n) ∈ tags (cs @ cs ′) vs s f x}
by (rule tags-suffix)

ultimately show ?A ∪ ?B = {(w, n). ?P w n (OUT z)}
by (subst append-assoc [symmetric], subst tags-out.simps, auto)

qed
subgoal for z
proof

assume c = OUT z and z 6= x
moreover from this have ?A = {p. case p of (w, n) ⇒
(w, length [c←cs. c = IN w] + n) ∈ tags-out (cs @ cs ′) vs s f x}
using C by simp

ultimately show ?A ∪ {} = {(w, n). ?P w n (OUT z)}
by (subst append-assoc [symmetric], subst tags-out.simps, simp)

qed
done

next
show ∀X . c = 〈X〉 −→

tags-out cs ′ ?vs ′ ?s ′ f x ∪
⋃
{tags cs ′ ?vs ′ ?s ′ f y | y.

run-flow cs ′ ?vs ′ ?s ′ f : dom y  dom x ∧ y ∈ X} =
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{(w, n). ?P w n c}
(is ∀X . - −→ ?A ∪ ?F X = -)

proof clarify
fix X
assume c = 〈X〉
hence ?A = {(w, n). (w, length [c←cs. c = IN w] + n)
∈ tags-out (cs @ cs ′) vs s f x}
using D by simp

moreover have ∀ y. tags cs ′ ?vs ′ ?s ′ f y = {(w, n).
(w, length [c←cs. c = IN w] + n) ∈ tags (cs @ cs ′) vs s f y}
by (blast intro!: tags-suffix)

hence ?F X = {(w, n). (w, length [c←cs. c = IN w] + n)
∈

⋃
{tags (cs @ cs ′) vs s f y | y.

run-flow cs ′ ?vs ′ ?s ′ f : dom y  dom x ∧ y ∈ X}}
by blast

ultimately show ?A ∪ ?F X = {(w, n). ?P w n (〈X〉)}
by (subst append-assoc [symmetric], subst tags-out.simps,
auto simp: run-flow-append)

qed
qed

by (subst append-assoc [symmetric], subst tags-out.simps, simp add: A B)+

lemma tags-out-suffix:
tags-out cs ′ (vs @ in-flow cs vs f ) (run-flow cs vs s f ) f x = {(w, n).

(w, length [c←cs. c = IN w] + n) ∈ tags-out (cs @ cs ′) vs s f x}
by (induction cs ′ vs s f x rule: tags-out.induct,
erule tags-out-suffix-1 , simp-all add: tags-out-ubound)

lemma sources-aux-rhs:
assumes

A: S ⊆ {x. s1 = t1 (⊆ sources-aux (flow cfs @ cs ′) vs1 s1 f x)}
(is - ⊆ {-. - = - (⊆ sources-aux (?cs @ -) - - - -)})

assumes
B: f = f ′ (⊆ vs1, vs1 ′,⋃

{tags-aux (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}) and
C : (c1, s1, f , vs1, ws1) →∗{cfs} (c2, s2, f , vs2, ws2) and
D: ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs

shows S ⊆ {x. s2 = t2 (⊆ sources-aux cs ′ vs2 s2 f x)}
proof clarify

fix x y
assume E : y ∈ sources-aux cs ′ vs2 s2 f x
moreover have F : s2 = run-flow ?cs vs1 s1 f

using C by (rule small-stepsl-run-flow)
moreover have G: vs2 = vs1 @ in-flow ?cs vs1 f

using C by (rule small-stepsl-in-flow)
ultimately have sources ?cs vs1 s1 f y ⊆ sources-aux (?cs @ cs ′) vs1 s1 f x

by (blast dest: sources-aux-member)
moreover assume H : x ∈ S
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ultimately have s1 = t1 (⊆ sources ?cs vs1 s1 f y)
using A by blast

moreover have tags ?cs vs1 s1 f y ⊆ tags-aux (?cs @ cs ′) vs1 s1 f x
using E and F and G by (blast dest: tags-aux-member)

hence tags ?cs vs1 s1 f y ⊆
⋃
{tags-aux (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}

using H by blast
with B have f = f ′ (⊆ vs1, vs1 ′, tags ?cs vs1 s1 f y)

by (rule eq-streams-subset)
ultimately show s2 y = t2 y

using D [rule-format, of {y}] by simp
qed

lemma sources-rhs:
assumes

A: S ⊆ {x. s1 = t1 (⊆ sources (flow cfs @ cs ′) vs1 s1 f x)}
(is - ⊆ {-. - = - (⊆ sources (?cs @ -) - - - -)})

assumes
B: f = f ′ (⊆ vs1, vs1 ′,⋃

{tags (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}) and
C : (c1, s1, f , vs1, ws1) →∗{cfs} (c2, s2, f , vs2, ws2) and
D: ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs

shows S ⊆ {x. s2 = t2 (⊆ sources cs ′ vs2 s2 f x)}
proof clarify

fix x y
assume E : y ∈ sources cs ′ vs2 s2 f x
moreover have F : s2 = run-flow ?cs vs1 s1 f

using C by (rule small-stepsl-run-flow)
moreover have G: vs2 = vs1 @ in-flow ?cs vs1 f

using C by (rule small-stepsl-in-flow)
ultimately have sources ?cs vs1 s1 f y ⊆ sources (?cs @ cs ′) vs1 s1 f x

by (blast dest: sources-member)
moreover assume H : x ∈ S
ultimately have s1 = t1 (⊆ sources ?cs vs1 s1 f y)

using A by blast
moreover have tags ?cs vs1 s1 f y ⊆ tags (?cs @ cs ′) vs1 s1 f x

using E and F and G by (blast dest: tags-member)
hence tags ?cs vs1 s1 f y ⊆

⋃
{tags (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}

using H by blast
with B have f = f ′ (⊆ vs1, vs1 ′, tags ?cs vs1 s1 f y)

by (rule eq-streams-subset)
ultimately show s2 y = t2 y

using D [rule-format, of {y}] by simp
qed

lemma sources-out-rhs:
assumes

A: S ⊆ {x. s1 = t1 (⊆ sources-out (flow cfs @ cs ′) vs1 s1 f x)}
(is - ⊆ {-. - = - (⊆ sources-out (?cs @ -) - - - -)})

assumes
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B: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-out (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}) and

C : (c1, s1, f , vs1, ws1) →∗{cfs} (c2, s2, f , vs2, ws2) and
D: ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs

shows S ⊆ {x. s2 = t2 (⊆ sources-out cs ′ vs2 s2 f x)}
proof clarify

fix x y
assume E : y ∈ sources-out cs ′ vs2 s2 f x
moreover have F : s2 = run-flow ?cs vs1 s1 f

using C by (rule small-stepsl-run-flow)
moreover have G: vs2 = vs1 @ in-flow ?cs vs1 f

using C by (rule small-stepsl-in-flow)
ultimately have sources ?cs vs1 s1 f y ⊆ sources-out (?cs @ cs ′) vs1 s1 f x

by (blast dest: sources-out-member)
moreover assume H : x ∈ S
ultimately have s1 = t1 (⊆ sources ?cs vs1 s1 f y)

using A by blast
moreover have tags ?cs vs1 s1 f y ⊆ tags-out (?cs @ cs ′) vs1 s1 f x

using E and F and G by (blast dest: tags-out-member)
hence tags ?cs vs1 s1 f y ⊆

⋃
{tags-out (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}

using H by blast
with B have f = f ′ (⊆ vs1, vs1 ′, tags ?cs vs1 s1 f y)

by (rule eq-streams-subset)
ultimately show s2 y = t2 y

using D [rule-format, of {y}] by simp
qed

lemma tags-aux-rhs:
assumes

A: S ⊆ {x. s1 = t1 (⊆ sources-aux (flow cfs @ cs ′) vs1 s1 f x)}
(is - ⊆ {-. - = - (⊆ sources-aux (?cs @ -) - - - -)})

assumes
B: f = f ′ (⊆ vs1, vs1 ′,⋃

{tags-aux (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}) and
C : (c1, s1, f , vs1, ws1) →∗{cfs} (c2, s2, f , vs2, ws2) and
D: (c1 ′, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) and
E : ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs

shows f = f ′ (⊆ vs2, vs2 ′,
⋃
{tags-aux cs ′ vs2 s2 f x | x. x ∈ S})

proof (subst eq-streams-def , clarify)
fix x y n
have F : vs2 = vs1 @ drop (length vs1) vs2

using small-stepsl-steps [OF C ] by (rule small-steps-in-flow)
have G: vs2 ′ = vs1 ′ @ drop (length vs1 ′) vs2 ′

using D by (rule small-steps-in-flow)
assume (y, n) ∈ tags-aux cs ′ vs2 s2 f x
moreover have s2 = run-flow ?cs vs1 s1 f

using C by (rule small-stepsl-run-flow)
moreover have H : vs2 = vs1 @ in-flow ?cs vs1 f
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using C by (rule small-stepsl-in-flow)
ultimately have I : (y, length [c←?cs. c = IN y] + n)
∈ tags-aux (?cs @ cs ′) vs1 s1 f x
(is (-, ?k + -) ∈ -)
by (simp add: tags-aux-suffix)

let ?m = Suc (Max {k. k ≤ length (?cs @ cs ′) ∧
length [c←take k (?cs @ cs ′). c = IN y] ≤ ?k + n})

have J : y ∈ sources-aux (drop ?m (?cs @ cs ′))
(vs1 @ in-flow (take ?m (?cs @ cs ′)) vs1 f )
(run-flow (take ?m (?cs @ cs ′)) vs1 s1 f ) f x
using I by (auto dest: tags-aux-sources-aux)

hence sources (take ?m (?cs @ cs ′)) vs1 s1 f y ⊆
sources-aux (take ?m (?cs @ cs ′) @ drop ?m (?cs @ cs ′)) vs1 s1 f x
by (rule sources-aux-member)

moreover have K : length ?cs ≤ ?m
by (rule le-SucI , rule Max-ge, simp-all)

ultimately have
sources (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
sources-aux (?cs @ cs ′) vs1 s1 f x
by simp

moreover have
sources-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
sources (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule sources-aux-sources)

moreover have sources-aux ?cs vs1 s1 f y ⊆
sources-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule sources-aux-append)

moreover assume L: x ∈ S
hence s1 = t1 (⊆ sources-aux (?cs @ cs ′) vs1 s1 f x)

using A by blast
ultimately have M : s1 = t1 (⊆ sources-aux ?cs vs1 s1 f y)

by blast
have tags (take ?m (?cs @ cs ′)) vs1 s1 f y ⊆

tags-aux (take ?m (?cs @ cs ′) @ drop ?m (?cs @ cs ′)) vs1 s1 f x
using J by (rule tags-aux-member)

hence tags (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
tags-aux (?cs @ cs ′) vs1 s1 f x
using K by simp

moreover have
tags-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
tags (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule tags-aux-tags)

moreover have tags-aux ?cs vs1 s1 f y ⊆
tags-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule tags-aux-append)

ultimately have tags-aux ?cs vs1 s1 f y ⊆⋃
{tags-aux (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}

using L by blast
with B have f = f ′ (⊆ vs1, vs1 ′, tags-aux ?cs vs1 s1 f y)
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by (rule eq-streams-subset)
hence map fst [p←drop (length vs1) vs2. fst p = y] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p = y]
using E [rule-format, of {y}] and M by simp

hence length [p←drop (length vs1) vs2. fst p = y] =
length [p←drop (length vs1 ′) vs2 ′. fst p = y]
by (drule-tac arg-cong [where f = length],
subst (asm) (1 2 ) length-map)

hence length [p←drop (length vs1) vs2. fst p = y] = ?k ∧
length [p←drop (length vs1 ′) vs2 ′. fst p = y] = ?k
using H by (simp add: in-flow-length)

moreover have f y (length [p←vs1. fst p = y] + ?k + n) =
f ′ y (length [p←vs1 ′. fst p = y] + ?k + n)
using B and I and L by (fastforce simp: eq-streams-def ac-simps)

ultimately show f y (length [p←vs2. fst p = y] + n) =
f ′ y (length [p←vs2 ′. fst p = y] + n)
by (subst F , subst G, simp)

qed

lemma tags-rhs:
assumes

A: S ⊆ {x. s1 = t1 (⊆ sources (flow cfs @ cs ′) vs1 s1 f x)}
(is - ⊆ {-. - = - (⊆ sources (?cs @ -) - - - -)})

assumes
B: f = f ′ (⊆ vs1, vs1 ′,⋃

{tags (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}) and
C : (c1, s1, f , vs1, ws1) →∗{cfs} (c2, s2, f , vs2, ws2) and
D: (c1 ′, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) and
E : ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs

shows f = f ′ (⊆ vs2, vs2 ′,
⋃
{tags cs ′ vs2 s2 f x | x. x ∈ S})

proof (subst eq-streams-def , clarify)
fix x y n
have F : vs2 = vs1 @ drop (length vs1) vs2

using small-stepsl-steps [OF C ] by (rule small-steps-in-flow)
have G: vs2 ′ = vs1 ′ @ drop (length vs1 ′) vs2 ′

using D by (rule small-steps-in-flow)
assume (y, n) ∈ tags cs ′ vs2 s2 f x
moreover have s2 = run-flow ?cs vs1 s1 f

using C by (rule small-stepsl-run-flow)
moreover have H : vs2 = vs1 @ in-flow ?cs vs1 f

using C by (rule small-stepsl-in-flow)
ultimately have I : (y, length [c←?cs. c = IN y] + n)
∈ tags (?cs @ cs ′) vs1 s1 f x
(is (-, ?k + -) ∈ -)
by (simp add: tags-suffix)

let ?m = Suc (Max {k. k ≤ length (?cs @ cs ′) ∧
length [c←take k (?cs @ cs ′). c = IN y] ≤ ?k + n})

have J : y ∈ sources (drop ?m (?cs @ cs ′))
(vs1 @ in-flow (take ?m (?cs @ cs ′)) vs1 f )
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(run-flow (take ?m (?cs @ cs ′)) vs1 s1 f ) f x
using I by (auto dest: tags-sources)

hence sources (take ?m (?cs @ cs ′)) vs1 s1 f y ⊆
sources (take ?m (?cs @ cs ′) @ drop ?m (?cs @ cs ′)) vs1 s1 f x
by (rule sources-member)

moreover have K : length ?cs ≤ ?m
by (rule le-SucI , rule Max-ge, simp-all)

ultimately have
sources (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
sources (?cs @ cs ′) vs1 s1 f x
by simp

moreover have
sources-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
sources (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule sources-aux-sources)

moreover have sources-aux ?cs vs1 s1 f y ⊆
sources-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule sources-aux-append)

moreover assume L: x ∈ S
hence s1 = t1 (⊆ sources (?cs @ cs ′) vs1 s1 f x)

using A by blast
ultimately have M : s1 = t1 (⊆ sources-aux ?cs vs1 s1 f y)

by blast
have tags (take ?m (?cs @ cs ′)) vs1 s1 f y ⊆

tags (take ?m (?cs @ cs ′) @ drop ?m (?cs @ cs ′)) vs1 s1 f x
using J by (rule tags-member)

hence tags (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
tags (?cs @ cs ′) vs1 s1 f x
using K by simp

moreover have
tags-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
tags (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule tags-aux-tags)

moreover have tags-aux ?cs vs1 s1 f y ⊆
tags-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule tags-aux-append)

ultimately have tags-aux ?cs vs1 s1 f y ⊆⋃
{tags (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}

using L by blast
with B have f = f ′ (⊆ vs1, vs1 ′, tags-aux ?cs vs1 s1 f y)

by (rule eq-streams-subset)
hence map fst [p←drop (length vs1) vs2. fst p = y] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p = y]
using E [rule-format, of {y}] and M by simp

hence length [p←drop (length vs1) vs2. fst p = y] =
length [p←drop (length vs1 ′) vs2 ′. fst p = y]
by (drule-tac arg-cong [where f = length],
subst (asm) (1 2 ) length-map)

hence length [p←drop (length vs1) vs2. fst p = y] = ?k ∧
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length [p←drop (length vs1 ′) vs2 ′. fst p = y] = ?k
using H by (simp add: in-flow-length)

moreover have f y (length [p←vs1. fst p = y] + ?k + n) =
f ′ y (length [p←vs1 ′. fst p = y] + ?k + n)
using B and I and L by (fastforce simp: eq-streams-def ac-simps)

ultimately show f y (length [p←vs2. fst p = y] + n) =
f ′ y (length [p←vs2 ′. fst p = y] + n)
by (subst F , subst G, simp)

qed

lemma tags-out-rhs:
assumes

A: S ⊆ {x. s1 = t1 (⊆ sources-out (flow cfs @ cs ′) vs1 s1 f x)}
(is - ⊆ {-. - = - (⊆ sources-out (?cs @ -) - - - -)})

assumes
B: f = f ′ (⊆ vs1, vs1 ′,⋃

{tags-out (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}) and
C : (c1, s1, f , vs1, ws1) →∗{cfs} (c2, s2, f , vs2, ws2) and
D: (c1 ′, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) and
E : ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs

shows f = f ′ (⊆ vs2, vs2 ′,
⋃
{tags-out cs ′ vs2 s2 f x | x. x ∈ S})

proof (subst eq-streams-def , clarify)
fix x y n
have F : vs2 = vs1 @ drop (length vs1) vs2

using small-stepsl-steps [OF C ] by (rule small-steps-in-flow)
have G: vs2 ′ = vs1 ′ @ drop (length vs1 ′) vs2 ′

using D by (rule small-steps-in-flow)
assume (y, n) ∈ tags-out cs ′ vs2 s2 f x
moreover have s2 = run-flow ?cs vs1 s1 f

using C by (rule small-stepsl-run-flow)
moreover have H : vs2 = vs1 @ in-flow ?cs vs1 f

using C by (rule small-stepsl-in-flow)
ultimately have I : (y, length [c←?cs. c = IN y] + n)
∈ tags-out (?cs @ cs ′) vs1 s1 f x
(is (-, ?k + -) ∈ -)
by (simp add: tags-out-suffix)

let ?m = Suc (Max {k. k ≤ length (?cs @ cs ′) ∧
length [c←take k (?cs @ cs ′). c = IN y] ≤ ?k + n})

have J : y ∈ sources-out (drop ?m (?cs @ cs ′))
(vs1 @ in-flow (take ?m (?cs @ cs ′)) vs1 f )
(run-flow (take ?m (?cs @ cs ′)) vs1 s1 f ) f x
using I by (auto dest: tags-out-sources-out)

hence sources (take ?m (?cs @ cs ′)) vs1 s1 f y ⊆
sources-out (take ?m (?cs @ cs ′) @ drop ?m (?cs @ cs ′)) vs1 s1 f x
by (rule sources-out-member)

moreover have K : length ?cs ≤ ?m
by (rule le-SucI , rule Max-ge, simp-all)

ultimately have
sources (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
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sources-out (?cs @ cs ′) vs1 s1 f x
by simp

moreover have
sources-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
sources (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule sources-aux-sources)

moreover have sources-aux ?cs vs1 s1 f y ⊆
sources-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule sources-aux-append)

moreover assume L: x ∈ S
hence s1 = t1 (⊆ sources-out (?cs @ cs ′) vs1 s1 f x)

using A by blast
ultimately have M : s1 = t1 (⊆ sources-aux ?cs vs1 s1 f y)

by blast
have tags (take ?m (?cs @ cs ′)) vs1 s1 f y ⊆

tags-out (take ?m (?cs @ cs ′) @ drop ?m (?cs @ cs ′)) vs1 s1 f x
using J by (rule tags-out-member)

hence tags (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
tags-out (?cs @ cs ′) vs1 s1 f x
using K by simp

moreover have
tags-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y ⊆
tags (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule tags-aux-tags)

moreover have tags-aux ?cs vs1 s1 f y ⊆
tags-aux (?cs @ take (?m − length ?cs) cs ′) vs1 s1 f y
by (rule tags-aux-append)

ultimately have tags-aux ?cs vs1 s1 f y ⊆⋃
{tags-out (?cs @ cs ′) vs1 s1 f x | x. x ∈ S}

using L by blast
with B have f = f ′ (⊆ vs1, vs1 ′, tags-aux ?cs vs1 s1 f y)

by (rule eq-streams-subset)
hence map fst [p←drop (length vs1) vs2. fst p = y] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p = y]
using E [rule-format, of {y}] and M by simp

hence length [p←drop (length vs1) vs2. fst p = y] =
length [p←drop (length vs1 ′) vs2 ′. fst p = y]
by (drule-tac arg-cong [where f = length],
subst (asm) (1 2 ) length-map)

hence length [p←drop (length vs1) vs2. fst p = y] = ?k ∧
length [p←drop (length vs1 ′) vs2 ′. fst p = y] = ?k
using H by (simp add: in-flow-length)

moreover have f y (length [p←vs1. fst p = y] + ?k + n) =
f ′ y (length [p←vs1 ′. fst p = y] + ?k + n)
using B and I and L by (fastforce simp: eq-streams-def ac-simps)

ultimately show f y (length [p←vs2. fst p = y] + n) =
f ′ y (length [p←vs2 ′. fst p = y] + n)
by (subst F , subst G, simp)

qed
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lemma ctyping2-term-seq:
assumes

