
Intuitionistic Linear Logic

Filip Smola

November 28, 2024

Contents
1 Intuitionistic Linear Logic 1

1.1 Deep Embedding of Propositions 2
1.2 Shallow Embedding of Deductions 2
1.3 Proposition Equivalence . 3
1.4 Useful Rules . 4
1.5 Compacting Lists of Propositions 9
1.6 Multiset Exchange . 14
1.7 Additional Lemmas . 17
1.8 Deep Embedding of Deductions 19

1.8.1 Semantics . 20
1.8.2 Soundness . 24
1.8.3 Completeness . 25
1.8.4 Derived Deductions 30
1.8.5 Compacting Equivalences 39
1.8.6 Premise Substitution 42
1.8.7 List-Based Exchange 45

1 Intuitionistic Linear Logic
theory ILL

imports
Main
HOL−Combinatorics.Permutations

begin

Note that in this theory we often use procedural proofs rather than struc-
tured ones. We find these to be more informative about how the basic rules
of the logic are used when compared to collecting all the rules in one call of
an automated method.

1

1.1 Deep Embedding of Propositions

We formalise ILL propositions as a datatype, parameterised by the type of
propositional variables. The propositions are:

• Propositional variables

• Times of two terms, with unit 1

• With of two terms, with unit >

• Plus of two terms, with unit 0

• Linear implication, with no unit

• Exponential of a term

datatype ′a ill-prop =
Prop ′a

| Times ′a ill-prop ′a ill-prop (infixr ⊗ 90) | One (1)
| With ′a ill-prop ′a ill-prop (infixr & 90) | Top (>)
| Plus ′a ill-prop ′a ill-prop (infixr ⊕ 90) | Zero (0)
| LImp ′a ill-prop ′a ill-prop (infixr B 90)

— Note that Isabelle font does not include (, so we use B instead
| Exp ′a ill-prop (! 1000)

1.2 Shallow Embedding of Deductions

See Bierman [1] or Kalvala and de Paiva [2] for an overview of valid sequents
in ILL.
We first formalise ILL deductions as a relation between a list of proposi-
tions (anteceents) and a single proposition (consequent). This constitutes a
shallow embedding of deductions (with a deep embedding to follow).
In using a list, as opposed to a multiset, we make the exchange rule explicit.
Furthermore, we take as primitive a rule exchanging two propositions and
later derive both the corresponding rule for lists of propositions as well as
for multisets.
The specific formulation of rules we use here includes lists in more posi-
tions than is traditionally done when presenting ILL. This is inspired by
the recommendations of Kalvala and de Paiva, intended to improve pattern
matching and automation.
inductive sequent :: ′a ill-prop list ⇒ ′a ill-prop ⇒ bool (infix ` 60)

where
identity: [a] ` a

| exchange: [[G @ [a] @ [b] @ D ` c]] =⇒ G @ [b] @ [a] @ D ` c
| cut: [[G ` b; D @ [b] @ E ` c]] =⇒ D @ G @ E ` c
| timesL: G @ [a] @ [b] @ D ` c =⇒ G @ [a ⊗ b] @ D ` c

2

| timesR: [[G ` a; D ` b]] =⇒ G @ D ` a ⊗ b
| oneL: G @ D ` c =⇒ G @ [1] @ D ` c
| oneR: [] ` 1
| limpL: [[G ` a; D @ [b] @ E ` c]] =⇒ G @ D @ [a B b] @ E ` c
| limpR: G @ [a] @ D ` b =⇒ G @ D ` a B b
| withL1: G @ [a] @ D ` c =⇒ G @ [a & b] @ D ` c
| withL2: G @ [b] @ D ` c =⇒ G @ [a & b] @ D ` c
| withR: [[G ` a; G ` b]] =⇒ G ` a & b
| topR: G ` >
| plusL: [[G @ [a] @ D ` c; G @ [b] @ D ` c]] =⇒ G @ [a ⊕ b] @ D ` c
| plusR1: G ` a =⇒ G ` a ⊕ b
| plusR2: G ` b =⇒ G ` a ⊕ b
| zeroL: G @ [0] @ D ` c
| weaken: G @ D ` b =⇒ G @ [!a] @ D ` b
| contract: G @ [!a] @ [!a] @ D ` b =⇒ G @ [!a] @ D ` b
| derelict: G @ [a] @ D ` b =⇒ G @ [!a] @ D ` b
| promote: map Exp G ` a =⇒ map Exp G ` !a

lemmas [simp] = sequent.identity

1.3 Proposition Equivalence

Two propositions are equivalent when each can be derived from the other
definition ill-eq :: ′a ill-prop ⇒ ′a ill-prop ⇒ bool (infix a` 60)

where a a` b = ([a] ` b ∧ [b] ` a)

We show that this is an equivalence relation
lemma ill-eq-refl [simp]:

a a` a
by (simp add: ill-eq-def)

lemma ill-eq-sym [sym]:
a a` b =⇒ b a` a
by (smt ill-eq-def)

lemma ill-eq-tran [trans]:
[[a a` b; b a` c]] =⇒ a a` c
using cut[of - - Nil Nil] by (simp add: ill-eq-def) blast

lemma equivp ill-eq
by (metis equivpI ill-eq-refl ill-eq-sym ill-eq-tran reflp-def sympI transp-def)

lemma ill-eqI [intro]:
[a] ` b =⇒ [b] ` a =⇒ a a` b
using ill-eq-def by blast

lemma ill-eqE [elim]:
a a` b =⇒ ([a] ` b =⇒ [b] ` a =⇒ R) =⇒ R
by (simp add: ill-eq-def)

3

lemma ill-eq-lr : a a` b =⇒ [a] ` b
and ill-eq-rl: a a` b =⇒ [b] ` a
by (simp-all add: ill-eq-def)

1.4 Useful Rules

We can derive a number of useful rules from the defining ones, especially
their specific instantiations.
Particularly useful is an instantiation of the Cut rule that makes it tran-
sitive, allowing us to use equational reasoning (also and finally) to build
derivations using single propositions
lemma simple-cut [trans]:
[[G ` b; [b] ` c]] =⇒ G ` c
using cut[of - - Nil Nil] by simp

lemma
shows sequent-Nil-left: [] @ G ` c =⇒ G ` c

and sequent-Nil-right: G @ [] ` c =⇒ G ` c
by simp-all

lemma simple-exchange:
[[[a, b] ` c]] =⇒ [b, a] ` c
using exchange[of Nil - - Nil] by simp

lemma simple-timesL:
[[[a] @ [b] ` c]] =⇒ [a ⊗ b] ` c
using timesL[of Nil] by simp

lemma simple-withL1: [[[a] ` c]] =⇒ [a & b] ` c
and simple-withL2: [[[b] ` c]] =⇒ [a & b] ` c
using withL1[of Nil] withL2[of Nil] by simp-all

lemma simple-plusL:
[[[a] ` c; [b] ` c]] =⇒ [a ⊕ b] ` c
using plusL[of Nil] by simp

lemma simple-weaken:
[!a] ` 1
using weaken[of Nil] oneR by simp

lemma simple-derelict:
[[[a] ` b]] =⇒ [!a] ` b
using derelict[of Nil] by simp

lemmas simple-promote = promote[of [-], unfolded list.map]

lemma promote-and-derelict:

4

assumes G ` c
shows map Exp G ` !c

proof −
have ind: map Exp (take n G) @ drop n G ` c if n: n ≤ length G for n

using n
proof (induct n)

case 0
then show ?case using assms by simp

next
case (Suc m)
moreover have nth G m # drop (Suc m) G = drop m G

using Suc Cons-nth-drop-Suc Suc-le-lessD by blast
moreover have map Exp (take m G) @ [! (nth G m)] = map Exp (take (Suc

m) G)
by (simp add: Suc Suc-le-lessD take-Suc-conv-app-nth)

ultimately show ?case
using derelict[of map Exp (take m G) nth G m drop (Suc m) G c]
by simp (metis append.assoc append-Cons append-Nil)

qed

have map Exp G ` c
using ind[of length G] by simp

then show ?thesis
by (rule promote)

qed

lemmas dereliction = simple-derelict[OF identity]

lemma simple-contract:
[[[!a] @ [!a] ` b]] =⇒ [!a] ` b
using contract[of Nil] by simp

lemma duplicate:
[!a] ` !a ⊗ !a
using identity simple-contract timesR by blast

lemma unary-promote:
[[[!g] ` a]] =⇒ [!g] ` !a
by (metis (mono-tags, opaque-lifting) promote list.simps(8) list.simps(9))

lemma tensor :
[[[a] ` b; [c] ` d]] =⇒ [a ⊗ c] ` b ⊗ d
using simple-timesL timesR by blast

lemma ill-eq-tensor :
a a` b =⇒ x a` y =⇒ a ⊗ x a` b ⊗ y
by (simp add: ill-eq-def tensor)

lemma times-assoc:

5

[(a ⊗ b) ⊗ c] ` a ⊗ (b ⊗ c)
proof −

have [a] @ [b] @ [c] ` a ⊗ (b ⊗ c)
by (rule timesR[OF identity timesR, OF identity identity])

then have [a ⊗ b] @ [c] ` a ⊗ (b ⊗ c)
by (metis timesL append-self-conv2)

then show ?thesis
by (simp add: simple-timesL)

qed

lemma times-assoc ′:
[a ⊗ (b ⊗ c)] ` (a ⊗ b) ⊗ c

proof −
have ([a] @ [b]) @ [c] ` (a ⊗ b) ⊗ c

by (rule timesR[OF timesR identity, OF identity identity])
then have [a] @ [b] @ [c] ` (a ⊗ b) ⊗ c

by simp
then show ?thesis

using timesL[of [a] b c Nil] by (simp add: simple-timesL)
qed

lemma simple-limpR:
[a] ` b =⇒ [1] ` a B b
using limpR[of Nil - [1]] oneL[of [a] Nil b] by simp

lemma simple-limpR-exp:
[a] ` b =⇒ [1] ` !(a B b)

proof −
assume [a] ` b
then have [] ` a B b

by (rule simple-cut[of Nil 1 a B b, OF oneR simple-limpR])
then have [] ` !(a B b)

using promote[of Nil a B b] by simp
then show ?thesis

using oneL[of Nil] by simp
qed

lemma limp-eval:
[a ⊗ a B b] ` b
using limpL[of [a] a Nil] simple-timesL[of a] by simp

lemma timesR-intro:
[[G ` a; D ` b; G @ D = X]] =⇒ X ` a ⊗ b
using timesR by metis

lemma explimp-eval:
[a ⊗ !(a B b)] ` b ⊗ !(a B b)
apply (rule simple-timesL)
apply (subst (2) append-Nil2[symmetric], subst append-assoc)

6

apply (rule contract)
apply (subst append-Nil2, subst append-assoc[symmetric])
apply (rule timesR)

apply (subst (2) append-Nil2[symmetric], subst append-assoc)
apply (rule derelict)
apply (subst (2) append-Nil[symmetric], subst append-assoc)
apply (rule limpL)
apply (rule identity)

apply (subst append-Nil2, subst append-Nil)
apply (rule identity)

apply (rule identity)
done

lemma plus-progress:
[[[a] ` b; [c] ` d]] =⇒ [a ⊕ c] ` b ⊕ d
using plusR1 plusR2 simple-plusL by blast

