
Intuitionistic Linear Logic

Filip Smola

November 28, 2024

Contents
1 Intuitionistic Linear Logic 1

1.1 Deep Embedding of Propositions 2
1.2 Shallow Embedding of Deductions 2
1.3 Proposition Equivalence . 3
1.4 Useful Rules . 4
1.5 Compacting Lists of Propositions 7
1.6 Multiset Exchange . 9
1.7 Additional Lemmas . 10
1.8 Deep Embedding of Deductions 11

1.8.1 Semantics . 12
1.8.2 Soundness . 17
1.8.3 Completeness . 17
1.8.4 Derived Deductions 17
1.8.5 Compacting Equivalences 26
1.8.6 Premise Substitution 28
1.8.7 List-Based Exchange 31

1 Intuitionistic Linear Logic
theory ILL

imports
Main
HOL−Combinatorics.Permutations

begin

Note that in this theory we often use procedural proofs rather than struc-
tured ones. We find these to be more informative about how the basic rules
of the logic are used when compared to collecting all the rules in one call of
an automated method.

1

1.1 Deep Embedding of Propositions

We formalise ILL propositions as a datatype, parameterised by the type of
propositional variables. The propositions are:

• Propositional variables

• Times of two terms, with unit 1

• With of two terms, with unit >

• Plus of two terms, with unit 0

• Linear implication, with no unit

• Exponential of a term

datatype ′a ill-prop =
Prop ′a

| Times ′a ill-prop ′a ill-prop (infixr ⊗ 90) | One (1)
| With ′a ill-prop ′a ill-prop (infixr & 90) | Top (>)
| Plus ′a ill-prop ′a ill-prop (infixr ⊕ 90) | Zero (0)
| LImp ′a ill-prop ′a ill-prop (infixr B 90)

— Note that Isabelle font does not include (, so we use B instead
| Exp ′a ill-prop (! 1000)

1.2 Shallow Embedding of Deductions

See Bierman [1] or Kalvala and de Paiva [2] for an overview of valid sequents
in ILL.
We first formalise ILL deductions as a relation between a list of proposi-
tions (anteceents) and a single proposition (consequent). This constitutes a
shallow embedding of deductions (with a deep embedding to follow).
In using a list, as opposed to a multiset, we make the exchange rule explicit.
Furthermore, we take as primitive a rule exchanging two propositions and
later derive both the corresponding rule for lists of propositions as well as
for multisets.
The specific formulation of rules we use here includes lists in more posi-
tions than is traditionally done when presenting ILL. This is inspired by
the recommendations of Kalvala and de Paiva, intended to improve pattern
matching and automation.
inductive sequent :: ′a ill-prop list ⇒ ′a ill-prop ⇒ bool (infix ` 60)

where
identity: [a] ` a

| exchange: [[G @ [a] @ [b] @ D ` c]] =⇒ G @ [b] @ [a] @ D ` c
| cut: [[G ` b; D @ [b] @ E ` c]] =⇒ D @ G @ E ` c
| timesL: G @ [a] @ [b] @ D ` c =⇒ G @ [a ⊗ b] @ D ` c

2

| timesR: [[G ` a; D ` b]] =⇒ G @ D ` a ⊗ b
| oneL: G @ D ` c =⇒ G @ [1] @ D ` c
| oneR: [] ` 1
| limpL: [[G ` a; D @ [b] @ E ` c]] =⇒ G @ D @ [a B b] @ E ` c
| limpR: G @ [a] @ D ` b =⇒ G @ D ` a B b
| withL1: G @ [a] @ D ` c =⇒ G @ [a & b] @ D ` c
| withL2: G @ [b] @ D ` c =⇒ G @ [a & b] @ D ` c
| withR: [[G ` a; G ` b]] =⇒ G ` a & b
| topR: G ` >
| plusL: [[G @ [a] @ D ` c; G @ [b] @ D ` c]] =⇒ G @ [a ⊕ b] @ D ` c
| plusR1: G ` a =⇒ G ` a ⊕ b
| plusR2: G ` b =⇒ G ` a ⊕ b
| zeroL: G @ [0] @ D ` c
| weaken: G @ D ` b =⇒ G @ [!a] @ D ` b
| contract: G @ [!a] @ [!a] @ D ` b =⇒ G @ [!a] @ D ` b
| derelict: G @ [a] @ D ` b =⇒ G @ [!a] @ D ` b
| promote: map Exp G ` a =⇒ map Exp G ` !a

lemmas [simp] = sequent.identity

1.3 Proposition Equivalence

Two propositions are equivalent when each can be derived from the other
definition ill-eq :: ′a ill-prop ⇒ ′a ill-prop ⇒ bool (infix a` 60)

where a a` b = ([a] ` b ∧ [b] ` a)

We show that this is an equivalence relation
lemma ill-eq-refl [simp]:

a a` a
〈proof 〉

lemma ill-eq-sym [sym]:
a a` b =⇒ b a` a
〈proof 〉

lemma ill-eq-tran [trans]:
[[a a` b; b a` c]] =⇒ a a` c
〈proof 〉

lemma equivp ill-eq
〈proof 〉

lemma ill-eqI [intro]:
[a] ` b =⇒ [b] ` a =⇒ a a` b
〈proof 〉

lemma ill-eqE [elim]:
a a` b =⇒ ([a] ` b =⇒ [b] ` a =⇒ R) =⇒ R
〈proof 〉

3

lemma ill-eq-lr : a a` b =⇒ [a] ` b
and ill-eq-rl: a a` b =⇒ [b] ` a
〈proof 〉

1.4 Useful Rules

We can derive a number of useful rules from the defining ones, especially
their specific instantiations.
Particularly useful is an instantiation of the Cut rule that makes it tran-
sitive, allowing us to use equational reasoning (also and finally) to build
derivations using single propositions
lemma simple-cut [trans]:
[[G ` b; [b] ` c]] =⇒ G ` c
〈proof 〉

lemma
shows sequent-Nil-left: [] @ G ` c =⇒ G ` c

and sequent-Nil-right: G @ [] ` c =⇒ G ` c
〈proof 〉

lemma simple-exchange:
[[[a, b] ` c]] =⇒ [b, a] ` c
〈proof 〉

lemma simple-timesL:
[[[a] @ [b] ` c]] =⇒ [a ⊗ b] ` c
〈proof 〉

lemma simple-withL1: [[[a] ` c]] =⇒ [a & b] ` c
and simple-withL2: [[[b] ` c]] =⇒ [a & b] ` c
〈proof 〉

lemma simple-plusL:
[[[a] ` c; [b] ` c]] =⇒ [a ⊕ b] ` c
〈proof 〉

lemma simple-weaken:
[!a] ` 1
〈proof 〉

lemma simple-derelict:
[[[a] ` b]] =⇒ [!a] ` b
〈proof 〉

lemmas simple-promote = promote[of [-], unfolded list.map]

lemma promote-and-derelict:

4

assumes G ` c
shows map Exp G ` !c

〈proof 〉

lemmas dereliction = simple-derelict[OF identity]

lemma simple-contract:
[[[!a] @ [!a] ` b]] =⇒ [!a] ` b
〈proof 〉

lemma duplicate:
[!a] ` !a ⊗ !a
〈proof 〉

lemma unary-promote:
[[[!g] ` a]] =⇒ [!g] ` !a
〈proof 〉

lemma tensor :
[[[a] ` b; [c] ` d]] =⇒ [a ⊗ c] ` b ⊗ d
〈proof 〉

lemma ill-eq-tensor :
a a` b =⇒ x a` y =⇒ a ⊗ x a` b ⊗ y
〈proof 〉

lemma times-assoc:
[(a ⊗ b) ⊗ c] ` a ⊗ (b ⊗ c)

〈proof 〉

lemma times-assoc ′:
[a ⊗ (b ⊗ c)] ` (a ⊗ b) ⊗ c

〈proof 〉

lemma simple-limpR:
[a] ` b =⇒ [1] ` a B b
〈proof 〉

lemma simple-limpR-exp:
[a] ` b =⇒ [1] ` !(a B b)

〈proof 〉

lemma limp-eval:
[a ⊗ a B b] ` b
〈proof 〉

lemma timesR-intro:
[[G ` a; D ` b; G @ D = X]] =⇒ X ` a ⊗ b
〈proof 〉

5

lemma explimp-eval:
[a ⊗ !(a B b)] ` b ⊗ !(a B b)
〈proof 〉

lemma plus-progress:
[[[a] ` b; [c] ` d]] =⇒ [a ⊕ c] ` b ⊕ d
〈proof 〉

The following set of rules are based on Proposition 1 of Bierman [1]. Where
there is a direct correspondence, we include a comment indicating the specific
item in the proposition.
lemma swap: — Item 1
[a ⊗ b] ` b ⊗ a