A:
∧

B Y p. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . ¬ C : Z  UNIV =⇒ ∃ p ′. (c1, p) ⇒ p ′ and

B:
∧

q B Y B ′ Y ′ p. (U , v) |= c1 (⊆ A, X) = Some q =⇒ (B, Y ) = q =⇒
(U , v) |= c2 (⊆ B, Y ) = Some (B ′, Y ′) =⇒
∃ (C , Z ) ∈ U . ¬ C : Z  UNIV =⇒ ∃ p ′. (c2, p) ⇒ p ′ and

C : (U , v) |= c1;; c2 (⊆ A, X) = Some (B ′, Y ′) and
D: ∃ (C , Z ) ∈ U . ¬ C : Z  UNIV

shows ∃ p ′. (c1;; c2, p) ⇒ p ′

proof −
obtain B and Y where

E : (U , v) |= c1 (⊆ A, X) = Some (B, Y ) and
F : (U , v) |= c2 (⊆ B, Y ) = Some (B ′, Y ′)
using C by (auto split: option.split-asm)

obtain p ′ where (c1, p) ⇒ p ′

using A [OF E D] by blast
moreover obtain p ′′ where (c2, p ′) ⇒ p ′′

using B [OF E - F D] by blast
ultimately show ?thesis

by blast
qed

lemma ctyping2-term-or :
assumes

A:
∧

B Y p. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . ¬ C : Z  UNIV =⇒ ∃ p ′. (c1, p) ⇒ p ′ and

B: (U , v) |= c1 OR c2 (⊆ A, X) = Some (B ′, Y ′) and
C : ∃ (C , Z ) ∈ U . ¬ C : Z  UNIV

shows ∃ p ′. (c1 OR c2, p) ⇒ p ′

proof −
obtain B and Y where (U , v) |= c1 (⊆ A, X) = Some (B, Y )

using B by (auto split: option.split-asm)
thus ?thesis

using A and C by blast
qed

lemma ctyping2-term-if :
assumes

A:
∧

U ′ q B1 B2 B Y p.
(U ′, q) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = q =⇒ (U ′, v) |= c1 (⊆ B1, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U ′. ¬ C : Z  UNIV =⇒ ∃ p ′. (c1, p) ⇒ p ′ and

B:
∧

U ′ q B1 B2 B Y p.
(U ′, q) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = q =⇒ (U ′, v) |= c2 (⊆ B2, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U ′. ¬ C : Z  UNIV =⇒ ∃ p ′. (c2, p) ⇒ p ′ and
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C : (U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y ) and
D: ∃ (C , Z ) ∈ U . ¬ C : Z  UNIV

shows ∃ p ′. (IF b THEN c1 ELSE c2, p) ⇒ p ′

proof −
let ?U ′ = insert (Univ? A X , bvars b) U
obtain B1 and B1

′ and Y 1 and B2 and B2
′ and Y 2 where

E : |= b (⊆ A, X) = (B1, B2) and
F : (?U ′, v) |= c1 (⊆ B1, X) = Some (B1

′, Y 1) and
G: (?U ′, v) |= c2 (⊆ B2, X) = Some (B2

′, Y 2)
using C by (auto split: option.split-asm prod.split-asm)

obtain s and q where p = (s, q)
by (cases p)

moreover {
assume bval b s
moreover obtain p ′ where (c1, s, q) ⇒ p ′

using A [OF - - F , of - B2 (s, q)] and D and E by auto
ultimately have ∃ p ′. (IF b THEN c1 ELSE c2, s, q) ⇒ p ′

by blast
}
moreover {

assume ¬ bval b s
moreover obtain p ′ where (c2, s, q) ⇒ p ′

using B [OF - - G, of - B1 (s, q)] and D and E by auto
ultimately have ∃ p ′. (IF b THEN c1 ELSE c2, s, q) ⇒ p ′

by blast
}
ultimately show ?thesis

by blast
qed

lemma ctyping2-term:
[[(U , v) |= c (⊆ A, X) = Some (B, Y ); ∃ (C , Z ) ∈ U . ¬ C : Z  UNIV ]] =⇒
∃ p ′. (c, p) ⇒ p ′

proof (induction (U , v) c A X arbitrary: B Y U v p rule: ctyping2 .induct,
blast)
fix A X B Y U v c1 c2 p
show
[[
∧

B Y p. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . ¬ C : Z  UNIV =⇒ ∃ p ′. (c1, p) ⇒ p ′;∧
q B Y B ′ Y ′ p. (U , v) |= c1 (⊆ A, X) = Some q =⇒ (B, Y ) = q =⇒
(U , v) |= c2 (⊆ B, Y ) = Some (B ′, Y ′) =⇒
∃ (C , Z ) ∈ U . ¬ C : Z  UNIV =⇒ ∃ p ′. (c2, p) ⇒ p ′;

(U , v) |= c1;; c2 (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . ¬ C : Z  UNIV ]] =⇒
∃ p ′. (c1;; c2, p) ⇒ p ′

by (rule ctyping2-term-seq)
next

fix A X B Y U v c1 c2 p
show
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[[
∧

B Y p. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . ¬ C : Z  UNIV =⇒ ∃ p ′. (c1, p) ⇒ p ′;

(U , v) |= c1 OR c2 (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . ¬ C : Z  UNIV ]] =⇒
∃ p ′. (c1 OR c2, p) ⇒ p ′

by (rule ctyping2-term-or)
next

fix A X B Y U v b c1 c2 p
show
[[
∧

U ′ q B1 B2 B Y p.
(U ′, q) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = q =⇒ (U ′, v) |= c1 (⊆ B1, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U ′. ¬ C : Z  UNIV =⇒ ∃ p ′. (c1, p) ⇒ p ′;∧

U ′ q B1 B2 B Y p.
(U ′, q) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = q =⇒ (U ′, v) |= c2 (⊆ B2, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U ′. ¬ C : Z  UNIV =⇒ ∃ p ′. (c2, p) ⇒ p ′;

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . ¬ C : Z  UNIV ]] =⇒
∃ p ′. (IF b THEN c1 ELSE c2, p) ⇒ p ′

by (rule ctyping2-term-if )
qed (fastforce split: if-split-asm prod.split-asm)+

lemma ctyping2-confine-seq:
assumes

A:
∧

s ′ f ′ vs ′ ws ′ A B X Y U v. p = (s ′, f ′, vs ′, ws ′) =⇒
(U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒ ∃ (C , Z ) ∈ U . C : Z  | S =⇒

s = s ′ (⊆ S) ∧
[p←drop (length vs) vs ′. fst p ∈ S ] = [] ∧
[p←drop (length ws) ws ′. fst p ∈ S ] = []

(is
∧

s ′ - vs ′ ws ′ - - - - - -. - =⇒ - =⇒ - =⇒
?P s s ′ vs vs ′ ws ws ′)

assumes
B:

∧
s ′ f ′ vs ′ ws ′ A B X Y U v. p = (s ′, f ′, vs ′, ws ′) =⇒

(U , v) |= c2 (⊆ A, X) = Some (B, Y ) =⇒ ∃ (C , Z ) ∈ U . C : Z  | S =⇒
?P s ′ s ′′ vs ′ vs ′′ ws ′ ws ′′ and

C : (c1, s, f , vs, ws) ⇒ p and
D: (c2, p) ⇒ (s ′′, f ′′, vs ′′, ws ′′) and
E : (U , v) |= c1;; c2 (⊆ A, X) = Some (B ′, Y ′) and
F : ∃ (C , Z ) ∈ U . C : Z  | S

shows ?P s s ′′ vs vs ′′ ws ws ′′

proof −
obtain s ′ and f ′ and vs ′ and ws ′ where G: p = (s ′, f ′, vs ′, ws ′)

by (cases p)
have H : (c1, s, f , vs, ws) →∗ (SKIP, s ′, f ′, vs ′, ws ′)

using C and G by (simp add: big-iff-small)
have I : (c2, s ′, f ′, vs ′, ws ′) →∗ (SKIP, s ′′, f ′′, vs ′′, ws ′′)

using D and G by (simp add: big-iff-small)
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have J : vs ′ = vs @ drop (length vs) vs ′

using H by (rule small-steps-in-flow)
have vs ′′ = vs ′ @ drop (length vs ′) vs ′′

using I by (rule small-steps-in-flow)
hence K : vs ′′ = vs @ drop (length vs) vs ′ @ drop (length vs ′) vs ′′

by (subst (asm) J , simp)
have L: ws ′ = ws @ drop (length ws) ws ′

using H by (rule small-steps-out-flow)
have ws ′′ = ws ′ @ drop (length ws ′) ws ′′

using I by (rule small-steps-out-flow)
hence M : ws ′′ = ws @ drop (length ws) ws ′ @ drop (length ws ′) ws ′′

by (subst (asm) L, simp)
obtain B and Y where

N : (U , v) |= c1 (⊆ A, X) = Some (B, Y ) and
O: (U , v) |= c2 (⊆ B, Y ) = Some (B ′, Y ′)
using E by (auto split: option.split-asm)

from A [OF G N F ] and B [OF G O F ] show ?thesis
by (subst K , subst M , simp)

qed

lemma ctyping2-confine-or-lhs:
assumes

A:
∧

A B X Y U v. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒

s = s ′ (⊆ S) ∧
[p←drop (length vs) vs ′. fst p ∈ S ] = [] ∧
[p←drop (length ws) ws ′. fst p ∈ S ] = []

(is
∧

- - - - - -. - =⇒ - =⇒ ?P)
assumes

B: (U , v) |= c1 OR c2 (⊆ A, X) = Some (B ′, Y ′) and
C : ∃ (C , Z ) ∈ U . C : Z  | S

shows ?P
proof −

obtain B and Y where (U , v) |= c1 (⊆ A, X) = Some (B, Y )
using B by (auto split: option.split-asm)

with A and C show ?thesis
by simp

qed

lemma ctyping2-confine-or-rhs:
assumes

A:
∧

A B X Y U v. (U , v) |= c2 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒

s = s ′ (⊆ S) ∧
[p←drop (length vs) vs ′. fst p ∈ S ] = [] ∧
[p←drop (length ws) ws ′. fst p ∈ S ] = []

(is
∧

- - - - - -. - =⇒ - =⇒ ?P)
assumes

B: (U , v) |= c1 OR c2 (⊆ A, X) = Some (B ′, Y ′) and
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C : ∃ (C , Z ) ∈ U . C : Z  | S
shows ?P

proof −
obtain B and Y where (U , v) |= c2 (⊆ A, X) = Some (B, Y )

using B by (auto split: option.split-asm)
with A and C show ?thesis

by simp
qed

lemma ctyping2-confine-if-true:
assumes

A:
∧

A B X Y U v. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒

s = s ′ (⊆ S) ∧
[p←drop (length vs) vs ′. fst p ∈ S ] = [] ∧
[p←drop (length ws) ws ′. fst p ∈ S ] = []

(is
∧

- - - - - -. - =⇒ - =⇒ ?P)
assumes

B: (U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y ) and
C : ∃ (C , Z ) ∈ U . C : Z  | S

shows ?P
proof −

obtain B1 and B1
′ and Y 1 where

(insert (Univ? A X , bvars b) U , v) |= c1 (⊆ B1, X) = Some (B1
′, Y 1)

using B by (auto split: option.split-asm prod.split-asm)
with A and C show ?thesis

by simp
qed

lemma ctyping2-confine-if-false:
assumes

A:
∧

A B X Y U v. (U , v) |= c2 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒

s = s ′ (⊆ S) ∧
[p←drop (length vs) vs ′. fst p ∈ S ] = [] ∧
[p←drop (length ws) ws ′. fst p ∈ S ] = []

(is
∧

- - - - - -. - =⇒ - =⇒ ?P)
assumes

B: (U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y ) and
C : ∃ (C , Z ) ∈ U . C : Z  | S

shows ?P
proof −

obtain B2 and B2
′ and Y 2 where

(insert (Univ? A X , bvars b) U , v) |= c2 (⊆ B2, X) = Some (B2
′, Y 2)

using B by (auto split: option.split-asm prod.split-asm)
with A and C show ?thesis

by simp
qed
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lemma ctyping2-confine:
[[(c, s, f , vs, ws) ⇒ (s ′, f ′, vs ′, ws ′);

(U , v) |= c (⊆ A, X) = Some (B, Y ); ∃ (C , Z ) ∈ U . C : Z  | S ]] =⇒
s = s ′ (⊆ S) ∧
[p←drop (length vs) vs ′. fst p ∈ S ] = [] ∧
[p←drop (length ws) ws ′. fst p ∈ S ] = []
(is [[-; -; -]] =⇒ ?P s s ′ vs vs ′ ws ws ′)

proof (induction (c, s, f , vs, ws) (s ′, f ′, vs ′, ws ′) arbitrary:
c s f vs ws s ′ f ′ vs ′ ws ′ A B X Y U v rule: big-step.induct)
fix A B X Y U v c1 c2 p s f vs ws s ′ f ′ vs ′ ws ′

show
[[
∧

s ′ f ′ vs ′ ws ′ A B X Y U v. p = (s ′, f ′, vs ′, ws ′) =⇒
(U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒ ?P s s ′ vs vs ′ ws ws ′;∧

s f vs ws A B X Y U v. p = (s, f , vs, ws) =⇒
(U , v) |= c2 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒ ?P s s ′ vs vs ′ ws ws ′;

(c1, s, f , vs, ws) ⇒ p;
(c2, p) ⇒ (s ′, f ′, vs ′, ws ′);
(U , v) |= c1;; c2 (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . C : Z  | S ]] =⇒

?P s s ′ vs vs ′ ws ws ′

by (rule ctyping2-confine-seq)
next

fix A B X Y U v c1 c2 s vs ws s ′ vs ′ ws ′

show
[[
∧

A B X Y U v. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒ ?P s s ′ vs vs ′ ws ws ′;

(U , v) |= c1 OR c2 (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . C : Z  | S ]] =⇒

?P s s ′ vs vs ′ ws ws ′

by (rule ctyping2-confine-or-lhs)
next

fix A B X Y U v c1 c2 s vs ws s ′ vs ′ ws ′

show
[[
∧

A B X Y U v. (U , v) |= c2 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒ ?P s s ′ vs vs ′ ws ws ′;

(U , v) |= c1 OR c2 (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . C : Z  | S ]] =⇒

?P s s ′ vs vs ′ ws ws ′

by (rule ctyping2-confine-or-rhs)
next

fix A B X Y U v b c1 c2 s vs ws s ′ vs ′ ws ′

show
[[
∧

A B X Y U v. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒ ?P s s ′ vs vs ′ ws ws ′;

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . C : Z  | S ]] =⇒

?P s s ′ vs vs ′ ws ws ′
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by (rule ctyping2-confine-if-true)
next

fix A B X Y U v b c1 c2 s vs ws s ′ vs ′ ws ′

show
[[
∧

A B X Y U v. (U , v) |= c2 (⊆ A, X) = Some (B, Y ) =⇒
∃ (C , Z ) ∈ U . C : Z  | S =⇒ ?P s s ′ vs vs ′ ws ws ′;

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . C : Z  | S ]] =⇒

?P s s ′ vs vs ′ ws ws ′

by (rule ctyping2-confine-if-false)
qed (force split: if-split-asm prod.split-asm)+

lemma eq-states-assign:
assumes

A: S ⊆ {y. s = t (⊆ sources [x ::= a] vs s f y)} and
B: x ∈ S and
C : s ∈ Univ A (⊆ state ∩ X) and
D: Univ? A X : avars a  {x}

shows s = t (⊆ avars a)
proof −

obtain r where E : r ∈ A and F : s = r (⊆ state ∩ X)
using C by blast

have avars a ⊆ {y. s: dom y  dom x}
proof (cases state ⊆ X)

case True
with F have interf s = interf r

by (blast intro: interf-state)
with D and E show ?thesis

by (auto simp: univ-states-if-def split: if-split-asm)
next

case False
with D and E show ?thesis

by (auto simp: univ-states-if-def split: if-split-asm)
qed
moreover have s = t (⊆ sources [x ::= a] vs s f x)

using A and B by blast
hence s = t (⊆ {y. s: dom y  dom x ∧ y ∈ avars a})

by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, auto)

ultimately show ?thesis
by blast

qed

lemma eq-states-while:
assumes

A: S ⊆ {x. s = t (⊆ sources-aux (〈bvars b〉 # cs) vs s f x)} and
B: S 6= {} and
C : s ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y ) and
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D: Univ? A X ∪ Univ? C Y : bvars b  UNIV
shows s = t (⊆ bvars b)

proof −
from C have {s}: bvars b  UNIV
proof

assume s ∈ Univ A (⊆ state ∩ X)
then obtain r where E : r ∈ A and F : s = r (⊆ state ∩ X)

by blast
show ?thesis
proof (cases state ⊆ X)

case True
with F have interf s = interf r

by (blast intro: interf-state)
with D and E show ?thesis

by (auto simp: univ-states-if-def split: if-split-asm)
qed (insert D E , auto simp: univ-states-if-def split: if-split-asm)

next
assume s ∈ Univ C (⊆ state ∩ Y )
then obtain r where E : r ∈ C and F : s = r (⊆ state ∩ Y )

by blast
show ?thesis
proof (cases state ⊆ Y )

case True
with F have interf s = interf r

by (blast intro: interf-state)
with D and E show ?thesis

by (auto simp: univ-states-if-def split: if-split-asm)
qed (insert D E , auto simp: univ-states-if-def split: if-split-asm)

qed
hence ∀ x. bvars b ⊆ sources-aux (〈bvars b〉 # cs) vs s f x

by (blast intro!: sources-aux-observe-hd)
thus ?thesis

using A and B by blast
qed

lemma univ-states-while:
assumes

A: (c, s, p) ⇒ (s ′, p ′) and
B: |= b (⊆ A, X) = (B1, B2) and
C : ` c (⊆ B1, X) = (C , Y ) and
D: |= b (⊆ C , Y ) = (B1

′, B2
′) and

E : ({}, False) |= c (⊆ B1, X) = Some (D, Z ) and
F : ({}, False) |= c (⊆ B1

′, Y ) = Some (D ′, Z ′) and
G: bval b s

shows s ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y ) =⇒
s ′ ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y )

proof (erule UnE)
assume H : s ∈ Univ A (⊆ state ∩ X)
have s ∈ Univ B1 (⊆ state ∩ X)
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using G by (insert btyping2-approx [OF B H ], simp)
with A and E have s ′ ∈ Univ D (⊆ state ∩ Z )

by (rule ctyping2-approx)
moreover have D ⊆ C ∧ Y ⊆ Z

using C and E by (rule ctyping1-ctyping2 )
ultimately show ?thesis

by blast
next

assume H : s ∈ Univ C (⊆ state ∩ Y )
have s ∈ Univ B1

′ (⊆ state ∩ Y )
using G by (insert btyping2-approx [OF D H ], simp)

with A and F have s ′ ∈ Univ D ′ (⊆ state ∩ Z ′)
by (rule ctyping2-approx)

moreover obtain C ′ and Y ′ where I : ` c (⊆ B1
′, Y ) = (C ′, Y ′)

by (cases ` c (⊆ B1
′, Y ), simp)

hence D ′ ⊆ C ′ ∧ Y ′ ⊆ Z ′

using F by (rule ctyping1-ctyping2 )
ultimately have s ′ ∈ Univ C ′ (⊆ state ∩ Y ′)

by blast
moreover have J : ` c (⊆ C , Y ) = (C , Y )

using C by (rule ctyping1-idem)
have B1

′ ⊆ C
using D by (blast dest: btyping2-un-eq)

with J and I have C ′ ⊆ C ∧ Y ⊆ Y ′

by (rule ctyping1-mono, simp)
ultimately show ?thesis

by blast
qed

end

end

6 Sufficiency of well-typedness for information flow
correctness: main theorem

theory Correctness-Theorem
imports Correctness-Lemmas

begin

The purpose of this section is to prove that type system ctyping2 is correct
in that it guarantees that well-typed programs satisfy the information flow
correctness criterion expressed by predicate correct, namely that if the type
system outputs a value other than None (that is, a pass verdict) when it is
input program c, state set A, and vname set X, then correct c A X (theorem
ctyping2-correct).
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This proof makes use of the lemma ctyping2-approx proven in a previous
section.