The following set of rules are based on Proposition 1 of Bierman [1]. Where
there is a direct correspondence, we include a comment indicating the specific
item in the proposition.
lemma swap: — Item 1
[a ⊗ b] ` b ⊗ a

proof −
have [b] @ [a] ` b ⊗ a

by (rule timesR[OF identity identity])
then have [a] @ [b] ` b ⊗ a

using simple-exchange by force
then show ?thesis

using simple-timesL by simp
qed

lemma unit: — Item 2
[a ⊗ 1] ` a
using oneL[of [a]] by (simp add: simple-timesL)

lemma unit ′: — Item 2
[a] ` a ⊗ 1
using timesR[of [a] a Nil 1] oneR by simp

lemma with-swap: — Item 3
[a & b] ` b & a
using withL2[of Nil b] withL1[of Nil a] by (simp add: withR)

lemma with-top: — Item 4
a a` a & >

proof
show [a & >] ` a

7

by (simp add: simple-withL1)
next

show [a] ` a & >
by (rule withR[OF identity topR])

qed

lemma plus-swap: — Item 5
[a ⊕ b] ` b ⊕ a
using plusL[of Nil a] by (simp add: plusR1 plusR2)

lemma plus-zero: — Item 6
a a` a ⊕ 0

proof
show [a ⊕ 0] ` a

using plusL[of Nil a] zeroL[of Nil - a] by simp
next

show [a] ` a ⊕ 0
by (simp add: plusR1)

qed

lemma with-distrib: — Item 7
[a ⊗ (b & c)] ` (a ⊗ b) & (a ⊗ c)
by (intro withR tensor identity simple-withL1 simple-withL2)

lemma plus-distrib: — Item 8
[a ⊗ (b ⊕ c)] ` (a ⊗ b) ⊕ (a ⊗ c)
using timesR[OF identity identity] plusL[of [a] b Nil - c]
by (metis append-Cons append-Nil plusR1 plusR2 simple-timesL)

lemma plus-distrib ′: — Item 9
[(a ⊗ b) ⊕ (a ⊗ c)] ` a ⊗ (b ⊕ c)
by (simp add: simple-plusL tensor plusR1 plusR2)

lemma times-exp: — Item 10
[!a ⊗ !b] ` !(a ⊗ b)

proof −
have [a, b] ` a ⊗ b

using timesR[of [a]] by simp
then have [!a, !b] ` a ⊗ b

by (metis derelict append-Cons append-Nil)
then have [!a, !b] ` !(a ⊗ b)

by (metis (mono-tags, opaque-lifting) promote list.simps(8) list.simps(9))
then show ?thesis

by (simp add: simple-timesL)
qed

lemma one-exp: — Item 10
1 a` !(1)
by (meson ill-eq-def simple-cut simple-limpR-exp simple-weaken unary-promote)

8

lemma — Item 11
[!a] ` 1 & a & (!a ⊗ !a)
by (metis identity withR simple-weaken simple-derelict simple-contract timesR)

lemma — Item 12
!a ⊗ !b a` !(a & b)

proof
show [!a ⊗ !b] ` !(a & b)
proof −

have [!a, !b] ` a & b
proof (rule withR)

show [! a, ! b] ` a
using weaken[of [!a]] dereliction[of a] by simp

next
show [! a, ! b] ` b

using weaken[of [!b]] dereliction[of b] simple-exchange[of !b !a] by simp
qed
then show ?thesis

using promote simple-timesL
by (metis (mono-tags, opaque-lifting) append-Cons append-Nil list.simps(8)

list.simps(9))
qed

next
show [!(a & b)] ` !a ⊗ !b
proof (rule simple-contract, rule timesR)

show [! (a & b)] ` ! a
by (simp add: unary-promote simple-derelict simple-withL1)

next
show [! (a & b)] ` ! b

by (simp add: unary-promote simple-derelict simple-withL2)
qed

qed

lemma — Item 13
1 a` !(>)

proof
show [1] ` !(>)

using simple-cut simple-limpR-exp topR unary-promote by blast
next

show [!(>)] ` 1
by (rule simple-weaken)

qed

1.5 Compacting Lists of Propositions

Compacting transforms a list of propositions into a single proposition us-
ing the (⊗) operator, taking care to not expand the size when given a list
with only one element. This operation allows us to link the meta-level an-

9

tecedent concatenation with the object-level (⊗) operator, turning a list of
antecedents into a single proposition with the same power in proofs.
function compact :: ′a ill-prop list ⇒ ′a ill-prop

where
xs 6= [] =⇒ compact (x # xs) = x ⊗ compact xs

| xs = [] =⇒ compact (x # xs) = x
| compact [] = 1
by (metis list.exhaust) simp-all

termination by (relation measure length, auto)

For code generation we use an if statement
lemma compact-code [code]:

compact [] = 1
compact (x # xs) = (if xs = [] then x else x ⊗ compact xs)
by simp-all

Two lists of propositions that compact to the same result must be equal if
they do not include any (⊗) or 1 elements. We show first that they must
be equally long and then that they must be equal.
lemma compact-eq-length:

assumes
∧

a. a ∈ set xs =⇒ a 6= 1
and

∧
a. a ∈ set ys =⇒ a 6= 1

and
∧

a u v. a ∈ set xs =⇒ a 6= u ⊗ v
and

∧
a u v. a ∈ set ys =⇒ a 6= u ⊗ v

and compact xs = compact ys
shows length xs = length ys

using assms
proof (induct xs arbitrary: ys)

case Nil
then show ?case
by simp (metis ill-prop.simps(24) list.set-intros(1) compact.elims compact.simps(2))

next
case xs: (Cons a xs)
then show ?case
proof (cases ys)

case Nil
then have False

using xs by simp (metis compact.simps(1,2) ill-prop.distinct(17))
then show ?thesis

by metis
next

case (Cons a list)
then show ?thesis

using xs by simp (metis ill-prop.inject(2) compact.simps(1,2))
qed

qed

lemma compact-eq:

10

assumes
∧

a. a ∈ set xs =⇒ a 6= 1
and

∧
a. a ∈ set ys =⇒ a 6= 1

and
∧

a u v. a ∈ set xs =⇒ a 6= u ⊗ v
and

∧
a u v. a ∈ set ys =⇒ a 6= u ⊗ v

and compact xs = compact ys
shows xs = ys

proof −
have length xs = length ys

using assms by (rule compact-eq-length)
then show ?thesis

using assms
proof (induct xs arbitrary: ys)

case Nil
then show ?case by simp

next
case xs: (Cons a xs)
then show ?case
proof (cases ys)

case Nil
then show ?thesis using xs by simp

next
case (Cons a list)
then show ?thesis

using xs by simp (metis ill-prop.inject(2) compact.simps(1,2))
qed

qed
qed

Compacting to 1 means the list of propositions was either empty or just
that
lemma compact-eq-oneE :

assumes compact xs = 1
obtains xs = [] | xs = [1]
using assms

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by simp (metis compact.simps(1,2) ill-prop.distinct(17))

qed

Compacting to (⊗) means the list of propositions was either just that or
started with the left-hand proposition and the rest compacts to the right-
hand proposition
lemma compact-eq-timesE :

assumes compact xs = x ⊗ y
obtains xs = [x ⊗ y] | ys where xs = x # ys and compact ys = y
using assms

11

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by simp (metis compact.simps(1,2) ill-prop.inject(2))

qed

Compacting to anything but 1 or (⊗) means the list was just that
lemma compact-eq-otherD:

assumes compact xs = a
and

∧
x y. a 6= x ⊗ y

and a 6= 1
shows xs = [a]

using assms
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by simp (metis compact-code(2))

qed

For any list of propositions, we can derive its compacted form from it
lemma identity-list:

G ` (compact G)
proof (induction G rule: induct-list012)

case 1 then show ?case by (simp add: oneR)
next case (2 a) then show ?case by simp
next case (3 a b G) then show ?case using timesR[OF identity] by simp
qed

For any valid sequent, we can compact any sublist of its antecedents without
invalidating it
lemma compact-split-antecedents:

assumes X @ G @ Y ` c
shows n ≤ length G =⇒ X @ take (length G − n) G @ [compact (drop (length

G − n) G)] @ Y ` c
proof (induct n)

case 0
then show ?case

using oneL[of X @ G] assms by simp
next

case (Suc n)
then obtain as x bs where G: G = as @ [x] @ bs and bs: length bs = n
by (metis Suc-length-conv append-Cons append-Nil append-take-drop-id diff-diff-cancel

length-drop)

have X @ take (length G − n) G @ [compact (drop (length G − n) G)] @ Y ` c

12

using Suc by simp
then show ?case

using timesL[of X @ as x compact bs Y c, simplified] G Suc.prems assms bs
using Suc-diff-le Suc-leD Suc-le-D append.assoc append-Cons append-Nil ap-

pend-eq-append-conv
append-take-drop-id butlast-snoc diff-Suc-Suc diff-diff-cancel diff-less

length-drop
take-hd-drop compact.simps(1) compact.simps(2) zero-less-Suc

by (smt (verit, ccfv-threshold))
qed

More generally, compacting a sublist of antecedents does not affect sequent
validity
lemma compact-antecedents:
(X @ [compact G] @ Y ` c) = (X @ G @ Y ` c)

proof
assume X @ [compact G] @ Y ` c
then show X @ G @ Y ` c

using identity-list cut by blast
next

assume X @ G @ Y ` c
then show X @ [compact G] @ Y ` c

using compact-split-antecedents[where n = length G] by fastforce
qed

Times with a single proposition can be absorbed into compacting up to
proposition equivalence
lemma times-equivalent-cons:

a ⊗ compact b a` compact (a # b)
proof (cases b)

case Nil then show ?thesis by (simp add: ill-eq-def unit unit ′)
next

case (Cons a list) then show ?thesis by simp
qed

Times of compacted lists is equivalent to compacting the appended lists
lemma times-equivalent-append:

compact a ⊗ compact b a` compact (a @ b)
proof (induct a)

case Nil
then show ?case

using simple-cut[OF swap unit] simple-cut[OF unit ′ swap] ill-eqI by (simp,
blast)
next

case assm: (Cons a1 a2)
have compact (a1 # a2) ⊗ compact b a` (a1 ⊗ compact a2) ⊗ compact b

by (simp add: times-equivalent-cons ill-eq-sym ill-eq-tensor)
also have ... a` a1 ⊗ (compact a2 ⊗ compact b)

13

by (simp add: times-assoc times-assoc ′ ill-eqI)
also have ... a` a1 ⊗ compact (a2 @ b)

using ill-eq-tensor [OF - assm] by simp
finally show ?case

by (simp add: ill-eq-tran times-equivalent-cons)
qed

Any number of single-antecedent sequents can be compacted with the rule
[[[?a] ` ?b; [?c] ` ?d]] =⇒ [?a ⊗ ?c] ` ?b ⊗ ?d
lemma compact-sequent:
∀ x ∈ set xs. [f x] ` g x =⇒ [compact (map f xs)] ` compact (map g xs)

proof (induct xs rule: induct-list012)
case 1 then show ?case by simp

next case (2 x) then show ?case by simp
next case (3 x y zs) then show ?case by (simp add: tensor)
qed

Any number of equivalences can be compacted together
lemma compact-equivalent:
∀ x ∈ set xs. f x a` g x =⇒ compact (map f xs) a` compact (map g xs)
by (simp add: ill-eqI [OF compact-sequent compact-sequent] ill-eq-lr ill-eq-rl)

1.6 Multiset Exchange

Recall that our (`) definition uses explicit single-proposition exchange. We
now derive a rule for exchanging lists of propositions and then a rule that
uses multisets to disregard the antecedent order entirely.

We can exchange lists of propositions by stepping through compact
lemma exchange-list:

G @ A @ B @ D ` c =⇒ G @ B @ A @ D ` c
proof −

assume G @ A @ B @ D ` c
then have G @ [compact A] @ B @ D ` c

using compact-antecedents by force
then have G @ [compact A] @ [compact B] @ D ` c

using compact-antecedents[where X = G @ [compact A] and G = B] by force
then have G @ [compact B] @ [compact A] @ D ` c

using exchange by simp
then have G @ [compact B] @ A @ D ` c

using compact-antecedents[where X = G @ [compact B] and G = A] by force
then show ?thesis

using compact-antecedents by force
qed

lemma simple-exchange-list:
[[A @ B ` c]] =⇒ B @ A ` c
using exchange-list[of Nil - - Nil] by simp

14

By applying the list exchange rule multiple times, the lists do not need to
be adjacent
lemma exchange-separated:

G @ A @ X @ B @ D ` c =⇒ G @ B @ X @ A @ D ` c
by (metis append.assoc exchange-list)

Single transposition in the antecedents does not invalidate a sequent
lemma exchange-transpose:

assumes G ` c
and a ∈ {..<length G}
and b ∈ {..<length G}

shows permute-list (transpose a b) G ` c
proof −

consider a < b | a = b | b < a
using not-less-iff-gr-or-eq by blast

moreover { fix x y
assume x-in [simp]: x ∈ {..<length G}

and y-in [simp]: y ∈ {..<length G}
and xy [arith]: x < y

have G = take x G @ drop x G
by simp

also have ... = take x G @ nth G x # drop (Suc x) G
by simp (metis x-in id-take-nth-drop lessThan-iff)

also have ... = take x G @ nth G x # take (y − Suc x) (drop (Suc x) G) @
drop y G

by simp (metis Suc-leI add.commute append-take-drop-id drop-drop le-add-diff-inverse
xy)

also have
... = take x G @ nth G x # take (y − Suc x) (drop (Suc x) G) @ nth G y #

drop (Suc y) G
by simp (metis Cons-nth-drop-Suc y-in lessThan-iff)

finally have G:
G = take x G @ nth G x # take (y − Suc x) (drop (Suc x) G) @ nth G y #

drop (Suc y) G .