〈proof 〉

lemma unit: — Item 2
[a ⊗ 1] ` a
〈proof 〉

lemma unit ′: — Item 2
[a] ` a ⊗ 1
〈proof 〉

lemma with-swap: — Item 3
[a & b] ` b & a
〈proof 〉

lemma with-top: — Item 4
a a` a & >

〈proof 〉

lemma plus-swap: — Item 5
[a ⊕ b] ` b ⊕ a
〈proof 〉

lemma plus-zero: — Item 6
a a` a ⊕ 0

〈proof 〉

lemma with-distrib: — Item 7
[a ⊗ (b & c)] ` (a ⊗ b) & (a ⊗ c)
〈proof 〉

lemma plus-distrib: — Item 8
[a ⊗ (b ⊕ c)] ` (a ⊗ b) ⊕ (a ⊗ c)
〈proof 〉

lemma plus-distrib ′: — Item 9

6

[(a ⊗ b) ⊕ (a ⊗ c)] ` a ⊗ (b ⊕ c)
〈proof 〉

lemma times-exp: — Item 10
[!a ⊗ !b] ` !(a ⊗ b)

〈proof 〉

lemma one-exp: — Item 10
1 a` !(1)
〈proof 〉

lemma — Item 11
[!a] ` 1 & a & (!a ⊗ !a)
〈proof 〉

lemma — Item 12
!a ⊗ !b a` !(a & b)

〈proof 〉

lemma — Item 13
1 a` !(>)

〈proof 〉

1.5 Compacting Lists of Propositions

Compacting transforms a list of propositions into a single proposition us-
ing the (⊗) operator, taking care to not expand the size when given a list
with only one element. This operation allows us to link the meta-level an-
tecedent concatenation with the object-level (⊗) operator, turning a list of
antecedents into a single proposition with the same power in proofs.
function compact :: ′a ill-prop list ⇒ ′a ill-prop

where
xs 6= [] =⇒ compact (x # xs) = x ⊗ compact xs

| xs = [] =⇒ compact (x # xs) = x
| compact [] = 1
〈proof 〉

termination 〈proof 〉

For code generation we use an if statement
lemma compact-code [code]:

compact [] = 1
compact (x # xs) = (if xs = [] then x else x ⊗ compact xs)
〈proof 〉

Two lists of propositions that compact to the same result must be equal if
they do not include any (⊗) or 1 elements. We show first that they must
be equally long and then that they must be equal.
lemma compact-eq-length:

7

assumes
∧

a. a ∈ set xs =⇒ a 6= 1
and

∧
a. a ∈ set ys =⇒ a 6= 1

and
∧

a u v. a ∈ set xs =⇒ a 6= u ⊗ v
and

∧
a u v. a ∈ set ys =⇒ a 6= u ⊗ v

and compact xs = compact ys
shows length xs = length ys

〈proof 〉

lemma compact-eq:
assumes

∧
a. a ∈ set xs =⇒ a 6= 1

and
∧

a. a ∈ set ys =⇒ a 6= 1
and

∧
a u v. a ∈ set xs =⇒ a 6= u ⊗ v

and
∧

a u v. a ∈ set ys =⇒ a 6= u ⊗ v
and compact xs = compact ys

shows xs = ys
〈proof 〉

Compacting to 1 means the list of propositions was either empty or just
that
lemma compact-eq-oneE :

assumes compact xs = 1
obtains xs = [] | xs = [1]
〈proof 〉

Compacting to (⊗) means the list of propositions was either just that or
started with the left-hand proposition and the rest compacts to the right-
hand proposition
lemma compact-eq-timesE :

assumes compact xs = x ⊗ y
obtains xs = [x ⊗ y] | ys where xs = x # ys and compact ys = y
〈proof 〉

Compacting to anything but 1 or (⊗) means the list was just that
lemma compact-eq-otherD:

assumes compact xs = a
and

∧
x y. a 6= x ⊗ y

and a 6= 1
shows xs = [a]

〈proof 〉

For any list of propositions, we can derive its compacted form from it
lemma identity-list:

G ` (compact G)
〈proof 〉

For any valid sequent, we can compact any sublist of its antecedents without
invalidating it
lemma compact-split-antecedents:

8

assumes X @ G @ Y ` c
shows n ≤ length G =⇒ X @ take (length G − n) G @ [compact (drop (length

G − n) G)] @ Y ` c
〈proof 〉

More generally, compacting a sublist of antecedents does not affect sequent
validity
lemma compact-antecedents:
(X @ [compact G] @ Y ` c) = (X @ G @ Y ` c)

〈proof 〉

Times with a single proposition can be absorbed into compacting up to
proposition equivalence
lemma times-equivalent-cons:

a ⊗ compact b a` compact (a # b)
〈proof 〉

Times of compacted lists is equivalent to compacting the appended lists
lemma times-equivalent-append:

compact a ⊗ compact b a` compact (a @ b)
〈proof 〉

Any number of single-antecedent sequents can be compacted with the rule
[[[?a] ` ?b; [?c] ` ?d]] =⇒ [?a ⊗ ?c] ` ?b ⊗ ?d
lemma compact-sequent:
∀ x ∈ set xs. [f x] ` g x =⇒ [compact (map f xs)] ` compact (map g xs)

〈proof 〉

Any number of equivalences can be compacted together
lemma compact-equivalent:
∀ x ∈ set xs. f x a` g x =⇒ compact (map f xs) a` compact (map g xs)
〈proof 〉

1.6 Multiset Exchange

Recall that our (`) definition uses explicit single-proposition exchange. We
now derive a rule for exchanging lists of propositions and then a rule that
uses multisets to disregard the antecedent order entirely.

We can exchange lists of propositions by stepping through compact
lemma exchange-list:

G @ A @ B @ D ` c =⇒ G @ B @ A @ D ` c
〈proof 〉

lemma simple-exchange-list:
[[A @ B ` c]] =⇒ B @ A ` c
〈proof 〉

9

By applying the list exchange rule multiple times, the lists do not need to
be adjacent
lemma exchange-separated:

G @ A @ X @ B @ D ` c =⇒ G @ B @ X @ A @ D ` c
〈proof 〉

Single transposition in the antecedents does not invalidate a sequent
lemma exchange-transpose:

assumes G ` c
and a ∈ {..<length G}
and b ∈ {..<length G}

shows permute-list (transpose a b) G ` c
〈proof 〉

More generally, by transposition being involutive, a single antecedent trans-
position does not affect sequent validity
lemma exchange-permute-eq:

assumes a ∈ {..<length G}
and b ∈ {..<length G}

shows permute-list (transpose a b) G ` c = G ` c
〈proof 〉

Validity of a sequent is not affected by replacing any antecedent sublist with
a list that represents the same multiset. This is because lists representing
equal multisets are connected by a permutation, which is a sequence of
transpositions and as such does not affect validity.
lemma exchange-mset:

mset A = mset B =⇒ G @ A @ D ` c = G @ B @ D ` c
〈proof 〉

1.7 Additional Lemmas

These rules are based on Figure 2 of Kalvala and de Paiva [2], labelled by
them as “additional rules for proof search”. We present them out of order
because we use some in the proofs of the others, but annotate them with
the original labels as comments.
lemma ill-mp1: — mp1

assumes A @ [b] @ B @ C ` c
shows A @ [a] @ B @ [a B b] @ C ` c

〈proof 〉

lemmas simple-mp1 = ill-mp1[of Nil - Nil Nil, simplified, OF identity]

lemma — raa1

G @ [!b] @ D @ [!b B 0] @ E ` a
〈proof 〉

10

lemma ill-mp2: — mp2

assumes A @ [b] @ B @ C ` c
shows A @ [a B b] @ B @ [a] @ C ` c

〈proof 〉

lemmas simple-mp2 = ill-mp2[of Nil - Nil Nil, simplified, OF identity]

lemma — raa2

G @ [!b B 0] @ D @ [!b] @ P ` A
〈proof 〉

lemma — ⊗-&
assumes G @ [(!a B 0) & (!b B 0)] @ D ` c

shows G @ [!(!(a ⊕ b) B 0)] @ D ` c
〈proof 〉

lemma — &-lemma
assumes G @ [!a, !b] @ D ` c

shows G @ [!(a & b)] @ D ` c
〈proof 〉

lemma — (L-lemma
assumes G @ D ` a
shows G @ [!(a B b)] @ D ` b
〈proof 〉

lemma — (R-lemma
assumes [a, !a] @ G ` b
shows G ` !a B b
〈proof 〉

lemma — a-not-a
assumes G @ [!a B 0] @ D ` b
shows G @ [!a B (!a B 0)] @ D ` b

〈proof 〉

end
theory Proof

imports ILL
begin

1.8 Deep Embedding of Deductions

To directly manipulate ILL deductions themselves we deeply embed them as
a datatype. This datatype has a constructor to represent each introduction
rule of (`), with the ILL propositions and further deductions those rules
use as arguments. Additionally, it has a constructor to represent premises
(sequents assumed to be valid) which allow us to represent contingent de-