6.1 Local context proofs
context noninterf
begin

lemma ctyping2-correct-aux-skip [elim!]:
[[(SKIP, s, f , vs0, ws0) →∗{cfs1} (c1, s1, f , vs1, ws1);

(c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2)]] =⇒
ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)

by (fastforce dest: small-stepsl-skip)

lemma ctyping2-correct-aux-assign:
assumes

A: (U , v) |= x ::= a (⊆ A, X) = Some (C , Y ) and
B: s ∈ Univ A (⊆ state ∩ X) and
C : (x ::= a, s, f , vs0, ws0) →∗{cfs1} (c1, s1, f , vs1, ws1) and
D: (c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2)

shows ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)
proof −

from A have E : ∀ (B, Y ) ∈ insert (Univ? A X , avars a) U . B: Y  {x}
by (simp split: if-split-asm)

have
(c1, s1, f , vs1, ws1) = (x ::= a, s, f , vs0, ws0) ∨
(c1, s1, f , vs1, ws1) = (SKIP, s(x := aval a s), f , vs0, ws0)
(is ?P ∨ ?Q)
using C by (blast dest: small-stepsl-assign)

thus ?thesis
proof

assume ?P
hence (x ::= a, s, f , vs0, ws0) →∗{cfs2} (c2, s2, f , vs2, ws2)

using D by simp
hence
(c2, s2, f , vs2, ws2) = (x ::= a, s, f , vs0, ws0) ∧

flow cfs2 = [] ∨
(c2, s2, f , vs2, ws2) = (SKIP, s(x := aval a s), f , vs0, ws0) ∧

flow cfs2 = [x ::= a]
(is ?P ′ ∨ -)
by (rule small-stepsl-assign)

thus ?thesis
proof (rule disjE , erule-tac [2 ] conjE)

assume ?P ′

with ‹?P› show ?thesis
by fastforce

next
assume
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F : (c2, s2, f , vs2, ws2) = (SKIP, s(x := aval a s), f , vs0, ws0) and
G: flow cfs2 = [x ::= a]
(is ?cs = -)

show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

let ?t2 = t1(x := aval a t1)
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - SKIP], rule exI [of - ?t2],
rule exI [of - vs1 ′], rule exI [of - ws1 ′])
{

fix S
assume S ⊆ {y. s = t1 (⊆ sources [x ::= a] vs0 s f y)} and
x ∈ S

hence s = t1 (⊆ avars a)
using B by (rule eq-states-assign, insert E , simp)

hence aval a s = aval a t1
by (rule avars-aval)

}
moreover {

fix S y
assume S ⊆ {y. s = t1 (⊆ sources [x ::= a] vs0 s f y)} and
y ∈ S

hence s = t1 (⊆ sources [x ::= a] vs0 s f y)
by blast

moreover assume y 6= x
ultimately have s y = t1 y

by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, simp)

}
ultimately show
ok-flow-aux-1 c1 c2 SKIP s1 t1 ?t2 f f ′

vs1 vs1 ′ vs2 vs1 ′ ws1 ′ ws1 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 ?t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws1 ′ ?cs
using F and G and ‹?P› by auto

qed
qed (insert E G, fastforce)

qed
next

assume ?Q
moreover from this have
(c2, s2, f , vs2, ws2) = (SKIP, s1, f , vs1, ws1) ∧ flow cfs2 = []
using D by (blast intro!: small-stepsl-skip)

ultimately show ?thesis
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by fastforce
qed

qed

lemma ctyping2-correct-aux-input:
assumes

A: (U , v) |= IN x (⊆ A, X) = Some (C , Y ) and
B: (IN x , s, f , vs0, ws0) →∗{cfs1} (c1, s1, f , vs1, ws1) and
C : (c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2)

shows ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)
proof −

from A have D: ∀ (B, Y ) ∈ U . B: Y  {x}
by (simp split: if-split-asm)

let ?n = length [p←vs0. fst p = x]
have
(c1, s1, f , vs1, ws1) = (IN x , s, f , vs0, ws0) ∨
(c1, s1, f , vs1, ws1) =
(SKIP, s(x := f x ?n), f , vs0 @ [(x, f x ?n)], ws0)

(is ?P ∨ ?Q)
using B by (auto dest: small-stepsl-input simp: Let-def )

thus ?thesis
proof

assume ?P
hence (IN x , s, f , vs0, ws0) →∗{cfs2} (c2, s2, f , vs2, ws2)

using C by simp
hence
(c2, s2, f , vs2, ws2) = (IN x, s, f , vs0, ws0) ∧

flow cfs2 = [] ∨
(c2, s2, f , vs2, ws2) =
(SKIP, s(x := f x ?n), f , vs0 @ [(x, f x ?n)], ws0) ∧
flow cfs2 = [IN x ]

(is ?P ′ ∨ -)
by (auto dest: small-stepsl-input simp: Let-def )

thus ?thesis
proof (rule disjE , erule-tac [2 ] conjE)

assume ?P ′

with ‹?P› show ?thesis
by fastforce

next
assume

E : (c2, s2, f , vs2, ws2) =
(SKIP, s(x := f x ?n), f , vs0 @ [(x, f x ?n)], ws0) and

F : flow cfs2 = [IN x ]
(is ?cs = -)

show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

let ?n ′ = length [p←vs1 ′ :: inputs. fst p = x]
let ?t2 = t1(x := f ′ x ?n ′) :: state and
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?vs2 ′ = vs1 ′ @ [(x, f ′ x ?n ′)]
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - SKIP], rule exI [of - ?t2],
rule exI [of - ?vs2 ′], rule exI [of - ws1 ′])
{

fix S
assume f = f ′ (⊆ vs0, vs1 ′,⋃

{tags [IN x ] vs0 s f y | y. y ∈ S})
(is - = - (⊆ -, -, ?T ))

moreover assume x ∈ S
hence tags [IN x ] vs0 s f x ⊆ ?T

by blast
ultimately have f = f ′ (⊆ vs0, vs1 ′, tags [IN x ] vs0 s f x)

by (rule eq-streams-subset)
moreover have tags [IN x] vs0 s f x = {(x, 0 )}

by (subst append-Nil [symmetric],
simp only: tags.simps, simp)

ultimately have f x (length [p←vs0. fst p = x]) =
f ′ x (length [p←vs1 ′. fst p = x])
by (simp add: eq-streams-def )

}
moreover
{

fix S y
assume S ⊆ {y. s = t1 (⊆ sources [IN x ] vs0 s f y)} and
y ∈ S

hence s = t1 (⊆ sources [IN x] vs0 s f y)
by blast

moreover assume y 6= x
ultimately have s y = t1 y

by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, simp)

}
ultimately show
ok-flow-aux-1 c1 c2 SKIP s1 t1 ?t2 f f ′

vs1 vs1 ′ vs2 ?vs2 ′ ws1 ′ ws1 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 ?t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws1 ′ ?cs
using E and F and ‹?P› by auto

qed
qed (insert D F , fastforce)

qed
next

assume ?Q
moreover from this have
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(c2, s2, f , vs2, ws2) = (SKIP, s1, f , vs1, ws1) ∧ flow cfs2 = []
using C by (blast intro!: small-stepsl-skip)

ultimately show ?thesis
by fastforce

qed
qed

lemma ctyping2-correct-aux-output:
assumes

A: (U , v) |= OUT x (⊆ A, X) = Some (B, Y ) and
B: (OUT x, s, f , vs0, ws0) →∗{cfs1} (c1, s1, f , vs1, ws1) and
C : (c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2)

shows ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)
proof −

from A have D: ∀ (B, Y ) ∈ U . B: Y  {x}
by (simp split: if-split-asm)

have
(c1, s1, f , vs1, ws1) = (OUT x, s, f , vs0, ws0) ∨
(c1, s1, f , vs1, ws1) = (SKIP, s, f , vs0, ws0 @ [(x, s x)])
(is ?P ∨ ?Q)
using B by (blast dest: small-stepsl-output)

thus ?thesis
proof

assume ?P
hence (OUT x, s, f , vs0, ws0) →∗{cfs2} (c2, s2, f , vs2, ws2)

using C by simp
hence
(c2, s2, f , vs2, ws2) = (OUT x, s, f , vs0, ws0) ∧

flow cfs2 = [] ∨
(c2, s2, f , vs2, ws2) = (SKIP, s, f , vs0, ws0 @ [(x, s x)]) ∧

flow cfs2 = [OUT x]
(is ?P ′ ∨ -)
by (rule small-stepsl-output)

thus ?thesis
proof (rule disjE , erule-tac [2 ] conjE)

assume ?P ′

with ‹?P› show ?thesis
by fastforce

next
assume

E : (c2, s2, f , vs2, ws2) = (SKIP, s, f , vs0, ws0 @ [(x, s x)]) and
F : flow cfs2 = [OUT x]
(is ?cs = -)

show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

let ?ws2 ′ = ws1 ′ @ [(x, t1 x)] :: outputs
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′
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vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - SKIP], rule exI [of - t1],
rule exI [of - vs1 ′], rule exI [of - ?ws2 ′])
{

fix S y
assume S ⊆ {y. s = t1 (⊆ sources [OUT x] vs0 s f y)} and
y ∈ S

hence s = t1 (⊆ sources [OUT x] vs0 s f y)
by blast

hence s y = t1 y
by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, simp)

}
moreover {

fix S
assume S ⊆ {y. s = t1 (⊆ sources-out [OUT x] vs0 s f y)} and
x ∈ S

hence s = t1 (⊆ sources-out [OUT x] vs0 s f x)
by blast

hence s x = t1 x
by (subst (asm) append-Nil [symmetric],
simp only: sources-out.simps, simp)

}
ultimately show
ok-flow-aux-1 c1 c2 SKIP s1 t1 t1 f f ′

vs1 vs1 ′ vs2 vs1 ′ ws1 ′ ?ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t1 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ?ws2 ′ ?cs
using E and F and ‹?P› by auto

qed
qed (insert D F , fastforce)

qed
next

assume ?Q
moreover from this have
(c2, s2, f , vs2, ws2) = (SKIP, s1, f , vs1, ws1) ∧ flow cfs2 = []
using C by (blast intro!: small-stepsl-skip)

ultimately show ?thesis
by fastforce

qed
qed

lemma ctyping2-correct-aux-seq:
assumes

A: (U , v) |= c1;; c2 (⊆ A, X) = Some (C , Z ) and
B:

∧
B Y c ′ c ′′ s s1 s2 vs0 vs1 vs2 ws0 ws1 ws2 cfs1 cfs2.

(U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
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s ∈ Univ A (⊆ state ∩ X) =⇒
(c1, s, f , vs0, ws0) →∗{cfs1} (c ′, s1, f , vs1, ws1) =⇒
(c ′, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2) =⇒

ok-flow-aux U c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2) and
C :

∧
p B Y C Z c ′ c ′′ s s1 s2 vs0 vs1 vs2 ws0 ws1 ws2 cfs1 cfs2.

(U , v) |= c1 (⊆ A, X) = Some p =⇒ (B, Y ) = p =⇒
(U , v) |= c2 (⊆ B, Y ) = Some (C , Z ) =⇒
s ∈ Univ B (⊆ state ∩ Y ) =⇒
(c2, s, f , vs0, ws0) →∗{cfs1} (c ′, s1, f , vs1, ws1) =⇒
(c ′, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2) =⇒

ok-flow-aux U c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2) and
D: s ∈ Univ A (⊆ state ∩ X) and
E : (c1;; c2, s, f , vs0, ws0) →∗{cfs1} (c ′, s1, f , vs1, ws1) and
F : (c ′, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2)

shows ok-flow-aux U c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)
proof −

from A obtain B and Y where
G: (U , v) |= c1 (⊆ A, X) = Some (B, Y ) and
H : (U , v) |= c2 (⊆ B, Y ) = Some (C , Z )
by (auto split: option.split-asm)

have
(∃ c cfs. c ′ = c;; c2 ∧

(c1, s, f , vs0, ws0) →∗{cfs} (c, s1, f , vs1, ws1)) ∨
(∃ s ′ p cfs cfs ′.
(c1, s, f , vs0, ws0) →∗{cfs} (SKIP, s ′, p) ∧
(c2, s ′, p) →∗{cfs ′} (c ′, s1, f , vs1, ws1))

using E by (fastforce dest: small-stepsl-seq)
thus ?thesis
proof (rule disjE , (erule-tac exE)+, (erule-tac [2 ] exE)+,
erule-tac [!] conjE)
fix c1 ′ cfs
assume

I : c ′ = c1 ′;; c2 and
J : (c1, s, f , vs0, ws0) →∗{cfs} (c1 ′, s1, f , vs1, ws1)

hence (c1 ′;; c2, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2)
using F by simp

hence
(∃ d cfs ′. c ′′ = d;; c2 ∧

(c1 ′, s1, f , vs1, ws1) →∗{cfs ′} (d, s2, f , vs2, ws2) ∧
flow cfs2 = flow cfs ′) ∨

(∃ p cfs ′ cfs ′′.
(c1 ′, s1, f , vs1, ws1) →∗{cfs ′} (SKIP, p) ∧
(c2, p) →∗{cfs ′′} (c ′′, s2, f , vs2, ws2) ∧
flow cfs2 = flow cfs ′ @ flow cfs ′′)

by (blast dest: small-stepsl-seq)
thus ?thesis
proof (rule disjE , (erule-tac exE)+, (erule-tac [2 ] exE)+,
(erule-tac [!] conjE)+)
fix c1 ′′ cfs ′
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assume
K : c ′′ = c1 ′′;; c2 and
L: (c1 ′, s1, f , vs1, ws1) →∗{cfs ′} (c1 ′′, s2, f , vs2, ws2) and
M : flow cfs2 = flow cfs ′

(is ?cs = ?cs ′)
have N : ok-flow-aux U c1 ′ c1 ′′ s1 s2 f vs1 vs2 ws1 ws2 ?cs ′

using B [OF G D J L] .
show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 c1 ′ c1 ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
(is ?P1 ∧ ?P2 ∧ ?P3 )
using M and N by fastforce

hence ?P1 and ?P2 and ?P3 by auto
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - c2 ′;; c2], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume S 6= {} and
S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs vs1 s1 f x)} and
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags-aux ?cs vs1 s1 f x | x. x ∈ S})

hence
(c ′, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′;; c2, t2, f ′, vs2 ′, ws2 ′) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
using I and ‹?P1 › by (blast intro: star-seq2 )

}
thus
ok-flow-aux-1 c ′ c ′′ (c2 ′;; c2) s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using K and ‹?P2 › and ‹?P3 › by simp

qed
qed (simp add: M N )

next
fix p cfs ′ cfs ′′

assume (c1 ′, s1, f , vs1, ws1) →∗{cfs ′} (SKIP, p)
moreover from this obtain s1 ′ and vs and ws where

K : p = (s1 ′, f , vs, ws)

153



by (blast dest: small-stepsl-stream)
ultimately have

L: (c1 ′, s1, f , vs1, ws1) →∗{cfs ′} (SKIP, s1 ′, f , vs, ws)
by simp

assume (c2, p) →∗{cfs ′′} (c ′′, s2, f , vs2, ws2)
with K have

M : (c2, s1 ′, f , vs, ws) →∗{cfs ′′} (c ′′, s2, f , vs2, ws2)
by simp

assume N : flow cfs2 = flow cfs ′ @ flow cfs ′′

(is (?cs :: flow) = ?cs ′ @ ?cs ′′)
have O: ok-flow-aux U c1 ′ SKIP s1 s1 ′ f vs1 vs ws1 ws ?cs ′

using B [OF G D J L] .
have (c1, s, f , vs0, ws0) →∗{cfs @ cfs ′} (SKIP, s1 ′, f , vs, ws)

using J and L by (simp add: small-stepsl-append)
hence (c1, s, f , vs0, ws0) ⇒ (s1 ′, f , vs, ws)

by (auto dest: small-stepsl-steps simp: big-iff-small)
hence P: s1 ′ ∈ Univ B (⊆ state ∩ Y )

using G and D by (rule ctyping2-approx)
have Q: ok-flow-aux U c2 c ′′ s1 ′ s2 f vs vs2 ws ws2 ?cs ′′

using C [OF G - H P - M , of vs ws []] by simp
show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

obtain c1 ′′ and t1 ′ and vs1 ′′ and ws1 ′′ where
ok-flow-aux-1 c1 ′ SKIP c1 ′′ s1 t1 t1 ′ f f ′

vs1 vs1 ′ vs vs1 ′′ ws1 ′ ws1 ′′ ?cs ′ ∧
ok-flow-aux-2 s1 s1 ′ t1 t1 ′ f f ′ vs1 vs1 ′ ?cs ′ ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws ws1 ′′ ?cs ′