have take x G @ [nth G y] @ take (y − Suc x) (drop (Suc x) G) @ [nth G x]
@ drop (Suc y) G ` c

by (rule exchange-separated, simp add: G[symmetric] assms(1))
moreover have

permute-list (transpose x y) G
= take x G @ nth G y # take (y − Suc x) (drop (Suc x) G) @ nth G x #

drop (Suc y) G
unfolding list-eq-iff-nth-eq drop-Suc

proof safe
show

length (permute-list (Transposition.transpose x y) G)
= length (take x G @ nth G y # take (y − Suc x) (drop x (tl G)) @ nth G

x # drop y (tl G))

15

using y-in by simp
next

fix i
assume i < length (permute-list (Transposition.transpose x y) G)
then show nth (permute-list (Transposition.transpose x y) G) i =

nth (take x G @ nth G y # take (y − Suc x) (drop x (tl G)) @ nth G x
drop y (tl G)) i

by (simp add: permute-list-def transpose-def nth-append min-diff nth-tl)
qed
ultimately have permute-list (transpose x y) G ` c

by simp
}
ultimately show ?thesis

using assms by (metis permute-list-id transpose-commute transpose-same)
qed

More generally, by transposition being involutive, a single antecedent trans-
position does not affect sequent validity
lemma exchange-permute-eq:

assumes a ∈ {..<length G}
and b ∈ {..<length G}

shows permute-list (transpose a b) G ` c = G ` c
using assms exchange-transpose transpose-comp-involutory
by (metis length-permute-list permute-list-compose permute-list-id permutes-swap-id)

Validity of a sequent is not affected by replacing any antecedent sublist with
a list that represents the same multiset. This is because lists representing
equal multisets are connected by a permutation, which is a sequence of
transpositions and as such does not affect validity.
lemma exchange-mset:

mset A = mset B =⇒ G @ A @ D ` c = G @ B @ D ` c
proof −

{ fix X Y :: ′a ill-prop list
assume X ` c and mset X = mset Y
then have Y ` c
proof (elim mset-eq-permutation)

fix p
assume p permutes {..<length Y }
moreover have finite {..<length Y }

by simp
moreover assume X ` c and permute-list p Y = X
ultimately show Y ` c
proof (induct arbitrary: X rule: permutes-rev-induct)

case id then show ?case by simp
next

case (swap a b p)
then show ?case

by (metis permute-list-compose permutes-swap-id length-permute-list
exchange-permute-eq)

16

qed
qed

} note base = this

show mset A = mset B =⇒ G @ A @ D ` c = G @ B @ D ` c
by (standard ; simp add: base)

qed

1.7 Additional Lemmas

These rules are based on Figure 2 of Kalvala and de Paiva [2], labelled by
them as “additional rules for proof search”. We present them out of order
because we use some in the proofs of the others, but annotate them with
the original labels as comments.
lemma ill-mp1: — mp1

assumes A @ [b] @ B @ C ` c
shows A @ [a] @ B @ [a B b] @ C ` c

proof −
have [a] @ [a B b] ` b

using limpL[of [a] a Nil] by simp
then have A @ [a] @ [a B b] @ B @ C ` c

using assms cut[of - b A B @ C c] by force
then show ?thesis

using exchange-list[of A @ [a] [a B b]] by simp
qed

lemmas simple-mp1 = ill-mp1[of Nil - Nil Nil, simplified, OF identity]

lemma — raa1

G @ [!b] @ D @ [!b B 0] @ E ` a
using zeroL ill-mp1 by blast

lemma ill-mp2: — mp2

assumes A @ [b] @ B @ C ` c
shows A @ [a B b] @ B @ [a] @ C ` c

using ill-mp1[OF assms] exchange-list by (metis append.assoc)

lemmas simple-mp2 = ill-mp2[of Nil - Nil Nil, simplified, OF identity]

lemma — raa2

G @ [!b B 0] @ D @ [!b] @ P ` A
using zeroL ill-mp2 by blast

lemma — ⊗-&
assumes G @ [(!a B 0) & (!b B 0)] @ D ` c

shows G @ [!(!(a ⊕ b) B 0)] @ D ` c
proof −

note exp-injL = unary-promote[OF simple-derelict, OF plusR1[OF identity, of a

17

b]]
and exp-injR = unary-promote[OF simple-derelict, OF plusR2[OF identity, of

b a]]
have [!(!(a ⊕ b) B 0)] ` (!a B 0) & (!b B 0)

apply (rule withR ; rule simple-derelict , rule limpR[of Nil, simplified])
apply (rule cut[OF exp-injL, of Nil, simplified], rule simple-mp1)
apply (rule cut[OF exp-injR, of Nil, simplified], rule simple-mp1)

done
then show ?thesis

using assms cut by blast
qed

lemma — &-lemma
assumes G @ [!a, !b] @ D ` c

shows G @ [!(a & b)] @ D ` c
proof −

have as: [!(a & b)] ` !a
apply (rule unary-promote)
apply (rule simple-derelict)
by (rule simple-withL1[OF identity])

have bs: [!(a & b)] ` !b
apply (rule unary-promote)
apply (rule simple-derelict)
by (rule simple-withL2[OF identity])

show ?thesis
apply (rule contract)
using cut[OF as, of G [!b] @ D c] cut[OF bs, of G @ [!(a & b)] D c] assms
by simp

qed

lemma — (L-lemma
assumes G @ D ` a
shows G @ [!(a B b)] @ D ` b
apply (rule derelict)
using exchange-list[of G D [a B b] Nil b, simplified]

limpL[OF assms, of Nil b Nil b, simplified]
by simp

lemma — (R-lemma
assumes [a, !a] @ G ` b
shows G ` !a B b
apply (rule limpR[of - - Nil, simplified])
apply (rule exchange-list[of Nil [!a] - Nil, simplified])
apply (rule contract[of Nil, simplified])
apply (rule derelict[of Nil, simplified])
using assms by simp

lemma — a-not-a
assumes G @ [!a B 0] @ D ` b

18

shows G @ [!a B (!a B 0)] @ D ` b
proof −

have [!a B (!a B 0)] ` !a B 0
apply (rule limpR[of - - Nil, simplified])
apply (rule contract[of - - Nil, simplified])
apply simp
apply (rule ill-mp2[of Nil - Nil [!a], simplified])
by (rule simple-mp2)

then show ?thesis
using cut[OF - assms] by blast

qed

end
theory Proof

imports ILL
begin

1.8 Deep Embedding of Deductions

To directly manipulate ILL deductions themselves we deeply embed them as
a datatype. This datatype has a constructor to represent each introduction
rule of (`), with the ILL propositions and further deductions those rules
use as arguments. Additionally, it has a constructor to represent premises
(sequents assumed to be valid) which allow us to represent contingent de-
ductions.
The datatype is parameterised by two type variables:

• ′a represents the propositional variables for the contained ILL propo-
sitions, and

• ′l represents labels we associate with premises.

datatype (′a, ′l) ill-deduct =
Premise ′a ill-prop list ′a ill-prop ′l

| Identity ′a ill-prop
| Exchange ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct
| Cut ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct (′a, ′l) ill-deduct
| TimesL ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct
| TimesR ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct

(′a, ′l) ill-deduct
| OneL ′a ill-prop list ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct
| OneR
| LimpL ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop ′a ill-prop list

′a ill-prop (′a, ′l) ill-deduct (′a, ′l) ill-deduct
| LimpR ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct

19

| WithL1 ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop
(′a, ′l) ill-deduct

| WithL2 ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop
(′a, ′l) ill-deduct

| WithR ′a ill-prop list ′a ill-prop ′a ill-prop (′a, ′l) ill-deduct (′a, ′l) ill-deduct
| TopR ′a ill-prop list
| PlusL ′a ill-prop list ′a ill-prop ′a ill-prop ′a ill-prop list ′a ill-prop

(′a, ′l) ill-deduct (′a, ′l) ill-deduct
| PlusR1 ′a ill-prop list ′a ill-prop ′a ill-prop (′a, ′l) ill-deduct
| PlusR2 ′a ill-prop list ′a ill-prop ′a ill-prop (′a, ′l) ill-deduct
| ZeroL ′a ill-prop list ′a ill-prop list ′a ill-prop
| Weaken ′a ill-prop list ′a ill-prop list ′a ill-prop ′a ill-prop (′a, ′l) ill-deduct
| Contract ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct
| Derelict ′a ill-prop list ′a ill-prop ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct
| Promote ′a ill-prop list ′a ill-prop (′a, ′l) ill-deduct

1.8.1 Semantics

With every deduction we associate the antecedents and consequent of its
conclusion sequent
primrec antecedents :: (′a, ′l) ill-deduct ⇒ ′a ill-prop list

where
antecedents (Premise G c l) = G

| antecedents (Identity a) = [a]
| antecedents (Exchange G a b D c P) = G @ [b] @ [a] @ D
| antecedents (Cut G b D E c P Q) = D @ G @ E
| antecedents (TimesL G a b D c P) = G @ [a ⊗ b] @ D
| antecedents (TimesR G a D b P Q) = G @ D
| antecedents (OneL G D c P) = G @ [1] @ D
| antecedents (OneR) = []
| antecedents (LimpL G a D b E c P Q) = G @ D @ [a B b] @ E
| antecedents (LimpR G a D b P) = G @ D
| antecedents (WithL1 G a b D c P) = G @ [a & b] @ D
| antecedents (WithL2 G a b D c P) = G @ [a & b] @ D
| antecedents (WithR G a b P Q) = G
| antecedents (TopR G) = G
| antecedents (PlusL G a b D c P Q) = G @ [a ⊕ b] @ D
| antecedents (PlusR1 G a b P) = G
| antecedents (PlusR2 G a b P) = G
| antecedents (ZeroL G D c) = G @ [0] @ D
| antecedents (Weaken G D b a P) = G @ [!a] @ D
| antecedents (Contract G a D b P) = G @ [!a] @ D
| antecedents (Derelict G a D b P) = G @ [!a] @ D
| antecedents (Promote G a P) = map Exp G

primrec consequent :: (′a, ′l) ill-deduct ⇒ ′a ill-prop
where

consequent (Premise G c l) = c
| consequent (Identity a) = a

20

| consequent (Exchange G a b D c P) = c
| consequent (Cut G b D E c P Q) = c
| consequent (TimesL G a b D c P) = c
| consequent (TimesR G a D b P Q) = a ⊗ b
| consequent (OneL G D c P) = c
| consequent (OneR) = 1
| consequent (LimpL G a D b E c P Q) = c
| consequent (LimpR G a D b P) = a B b
| consequent (WithL1 G a b D c P) = c
| consequent (WithL2 G a b D c P) = c
| consequent (WithR G a b P Q) = a & b
| consequent (TopR G) = >
| consequent (PlusL G a b D c P Q) = c
| consequent (PlusR1 G a b P) = a ⊕ b
| consequent (PlusR2 G a b P) = a ⊕ b
| consequent (ZeroL G D c) = c
| consequent (Weaken G D b a P) = b
| consequent (Contract G a D b P) = b
| consequent (Derelict G a D b P) = b
| consequent (Promote G a P) = !a

We define a sequent datatype for presenting deduction tree conclusions,
deeply embedding (possibly invalid) sequents themselves.
Note: these are not used everywhere, separate antecedents and consequent
tend to work better for proof automation. For instance, the full conclusion
cannot be derived where only facts about antecedents are known.
datatype ′a ill-sequent = Sequent ′a ill-prop list ′a ill-prop

Validity of deeply embedded sequents is defined by the shallow (`) relation
primrec ill-sequent-valid :: ′a ill-sequent ⇒ bool

where ill-sequent-valid (Sequent a c) = a ` c

We set up a notation bundle to have infix ` for stand for the sequent
datatype and not the relation
bundle deep-sequent
begin
no-notation sequent (infix ` 60)
notation Sequent (infix ` 60)
end

context
includes deep-sequent

begin

With deeply embedded sequents we can define the conclusion of every de-
duction
primrec ill-conclusion :: (′a, ′l) ill-deduct ⇒ ′a ill-sequent

