Given Clause Loops

Jasmin Blanchette Qi Qiu Sophie Tourret

May 26, 2024

Abstract

This Isabelle/HOL formalization extends the Saturation_Framework and Saturation_ Framework_Extensions entries of the Archive of Formal Proofs with the specification and verification of four semiabstract given clause procedures, or "loops": the DISCOUNT, Otter, iProver, and Zipperposition loops. For each loop, (dynamic) refutational completeness is proved under the assumption that the underlying calculus is (statically) refutationally complete and that the used queue data structures are fair.

The formalization is inspired by the proof sketches found in the article "A comprehensive framework for saturation theorem proving" by Uwe Waldmann, Sophie Tourret, Simon Robillard, and Jasmin Blanchette (Journal of Automated Reasoning 66(4): 499-539, 2022). A paper titled "Verified given clause procedures" about the present formalization is in the works.

Contents

1 Utilities for Given Clause Loops 1
2 More Lemmas about Given Clause Architectures 5
2.1 Inference System 5
2.2 Given Clause Procedure Basis 5
2.3 Given Clause Procedure 7
2.4 Lazy Given Clause Procedure 9
3 DISCOUNT Loop 10
3.1 Locale 11
3.2 Basic Definitions and Lemmas 12
3.3 Refinement 13
3.4 Completeness 17
4 Prover Queues and Fairness 18
4.1 Basic Lemmas 18
4.2 More on Relational Chains over Lazy Lists 18
4.3 Locales 19
4.4 Instantiation with FIFO Queue 20
5 Fair DISCOUNT Loop 25
5.1 Locale 25
5.2 Basic Definitions and Lemmas 26
5.3 Initial State and Invariant 29
5.4 Final State 30
5.5 Refinement 32
5.6 Completeness 33
5.7 Specialization with FIFO Queue 41
6 Otter Loop 42
6.1 Basic Definitions and Lemmas 43
6.2 Refinement 44
6.3 Completeness 50
7 Definition of Fair Otter Loop 51
7.1 Locale 51
7.2 Basic Definitions and Lemmas 52
7.3 Initial State and Invariant 53
7.4 Final State 54
7.5 Refinement 56
8 iProver Loop 58
8.1 Definition 58
8.2 Refinement 58
8.3 Completeness 59
9 Fair iProver Loop 60
9.1 Locale 60
9.2 Basic Definition 60
9.3 Initial State and Invariant 60
9.4 Final State 61
9.5 Refinement 61
9.6 Completeness 62
10 Completeness of Fair Otter Loop 76
10.1 Completeness 76
10.2 Specialization with FIFO Queue 76
11 Zipperposition Loop with Ghost State 77
11.1 Basic Definitions and Lemmas 78
11.2 Refinement 78
11.3 Completeness 83
12 Prover Lazy List Queues and Fairness 83
12.1 Basic Lemmas 83
12.2 Locales 84
12.3 Instantiation with FIFO Queue 87
13 Fair Zipperposition Loop with Ghosts 97
13.1 Locale 98
13.2 Basic Definitions and Lemmas 98
13.3 Initial State and Invariant 100
13.4 Final State 102
13.5 Refinement 104
13.6 Completeness 106
14 Fair Zipperposition Loop without Ghosts 117
14.1 Locale 117
14.2 Basic Definitions and Lemmas 118
14.3 Initial States and Invariants 119
14.4 Abstract Nonsense for Ghost-Ghostless Conversion 119
14.5 Ghost-Ghostless Conversions, the Concrete Version 121
14.6 Completeness 125
14.7 Specialization with FIFO Queue 127
15 Given Clause Loops 128

1 Utilities for Given Clause Loops

This section contains various lemmas used by the rest of the formalization of given clause procedures.

```
theory Given-Clause-Loops-Util
    imports
        HOL-Library.FSet
        HOL-Library.Multiset
        Ordered-Resolution-Prover.Lazy-List-Chain
        Weighted-Path-Order.Multiset-Extension-Pair
        Lambda-Free-RPOs.Lambda-Free-Util
begin
hide-const (open) Seq.chain
hide-fact (open) Abstract-Rewriting.chain-mono
declare fset-of-list.rep-eq [simp]
instance bool :: wellorder
proof
    fix P and b :: bool
    assume (\y.y<b\LongrightarrowPy)\LongrightarrowPb for b:: bool
    hence }\wedgeq.q\leqb\LongrightarrowP
        using less-bool-def by presburger
    then show P b
        by auto
qed
lemma finite-imp-set-eq:
    assumes fin: finite A
    shows }\exists\mathrm{ xs. set xs = A
    using fin
proof (induct A rule: finite-induct)
    case empty
    then show ?case
        by auto
next
    case (insert x B)
    then obtain xs :: 'a list where
        set xs=B
        by blast
```

```
    then have set ( }x#xs)=\mathrm{ insert }x
        by auto
    then show ?case
    by blast
qed
lemma Union-Setcompr-member-mset-mono:
    assumes sub: P\subseteq#Q
    shows }\bigcup{fx|x.x\in#P}\subseteq\bigcup{fx|x.x\in#Q
proof -
    have {fx|x.x\in#P}\subseteq{fx|x.x\in# Q}
        by (rule Collect-mono) (metis sub mset-subset-eqD)
    thus ?thesis
        by (simp add: Sup-subset-mono)
qed
lemma singletons-in-mult1: }(x,y)\inR\Longrightarrow({#x#},{#y#})\in\mathrm{ mult1 }
    by (metis add-mset-add-single insert-DiffM mult1I single-eq-add-mset)
lemma singletons-in-mult: }(x,y)\inR\Longrightarrow({#x#},{#y#})\in\mathrm{ mult }
    by (simp add: mult-def singletons-in-mult1 trancl.intros(1))
lemma multiset-union-diff-assoc:
    fixes A B C :: 'a multiset
    assumes }A\cap#C={#
    shows A+B-C=A+(B-C)
    by (metis assms multiset-union-diff-commute union-commute)
lemma Liminf-llist-subset:
    assumes
        llength Xs = llength Ys and
        \forall}<\mathrm{ llength Xs. lnth Xs i}\subseteqlnth Ys 
    shows Liminf-llist Xs\subseteq Liminf-llist Ys
    unfolding Liminf-llist-def using assms
    by (smt INT-iff SUP-mono mem-Collect-eq subsetD subsetI)
lemma countable-imp-lset:
    assumes count: countable A
    shows \existsas.lset as = A
proof (cases finite A)
    case fin:True
    have }\exists\mathrm{ as. set as = A
        by (simp add: fin finite-imp-set-eq)
    thus ?thesis
        by (meson lset-llist-of)
next
    case inf: False
    let ?as = inf-llist (from-nat-into A)
    have lset ?as = A
        by (simp add: inf infinite-imp-nonempty count)
    thus ?thesis
        by blast
qed
```

lemma distinct-imp-notin-set-drop-Suc:

assumes

distinct xs
$i<$ length xs
$x s!i=x$
shows $x \notin$ set (drop (Suc i) xs)
by (metis Cons-nth-drop-Suc assms distinct.simps(2) distinct-drop)
lemma distinct-set-drop-removeAll-hd:

assumes

distinct xs
$x s \neq[]$
shows set (drop $n($ removeAll $(h d x s) x s))=\operatorname{set}(\operatorname{drop}($ Suc $n) x s)$
using assms
by (metis distinct.simps(2) drop-Suc list.exhaust-sel removeAll.simps(2) removeAll-id)

```
lemma set-drop-removeAll: set (drop n (removeAll y xs)) \subseteq set (drop n xs)
proof (induct n arbitrary:xs)
    case 0
    then show ?case
        by auto
next
    case (Suc n)
    then show ?case
    proof (cases xs)
        case Nil
        then show ?thesis
            by auto
    next
        case (Cons x xs')
        then show ?thesis
            by (metis Suc Suc-n-not-le-n drop-Suc-Cons nat-le-linear removeAll.simps(2)
                set-drop-subset-set-drop subset-code(1))
    qed
qed
```

lemma set-drop-fold-removeAll: set $($ drop $k($ fold removeAll ys xs $)) \subseteq$ set $($ drop $k x s)$
proof (induct ys arbitrary: xs)
case (Cons y ys)
note $i h=$ this(1)
have set $($ drop $k($ fold removeAll ys $($ removeAll $y x s))) \subseteq \operatorname{set}(\operatorname{drop} k($ removeAll $y x s))$
using ih[of removeAll y xs].
also have $\ldots \subseteq$ set (drop $k x s$)
by (meson set-drop-removeAll)
finally show? case
by simp
qed simp
lemma set-drop-append-subseteq: set $($ drop $n(x s @ y s)) \subseteq$ set $(d r o p n x s) \cup$ set ys
by (metis drop-append set-append set-drop-subset sup.idem sup.orderI sup-mono)
lemma distinct-fold-removeAll:
assumes dist: distinct xs

```
    shows distinct (fold removeAll ys xs)
    using dist
proof (induct ys arbitrary: xs)
    case Nil
    then show ?case
        using dist by simp
next
    case (Cons y ys)
    note ih = this(1) and dist-xs = this(2)
    have dist-yxs: distinct (removeAll y xs)
        using dist-xs by (simp add: distinct-removeAll)
    show ?case
        by simp (rule ih[OF dist-yxs])
qed
lemma set-drop-append-cons: set (drop n (xs @ ys))\subseteq set (drop n (xs@ y # ys))
proof (induct n arbitrary:xs)
    case 0
    then show ?case
        by auto
next
    case (Suc n)
    note ih = this(1)
    show ?case
    proof (cases xs)
        case Nil
        then show ?thesis
            using set-drop-subset-set-drop[of n Suc n] by force
    next
        case (Cons x xs')
        note xs=this(1)
        have set (drop n (x\mp@subsup{s}{}{\prime}@ys))\subseteq set (drop n (x\mp@subsup{s}{}{\prime}@y#ys))
            using ih .
        thus ?thesis
        unfolding xs by auto
    qed
qed
lemma chain-ltl: chain R sts \Longrightarrow ᄀ lnull (ltl sts) \Longrightarrow chain R (ltl sts)
    by (metis chain.simps eq-LConsD lnull-def)
end
```