(is - ∧ ?P2 ∧ ?P3 )
using O by fastforce

hence
ok-flow-aux-1 c1 ′ SKIP SKIP s1 t1 t1 ′ f f ′

vs1 vs1 ′ vs vs1 ′′ ws1 ′ ws1 ′′ ?cs ′

(is ?P1 ) and ?P2 and ?P3 by auto
obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 c2 c ′′ c2 ′ s1 ′ t1 ′ t2 f f ′

vs vs1 ′′ vs2 vs2 ′ ws1 ′′ ws2 ′ ?cs ′′ ∧
ok-flow-aux-2 s1 ′ s2 t1 ′ t2 f f ′ vs vs1 ′′ ?cs ′′ ∧
ok-flow-aux-3 s1 ′ t1 ′ f f ′ vs vs1 ′′ ws ws1 ′′ ws2 ws2 ′ ?cs ′′

(is ?P1 ′ ∧ ?P2 ′ ∧ ?P3 ′)
using Q by fastforce

hence ?P1 ′ and ?P2 ′ and ?P3 ′ by auto
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - c2 ′], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
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{
fix S
assume

R: S 6= {} and
S : S ⊆ {x. s1 = t1 (⊆ sources-aux (?cs ′ @ ?cs ′′) vs1 s1 f x)} and
T : f = f ′ (⊆ vs1, vs1 ′,⋃

{tags-aux (?cs ′ @ ?cs ′′) vs1 s1 f x | x. x ∈ S})
(is - = - (⊆ -, -, ?T ))

have ∀ x. sources-aux ?cs ′ vs1 s1 f x ⊆
sources-aux (?cs ′ @ ?cs ′′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-append])

hence S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs ′ vs1 s1 f x)}
using S by blast

moreover have
⋃
{tags-aux ?cs ′ vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-append])

with T have f = f ′ (⊆ vs1, vs1 ′, ?T ′)
by (rule eq-streams-subset)

ultimately have
(c1 ′, t1, f ′, vs1 ′, ws1 ′) →∗ (SKIP, t1 ′, f ′, vs1 ′′, ws1 ′′) ∧
map fst [p←drop (length vs1) vs. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs1 ′′. fst p ∈ S ]
(is ?Q1 ∧ ?Q2 )
using R and ‹?P1 › by simp

hence ?Q1 and ?Q2 by auto
have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources-aux ?cs ′′ vs s1 ′ f x)}

by (rule sources-aux-rhs [OF S T L ‹?P2 ›])
moreover have f = f ′ (⊆ vs, vs1 ′′,⋃

{tags-aux ?cs ′′ vs s1 ′ f x | x. x ∈ S})
by (rule tags-aux-rhs [OF S T L ‹?Q1 › ‹?P1 ›])

ultimately have
(c2, t1 ′, f ′, vs1 ′′, ws1 ′′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c ′′ = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′′) vs2 ′. fst p ∈ S ]
(is ?Q1 ′ ∧ ?R2 ∧ ?Q2 ′)
using R and ‹?P1 ′› by simp

hence ?Q1 ′ and ?R2 and ?Q2 ′ by auto
from I and ‹?Q1 › and ‹?Q1 ′› have
(c ′, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′)
(is ?R1 )
by (blast intro: star-seq2 star-trans)

moreover have
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
by (rule small-steps-inputs [OF L M ‹?Q1 › ‹?Q1 ′› ‹?Q2 › ‹?Q2 ′›])

ultimately have ?R1 ∧ ?R2 ∧ ?this
using ‹?R2 › by simp

}
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moreover {
fix S
assume

R: S 6= {} and
S : S ⊆ {x. s1 = t1 (⊆ sources (?cs ′ @ ?cs ′′) vs1 s1 f x)} and
T : f = f ′ (⊆ vs1, vs1 ′,⋃

{tags (?cs ′ @ ?cs ′′) vs1 s1 f x | x. x ∈ S})
(is - = - (⊆ -, -, ?T ))

have ∀ x. sources-aux (?cs ′ @ ?cs ′′) vs1 s1 f x ⊆
sources (?cs ′ @ ?cs ′′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-sources])

moreover have ∀ x. sources-aux ?cs ′ vs1 s1 f x ⊆
sources-aux (?cs ′ @ ?cs ′′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-append])

ultimately have U : S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs ′ vs1 s1 f x)}
using S by blast

have
⋃
{tags-aux (?cs ′ @ ?cs ′′) vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-tags])

moreover have
⋃
{tags-aux ?cs ′ vs1 s1 f x | x. x ∈ S} ⊆ ?T ′

(is ?T ′′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-append])

ultimately have ?T ′′ ⊆ ?T
by simp

with T have f = f ′ (⊆ vs1, vs1 ′, ?T ′′)
by (rule eq-streams-subset)

hence V : (c1 ′, t1, f ′, vs1 ′, ws1 ′) →∗ (SKIP, t1 ′, f ′, vs1 ′′, ws1 ′′)
using R and U and ‹?P1 › by simp

have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources ?cs ′′ vs s1 ′ f x)}
by (rule sources-rhs [OF S T L ‹?P2 ›])

moreover have f = f ′ (⊆ vs, vs1 ′′,⋃
{tags ?cs ′′ vs s1 ′ f x | x. x ∈ S})

by (rule tags-rhs [OF S T L V ‹?P1 ›])
ultimately have s2 = t2 (⊆ S)

using ‹?P2 ′› by blast
}
moreover {

fix S
assume

R: S 6= {} and
S : S ⊆ {x. s1 = t1 (⊆ sources-out (?cs ′ @ ?cs ′′) vs1 s1 f x)} and
T : f = f ′ (⊆ vs1, vs1 ′,⋃

{tags-out (?cs ′ @ ?cs ′′) vs1 s1 f x | x. x ∈ S})
(is - = - (⊆ -, -, ?T ))

have U : ∀ x. sources-aux (?cs ′ @ ?cs ′′) vs1 s1 f x ⊆
sources-out (?cs ′ @ ?cs ′′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-sources-out])

moreover have ∀ x. sources-aux ?cs ′ vs1 s1 f x ⊆
sources-aux (?cs ′ @ ?cs ′′) vs1 s1 f x
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by (blast intro: subsetD [OF sources-aux-append])
ultimately have V : S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs ′ vs1 s1 f x)}

using S by blast
have W :

⋃
{tags-aux (?cs ′ @ ?cs ′′) vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-tags-out])

moreover have
⋃
{tags-aux ?cs ′ vs1 s1 f x | x. x ∈ S} ⊆ ?T ′

(is ?T ′′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-append])

ultimately have ?T ′′ ⊆ ?T
by simp

with T have f = f ′ (⊆ vs1, vs1 ′, ?T ′′)
by (rule eq-streams-subset)

hence X : (c1 ′, t1, f ′, vs1 ′, ws1 ′) →∗ (SKIP, t1 ′, f ′, vs1 ′′, ws1 ′′)
using R and V and ‹?P1 › by simp

have Y : S ⊆ {x. s1 = t1 (⊆ sources-aux (?cs ′ @ ?cs ′′) vs1 s1 f x)}
using S and U by blast

have Z : f = f ′ (⊆ vs1, vs1 ′, ?T ′)
using T and W by (rule eq-streams-subset)

have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources-aux ?cs ′′ vs s1 ′ f x)}
by (rule sources-aux-rhs [OF Y Z L ‹?P2 ›])

moreover have f = f ′ (⊆ vs, vs1 ′′,⋃
{tags-aux ?cs ′′ vs s1 ′ f x | x. x ∈ S})

by (rule tags-aux-rhs [OF Y Z L X ‹?P1 ›])
ultimately have AA:
(c2, t1 ′, f ′, vs1 ′′, ws1 ′′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′)
using R and ‹?P1 ′› by simp

have ∀ x. sources-out ?cs ′ vs1 s1 f x ⊆
sources-out (?cs ′ @ ?cs ′′) vs1 s1 f x
by (blast intro: subsetD [OF sources-out-append])

hence S ⊆ {x. s1 = t1 (⊆ sources-out ?cs ′ vs1 s1 f x)}
using S by blast

moreover have
⋃
{tags-out ?cs ′ vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-out-append])

with T have f = f ′ (⊆ vs1, vs1 ′, ?T ′)
by (rule eq-streams-subset)

ultimately have AB: [p←drop (length ws1) ws. fst p ∈ S ] =
[p←drop (length ws1 ′) ws1 ′′. fst p ∈ S ]
using R and ‹?P3 › by simp

have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources-out ?cs ′′ vs s1 ′ f x)}
by (rule sources-out-rhs [OF S T L ‹?P2 ›])

moreover have f = f ′ (⊆ vs, vs1 ′′,⋃
{tags-out ?cs ′′ vs s1 ′ f x | x. x ∈ S})

by (rule tags-out-rhs [OF S T L X ‹?P1 ›])
ultimately have [p←drop (length ws) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′′) ws2 ′. fst p ∈ S ]
using R and ‹?P3 ′› by simp

hence [p←drop (length ws1) ws2. fst p ∈ S ] =

157



[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
by (rule small-steps-outputs [OF L M X AA AB])

}
ultimately show
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using N by auto

qed
qed (simp add: no-upd-append N O Q)

qed
next

fix s ′ p cfs cfs ′

assume I : (c1, s, f , vs0, ws0) →∗{cfs} (SKIP, s ′, p)
hence (c1, s, f , vs0, ws0) ⇒ (s ′, p)

by (auto dest: small-stepsl-steps simp: big-iff-small)
hence J : s ′ ∈ Univ B (⊆ state ∩ Y )

using G and D by (rule ctyping2-approx)
assume (c2, s ′, p) →∗{cfs ′} (c ′, s1, f , vs1, ws1)
moreover obtain vs and ws where p = (f , vs, ws)

using I by (blast dest: small-stepsl-stream)
ultimately have K : (c2, s ′, f , vs, ws) →∗{cfs ′} (c ′, s1, f , vs1, ws1)

by simp
show ?thesis

using C [OF G - H J K F ] by simp
qed

qed

lemma ctyping2-correct-aux-or :
assumes

A: (U , v) |= c1 OR c2 (⊆ A, X) = Some (C , Y ) and
B:

∧
C Y c ′ c ′′ s s1 s2 vs0 vs1 vs2 ws0 ws1 ws2 cfs1 cfs2.

(U , v) |= c1 (⊆ A, X) = Some (C , Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒
(c1, s, f , vs0, ws0) →∗{cfs1} (c ′, s1, f , vs1, ws1) =⇒
(c ′, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2) =⇒

ok-flow-aux U c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2) and
C :

∧
C Y c ′ c ′′ s s1 s2 vs0 vs1 vs2 ws0 ws1 ws2 cfs1 cfs2.

(U , v) |= c2 (⊆ A, X) = Some (C , Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒
(c2, s, f , vs0, ws0) →∗{cfs1} (c ′, s1, f , vs1, ws1) =⇒
(c ′, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2) =⇒

ok-flow-aux U c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2) and
D: s ∈ Univ A (⊆ state ∩ X) and
E : (c1 OR c2, s, f , vs0, ws0) →∗{cfs1} (c ′, s1, f , vs1, ws1) and
F : (c ′, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2)

shows ok-flow-aux U c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)
proof −
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from A obtain C 1 and Y 1 and C 2 and Y 2 where
G: (U , v) |= c1 (⊆ A, X) = Some (C 1, Y 1) and
H : (U , v) |= c2 (⊆ A, X) = Some (C 2, Y 2)
by (auto split: option.split-asm)

have
(c ′, s1, f , vs1, ws1) = (c1 OR c2, s, f , vs0, ws0) ∨
(c1, s, f , vs0, ws0) →∗{tl cfs1} (c ′, s1, f , vs1, ws1) ∨
(c2, s, f , vs0, ws0) →∗{tl cfs1} (c ′, s1, f , vs1, ws1)
(is ?P ∨ ?Q ∨ ?R)
using E by (blast dest: small-stepsl-or)

thus ?thesis
proof (rule disjE , erule-tac [2 ] disjE)

assume ?P
hence (c1 OR c2, s, f , vs0, ws0) →∗{cfs2} (c ′′, s2, f , vs2, ws2)

using F by simp
hence
(c ′′, s2, f , vs2, ws2) = (c1 OR c2, s, f , vs0, ws0) ∧

flow cfs2 = [] ∨
(c1, s, f , vs0, ws0) →∗{tl cfs2} (c ′′, s2, f , vs2, ws2) ∧

flow cfs2 = flow (tl cfs2) ∨
(c2, s, f , vs0, ws0) →∗{tl cfs2} (c ′′, s2, f , vs2, ws2) ∧

flow cfs2 = flow (tl cfs2)
(is ?P ′ ∨ -)
by (rule small-stepsl-or)

thus ?thesis
proof (rule disjE , erule-tac [2 ] disjE , erule-tac [2−3 ] conjE)

assume ?P ′

with ‹?P› show ?thesis
by fastforce

next
assume

I : (c1, s, f , vs0, ws0) →∗{tl cfs2} (c ′′, s2, f , vs2, ws2) and
J : flow cfs2 = flow (tl cfs2)
(is ?cs = ?cs ′)

have K : (c1, s, f , vs0, ws0) →∗{[]} (c1, s, f , vs0, ws0)
by simp

hence L: ok-flow-aux U c1 c ′′ s s2 f vs0 vs2 ws0 ws2 ?cs ′

by (rule B [OF G D - I ])
show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 c1 c ′′ c2 ′ s t1 t2 f f ′

vs0 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ′ ∧
ok-flow-aux-2 s s2 t1 t2 f f ′ vs0 vs1 ′ ?cs ′ ∧
ok-flow-aux-3 s t1 f f ′ vs0 vs1 ′ ws0 ws1 ′ ws2 ws2 ′ ?cs ′

(is ?P1 ∧ ?P2 ∧ ?P3 )
using L by fastforce

hence ?P1 and ?P2 and ?P3 by auto
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show ∃ c2 ′ t2 vs2 ′ ws2 ′.
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - c2 ′], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume
S 6= {} and
S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs ′ vs1 s1 f x)} and
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags-aux ?cs ′ vs1 s1 f x | x. x ∈ S})

hence
(c1, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c ′′ = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
(is ?Q1 ∧ ?Q2 ∧ ?Q3 )
using ‹?P› and ‹?P1 › by simp

hence ?Q1 and ?Q2 and ?Q3 by auto
moreover have (c1 OR c2, t1, f ′, vs1 ′, ws1 ′) →
(c1, t1, f ′, vs1 ′, ws1 ′) ..

hence (c ′, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′)
using ‹?P› and ‹?Q1 › by (blast intro: star-trans)

ultimately have ?this ∧ ?Q2 ∧ ?Q3
by simp

}
moreover {

fix S
assume
S ⊆ {x. s1 = t1 (⊆ sources ?cs ′ vs1 s1 f x)} and
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags ?cs ′ vs1 s1 f x | x. x ∈ S})

hence s2 = t2 (⊆ S)
using ‹?P› and ‹?P2 › by blast

}
moreover {

fix S
assume
S 6= {} and
S ⊆ {x. s1 = t1 (⊆ sources-out ?cs ′ vs1 s1 f x)} and
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags-out ?cs ′ vs1 s1 f x | x. x ∈ S})

hence [p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
using ‹?P› and ‹?P3 › by simp

}
ultimately show
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
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ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using J by auto

qed
qed (simp add: B [OF G D K I ] J )

next
assume

I : (c2, s, f , vs0, ws0) →∗{tl cfs2} (c ′′, s2, f , vs2, ws2) and
J : flow cfs2 = flow (tl cfs2)
(is ?cs = ?cs ′)

have K : (c2, s, f , vs0, ws0) →∗{[]} (c2, s, f , vs0, ws0)
by simp

hence L: ok-flow-aux U c2 c ′′ s s2 f vs0 vs2 ws0 ws2 ?cs ′

by (rule C [OF H D - I ])
show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 c2 c ′′ c2 ′ s t1 t2 f f ′

vs0 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ′ ∧
ok-flow-aux-2 s s2 t1 t2 f f ′ vs0 vs1 ′ ?cs ′ ∧
ok-flow-aux-3 s t1 f f ′ vs0 vs1 ′ ws0 ws1 ′ ws2 ws2 ′ ?cs ′

(is ?P1 ∧ ?P2 ∧ ?P3 )
using L by fastforce

hence ?P1 and ?P2 and ?P3 by auto
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - c2 ′], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume
S 6= {} and
S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs ′ vs1 s1 f x)} and
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags-aux ?cs ′ vs1 s1 f x | x. x ∈ S})

hence
(c2, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c ′′ = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
(is ?Q1 ∧ ?Q2 ∧ ?Q3 )
using ‹?P› and ‹?P1 › by simp

hence ?Q1 and ?Q2 and ?Q3 by auto
moreover have (c1 OR c2, t1, f ′, vs1 ′, ws1 ′) →
(c2, t1, f ′, vs1 ′, ws1 ′) ..

hence (c ′, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′)
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using ‹?P› and ‹?Q1 › by (blast intro: star-trans)
ultimately have ?this ∧ ?Q2 ∧ ?Q3

by simp
}
moreover {

fix S
assume
S ⊆ {x. s1 = t1 (⊆ sources ?cs ′ vs1 s1 f x)} and
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags ?cs ′ vs1 s1 f x | x. x ∈ S})

hence s2 = t2 (⊆ S)
using ‹?P› and ‹?P2 › by blast

}
moreover {

fix S
assume
S 6= {} and
S ⊆ {x. s1 = t1 (⊆ sources-out ?cs ′ vs1 s1 f x)} and
f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags-out ?cs ′ vs1 s1 f x | x. x ∈ S})

hence [p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
using ‹?P› and ‹?P3 › by simp

}
ultimately show
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using J by auto

qed
qed (simp add: C [OF H D K I ] J )

qed
next

assume ?Q
thus ?thesis

by (rule B [OF G D - F ])
next

assume ?R
thus ?thesis

by (rule C [OF H D - F ])
qed

qed

lemma ctyping2-correct-aux-if :
assumes

A: (U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (C , Y ) and
B:

∧
U ′ p B1 B2 C 1 Y 1 c ′ c ′′ s s1 s2 vs0 vs1 vs2 ws0 ws1 ws2 cfs1 cfs2.

(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒
(U ′, v) |= c1 (⊆ B1, X) = Some (C 1, Y 1) =⇒
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s ∈ Univ B1 (⊆ state ∩ X) =⇒
(c1, s, f , vs0, ws0) →∗{cfs1} (c ′, s1, f , vs1, ws1) =⇒
(c ′, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2) =⇒

ok-flow-aux U ′ c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2) and
C :

∧
U ′ p B1 B2 C 2 Y 2 c ′ c ′′ s s1 s2 vs0 vs1 vs2 ws0 ws1 ws2 cfs1 cfs2.