21

where
ill-conclusion (Premise G c l) = G ` c

| ill-conclusion (Identity a) = [a] ` a
| ill-conclusion (Exchange G a b D c P) = G @ [b] @ [a] @ D ` c
| ill-conclusion (Cut G b D E c P Q) = D @ G @ E ` c
| ill-conclusion (TimesL G a b D c P) = G @ [a ⊗ b] @ D ` c
| ill-conclusion (TimesR G a D b P Q) = G @ D ` a ⊗ b
| ill-conclusion (OneL G D c P) = G @ [1] @ D ` c
| ill-conclusion (OneR) = [] ` 1
| ill-conclusion (LimpL G a D b E c P Q) = G @ D @ [a B b] @ E ` c
| ill-conclusion (LimpR G a D b P) = G @ D ` a B b
| ill-conclusion (WithL1 G a b D c P) = G @ [a & b] @ D ` c
| ill-conclusion (WithL2 G a b D c P) = G @ [a & b] @ D ` c
| ill-conclusion (WithR G a b P Q) = G ` a & b
| ill-conclusion (TopR G) = G ` >
| ill-conclusion (PlusL G a b D c P Q) = G @ [a ⊕ b] @ D ` c
| ill-conclusion (PlusR1 G a b P) = G ` a ⊕ b
| ill-conclusion (PlusR2 G a b P) = G ` a ⊕ b
| ill-conclusion (ZeroL G D c) = G @ [0] @ D ` c
| ill-conclusion (Weaken G D b a P) = G @ [!a] @ D ` b
| ill-conclusion (Contract G a D b P) = G @ [!a] @ D ` b
| ill-conclusion (Derelict G a D b P) = G @ [!a] @ D ` b
| ill-conclusion (Promote G a P) = map Exp G ` !a

This conclusion is the same as what antecedents and consequent express
lemma ill-conclusionI [intro!]:

assumes antecedents P = G
and consequent P = c

shows ill-conclusion P = G ` c
using assms by (induction P) simp-all

lemma ill-conclusionE [elim!]:
assumes ill-conclusion P = G ` c
obtains antecedents P = G

and consequent P = c
using assms by (induction P) simp-all

lemma ill-conclusion-alt:
(ill-conclusion P = G ` c) = (antecedents P = G ∧ consequent P = c)
by blast

lemma ill-conclusion-antecedents: ill-conclusion P = G ` c =⇒ antecedents P =
G

and ill-conclusion-consequent: ill-conclusion P = G ` c =⇒ consequent P = c
by blast+

Every deduction is well-formed if all deductions it relies on are well-formed
and have the form required by the corresponding sequent rule.
primrec ill-deduct-wf :: (′a, ′l) ill-deduct ⇒ bool

22

where
ill-deduct-wf (Premise G c l) = True

| ill-deduct-wf (Identity a) = True
| ill-deduct-wf (Exchange G a b D c P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ [b] @ D ` c)
| ill-deduct-wf (Cut G b D E c P Q) =

(ill-deduct-wf P ∧ ill-conclusion P = G ` b ∧
ill-deduct-wf Q ∧ ill-conclusion Q = D @ [b] @ E ` c)

| ill-deduct-wf (TimesL G a b D c P) =
(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ [b] @ D ` c)

| ill-deduct-wf (TimesR G a D b P Q) =
(ill-deduct-wf P ∧ ill-conclusion P = G ` a ∧

ill-deduct-wf Q ∧ ill-conclusion Q = D ` b)
| ill-deduct-wf (OneL G D c P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ D ` c)
| ill-deduct-wf (OneR) = True
| ill-deduct-wf (LimpL G a D b E c P Q) =

(ill-deduct-wf P ∧ ill-conclusion P = G ` a ∧
ill-deduct-wf Q ∧ ill-conclusion Q = D @ [b] @ E ` c)

| ill-deduct-wf (LimpR G a D b P) =
(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ D ` b)

| ill-deduct-wf (WithL1 G a b D c P) =
(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ D ` c)

| ill-deduct-wf (WithL2 G a b D c P) =
(ill-deduct-wf P ∧ ill-conclusion P = G @ [b] @ D ` c)

| ill-deduct-wf (WithR G a b P Q) =
(ill-deduct-wf P ∧ ill-conclusion P = G ` a ∧

ill-deduct-wf Q ∧ ill-conclusion Q = G ` b)
| ill-deduct-wf (TopR G) = True
| ill-deduct-wf (PlusL G a b D c P Q) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ D ` c ∧
ill-deduct-wf Q ∧ ill-conclusion Q = G @ [b] @ D ` c)

| ill-deduct-wf (PlusR1 G a b P) =
(ill-deduct-wf P ∧ ill-conclusion P = G ` a)

| ill-deduct-wf (PlusR2 G a b P) =
(ill-deduct-wf P ∧ ill-conclusion P = G ` b)

| ill-deduct-wf (ZeroL G D c) = True
| ill-deduct-wf (Weaken G D b a P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ D ` b)
| ill-deduct-wf (Contract G a D b P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ [!a] @ [!a] @ D ` b)
| ill-deduct-wf (Derelict G a D b P) =

(ill-deduct-wf P ∧ ill-conclusion P = G @ [a] @ D ` b)
| ill-deduct-wf (Promote G a P) =

(ill-deduct-wf P ∧ ill-conclusion P = map Exp G ` a)

In some proofs phasing well-formedness in terms of antecedents and conse-
quent is more useful.
lemmas ill-deduct-wf-alt = ill-deduct-wf .simps[unfolded ill-conclusion-alt]

23

end

Premises of a deduction can be gathered recursively. Because every element
of the result is an instance of Premise, we represent them with the relevant
three parameters (antecedents, consequent, label).
primrec ill-deduct-premises

:: (′a, ′l) ill-deduct ⇒ (′a ill-prop list × ′a ill-prop × ′l) list
where

ill-deduct-premises (Premise G c l) = [(G, c, l)]
| ill-deduct-premises (Identity a) = []
| ill-deduct-premises (Exchange G a b D c P) = ill-deduct-premises P
| ill-deduct-premises (Cut G b D E c P Q) =

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (TimesL G a b D c P) = ill-deduct-premises P
| ill-deduct-premises (TimesR G a D b P Q) =

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (OneL G D c P) = ill-deduct-premises P
| ill-deduct-premises (OneR) = []
| ill-deduct-premises (LimpL G a D b E c P Q) =

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (LimpR G a D b P) = ill-deduct-premises P
| ill-deduct-premises (WithL1 G a b D c P) = ill-deduct-premises P
| ill-deduct-premises (WithL2 G a b D c P) = ill-deduct-premises P
| ill-deduct-premises (WithR G a b P Q) =

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (TopR G) = []
| ill-deduct-premises (PlusL G a b D c P Q) =

(ill-deduct-premises P @ ill-deduct-premises Q)
| ill-deduct-premises (PlusR1 G a b P) = ill-deduct-premises P
| ill-deduct-premises (PlusR2 G a b P) = ill-deduct-premises P
| ill-deduct-premises (ZeroL G D c) = []
| ill-deduct-premises (Weaken G D b a P) = ill-deduct-premises P
| ill-deduct-premises (Contract G a D b P) = ill-deduct-premises P
| ill-deduct-premises (Derelict G a D b P) = ill-deduct-premises P
| ill-deduct-premises (Promote G a P) = ill-deduct-premises P

1.8.2 Soundness

Deeply embedded deductions are sound with respect to (`) in the sense that
the conclusion of any well-formed deduction is a valid sequent if all of its
premises are assumed to be valid sequents. This is proven easily, because
our definitions stem from the (`) relation.
lemma ill-deduct-sound:

assumes ill-deduct-wf P
and

∧
a c l. (a, c, l) ∈ set (ill-deduct-premises P) =⇒ ill-sequent-valid (Sequent

a c)
shows ill-sequent-valid (ill-conclusion P)

24

using assms
proof (induct P)

case (Premise G c l) then show ?case by simp next
case (Identity x) then show ?case by simp next
case (Exchange x1a x2 x3 x4 x5 x6) then show ?case using exchange by simp

blast next
case (Cut x1a x2 x3 x4 x5 x6 x7) then show ?case using cut by simp blast

next
case (TimesL x1a x2 x3 x4 x5 x6) then show ?case using timesL by simp blast

next
case (TimesR x1a x2 x3 x4 x5 x6) then show ?case using timesR by simp blast

next
case (OneL x1a x1b x2 x3) then show ?case using oneL by simp blast next
case OneR then show ?case using oneR by simp next
case (LimpL x1a x2 x3 x4 x5 x6 x7) then show ?case using limpL by simp

blast next
case (LimpR x1a x2 x3 x4 x5) then show ?case using limpR by simp blast

next
case (WithL1 x1a x2 x3 x4 x5 x6) then show ?case using withL1 by simp blast

next
case (WithL2 x1a x2 x3 x4 x5 x6) then show ?case using withL2 by simp blast

next
case (WithR x1a x2 x3 x4 x5) then show ?case using withR by simp blast next
case (TopR x) then show ?case using topR by simp blast next
case (PlusL x1a x2 x3 x4 x5 x6 x7) then show ?case using plusL by simp blast

next
case (PlusR1 x1a x2 x3 x4) then show ?case using plusR1 by simp blast next
case (PlusR2 x1a x2 x3 x4) then show ?case using plusR2 by simp blast next
case (ZeroL x1a x2 x3) then show ?case using zeroL by simp blast next
case (Weaken x1a x2 x3 x4 x5) then show ?case using weaken by simp blast

next
case (Contract x1a x2 x3 x4 x5) then show ?case using contract by simp blast

next
case (Derelict x1a x2 x3 x4 x5) then show ?case using derelict by simp blast

next
case (Promote x1a x2 x3) then show ?case using promote by simp blast

qed

1.8.3 Completeness

Deeply embedded deductions are complete with respect to (`) in the sense
that for any valid sequent there exists a well-formed deduction with no
premises that has it as its conclusion. This is proven easily, because the
deduction nodes map directly onto the rules of the (`) relation.
lemma ill-deduct-complete:

assumes G ` c
shows ∃P. ill-conclusion P = Sequent G c ∧ ill-deduct-wf P ∧ ill-deduct-premises

P = []

25

using assms
proof (induction rule: sequent.induct)

case (identity a)
then show ?case

using ill-conclusion.simps(2) by fastforce
next

case (exchange G a b D c)
then obtain P :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent (G @ [a] @ [b] @ D) c ∧ ill-deduct-wf P ∧
ill-deduct-premises P = []

by blast
then have ill-deduct-wf (Exchange G a b D c P) and ill-deduct-premises

(Exchange G a b D c P) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(3))

next
case (cut G b D E c)
then obtain P Q :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent G b ∧ ill-deduct-wf P ∧ ill-deduct-premises
P = []

and ill-conclusion Q = Sequent (D @ [b] @ E) c ∧ ill-deduct-wf Q ∧
ill-deduct-premises Q = []

by blast
then have ill-deduct-wf (Cut G b D E c P Q) and ill-deduct-premises (Cut G b

D E c P Q) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(4))

next
case (timesL G a b D c)
then obtain P :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent (G @ [a] @ [b] @ D) c ∧ ill-deduct-wf P ∧
ill-deduct-premises P = []

by blast
then have ill-deduct-wf (TimesL G a b D c P) and ill-deduct-premises (TimesL

G a b D c P) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(5))

next
case (timesR G a D b)
then obtain P Q :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent G a ∧ ill-deduct-wf P ∧ ill-deduct-premises
P = []

and ill-conclusion Q = Sequent D b ∧ ill-deduct-wf Q ∧ ill-deduct-premises
Q = []

by blast
then have ill-deduct-wf (TimesR G a D b P Q) and ill-deduct-premises (TimesR

26

G a D b P Q) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(6))

next
case (oneL G D c)
then obtain P :: (′a, ′b) ill-deduct
where ill-conclusion P = Sequent (G @ D) c ∧ ill-deduct-wf P ∧ ill-deduct-premises