2 More Lemmas about Given Clause Architectures

This section proves lemmas about Tourret's formalization of the abstract given clause procedures $G C$ and $L G C$.
theory More-Given-Clause-Architectures
imports Saturation-Framework.Given-Clause-Architectures
begin

2.1 Inference System

context inference-system
begin
lemma Inf-from-empty: Inf-from $\}=\{\iota \in$ Inf. prems-of $\iota=[]\}$
using Inf-from-def by auto
end

2.2 Given Clause Procedure Basis

context given-clause-basis
begin
lemma no-labels-entails-mono-left: $M \subseteq N \Longrightarrow M \models \cap \mathcal{G} P \Longrightarrow N \models \cap \mathcal{G} P$ using no-labels.entails-trans no-labels.subset-entailed by blast
lemma no-labels-Red-F-imp-Red-F:
assumes $C \in$ no-labels.Red- $F\left(f s t{ }^{‘} \mathcal{N}\right)$
shows $(C, l) \in \operatorname{Red}-F \mathcal{N}$
proof -
let $? N=f s t$ ' \mathcal{N}
have c-in-red-f-g-q: $\forall q \in Q . C \in$ no-labels.Red-F-G $-q$ q ? N using no-labels.Red-F-def assms by auto
moreover have redfgq-eq-redfeq: $\forall q \in Q$. no-labels.Red-F-G-q q ? $N=$ no-labels.Red-F-G-empty- q q ? N using no-labels.Red-F-G-empty-q-def no-labels.Red-F-G-q-def by auto
ultimately have $\forall q \in Q . C \in$ no-labels.Red-F-G-empty-q q ? N by simp
then have $\forall q \in Q . \mathcal{G}-F-q q C \subseteq \operatorname{Red}-F-q q$ (no-labels. \mathcal{G}-Fset- q q ? N)
using redfgq-eq-redfeq no-labels.Red-F-G-q-def by auto
moreover have $\forall q \in Q . \mathcal{G}-F-L-q q(C, l)=\mathcal{G}-F-q q C$ by simp
moreover have $\forall q \in Q$. no-labels. \mathcal{G}-Fset- q q? $N=\mathcal{G}$-Fset- $q \mathcal{N}$
by auto
ultimately have $\forall q \in Q . \mathcal{G}-F-L-q q(C, l) \subseteq \operatorname{Red}-F-q q(\mathcal{G}-F s e t-L-q q \mathcal{N})$ by auto
then have $\forall q \in Q .(C, l) \in \operatorname{Red-F-G}-q q \mathcal{N}$
using c-in-red-f-g-q Red-F-G-q-def by force
then show $(C, l) \in \operatorname{Red}-F \mathcal{N}$
using Red-F-def by simp
qed
lemma succ-F-imp-Red-F:
assumes
$C^{\prime} \in f s t$ ' \mathcal{N} and
$C^{\prime} \prec \cdot C$
shows $(C, l) \in \operatorname{Red}-F \mathcal{N}$
proof -
have $\exists l^{\prime} .\left(C^{\prime}, l^{\prime}\right) \in \mathcal{N}$
using assms by auto
then obtain l^{\prime} where
$c^{\prime}-l^{\prime}-i n:\left(C^{\prime}, l^{\prime}\right) \in \mathcal{N}$
by auto
then have $c^{\prime}-l^{\prime}-l s-c-l:\left(C^{\prime}, l^{\prime}\right) \sqsubset(C, l)$
using assms Prec-FL-def by simp
moreover have g-f-q-included: $\forall q \in Q . \mathcal{G}-F-q q C \subseteq \mathcal{G}-F-q q C^{\prime}$
using assms prec-F-grounding by simp
ultimately have $\forall q \in Q . \mathcal{G}-F-L-q q(C, l) \subseteq \mathcal{G}-F-L-q q(C, l)$
by auto
then have $\forall q \in Q .(C, l) \in \operatorname{Red}-F-\mathcal{G}-q q \mathcal{N}$
using $c^{\prime}-l^{\prime}$-in $c^{\prime}-l^{\prime}-l s-c-l g$-f-q-included Red-F-G-q-def by fastforce
thus $(C, l) \in \operatorname{Red}-F \mathcal{N}$
using Red-F-def by auto
qed
lemma succ-L-imp-Red-F:
assumes
$\left(C^{\prime}, l^{\prime}\right) \in \mathcal{N}$ and
$C^{\prime} \preceq . C$ and
$l^{\prime} \sqsubset L l$
shows $(C, l) \in \operatorname{Red}-F \mathcal{N}$
proof -
have $c^{\prime}-l^{\prime}-l s-c-l:\left(C^{\prime}, l^{\prime}\right) \sqsubset(C, l)$
using Prec-FL-def assms by auto
have $c^{\prime}-l e-c: C^{\prime} \preceq . C$
using assms by simp
then show $(C, l) \in \operatorname{Red}-F \mathcal{N}$
proof
assume $c^{\prime}-l s-c: \quad C^{\prime} \prec \cdot C$
have $C^{\prime} \in f s t$ ' \mathcal{N}
by (metis assms(1) eq-fst-iff rev-image-eqI)
then show ?thesis
using $c^{\prime}-l s$-c succ-F-imp-Red-F by blast
next
assume $c^{\prime}-e q-c: \quad C^{\prime} \doteq C$
have $c-e q-c^{\prime}: C \doteq C^{\prime}$
using c^{\prime}-eq-c equiv-equiv- F equivp-symp by force
have $\forall q \in Q . \mathcal{G}-F-q q C^{\prime}=\mathcal{G}-F-q q C$
using $c^{\prime}-e q-c c-e q-c^{\prime}$ equiv-F-grounding subset-antisym by auto
then have $\forall q \in Q . \mathcal{G}-F-L-q q(C, l)=\mathcal{G}-F-L-q q\left(C^{\prime}, l^{\prime}\right)$ by auto
then have $\forall q \in Q .(C, l) \in \operatorname{Red}-F-\mathcal{G}-q q \mathcal{N}$
using $\operatorname{assms}(1) c^{\prime}-l^{\prime}-l s-c-l$ Red-F-G-q-def by auto
then show ?thesis
using Red-F-def by auto
qed
qed
lemma prj-fl-set-to-f-set-distr-union $[$ simp $]:$ fst ' $(\mathcal{M} \cup \mathcal{N})=f s t$ ' $\mathcal{M} \cup f s t$ ' \mathcal{N}
by (rule Set.image-Un)
lemma prj-labeledN-eq- $N[$ simp $]:$ fst' $\{(C, l) \mid C . C \in N\}=N$
proof -
let ? $\mathcal{N}=\{(C, l) \mid C . C \in N\}$
have $f s t^{*}$? $\mathcal{N}=N$
proof
show $f s t^{6}$? $\mathcal{N} \subseteq N$
by fastforce
next
show $f s t$? $\mathcal{N} \supseteq N$

```
    proof
        fix }
        assume }x\in
        then have (x,l)\in?\mathcal{N}
            by auto
        then show }x\in\mp@subsup{f}{st}{*
            by force
        qed
    qed
    then show fst' ?.N =N
    by simp
qed
end
```


2.3 Given Clause Procedure

```
context given-clause
begin
lemma remove-redundant:
assumes \((C, l) \in \operatorname{Red}-F \mathcal{N}\)
shows \(\mathcal{N} \cup\{(C, l)\} \sim G C \mathcal{N}\)
proof -
have \(\{(C, l)\} \subseteq \operatorname{Red}-F(\mathcal{N} \cup\{ \})\)
using assms by simp
moreover have active-subset \(\}=\{ \}\)
using active-subset-def by simp
ultimately show \(\mathcal{N} \cup\{(C, l)\} \sim G C \mathcal{N}\) by (metis process sup-bot-right)
qed
lemma remove-redundant-no-label:
assumes \(C \in\) no-labels.Red- \(F(f s t\) ' \(\mathcal{N})\)
shows \(\mathcal{N} \cup\{(C, l)\} \sim G C \mathcal{N}\)
proof -
have \((C, l) \in \operatorname{Red}-F \mathcal{N}\)
using no-labels-Red-F-imp-Red-F assms by simp
then show ?thesis
using remove-redundant by auto
qed
lemma add-inactive:
assumes \(l \neq\) active
shows \(\mathcal{N} \leadsto G C \mathcal{N} \cup\{(C, l)\}\)
proof -
have active-subset-C-l: active-subset \(\{(C, l)\}=\{ \}\)
using active-subset-def assms by simp
also have \(\} \subseteq \operatorname{Red}-F(\mathcal{N} \cup\{(C, l)\})\)
by \(\operatorname{simp}\)
finally show \(\mathcal{N} \sim G C \mathcal{N} \cup\{(C, l)\}\)
by (metis active-subset-C-l process sup-bot.right-neutral)
qed
lemma remove-succ- \(F\) :
assumes
```

```
    (C', l') \in\mathcal{N}\mathrm{ and}
    C'々.C
    shows \mathcal{N}\cup{(C,l)}~GC \mathcal{N}
proof -
    have C' }\in\mp@subsup{f}{st}{\prime}'\mathcal{N
        by (metis assms(1) fst-conv rev-image-eqI)
    then have {(C,l)}\subseteqRed-F (\mathcal{N})
        using assms succ-F-imp-Red-F by auto
    then show ?thesis
        using remove-redundant by simp
qed
lemma remove-succ-L:
    assumes
        (C', l') \in\mathcal{N}\mathrm{ and}
        C'\preceq.C and
        l'\sqsubsetLl
    shows \mathcal{N}\cup{(C,l)}~GC\mathcal{N}
proof -
    have (C,l)\inRed-F \mathcal{N}
        using assms succ-L-imp-Red-F by auto
    then show \mathcal{N}\cup{(C,l)}~GC\mathcal{N}
        using remove-redundant by auto
qed
lemma relabel-inactive:
    assumes
        l'\sqsubsetLl and
        l'}=\mathrm{ active
    shows \mathcal{N}\cup{(C,l)}~GC\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})}
proof -
    have active-subset-c-l': active-subset {(C, l')}={}
        using active-subset-def assms by auto
    have C \doteqC
        by (simp add: equiv-equiv-F equivp-reflp)
    moreover have (C, l') \in\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})}
        by auto
    ultimately have (C,l)\in\operatorname{Red}-F(\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})})
        using assms succ-L-imp-Red-F[of--\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})}] by auto
    then have {(C,l)}\subseteq\operatorname{Red}-F(\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})})
        by auto
    then show \mathcal{N}\cup{(C,l)}~GC\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})}
        using active-subset-c-l' process[of --{(C,l)}-{(C,\mp@subsup{l}{}{\prime})}] by auto
qed
end
```