(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒
(U ′, v) |= c2 (⊆ B2, X) = Some (C 2, Y 2) =⇒
s ∈ Univ B2 (⊆ state ∩ X) =⇒
(c2, s, f , vs0, ws0) →∗{cfs1} (c ′, s1, f , vs1, ws1) =⇒
(c ′, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2) =⇒

ok-flow-aux U ′ c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2) and
D: s ∈ Univ A (⊆ state ∩ X) and
E : (IF b THEN c1 ELSE c2, s, f , vs0, ws0) →∗{cfs1}
(c ′, s1, f , vs1, ws1) and

F : (c ′, s1, f , vs1, ws1) →∗{cfs2} (c ′′, s2, f , vs2, ws2)
shows ok-flow-aux U c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)

proof −
let ?U ′ = insert (Univ? A X , bvars b) U
from A obtain B1 and B2 and C 1 and C 2 and Y 1 and Y 2 where

G: |= b (⊆ A, X) = (B1, B2) and
H : (?U ′, v) |= c1 (⊆ B1, X) = Some (C 1, Y 1) and
I : (?U ′, v) |= c2 (⊆ B2, X) = Some (C 2, Y 2)
by (auto split: option.split-asm prod.split-asm)

have
(c ′, s1, f , vs1, ws1) = (IF b THEN c1 ELSE c2, s, f , vs0, ws0) ∨
bval b s ∧ (c1, s, f , vs0, ws0) →∗{tl cfs1} (c ′, s1, f , vs1, ws1) ∨
¬ bval b s ∧ (c2, s, f , vs0, ws0) →∗{tl cfs1} (c ′, s1, f , vs1, ws1)
(is ?P ∨ -)
using E by (blast dest: small-stepsl-if )

thus ?thesis
proof (rule disjE , erule-tac [2 ] disjE , erule-tac [2−3 ] conjE)

assume ?P
hence (IF b THEN c1 ELSE c2, s, f , vs0, ws0) →∗{cfs2}
(c ′′, s2, f , vs2, ws2)
using F by simp

hence
(c ′′, s2, f , vs2, ws2) = (IF b THEN c1 ELSE c2, s, f , vs0, ws0) ∧

flow cfs2 = [] ∨
bval b s ∧ (c1, s, f , vs0, ws0) →∗{tl cfs2} (c ′′, s2, f , vs2, ws2) ∧

flow cfs2 = 〈bvars b〉 # flow (tl cfs2) ∨
¬ bval b s ∧ (c2, s, f , vs0, ws0) →∗{tl cfs2} (c ′′, s2, f , vs2, ws2) ∧

flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
(is ?P ′ ∨ -)
by (rule small-stepsl-if )

thus ?thesis
proof (rule disjE , erule-tac [2 ] disjE , (erule-tac [2−3 ] conjE)+)

assume ?P ′

with ‹?P› show ?thesis
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by fastforce
next

assume
J : bval b s and
K : (c1, s, f , vs0, ws0) →∗{tl cfs2} (c ′′, s2, f , vs2, ws2) and
L: flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
(is ?cs = - # ?cs ′)

have M : s ∈ Univ B1 (⊆ state ∩ X)
using J by (insert btyping2-approx [OF G D], simp)

have N : (c1, s, f , vs0, ws0) →∗{[]} (c1, s, f , vs0, ws0)
by simp

show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

show ∃ c2 ′ t2 vs2 ′ ws2 ′.
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (cases bval b t1)
assume O: bval b t1
have ok-flow-aux ?U ′ c1 c ′′ s s2 f vs0 vs2 ws0 ws2 ?cs ′

using B [OF - - H M N K ] and G by simp
then obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 c1 c ′′ c2 ′ s t1 t2 f f ′

vs0 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ′ ∧
ok-flow-aux-2 s s2 t1 t2 f f ′ vs0 vs1 ′ ?cs ′ ∧
ok-flow-aux-3 s t1 f f ′ vs0 vs1 ′ ws0 ws1 ′ ws2 ws2 ′ ?cs ′

(is ?P1 ∧ ?P2 ∧ ?P3 )
by fastforce

hence ?P1 and ?P2 and ?P3 by auto
show ?thesis
proof (rule exI [of - c2 ′], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume

P: S 6= {} and
Q: S ⊆ {x. s1 = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x)} and

R: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x | x. x ∈ S})

have ∀ x. sources-aux ?cs ′ vs1 s1 f x ⊆
sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-observe-tl])

hence S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs ′ vs1 s1 f x)}
using Q by blast

moreover have f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-aux ?cs ′ vs1 s1 f x | x. x ∈ S})
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using R by (simp add: tags-aux-observe-tl)
ultimately have
(c1, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c ′′ = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
(is ?Q1 ∧ ?Q2 ∧ ?Q3 )
using P and ‹?P› and ‹?P1 › by simp

hence ?Q1 and ?Q2 and ?Q3 by auto
moreover have (IF b THEN c1 ELSE c2, t1, f ′, vs1 ′, ws1 ′) →
(c1, t1, f ′, vs1 ′, ws1 ′)
using O ..

hence (c ′, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′)
using ‹?P› and ‹?Q1 › by (blast intro: star-trans)

ultimately have ?this ∧ ?Q2 ∧ ?Q3
by simp

}
moreover {

fix S
assume

P: S ⊆ {x. s1 = t1
(⊆ sources (〈bvars b〉 # ?cs ′) vs1 s1 f x)} and

Q: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags (〈bvars b〉 # ?cs ′) vs1 s1 f x | x. x ∈ S})

have ∀ x. sources ?cs ′ vs1 s1 f x ⊆
sources (〈bvars b〉 # ?cs ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-observe-tl])

hence S ⊆ {x. s1 = t1 (⊆ sources ?cs ′ vs1 s1 f x)}
using P by blast

moreover have f = f ′ (⊆ vs1, vs1 ′,⋃
{tags ?cs ′ vs1 s1 f x | x. x ∈ S})

using Q by (simp add: tags-observe-tl)
ultimately have s2 = t2 (⊆ S)

using ‹?P› and ‹?P2 › by blast
}
moreover {

fix S
assume

P: S 6= {} and
Q: S ⊆ {x. s1 = t1
(⊆ sources-out (〈bvars b〉 # ?cs ′) vs1 s1 f x)} and

R: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-out (〈bvars b〉 # ?cs ′) vs1 s1 f x | x. x ∈ S})

have ∀ x. sources-out ?cs ′ vs1 s1 f x ⊆
sources-out (〈bvars b〉 # ?cs ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-out-observe-tl])

hence S ⊆ {x. s1 = t1 (⊆ sources-out ?cs ′ vs1 s1 f x)}
using Q by blast

moreover have f = f ′ (⊆ vs1, vs1 ′,
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⋃
{tags-out ?cs ′ vs1 s1 f x | x. x ∈ S})

using R by (simp add: tags-out-observe-tl)
ultimately have [p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
using P and ‹?P› and ‹?P3 › by simp

}
ultimately show
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using L by auto

qed
next

assume O: ¬ bval b t1
show ?thesis
proof (cases ∃S 6= {}. S ⊆ {x. s1 = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x)})
from O have (IF b THEN c1 ELSE c2, t1, f ′, vs1 ′, ws1 ′) →
(c2, t1, f ′, vs1 ′, ws1 ′) ..

moreover assume ∃S 6= {}. S ⊆ {x. s1 = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x)}

then obtain S where
P: S 6= {} and
Q: S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}

using ‹?P› by blast
have R: Univ? A X : bvars b  | S

using Q and D by (rule sources-aux-bval, insert J O, simp)
have ∃ p. (c2, t1, f ′, vs1 ′, ws1 ′) ⇒ p

using I by (rule ctyping2-term, insert P R, auto)
then obtain t2 and f ′′ and vs2 ′ and ws2 ′ where

S : (c2, t1, f ′, vs1 ′, ws1 ′) →∗ (SKIP, t2, f ′′, vs2 ′, ws2 ′)
by (auto simp: big-iff-small)

ultimately have
(c ′, t1, f ′, vs1 ′, ws1 ′) →∗ (SKIP, t2, f ′, vs2 ′, ws2 ′)
(is ?Q1 )
using ‹?P› by (blast dest: small-steps-stream
intro: star-trans)

have T : (c2, t1, f ′, vs1 ′, ws1 ′) ⇒ (t2, f ′′, vs2 ′, ws2 ′)
using S by (simp add: big-iff-small)

show ?thesis
proof (cases c ′′ = SKIP)

assume c ′′ = SKIP
(is ?Q2 )

show ?thesis
proof (rule exI [of - SKIP], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{
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fix S
assume S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}

hence U : Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ] = []
using I and T by (blast dest: ctyping2-confine)

moreover have no-upd ?cs ′ S
using B [OF - - H M N K ] and G and U by simp

hence [p←in-flow ?cs ′ vs1 f . fst p ∈ S ] = []
by (rule no-upd-in-flow)

moreover have vs2 = vs0 @ in-flow ?cs ′ vs0 f
using K by (rule small-stepsl-in-flow)

ultimately have [p←drop (length vs1) vs2. fst p ∈ S ] =
[p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
using ‹?P› by simp

hence ?Q1 ∧ ?Q2 ∧ ?this
using ‹?Q1 › and ‹?Q2 › by simp

}
moreover {

fix S
assume U : S ⊆ {x. s = t1
(⊆ sources (〈bvars b〉 # ?cs ′) vs1 s f x)}

moreover have
∀ x. sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x ⊆

sources (〈bvars b〉 # ?cs ′) vs1 s f x
by (blast intro: subsetD [OF sources-aux-sources])

ultimately have S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}
by blast

hence V : Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence t1 = t2 (⊆ S)
using I and T by (blast dest: ctyping2-confine)

moreover have W : no-upd ?cs ′ S
using B [OF - - H M N K ] and G and V by simp

hence run-flow ?cs ′ vs0 s f = s (⊆ S)
by (rule no-upd-run-flow)

moreover have s2 = run-flow ?cs ′ vs0 s f
using K by (rule small-stepsl-run-flow)

moreover have
∀ x ∈ S . x ∈ sources (〈bvars b〉 # ?cs ′) vs1 s f x
by (rule no-upd-sources, simp add: W )

hence s = t1 (⊆ S)
using U by blast

ultimately have s2 = t2 (⊆ S)
by simp

}
moreover {
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fix S
assume S ⊆ {x. s = t1
(⊆ sources-out (〈bvars b〉 # ?cs ′) vs1 s f x)}

moreover have
∀ x. sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x ⊆

sources-out (〈bvars b〉 # ?cs ′) vs1 s f x
by (blast intro: subsetD [OF sources-aux-sources-out])

ultimately have S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}
by blast

hence U : Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence [p←drop (length ws1 ′) ws2 ′. fst p ∈ S ] = []
using I and T by (blast dest: ctyping2-confine)

moreover have no-upd ?cs ′ S
using B [OF - - H M N K ] and G and U by simp

hence [p←out-flow ?cs ′ vs1 s f . fst p ∈ S ] = []
by (rule no-upd-out-flow)

moreover have ws2 = ws0 @ out-flow ?cs ′ vs0 s f
using K by (rule small-stepsl-out-flow)

ultimately have
[p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
using ‹?P› by simp

}
ultimately show
ok-flow-aux-1 c ′ c ′′ SKIP s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using L and ‹?P› by auto

qed
next

assume c ′′ 6= SKIP
(is ?Q2 )

show ?thesis
proof (rule exI [of - c ′], rule exI [of - t1],
rule exI [of - vs1 ′], rule exI [of - ws1 ′])
{

fix S
assume S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}

hence Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence no-upd ?cs ′ S
using B [OF - - H M N K ] and G by simp

hence [p←in-flow ?cs ′ vs1 f . fst p ∈ S ] = []
by (rule no-upd-in-flow)

moreover have vs2 = vs0 @ in-flow ?cs ′ vs0 f
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using K by (rule small-stepsl-in-flow)
ultimately have
[p←drop (length vs1) vs2. fst p ∈ S ] = []
using ‹?P› by simp

hence ?Q2 ∧ ?this
using ‹?Q2 › by simp

}
moreover {

fix S
assume U : S ⊆ {x. s = t1
(⊆ sources (〈bvars b〉 # ?cs ′) vs1 s f x)}

moreover have
∀ x. sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x ⊆

sources (〈bvars b〉 # ?cs ′) vs1 s f x
by (blast intro: subsetD [OF sources-aux-sources])

ultimately have S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}
by blast

hence Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence V : no-upd ?cs ′ S
using B [OF - - H M N K ] and G by simp

hence run-flow ?cs ′ vs0 s f = s (⊆ S)
by (rule no-upd-run-flow)

moreover have s2 = run-flow ?cs ′ vs0 s f
using K by (rule small-stepsl-run-flow)

moreover have
∀ x ∈ S . x ∈ sources (〈bvars b〉 # ?cs ′) vs1 s f x
by (rule no-upd-sources, simp add: V )

hence s = t1 (⊆ S)
using U by blast

ultimately have s2 = t1 (⊆ S)
by simp

}
moreover {

fix S
assume S ⊆ {x. s = t1
(⊆ sources-out (〈bvars b〉 # ?cs ′) vs1 s f x)}

moreover have
∀ x. sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x ⊆

sources-out (〈bvars b〉 # ?cs ′) vs1 s f x
by (blast intro: subsetD [OF sources-aux-sources-out])

ultimately have S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}
by blast

hence Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence no-upd ?cs ′ S
using B [OF - - H M N K ] and G by simp
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hence [p←out-flow ?cs ′ vs1 s f . fst p ∈ S ] = []
by (rule no-upd-out-flow)

moreover have ws2 = ws0 @ out-flow ?cs ′ vs0 s f
using K by (rule small-stepsl-out-flow)

ultimately have
[p←drop (length ws1) ws2. fst p ∈ S ] = []
using ‹?P› by simp

}
ultimately show
ok-flow-aux-1 c ′ c ′′ c ′ s1 t1 t1 f f ′

vs1 vs1 ′ vs2 vs1 ′ ws1 ′ ws1 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t1 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws1 ′ ?cs
using L and ‹?P› by auto

qed
qed

next
assume @S . S 6= {} ∧ S ⊆ {x. s1 = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x)}

hence O: ∀ c2 ′ t2 vs2 ′ ws2 ′.
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using L by (auto intro!: ok-flow-aux-degen)

show ?thesis
by (rule exI [of - SKIP], rule exI [of - λx. 0 ],
rule exI [of - []], rule exI [of - []],
simp add: O [rule-format, of SKIP λx. 0 [] []])

qed
qed

qed (simp add: B [OF - - H M N K ] G L)
next

assume
J : ¬ bval b s and
K : (c2, s, f , vs0, ws0) →∗{tl cfs2} (c ′′, s2, f , vs2, ws2) and
L: flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
(is ?cs = - # ?cs ′)

have M : s ∈ Univ B2 (⊆ state ∩ X)
using J by (insert btyping2-approx [OF G D], simp)

have N : (c2, s, f , vs0, ws0) →∗{[]} (c2, s, f , vs0, ws0)
by simp

show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

show ∃ c2 ′ t2 vs2 ′ ws2 ′.
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
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ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
proof (cases bval b t1, cases ∃S 6= {}.
S ⊆ {x. s1 = t1 (⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x)})
assume O: ¬ bval b t1
have ok-flow-aux ?U ′ c2 c ′′ s s2 f vs0 vs2 ws0 ws2 ?cs ′

using C [OF - - I M N K ] and G by simp
then obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 c2 c ′′ c2 ′ s t1 t2 f f ′

vs0 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ′ ∧
ok-flow-aux-2 s s2 t1 t2 f f ′ vs0 vs1 ′ ?cs ′ ∧
ok-flow-aux-3 s t1 f f ′ vs0 vs1 ′ ws0 ws1 ′ ws2 ws2 ′ ?cs ′

(is ?P1 ∧ ?P2 ∧ ?P3 )
by fastforce

hence ?P1 and ?P2 and ?P3 by auto
show ?thesis
proof (rule exI [of - c2 ′], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume

P: S 6= {} and
Q: S ⊆ {x. s1 = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x)} and

R: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x | x. x ∈ S})

have ∀ x. sources-aux ?cs ′ vs1 s1 f x ⊆
sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-observe-tl])

hence S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs ′ vs1 s1 f x)}
using Q by blast

moreover have f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-aux ?cs ′ vs1 s1 f x | x. x ∈ S})

using R by (simp add: tags-aux-observe-tl)
ultimately have
(c2, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c ′′ = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
(is ?Q1 ∧ ?Q2 ∧ ?Q3 )
using P and ‹?P› and ‹?P1 › by simp

hence ?Q1 and ?Q2 and ?Q3 by auto
moreover have (IF b THEN c1 ELSE c2, t1, f ′, vs1 ′, ws1 ′) →
(c2, t1, f ′, vs1 ′, ws1 ′)
using O ..

hence (c ′, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′)
using ‹?P› and ‹?Q1 › by (blast intro: star-trans)

ultimately have ?this ∧ ?Q2 ∧ ?Q3
by simp

}
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moreover {
fix S
assume

P: S ⊆ {x. s1 = t1
(⊆ sources (〈bvars b〉 # ?cs ′) vs1 s1 f x)} and

Q: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags (〈bvars b〉 # ?cs ′) vs1 s1 f x | x. x ∈ S})

have ∀ x. sources ?cs ′ vs1 s1 f x ⊆
sources (〈bvars b〉 # ?cs ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-observe-tl])

hence S ⊆ {x. s1 = t1 (⊆ sources ?cs ′ vs1 s1 f x)}
using P by blast

moreover have f = f ′ (⊆ vs1, vs1 ′,⋃
{tags ?cs ′ vs1 s1 f x | x. x ∈ S})

using Q by (simp add: tags-observe-tl)
ultimately have s2 = t2 (⊆ S)

using ‹?P› and ‹?P2 › by blast
}
moreover {

fix S
assume

P: S 6= {} and
Q: S ⊆ {x. s1 = t1
(⊆ sources-out (〈bvars b〉 # ?cs ′) vs1 s1 f x)} and

R: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-out (〈bvars b〉 # ?cs ′) vs1 s1 f x | x. x ∈ S})

have ∀ x. sources-out ?cs ′ vs1 s1 f x ⊆
sources-out (〈bvars b〉 # ?cs ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-out-observe-tl])

hence S ⊆ {x. s1 = t1 (⊆ sources-out ?cs ′ vs1 s1 f x)}
using Q by blast

moreover have f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-out ?cs ′ vs1 s1 f x | x. x ∈ S})

using R by (simp add: tags-out-observe-tl)
ultimately have [p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
using P and ‹?P› and ‹?P3 › by simp