P = []
by blast

then have ill-deduct-wf (OneL G D c P) and ill-deduct-premises (OneL G D c
P) = []

by simp-all
then show ?case

by (meson ill-conclusion.simps(7))
next

case oneR
then show ?case

using ill-conclusion.simps(8) by fastforce
next

case (limpL G a D b E c)
then obtain P Q :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent G a ∧ ill-deduct-wf P ∧ ill-deduct-premises
P = []

and ill-conclusion Q = Sequent (D @ [b] @ E) c ∧ ill-deduct-wf Q ∧
ill-deduct-premises Q = []

by blast
then have ill-deduct-wf (LimpL G a D b E c P Q) and ill-deduct-premises

(LimpL G a D b E c P Q) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(9))

next
case (limpR G a D b)
then obtain P :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent (G @ [a] @ D) b ∧ ill-deduct-wf P ∧
ill-deduct-premises P = []

by blast
then have ill-deduct-wf (LimpR G a D b P) and ill-deduct-premises (LimpR G

a D b P) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(10))

next
case (withL1 G a D c b)
then obtain P :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent (G @ [a] @ D) c ∧ ill-deduct-wf P ∧
ill-deduct-premises P = []

by blast

27

then have ill-deduct-wf (WithL1 G a b D c P) and ill-deduct-premises (WithL1
G a b D c P) = []

by simp-all
then show ?case

by (meson ill-conclusion.simps(11))
next

case (withL2 G b D c a)
then obtain P :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent (G @ [b] @ D) c ∧ ill-deduct-wf P ∧
ill-deduct-premises P = []

by blast
then have ill-deduct-wf (WithL2 G a b D c P) and ill-deduct-premises (WithL2

G a b D c P) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(12))

next
case (withR G a b)
then obtain P Q :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent G a ∧ ill-deduct-wf P ∧ ill-deduct-premises
P = []

and ill-conclusion Q = Sequent G b ∧ ill-deduct-wf Q ∧ ill-deduct-premises
Q = []

by blast
then have ill-deduct-wf (WithR G a b P Q) and ill-deduct-premises (WithR G

a b P Q) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(13))

next
case (topR G)
then show ?case

using ill-conclusion.simps(14) by fastforce
next

case (plusL G a D c b)
then obtain P Q :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent (G @ [a] @ D) c ∧ ill-deduct-wf P ∧
ill-deduct-premises P = []

and ill-conclusion Q = Sequent (G @ [b] @ D) c ∧ ill-deduct-wf Q ∧
ill-deduct-premises Q = []

by blast
then have ill-deduct-wf (PlusL G a b D c P Q) and ill-deduct-premises (PlusL

G a b D c P Q) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(15))

next
case (plusR1 G a b)
then obtain P :: (′a, ′b) ill-deduct

28

where ill-conclusion P = Sequent G a ∧ ill-deduct-wf P ∧ ill-deduct-premises
P = []

by blast
then have ill-deduct-wf (PlusR1 G a b P) and ill-deduct-premises (PlusR1 G a

b P) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(16))

next
case (plusR2 G b a)
then obtain P :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent G b ∧ ill-deduct-wf P ∧ ill-deduct-premises
P = []

by blast
then have ill-deduct-wf (PlusR2 G a b P) and ill-deduct-premises (PlusR2 G a

b P) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(17))

next
case (zeroL G D c)
then show ?case

using ill-conclusion.simps(18) by fastforce
next

case (weaken G D b a)
then obtain P :: (′a, ′b) ill-deduct
where ill-conclusion P = Sequent (G @ D) b ∧ ill-deduct-wf P ∧ ill-deduct-premises

P = []
by blast

then have ill-deduct-wf (Weaken G D b a P) and ill-deduct-premises (Weaken
G D b a P) = []

by simp-all
then show ?case

by (meson ill-conclusion.simps(19))
next

case (contract G a D b)
then obtain P :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent (G @ [! a] @ [! a] @ D) b ∧ ill-deduct-wf P
∧ ill-deduct-premises P = []

by blast
then have ill-deduct-wf (Contract G a D b P) and ill-deduct-premises (Contract

G a D b P) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(20))

next
case (derelict G a D b)
then obtain P :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent (G @ [a] @ D) b ∧ ill-deduct-wf P ∧

29

ill-deduct-premises P = []
by blast

then have ill-deduct-wf (Derelict G a D b P) and ill-deduct-premises (Derelict
G a D b P) = []

by simp-all
then show ?case

by (meson ill-conclusion.simps(21))
next

case (promote G a)
then obtain P :: (′a, ′b) ill-deduct

where ill-conclusion P = Sequent (map Exp G) a ∧ ill-deduct-wf P ∧
ill-deduct-premises P = []

by blast
then have ill-deduct-wf (Promote G a P) and ill-deduct-premises (Promote G

a P) = []
by simp-all

then show ?case
by (meson ill-conclusion.simps(22))

qed

1.8.4 Derived Deductions

We define a number of useful deduction patterns as (potentially recur-
sive) functions. In each case we verify the well-formedness, conclusion and
premises.

Swap order in a times proposition: [a ⊗ b] ` b ⊗ a:
fun ill-deduct-swap :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-swap a b =
TimesL [] a b [] (b ⊗ a)
(Exchange [] b a [] (b ⊗ a)
(TimesR [b] b [a] a (Identity b) (Identity a)))

lemma ill-deduct-swap [simp]:
ill-deduct-wf (ill-deduct-swap a b)
ill-conclusion (ill-deduct-swap a b) = Sequent [a ⊗ b] (b ⊗ a)
ill-deduct-premises (ill-deduct-swap a b) = []
by simp-all

Simplified cut rule: [[G ` b; [b] ` c]] =⇒ G ` c:
fun ill-deduct-simple-cut :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where ill-deduct-simple-cut P Q = Cut (antecedents P) (consequent P) [] []
(consequent Q) P Q

lemma ill-deduct-simple-cut [simp]:
[[[consequent P] = antecedents Q; ill-deduct-wf P; ill-deduct-wf Q]] =⇒

ill-deduct-wf (ill-deduct-simple-cut P Q)
[consequent P] = antecedents Q =⇒

30

ill-conclusion (ill-deduct-simple-cut P Q) = Sequent (antecedents P) (consequent
Q)
ill-deduct-premises (ill-deduct-simple-cut P Q) = ill-deduct-premises P @ ill-deduct-premises

Q
by simp-all blast

Combine two deductions with times: [[[a] ` b; [c] ` d]] =⇒ [a ⊗ c] ` b ⊗ d:
fun ill-deduct-tensor :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where ill-deduct-tensor p q =
TimesL [] (hd (antecedents p)) (hd (antecedents q)) [] (consequent p ⊗ consequent

q)
(TimesR (antecedents p) (consequent p) (antecedents q) (consequent q) p q)

lemma ill-deduct-tensor [simp]:
[[antecedents P = [a]; antecedents Q = [c]; ill-deduct-wf P; ill-deduct-wf Q]] =⇒

ill-deduct-wf (ill-deduct-tensor P Q)
[[antecedents P = [a]; antecedents Q = [c]]] =⇒

ill-conclusion (ill-deduct-tensor P Q) = Sequent [a ⊗ c] (consequent P ⊗
consequent Q)
ill-deduct-premises (ill-deduct-tensor P Q) = ill-deduct-premises P @ ill-deduct-premises

Q
by simp-all blast

Associate times proposition to right: [(a ⊗ b) ⊗ c] ` a ⊗ b ⊗ c:
fun ill-deduct-assoc :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-assoc a b c =
TimesL [] (a ⊗ b) c [] (a ⊗ (b ⊗ c))
(Exchange [] c (a ⊗ b) [] (a ⊗ (b ⊗ c))
(TimesL [c] a b [] (a ⊗ (b ⊗ c))
(Exchange [] a c [b] (a ⊗ (b ⊗ c))
(TimesR [a] a [c, b] (b ⊗ c)
(Identity a)
(Exchange [] b c [] (b ⊗ c)
(TimesR [b] b [c] c
(Identity b)
(Identity c)))))))

lemma ill-deduct-assoc [simp]:
ill-deduct-wf (ill-deduct-assoc a b c)
ill-conclusion (ill-deduct-assoc a b c) = Sequent [(a ⊗ b) ⊗ c] (a ⊗ (b ⊗ c))
ill-deduct-premises (ill-deduct-assoc a b c) = []
by simp-all

Associate times proposition to left: [a ⊗ b ⊗ c] ` (a ⊗ b) ⊗ c:
fun ill-deduct-assoc ′ :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-assoc ′ a b c =
TimesL [] a (b ⊗ c) [] ((a ⊗ b) ⊗ c)
(TimesL [a] b c [] ((a ⊗ b) ⊗ c)
(TimesR [a, b] (a ⊗ b) [c] c

31

(TimesR [a] a [b] b
(Identity a)
(Identity b))

(Identity c)))

lemma ill-deduct-assoc ′ [simp]:
ill-deduct-wf (ill-deduct-assoc ′ a b c)
ill-conclusion (ill-deduct-assoc ′ a b c) = Sequent [a ⊗ (b ⊗ c)] ((a ⊗ b) ⊗ c)
ill-deduct-premises (ill-deduct-assoc ′ a b c) = []
by simp-all

Eliminate times unit a proposition: [a ⊗ 1] ` a:
fun ill-deduct-unit :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-unit a = TimesL [] a (1) [] a (OneL [a] [] a (Identity a))

lemma ill-deduct-unit [simp]:
ill-deduct-wf (ill-deduct-unit a)
ill-conclusion (ill-deduct-unit a) = Sequent [a ⊗ 1] a
ill-deduct-premises (ill-deduct-unit a) = []
by simp-all

Introduce times unit into a proposition [a] ` a ⊗ 1:
fun ill-deduct-unit ′ :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-unit ′ a = TimesR [a] a [] (1) (Identity a) OneR

lemma ill-deduct-unit ′ [simp]:
ill-deduct-wf (ill-deduct-unit ′ a)
ill-conclusion (ill-deduct-unit ′ a) = Sequent [a] (a ⊗ 1)
ill-deduct-premises (ill-deduct-unit ′ a) = []
by simp-all

Simplified weakening: [! a] ` 1:
fun ill-deduct-simple-weaken :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-simple-weaken a = Weaken [] [] (1) a OneR

lemma ill-deduct-simple-weaken [simp]:
ill-deduct-wf (ill-deduct-simple-weaken a)
ill-conclusion (ill-deduct-simple-weaken a) = Sequent [!a] 1
ill-deduct-premises (ill-deduct-simple-weaken a) = []
by simp-all

Simplified dereliction: [! a] ` a:
fun ill-deduct-dereliction :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-dereliction a = Derelict [] a [] a (Identity a)

lemma ill-deduct-dereliction [simp]:
ill-deduct-wf (ill-deduct-dereliction a)

32

ill-conclusion (ill-deduct-dereliction a) = Sequent [!a] a
ill-deduct-premises (ill-deduct-dereliction a) = []
by simp-all

Duplicate exponentiated proposition: [! a] ` ! a ⊗ ! a:
fun ill-deduct-duplicate :: ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-duplicate a =
Contract [] a [] (!a ⊗ !a) (TimesR [!a] (!a) [!a] (!a) (Identity (!a)) (Identity

(!a)))

lemma ill-deduct-duplicate [simp]:
ill-deduct-wf (ill-deduct-duplicate a)
ill-conclusion (ill-deduct-duplicate a) = Sequent [!a] (!a ⊗ !a)
ill-deduct-premises (ill-deduct-duplicate a) = []
by simp-all

Simplified plus elimination: [[[a] ` c; [b] ` c]] =⇒ [a ⊕ b] ` c:
fun ill-deduct-simple-plusL :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l)
ill-deduct

where ill-deduct-simple-plusL p q =
PlusL [] (hd (antecedents p)) (hd (antecedents q)) [] (consequent p) p q

lemma ill-deduct-simple-plusL [simp]:
[[antecedents P = [a]; antecedents Q = [b]; ill-deduct-wf P
; ill-deduct-wf Q; consequent P = consequent Q]] =⇒
ill-deduct-wf (ill-deduct-simple-plusL P Q)

[[antecedents P = [a]; antecedents Q = [b]]] =⇒
ill-conclusion (ill-deduct-simple-plusL P Q) = Sequent [a ⊕ b] (consequent P)

ill-deduct-premises (ill-deduct-simple-plusL P Q)
= ill-deduct-premises P @ ill-deduct-premises Q
by simp-all blast

Simplified left plus introduction: [a] ` a ⊕ b:
fun ill-deduct-plusR1 :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-plusR1 a b = PlusR1 [a] a b (Identity a)

lemma ill-deduct-plusR1 [simp]:
ill-deduct-wf (ill-deduct-plusR1 a b)
ill-conclusion (ill-deduct-plusR1 a b) = Sequent [a] (a ⊕ b)
ill-deduct-premises (ill-deduct-plusR1 a b) = []
by simp-all