2.4 Lazy Given Clause Procedure

context lazy-given-clause
begin
lemma remove-redundant:
assumes $(C, l) \in \operatorname{Red}-F \mathcal{N}$

```
    shows}(T,\mathcal{N}\cup{(C,l)})~LGC(T,\mathcal{N}
proof -
    have {(C,l)}\subseteqRed-F \mathcal{N}
        using assms by simp
    moreover have active-subset {}={}
        using active-subset-def by simp
    ultimately show }(T,\mathcal{N}\cup{(C,l)})~LGC(T,\mathcal{N}
        by (metis process sup-bot-right)
qed
lemma remove-redundant-no-label:
    assumes }C\in\mathrm{ no-labels.Red-F (fst' N}
    shows}(T,\mathcal{N}\cup{(C,l)})~LGC(T,\mathcal{N}
proof -
    have (C,l) \in Red-F \mathcal{N}
        using no-labels-Red-F-imp-Red-F assms by simp
    then show }(T,\mathcal{N}\cup{(C,l)})~LGC(T,\mathcal{N}
        using remove-redundant by auto
qed
lemma add-inactive:
    assumes l\not= active
    shows}(T,\mathcal{N})~LGC(T,\mathcal{N}\cup{(C,l)}
proof -
    have active-subset-C-l: active-subset {(C,l)}={}
        using active-subset-def assms by simp
    also have {}\subseteq\operatorname{Red}-F(\mathcal{N}\cup{(C,l)})
        by simp
    finally show }(T,\mathcal{N})~LGC(T,\mathcal{N}\cup{(C,l)}
        by (metis active-subset-C-l process sup-bot.right-neutral)
qed
lemma remove-succ-F:
    assumes
        (C', l') \in\mathcal{N}\mathrm{ and}
        C' \prec.C
    shows}(T,\mathcal{N}\cup{(C,l)})~LGC(T,\mathcal{N}
proof -
    have C' }\in\mp@subsup{f}{st}{\prime
        by (metis assms(1) fst-conv rev-image-eqI)
    then have {(C,l)}\subseteq\operatorname{Red}-F(\mathcal{N})
        using assms succ-F-imp-Red-F by auto
    then show ?thesis
        using remove-redundant by simp
qed
lemma remove-succ-L:
    assumes
        (C',}\mp@subsup{l}{}{\prime})\in\mathcal{N}\mathrm{ and
        C'\preceq.C and
        l'\sqsubsetL l
    shows}(T,\mathcal{N}\cup{(C,l)})~LGC(T,\mathcal{N}
proof -
    have (C,l) \in Red-F \mathcal{N}
    using assms succ-L-imp-Red-F by auto
```

```
    then show }(T,\mathcal{N}\cup{(C,l)})~LGC(T,\mathcal{N}
    using remove-redundant by auto
qed
lemma relabel-inactive:
    assumes
        l'\sqsubsetLl and
        l'}=\mathrm{ active
    shows}(T,\mathcal{N}\cup{(C,l)})~LGC(T,\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})}
proof -
    have active-subset-c-l': active-subset {(C, l')}={}
        using active-subset-def assms by auto
    have C \doteq}
        by (simp add: equiv-equiv-F equivp-reflp)
    moreover have (C, l') \in\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})}
        by auto
    ultimately have (C,l)\in\operatorname{Red}-F(\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})})
        using assms succ-L-imp-Red-F[of--\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})}] by auto
    then have {(C,l)}\subseteq\operatorname{Red-F}(\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})})
        by auto
    then show }(T,\mathcal{N}\cup{(C,l)})~LGC(T,\mathcal{N}\cup{(C,\mp@subsup{l}{}{\prime})}
        using active-subset-c-l' process[of-- {(C,l)}-{(C,l')}] by auto
qed
end
end
```


3 DISCOUNT Loop

The DISCOUNT loop is one of the two best-known given clause procedures. It is formalized as an instance of the abstract procedure $L G C$.

```
theory DISCOUNT-Loop
    imports
        Given-Clause-Loops-Util
        More-Given-Clause-Architectures
begin
```


3.1 Locale

```
datatype DL-label =
```

 Passive | YY| Active
 primrec nat-of-DL-label :: DL-label \Rightarrow nat where
nat-of-DL-label Passive $=2$
| nat-of-DL-label $Y Y=1$
| nat-of-DL-label Active $=0$
definition $D L$-Prec- $L::$ DL-label $\Rightarrow D L$-label \Rightarrow bool (infix $\sqsubset L 50$) where
DL-Prec-L l $l^{\prime} \longleftrightarrow$ nat-of-DL-label $l<n a t-o f-D L$-label l^{\prime}
locale discount-loop $=$ labeled-lifting-intersection Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q

Red-F-q G-F-q G-I-q
$\left\{\iota_{F L}::(' f \times ' l)\right.$ inference. Infer $\left(m a p\right.$ fst $\left(\right.$ prems-of $\left.\left.\iota_{F L}\right)\right)\left(f s t\left(\right.\right.$ concl-of $\left.\left.\left.\iota_{F L}\right)\right) \in \operatorname{Inf}-F\right\}$
for
Bot-F :: 'f set
and Inf-F :: 'f inference set
and Bot- $G::$ ' g set
and $Q::$ ' q set
and entails- $q::$ ' $q \Rightarrow$ ' g set \Rightarrow ' g set \Rightarrow bool
and Inf- $G-q:: \iota^{\prime} q \Rightarrow{ }^{\prime} g$ inference set \rangle
and Red-I-q :: ' $q \Rightarrow$ ' g set \Rightarrow ' g inference set
and Red-F-q :: ' $q \Rightarrow{ }^{\prime} g$ set $\Rightarrow{ }^{\prime} g$ set
and $\mathcal{G}-F-q::{ }^{\prime} q \Rightarrow{ }^{\prime} f \Rightarrow{ }^{\prime} g$ set
and $\mathcal{G}-I-q::{ }^{\prime} q \Rightarrow$ 'f inference $\Rightarrow{ }^{\prime} g$ inference set option

+ fixes
Equiv- $F::$ ' $f \Rightarrow$ ' $f \Rightarrow$ bool (infix $\doteq 50$) and
Prec- $F::$ ' $f \Rightarrow$ ' $f \Rightarrow$ bool (infix $\prec \cdot 50$)

assumes

equiv-equiv-F: equivp (\doteq) and
wf-prec-F: minimal-element $(\prec \cdot)$ UNIV and
compat-equiv-prec: $C 1 \doteq D 1 \Longrightarrow C 2 \doteq D 2 \Longrightarrow C 1 \prec \cdot C 2 \Longrightarrow D 1 \prec \cdot D 2$ and
equiv-F-grounding: $q \in Q \Longrightarrow C 1 \doteq C 2 \Longrightarrow \mathcal{G}-F-q q C 1 \subseteq \mathcal{G}-F-q q C 2$ and
prec-F-grounding: $q \in Q \Longrightarrow C 2 \prec C 1 \Longrightarrow \mathcal{G}-F-q q C 1 \subseteq \mathcal{G}-F-q q C 2$ and
static-ref-comp: statically-complete-calculus Bot-F Inf-F $(\models \cap \mathcal{G})$
no-labels.Red-I-G no-labels.Red-F-G-empty and
inf-have-prems: $\iota F \in$ Inf- $F \Longrightarrow$ prems-of $\iota F \neq[]$

begin

lemma po-on-DL-Prec-L: po-on ($\sqsubset L)$ UNIV
by (metis (mono-tags, lifting) DL-Prec-L-def irreflp-onI less-imp-neq order.strict-trans po-on-def transp-onI)
lemma wfp-on-DL-Prec-L: wfp-on ($\sqsubset L) ~ U N I V ~$
unfolding wfp-on-UNIV DL-Prec-L-def by (simp add: wfP-app)
lemma Active-minimal: l2 \neq Active \Longrightarrow Active $\sqsubset L$ l2
by (cases l2) (auto simp: DL-Prec-L-def)
lemma at-least-two-labels: $\exists 12$. Active $\sqsubset L 12$
using Active-minimal by blast
sublocale lgc?: lazy-given-clause Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q G-I-q Equiv-F Prec-F DL-Prec-L Active
apply unfold-locales
apply simp
apply simp
apply (rule equiv-equiv-F)
apply (simp add: minimal-element.po wf-prec-F)
using minimal-element.wf wf-prec- F apply blast
apply (rule po-on-DL-Prec-L)
apply (rule wfp-on-DL-Prec-L)
apply (fact compat-equiv-prec)
apply (fact equiv-F-grounding)
apply (fact prec-F-grounding)
apply (fact Active-minimal)
apply (rule at-least-two-labels)
using static-ref-comp statically-complete-calculus.statically-complete apply fastforce done
notation lgc.step (infix $\sim L G C 50$)