}
ultimately show
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using L by auto

qed
next

assume O: bval b t1
hence (IF b THEN c1 ELSE c2, t1, f ′, vs1 ′, ws1 ′) →
(c1, t1, f ′, vs1 ′, ws1 ′) ..
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moreover assume ∃S 6= {}.
S ⊆ {x. s1 = t1 (⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x)}

then obtain S where
P: S 6= {} and
Q: S ⊆ {x. s = t1 (⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}
using ‹?P› by blast

have R: Univ? A X : bvars b  | S
using Q and D by (rule sources-aux-bval, insert J O, simp)

have ∃ p. (c1, t1, f ′, vs1 ′, ws1 ′) ⇒ p
using H by (rule ctyping2-term, insert P R, auto)

then obtain t2 and f ′′ and vs2 ′ and ws2 ′ where
S : (c1, t1, f ′, vs1 ′, ws1 ′) →∗ (SKIP, t2, f ′′, vs2 ′, ws2 ′)
by (auto simp: big-iff-small)

ultimately have
(c ′, t1, f ′, vs1 ′, ws1 ′) →∗ (SKIP, t2, f ′, vs2 ′, ws2 ′)
(is ?Q1 )
using ‹?P› by (blast dest: small-steps-stream intro: star-trans)

have T : (c1, t1, f ′, vs1 ′, ws1 ′) ⇒ (t2, f ′′, vs2 ′, ws2 ′)
using S by (simp add: big-iff-small)

show ?thesis
proof (cases c ′′ = SKIP)

assume c ′′ = SKIP
(is ?Q2 )

show ?thesis
proof (rule exI [of - SKIP], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}

hence U : Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ] = []
using H and T by (blast dest: ctyping2-confine)

moreover have no-upd ?cs ′ S
using C [OF - - I M N K ] and G and U by simp

hence [p←in-flow ?cs ′ vs1 f . fst p ∈ S ] = []
by (rule no-upd-in-flow)

moreover have vs2 = vs0 @ in-flow ?cs ′ vs0 f
using K by (rule small-stepsl-in-flow)

ultimately have [p←drop (length vs1) vs2. fst p ∈ S ] =
[p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
using ‹?P› by simp

hence ?Q1 ∧ ?Q2 ∧ ?this
using ‹?Q1 › and ‹?Q2 › by simp

}
moreover {

fix S
assume U : S ⊆ {x. s = t1
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(⊆ sources (〈bvars b〉 # ?cs ′) vs1 s f x)}
moreover have ∀ x. sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x ⊆

sources (〈bvars b〉 # ?cs ′) vs1 s f x
by (blast intro: subsetD [OF sources-aux-sources])

ultimately have S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}
by blast

hence V : Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence t1 = t2 (⊆ S)
using H and T by (blast dest: ctyping2-confine)

moreover have W : no-upd ?cs ′ S
using C [OF - - I M N K ] and G and V by simp

hence run-flow ?cs ′ vs0 s f = s (⊆ S)
by (rule no-upd-run-flow)

moreover have s2 = run-flow ?cs ′ vs0 s f
using K by (rule small-stepsl-run-flow)

moreover have ∀ x ∈ S . x ∈ sources (〈bvars b〉 # ?cs ′) vs1 s f x
by (rule no-upd-sources, simp add: W )

hence s = t1 (⊆ S)
using U by blast

ultimately have s2 = t2 (⊆ S)
by simp

}
moreover {

fix S
assume S ⊆ {x. s = t1
(⊆ sources-out (〈bvars b〉 # ?cs ′) vs1 s f x)}

moreover have ∀ x. sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x ⊆
sources-out (〈bvars b〉 # ?cs ′) vs1 s f x
by (blast intro: subsetD [OF sources-aux-sources-out])

ultimately have S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}
by blast

hence U : Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence [p←drop (length ws1 ′) ws2 ′. fst p ∈ S ] = []
using H and T by (blast dest: ctyping2-confine)

moreover have no-upd ?cs ′ S
using C [OF - - I M N K ] and G and U by simp

hence [p←out-flow ?cs ′ vs1 s f . fst p ∈ S ] = []
by (rule no-upd-out-flow)

moreover have ws2 = ws0 @ out-flow ?cs ′ vs0 s f
using K by (rule small-stepsl-out-flow)

ultimately have
[p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
using ‹?P› by simp

}
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ultimately show
ok-flow-aux-1 c ′ c ′′ SKIP s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using L and ‹?P› by auto

qed
next

assume c ′′ 6= SKIP
(is ?Q2 )

show ?thesis
proof (rule exI [of - c ′], rule exI [of - t1],
rule exI [of - vs1 ′], rule exI [of - ws1 ′])
{

fix S
assume S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}

hence Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence no-upd ?cs ′ S
using C [OF - - I M N K ] and G by simp

hence [p←in-flow ?cs ′ vs1 f . fst p ∈ S ] = []
by (rule no-upd-in-flow)

moreover have vs2 = vs0 @ in-flow ?cs ′ vs0 f
using K by (rule small-stepsl-in-flow)

ultimately have [p←drop (length vs1) vs2. fst p ∈ S ] = []
using ‹?P› by simp

hence ?Q2 ∧ ?this
using ‹?Q2 › by simp

}
moreover {

fix S
assume U : S ⊆ {x. s = t1
(⊆ sources (〈bvars b〉 # ?cs ′) vs1 s f x)}

moreover have ∀ x. sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x ⊆
sources (〈bvars b〉 # ?cs ′) vs1 s f x
by (blast intro: subsetD [OF sources-aux-sources])

ultimately have S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}
by blast

hence Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence V : no-upd ?cs ′ S
using C [OF - - I M N K ] and G by simp

hence run-flow ?cs ′ vs0 s f = s (⊆ S)
by (rule no-upd-run-flow)

moreover have s2 = run-flow ?cs ′ vs0 s f
using K by (rule small-stepsl-run-flow)

moreover have ∀ x ∈ S . x ∈ sources (〈bvars b〉 # ?cs ′) vs1 s f x
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by (rule no-upd-sources, simp add: V )
hence s = t1 (⊆ S)

using U by blast
ultimately have s2 = t1 (⊆ S)

by simp
}
moreover {

fix S
assume S ⊆ {x. s = t1
(⊆ sources-out (〈bvars b〉 # ?cs ′) vs1 s f x)}

moreover have ∀ x. sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x ⊆
sources-out (〈bvars b〉 # ?cs ′) vs1 s f x
by (blast intro: subsetD [OF sources-aux-sources-out])

ultimately have S ⊆ {x. s = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s f x)}
by blast

hence Univ? A X : bvars b  | S
using D by (rule sources-aux-bval, insert J O, simp)

hence no-upd ?cs ′ S
using C [OF - - I M N K ] and G by simp

hence [p←out-flow ?cs ′ vs1 s f . fst p ∈ S ] = []
by (rule no-upd-out-flow)

moreover have ws2 = ws0 @ out-flow ?cs ′ vs0 s f
using K by (rule small-stepsl-out-flow)

ultimately have [p←drop (length ws1) ws2. fst p ∈ S ] = []
using ‹?P› by simp

}
ultimately show
ok-flow-aux-1 c ′ c ′′ c ′ s1 t1 t1 f f ′

vs1 vs1 ′ vs2 vs1 ′ ws1 ′ ws1 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t1 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws1 ′ ?cs
using L and ‹?P› by auto

qed
qed

next
assume @S . S 6= {} ∧

S ⊆ {x. s1 = t1 (⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x)}
hence O: ∀ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using L by (auto intro!: ok-flow-aux-degen)

show ?thesis
by (rule exI [of - SKIP], rule exI [of - λx. 0 ],
rule exI [of - []], rule exI [of - []],
simp add: O [rule-format, of SKIP λx. 0 [] []])

qed
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qed (simp add: C [OF - - I M N K ] G L)
qed

next
assume bval b s
hence J : s ∈ Univ B1 (⊆ state ∩ X)

by (insert btyping2-approx [OF G D], simp)
assume K : (c1, s, f , vs0, ws0) →∗{tl cfs1} (c ′, s1, f , vs1, ws1)
show ?thesis

using B [OF - - H J K F ] and G by simp
next

assume ¬ bval b s
hence J : s ∈ Univ B2 (⊆ state ∩ X)

by (insert btyping2-approx [OF G D], simp)
assume K : (c2, s, f , vs0, ws0) →∗{tl cfs1} (c ′, s1, f , vs1, ws1)
show ?thesis

using C [OF - - I J K F ] and G by simp
qed

qed

lemma ctyping2-correct-aux-while:
assumes

A: (U , v) |= WHILE b DO c (⊆ A, X) = Some (B, W ) and
B:

∧
B1 B2 C Y B1

′ B2
′ D Z c1 c2 s s1 s2 vs0 vs1 vs2 ws0 ws1 ws2 cfs1 cfs2.

(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: W  UNIV =⇒

({}, False) |= c (⊆ B1, X) = Some (D, Z ) =⇒
s ∈ Univ B1 (⊆ state ∩ X) =⇒
(c, s, f , vs0, ws0) →∗{cfs1} (c1, s1, f , vs1, ws1) =⇒
(c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2) =⇒

ok-flow-aux {} c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2) and
C :

∧
B1 B2 C Y B1

′ B2
′ D ′ Z ′ c1 c2 s s1 s2 vs0 vs1 vs2 ws0 ws1 ws2 cfs1 cfs2.

(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: W  UNIV =⇒

({}, False) |= c (⊆ B1
′, Y ) = Some (D ′, Z ′) =⇒

s ∈ Univ B1
′ (⊆ state ∩ Y ) =⇒

(c, s, f , vs0, ws0) →∗{cfs1} (c1, s1, f , vs1, ws1) =⇒
(c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2) =⇒

ok-flow-aux {} c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2) and
D: s ∈ Univ A (⊆ state ∩ X) and
E : (WHILE b DO c, s, f , vs0, ws0) →∗{cfs1} (c1, s1, f , vs1, ws1) and
F : (c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2)

shows ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)
proof −

177



from A obtain B1 B2 C Y B1
′ B2

′ D Z D ′ Z ′ where
G: |= b (⊆ A, X) = (B1, B2) and
H : ` c (⊆ B1, X) = (C , Y ) and
I : |= b (⊆ C , Y ) = (B1

′, B2
′) and

J : ({}, False) |= c (⊆ B1, X) = Some (D, Z ) and
K : ({}, False) |= c (⊆ B1

′, Y ) = Some (D ′, Z ′) and
L: ∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U . B: W  UNIV
by (fastforce split: if-split-asm option.split-asm prod.split-asm)

from UnI1 [OF D, of Univ C (⊆ state ∩ Y )] and E and F show ?thesis
proof (induction cfs1 @ cfs2 arbitrary: cfs1 cfs2 s vs0 ws0 c1 s1 vs1 ws1
rule: length-induct)
fix cfs1 cfs2 s vs0 ws0 c1 s1 vs1 ws1
assume

M : ∀ cfs. length cfs < length (cfs1 @ cfs2) −→
(∀ cfs ′ cfs ′′. cfs = cfs ′ @ cfs ′′ −→
(∀ s. s ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y ) −→
(∀ vs0 ws0 c1 s1 vs1 ws1.
(WHILE b DO c, s, f , vs0, ws0) →∗{cfs ′} (c1, s1, f , vs1, ws1) −→
(c1, s1, f , vs1, ws1) →∗{cfs ′′} (c2, s2, f , vs2, ws2) −→

ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs ′′)))) and
N : s ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y ) and
O: (c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2)

assume (WHILE b DO c, s, f , vs0, ws0) →∗{cfs1} (c1, s1, f , vs1, ws1)
hence
(c1, s1, f , vs1, ws1) = (WHILE b DO c, s, f , vs0, ws0) ∧

flow cfs1 = [] ∨
bval b s ∧
(c;; WHILE b DO c, s, f , vs0, ws0) →∗{tl cfs1} (c1, s1, f , vs1, ws1) ∧
flow cfs1 = 〈bvars b〉 # flow (tl cfs1) ∨
¬ bval b s ∧
(c1, s1, f , vs1, ws1) = (SKIP, s, f , vs0, ws0) ∧
flow cfs1 = [〈bvars b〉]

by (rule small-stepsl-while)
thus ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)
proof (rule disjE , erule-tac [2 ] disjE , erule-tac conjE ,
(erule-tac [2−3 ] conjE)+)
assume P: (c1, s1, f , vs1, ws1) = (WHILE b DO c, s, f , vs0, ws0)
hence (WHILE b DO c, s, f , vs0, ws0) →∗{cfs2} (c2, s2, f , vs2, ws2)

using O by simp
hence
(c2, s2, f , vs2, ws2) = (WHILE b DO c, s, f , vs0, ws0) ∧

flow cfs2 = [] ∨
bval b s ∧
(c;; WHILE b DO c, s, f , vs0, ws0) →∗{tl cfs2}
(c2, s2, f , vs2, ws2) ∧

flow cfs2 = 〈bvars b〉 # flow (tl cfs2) ∨
¬ bval b s ∧
(c2, s2, f , vs2, ws2) = (SKIP, s, f , vs0, ws0) ∧
flow cfs2 = [〈bvars b〉]
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by (rule small-stepsl-while)
thus ?thesis
proof (rule disjE , erule-tac [2 ] disjE , erule-tac conjE ,
(erule-tac [2−3 ] conjE)+)
assume
(c2, s2, f , vs2, ws2) = (WHILE b DO c, s, f , vs0, ws0) and
flow cfs2 = []

thus ?thesis
using P by fastforce

next
assume

Q: bval b s and
R: flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
(is ?cs = - # ?cs ′)

assume (c;; WHILE b DO c, s, f , vs0, ws0) →∗{tl cfs2}
(c2, s2, f , vs2, ws2)

hence
(∃ c ′ cfs.

c2 = c ′;; WHILE b DO c ∧
(c, s, f , vs0, ws0) →∗{cfs} (c ′, s2, f , vs2, ws2) ∧
?cs ′ = flow cfs) ∨

(∃ p cfs ′ cfs ′′.
length cfs ′′ < length (tl cfs2) ∧
(c, s, f , vs0, ws0) →∗{cfs ′} (SKIP, p) ∧
(WHILE b DO c, p) →∗{cfs ′′} (c2, s2, f , vs2, ws2) ∧
?cs ′ = flow cfs ′ @ flow cfs ′′)

by (rule small-stepsl-seq)
thus ?thesis

apply (rule disjE)
apply (erule exE)+
apply (erule conjE)+

subgoal for c ′ cfs
proof −

assume
S : c2 = c ′;; WHILE b DO c and
T : (c, s, f , vs0, ws0) →∗{cfs} (c ′, s2, f , vs2, ws2) and
U : ?cs ′ = flow cfs

have V : (c, s, f , vs0, ws0) →∗{[]} (c, s, f , vs0, ws0)
by simp

from N have
ok-flow-aux {} c c ′ s s2 f vs0 vs2 ws0 ws2 (flow cfs)

proof
assume W : s ∈ Univ A (⊆ state ∩ X)
have X : s ∈ Univ B1 (⊆ state ∩ X)

using Q by (insert btyping2-approx [OF G W ], simp)
show ?thesis

by (rule B [OF G [symmetric] H [symmetric] I [symmetric]
L J X V T ])

next
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assume W : s ∈ Univ C (⊆ state ∩ Y )
have X : s ∈ Univ B1

′ (⊆ state ∩ Y )
using Q by (insert btyping2-approx [OF I W ], simp)

show ?thesis
by (rule C [OF G [symmetric] H [symmetric] I [symmetric]
L K X V T ])

qed
hence W : ok-flow-aux {} c c ′ s1 s2 f vs1 vs2 ws1 ws2 ?cs ′

using P and U by simp
show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 c c ′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ′ ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ′ ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs ′

(is ?P1 ∧ ?P2 ∧ ?P3 )
using W by fastforce

hence ?P1 and ?P2 and ?P3 by auto
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - c2 ′;; WHILE b DO c], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume

X : S 6= {} and
Y : S ⊆ {x. s1 = t1
(⊆ sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x)} and

Z : f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x | x. x ∈ S})

have ∀ x. sources-aux ?cs ′ vs1 s1 f x ⊆
sources-aux (〈bvars b〉 # ?cs ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-observe-tl])

hence S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs ′ vs1 s1 f x)}
using Y by blast

moreover have f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-aux ?cs ′ vs1 s1 f x | x. x ∈ S})

using Z by (simp add: tags-aux-observe-tl)
ultimately have
(c, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
(is ?Q1 ∧ ?Q2 )
using X and ‹?P1 › by simp
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hence ?Q1 and ?Q2 by auto
have s1 = t1 (⊆ bvars b)

by (rule eq-states-while [OF Y X ], insert L N P, simp+)
hence bval b t1

using P and Q by (blast dest: bvars-bval)
hence (WHILE b DO c, t1, f ′, vs1 ′, ws1 ′) →
(c;; WHILE b DO c, t1, f ′, vs1 ′, ws1 ′) ..

hence (c1, t1, f ′, vs1 ′, ws1 ′) →∗
(c2 ′;; WHILE b DO c, t2, f ′, vs2 ′, ws2 ′)
using P and ‹?Q1 › by (blast intro: star-seq2 star-trans)

hence ?this ∧ ?Q2
using ‹?Q2 › by simp

}
moreover {

fix S
assume

X : S ⊆ {x. s1 = t1
(⊆ sources (〈bvars b〉 # ?cs ′) vs1 s1 f x)} and

Y : f = f ′ (⊆ vs1, vs1 ′,⋃
{tags (〈bvars b〉 # ?cs ′) vs1 s1 f x | x. x ∈ S})

have ∀ x. sources ?cs ′ vs1 s1 f x ⊆
sources (〈bvars b〉 # ?cs ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-observe-tl])

hence S ⊆ {x. s1 = t1 (⊆ sources ?cs ′ vs1 s1 f x)}
using X by blast

moreover have f = f ′ (⊆ vs1, vs1 ′,⋃
{tags ?cs ′ vs1 s1 f x | x. x ∈ S})

using Y by (simp add: tags-observe-tl)
ultimately have s2 = t2 (⊆ S)

using ‹?P2 › by blast
}
moreover {

fix S
assume

X : S 6= {} and
Y : S ⊆ {x. s1 = t1
(⊆ sources-out (〈bvars b〉 # ?cs ′) vs1 s1 f x)} and

Z : f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-out (〈bvars b〉 # ?cs ′) vs1 s1 f x | x. x ∈ S})

have ∀ x. sources-out ?cs ′ vs1 s1 f x ⊆
sources-out (〈bvars b〉 # ?cs ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-out-observe-tl])

hence S ⊆ {x. s1 = t1 (⊆ sources-out ?cs ′ vs1 s1 f x)}
using Y by blast

moreover have f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-out ?cs ′ vs1 s1 f x | x. x ∈ S})

using Z by (simp add: tags-out-observe-tl)
ultimately have [p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
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using X and ‹?P3 › by simp
}
ultimately show
ok-flow-aux-1 c1 c2 (c2 ′;; WHILE b DO c) s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using R and S by auto

qed
qed (insert L, auto simp: no-upd-empty)

qed
apply (erule exE)+
apply (erule conjE)+
subgoal for p cfs ′ cfs ′′

proof −
assume (c, s, f , vs0, ws0) →∗{cfs ′} (SKIP, p)
moreover from this obtain s1 ′ and vs and ws where