Simplified right plus introduction: [b] ` a ⊕ b:
fun ill-deduct-plusR2 :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-plusR2 a b = PlusR2 [b] a b (Identity b)

lemma ill-deduct-plusR2 [simp]:
ill-deduct-wf (ill-deduct-plusR2 a b)

33

ill-conclusion (ill-deduct-plusR2 a b) = Sequent [b] (a ⊕ b)
ill-deduct-premises (ill-deduct-plusR2 a b) = []
by simp-all

Simplified linear implication introduction: [a] ` b =⇒ [1] ` a B b:
fun ill-deduct-simple-limpR :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where ill-deduct-simple-limpR p =
LimpR [] (hd (antecedents p)) [1] (consequent p)
(OneL [hd (antecedents p)] [] (consequent p) p)

lemma ill-deduct-simple-limpR [simp]:
[[antecedents P = [a]; consequent P = b; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-simple-limpR P)
[[antecedents P = [a]; consequent P = b]] =⇒

ill-conclusion (ill-deduct-simple-limpR P) = Sequent [1] (a B b)
ill-deduct-premises (ill-deduct-simple-limpR P)
= ill-deduct-premises P
by simp-all blast

Simplified introduction of exponentiated impliciation: [a] ` b =⇒ [1] ` ! (a
B b):
fun ill-deduct-simple-limpR-exp :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where ill-deduct-simple-limpR-exp p =
OneL [] [] (!((hd (antecedents p)) B (consequent p)))
(Promote [] ((hd (antecedents p)) B (consequent p))
(ill-deduct-simple-cut

OneR
(ill-deduct-simple-limpR p)))

lemma ill-deduct-simple-limpR-exp [simp]:
[[antecedents P = [a]; consequent P = b; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-simple-limpR-exp P)
[[antecedents P = [a]; consequent P = b]] =⇒

ill-conclusion (ill-deduct-simple-limpR-exp P) = Sequent [1] (!(a B b))
ill-deduct-premises (ill-deduct-simple-limpR-exp P) = ill-deduct-premises P
by simp-all blast

Linear implication elimination with times: [a ⊗ a B b] ` b:
fun ill-deduct-limp-eval :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-limp-eval a b =
TimesL [] a (a B b) [] b (LimpL [a] a [] b [] b (Identity a) (Identity b))

lemma ill-deduct-limp-eval [simp]:
ill-deduct-wf (ill-deduct-limp-eval a b)
ill-conclusion (ill-deduct-limp-eval a b) = Sequent [a ⊗ a B b] b
ill-deduct-premises (ill-deduct-limp-eval a b) = []
by simp-all

Exponential implication elimination with times: [a ⊗ ! (a B b)] ` b ⊗ ! (a

34

B b):
fun ill-deduct-explimp-eval :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-explimp-eval a b =
TimesL [] a (!(a B b)) [] (b ⊗ !(a B b)) (
Contract [a] (a B b) [] (b ⊗ !(a B b)) (
TimesR [a, !(a B b)] b [!(a B b)] (!(a B b))
(Derelict [a] (a B b) [] b (

LimpL [a] a [] b [] b
(Identity a)
(Identity b)))

(Identity (!(a B b)))))

lemma ill-deduct-explimp-eval [simp]:
ill-deduct-wf (ill-deduct-explimp-eval a b)
ill-conclusion (ill-deduct-explimp-eval a b) = Sequent [a ⊗ !(a B b)] (b ⊗ !(a B

b))
ill-deduct-premises (ill-deduct-explimp-eval a b) = []
by simp-all

Distributing times over plus: [a ⊗ b ⊕ c] ` (a ⊗ b) ⊕ a ⊗ c:
fun ill-deduct-distrib-plus :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l)
ill-deduct

where ill-deduct-distrib-plus a b c =
TimesL [] a (b ⊕ c) [] ((a ⊗ b) ⊕ (a ⊗ c))
(PlusL [a] b c [] ((a ⊗ b) ⊕ (a ⊗ c))
(PlusR1 [a, b] (a ⊗ b) (a ⊗ c)
(TimesR [a] a [b] b
(Identity a)
(Identity b)))

(PlusR2 [a, c] (a ⊗ b) (a ⊗ c)
(TimesR [a] a [c] c
(Identity a)
(Identity c))))

lemma ill-deduct-distrib-plus [simp]:
ill-deduct-wf (ill-deduct-distrib-plus a b c)
ill-conclusion (ill-deduct-distrib-plus a b c) = Sequent [a ⊗ (b ⊕ c)] ((a ⊗ b) ⊕

(a ⊗ c))
ill-deduct-premises (ill-deduct-distrib-plus a b c) = []
by simp-all

Distributing times out of plus: [(a ⊗ b) ⊕ a ⊗ c] ` a ⊗ b ⊕ c:
fun ill-deduct-distrib-plus ′ :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l)
ill-deduct

where ill-deduct-distrib-plus ′ a b c =
PlusL [] (a ⊗ b) (a ⊗ c) [] (a ⊗ (b ⊕ c))
(ill-deduct-tensor
(Identity a)
(ill-deduct-plusR1 b c))

35

(ill-deduct-tensor
(Identity a)
(ill-deduct-plusR2 b c))

lemma ill-deduct-distrib-plus ′ [simp]:
ill-deduct-wf (ill-deduct-distrib-plus ′ a b c)
ill-conclusion (ill-deduct-distrib-plus ′ a b c) = Sequent [(a ⊗ b) ⊕ (a ⊗ c)] (a ⊗

(b ⊕ c))
ill-deduct-premises (ill-deduct-distrib-plus ′ a b c) = []
by simp-all

Combining two deductions with plus: [[[a] ` b; [c] ` d]] =⇒ [a ⊕ c] ` b ⊕ d:
fun ill-deduct-plus-progress :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l)
ill-deduct

where ill-deduct-plus-progress p q =
ill-deduct-simple-plusL
(ill-deduct-simple-cut p (ill-deduct-plusR1 (consequent p) (consequent q)))
(ill-deduct-simple-cut q (ill-deduct-plusR2 (consequent p) (consequent q)))

lemma ill-deduct-plus-progress [simp]:
[[antecedents P = [a]; antecedents Q = [c]; ill-deduct-wf P; ill-deduct-wf Q]] =⇒

ill-deduct-wf (ill-deduct-plus-progress P Q)
[[antecedents P = [a]; antecedents Q = [c]]] =⇒

ill-conclusion (ill-deduct-plus-progress P Q) = Sequent [a ⊕ c] (consequent P ⊕
consequent Q)

ill-deduct-premises (ill-deduct-plus-progress P Q)
= ill-deduct-premises P @ ill-deduct-premises Q
by simp-all blast

Simplified with introduction: [[[a] ` b; [a] ` c]] =⇒ [a] ` b & c:
fun ill-deduct-with :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct
where ill-deduct-with p q = WithR [hd (antecedents p)] (consequent p) (consequent

q) p q

lemma ill-deduct-with [simp]:
[[antecedents P = [a]; antecedents Q = [a]; consequent P = b
; consequent Q = c; ill-deduct-wf P; ill-deduct-wf Q]] =⇒
ill-deduct-wf (ill-deduct-with P Q)

[[antecedents P = [a]; antecedents Q = [a]; consequent P = b; consequent Q = c]]
=⇒

ill-conclusion (ill-deduct-with P Q) = Sequent [a] (consequent P & consequent
Q)
ill-deduct-premises (ill-deduct-with P Q) = ill-deduct-premises P @ ill-deduct-premises

Q
by simp-all blast

Simplified with left projection: [a & b] ` a:
fun ill-deduct-projectL :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-projectL a b = WithL1 [] a b [] a (Identity a)

36

lemma ill-deduct-projectL [simp]:
ill-deduct-wf (ill-deduct-projectL a b)
ill-conclusion (ill-deduct-projectL a b) = Sequent [a & b] a
ill-deduct-premises (ill-deduct-projectL a b) = []
by simp-all

Simplified with right projection: [a & b] ` b:
fun ill-deduct-projectR :: ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l) ill-deduct

where ill-deduct-projectR a b = WithL2 [] a b [] b (Identity b)

lemma ill-deduct-projectR [simp]:
ill-deduct-wf (ill-deduct-projectR a b)
ill-conclusion (ill-deduct-projectR a b) = Sequent [a & b] b
ill-deduct-premises (ill-deduct-projectR a b) = []
by simp-all

Distributing times over with: [a ⊗ b & c] ` (a ⊗ b) & a ⊗ c:
fun ill-deduct-distrib-with :: ′a ill-prop ⇒ ′a ill-prop ⇒ ′a ill-prop ⇒ (′a, ′l)
ill-deduct

where ill-deduct-distrib-with a b c =
WithR [a ⊗ (b & c)] (a ⊗ b) (a ⊗ c)
(ill-deduct-tensor
(Identity a)
(ill-deduct-projectL b c))

(ill-deduct-tensor
(Identity a)
(ill-deduct-projectR b c))

lemma ill-deduct-distrib-with [simp]:
ill-deduct-wf (ill-deduct-distrib-with a b c)
ill-conclusion (ill-deduct-distrib-with a b c) = Sequent [a ⊗ (b & c)] ((a ⊗ b) &

(a ⊗ c))
ill-deduct-premises (ill-deduct-distrib-with a b c) = []
by simp-all

Weakening a list of propositions: G @ D ` b =⇒ G @ map ! xs @ D ` b:
fun ill-deduct-weaken-list

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
⇒ (′a, ′l) ill-deduct

where
ill-deduct-weaken-list G D [] P = P

| ill-deduct-weaken-list G D (x#xs) P =
Weaken G (map Exp xs @ D) (consequent P) x (ill-deduct-weaken-list G D xs

P)

lemma ill-deduct-weaken-list [simp]:
[[antecedents P = G @ D; ill-deduct-wf P]] =⇒ ill-deduct-wf (ill-deduct-weaken-list

G D xs P)

37

antecedents P = G @ D ∨ xs 6= [] =⇒
antecedents (ill-deduct-weaken-list G D xs P) = G @ (map Exp xs) @ D

consequent (ill-deduct-weaken-list G D xs P) = consequent P
ill-deduct-premises (ill-deduct-weaken-list G D xs P) = ill-deduct-premises P

proof −
have [simp]: antecedents (ill-deduct-weaken-list G D xs P) = G @ (map Exp xs)

@ D
if antecedents P = G @ D ∨ xs 6= []
for G D :: ′c ill-prop list and xs :: ′c ill-prop list and P :: (′c, ′d) ill-deduct
using that by (induct xs) simp-all

then show antecedents P = G @ D ∨ xs 6= [] =⇒
antecedents (ill-deduct-weaken-list G D xs P) = G @ (map Exp xs) @ D .

have [simp]: consequent (ill-deduct-weaken-list G D xs P) = consequent P
for G D :: ′c ill-prop list and xs and P :: (′c, ′d) ill-deduct
by (induct xs) simp-all

then show consequent (ill-deduct-weaken-list G D xs P) = consequent P .

show [[antecedents P = G @ D; ill-deduct-wf P]] =⇒ ill-deduct-wf (ill-deduct-weaken-list
G D xs P)

by (induct xs) (simp-all add: ill-conclusion-alt)

show ill-deduct-premises (ill-deduct-weaken-list G D xs P) = ill-deduct-premises
P

by (induct xs) simp-all
qed

Exponentiating a deduction: G ` b =⇒ map ! G ` ! b
fun ill-deduct-exp-helper :: nat ⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

— Helper function to apply Derelict to first n antecedents
where

ill-deduct-exp-helper 0 P = P
| ill-deduct-exp-helper (Suc n) P =

Derelict
(map Exp (take n (antecedents P)))
(nth (antecedents P) n)
(drop (Suc n) (antecedents P))
(consequent P)
(ill-deduct-exp-helper n P)

lemma ill-deduct-exp-helper :
n ≤ length (antecedents P) =⇒

antecedents (ill-deduct-exp-helper n P)
= map Exp (take n (antecedents P)) @ drop n (antecedents P)

consequent (ill-deduct-exp-helper n P) = consequent P
n ≤ length (antecedents P) =⇒ ill-deduct-wf (ill-deduct-exp-helper n P) =

ill-deduct-wf P
ill-deduct-premises (ill-deduct-exp-helper n P) = ill-deduct-premises P

proof −

38

have [simp]:
antecedents (ill-deduct-exp-helper n P)
= map Exp (take n (antecedents P)) @ drop n (antecedents P)
if n ≤ length (antecedents P) for n
using that by (induct n) (simp-all add: take-Suc-conv-app-nth)

then show n ≤ length (antecedents P) =⇒
antecedents (ill-deduct-exp-helper n P)