3.2 Basic Definitions and Lemmas

abbreviation c-dot-succ :: ' $f \Rightarrow$ ' $f \Rightarrow$ bool (infix \succ \succ 50) where

$$
C \cdot \succ C^{\prime} \equiv C^{\prime} \prec \cdot C
$$

abbreviation sqsupset :: DL-label \Rightarrow DL-label \Rightarrow bool (infix $\sqsupset L 50$) where $l \sqsupset L l^{\prime} \equiv l^{\prime} \sqsubset L l$
fun labeled-formulas-of :: 'f set \times ' f set \times ' f set $\Rightarrow(' f \times D L$-label $)$ set where labeled-formulas-of $(P, Y, A)=\{(C$, Passive $) \mid C . C \in P\} \cup\{(C, Y Y) \mid C . C \in Y\} \cup$ $\{(C$, Active $) \mid C . C \in A\}$
lemma labeled-formulas-of-alt-def:
labeled-formulas-of $(P, Y, A)=$
$(\lambda C .(C, \text { Passive }))^{\prime} P \cup(\lambda C .(C, Y Y))$ ' $Y \cup(\lambda C .(C, \text { Active }))^{\prime} A$
by auto
fun
state :: ' inference set \times ' set \times ' set \times ' set \Rightarrow ' f inference set $\times($ ' $f \times D L$-label $)$ set where
state $(T, P, Y, A)=(T$, labeled-formulas-of $(P, Y, A))$
lemma state-alt-def:
state $(T, P, Y, A)=(T,(\lambda C .(C$, Passive $))$ ' $P \cup(\lambda C .(C, Y Y))$ ' $Y \cup(\lambda C .(C$, Active $))$ ' $A)$
by auto

inductive

$D L:: ~ ' f$ inference set $\times(' f \times D L$-label $)$ set \Rightarrow ' f inference set $\times(' f \times D L$-label $)$ set \Rightarrow bool (infix $\sim D L 50$)

where

compute-infer: $\iota \in$ no-labels.Red-I $(A \cup\{C\}) \Longrightarrow$ state $(T \cup\{\iota\}, P,\{ \}, A) \sim D L$ state $(T, P,\{C\}, A)$
\mid choose-p: state $(T, P \cup\{C\},\{ \}, A) \sim D L$ state $(T, P,\{C\}, A)$
| delete-fwd: $C \in$ no-labels.Red-F $A \vee\left(\exists C^{\prime} \in A . C^{\prime} \preceq \cdot C\right) \Longrightarrow$ state $(T, P,\{C\}, A) \sim D L$ state $(T, P,\{ \}, A)$
| simplify-fwd: $C \in$ no-labels.Red- $F\left(A \cup\left\{C^{\prime}\right\}\right) \Longrightarrow$ state $(T, P,\{C\}, A) \leadsto D L$ state $\left(T, P,\left\{C^{\prime}\right\}, A\right)$
\mid delete-bwd: $C^{\prime} \in$ no-labels.Red- $F\{C\} \vee C^{\prime} \cdot \succ C \Longrightarrow$ state $\left(T, P,\{C\}, A \cup\left\{C^{\prime}\right\}\right) \sim D L$ state $(T, P,\{C\}, A)$
| simplify-bwd: $C^{\prime} \in$ no-labels.Red-F $\left\{C, C^{\prime \prime}\right\} \Longrightarrow$ state $\left(T, P,\{C\}, A \cup\left\{C^{\prime}\right\}\right) \sim D L$ state $\left(T, P \cup\left\{C^{\prime \prime}\right\},\{C\}, A\right)$
\mid schedule-infer: $T^{\prime}=$ no-labels.Inf-between $A\{C\} \Longrightarrow$ state $(T, P,\{C\}, A) \sim D L$ state $\left(T \cup T^{\prime}, P,\{ \}, A \cup\{C\}\right)$
| delete-orphan-infers: $T^{\prime} \cap$ no-labels.Inf-from $A=\{ \} \Longrightarrow$ state $\left(T \cup T^{\prime}, P, Y, A\right) \sim D L$ state (T, P, Y, A)
lemma If-f-in- A-then- f-in- $P Y A: C^{\prime} \in A \Longrightarrow\left(C^{\prime}\right.$, Active $) \in$ labeled-formulas-of (P, Y, A) by auto
lemma PYA-add-passive-formula $[$ simp $]$:
labeled-formulas-of $(P, Y, A) \cup\{(C$, Passive $)\}=$ labeled-formulas-of $(P \cup\{C\}, Y, A)$
by auto
lemma P0A-add-y-formula[simp]:
labeled-formulas-of $(P,\{ \}, A) \cup\{(C, Y Y)\}=$ labeled-formulas-of $(P,\{C\}, A)$
by auto
lemma PYA-add-active-formula[simp]:
labeled-formulas-of $(P, Y, A) \cup\left\{\left(C^{\prime}\right.\right.$, Active $\left.)\right\}=$ labeled-formulas-of $\left(P, Y, A \cup\left\{C^{\prime}\right\}\right)$
by auto
lemma prj-active-subset-of-state: $f s t$ ' active-subset (labeled-formulas-of $(P, Y, A))=A$
proof -
have active-subset $\{(C, Y Y) \mid C . C \in Y\}=\{ \}$ and active-subset $\{(C$, Passive $) \mid C . C \in P\}=\{ \}$
using active-subset-def by auto
moreover have active-subset $\{(C$, Active $) \mid C . C \in A\}=\{(C$, Active $) \mid C . C \in A\}$ using active-subset-def by fastforce
ultimately have $f s t$ ' active-subset (labeled-formulas-of $(P, Y, A))=$ fst' $(\{(C$, Active $) \mid C . C \in A\})$ by simp
then show ?thesis by simp
qed
lemma active-subset-of-setOfFormulasWithLabelDiffActive:
$l \neq$ Active \Longrightarrow active-subset $\left\{\left(C^{\prime}, l\right)\right\}=\{ \}$
using active-subset-def by auto

3.3 Refinement

lemma dl-compute-infer-in-lgc:
assumes $\iota \in$ no-labels.Red-I-G $(A \cup\{C\})$
shows state $(T \cup\{\iota\}, P,\{ \}, A) \sim L G C$ state $(T, P,\{C\}, A)$
proof -
let ? $\mathcal{N}=$ labeled-formulas-of $(P,\{ \}, A)$
and ? $\mathcal{M}=\{(C, Y Y)\}$
have $A \cup\{C\} \subseteq f s t^{\star}($ labeled-formulas-of $(P,\{ \}, A) \cup\{(C, Y Y)\})$
by auto
then have $\iota \in$ no-labels.Red-I-G $\left(f s t^{\prime}(\right.$? $\mathcal{N} \cup$? $\left.\mathcal{M})\right)$
by (meson assms no-labels.empty-ord.Red-I-of-subset subsetD)
also have active-subset ? $\mathcal{M}=\{ \}$
using active-subset-of-setOfFormulasWithLabelDiffActive by auto
then have $(T \cup\{\iota\}, ? \mathcal{N}) \sim L G C(T, ? \mathcal{N} \cup ? \mathcal{M})$
using calculation lgc.step.compute-infer by blast
moreover have ? $\mathcal{N} \cup ? \mathcal{M}=$ labeled-formulas-of $(P,\{C\}, A)$ by simp
ultimately show ?thesis by auto
qed
lemma dl-choose-p-in-lgc: state $(T, P \cup\{C\},\{ \}, A) \sim L G C$ state $(T, P,\{C\}, A)$
proof -
let ? $\mathcal{N}=$ labeled-formulas-of $(P,\{ \}, A)$
have Passive $\sqsupset L Y Y$
by (simp add: DL-Prec-L-def)
then have $(T$, ? $\mathcal{N} \cup\{(C$, Passive $)\}) \sim L G C(T$, ? $\mathcal{N} \cup\{(C, Y Y)\})$
using relabel-inactive by blast

```
    then have \((T\), labeled-formulas-of \((P \cup\{C\},\{ \}, A)) \sim L G C(T\), labeled-formulas-of \((P,\{C\}, A))\)
        by (metis PYA-add-passive-formula P0A-add-y-formula)
    then show ?thesis
        by auto
qed
lemma dl-delete-fwd-in-lgc:
    assumes \((C \in\) no-labels.Red-F \(A) \vee\left(\exists C^{\prime} \in A . C^{\prime} \preceq \cdot C\right)\)
    shows state \((T, P,\{C\}, A) \sim L G C\) state \((T, P,\{ \}, A)\)
    using assms
proof
    assume \(c\)-in: \(C \in\) no-labels.Red-F \(A\)
    then have \(A \subseteq f s t\) ' (labeled-formulas-of \((P,\{ \}, A))\)
        by simp
    then have \(C \in\) no-labels.Red- \(F\) (fst' (labeled-formulas-of \((P,\{ \}, A)))\)
        by (metis (no-types, lifting) c-in in-mono no-labels.Red-F-of-subset)
    then show ?thesis
        using remove-redundant-no-label by auto
next
    assume \(\exists C^{\prime} \in A . C^{\prime} \preceq \cdot C\)
    then obtain \(C^{\prime}\) where \(c^{\prime}\)-in-and-c \(c^{\prime}\)-ls-c: \(C^{\prime} \in A \wedge C^{\prime} \preceq \cdot C\)
        by auto
    then have \(\left(C^{\prime}\right.\), Active \() \in\) labeled-formulas-of \((P,\{ \}, A)\)
        by auto
    then have \(Y Y \sqsupset L\) Active
        by (simp add: DL-Prec-L-def)
    then show?thesis
        by (metis \(c^{\prime}\)-in-and- \(c^{\prime}\)-ls-c remove-succ- \(L\) state.simps P0A-add-y-formula
        If-f-in-A-then-fl-in-PYA)
qed
lemma dl-simplify-fwd-in-lgc:
    assumes \(C \in\) no-labels.Red-F-G \(\left(A \cup\left\{C^{\prime}\right\}\right)\)
    shows state \((T, P,\{C\}, A) \sim L G C\) state \(\left(T, P,\left\{C^{\prime}\right\}, A\right)\)
proof -
    let ? \(\mathcal{N}=\) labeled-formulas-of \((P,\{ \}, A)\)
    and \(? \mathcal{M}=\{(C, Y Y)\}\)
    and \(? \mathcal{M}^{\prime}=\left\{\left(C^{\prime}, Y Y\right)\right\}\)
    have \(A \cup\left\{C^{\prime}\right\} \subseteq f s t^{\bullet}\left(? \mathcal{N} \cup ? \mathcal{M}^{\prime}\right)\)
        by auto
    then have \(C \in\) no-labels.Red-F-G \(\left(f_{s t}{ }^{\prime}\left(? \mathcal{N} \cup ? \mathcal{M}^{\prime}\right)\right)\)
        by (smt (verit, ccfv-threshold) assms no-labels.Red-F-of-subset subset-iff)
    then have \((C, Y Y) \in \operatorname{Red}-F\left(? \mathcal{N} \cup\right.\) ? \(\left.\mathcal{M}^{\prime}\right)\)
        using no-labels-Red-F-imp-Red-F by simp
    then have ? \(\mathcal{M} \subseteq \operatorname{Red}-F-\mathcal{G}\left(? \mathcal{N} \cup\right.\) ? \(\left.\mathcal{M}^{\prime}\right)\)
        by \(\operatorname{simp}\)
    moreover have active-subset ? \(\mathcal{M}^{\prime}=\{ \}\)
        using active-subset-of-setOfFormulasWithLabelDiffActive by blast
    ultimately have \((T\), labeled-formulas-of \((P,\{ \}, A) \cup\{(C, Y Y)\}) \sim L G C\)
        \(\left(T\right.\), labeled-formulas-of \(\left.(P,\{ \}, A) \cup\left\{\left(C^{\prime}, Y Y\right)\right\}\right)\)
        using process[of - - ? \(\mathcal{M}-\) ? \(\mathcal{M}]\) by auto
    then show ?thesis
        by \(\operatorname{simp}\)
qed
```

```
lemma dl-delete-bwd-in-lgc:
    assumes }\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F-G {C} }\,\mp@subsup{C}{}{\prime}\cdot\succ
    shows state (T,P,{C},A\cup{\mp@subsup{C}{}{\prime}})~LGC state (T,P,{C},A)
    using assms
proof
    let ?\mathcal{N}= labeled-formulas-of (P,{C},A)
    assume c'-in: C'}\in\mathrm{ no-labels.Red-F-G {C}
    have {C}\subseteqfst'?N
        by simp
    then have C' }\mp@subsup{C}{}{\prime}\mathrm{ no-labels.Red-F-G (fst' ?N )
        by (metis (no-types, lifting) c'-in insert-Diff insert-subset no-labels.Red-F-of-subset)
    then have }(T,?,\mathcal{N}\cup{(\mp@subsup{C}{}{\prime},\mathrm{ Active })})~LGC(T,?\mathcal{N}
        using remove-redundant-no-label by auto
    then show ?thesis
        by (metis state.simps PYA-add-active-formula)
next
    assume C ' }\succ\succ
    moreover have (C,YY)\in labeled-formulas-of (P, {C},A)
        by simp
    ultimately show ?thesis
        by (metis remove-succ-F state.simps PYA-add-active-formula)
qed
lemma dl-simplify-bwd-in-lgc:
    assumes C'}\mp@subsup{C}{}{\prime}\mathrm{ no-labels.Red-F-G {C, C'n}
    shows state (T,P,{C},A\cup{\mp@subsup{C}{}{\prime}})~LGC state (T,P\cup{\mp@subsup{C}{}{\prime\prime}},{C},A)
proof -
    let ?\mathcal{M}={(\mp@subsup{C}{}{\prime},\mathrm{ Active })}
    and ?M}\mp@subsup{\mathcal{M}}{}{\prime}={(\mp@subsup{C}{}{\prime\prime},\mathrm{ Passive })
    and ?\mathcal{N}= labeled-formulas-of (P,{C},A)
    have {C, C''}}\subseteqfst`(?\mathcal{N}\cup?\mp@subsup{\mathcal{M}}{}{\prime}
        by simp
    then have C'\in no-labels.Red-F-\mathcal{G}}(fs\mp@subsup{t}{}{\prime}(?\mathcal{N}\cup\mathrm{ ? (M'))
        by (smt (z3) DiffI Diff-eq-empty-iff assms empty-iff no-labels.Red-F-of-subset)
```



```
        using no-labels-Red-F-imp-Red-F by auto
    then have active-subset ? }\mp@subsup{\mathcal{M}}{}{\prime}={
        using active-subset-def by auto
    then have (T, ?\mathcal{N}\cup?\mathcal{M})~LGC (T,?\mathcal{N}\cup?\mathcal{M})
        using M-included process[of - - ?M - ?M ' ] by auto
    moreover have ?N }\cup
    and ?\mathcal{N}\cup?.\mathcal{M'}= labeled-formulas-of (P\cup{\mp@subsup{C}{}{\prime\prime}},{C},A)
        by auto
    ultimately show ?thesis
        by auto
qed
lemma dl-schedule-infer-in-lgc:
    assumes }\mp@subsup{T}{}{\prime}=\mathrm{ no-labels.Inf-between A {C}
    shows state }(T,P,{C},A)~LGC state (T\cupT',P,{},A\cup{C}
proof -
    let ?\mathcal{N}= labeled-formulas-of (P,{},A)
    have fst '(active-subset ?N ) = A
        using prj-active-subset-of-state by blast
```