S : p = (s1 ′, f , vs, ws)
by (blast dest: small-stepsl-stream)

ultimately have
T : (c, s1, f , vs1, ws1) →∗{cfs ′} (SKIP, s1 ′, f , vs, ws)
using P by simp

assume (WHILE b DO c, p) →∗{cfs ′′} (c2, s2, f , vs2, ws2)
with S have

U : (WHILE b DO c, s1 ′, f , vs, ws) →∗{cfs ′′}
(c2, s2, f , vs2, ws2)

by simp
assume V : ?cs ′ = flow cfs ′ @ flow cfs ′′

(is (- :: flow) = ?cs1 ′ @ ?cs2 ′)
have W : (c, s1, f , vs1, ws1) →∗{[]} (c, s1, f , vs1, ws1)

by simp
from N have ok-flow-aux {} c SKIP s1 s1 ′ f vs1 vs ws1 ws ?cs1 ′

proof
assume X : s ∈ Univ A (⊆ state ∩ X)
have Y : s1 ∈ Univ B1 (⊆ state ∩ X)

using P and Q by (insert btyping2-approx [OF G X ], simp)
show ?thesis

by (rule B [OF G [symmetric] H [symmetric] I [symmetric]
L J Y W T ])

next
assume X : s ∈ Univ C (⊆ state ∩ Y )
have Y : s1 ∈ Univ B1

′ (⊆ state ∩ Y )
using P and Q by (insert btyping2-approx [OF I X ], simp)

show ?thesis
by (rule C [OF G [symmetric] H [symmetric] I [symmetric]
L K Y W T ])

qed
hence X : ok-flow-aux {} c SKIP s1 s1 ′ f vs1 vs ws1 ws ?cs1 ′

using P by simp
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assume length cfs ′′ < length (tl cfs2)
hence length ([] @ cfs ′′) < length (cfs1 @ cfs2)

by simp
moreover have [] @ cfs ′′ = [] @ cfs ′′ ..
moreover from T have (c, s, f , vs0, ws0) ⇒ (s1 ′, f , vs, ws)

using P by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s1 ′ ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y )

by (rule univ-states-while [OF - G H I J K Q N ])
moreover have (WHILE b DO c, s1 ′, f , vs, ws) →∗{[]}
(WHILE b DO c, s1 ′, f , vs, ws)
by simp

ultimately have
Y : ok-flow-aux U (WHILE b DO c) c2 s1 ′ s2 f vs vs2 ws ws2 ?cs2 ′

using U by (rule M [rule-format])
show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

obtain c1 ′′ and t1 ′ and vs1 ′′ and ws1 ′′ where
ok-flow-aux-1 c SKIP c1 ′′ s1 t1 t1 ′ f f ′

vs1 vs1 ′ vs vs1 ′′ ws1 ′ ws1 ′′ ?cs1 ′ ∧
ok-flow-aux-2 s1 s1 ′ t1 t1 ′ f f ′ vs1 vs1 ′ ?cs1 ′ ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws ws1 ′′ ?cs1 ′

(is - ∧ ?P2 ∧ ?P3 )
using X by fastforce

hence
ok-flow-aux-1 c SKIP SKIP s1 t1 t1 ′ f f ′

vs1 vs1 ′ vs vs1 ′′ ws1 ′ ws1 ′′ ?cs1 ′

(is ?P1 ) and ?P2 and ?P3 by auto
obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 (WHILE b DO c) c2 c2 ′ s1 ′ t1 ′ t2 f f ′

vs vs1 ′′ vs2 vs2 ′ ws1 ′′ ws2 ′ ?cs2 ′ ∧
ok-flow-aux-2 s1 ′ s2 t1 ′ t2 f f ′ vs vs1 ′′ ?cs2 ′ ∧
ok-flow-aux-3 s1 ′ t1 ′ f f ′ vs vs1 ′′ ws ws1 ′′ ws2 ws2 ′ ?cs2 ′

(is ?P1 ′ ∧ ?P2 ′ ∧ ?P3 ′)
using Y by fastforce

hence ?P1 ′ and ?P2 ′ and ?P3 ′ by auto
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - c2 ′], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume

Z : S 6= {} and
AA: S ⊆ {x. s1 = t1 (⊆ sources-aux
(〈bvars b〉 # ?cs1 ′ @ ?cs2 ′) vs1 s1 f x)} and
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AB: f = f ′ (⊆ vs1, vs1 ′,
⋃
{tags-aux

(〈bvars b〉 # ?cs1 ′ @ ?cs2 ′) vs1 s1 f x | x. x ∈ S})
have ∀ x. sources-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x ⊆

sources-aux (〈bvars b〉 # ?cs1 ′ @ ?cs2 ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-observe-tl])

hence AC : S ⊆ {x. s1 = t1
(⊆ sources-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x)}
using AA by blast

moreover have ∀ x. sources-aux ?cs1 ′ vs1 s1 f x ⊆
sources-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-append])

ultimately have
AD: S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs1 ′ vs1 s1 f x)}
by blast

have AE : f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x | x. x ∈ S})

(is - = - (⊆ -, -, ?T ))
using AB by (simp add: tags-aux-observe-tl)

moreover have⋃
{tags-aux ?cs1 ′ vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-append])

ultimately have f = f ′ (⊆ vs1, vs1 ′, ?T ′)
by (rule eq-streams-subset)

hence
(c, t1, f ′, vs1 ′, ws1 ′) →∗ (SKIP, t1 ′, f ′, vs1 ′′, ws1 ′′) ∧
map fst [p←drop (length vs1) vs. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs1 ′′. fst p ∈ S ]
(is ?Q1 ∧ ?Q2 )
using Z and AD and ‹?P1 › by simp

hence ?Q1 and ?Q2 by auto
have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources-aux ?cs2 ′ vs s1 ′ f x)}

by (rule sources-aux-rhs [OF AC AE T ‹?P2 ›])
moreover have f = f ′ (⊆ vs, vs1 ′′,⋃

{tags-aux ?cs2 ′ vs s1 ′ f x | x. x ∈ S})
by (rule tags-aux-rhs [OF AC AE T ‹?Q1 › ‹?P1 ›])

ultimately have
(WHILE b DO c, t1 ′, f ′, vs1 ′′, ws1 ′′) →∗

(c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c2 = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′′) vs2 ′. fst p ∈ S ]
(is ?Q1 ′ ∧ ?R2 ∧ ?Q2 ′)
using Z and ‹?P1 ′› by simp

hence ?Q1 ′ and ?R2 and ?Q2 ′ by auto
have s1 = t1 (⊆ bvars b)

by (rule eq-states-while [OF AA Z ], insert L N P, simp+)
hence bval b t1

using P and Q by (blast dest: bvars-bval)
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hence (WHILE b DO c, t1, f ′, vs1 ′, ws1 ′) →
(c;; WHILE b DO c, t1, f ′, vs1 ′, ws1 ′) ..

moreover have (c;; WHILE b DO c, t1, f ′, vs1 ′, ws1 ′) →∗
(c2 ′, t2, f ′, vs2 ′, ws2 ′)
using ‹?Q1 › and ‹?Q1 ′›
by (blast intro: star-seq2 star-trans)

ultimately have
(c1, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′)
(is ?R1 )
using P by (blast intro: star-trans)

moreover have
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
by (rule small-steps-inputs
[OF T U ‹?Q1 › ‹?Q1 ′› ‹?Q2 › ‹?Q2 ′›])

ultimately have ?R1 ∧ ?R2 ∧ ?this
using ‹?R2 › by simp

}
moreover {

fix S
assume

Z : S 6= {} and
AA: S ⊆ {x. s1 = t1 (⊆ sources
(〈bvars b〉 # ?cs1 ′ @ ?cs2 ′) vs1 s1 f x)} and

AB: f = f ′ (⊆ vs1, vs1 ′,
⋃
{tags

(〈bvars b〉 # ?cs1 ′ @ ?cs2 ′) vs1 s1 f x | x. x ∈ S})
have ∀ x. sources (?cs1 ′ @ ?cs2 ′) vs1 s1 f x ⊆

sources (〈bvars b〉 # ?cs1 ′ @ ?cs2 ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-observe-tl])

hence AC : S ⊆ {x. s1 = t1
(⊆ sources (?cs1 ′ @ ?cs2 ′) vs1 s1 f x)}
using AA by blast

have ∀ x. sources-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x ⊆
sources (?cs1 ′ @ ?cs2 ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-sources])

moreover have ∀ x. sources-aux ?cs1 ′ vs1 s1 f x ⊆
sources-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-append])

ultimately have
AD: S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs1 ′ vs1 s1 f x)}
using AC by blast

have AE : f = f ′ (⊆ vs1, vs1 ′,⋃
{tags (?cs1 ′ @ ?cs2 ′) vs1 s1 f x | x. x ∈ S})

(is - = - (⊆ -, -, ?T ))
using AB by (simp add: tags-observe-tl)

have⋃
{tags-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-tags])
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moreover have⋃
{tags-aux ?cs1 ′ vs1 s1 f x | x. x ∈ S} ⊆ ?T ′

(is ?T ′′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-append])

ultimately have ?T ′′ ⊆ ?T
by simp

with AE have f = f ′ (⊆ vs1, vs1 ′, ?T ′′)
by (rule eq-streams-subset)

hence AF : (c, t1, f ′, vs1 ′, ws1 ′) →∗
(SKIP, t1 ′, f ′, vs1 ′′, ws1 ′′)
using Z and AD and ‹?P1 › by simp

have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources ?cs2 ′ vs s1 ′ f x)}
by (rule sources-rhs [OF AC AE T ‹?P2 ›])

moreover have f = f ′ (⊆ vs, vs1 ′′,⋃
{tags ?cs2 ′ vs s1 ′ f x | x. x ∈ S})

by (rule tags-rhs [OF AC AE T AF ‹?P1 ›])
ultimately have s2 = t2 (⊆ S)

using ‹?P2 ′› by blast
}
moreover {

fix S
assume

Z : S 6= {} and
AA: S ⊆ {x. s1 = t1 (⊆ sources-out
(〈bvars b〉 # ?cs1 ′ @ ?cs2 ′) vs1 s1 f x)} and

AB: f = f ′ (⊆ vs1, vs1 ′,
⋃
{tags-out

(〈bvars b〉 # ?cs1 ′ @ ?cs2 ′) vs1 s1 f x | x. x ∈ S})
have ∀ x. sources-out (?cs1 ′ @ ?cs2 ′) vs1 s1 f x ⊆

sources-out (〈bvars b〉 # ?cs1 ′ @ ?cs2 ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-out-observe-tl])

hence AC : S ⊆ {x. s1 = t1
(⊆ sources-out (?cs1 ′ @ ?cs2 ′) vs1 s1 f x)}
using AA by blast

have AD: ∀ x. sources-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x ⊆
sources-out (?cs1 ′ @ ?cs2 ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-sources-out])

moreover have ∀ x. sources-aux ?cs1 ′ vs1 s1 f x ⊆
sources-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-append])

ultimately have
AE : S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs1 ′ vs1 s1 f x)}
using AC by blast

have AF : f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-out (?cs1 ′ @ ?cs2 ′) vs1 s1 f x | x. x ∈ S})

(is - = - (⊆ -, -, ?T ))
using AB by (simp add: tags-out-observe-tl)

have AG:⋃
{tags-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
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by (blast intro: subsetD [OF tags-aux-tags-out])
moreover have⋃
{tags-aux ?cs1 ′ vs1 s1 f x | x. x ∈ S} ⊆ ?T ′

(is ?T ′′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-append])

ultimately have ?T ′′ ⊆ ?T
by simp

with AF have f = f ′ (⊆ vs1, vs1 ′, ?T ′′)
by (rule eq-streams-subset)

hence AH : (c, t1, f ′, vs1 ′, ws1 ′) →∗
(SKIP, t1 ′, f ′, vs1 ′′, ws1 ′′)
using Z and AE and ‹?P1 › by simp

have AI : S ⊆ {x. s1 = t1
(⊆ sources-aux (?cs1 ′ @ ?cs2 ′) vs1 s1 f x)}
using AC and AD by blast

have AJ : f = f ′ (⊆ vs1, vs1 ′, ?T ′)
using AF and AG by (rule eq-streams-subset)

have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources-aux ?cs2 ′ vs s1 ′ f x)}
by (rule sources-aux-rhs [OF AI AJ T ‹?P2 ›])

moreover have f = f ′ (⊆ vs, vs1 ′′,⋃
{tags-aux ?cs2 ′ vs s1 ′ f x | x. x ∈ S})

by (rule tags-aux-rhs [OF AI AJ T AH ‹?P1 ›])
ultimately have AK :
(WHILE b DO c, t1 ′, f ′, vs1 ′′, ws1 ′′) →∗

(c2 ′, t2, f ′, vs2 ′, ws2 ′)
using Z and ‹?P1 ′› by simp

have ∀ x. sources-out ?cs1 ′ vs1 s1 f x ⊆
sources-out (?cs1 ′ @ ?cs2 ′) vs1 s1 f x
by (blast intro: subsetD [OF sources-out-append])

hence S ⊆ {x. s1 = t1 (⊆ sources-out ?cs1 ′ vs1 s1 f x)}
using AC by blast

moreover have⋃
{tags-out ?cs1 ′ vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-out-append])

with AF have f = f ′ (⊆ vs1, vs1 ′, ?T ′)
by (rule eq-streams-subset)

ultimately have AL:
[p←drop (length ws1) ws. fst p ∈ S ] =
[p←drop (length ws1 ′) ws1 ′′. fst p ∈ S ]
using Z and ‹?P3 › by simp

have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources-out ?cs2 ′ vs s1 ′ f x)}
by (rule sources-out-rhs [OF AC AF T ‹?P2 ›])

moreover have f = f ′ (⊆ vs, vs1 ′′,⋃
{tags-out ?cs2 ′ vs s1 ′ f x | x. x ∈ S})

by (rule tags-out-rhs [OF AC AF T AH ‹?P1 ›])
ultimately have [p←drop (length ws) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′′) ws2 ′. fst p ∈ S ]
using Z and ‹?P3 ′› by simp
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hence [p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
by (rule small-steps-outputs [OF T U AH AK AL])

}
ultimately show
ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using R and V by auto

qed
qed (insert L, auto simp: no-upd-empty)

qed
done

next
assume

Q: ¬ bval b s and
R: flow cfs2 = [〈bvars b〉]
(is ?cs = -)

assume (c2, s2, f , vs2, ws2) = (SKIP, s, f , vs0, ws0)
hence S : (c2, s2, f , vs2, ws2) = (SKIP, s1, f , vs1, ws1)

using P by simp
show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

show ∃ c2 ′ t2 vs2 ′ ws2 ′.
ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - SKIP], rule exI [of - t1],
rule exI [of - vs1 ′], rule exI [of - ws1 ′])
{

fix S
assume
S ⊆ {x. s1 = t1 (⊆ sources-aux [〈bvars b〉] vs1 s1 f x)} and
S 6= {}

hence s1 = t1 (⊆ bvars b)
by (rule eq-states-while, insert L N P, simp+)

hence ¬ bval b t1
using P and Q by (blast dest: bvars-bval)

hence (c1, t1, f ′, vs1 ′, ws1 ′) →∗ (SKIP, t1, f ′, vs1 ′, ws1 ′)
using P by simp

}
moreover {

fix S
assume S ⊆ {x. s1 = t1 (⊆ sources [〈bvars b〉] vs1 s1 f x)}
moreover have ∀ x. sources [] vs1 s1 f x ⊆

sources [〈bvars b〉] vs1 s1 f x
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by (blast intro!: sources-observe-tl)
ultimately have s1 = t1 (⊆ S)

by auto
}
ultimately show
ok-flow-aux-1 c1 c2 SKIP s1 t1 t1 f f ′

vs1 vs1 ′ vs2 vs1 ′ ws1 ′ ws1 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t1 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws1 ′ ?cs
using R and S by auto

qed
qed (insert L, auto simp: no-upd-empty)

qed
next

assume P: bval b s
assume (c;; WHILE b DO c, s, f , vs0, ws0) →∗{tl cfs1}
(c1, s1, f , vs1, ws1)

hence
(∃ c ′ cfs.

c1 = c ′;; WHILE b DO c ∧
(c, s, f , vs0, ws0) →∗{cfs} (c ′, s1, f , vs1, ws1) ∧
flow (tl cfs1) = flow cfs) ∨

(∃ p cfs ′ cfs ′′.
length cfs ′′ < length (tl cfs1) ∧
(c, s, f , vs0, ws0) →∗{cfs ′} (SKIP, p) ∧
(WHILE b DO c, p) →∗{cfs ′′} (c1, s1, f , vs1, ws1) ∧
flow (tl cfs1) = flow cfs ′ @ flow cfs ′′)

by (rule small-stepsl-seq)
thus ?thesis

apply (rule disjE)
apply (erule exE)+
apply (erule conjE)+

subgoal for c ′ cfs
proof −

assume
Q: (c, s, f , vs0, ws0) →∗{cfs} (c ′, s1, f , vs1, ws1) and
R: c1 = c ′;; WHILE b DO c

hence (c ′;; WHILE b DO c, s1, f , vs1, ws1) →∗{cfs2}
(c2, s2, f , vs2, ws2)
using O by simp

hence
(∃ c ′′ cfs ′.

c2 = c ′′;; WHILE b DO c ∧
(c ′, s1, f , vs1, ws1) →∗{cfs ′} (c ′′, s2, f , vs2, ws2) ∧
flow cfs2 = flow cfs ′) ∨

(∃ p cfs ′ cfs ′′.
length cfs ′′ < length cfs2 ∧
(c ′, s1, f , vs1, ws1) →∗{cfs ′} (SKIP, p) ∧
(WHILE b DO c, p) →∗{cfs ′′} (c2, s2, f , vs2, ws2) ∧
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flow cfs2 = flow cfs ′ @ flow cfs ′′)
by (rule small-stepsl-seq)

thus ?thesis
apply (rule disjE)
apply (erule exE)+
apply (erule conjE)+

subgoal for c ′′ cfs ′

proof −
assume

S : c2 = c ′′;; WHILE b DO c and
T : (c ′, s1, f , vs1, ws1) →∗{cfs ′} (c ′′, s2, f , vs2, ws2) and
U : flow cfs2 = flow cfs ′

(is ?cs = ?cs ′)
from N have ok-flow-aux {} c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 ?cs ′

proof
assume V : s ∈ Univ A (⊆ state ∩ X)
have W : s ∈ Univ B1 (⊆ state ∩ X)

using P by (insert btyping2-approx [OF G V ], simp)
show ?thesis

by (rule B [OF G [symmetric] H [symmetric] I [symmetric]
L J W Q T ])

next
assume V : s ∈ Univ C (⊆ state ∩ Y )
have W : s ∈ Univ B1

′ (⊆ state ∩ Y )
using P by (insert btyping2-approx [OF I V ], simp)

show ?thesis
by (rule C [OF G [symmetric] H [symmetric] I [symmetric]
L K W Q T ])

qed
hence V : ok-flow-aux {} c ′ c ′′ s1 s2 f vs1 vs2 ws1 ws2 ?cs

using U by simp
show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 c ′ c ′′ c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
(is ?P1 ∧ ?P2 ∧ ?P3 )
using V by fastforce

hence ?P1 and ?P2 and ?P3 by auto
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - c2 ′;; WHILE b DO c],
rule exI [of - t2], rule exI [of - vs2 ′], rule exI [of - ws2 ′])
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{
fix S
assume S 6= {} and
S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs vs1 s1 f x)} and
f = f ′ (⊆ vs1, vs1 ′,⋃

{tags-aux ?cs vs1 s1 f x | x. x ∈ S})
hence
(c1, t1, f ′, vs1 ′, ws1 ′) →∗

(c2 ′;; WHILE b DO c, t2, f ′, vs2 ′, ws2 ′) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
using R and ‹?P1 › by (blast intro: star-seq2 )

}
thus
ok-flow-aux-1 c1 c2 (c2 ′;; WHILE b DO c) s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using S and ‹?P2 › and ‹?P3 › by simp

qed
qed (insert L, auto simp: no-upd-empty)

qed
apply (erule exE)+
apply (erule conjE)+
subgoal for p cfs ′ cfs ′′

proof −
assume (c ′, s1, f , vs1, ws1) →∗{cfs ′} (SKIP, p)
moreover from this obtain s1 ′ and vs and ws where