11

ductions.
The datatype is parameterised by two type variables:

• ′a represents the propositional variables for the contained ILL propo-
sitions, and

• ′l represents labels we associate with premises.

datatype (′a, ′l) ill-deduct =
Premise ′a ill-prop list ′a ill-prop ′l

| Identity ′a ill-prop
| Exchange ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct
| Cut ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct (′a, ′l) ill-deduct
| TimesL ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct
| TimesR ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct

(′a, ′l) ill-deduct
| OneL ′a ill-prop list ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct
| OneR
| LimpL ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop ′a ill-prop list

′a ill-prop (′a, ′l) ill-deduct (′a, ′l) ill-deduct
| LimpR ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct
| WithL1 ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct
| WithL2 ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct
| WithR ′a ill-prop list ′a ill-prop ′a ill-prop (′a, ′l) ill-deduct (′a, ′l) ill-deduct
| TopR ′a ill-prop list
| PlusL ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct (′a, ′l) ill-deduct
| PlusR1 ′a ill-prop list ′a ill-prop ′a ill-prop (′a, ′l) ill-deduct
| PlusR2 ′a ill-prop list ′a ill-prop ′a ill-prop (′a, ′l) ill-deduct
| ZeroL ′a ill-prop list ′a ill-prop list ′a ill-prop
| Weaken ′a ill-prop list ′a ill-prop list ′a ill-prop ′a ill-prop (′a, ′l) ill-deduct
| Contract ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct
| Derelict ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct
| Promote ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct

1.8.1 Semantics

With every deduction we associate the antecedents and consequent of its
conclusion sequent
primrec antecedents :: (′a, ′l) ill-deduct ⇒ ′a ill-prop list

where
antecedents (Premise G c l) = G

| antecedents (Identity a) = [a]

12

| antecedents (Exchange G a b D c P) = G @ [b] @ [a] @ D
| antecedents (Cut G b D E c P Q) = D @ G @ E
| antecedents (TimesL G a b D c P) = G @ [a ⊗ b] @ D
| antecedents (TimesR G a D b P Q) = G @ D
| antecedents (OneL G D c P) = G @ [1] @ D
| antecedents (OneR) = []
| antecedents (LimpL G a D b E c P Q) = G @ D @ [a B b] @ E
| antecedents (LimpR G a D b P) = G @ D
| antecedents (WithL1 G a b D c P) = G @ [a & b] @ D
| antecedents (WithL2 G a b D c P) = G @ [a & b] @ D
| antecedents (WithR G a b P Q) = G
| antecedents (TopR G) = G
| antecedents (PlusL G a b D c P Q) = G @ [a ⊕ b] @ D
| antecedents (PlusR1 G a b P) = G
| antecedents (PlusR2 G a b P) = G
| antecedents (ZeroL G D c) = G @ [0] @ D
| antecedents (Weaken G D b a P) = G @ [!a] @ D
| antecedents (Contract G a D b P) = G @ [!a] @ D
| antecedents (Derelict G a D b P) = G @ [!a] @ D
| antecedents (Promote G a P) = map Exp G

primrec consequent :: (′a, ′l) ill-deduct ⇒ ′a ill-prop
where

consequent (Premise G c l) = c
| consequent (Identity a) = a
| consequent (Exchange G a b D c P) = c
| consequent (Cut G b D E c P Q) = c
| consequent (TimesL G a b D c P) = c
| consequent (TimesR G a D b P Q) = a ⊗ b
| consequent (OneL G D c P) = c
| consequent (OneR) = 1
| consequent (LimpL G a D b E c P Q) = c
| consequent (LimpR G a D b P) = a B b
| consequent (WithL1 G a b D c P) = c
| consequent (WithL2 G a b D c P) = c
| consequent (WithR G a b P Q) = a & b
| consequent (TopR G) = >
| consequent (PlusL G a b D c P Q) = c
| consequent (PlusR1 G a b P) = a ⊕ b
| consequent (PlusR2 G a b P) = a ⊕ b
| consequent (ZeroL G D c) = c
| consequent (Weaken G D b a P) = b
| consequent (Contract G a D b P) = b
| consequent (Derelict G a D b P) = b
| consequent (Promote G a P) = !a

We define a sequent datatype for presenting deduction tree conclusions,
deeply embedding (possibly invalid) sequents themselves.
Note: these are not used everywhere, separate antecedents and consequent

13

tend to work better for proof automation. For instance, the full conclusion
cannot be derived where only facts about antecedents are known.
datatype ′a ill-sequent = Sequent ′a ill-prop list ′a ill-prop

Validity of deeply embedded sequents is defined by the shallow (`) relation
primrec ill-sequent-valid :: ′a ill-sequent ⇒ bool

where ill-sequent-valid (Sequent a c) = a ` c

We set up a notation bundle to have infix ` for stand for the sequent
datatype and not the relation
bundle deep-sequent
begin
no-notation sequent (infix ` 60)
notation Sequent (infix ` 60)
end

context
includes deep-sequent

begin

With deeply embedded sequents we can define the conclusion of every de-
duction
primrec ill-conclusion :: (′a, ′l) ill-deduct ⇒ ′a ill-sequent

where
ill-conclusion (Premise G c l) = G ` c

| ill-conclusion (Identity a) = [a] ` a
| ill-conclusion (Exchange G a b D c P) = G @ [b] @ [a] @ D ` c
| ill-conclusion (Cut G b D E c P Q) = D @ G @ E ` c
| ill-conclusion (TimesL G a b D c P) = G @ [a ⊗ b] @ D ` c
| ill-conclusion (TimesR G a D b P Q) = G @ D ` a ⊗ b
| ill-conclusion (OneL G D c P) = G @ [1] @ D ` c
| ill-conclusion (OneR) = [] ` 1
| ill-conclusion (LimpL G a D b E c P Q) = G @ D @ [a B b] @ E ` c
| ill-conclusion (LimpR G a D b P) = G @ D ` a B b
| ill-conclusion (WithL1 G a b D c P) = G @ [a & b] @ D ` c
| ill-conclusion (WithL2 G a b D c P) = G @ [a & b] @ D ` c
| ill-conclusion (WithR G a b P Q) = G ` a & b
| ill-conclusion (TopR G) = G ` >
| ill-conclusion (PlusL G a b D c P Q) = G @ [a ⊕ b] @ D ` c
| ill-conclusion (PlusR1 G a b P) = G ` a ⊕ b
| ill-conclusion (PlusR2 G a b P) = G ` a ⊕ b
| ill-conclusion (ZeroL G D c) = G @ [0] @ D ` c
| ill-conclusion (Weaken G D b a P) = G @ [!a] @ D ` b
| ill-conclusion (Contract G a D b P) = G @ [!a] @ D ` b
| ill-conclusion (Derelict G a D b P) = G @ [!a] @ D ` b
| ill-conclusion (Promote G a P) = map Exp G ` !a

This conclusion is the same as what antecedents and consequent express

14

lemma ill-conclusionI [intro!]:
assumes antecedents P = G

and consequent P = c
shows ill-conclusion P = G ` c

〈proof 〉

lemma ill-conclusionE [elim!]:
assumes ill-conclusion P = G ` c
obtains antecedents P = G

and consequent P = c
〈proof 〉

lemma ill-conclusion-alt:
(ill-conclusion P = G ` c) = (antecedents P = G ∧ consequent P = c)
〈proof 〉

lemma ill-conclusion-antecedents: ill-conclusion P = G ` c =⇒ antecedents P =
G

and ill-conclusion-consequent: ill-conclusion P = G ` c =⇒ consequent P = c
〈proof 〉

Every deduction is well-formed if all deductions it relies on are well-formed
and have the form required by the corresponding sequent rule.
primrec ill-deduct-wf :: (′a, ′l) ill-deduct ⇒ bool

where
ill-deduct-wf (Premise G c l) = True

| ill-deduct-wf (Identity a) = True
| ill-deduct-wf (Exchange G a b D c P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ [b] @ D ` c)
| ill-deduct-wf (Cut G b D E c P Q) =