then have $T^{\prime}=$ no-labels.Inf-between $(f$ fst ' (active-subset ? $\left.\mathcal{N})\right)\{C\}$ using assms by auto
then have $(T$, labeled-formulas-of $(P,\{ \}, A) \cup\{(C, Y Y)\}) \sim L G C$ $\left(T \cup T^{\prime}\right.$, labeled-formulas-of $(P,\{ \}, A) \cup\{(C$, Active $\left.)\}\right)$ using lgc.step.schedule-infer by blast
then show?thesis by (metis state.simps POA-add-y-formula PYA-add-active-formula)
qed
lemma dl-delete-orphan-infers-in-lgc:
assumes $T^{\prime} \cap$ no-labels.Inf-from $A=\{ \}$
shows state $\left(T \cup T^{\prime}, P, Y, A\right) \sim L G C$ state (T, P, Y, A)
proof -
let ? $\mathcal{N}=$ labeled-formulas-of (P, Y, A)
have f st ' (active-subset ? $\mathcal{N})=A$
using prj-active-subset-of-state by blast
then have $T^{\prime} \cap$ no-labels.Inf-from $(f s t$ ' $($ active-subset ? $\mathcal{N}))=\{ \}$ using assms by simp
then have $\left(T \cup T^{\prime}\right.$, ? $\left.\mathcal{N}\right) \sim L G C(T, ? \mathcal{N})$
using lgc.step.delete-orphan-infers by blast
then show ?thesis
by simp
qed
theorem $D L$-step-imp-LGC-step: $T \mathcal{M} \leadsto D L T \mathcal{M}^{\prime} \Longrightarrow T \mathcal{M} \leadsto L G C T \mathcal{M}^{\prime}$
proof (induction rule: DL.induct)
case (compute-infer ι A C T P)
then show? case
using dl-compute-infer-in-lgc by blast
next
case (choose-p T P C A)
then show ?case
using dl-choose-p-in-lgc by auto
next
case (delete-fwd C A T P)
then show ?case
using dl-delete-fwd-in-lgc by auto
next
case (simplify-fwd $C A C^{\prime} T P$)
then show ?case
using dl-simplify-fwd-in-lgc by blast
next
case (delete-bwd $C^{\prime} C T P A$)
then show? case
using dl-delete-bwd-in-lgc by blast
next
case (simplify-bwd $C^{\prime} C C^{\prime \prime} T P A$)
then show?case
using dl-simplify-bwd-in-lgc by blast
next
case (schedule-infer $T^{\prime} A C T P$)
then show? case
using dl-schedule-infer-in-lgc by blast
next
case (delete-orphan-infers $T^{\prime} A T P Y$)

```
    then show ?case
    using dl-delete-orphan-infers-in-lgc by blast
qed
```


3.4 Completeness

theorem

assumes

dl-chain: chain $(\sim D L)$ Sts and
act: active-subset (snd (lhd Sts)) $=\{ \}$ and
pas: passive-subset (Liminf-llist (lmap snd Sts)) $=\{ \}$ and
no-prems-init: $\forall \iota \in$ Inf-F. prems-of $\iota=[] \longrightarrow \iota \in$ fst (lhd Sts) and
final-sched: Liminf-llist (lmap fst Sts) $=\{ \}$

shows

DL-Liminf-saturated: saturated (Liminf-llist (lmap snd Sts)) and
DL-complete-Liminf: $B \in$ Bot- $F \Longrightarrow$ fst'snd (lhd Sts) $\models \cap \mathcal{G}\{B\} \Longrightarrow$
$\exists B L \in$ Bot-FL. BL \in Liminf-llist (lmap snd Sts) and
DL-complete: $B \in$ Bot- $F \Longrightarrow f s t$ ' snd (lhd Sts) $\models \cap \mathcal{G}\{B\} \Longrightarrow$
$\exists i$. enat $i<$ llength Sts $\wedge(\exists B L \in$ Bot-FL. BL \in snd (lnth Sts $i))$
proof -
have lgc-chain: chain $(\sim L G C)$ Sts
using dl-chain DL-step-imp-LGC-step chain-mono by blast
show saturated (Liminf-llist (lmap snd Sts))
using act final-sched lgc.fair-implies-Liminf-saturated lgc-chain lgc-fair lgc-to-red no-prems-init pas by blast
\{
assume
bot: $B \in B o t-F$ and
unsat: fst' snd (lhd Sts) $\models \cap \mathcal{G}\{B\}$
show $\exists B L \in B o t-F L . B L \in$ Liminf-llist (lmap snd Sts)
by (rule lgc-complete-Liminf[OF lgc-chain act pas no-prems-init final-sched bot unsat])
then show $\exists i$. enat $i<$ llength Sts $\wedge(\exists B L \in$ Bot-FL. BL \in snd (lnth Sts $i))$
unfolding Liminf-llist-def by auto
\}
qed
end
end

4 Prover Queues and Fairness

This section covers the passive set data structure that arises in different prover loops in the literature (e.g., DISCOUNT, Otter).
theory Prover-Queue
imports
Given-Clause-Loops-Util
Ordered-Resolution-Prover.Lazy-List-Chain
begin

4.1 Basic Lemmas

lemma set-drop-fold-maybe-append-singleton:

```
    set (drop k (fold (\lambdayxs.if y \in set xs then xs else xs @ [y]) ys xs ) )\subseteq set (drop k (xs@ @s))
proof (induct ys arbitrary: xs)
    case (Cons y ys)
    note ih = this(1)
    show ?case
    proof (cases y fet xs)
        case True
        thus ?thesis
            using ih[of xs] set-drop-append-cons[of kxs ys y] by auto
    next
        case False
        then show ?thesis
            using ih[of xs @ [y]]
            by simp
    qed
qed simp
lemma fold-maybe-append-removeAll:
    assumes y\in set xs
    shows fold ( }\lambdayxs.\mathrm{ if }y\in\mathrm{ set xs then xs else xs @ [y])(removeAll y ys) xs=
        fold ( }\lambday\mathrm{ xs. if }y\in\mathrm{ set xs then xs else xs @ [y]) ys xs
    using assms by (induct ys arbitrary: xs) auto
```