S : p = (s1 ′, f , vs, ws)
by (blast dest: small-stepsl-stream)

ultimately have
T : (c ′, s1, f , vs1, ws1) →∗{cfs ′} (SKIP, s1 ′, f , vs, ws)
by simp

assume (WHILE b DO c, p) →∗{cfs ′′} (c2, s2, f , vs2, ws2)
with S have

U : (WHILE b DO c, s1 ′, f , vs, ws) →∗{cfs ′′}
(c2, s2, f , vs2, ws2)

by simp
assume V : flow cfs2 = flow cfs ′ @ flow cfs ′′

(is (?cs :: flow) = ?cs1 @ ?cs2)
from N have

W : ok-flow-aux {} c ′ SKIP s1 s1 ′ f vs1 vs ws1 ws ?cs1
proof

assume X : s ∈ Univ A (⊆ state ∩ X)
have Y : s ∈ Univ B1 (⊆ state ∩ X)

using P by (insert btyping2-approx [OF G X ], simp)
show ?thesis

by (rule B [OF G [symmetric] H [symmetric] I [symmetric]
L J Y Q T ])
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next
assume X : s ∈ Univ C (⊆ state ∩ Y )
have Y : s ∈ Univ B1

′ (⊆ state ∩ Y )
using P by (insert btyping2-approx [OF I X ], simp)

show ?thesis
by (rule C [OF G [symmetric] H [symmetric] I [symmetric]
L K Y Q T ])

qed
assume length cfs ′′ < length cfs2
hence length ([] @ cfs ′′) < length (cfs1 @ cfs2)

by simp
moreover have [] @ cfs ′′ = [] @ cfs ′′ ..
moreover have
(c, s, f , vs0, ws0) →∗{cfs @ cfs ′} (SKIP, s1 ′, f , vs, ws)
using Q and T by (rule small-stepsl-append)

hence (c, s, f , vs0, ws0) ⇒ (s1 ′, f , vs, ws)
by (auto dest: small-stepsl-steps simp: big-iff-small)

hence s1 ′ ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y )
by (rule univ-states-while [OF - G H I J K P N ])

moreover have (WHILE b DO c, s1 ′, f , vs, ws) →∗{[]}
(WHILE b DO c, s1 ′, f , vs, ws)
by simp

ultimately have X :
ok-flow-aux U (WHILE b DO c) c2 s1 ′ s2 f vs vs2 ws ws2 ?cs2
using U by (rule M [rule-format])

show ?thesis
proof (rule conjI , clarify)

fix t1 f ′ vs1 ′ ws1 ′

obtain c1 ′′ and t1 ′ and vs1 ′′ and ws1 ′′ where
ok-flow-aux-1 c ′ SKIP c1 ′′ s1 t1 t1 ′ f f ′

vs1 vs1 ′ vs vs1 ′′ ws1 ′ ws1 ′′ ?cs1 ∧
ok-flow-aux-2 s1 s1 ′ t1 t1 ′ f f ′ vs1 vs1 ′ ?cs1 ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws ws1 ′′ ?cs1
(is - ∧ ?P2 ∧ ?P3 )
using W by fastforce

hence
ok-flow-aux-1 c ′ SKIP SKIP s1 t1 t1 ′ f f ′

vs1 vs1 ′ vs vs1 ′′ ws1 ′ ws1 ′′ ?cs1
(is ?P1 ) and ?P2 and ?P3 by auto

obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 (WHILE b DO c) c2 c2 ′ s1 ′ t1 ′ t2 f f ′

vs vs1 ′′ vs2 vs2 ′ ws1 ′′ ws2 ′ ?cs2 ∧
ok-flow-aux-2 s1 ′ s2 t1 ′ t2 f f ′ vs vs1 ′′ ?cs2 ∧
ok-flow-aux-3 s1 ′ t1 ′ f f ′ vs vs1 ′′ ws ws1 ′′ ws2 ws2 ′ ?cs2
(is ?P1 ′ ∧ ?P2 ′ ∧ ?P3 ′)
using X by fastforce

hence ?P1 ′ and ?P2 ′ and ?P3 ′ by auto
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′
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vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - c2 ′], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume

Y : S 6= {} and
Z : S ⊆ {x. s1 = t1
(⊆ sources-aux (?cs1 @ ?cs2) vs1 s1 f x)} and

AA: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-aux (?cs1 @ ?cs2) vs1 s1 f x | x. x ∈ S})

(is - = - (⊆ -, -, ?T ))
have ∀ x. sources-aux ?cs1 vs1 s1 f x ⊆

sources-aux (?cs1 @ ?cs2) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-append])

hence S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs1 vs1 s1 f x)}
using Z by blast

moreover have⋃
{tags-aux ?cs1 vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-append])

with AA have f = f ′ (⊆ vs1, vs1 ′, ?T ′)
by (rule eq-streams-subset)

ultimately have
(c ′, t1, f ′, vs1 ′, ws1 ′) →∗

(SKIP, t1 ′, f ′, vs1 ′′, ws1 ′′) ∧
map fst [p←drop (length vs1) vs. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs1 ′′. fst p ∈ S ]
(is ?Q1 ∧ ?Q2 )
using Y and ‹?P1 › by simp

hence ?Q1 and ?Q2 by auto
have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources-aux ?cs2 vs s1 ′ f x)}

by (rule sources-aux-rhs [OF Z AA T ‹?P2 ›])
moreover have f = f ′ (⊆ vs, vs1 ′′,⋃

{tags-aux ?cs2 vs s1 ′ f x | x. x ∈ S})
by (rule tags-aux-rhs [OF Z AA T ‹?Q1 › ‹?P1 ›])

ultimately have
(WHILE b DO c, t1 ′, f ′, vs1 ′′, ws1 ′′) →∗

(c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c2 = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′′) vs2 ′. fst p ∈ S ]
(is ?Q1 ′ ∧ ?R2 ∧ ?Q2 ′)
using Y and ‹?P1 ′› by simp

hence ?Q1 ′ and ?R2 and ?Q2 ′ by auto
from R and ‹?Q1 › and ‹?Q1 ′› have
(c1, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′)
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(is ?R1 )
by (blast intro: star-seq2 star-trans)

moreover have
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
by (rule small-steps-inputs
[OF T U ‹?Q1 › ‹?Q1 ′› ‹?Q2 › ‹?Q2 ′›])

ultimately have ?R1 ∧ ?R2 ∧ ?this
using ‹?R2 › by simp

}
moreover {

fix S
assume

Y : S 6= {} and
Z : S ⊆ {x. s1 = t1
(⊆ sources (?cs1 @ ?cs2) vs1 s1 f x)} and

AA: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags (?cs1 @ ?cs2) vs1 s1 f x | x. x ∈ S})

(is - = - (⊆ -, -, ?T ))
have ∀ x. sources-aux (?cs1 @ ?cs2) vs1 s1 f x ⊆

sources (?cs1 @ ?cs2) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-sources])

moreover have ∀ x. sources-aux ?cs1 vs1 s1 f x ⊆
sources-aux (?cs1 @ ?cs2) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-append])

ultimately have
AB: S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs1 vs1 s1 f x)}
using Z by blast

have⋃
{tags-aux (?cs1 @ ?cs2) vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-tags])

moreover have⋃
{tags-aux ?cs1 vs1 s1 f x | x. x ∈ S} ⊆ ?T ′

(is ?T ′′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-append])

ultimately have ?T ′′ ⊆ ?T
by simp

with AA have f = f ′ (⊆ vs1, vs1 ′, ?T ′′)
by (rule eq-streams-subset)

hence AC : (c ′, t1, f ′, vs1 ′, ws1 ′) →∗
(SKIP, t1 ′, f ′, vs1 ′′, ws1 ′′)
using Y and AB and ‹?P1 › by simp

have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources ?cs2 vs s1 ′ f x)}
by (rule sources-rhs [OF Z AA T ‹?P2 ›])

moreover have f = f ′ (⊆ vs, vs1 ′′,⋃
{tags ?cs2 vs s1 ′ f x | x. x ∈ S})

by (rule tags-rhs [OF Z AA T AC ‹?P1 ›])
ultimately have s2 = t2 (⊆ S)
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using ‹?P2 ′› by blast
}
moreover {

fix S
assume

Y : S 6= {} and
Z : S ⊆ {x. s1 = t1
(⊆ sources-out (?cs1 @ ?cs2) vs1 s1 f x)} and

AA: f = f ′ (⊆ vs1, vs1 ′,⋃
{tags-out (?cs1 @ ?cs2) vs1 s1 f x | x. x ∈ S})

(is - = - (⊆ -, -, ?T ))
have AB: ∀ x. sources-aux (?cs1 @ ?cs2) vs1 s1 f x ⊆

sources-out (?cs1 @ ?cs2) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-sources-out])

moreover have ∀ x. sources-aux ?cs1 vs1 s1 f x ⊆
sources-aux (?cs1 @ ?cs2) vs1 s1 f x
by (blast intro: subsetD [OF sources-aux-append])

ultimately have
AC : S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs1 vs1 s1 f x)}
using Z by blast

have AD:⋃
{tags-aux (?cs1 @ ?cs2) vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-tags-out])

moreover have⋃
{tags-aux ?cs1 vs1 s1 f x | x. x ∈ S} ⊆ ?T ′

(is ?T ′′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-append])

ultimately have ?T ′′ ⊆ ?T
by simp

with AA have f = f ′ (⊆ vs1, vs1 ′, ?T ′′)
by (rule eq-streams-subset)

hence AE : (c ′, t1, f ′, vs1 ′, ws1 ′) →∗
(SKIP, t1 ′, f ′, vs1 ′′, ws1 ′′)
using Y and AC and ‹?P1 › by simp

have AF : S ⊆ {x. s1 = t1
(⊆ sources-aux (?cs1 @ ?cs2) vs1 s1 f x)}
using Z and AB by blast

have AG: f = f ′ (⊆ vs1, vs1 ′, ?T ′)
using AA and AD by (rule eq-streams-subset)

have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources-aux ?cs2 vs s1 ′ f x)}
by (rule sources-aux-rhs [OF AF AG T ‹?P2 ›])

moreover have f = f ′ (⊆ vs, vs1 ′′,⋃
{tags-aux ?cs2 vs s1 ′ f x | x. x ∈ S})

by (rule tags-aux-rhs [OF AF AG T AE ‹?P1 ›])
ultimately have

AH : (WHILE b DO c, t1 ′, f ′, vs1 ′′, ws1 ′′) →∗
(c2 ′, t2, f ′, vs2 ′, ws2 ′)

using Y and ‹?P1 ′› by simp
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have ∀ x. sources-out ?cs1 vs1 s1 f x ⊆
sources-out (?cs1 @ ?cs2) vs1 s1 f x
by (blast intro: subsetD [OF sources-out-append])

hence S ⊆ {x. s1 = t1 (⊆ sources-out ?cs1 vs1 s1 f x)}
using Z by blast

moreover have⋃
{tags-out ?cs1 vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-out-append])

with AA have f = f ′ (⊆ vs1, vs1 ′, ?T ′)
by (rule eq-streams-subset)

ultimately have AI :
[p←drop (length ws1) ws. fst p ∈ S ] =
[p←drop (length ws1 ′) ws1 ′′. fst p ∈ S ]
using Y and ‹?P3 › by simp

have S ⊆ {x. s1 ′ = t1 ′ (⊆ sources-out ?cs2 vs s1 ′ f x)}
by (rule sources-out-rhs [OF Z AA T ‹?P2 ›])

moreover have f = f ′ (⊆ vs, vs1 ′′,⋃
{tags-out ?cs2 vs s1 ′ f x | x. x ∈ S})

by (rule tags-out-rhs [OF Z AA T AE ‹?P1 ›])
ultimately have [p←drop (length ws) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′′) ws2 ′. fst p ∈ S ]
using Y and ‹?P3 ′› by simp

hence [p←drop (length ws1) ws2. fst p ∈ S ] =
[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
by (rule small-steps-outputs [OF T U AE AH AI ])

}
ultimately show
ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′

vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
using V by auto

qed
qed (insert L, auto simp: no-upd-empty)

qed
done

qed
apply (erule exE)+
apply (erule conjE)+
subgoal for p cfs ′ cfs ′′

proof −
assume (c, s, f , vs0, ws0) →∗{cfs ′} (SKIP, p)
moreover from this obtain s1 ′ and vs and ws where

Q: p = (s1 ′, f , vs, ws)
by (blast dest: small-stepsl-stream)

ultimately have
R: (c, s, f , vs0, ws0) →∗{cfs ′} (SKIP, s1 ′, f , vs, ws)
by simp
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assume (WHILE b DO c, p) →∗{cfs ′′} (c1, s1, f , vs1, ws1)
with Q have S :
(WHILE b DO c, s1 ′, f , vs, ws) →∗{cfs ′′} (c1, s1, f , vs1, ws1)
by simp

assume length cfs ′′ < length (tl cfs1)
hence length (cfs ′′ @ cfs2) < length (cfs1 @ cfs2)

by simp
moreover have cfs ′′ @ cfs2 = cfs ′′ @ cfs2 ..
moreover have (c, s, f , vs0, ws0) ⇒ (s1 ′, f , vs, ws)

using R by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s1 ′ ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y )

by (rule univ-states-while [OF - G H I J K P N ])
ultimately show ?thesis

using S and O by (rule M [rule-format])
qed
done

next
assume (c1, s1, f , vs1, ws1) = (SKIP, s, f , vs0, ws0)
moreover from this have
(c2, s2, f , vs2, ws2) = (SKIP, s1, f , vs1, ws1) ∧ flow cfs2 = []
using O by (blast intro!: small-stepsl-skip)

ultimately show ?thesis
by (insert L, fastforce)

qed
qed

qed

lemma ctyping2-correct-aux:
[[(U , v) |= c (⊆ A, X) = Some (B, Y ); s ∈ Univ A (⊆ state ∩ X);

(c, s, f , vs0, ws0) →∗{cfs1} (c1, s1, f , vs1, ws1);
(c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2)]] =⇒

ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 (flow cfs2)
apply (induction (U , v) c A X arbitrary: B Y U v c1 c2 s s1 s2
vs0 vs1 vs2 ws0 ws1 ws2 cfs1 cfs2 rule: ctyping2 .induct)

apply fastforce
apply (erule ctyping2-correct-aux-assign, assumption+)

apply (erule ctyping2-correct-aux-input, assumption+)
apply (erule ctyping2-correct-aux-output, assumption+)

apply (erule ctyping2-correct-aux-seq, assumption+)
apply (erule ctyping2-correct-aux-or , assumption+)

apply (erule ctyping2-correct-aux-if , assumption+)
apply (erule ctyping2-correct-aux-while, assumption+)
done

theorem ctyping2-correct:
assumes A: (U , v) |= c (⊆ A, X) = Some (B, Y )
shows correct c A X

proof (subst correct-def , clarify)
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fix s t c1 c2 s1 s2 f vs vs1 vs2 ws ws1 ws2 cfs2 t1 f ′ vs1 ′ ws1 ′

let ?cs = flow cfs2
assume t ∈ A and s = t (⊆ state ∩ X)
hence s ∈ Univ A (⊆ state ∩ X)

by blast
moreover assume (c, s, f , vs, ws) →∗ (c1, s1, f , vs1, ws1)
then obtain cfs1 where (c, s, f , vs, ws) →∗{cfs1} (c1, s1, f , vs1, ws1)

by (blast dest: small-steps-stepsl)
moreover assume (c1, s1, f , vs1, ws1) →∗{cfs2} (c2, s2, f , vs2, ws2)
ultimately have ok-flow-aux U c1 c2 s1 s2 f vs1 vs2 ws1 ws2 ?cs

by (rule ctyping2-correct-aux [OF A])
then obtain c2 ′ and t2 and vs2 ′ and ws2 ′ where
ok-flow-aux-1 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-aux-2 s1 s2 t1 t2 f f ′ vs1 vs1 ′ ?cs ∧
ok-flow-aux-3 s1 t1 f f ′ vs1 vs1 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
(is ?P1 ∧ ?P2 ∧ ?P3 )
by fastforce

hence ?P1 and ?P2 and ?P3 by auto
show ∃ c2 ′ t2 vs2 ′ ws2 ′.

ok-flow-1 c1 c2 c2 ′ s1 s2 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-2 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs

proof (rule exI [of - c2 ′], rule exI [of - t2],
rule exI [of - vs2 ′], rule exI [of - ws2 ′])
{

fix S
assume

B: S 6= {} and
C : S ⊆ {x. s1 = t1 (⊆ sources ?cs vs1 s1 f x)} and
D: f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags ?cs vs1 s1 f x | x. x ∈ S})

(is - = - (⊆ -, -, ?T ))
have ∀ x. sources-aux ?cs vs1 s1 f x ⊆ sources ?cs vs1 s1 f x

by (blast intro: subsetD [OF sources-aux-sources])
hence S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs vs1 s1 f x)}

using C by blast
moreover have

⋃
{tags-aux ?cs vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-tags])

with D have f = f ′ (⊆ vs1, vs1 ′, ?T ′)
by (rule eq-streams-subset)

ultimately have
(c1, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c2 = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
(is ?Q)
using B and ‹?P1 › by simp

moreover have s2 = t2 (⊆ S)
using B and C and D and ‹?P2 › by simp

ultimately have ?Q ∧ ?this ..
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}
moreover {

fix S
assume

B: S 6= {} and
C : S ⊆ {x. s1 = t1 (⊆ sources-out ?cs vs1 s1 f x)} and
D: f = f ′ (⊆ vs1, vs1 ′,

⋃
{tags-out ?cs vs1 s1 f x | x. x ∈ S})

(is - = - (⊆ -, -, ?T ))
have ∀ x. sources-aux ?cs vs1 s1 f x ⊆ sources-out ?cs vs1 s1 f x

by (blast intro: subsetD [OF sources-aux-sources-out])
hence S ⊆ {x. s1 = t1 (⊆ sources-aux ?cs vs1 s1 f x)}

using C by blast
moreover have

⋃
{tags-aux ?cs vs1 s1 f x | x. x ∈ S} ⊆ ?T

(is ?T ′ ⊆ -)
by (blast intro: subsetD [OF tags-aux-tags-out])

with D have f = f ′ (⊆ vs1, vs1 ′, ?T ′)
by (rule eq-streams-subset)

ultimately have
(c1, t1, f ′, vs1 ′, ws1 ′) →∗ (c2 ′, t2, f ′, vs2 ′, ws2 ′) ∧
(c2 = SKIP) = (c2 ′ = SKIP) ∧
map fst [p←drop (length vs1) vs2. fst p ∈ S ] =

map fst [p←drop (length vs1 ′) vs2 ′. fst p ∈ S ]
(is ?Q)
using B and ‹?P1 › by simp

moreover have
[p←drop (length ws1) ws2. fst p ∈ S ] =

[p←drop (length ws1 ′) ws2 ′. fst p ∈ S ]
using B and C and D and ‹?P3 › by simp

ultimately have ?Q ∧ ?this ..
}
ultimately show
ok-flow-1 c1 c2 c2 ′ s1 s2 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ′ ws2 ′ ?cs ∧
ok-flow-2 c1 c2 c2 ′ s1 t1 t2 f f ′ vs1 vs1 ′ vs2 vs2 ′ ws1 ws1 ′ ws2 ws2 ′ ?cs
by auto

qed
qed

end

end
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