(ill-deduct-wf P ∧ ill-conclusion P = G ` b ∧
ill-deduct-wf Q ∧ ill-conclusion Q = D @ [b] @ E ` c)

| ill-deduct-wf (TimesL G a b D c P) =
(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ [b] @ D ` c)

| ill-deduct-wf (TimesR G a D b P Q) =
(ill-deduct-wf P ∧ ill-conclusion P = G ` a ∧

ill-deduct-wf Q ∧ ill-conclusion Q = D ` b)
| ill-deduct-wf (OneL G D c P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ D ` c)
| ill-deduct-wf (OneR) = True
| ill-deduct-wf (LimpL G a D b E c P Q) =

(ill-deduct-wf P ∧ ill-conclusion P = G ` a ∧
ill-deduct-wf Q ∧ ill-conclusion Q = D @ [b] @ E ` c)

| ill-deduct-wf (LimpR G a D b P) =
(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ D ` b)

| ill-deduct-wf (WithL1 G a b D c P) =
(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ D ` c)

| ill-deduct-wf (WithL2 G a b D c P) =
(ill-deduct-wf P ∧ ill-conclusion P = G @ [b] @ D ` c)

15

| ill-deduct-wf (WithR G a b P Q) =
(ill-deduct-wf P ∧ ill-conclusion P = G ` a ∧

ill-deduct-wf Q ∧ ill-conclusion Q = G ` b)
| ill-deduct-wf (TopR G) = True
| ill-deduct-wf (PlusL G a b D c P Q) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ D ` c ∧
ill-deduct-wf Q ∧ ill-conclusion Q = G @ [b] @ D ` c)

| ill-deduct-wf (PlusR1 G a b P) =
(ill-deduct-wf P ∧ ill-conclusion P = G ` a)

| ill-deduct-wf (PlusR2 G a b P) =
(ill-deduct-wf P ∧ ill-conclusion P = G ` b)

| ill-deduct-wf (ZeroL G D c) = True
| ill-deduct-wf (Weaken G D b a P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ D ` b)
| ill-deduct-wf (Contract G a D b P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ [!a] @ [!a] @ D ` b)
| ill-deduct-wf (Derelict G a D b P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ D ` b)
| ill-deduct-wf (Promote G a P) =

(ill-deduct-wf P ∧ ill-conclusion P = map Exp G ` a)

In some proofs phasing well-formedness in terms of antecedents and conse-
quent is more useful.
lemmas ill-deduct-wf-alt = ill-deduct-wf .simps[unfolded ill-conclusion-alt]

end

Premises of a deduction can be gathered recursively. Because every element
of the result is an instance of Premise, we represent them with the relevant
three parameters (antecedents, consequent, label).
primrec ill-deduct-premises

:: (′a, ′l) ill-deduct ⇒ (′a ill-prop list × ′a ill-prop × ′l) list
where

ill-deduct-premises (Premise G c l) = [(G, c, l)]
| ill-deduct-premises (Identity a) = []
| ill-deduct-premises (Exchange G a b D c P) = ill-deduct-premises P
| ill-deduct-premises (Cut G b D E c P Q) =

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (TimesL G a b D c P) = ill-deduct-premises P
| ill-deduct-premises (TimesR G a D b P Q) =

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (OneL G D c P) = ill-deduct-premises P
| ill-deduct-premises (OneR) = []
| ill-deduct-premises (LimpL G a D b E c P Q) =

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (LimpR G a D b P) = ill-deduct-premises P
| ill-deduct-premises (WithL1 G a b D c P) = ill-deduct-premises P
| ill-deduct-premises (WithL2 G a b D c P) = ill-deduct-premises P
| ill-deduct-premises (WithR G a b P Q) =

16

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (TopR G) = []
| ill-deduct-premises (PlusL G a b D c P Q) =

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (PlusR1 G a b P) = ill-deduct-premises P
| ill-deduct-premises (PlusR2 G a b P) = ill-deduct-premises P
| ill-deduct-premises (ZeroL G D c) = []
| ill-deduct-premises (Weaken G D b a P) = ill-deduct-premises P
| ill-deduct-premises (Contract G a D b P) = ill-deduct-premises P
| ill-deduct-premises (Derelict G a D b P) = ill-deduct-premises P
| ill-deduct-premises (Promote G a P) = ill-deduct-premises P

1.8.2 Soundness

Deeply embedded deductions are sound with respect to (`) in the sense that
the conclusion of any well-formed deduction is a valid sequent if all of its
premises are assumed to be valid sequents. This is proven easily, because
our definitions stem from the (`) relation.
lemma ill-deduct-sound:

assumes ill-deduct-wf P
and

∧
a c l. (a, c, l) ∈ set (ill-deduct-premises P) =⇒ ill-sequent-valid (Sequent

a c)
shows ill-sequent-valid (ill-conclusion P)

〈proof 〉

1.8.3 Completeness

Deeply embedded deductions are complete with respect to (`) in the sense
that for any valid sequent there exists a well-formed deduction with no
premises that has it as its conclusion. This is proven easily, because the
deduction nodes map directly onto the rules of the (`) relation.
lemma ill-deduct-complete:

assumes G ` c
shows ∃P. ill-conclusion P = Sequent G c ∧ ill-deduct-wf P ∧ ill-deduct-premises

P = []
〈proof 〉

1.8.4 Derived Deductions

We define a number of useful deduction patterns as (potentially recur-
sive) functions. In each case we verify the well-formedness, conclusion and
premises.

Swap order in a times proposition: [a ⊗ b] ` b ⊗ a:
fun ill-deduct-swap :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-swap a b =
TimesL [] a b [] (b ⊗ a)

17

(Exchange [] b a [] (b ⊗ a)
(TimesR [b] b [a] a (Identity b) (Identity a)))

lemma ill-deduct-swap [simp]:
ill-deduct-wf (ill-deduct-swap a b)
ill-conclusion (ill-deduct-swap a b) = Sequent [a ⊗ b] (b ⊗ a)
ill-deduct-premises (ill-deduct-swap a b) = []
〈proof 〉

Simplified cut rule: [[G ` b; [b] ` c]] =⇒ G ` c:
fun ill-deduct-simple-cut :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where ill-deduct-simple-cut P Q = Cut (antecedents P) (consequent P) [] []
(consequent Q) P Q

lemma ill-deduct-simple-cut [simp]:
[[[consequent P] = antecedents Q; ill-deduct-wf P; ill-deduct-wf Q]] =⇒

ill-deduct-wf (ill-deduct-simple-cut P Q)
[consequent P] = antecedents Q =⇒
ill-conclusion (ill-deduct-simple-cut P Q) = Sequent (antecedents P) (consequent

Q)
ill-deduct-premises (ill-deduct-simple-cut P Q) = ill-deduct-premises P @ ill-deduct-premises

Q
〈proof 〉

Combine two deductions with times: [[[a] ` b; [c] ` d]] =⇒ [a ⊗ c] ` b ⊗ d:
fun ill-deduct-tensor :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where ill-deduct-tensor p q =
TimesL [] (hd (antecedents p)) (hd (antecedents q)) [] (consequent p ⊗ consequent

q)
(TimesR (antecedents p) (consequent p) (antecedents q) (consequent q) p q)

lemma ill-deduct-tensor [simp]:
[[antecedents P = [a]; antecedents Q = [c]; ill-deduct-wf P; ill-deduct-wf Q]] =⇒

ill-deduct-wf (ill-deduct-tensor P Q)
[[antecedents P = [a]; antecedents Q = [c]]] =⇒

ill-conclusion (ill-deduct-tensor P Q) = Sequent [a ⊗ c] (consequent P ⊗
consequent Q)
ill-deduct-premises (ill-deduct-tensor P Q) = ill-deduct-premises P @ ill-deduct-premises

Q
〈proof 〉

Associate times proposition to right: [(a ⊗ b) ⊗ c] ` a ⊗ b ⊗ c:
fun ill-deduct-assoc :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-assoc a b c =
TimesL [] (a ⊗ b) c [] (a ⊗ (b ⊗ c))
(Exchange [] c (a ⊗ b) [] (a ⊗ (b ⊗ c))
(TimesL [c] a b [] (a ⊗ (b ⊗ c))
(Exchange [] a c [b] (a ⊗ (b ⊗ c))
(TimesR [a] a [c, b] (b ⊗ c)

18

(Identity a)
(Exchange [] b c [] (b ⊗ c)
(TimesR [b] b [c] c
(Identity b)
(Identity c)))))))

lemma ill-deduct-assoc [simp]:
ill-deduct-wf (ill-deduct-assoc a b c)
ill-conclusion (ill-deduct-assoc a b c) = Sequent [(a ⊗ b) ⊗ c] (a ⊗ (b ⊗ c))
ill-deduct-premises (ill-deduct-assoc a b c) = []
〈proof 〉