4.2 More on Relational Chains over Lazy Lists

```
definition finitely-often \(::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\right.\) bool \() \Rightarrow{ }^{\prime} a\) llist \(\Rightarrow\) bool where
    finitely-often \(R\) xs \(\longleftrightarrow\)
        \((\exists i . \forall j . i \leq j \longrightarrow\) enat \((\) Suc \(j)<\) llength \(x s \longrightarrow \neg R(\) lnth \(x s j)(\) lnth \(x s(\) Suc \(j)))\)
```

abbreviation infinitely-often :: (' $a \Rightarrow{ }^{\prime} a \Rightarrow$ bool $) \Rightarrow{ }^{\prime} a$ llist \Rightarrow bool where
infinitely-often R xs $\equiv \neg$ finitely-often R xs
lemma infinitely-often-alt-def:
infinitely-often R xs \longleftrightarrow
$(\forall i . \exists j . i \leq j \wedge$ enat $($ Suc $j)<$ llength $x s \wedge R($ lnth $x s j)($ lnth xs $($ Suc $j)))$
unfolding finitely-often-def by blast
lemma infinitely-often-lifting:
assumes
r-imp-s: $\forall x x^{\prime} . R(f x)\left(f x^{\prime}\right) \longrightarrow S(g x)\left(g x^{\prime}\right)$ and
inf-r: infinitely-often R (lmap $f x s$)
shows infinitely-often S (lmap g xs)
using inf-r unfolding infinitely-often-alt-def
by (metis Suc-ile-eq llength-lmap lnth-lmap order-less-imp-le r-imp-s)

4.3 Locales

The passive set of a given clause prover can be organized in different ways-e.g., as a priority queue or as a list of queues. This locale abstracts over the specific data structure.

```
locale prover-queue =
    fixes
        empty :: 'q and
        select :: ' }q=>\mathrm{ ' }e\mathrm{ and
        add :: ' }e=\mp@subsup{}{}{\prime}q=>\mp@subsup{|}{}{\prime}q\mathrm{ and
        remove :: ' }e=>\mp@subsup{'}{}{\prime}q=>\mp@subsup{'}{}{\prime}q\mathrm{ and
```

$$
\text { felems }:: \text { ' } q \Rightarrow \text { 'e fset }
$$

assumes

felems-empty $[$ simp $]:$ felems empty $=\{\|\}$ and
felems-not-empty: $Q \neq$ empty \Longrightarrow felems $Q \neq\{\|\}$ and
select-in-felems $[$ simp $]: Q \neq$ empty \Longrightarrow select $Q|\in|$ felems Q and
felems-add[simp]: felems (add e $Q)=\{|e|\}|\cup|$ felems Q and
felems-remove[simp]: felems (remove e Q) $=$ felems $Q|-|\{|e|\}$ and add-again: $e|\in|$ felems $Q \Longrightarrow$ add e $Q=Q$
begin
abbreviation elems :: ' $q \Rightarrow$ 'e set where
elems $Q \equiv$ fset (felems Q)
lemma elems-empty: elems empty $=\{ \}$
by simp
lemma formula-not-empty[simp]: $Q \neq$ empty \Longrightarrow elems $Q \neq\{ \}$
by (metis bot-fset.rep-eq felems-not-empty fset-cong)

lemma

elems-add: elems $($ add e $Q)=\{e\} \cup$ elems Q and elems-remove: elems (remove e Q) elems $Q-\{e\}$
by $\operatorname{simp}+$
lemma elems-fold-add [simp]: elems (fold add es Q) $=$ set es \cup elems Q
by (induct es arbitrary: Q) auto
lemma elems-fold-remove $[$ simp $]$: elems (fold remove es Q) elems Q - set es by (induct es arbitrary: Q) auto
inductive queue-step :: ' $q \Rightarrow{ }^{\prime} q \Rightarrow$ bool where queue-step-fold-addI: queue-step Q (fold add es Q)
| queue-step-fold-removeI: queue-step Q (fold remove es Q)
lemma queue-step-idleI: queue-step $Q Q$ using queue-step-fold-addI[of - [], simplified] .
lemma queue-step-addI: queue-step $Q($ add e $Q)$
using queue-step-fold-addI $[$ of $-[e]$, simplified $]$.
lemma queue-step-removeI: queue-step Q (remove e Q) using queue-step-fold-removeI[of - [e], simplified].
inductive select-queue-step :: ' $q \Rightarrow{ }^{\prime} q \Rightarrow$ bool where select-queue-step $I: Q \neq$ empty \Longrightarrow select-queue-step $Q($ remove $($ select $Q) Q)$
end
locale fair-prover-queue $=$ prover-queue empty select add remove felems
for
empty :: ' q and
select :: ' $q \Rightarrow{ }^{\prime} e$ and
add $::{ }^{\prime} e \Rightarrow{ }^{\prime} q \Rightarrow{ }^{\prime} q$ and
remove : : ' $e \Rightarrow{ }^{\prime} q \Rightarrow{ }^{\prime} q$ and
felems :: ' $q \Rightarrow$ 'e fset +
assumes fair: chain queue-step $Q s \Longrightarrow$ infinitely-often select-queue-step $Q s \Longrightarrow$ lhd $Q s=$ empty \Longrightarrow Liminf-llist (lmap elems $Q s)=\{ \}$
begin
end

4.4 Instantiation with FIFO Queue

As a proof of concept, we show that a FIFO queue can serve as a fair prover queue.
locale fifo-prover-queue
begin
sublocale prover-queue [] hd λy xs. if $y \in$ set xs then xs else xs @ [y] removeAll fset-of-list proof
show $\bigwedge Q . Q \neq[] \Longrightarrow$ fset-of-list $Q \neq\{\|\}$
by (metis fset-of-list.rep-eq fset-simps(1) set-empty)
qed (auto simp: fset-of-list-elem)
lemma queue-step-preserves-distinct:
assumes
dist: distinct Q and
step: queue-step $Q Q^{\prime}$
shows distinct Q^{\prime}
using step
proof cases
case (queue-step-fold-addI es)
note $p^{\prime}=$ this (1)
show ?thesis
unfolding p^{\prime}
using dist
proof (induct es arbitrary: Q)
case Nil
then show ?case
using dist by auto
next
case (Cons e es)
note $i h=$ this(1) and dist- $p=$ this(2)
show ?case
proof (cases $e \in \operatorname{set} Q$)
case True
then show ?thesis
using $i h[$ OF dist- $p]$ by simp
next
case c-ni: False
have dist-pc: distinct (Q @ [e])
using c-ni dist- p by auto
show ?thesis
using $c-n i$ using $i h[O F$ dist- $p c]$ by simp
qed
qed
next
case (queue-step-fold-removeI es)
note $p^{\prime}=$ this(1)
show ?thesis
unfolding p^{\prime} using dist by (simp add: distinct-fold-removeAll)

qed

```
lemma chain-queue-step-preserves-distinct:
    assumes
    chain: chain queue-step Qs and
    dist-hd: distinct (lhd Qs) and
    i-lt: enat i < llength Qs
    shows distinct (lnth Qs i)
    using i-lt
proof (induct i)
    case 0
    then show ?case
    using dist-hd chain-length-pos[OF chain] by (simp add: lhd-conv-lnth)
next
    case (Suc i)
    have ih: distinct (lnth Qs i)
    using Suc.hyps Suc.prems Suc-ile-eq order-less-imp-le by blast
    have queue-step (lnth Qs i) (lnth Qs (Suc i))
    by (rule chain-lnth-rel[OF chain Suc.prems])
    then show ?case
    using queue-step-preserves-distinct ih by blast
qed
```