= map Exp (take n (antecedents P)) @ drop n (antecedents P) .

have [simp]: consequent (ill-deduct-exp-helper n P) = consequent P for n
by (induct n) simp-all

then show consequent (ill-deduct-exp-helper n P) = consequent P .

show n ≤ length (antecedents P) =⇒ ill-deduct-wf (ill-deduct-exp-helper n P) =
ill-deduct-wf P

by (induct n) (simp-all add: ill-conclusion-alt Cons-nth-drop-Suc)

show ill-deduct-premises (ill-deduct-exp-helper n P) = ill-deduct-premises P
by (induct n) simp-all

qed

fun ill-deduct-exp :: (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct
where ill-deduct-exp P =
Promote (antecedents P) (consequent P) (ill-deduct-exp-helper (length (antecedents

P)) P)

lemma ill-deduct-exp [simp]:
ill-conclusion (ill-deduct-exp P) = Sequent (map Exp (antecedents P)) (!(consequent

P))
ill-deduct-wf (ill-deduct-exp P) = ill-deduct-wf P
ill-deduct-premises (ill-deduct-exp P) = ill-deduct-premises P
by (simp-all add: ill-conclusion-alt ill-deduct-exp-helper)

1.8.5 Compacting Equivalences

Compacting cons equivalence: a ⊗ compact b a` compact (a # b):
primrec ill-deduct-times-to-compact-cons :: ′a ill-prop ⇒ ′a ill-prop list ⇒ (′a, ′l)
ill-deduct

— [a ⊗ compact b] ` compact (a # b)
where

ill-deduct-times-to-compact-cons a [] = ill-deduct-unit a
| ill-deduct-times-to-compact-cons a (b#bs) = Identity (a ⊗ compact (b#bs))

lemma ill-deduct-times-to-compact-cons [simp]:
ill-deduct-wf (ill-deduct-times-to-compact-cons a b)
ill-conclusion (ill-deduct-times-to-compact-cons a b)
= Sequent [a ⊗ compact b] (compact (a # b))
ill-deduct-premises (ill-deduct-times-to-compact-cons a b) = []
by (cases b, simp-all)+

39

primrec ill-deduct-compact-cons-to-times :: ′a ill-prop ⇒ ′a ill-prop list ⇒ (′a, ′l)
ill-deduct

— [compact (a # b)] ` a ⊗ compact b
where

ill-deduct-compact-cons-to-times a [] = ill-deduct-unit ′ a
| ill-deduct-compact-cons-to-times a (b#bs) = Identity (a ⊗ compact (b#bs))

lemma ill-deduct-compact-cons-to-times [simp]:
ill-deduct-wf (ill-deduct-compact-cons-to-times a b)
ill-conclusion (ill-deduct-compact-cons-to-times a b)
= Sequent [compact (a # b)] (a ⊗ compact b)
ill-deduct-premises (ill-deduct-compact-cons-to-times a b) = []
by (cases b, simp, simp)+

Compacting append equivalence: compact a ⊗ compact b a` compact (a @
b):
primrec ill-deduct-times-to-compact-append

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
— [compact a ⊗ compact b] ` compact (a @ b)
where

ill-deduct-times-to-compact-append [] b =
ill-deduct-simple-cut (ill-deduct-swap (1) (compact b)) (ill-deduct-unit (compact

b))
| ill-deduct-times-to-compact-append (a#as) b =

ill-deduct-simple-cut
(ill-deduct-simple-cut
(ill-deduct-simple-cut
(ill-deduct-tensor
(ill-deduct-compact-cons-to-times a as)
(Identity (compact b)))

(ill-deduct-assoc a (compact as) (compact b)))
(ill-deduct-tensor
(Identity a)
(ill-deduct-times-to-compact-append as b)))

(ill-deduct-times-to-compact-cons a (as @ b))

lemma ill-deduct-times-to-compact-append [simp]:
ill-deduct-wf (ill-deduct-times-to-compact-append a b :: (′a, ′l) ill-deduct)
ill-conclusion (ill-deduct-times-to-compact-append a b :: (′a, ′l) ill-deduct)
= Sequent [compact a ⊗ compact b] (compact (a @ b))
ill-deduct-premises (ill-deduct-times-to-compact-append a b) = []
by (induct a) (simp-all add: ill-conclusion-antecedents ill-conclusion-consequent)

primrec ill-deduct-compact-append-to-times
:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct

— [compact (a @ b)] ` compact a ⊗ compact b
where

ill-deduct-compact-append-to-times [] b =

40

ill-deduct-simple-cut
(ill-deduct-unit ′ (compact b))
(ill-deduct-swap (compact b) (1))

| ill-deduct-compact-append-to-times (a#as) b =
ill-deduct-simple-cut
(ill-deduct-compact-cons-to-times a (as @ b))
(ill-deduct-simple-cut
(ill-deduct-tensor
(Identity a)
(ill-deduct-compact-append-to-times as b))

(ill-deduct-simple-cut
(ill-deduct-assoc ′ a (compact as) (compact b))
(ill-deduct-tensor
(ill-deduct-times-to-compact-cons a as)
(Identity (compact b)))))

lemma ill-deduct-compact-append-to-times [simp]:
ill-deduct-wf (ill-deduct-compact-append-to-times a b :: (′a, ′l) ill-deduct)
ill-conclusion (ill-deduct-compact-append-to-times a b :: (′a, ′l) ill-deduct)
= Sequent [compact (a @ b)] (compact a ⊗ compact b)
ill-deduct-premises (ill-deduct-compact-append-to-times a b) = []
by (induct a) (simp-all add: ill-conclusion-antecedents ill-conclusion-consequent)

Combine a list of deductions with times using ill-deduct-tensor, representing
a generalised version of the following theorem of the shallow embedding:
∀ x∈set ?xs. [?f x] ` ?g x =⇒ [compact (map ?f ?xs)] ` compact (map ?g
?xs)
primrec ill-deduct-tensor-list :: (′a, ′l) ill-deduct list ⇒ (′a, ′l) ill-deduct

where
ill-deduct-tensor-list [] = Identity (1)

| ill-deduct-tensor-list (x#xs) =
(if xs = [] then x else ill-deduct-tensor x (ill-deduct-tensor-list xs))

lemma ill-deduct-tensor-list [simp]:
fixes xs :: (′a, ′l) ill-deduct list
assumes

∧
x. x ∈ set xs =⇒ ∃ a. antecedents x = [a]

shows ill-conclusion (ill-deduct-tensor-list xs)
= Sequent [compact (map (hd ◦ antecedents) xs)] (compact (map consequent

xs))
and (

∧
x. x ∈ set xs =⇒ ill-deduct-wf x) =⇒ ill-deduct-wf (ill-deduct-tensor-list

xs)
and ill-deduct-premises (ill-deduct-tensor-list xs) = concat (map ill-deduct-premises

xs)
proof −

have x [simp]:
ill-conclusion (ill-deduct-tensor-list xs)
= Sequent [compact (map (hd ◦ antecedents) xs)] (compact (map consequent

xs))
if

∧
x. x ∈ set xs =⇒ ∃ a. antecedents x = [a] for xs :: (′a, ′l) ill-deduct list

41

using that
proof (induct xs)

case Nil then show ?case by simp
next

case (Cons a xs)
then show ?case
using that by (simp add: ill-conclusion-antecedents ill-conclusion-consequent)

fastforce
qed
then show

ill-conclusion (ill-deduct-tensor-list xs)
= Sequent [compact (map (hd ◦ antecedents) xs)] (compact (map consequent

xs))
using assms .

show (
∧

x. x ∈ set xs =⇒ ill-deduct-wf x) =⇒ ill-deduct-wf (ill-deduct-tensor-list
xs)

using assms
by (induct xs) (fastforce simp add: ill-conclusion-antecedents ill-conclusion-consequent)+

show ill-deduct-premises (ill-deduct-tensor-list xs) = concat (map ill-deduct-premises
xs)

using assms by (induct xs) simp-all
qed

1.8.6 Premise Substitution

Premise substitution replaces certain premises in a deduction with other
deductions. The target premises are specified with a predicate on the three
arguments of the Premise constructor: antecedents, consequent and label.
The replacement for each is specified as a function of those three arguments.
In this way, the substitution can replace a whole class of premises in a single
pass.
primrec ill-deduct-subst ::

(′a ill-prop list ⇒ ′a ill-prop ⇒ ′l ⇒ bool) ⇒
(′a ill-prop list ⇒ ′a ill-prop ⇒ ′l ⇒ (′a, ′l) ill-deduct) ⇒
(′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct

where
ill-deduct-subst p f (Premise G c l) = (if p G c l then f G c l else Premise G c

l)
| ill-deduct-subst p f (Identity a) = Identity a
| ill-deduct-subst p f (Exchange G a b D c P) = Exchange G a b D c (ill-deduct-subst

p f P)
| ill-deduct-subst p f (Cut G b D E c P Q) =

Cut G b D E c (ill-deduct-subst p f P) (ill-deduct-subst p f Q)
| ill-deduct-subst p f (TimesL G a b D c P) = TimesL G a b D c (ill-deduct-subst

p f P)
| ill-deduct-subst p f (TimesR G a D b P Q) =

42

TimesR G a D b (ill-deduct-subst p f P) (ill-deduct-subst p f Q)
| ill-deduct-subst p f (OneL G D c P) = OneL G D c (ill-deduct-subst p f P)
| ill-deduct-subst p f (OneR) = OneR
| ill-deduct-subst p f (LimpL G a D b E c P Q) =

LimpL G a D b E c (ill-deduct-subst p f P) (ill-deduct-subst p f Q)
| ill-deduct-subst p f (LimpR G a D b P) = LimpR G a D b (ill-deduct-subst p f

P)
| ill-deduct-subst p f (WithL1 G a b D c P) = WithL1 G a b D c (ill-deduct-subst

p f P)
| ill-deduct-subst p f (WithL2 G a b D c P) = WithL2 G a b D c (ill-deduct-subst

p f P)
| ill-deduct-subst p f (WithR G a b P Q) =

WithR G a b (ill-deduct-subst p f P) (ill-deduct-subst p f Q)
| ill-deduct-subst p f (TopR G) = TopR G
| ill-deduct-subst p f (PlusL G a b D c P Q) =

PlusL G a b D c (ill-deduct-subst p f P) (ill-deduct-subst p f Q)
| ill-deduct-subst p f (PlusR1 G a b P) = PlusR1 G a b (ill-deduct-subst p f P)
| ill-deduct-subst p f (PlusR2 G a b P) = PlusR2 G a b (ill-deduct-subst p f P)
| ill-deduct-subst p f (ZeroL G D c) = ZeroL G D c
| ill-deduct-subst p f (Weaken G D b a P) = Weaken G D b a (ill-deduct-subst p

f P)
| ill-deduct-subst p f (Contract G a D b P) = Contract G a D b (ill-deduct-subst

p f P)
| ill-deduct-subst p f (Derelict G a D b P) = Derelict G a D b (ill-deduct-subst p

f P)
| ill-deduct-subst p f (Promote G a P) = Promote G a (ill-deduct-subst p f P)

If the target premise is not present, then substitution does nothing
lemma ill-deduct-subst-no-target:
(
∧

G c l. (G, c, l) ∈ set (ill-deduct-premises x) =⇒ ¬ p G c l) =⇒ ill-deduct-subst
p f x = x

by (induct x) simp-all

If a deduction has no premise, then substitution does nothing
lemma ill-deduct-subst-no-prems:

ill-deduct-premises x = [] =⇒ ill-deduct-subst p f x = x
using ill-deduct-subst-no-target empty-set emptyE by metis

If we substitute the target, then the substitution does nothing
lemma ill-deduct-subst-of-target [simp]:

f = Premise =⇒ ill-deduct-subst p f x = x
by (induct x) simp-all

Substitution matching the target’s antecedents preserves overall deduction
antecedents
lemma ill-deduct-subst-antecedents [simp]:

assumes (
∧

G c l. p G c l =⇒ antecedents (f G c l) = G)
shows antecedents (ill-deduct-subst p f x) = antecedents x