Associate times proposition to left: [a ⊗ b ⊗ c] ` (a ⊗ b) ⊗ c:
fun ill-deduct-assoc ′ :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-assoc ′ a b c =
TimesL [] a (b ⊗ c) [] ((a ⊗ b) ⊗ c)
(TimesL [a] b c [] ((a ⊗ b) ⊗ c)
(TimesR [a, b] (a ⊗ b) [c] c
(TimesR [a] a [b] b
(Identity a)
(Identity b))

(Identity c)))

lemma ill-deduct-assoc ′ [simp]:
ill-deduct-wf (ill-deduct-assoc ′ a b c)
ill-conclusion (ill-deduct-assoc ′ a b c) = Sequent [a ⊗ (b ⊗ c)] ((a ⊗ b) ⊗ c)
ill-deduct-premises (ill-deduct-assoc ′ a b c) = []
〈proof 〉

Eliminate times unit a proposition: [a ⊗ 1] ` a:
fun ill-deduct-unit :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-unit a = TimesL [] a (1) [] a (OneL [a] [] a (Identity a))

lemma ill-deduct-unit [simp]:
ill-deduct-wf (ill-deduct-unit a)
ill-conclusion (ill-deduct-unit a) = Sequent [a ⊗ 1] a
ill-deduct-premises (ill-deduct-unit a) = []
〈proof 〉

Introduce times unit into a proposition [a] ` a ⊗ 1:
fun ill-deduct-unit ′ :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-unit ′ a = TimesR [a] a [] (1) (Identity a) OneR

lemma ill-deduct-unit ′ [simp]:
ill-deduct-wf (ill-deduct-unit ′ a)
ill-conclusion (ill-deduct-unit ′ a) = Sequent [a] (a ⊗ 1)
ill-deduct-premises (ill-deduct-unit ′ a) = []
〈proof 〉

19

Simplified weakening: [! a] ` 1:
fun ill-deduct-simple-weaken :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-simple-weaken a = Weaken [] [] (1) a OneR

lemma ill-deduct-simple-weaken [simp]:
ill-deduct-wf (ill-deduct-simple-weaken a)
ill-conclusion (ill-deduct-simple-weaken a) = Sequent [!a] 1
ill-deduct-premises (ill-deduct-simple-weaken a) = []
〈proof 〉

Simplified dereliction: [! a] ` a:
fun ill-deduct-dereliction :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-dereliction a = Derelict [] a [] a (Identity a)

lemma ill-deduct-dereliction [simp]:
ill-deduct-wf (ill-deduct-dereliction a)
ill-conclusion (ill-deduct-dereliction a) = Sequent [!a] a
ill-deduct-premises (ill-deduct-dereliction a) = []
〈proof 〉

Duplicate exponentiated proposition: [! a] ` ! a ⊗ ! a:
fun ill-deduct-duplicate :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-duplicate a =
Contract [] a [] (!a ⊗ !a) (TimesR [!a] (!a) [!a] (!a) (Identity (!a)) (Identity

(!a)))

lemma ill-deduct-duplicate [simp]:
ill-deduct-wf (ill-deduct-duplicate a)
ill-conclusion (ill-deduct-duplicate a) = Sequent [!a] (!a ⊗ !a)
ill-deduct-premises (ill-deduct-duplicate a) = []
〈proof 〉

Simplified plus elimination: [[[a] ` c; [b] ` c]] =⇒ [a ⊕ b] ` c:
fun ill-deduct-simple-plusL :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l)
ill-deduct

where ill-deduct-simple-plusL p q =
PlusL [] (hd (antecedents p)) (hd (antecedents q)) [] (consequent p) p q

lemma ill-deduct-simple-plusL [simp]:
[[antecedents P = [a]; antecedents Q = [b]; ill-deduct-wf P
; ill-deduct-wf Q; consequent P = consequent Q]] =⇒
ill-deduct-wf (ill-deduct-simple-plusL P Q)

[[antecedents P = [a]; antecedents Q = [b]]] =⇒
ill-conclusion (ill-deduct-simple-plusL P Q) = Sequent [a ⊕ b] (consequent P)

ill-deduct-premises (ill-deduct-simple-plusL P Q)
= ill-deduct-premises P @ ill-deduct-premises Q
〈proof 〉

Simplified left plus introduction: [a] ` a ⊕ b:

20

fun ill-deduct-plusR1 :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct
where ill-deduct-plusR1 a b = PlusR1 [a] a b (Identity a)

lemma ill-deduct-plusR1 [simp]:
ill-deduct-wf (ill-deduct-plusR1 a b)
ill-conclusion (ill-deduct-plusR1 a b) = Sequent [a] (a ⊕ b)
ill-deduct-premises (ill-deduct-plusR1 a b) = []
〈proof 〉

Simplified right plus introduction: [b] ` a ⊕ b:
fun ill-deduct-plusR2 :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-plusR2 a b = PlusR2 [b] a b (Identity b)

lemma ill-deduct-plusR2 [simp]:
ill-deduct-wf (ill-deduct-plusR2 a b)
ill-conclusion (ill-deduct-plusR2 a b) = Sequent [b] (a ⊕ b)
ill-deduct-premises (ill-deduct-plusR2 a b) = []
〈proof 〉

Simplified linear implication introduction: [a] ` b =⇒ [1] ` a B b:
fun ill-deduct-simple-limpR :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where ill-deduct-simple-limpR p =
LimpR [] (hd (antecedents p)) [1] (consequent p)
(OneL [hd (antecedents p)] [] (consequent p) p)

lemma ill-deduct-simple-limpR [simp]:
[[antecedents P = [a]; consequent P = b; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-simple-limpR P)
[[antecedents P = [a]; consequent P = b]] =⇒

ill-conclusion (ill-deduct-simple-limpR P) = Sequent [1] (a B b)
ill-deduct-premises (ill-deduct-simple-limpR P)
= ill-deduct-premises P
〈proof 〉

Simplified introduction of exponentiated impliciation: [a] ` b =⇒ [1] ` ! (a
B b):
fun ill-deduct-simple-limpR-exp :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where ill-deduct-simple-limpR-exp p =
OneL [] [] (!((hd (antecedents p)) B (consequent p)))
(Promote [] ((hd (antecedents p)) B (consequent p))
(ill-deduct-simple-cut

OneR
(ill-deduct-simple-limpR p)))

lemma ill-deduct-simple-limpR-exp [simp]:
[[antecedents P = [a]; consequent P = b; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-simple-limpR-exp P)
[[antecedents P = [a]; consequent P = b]] =⇒

ill-conclusion (ill-deduct-simple-limpR-exp P) = Sequent [1] (!(a B b))

21

ill-deduct-premises (ill-deduct-simple-limpR-exp P) = ill-deduct-premises P
〈proof 〉

Linear implication elimination with times: [a ⊗ a B b] ` b:
fun ill-deduct-limp-eval :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-limp-eval a b =
TimesL [] a (a B b) [] b (LimpL [a] a [] b [] b (Identity a) (Identity b))

lemma ill-deduct-limp-eval [simp]:
ill-deduct-wf (ill-deduct-limp-eval a b)
ill-conclusion (ill-deduct-limp-eval a b) = Sequent [a ⊗ a B b] b
ill-deduct-premises (ill-deduct-limp-eval a b) = []
〈proof 〉

Exponential implication elimination with times: [a ⊗ ! (a B b)] ` b ⊗ ! (a
B b):
fun ill-deduct-explimp-eval :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-explimp-eval a b =
TimesL [] a (!(a B b)) [] (b ⊗ !(a B b)) (
Contract [a] (a B b) [] (b ⊗ !(a B b)) (
TimesR [a, !(a B b)] b [!(a B b)] (!(a B b))
(Derelict [a] (a B b) [] b (

LimpL [a] a [] b [] b
(Identity a)
(Identity b)))

(Identity (!(a B b)))))

lemma ill-deduct-explimp-eval [simp]:
ill-deduct-wf (ill-deduct-explimp-eval a b)
ill-conclusion (ill-deduct-explimp-eval a b) = Sequent [a ⊗ !(a B b)] (b ⊗ !(a B

b))
ill-deduct-premises (ill-deduct-explimp-eval a b) = []
〈proof 〉

Distributing times over plus: [a ⊗ b ⊕ c] ` (a ⊗ b) ⊕ a ⊗ c:
fun ill-deduct-distrib-plus :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l)
ill-deduct

where ill-deduct-distrib-plus a b c =
TimesL [] a (b ⊕ c) [] ((a ⊗ b) ⊕ (a ⊗ c))
(PlusL [a] b c [] ((a ⊗ b) ⊕ (a ⊗ c))
(PlusR1 [a, b] (a ⊗ b) (a ⊗ c)
(TimesR [a] a [b] b
(Identity a)
(Identity b)))