sublocale fair-prover-queue [] hd λy xs. if $y \in$ set xs then xs else xs @ [y] removeAll
fset-of-list
proof
fix $Q s::$ 'e list llist
assume
chain: chain queue-step Qs and
inf-sel: infinitely-often select-queue-step $Q s$ and
$h d$-emp: lhd $Q s=[]$
show Liminf-llist (lmap elems $Q s)=\{ \}$
proof (rule ccontr)
assume lim-nemp: Liminf-llist (lmap elems $Q s) \neq\{ \}$
obtain $i::$ nat where
i-lt: enat $i<l l e n g t h ~ Q s$ and
inter-nemp: $\bigcap(($ set \circ lnth $Q s)$ ' $\{j . i \leq j \wedge$ enat $j<$ llength $Q s\}) \neq\{ \}$
using lim-nemp unfolding Liminf-llist-def by auto
from inter-nemp obtain e :: ' e where
$\forall Q \in$ lnth $Q s$ ' $\{j . i \leq j \wedge$ enat $j<$ llength $Q s\} . e \in$ set Q
by auto
hence c-in: $\forall j \geq i$. enat $j<$ llength $Q s \longrightarrow e \in \operatorname{set}(\operatorname{lnth} Q s j)$
by auto
have ps-inf: llength $Q s=\infty$
proof (rule ccontr)
assume llength $Q s \neq \infty$
obtain n :: nat where
n : enat $n=$ llength $Q s$
using 〈llength $Q s \neq \infty$ 〉 by force

```
    show False
    using inf-sel[unfolded infinitely-often-alt-def]
    by (metis Suc-lessD enat-ord-simps(2) less-le-not-le n)
qed
have c-in': }\forallj\geqi.e\in\operatorname{set}(\mathrm{ lnth Qs j)
    by (simp add: c-in ps-inf)
then obtain k:: nat where
    k-lt:k< length (lnth Qs i) and
    at-k:lnth Qs i!k=e
    by (meson in-set-conv-nth le-refl)
have dist: distinct (lnth Qs i)
    by (simp add: chain-queue-step-preserves-distinct hd-emp i-lt chain)
have }\forall\mp@subsup{k}{}{\prime}\leqk+1.\exists\mp@subsup{i}{}{\prime}\geqi.e\not\in\operatorname{set}(drop \mp@subsup{k}{}{\prime}(\mathrm{ lnth Qs i
proof -
    have }\exists\mp@subsup{i}{}{\prime}\geqi.e\not\in\operatorname{set}(drop(k+1-l)(lnth Qs i')) for 
    proof (induct l)
        case 0
        have e\not\in set (drop (k+1) (lnth Qs i))
            by (simp add: at-k dist distinct-imp-notin-set-drop-Suc k-lt)
        then show ?case
            by auto
next
    case (Suc l)
    then obtain }\mp@subsup{i}{}{\prime}:: nat wher
        i'-ge: i' \geqi and
        c-ni-i': e\not\in set (drop (k+1-l) (lnth Qs i'))
        by blast
    obtain i" :: nat where
        i''-ge: i'\prime}\geq\mp@subsup{i}{}{\prime}\mathrm{ and
        i\prime\prime-lt: enat (Suc i'|) < llength Qs and
        sel-step: select-queue-step (lnth Qs i') (lnth Qs (Suc i'\prime))
        using inf-sel[unfolded infinitely-often-alt-def] by blast
    have c-ni-i'-i'': e\not\in set (drop (k+1-l) (lnth Qs j))
        if j-ge: j\geq i' and j-le: j \leq i' for j
        using j-ge j-le
    proof (induct j rule: less-induct)
        case (less d)
        note ih = this(1)
        show ?case
        proof (cases d< i')
            case True
            then show ?thesis
            using less.prems(1) by linarith
        next
            case False
            hence d-ge:d }\=\mp@subsup{i}{}{\prime
                by simp
            then show ?thesis
```

```
proof (cases d > i')
    case True
    then show ?thesis
        using less.prems(2) linorder-not-less by blast
next
    case False
    hence d-le:d\leqi'
        by simp
    show ?thesis
    proof (cases d= i')
        case True
        then show ?thesis
            using c-ni-i' by blast
    next
        case False
        note d-ne-i' = this(1)
        have dm1-bounds:
            d-1<d
            i'}\leqd-
            d-1\leqi"
            using d-ge d-le d-ne-i' by auto
            have ih-dm1: e\not\in set (drop (k+1-l) (lnth Qs (d - 1)))
            by (rule ih[OF dm1-bounds])
    have queue-step (lnth Qs (d - 1)) (lnth Qs d)
            by (metis (no-types, lifting) One-nat-def add-diff-inverse-nat
                bot-nat-0.extremum-unique chain chain-lnth-rel d-ge d-ne-i' dm1-bounds(2)
                enat-ord-code(4) le-less-Suc-eq nat-diff-split plus-1-eq-Suc ps-inf)
    then show ?thesis
    proof cases
        case (queue-step-fold-addI es)
        note at-d = this(1)
        have c-in: e | | fset-of-list (lnth Qs (d - 1))
            by (meson c-in' dm1-bounds(2) fset-of-list-elem i'-ge order-trans)
        hence e& set (drop (k+1-l)
            (fold (\lambday xs. if y G set xs then xs else xs @ [y])(removeAll e es)
                (lnth Qs (d - 1))))
            proof -
            have set (drop (k+1-l)
                (fold (\lambday xs. if y set xs then xs else xs @ [y]) (removeAll e es)
                    (lnth Qs (d-1))))\subseteq
                set (drop (k+1-l)(lnth Qs (d - 1)@ removeAll e es))
                using set-drop-fold-maybe-append-singleton .
            have e\not\in set (drop (k+1 - l) (lnth Qs (d-1)))
                using ih-dm1 by blast
            hence e& set (drop (k+1-l)(lnth Qs (d - 1)@ removeAll e es))
                using set-drop-append-subseteq by force
            thus ?thesis
                using set-drop-fold-maybe-append-singleton by force
            qed
            hence e& set (drop (k+1-l)
```

```
                    (fold (\lambday xs. if y fet ss then xs else xs @ [y]) es (lnth Qs (d - 1))))
                        using c-in fold-maybe-append-removeAll
                    by (metis (mono-tags, lifting) fset-of-list-elem)
                    thus ?thesis
                    unfolding at-d by fastforce
                next
                    case (queue-step-fold-removeI es)
                    note at-d = this(1)
                    show ?thesis
                    unfolding at-d using ih-dm1 set-drop-fold-removeAll by fastforce
                    qed
                qed
            qed
        qed
        qed
        have Suc i"\prime}>
        using i'\prime}\mp@subsup{i}{}{\prime\prime}\mathrm{ -ge i'-ge by linarith
    moreover have e\not\in set (drop (k+1 - Suc l) (lnth Qs (Suc i't)))
        using sel-step
        proof cases
            case select-queue-stepI
            note at-si'\prime}=this(1) and at-i''-nemp = this(2
            have at-i''-nnil: lnth Qs i"}\not=[
                using at-i"'nemp by auto
            have dist-i'\prime: distinct (lnth Qs i')
                by (simp add: chain-queue-step-preserves-distinct hd-emp chain ps-inf)
            have c-ni-i'': e & set (drop (k+1-l) (lnth Qs i'
                using c-ni-i'-i"\prime i'-ge by blast
            show ?thesis
                unfolding at-si"
                    by (subst distinct-set-drop-removeAll-hd[OF dist-i" at-i''-nnil])
                    (metis Suc-diff-Suc bot-nat-0.not-eq-extremum c-ni-i" drop0 in-set-dropD
                    zero-less-diff)
            qed
            ultimately show ?case
                by (rule-tac x =Suc i" in exI) auto
            qed
            thus ?thesis
            by (metis diff-add-zero drop0 in-set-dropD)
            qed
            then obtain }\mp@subsup{i}{}{\prime}::\mathrm{ nat where
            i'}\geq
            e\not\in set (lnth Qs i
            by fastforce
            then show False
            using c-in' by auto
        qed
qed
end
```


5 Fair DISCOUNT Loop

The fair DISCOUNT loop assumes that the passive queue is fair and ensures (dynamic) refutational completeness under that assumption.

```
theory Fair-DISCOUNT-Loop
    imports
        Given-Clause-Loops-Util
        DISCOUNT-Loop
        Prover-Queue
begin
```


5.1 Locale

type-synonym (' p, 'f) DLf-state $=$ ' $p \times$ 'f option \times 'f fset
datatype 'f passive-elem $=$
is-passive-inference: Passive-Inference (passive-inference: 'f inference)
| is-passive-formula: Passive-Formula (passive-formula: 'f)
lemma passive-inference-filter:
passive-inference'Set.filter is-passive-inference $N=\{\iota$. Passive-Inference $\iota \in N\}$
by force
lemma passive-formula-filter:
passive-formula'Set.filter is-passive-formula $N=\{C$. Passive-Formula $C \in N\}$
by force
locale fair-discount-loop $=$
discount-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q G-I-q Equiv-F Prec-F +
fair-prover-queue empty select add remove felems
for
Bot-F :: 'f set and
Inf-F :: 'f inference set and
Bot- G :: ' g set and
$Q::$ ' q set and
entails- $q::$ ' $q \Rightarrow$ ' g set \Rightarrow ' g set \Rightarrow bool and
Inf- $G-q::{ }^{\prime} q \Rightarrow$ ' g inference set and
Red-I- $q::{ }^{\prime} q \Rightarrow$ 'g set \Rightarrow ' g inference set and
Red- $F-q::{ }^{\prime} q \Rightarrow$ ' g set \Rightarrow ' g set and
$\mathcal{G}-F-q::{ }^{\prime} q \Rightarrow ' f \Rightarrow$ ' g set and
$\mathcal{G}-I-q::{ }^{\prime} q \Rightarrow$ 'f inference \Rightarrow ' g inference set option and
Equiv- $F:: ' f \Rightarrow$ ' $f \Rightarrow$ bool (infix $\langle\dot{=} 50$) and
Prec-F :: ' $f \Rightarrow$ ' $f \Rightarrow$ bool (infix $\langle\prec \cdot\rangle 50$) and
empty :: ' p and
select $::$ ' $p \Rightarrow$ ' f passive-elem and
add :: 'f passive-elem $\Rightarrow{ }^{\prime} p \Rightarrow{ }^{\prime} p$ and
remove :: 'f passive-elem \Rightarrow ' $p \Rightarrow{ }^{\prime} p$ and
felems :: ' $p \Rightarrow$ 'f passive-elem fset +
fixes
Prec-S :: 'f \Rightarrow 'f \Rightarrow bool (infix $\prec S 50$)
assumes
wf-Prec-S: minimal-element $(\prec S)$ UNIV and
transp-Prec-S: transp $(\prec S)$ and
finite-Inf-between: finite $A \Longrightarrow$ finite (no-labels.Inf-between $A\{C\}$)
begin
lemma trans-Prec-S: trans $\{(x, y) . x \prec S y\}$
using transp-Prec-S transp-trans by blast
lemma irreflp-Prec-S: irreflp $(\prec S)$
using minimal-element.wf wfP-imp-irreflp wf-Prec-S wfp-on-UNIV by blast
lemma irrefl-Prec-S: irrefl $\{(x, y)$. $x \prec S y\}$
by (metis CollectD case-prod-conv irrefl-def irreflp-Prec-S irreflp-def)