43

using assms by (induct x) simp-all

Substitution matching the target’s consequent preserves overall deduction
consequent
lemma ill-deduct-subst-consequent [simp]:

assumes
∧

G c l. p G c l =⇒ consequent (f G c l) = c
shows consequent (ill-deduct-subst p f x) = consequent x

by (induct x) (simp-all add: assms)

Substitution matching target’s antecedent, consequent and well-formedness
preserves overall well-formedness
lemma ill-deduct-subst-wf [simp]:

assumes
∧

G c l. p G c l =⇒ antecedents (f G c l) = G
and

∧
G c l. p G c l =⇒ consequent (f G c l) = c

and
∧

G c l. p G c l =⇒ ill-deduct-wf (f G c l)
shows ill-deduct-wf x = ill-deduct-wf (ill-deduct-subst p f x)

using assms by (induct x) (simp-all add: ill-conclusion-alt)

Premises after substitution are those that didn’t satisfy the predicate and
anything that was introduced by the function applied on satisfying premises’
parameters.
lemma ill-deduct-subst-ill-deduct-premises:

ill-deduct-premises (ill-deduct-subst p f x)
= concat (map (λ(G, c, l).

if p G c l then ill-deduct-premises (f G c l) else [(G, c, l)])
(ill-deduct-premises x))

by (induct x) (simp-all)

This substitution commutes with many operations on deductions
lemma

assumes
∧

G c l. p G c l =⇒ antecedents (f G c l) = G
and

∧
G c l. p G c l =⇒ consequent (f G c l) = c

shows ill-deduct-subst-simple-cut [simp]:
ill-deduct-subst p f (ill-deduct-simple-cut X Y)
= ill-deduct-simple-cut (ill-deduct-subst p f X) (ill-deduct-subst p f Y)
and ill-deduct-subst ′-tensor [simp]:
ill-deduct-subst p f (ill-deduct-tensor X Y) =
ill-deduct-tensor (ill-deduct-subst p f X) (ill-deduct-subst p f Y)

and ill-deduct-subst-simple-plusL [simp]:
ill-deduct-subst p f (ill-deduct-simple-plusL X Y) =
ill-deduct-simple-plusL (ill-deduct-subst p f X) (ill-deduct-subst p f Y)

and ill-deduct-subst-with [simp]:
ill-deduct-subst p f (ill-deduct-with X Y) =
ill-deduct-with (ill-deduct-subst p f X) (ill-deduct-subst p f Y)

and ill-deduct-subst-simple-limpR [simp]:
ill-deduct-subst p f (ill-deduct-simple-limpR X) =
ill-deduct-simple-limpR (ill-deduct-subst p f X)

and ill-deduct-subst-simple-limpR-exp [simp]:

44

ill-deduct-subst p f (ill-deduct-simple-limpR-exp X) =
ill-deduct-simple-limpR-exp (ill-deduct-subst p f X)

using assms by (simp-all add: ill-conclusion-alt)

1.8.7 List-Based Exchange

To expand the applicability of the exchange rule to lists of propositions, we
first need to establish that the well-formedness of a deduction is not affected
by compacting a sublist of the antecedents of its conclusions. This corre-
sponds to the following equality in the shallow embedding of deductions: ?X
@ [compact ?G] @ ?Y ` ?c = ?X @ ?G @ ?Y ` ?c.

For one direction of the equality we need to use TimesL to recursively add
one proposition at a time into the compacted part of the antecedents. Note
that, just like compact, the recursion terminates in the singleton case.
primrec ill-deduct-compact-antecedents-split

:: nat ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
⇒ (′a, ′l) ill-deduct

where
ill-deduct-compact-antecedents-split 0 X G Y P = OneL (X @ G) Y (consequent

P) P
| ill-deduct-compact-antecedents-split (Suc n) X G Y P = (if n = 0 then P else

TimesL
(X @ take (length G − (Suc n)) G)
(hd (drop (length G − (Suc n)) G))
(compact (drop (length G − n) G))
Y
(consequent P)
(ill-deduct-compact-antecedents-split n X G Y P))

lemma ill-deduct-compact-antecedents-split [simp]:
assumes n ≤ length G

shows antecedents P = X @ G @ Y =⇒
antecedents (ill-deduct-compact-antecedents-split n X G Y P)

= X @ take (length G − n) G @ [compact (drop (length G − n) G)] @ Y
and consequent (ill-deduct-compact-antecedents-split n X G Y P) = consequent

P
and [[antecedents P = X @ G @ Y ; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-compact-antecedents-split n X G Y P)
and ill-deduct-premises (ill-deduct-compact-antecedents-split n X G Y P)

= ill-deduct-premises P
proof −

have [simp]:
antecedents (ill-deduct-compact-antecedents-split n X G Y P)
= X @ take (length G − n) G @ [compact (drop (length G − n) G)] @ Y
if antecedents P = X @ G @ Y and n ≤ length G for n X G Y and P :: (′c,

′d) ill-deduct
proof −

45

have tol-hd-tl:
∧

xs ys. [[ys = tl xs; ys 6= []]] =⇒ hd xs ⊗ compact ys = compact
xs

by (metis list.collapse compact.simps(1) tl-Nil)

show ?thesis
using that

proof (induct n)
case 0 then show ?case by simp

next
case m: (Suc m)
then show ?case
proof (cases m)

case 0
then have drop (length G − 1) G = [last G]

using m
by (metis Suc-le-lessD append-butlast-last-id append-eq-conv-conj length-butlast

length-greater-0-conv)
then show ?thesis

using m 0 by simp (metis append-take-drop-id)
next

case (Suc m ′)
have tl (drop (length G − Suc (Suc m ′)) G) = drop (length G − Suc m ′) G
using m.prems(2) by (metis Suc Suc-diff-Suc Suc-le-lessD drop-Suc tl-drop)
then have

drop (length G − Suc (Suc m ′)) G
= hd (drop (length G − Suc (Suc m ′)) G) # drop (length G − Suc m ′) G
using m.prems(2)

by (metis Suc diff-diff-cancel diff-is-0-eq ′ drop-eq-Nil hd-Cons-tl nat.distinct(1))
moreover have drop (length G − Suc m ′) G 6= []

using m.prems(2) by simp
ultimately have

hd (drop (length G − Suc (Suc m ′)) G) ⊗ compact (drop (length G − Suc
m ′) G)

= compact (drop (length G − Suc (Suc m ′)) G)
by (metis compact.simps(1))

then show ?thesis
using Suc by simp

qed
qed

qed
then show antecedents P = X @ G @ Y =⇒

antecedents (ill-deduct-compact-antecedents-split n X G Y P)
= X @ take (length G − n) G @ [compact (drop (length G − n) G)] @ Y
using assms by simp

have [simp]: consequent (ill-deduct-compact-antecedents-split n X G Y P) =
consequent P

if n ≤ length G for n X G Y and P :: (′a, ′l) ill-deduct
by (induct n) simp-all

46

then show consequent (ill-deduct-compact-antecedents-split n X G Y P) = con-
sequent P

using assms .

show [[antecedents P = X @ G @ Y ; ill-deduct-wf P]] =⇒
ill-deduct-wf (ill-deduct-compact-antecedents-split n X G Y P)

using assms by (induct n) (simp-all add: Suc-diff-Suc take-hd-drop ill-conclusion-alt)
show

ill-deduct-premises (ill-deduct-compact-antecedents-split n X G Y P)
= ill-deduct-premises P
by (induct n) simp-all

qed

Implication in the uncompacted-to-compacted direction
fun ill-deduct-antecedents-to-times

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
⇒ (′a, ′l) ill-deduct

— X @ G @ Y ` c =⇒ X @ [compact G] @ Y ` c
where ill-deduct-antecedents-to-times X G Y P =

ill-deduct-compact-antecedents-split (length G) X G Y P

lemma ill-deduct-antecedents-to-times [simp]:
antecedents P = X @ G @ Y =⇒

antecedents (ill-deduct-antecedents-to-times X G Y P) = X @ [compact G] @ Y
consequent (ill-deduct-antecedents-to-times X G Y P) = consequent P
[[antecedents P = X @ G @ Y ; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-antecedents-to-times X G Y P)
ill-deduct-premises (ill-deduct-antecedents-to-times X G Y P) = ill-deduct-premises

P
by simp-all

For the other direction we only need to derive the compacted propositions
from the original list. This corresponds to the following valid sequent in the
shallow embedding of deductions: ?G ` compact ?G.
fun ill-deduct-identity-compact :: ′a ill-prop list ⇒ (′a, ′l) ill-deduct

where
ill-deduct-identity-compact [] = OneR

| ill-deduct-identity-compact [x] = Identity x
| ill-deduct-identity-compact (x#xs) =

TimesR [x] x xs (compact xs) (Identity x) (ill-deduct-identity-compact xs)

lemma ill-deduct-identity-compact [simp]:
ill-conclusion (ill-deduct-identity-compact G) = Sequent G (compact G)
ill-deduct-wf (ill-deduct-identity-compact G)
ill-deduct-premises (ill-deduct-identity-compact G) = []

proof −
have [simp]: ill-conclusion (ill-deduct-identity-compact G) = Sequent G (compact

G)
for G :: ′a ill-prop list

47

by (induct G rule: induct-list012) simp-all
then show ill-conclusion (ill-deduct-identity-compact G) = Sequent G (compact

G) .
show ill-deduct-wf (ill-deduct-identity-compact G)

by (induct G rule: induct-list012) (simp-all add: ill-conclusion-alt)
show ill-deduct-premises (ill-deduct-identity-compact G) = []

by (induct G rule: induct-list012) simp-all
qed

Implication in the compacted-to-uncompacted direction
fun ill-deduct-antecedents-from-times

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ (′a, ′l) ill-deduct
⇒ (′a, ′l) ill-deduct

— X @ [compact G] @ Y ` c =⇒ X @ G @ Y ` c
where ill-deduct-antecedents-from-times X G Y P =

Cut G (compact G) X Y (consequent P) (ill-deduct-identity-compact G) P

lemma ill-deduct-antecedents-from-times [simp]:
ill-conclusion (ill-deduct-antecedents-from-times X G Y P) =

Sequent (X @ G @ Y) (consequent P)
[[antecedents P = X @ [compact G] @ Y ; ill-deduct-wf P]] =⇒

ill-deduct-wf (ill-deduct-antecedents-from-times X G Y P)
ill-deduct-premises (ill-deduct-antecedents-from-times X G Y P)
= ill-deduct-premises P
by (simp-all add: ill-conclusion-alt)

Finally, we establish the deep embedding of list-based exchange. This cor-
responds to the following theorem in the shallow embedding of deductions:
?G @ ?A @ ?B @ ?D ` ?c =⇒ ?G @ ?B @ ?A @ ?D ` ?c.
fun ill-deduct-exchange-list

:: ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a ill-prop list ⇒ ′a
ill-prop

⇒ (′a, ′l) ill-deduct ⇒ (′a, ′l) ill-deduct
where ill-deduct-exchange-list G A B D c P =

ill-deduct-antecedents-from-times G B (A @ D)
(ill-deduct-antecedents-from-times (G @ [compact B]) A D
(Exchange G (compact A) (compact B) D c
(ill-deduct-antecedents-to-times (G @ [compact A]) B D
(ill-deduct-antecedents-to-times G A (B @ D) P))))

lemma ill-deduct-exchange-list [simp]:
ill-conclusion (ill-deduct-exchange-list G A B D c P) = Sequent (G @ B @ A @

D) c
[[ill-deduct-wf P; antecedents P = G @ A @ B @ D; consequent P = c]] =⇒

ill-deduct-wf (ill-deduct-exchange-list G A B D c P)
ill-deduct-premises (ill-deduct-exchange-list G A B D c P) = ill-deduct-premises

P
by (simp-all add: ill-conclusion-alt)

48

end

References

[1] G. M. Bierman. On intuitionistic linear logic. Technical Report UCAM-
CL-TR-346, University of Cambridge, Computer Laboratory, Aug. 1994.

[2] S. Kalvala and V. De Paiva. Mechanizing linear logic in Isabelle. In
In 10th International Congress of Logic, Philosophy and Methodology of
Science, volume 24. Citeseer, 1995.

49

	Intuitionistic Linear Logic
	Deep Embedding of Propositions
	Shallow Embedding of Deductions
	Proposition Equivalence
	Useful Rules
	Compacting Lists of Propositions
	Multiset Exchange
	Additional Lemmas
	Deep Embedding of Deductions
	Semantics
	Soundness
	Completeness
	Derived Deductions
	Compacting Equivalences
	Premise Substitution
	List-Based Exchange