(PlusR2 [a, c] (a ⊗ b) (a ⊗ c)
(TimesR [a] a [c] c
(Identity a)
(Identity c))))

22

lemma ill-deduct-distrib-plus [simp]:
ill-deduct-wf (ill-deduct-distrib-plus a b c)
ill-conclusion (ill-deduct-distrib-plus a b c) = Sequent [a ⊗ (b ⊕ c)] ((a ⊗ b) ⊕

(a ⊗ c))
ill-deduct-premises (ill-deduct-distrib-plus a b c) = []
〈proof 〉

Distributing times out of plus: [(a ⊗ b) ⊕ a ⊗ c] ` a ⊗ b ⊕ c:
fun ill-deduct-distrib-plus ′ :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l)
ill-deduct

where ill-deduct-distrib-plus ′ a b c =
PlusL [] (a ⊗ b) (a ⊗ c) [] (a ⊗ (b ⊕ c))
(ill-deduct-tensor
(Identity a)
(ill-deduct-plusR1 b c))

(ill-deduct-tensor
(Identity a)
(ill-deduct-plusR2 b c))

lemma ill-deduct-distrib-plus ′ [simp]:
ill-deduct-wf (ill-deduct-distrib-plus ′ a b c)
ill-conclusion (ill-deduct-distrib-plus ′ a b c) = Sequent [(a ⊗ b) ⊕ (a ⊗ c)] (a ⊗

(b ⊕ c))
ill-deduct-premises (ill-deduct-distrib-plus ′ a b c) = []
〈proof 〉

Combining two deductions with plus: [[[a] ` b; [c] ` d]] =⇒ [a ⊕ c] ` b ⊕ d:
fun ill-deduct-plus-progress :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l)
ill-deduct

where ill-deduct-plus-progress p q =
ill-deduct-simple-plusL
(ill-deduct-simple-cut p (ill-deduct-plusR1 (consequent p) (consequent q)))
(ill-deduct-simple-cut q (ill-deduct-plusR2 (consequent p) (consequent q)))

lemma ill-deduct-plus-progress [simp]:
[[antecedents P = [a]; antecedents Q = [c]; ill-deduct-wf P; ill-deduct-wf Q]] =⇒

ill-deduct-wf (ill-deduct-plus-progress P Q)
[[antecedents P = [a]; antecedents Q = [c]]] =⇒

ill-conclusion (ill-deduct-plus-progress P Q) = Sequent [a ⊕ c] (consequent P ⊕
consequent Q)

ill-deduct-premises (ill-deduct-plus-progress P Q)
= ill-deduct-premises P @ ill-deduct-premises Q
〈proof 〉

Simplified with introduction: [[[a] ` b; [a] ` c]] =⇒ [a] ` b & c:
fun ill-deduct-with :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct
where ill-deduct-with p q = WithR [hd (antecedents p)] (consequent p) (consequent

q) p q

23

lemma ill-deduct-with [simp]:
[[antecedents P = [a]; antecedents Q = [a]; consequent P = b
; consequent Q = c; ill-deduct-wf P; ill-deduct-wf Q]] =⇒
ill-deduct-wf (ill-deduct-with P Q)

[[antecedents P = [a]; antecedents Q = [a]; consequent P = b; consequent Q = c]]
=⇒

ill-conclusion (ill-deduct-with P Q) = Sequent [a] (consequent P & consequent
Q)
ill-deduct-premises (ill-deduct-with P Q) = ill-deduct-premises P @ ill-deduct-premises

Q
〈proof 〉

Simplified with left projection: [a & b] ` a:
fun ill-deduct-projectL :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-projectL a b = WithL1 [] a b [] a (Identity a)

lemma ill-deduct-projectL [simp]:
ill-deduct-wf (ill-deduct-projectL a b)
ill-conclusion (ill-deduct-projectL a b) = Sequent [a & b] a
ill-deduct-premises (ill-deduct-projectL a b) = []
〈proof 〉

Simplified with right projection: [a & b] ` b:
fun ill-deduct-projectR :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-projectR a b = WithL2 [] a b [] b (Identity b)

lemma ill-deduct-projectR [simp]:
ill-deduct-wf (ill-deduct-projectR a b)
ill-conclusion (ill-deduct-projectR a b) = Sequent [a & b] b
ill-deduct-premises (ill-deduct-projectR a b) = []
〈proof 〉

Distributing times over with: [a ⊗ b & c] ` (a ⊗ b) & a ⊗ c:
fun ill-deduct-distrib-with :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l)
ill-deduct

where ill-deduct-distrib-with a b c =
WithR [a ⊗ (b & c)] (a ⊗ b) (a ⊗ c)
(ill-deduct-tensor
(Identity a)
(ill-deduct-projectL b c))

(ill-deduct-tensor
(Identity a)
(ill-deduct-projectR b c))

lemma ill-deduct-distrib-with [simp]:
ill-deduct-wf (ill-deduct-distrib-with a b c)
ill-conclusion (ill-deduct-distrib-with a b c) = Sequent [a ⊗ (b & c)] ((a ⊗ b) &

(a ⊗ c))
ill-deduct-premises (ill-deduct-distrib-with a b c) = []

24

〈proof 〉

Weakening a list of propositions: G @ D ` b =⇒ G @ map ! xs @ D ` b:
fun ill-deduct-weaken-list

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
⇒ (′a, ′l) ill-deduct

where
ill-deduct-weaken-list G D [] P = P

| ill-deduct-weaken-list G D (x#xs) P =
Weaken G (map Exp xs @ D) (consequent P) x (ill-deduct-weaken-list G D xs

P)

lemma ill-deduct-weaken-list [simp]:
[[antecedents P = G @ D; ill-deduct-wf P]] =⇒ ill-deduct-wf (ill-deduct-weaken-list

G D xs P)
antecedents P = G @ D ∨ xs 6= [] =⇒

antecedents (ill-deduct-weaken-list G D xs P) = G @ (map Exp xs) @ D
consequent (ill-deduct-weaken-list G D xs P) = consequent P
ill-deduct-premises (ill-deduct-weaken-list G D xs P) = ill-deduct-premises P

〈proof 〉

Exponentiating a deduction: G ` b =⇒ map ! G ` ! b
fun ill-deduct-exp-helper :: nat ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

— Helper function to apply Derelict to first n antecedents
where

ill-deduct-exp-helper 0 P = P
| ill-deduct-exp-helper (Suc n) P =

Derelict
(map Exp (take n (antecedents P)))
(nth (antecedents P) n)
(drop (Suc n) (antecedents P))
(consequent P)
(ill-deduct-exp-helper n P)

lemma ill-deduct-exp-helper :
n ≤ length (antecedents P) =⇒

antecedents (ill-deduct-exp-helper n P)
= map Exp (take n (antecedents P)) @ drop n (antecedents P)

consequent (ill-deduct-exp-helper n P) = consequent P
n ≤ length (antecedents P) =⇒ ill-deduct-wf (ill-deduct-exp-helper n P) =

ill-deduct-wf P
ill-deduct-premises (ill-deduct-exp-helper n P) = ill-deduct-premises P

〈proof 〉

fun ill-deduct-exp :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct
where ill-deduct-exp P =
Promote (antecedents P) (consequent P) (ill-deduct-exp-helper (length (antecedents

P)) P)

25

lemma ill-deduct-exp [simp]:
ill-conclusion (ill-deduct-exp P) = Sequent (map Exp (antecedents P)) (!(consequent

P))
ill-deduct-wf (ill-deduct-exp P) = ill-deduct-wf P
ill-deduct-premises (ill-deduct-exp P) = ill-deduct-premises P
〈proof 〉

1.8.5 Compacting Equivalences

Compacting cons equivalence: a ⊗ compact b a` compact (a # b):
primrec ill-deduct-times-to-compact-cons :: ′a ill-prop ⇒ ′a ill-prop list ⇒ (′a, ′l)
ill-deduct

— [a ⊗ compact b] ` compact (a # b)
where

ill-deduct-times-to-compact-cons a [] = ill-deduct-unit a
| ill-deduct-times-to-compact-cons a (b#bs) = Identity (a ⊗ compact (b#bs))

lemma ill-deduct-times-to-compact-cons [simp]:
ill-deduct-wf (ill-deduct-times-to-compact-cons a b)
ill-conclusion (ill-deduct-times-to-compact-cons a b)
= Sequent [a ⊗ compact b] (compact (a # b))
ill-deduct-premises (ill-deduct-times-to-compact-cons a b) = []
〈proof 〉

primrec ill-deduct-compact-cons-to-times :: ′a ill-prop ⇒ ′a ill-prop list ⇒ (′a, ′l)
ill-deduct

— [compact (a # b)] ` a ⊗ compact b
where

ill-deduct-compact-cons-to-times a [] = ill-deduct-unit ′ a
| ill-deduct-compact-cons-to-times a (b#bs) = Identity (a ⊗ compact (b#bs))

lemma ill-deduct-compact-cons-to-times [simp]:
ill-deduct-wf (ill-deduct-compact-cons-to-times a b)
ill-conclusion (ill-deduct-compact-cons-to-times a b)
= Sequent [compact (a # b)] (a ⊗ compact b)
ill-deduct-premises (ill-deduct-compact-cons-to-times a b) = []
〈proof 〉

Compacting append equivalence: compact a ⊗ compact b a` compact (a @
b):
primrec ill-deduct-times-to-compact-append

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
— [compact a ⊗ compact b] ` compact (a @ b)
where

ill-deduct-times-to-compact-append [] b =
ill-deduct-simple-cut (ill-deduct-swap (1) (compact b)) (ill-deduct-unit (compact

b))
| ill-deduct-times-to-compact-append (a#as) b =

26

ill-deduct-simple-cut
(ill-deduct-simple-cut
(ill-deduct-simple-cut
(ill-deduct-tensor
(ill-deduct-compact-cons-to-times a as)
(Identity (compact b)))

(ill-deduct-assoc a (compact as) (compact b)))
(ill-deduct-tensor
(Identity a)
(ill-deduct-times-to-compact-append as b)))

(ill-deduct-times-to-compact-cons a (as @ b))

lemma ill-deduct-times-to-compact-append [simp]:
ill-deduct-wf (ill-deduct-times-to-compact-append a b :: (′a, ′l) ill-deduct)
ill-conclusion (ill-deduct-times-to-compact-append a b :: (′a, ′l) ill-deduct)
= Sequent [compact a ⊗ compact b] (compact (a @ b))
ill-deduct-premises (ill-deduct-times-to-compact-append a b) = []
〈proof 〉

primrec ill-deduct-compact-append-to-times
:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct

— [compact (a @ b)] ` compact a ⊗ compact b
where

ill-deduct-compact-append-to-times [] b =
ill-deduct-simple-cut
(ill-deduct-unit ′ (compact b))
(ill-deduct-swap (compact b) (1))

| ill-deduct-compact-append-to-times (a#as) b =
ill-deduct-simple-cut
(ill-deduct-compact-cons-to-times a (as @ b))
(ill-deduct-simple-cut
(ill-deduct-tensor
(Identity a)
(ill-deduct-compact-append-to-times as b))

(ill-deduct-simple-cut
(ill-deduct-assoc ′ a (compact as) (compact b))
(ill-deduct-tensor
(ill-deduct-times-to-compact-cons a as)
(Identity (compact b)))))

lemma ill-deduct-compact-append-to-times [simp]:
ill-deduct-wf (ill-deduct-compact-append-to-times a b :: (′a, ′l) ill-deduct)
ill-conclusion (ill-deduct-compact-append-to-times a b :: (′a, ′l) ill-deduct)
= Sequent [compact (a @ b)] (compact a ⊗ compact b)
ill-deduct-premises (ill-deduct-compact-append-to-times a b) = []
〈proof 〉

Combine a list of deductions with times using ill-deduct-tensor, representing
a generalised version of the following theorem of the shallow embedding:

27

∀ x∈set ?xs. [?f x] ` ?g x =⇒ [compact (map ?f ?xs)] ` compact (map ?g
?xs)
primrec ill-deduct-tensor-list :: (′a, ′l) ill-deduct list ⇒ (′a, ′l) ill-deduct

where
ill-deduct-tensor-list [] = Identity (1)

| ill-deduct-tensor-list (x#xs) =
(if xs = [] then x else ill-deduct-tensor x (ill-deduct-tensor-list xs))

lemma ill-deduct-tensor-list [simp]:
fixes xs :: (′a, ′l) ill-deduct list
assumes

∧
x. x ∈ set xs =⇒ ∃ a. antecedents x = [a]

shows ill-conclusion (ill-deduct-tensor-list xs)
= Sequent [compact (map (hd ◦ antecedents) xs)] (compact (map consequent

xs))
and (

∧
x. x ∈ set xs =⇒ ill-deduct-wf x) =⇒ ill-deduct-wf (ill-deduct-tensor-list

xs)
and ill-deduct-premises (ill-deduct-tensor-list xs) = concat (map ill-deduct-premises

xs)
〈proof 〉

1.8.6 Premise Substitution

Premise substitution replaces certain premises in a deduction with other
deductions. The target premises are specified with a predicate on the three
arguments of the Premise constructor: antecedents, consequent and label.
The replacement for each is specified as a function of those three arguments.
In this way, the substitution can replace a whole class of premises in a single
pass.
primrec ill-deduct-subst ::

(′a ill-prop list ⇒ ′a ill-prop ⇒ ′l ⇒ bool) ⇒
(′a ill-prop list ⇒ ′a ill-prop ⇒ ′l ⇒ (′a, ′l) ill-deduct) ⇒
(′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where
ill-deduct-subst p f (Premise G c l) = (if p G c l then f G c l else Premise G c

l)
| ill-deduct-subst p f (Identity a) = Identity a
| ill-deduct-subst p f (Exchange G a b D c P) = Exchange G a b D c (ill-deduct-subst

p f P)
| ill-deduct-subst p f (Cut G b D E c P Q) =

Cut G b D E c (ill-deduct-subst p f P) (ill-deduct-subst p f Q)
| ill-deduct-subst p f (TimesL G a b D c P) = TimesL G a b D c (ill-deduct-subst

p f P)
| ill-deduct-subst p f (TimesR G a D b P Q) =

TimesR G a D b (ill-deduct-subst p f P) (ill-deduct-subst p f Q)
| ill-deduct-subst p f (OneL G D c P) = OneL G D c (ill-deduct-subst p f P)
| ill-deduct-subst p f (OneR) = OneR
| ill-deduct-subst p f (LimpL G a D b E c P Q) =

LimpL G a D b E c (ill-deduct-subst p f P) (ill-deduct-subst p f Q)

28

| ill-deduct-subst p f (LimpR G a D b P) = LimpR G a D b (ill-deduct-subst p f
P)
| ill-deduct-subst p f (WithL1 G a b D c P) = WithL1 G a b D c (ill-deduct-subst

p f P)
| ill-deduct-subst p f (WithL2 G a b D c P) = WithL2 G a b D c (ill-deduct-subst

p f P)
| ill-deduct-subst p f (WithR G a b P Q) =

WithR G a b (ill-deduct-subst p f P) (ill-deduct-subst p f Q)
| ill-deduct-subst p f (TopR G) = TopR G
| ill-deduct-subst p f (PlusL G a b D c P Q) =

PlusL G a b D c (ill-deduct-subst p f P) (ill-deduct-subst p f Q)
| ill-deduct-subst p f (PlusR1 G a b P) = PlusR1 G a b (ill-deduct-subst p f P)
| ill-deduct-subst p f (PlusR2 G a b P) = PlusR2 G a b (ill-deduct-subst p f P)
| ill-deduct-subst p f (ZeroL G D c) = ZeroL G D c
| ill-deduct-subst p f (Weaken G D b a P) = Weaken G D b a (ill-deduct-subst p

f P)
| ill-deduct-subst p f (Contract G a D b P) = Contract G a D b (ill-deduct-subst

p f P)
| ill-deduct-subst p f (Derelict G a D b P) = Derelict G a D b (ill-deduct-subst p

f P)
| ill-deduct-subst p f (Promote G a P) = Promote G a (ill-deduct-subst p f P)

If the target premise is not present, then substitution does nothing
lemma ill-deduct-subst-no-target:
(
∧

G c l. (G, c, l) ∈ set (ill-deduct-premises x) =⇒ ¬ p G c l) =⇒ ill-deduct-subst
p f x = x
〈proof 〉

If a deduction has no premise, then substitution does nothing
lemma ill-deduct-subst-no-prems:

ill-deduct-premises x = [] =⇒ ill-deduct-subst p f x = x
〈proof 〉

If we substitute the target, then the substitution does nothing
lemma ill-deduct-subst-of-target [simp]:

f = Premise =⇒ ill-deduct-subst p f x = x
〈proof 〉

Substitution matching the target’s antecedents preserves overall deduction
antecedents
lemma ill-deduct-subst-antecedents [simp]:

assumes (
∧

G c l. p G c l =⇒ antecedents (f G c l) = G)
shows antecedents (ill-deduct-subst p f x) = antecedents x

〈proof 〉

Substitution matching the target’s consequent preserves overall deduction
consequent
lemma ill-deduct-subst-consequent [simp]:

29

assumes
∧

G c l. p G c l =⇒ consequent (f G c l) = c
shows consequent (ill-deduct-subst p f x) = consequent x

〈proof 〉

Substitution matching target’s antecedent, consequent and well-formedness
preserves overall well-formedness
lemma ill-deduct-subst-wf [simp]:

assumes
∧

G c l. p G c l =⇒ antecedents (f G c l) = G
and

∧
G c l. p G c l =⇒ consequent (f G c l) = c

and
∧

G c l. p G c l =⇒ ill-deduct-wf (f G c l)
shows ill-deduct-wf x = ill-deduct-wf (ill-deduct-subst p f x)

〈proof 〉

Premises after substitution are those that didn’t satisfy the predicate and
anything that was introduced by the function applied on satisfying premises’
parameters.
lemma ill-deduct-subst-ill-deduct-premises:

ill-deduct-premises (ill-deduct-subst p f x)
= concat (map (λ(G, c, l).

if p G c l then ill-deduct-premises (f G c l) else [(G, c, l)])
(ill-deduct-premises x))

〈proof 〉

This substitution commutes with many operations on deductions
lemma

assumes
∧

G c l. p G c l =⇒ antecedents (f G c l) = G
and

∧
G c l. p G c l =⇒ consequent (f G c l) = c

shows ill-deduct-subst-simple-cut [simp]:
ill-deduct-subst p f (ill-deduct-simple-cut X Y)
= ill-deduct-simple-cut (ill-deduct-subst p f X) (ill-deduct-subst p f Y)
and ill-deduct-subst ′-tensor [simp]:
ill-deduct-subst p f (ill-deduct-tensor X Y) =
ill-deduct-tensor (ill-deduct-subst p f X) (ill-deduct-subst p f Y)

and ill-deduct-subst-simple-plusL [simp]:
ill-deduct-subst p f (ill-deduct-simple-plusL X Y) =
ill-deduct-simple-plusL (ill-deduct-subst p f X) (ill-deduct-subst p f Y)

and ill-deduct-subst-with [simp]:
ill-deduct-subst p f (ill-deduct-with X Y) =
ill-deduct-with (ill-deduct-subst p f X) (ill-deduct-subst p f Y)

and ill-deduct-subst-simple-limpR [simp]:
ill-deduct-subst p f (ill-deduct-simple-limpR X) =
ill-deduct-simple-limpR (ill-deduct-subst p f X)

and ill-deduct-subst-simple-limpR-exp [simp]:
ill-deduct-subst p f (ill-deduct-simple-limpR-exp X) =
ill-deduct-simple-limpR-exp (ill-deduct-subst p f X)

〈proof 〉

30

1.8.7 List-Based Exchange

To expand the applicability of the exchange rule to lists of propositions, we
first need to establish that the well-formedness of a deduction is not affected
by compacting a sublist of the antecedents of its conclusions. This corre-
sponds to the following equality in the shallow embedding of deductions: ?X
@ [compact ?G] @ ?Y ` ?c = ?X @ ?G @ ?Y ` ?c.

For one direction of the equality we need to use TimesL to recursively add
one proposition at a time into the compacted part of the antecedents. Note
that, just like compact, the recursion terminates in the singleton case.
primrec ill-deduct-compact-antecedents-split

:: nat ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
⇒ (′a, ′l) ill-deduct

where
ill-deduct-compact-antecedents-split 0 X G Y P = OneL (X @ G) Y (consequent

P) P
| ill-deduct-compact-antecedents-split (Suc n) X G Y P = (if n = 0 then P else

TimesL
(X @ take (length G − (Suc n)) G)
(hd (drop (length G − (Suc n)) G))
(compact (drop (length G − n) G))
Y
(consequent P)
(ill-deduct-compact-antecedents-split n X G Y P))

lemma ill-deduct-compact-antecedents-split [simp]:
assumes n ≤ length G

shows antecedents P = X @ G @ Y =⇒
antecedents (ill-deduct-compact-antecedents-split n X G Y P)

= X @ take (length G − n) G @ [compact (drop (length G − n) G)] @ Y
and consequent (ill-deduct-compact-antecedents-split n X G Y P) = consequent

P
and [[antecedents P = X @ G @ Y ; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-compact-antecedents-split n X G Y P)
and ill-deduct-premises (ill-deduct-compact-antecedents-split n X G Y P)

= ill-deduct-premises P
〈proof 〉

Implication in the uncompacted-to-compacted direction
fun ill-deduct-antecedents-to-times

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
⇒ (′a, ′l) ill-deduct

— X @ G @ Y ` c =⇒ X @ [compact G] @ Y ` c
where ill-deduct-antecedents-to-times X G Y P =

ill-deduct-compact-antecedents-split (length G) X G Y P

lemma ill-deduct-antecedents-to-times [simp]:

31

antecedents P = X @ G @ Y =⇒
antecedents (ill-deduct-antecedents-to-times X G Y P) = X @ [compact G] @ Y

consequent (ill-deduct-antecedents-to-times X G Y P) = consequent P
[[antecedents P = X @ G @ Y ; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-antecedents-to-times X G Y P)
ill-deduct-premises (ill-deduct-antecedents-to-times X G Y P) = ill-deduct-premises

P
〈proof 〉

For the other direction we only need to derive the compacted propositions
from the original list. This corresponds to the following valid sequent in the
shallow embedding of deductions: ?G ` compact ?G.
fun ill-deduct-identity-compact :: ′a ill-prop list ⇒ (′a, ′l) ill-deduct

where
ill-deduct-identity-compact [] = OneR

| ill-deduct-identity-compact [x] = Identity x
| ill-deduct-identity-compact (x#xs) =

TimesR [x] x xs (compact xs) (Identity x) (ill-deduct-identity-compact xs)

lemma ill-deduct-identity-compact [simp]:
ill-conclusion (ill-deduct-identity-compact G) = Sequent G (compact G)
ill-deduct-wf (ill-deduct-identity-compact G)
ill-deduct-premises (ill-deduct-identity-compact G) = []

〈proof 〉

Implication in the compacted-to-uncompacted direction
fun ill-deduct-antecedents-from-times

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
⇒ (′a, ′l) ill-deduct

— X @ [compact G] @ Y ` c =⇒ X @ G @ Y ` c
where ill-deduct-antecedents-from-times X G Y P =

Cut G (compact G) X Y (consequent P) (ill-deduct-identity-compact G) P

lemma ill-deduct-antecedents-from-times [simp]:
ill-conclusion (ill-deduct-antecedents-from-times X G Y P) =

Sequent (X @ G @ Y) (consequent P)
[[antecedents P = X @ [compact G] @ Y ; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-antecedents-from-times X G Y P)
ill-deduct-premises (ill-deduct-antecedents-from-times X G Y P)
= ill-deduct-premises P
〈proof 〉

Finally, we establish the deep embedding of list-based exchange. This cor-
responds to the following theorem in the shallow embedding of deductions:
?G @ ?A @ ?B @ ?D ` ?c =⇒ ?G @ ?B @ ?A @ ?D ` ?c.
fun ill-deduct-exchange-list

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a
ill-prop

32

⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct
where ill-deduct-exchange-list G A B D c P =

ill-deduct-antecedents-from-times G B (A @ D)
(ill-deduct-antecedents-from-times (G @ [compact B]) A D
(Exchange G (compact A) (compact B) D c
(ill-deduct-antecedents-to-times (G @ [compact A]) B D
(ill-deduct-antecedents-to-times G A (B @ D) P))))

lemma ill-deduct-exchange-list [simp]:
ill-conclusion (ill-deduct-exchange-list G A B D c P) = Sequent (G @ B @ A @

D) c
[[ill-deduct-wf P; antecedents P = G @ A @ B @ D; consequent P = c]] =⇒

ill-deduct-wf (ill-deduct-exchange-list G A B D c P)
ill-deduct-premises (ill-deduct-exchange-list G A B D c P) = ill-deduct-premises

P
〈proof 〉

end

References

[1] G. M. Bierman. On intuitionistic linear logic. Technical Report UCAM-
CL-TR-346, University of Cambridge, Computer Laboratory, Aug. 1994.

[2] S. Kalvala and V. De Paiva. Mechanizing linear logic in Isabelle. In
In 10th International Congress of Logic, Philosophy and Methodology of
Science, volume 24. Citeseer, 1995.

33

	Intuitionistic Linear Logic
	Deep Embedding of Propositions
	Shallow Embedding of Deductions
	Proposition Equivalence
	Useful Rules
	Compacting Lists of Propositions
	Multiset Exchange
	Additional Lemmas
	Deep Embedding of Deductions
	Semantics
	Soundness
	Completeness
	Derived Deductions
	Compacting Equivalences
	Premise Substitution
	List-Based Exchange