5.2 Basic Definitions and Lemmas

abbreviation passive-of $::(' p$, ' $f) D L f$-state \Rightarrow ' p where passive-of $S t \equiv f s t S t$
abbreviation yy-of $::(' p, ' f) D L f$-state \Rightarrow 'f option where $y y-o f S t \equiv f s t(s n d S t)$
abbreviation active-of $::(' p$, 'f) DLf-state \Rightarrow 'f fset where active-of $S t \equiv$ snd $($ snd $S t)$
definition passive-inferences-of $::$ ' $p \Rightarrow$ ' f inference set where passive-inferences-of $P=\{\iota$. Passive-Inference $\iota \in$ elems $P\}$
definition passive-formulas-of $:: ~ ' p \Rightarrow$ 'f set where passive-formulas-of $P=\{C$. Passive-Formula $C \in$ elems $P\}$
lemma finite-passive-inferences-of: finite (passive-inferences-of P)
proof -
have inj-pi: inj Passive-Inference
unfolding inj-on-def by auto
show ?thesis
unfolding passive-inferences-of-def by (auto intro: finite-inverse-image $[O F-i n j-p i]$)
qed
lemma finite-passive-formulas-of: finite (passive-formulas-of P)
proof -
have inj-pi: inj Passive-Formula
unfolding inj-on-def by auto
show ?thesis
unfolding passive-formulas-of-def by (auto intro: finite-inverse-image $[O F-i n j$-pi])
qed
abbreviation all-formulas-of :: ('p, 'f) DLf-state \Rightarrow ' f set where
all-formulas-of $S t \equiv$ passive-formulas-of (passive-of St) \cup set-option (yy-of St) \cup fset (active-of St)
lemma passive-inferences-of-empty[simp]: passive-inferences-of empty $=\{ \}$
unfolding passive-inferences-of-def by simp
lemma passive-inferences-of-add-Passive-Inference $[$ simp $]$:
passive-inferences-of (add (Passive-Inference $\iota) P)=\{\iota\} \cup$ passive-inferences-of P unfolding passive-inferences-of-def by auto
lemma passive-inferences-of-add-Passive-Formula [simp]:
passive-inferences-of (add (Passive-Formula $C) P$) passive-inferences-of P unfolding passive-inferences-of-def by auto
lemma passive-inferences-of-fold-add-Passive-Inference[simp]: passive-inferences-of (fold (add \circ Passive-Inference) ιs) $=$ passive-inferences-of $P \cup$ set ιs by (induct ι s arbitrary: P) auto
lemma passive-inferences-of-fold-add-Passive-Formula [simp]: passive-inferences-of (fold (add ○ Passive-Formula) Cs P) $=$ passive-inferences-of P by (induct Cs arbitrary: P) auto
lemma passive-inferences-of-remove-Passive-Inference [simp]:
passive-inferences-of (remove (Passive-Inference ı) P) passive-inferences-of $P-\{\iota\}$
unfolding passive-inferences-of-def by auto
lemma passive-inferences-of-remove-Passive-Formula[simp]:
passive-inferences-of (remove (Passive-Formula C) P) = passive-inferences-of P
unfolding passive-inferences-of-def by auto
lemma passive-inferences-of-fold-remove-Passive-Inference[simp]:
passive-inferences-of (fold (remove \circ Passive-Inference) $\iota s P$) passive-inferences-of $P-$ set ιs by (induct ıs arbitrary: P) auto
lemma passive-inferences-of-fold-remove-Passive-Formula[simp]: passive-inferences-of (fold (remove \circ Passive-Formula) Cs P) $=$ passive-inferences-of P by (induct Cs arbitrary: P) auto
lemma passive-formulas-of-empty $[$ simp $]$: passive-formulas-of empty $=\{ \}$
unfolding passive-formulas-of-def by simp
lemma passive-formulas-of-add-Passive-Inference[simp]:
passive-formulas-of (add (Passive-Inference $\iota) P$) passive-formulas-of P
unfolding passive-formulas-of-def by auto
lemma passive-formulas-of-add-Passive-Formula[simp]: passive-formulas-of (add (Passive-Formula $C) P)=\{C\} \cup$ passive-formulas-of P
unfolding passive-formulas-of-def by auto
lemma passive-formulas-of-fold-add-Passive-Inference[simp]:
passive-formulas-of (fold (add \circ Passive-Inference) ıs P) passive-formulas-of P
by (induct ıs arbitrary: P) auto
lemma passive-formulas-of-fold-add-Passive-Formula[simp]: passive-formulas-of (fold (add \circ Passive-Formula) Cs P) $=$ passive-formulas-of $P \cup$ set $C s$ by (induct Cs arbitrary: P) auto
lemma passive-formulas-of-remove-Passive-Inference[simp]:
passive-formulas-of (remove (Passive-Inference $\iota) P$) passive-formulas-of P
unfolding passive-formulas-of-def by auto
lemma passive-formulas-of-remove-Passive-Formula [simp]:
passive-formulas-of (remove (Passive-Formula C) P) passive-formulas-of $P-\{C\}$
unfolding passive-formulas-of-def by auto
lemma passive-formulas-of-fold-remove-Passive-Inference $[$ simp $]$:

```
passive-formulas-of (fold (remove ○ Passive-Inference) \iotas P)= passive-formulas-of P
```

by (induct ıs arbitrary: P) auto
lemma passive-formulas-of-fold-remove-Passive-Formula [simp]:
passive-formulas-of (fold (remove \circ Passive-Formula) Cs P) passive-formulas-of $P-$ set Cs
by (induct Cs arbitrary: P) auto
fun fstate :: (' p, ' f) DLf-state \Rightarrow 'f inference set $\times\left({ }^{\prime} f \times D L\right.$-label $)$ set where
fstate $(P, Y, A)=$ state (passive-inferences-of P, passive-formulas-of P, set-option Y, fset A)
lemma fstate-alt-def:
fstate $S t=$ state (passive-inferences-of (fst St), passive-formulas-of (fst St),
set-option $(f s t($ snd $S t))$, fset (snd (snd St)))
by (cases St) auto
definition Liminf-fstate :: ('p, 'f) DLf-state llist \Rightarrow ' f set \times ' f set \times 'f set where
Liminf-fstate Sts $=$
(Liminf-llist (lmap (passive-formulas-of ○ passive-of) Sts),
Liminf-llist (lmap (set-option ○ yy-of) Sts),
Liminf-llist (lmap (fset \circ active-of) Sts))
lemma Liminf-fstate-commute:
Liminf-llist (lmap (snd \circ fstate) Sts) $=$ labeled-formulas-of (Liminf-fstate Sts)
proof -
have Liminf-llist (lmap (snd \circ fstate) Sts) $=$
$(\lambda C .(C$, Passive $)$ ' Liminf-llist (lmap (passive-formulas-of ○ passive-of) Sts) \cup
$(\lambda C .(C, Y Y))$ 'Liminf-llist (lmap (set-option $\circ y y-o f) S t s) \cup$
$(\lambda C .(C$, Active $))$ 'Liminf-llist (lmap (fset \circ active-of) Sts)
unfolding fstate-alt-def state-alt-def
apply simp
apply (subst Liminf-llist-lmap-union, fast)+
apply (subst Liminf-llist-lmap-image, simp add: inj-on-convol-ident)+
by auto
thus ?thesis
unfolding Liminf-fstate-def by fastforce
qed
fun formulas-union :: 'f set \times ' f set \times ' f set \Rightarrow ' set where
formulas-union $(P, Y, A)=P \cup Y \cup A$
inductive fair-DL :: ('p,'f) DLf-state $\Rightarrow(' p, ' f) D L f$-state \Rightarrow bool (infix $\sim D L f 50$) where
compute-infer: $P \neq$ empty \Longrightarrow select $P=$ Passive-Inference $\iota \Longrightarrow$
$\iota \in$ no-labels.Red-I $($ fset $A \cup\{C\}) \Longrightarrow$
$(P$, None,$A) \sim D L f($ remove $($ select $P) P$, Some $C, A)$
\mid choose-p: $P \neq$ empty \Longrightarrow select $P=$ Passive-Formula $C \Longrightarrow$
$(P$, None,$A) \sim D L f($ remove $($ select $P) P$, Some $C, A)$
\mid delete-fwd: $C \in$ no-labels.Red-F $($ fset $A) \vee\left(\exists C^{\prime} \in f\right.$ set $\left.A . C^{\prime} \preceq \cdot C\right) \Longrightarrow$
$(P$, Some $C, A) \sim D L f(P$, None, $A)$
\mid simplify-fwd: $C^{\prime} \prec S C \Longrightarrow C \in$ no-labels.Red-F $\left(\right.$ fset $\left.A \cup\left\{C^{\prime}\right\}\right) \Longrightarrow$
$(P$, Some $C, A) \sim D L f\left(P\right.$, Some $\left.C^{\prime}, A\right)$
\mid delete-bwd: $C^{\prime}|\notin| A \Longrightarrow C^{\prime} \in$ no-labels.Red- $F\{C\} \vee C^{\prime} \cdot \succ C \Longrightarrow$
$\left(P\right.$, Some $\left.C, A|\cup|\left\{\left|C^{\prime}\right|\right\}\right) \leadsto D L f(P$, Some $C, A)$
| simplify-bwd: $C^{\prime}|\notin| A \Longrightarrow C^{\prime \prime} \prec S C^{\prime} \Longrightarrow C^{\prime} \in$ no-labels.Red-F $\left\{C, C^{\prime \prime}\right\} \Longrightarrow$
$\left(P\right.$, Some $\left.C, A|\cup|\left\{\left|C^{\prime}\right|\right\}\right) \leadsto D L f\left(\right.$ add (Passive-Formula $\left.C^{\prime \prime}\right) P$, Some C, A)
\mid schedule-infer: set $\iota s=$ no-labels.Inf-between $($ fset $A)\{C\} \Longrightarrow$

```
    \((P\), Some \(C, A) \sim D L f(\) fold (add \(\circ\) Passive-Inference) \(\iota\) s \(P\), None, \(A \mid \cup\{|C|\})\)
\(\mid\) delete-orphan-infers: \(\iota s \neq[] \Longrightarrow\) set \(\iota s \subseteq\) passive-inferences-of \(P \Longrightarrow\)
    set \(\iota s \cap\) no-labels.Inf-from \((\) fset \(A)=\{ \} \Longrightarrow\)
    \((P, Y, A) \sim D L f(\) fold (remove \(\circ\) Passive-Inference) \(\iota\) s \(P, Y, A)\)
```


5.3 Initial State and Invariant

```
inductive is-initial-DLf-state :: ('p, 'f) DLf-state \(\Rightarrow\) bool where
```

 is-initial-DLf-state (empty, None, \(\{|\mid\}\))
 inductive $D L f$-invariant :: (' p, ' f) DLf-state \Rightarrow bool where
passive-inferences-of $P \subseteq$ Inf- $F \Longrightarrow$ DLf-invariant (P, Y, A)
lemma initial-DLf-invariant: is-initial-DLf-state $S t \Longrightarrow$ DLf-invariant $S t$
unfolding is-initial-DLf-state.simps DLf-invariant.simps by auto
lemma step-DLf-invariant:
assumes
inv: DLf-invariant St and
step: $S t \leadsto D L f S t^{\prime}$
shows DLf-invariant $S t^{\prime}$
using step inv
proof cases
case (schedule-infer ıs A C P)
note defs $=$ this(1,2) and ι s-inf-betw $=$ this(3)
have set $\iota s \subset$ Inf-F
using ιs-inf-betw unfolding no-labels.Inf-between-def no-labels.Inf-from-def by auto
thus ?thesis
using inv unfolding defs
by (auto simp: DLf-invariant.simps passive-inferences-of-def fold-map[symmetric])
qed (auto simp: DLf-invariant.simps passive-inferences-of-def fold-map[symmetric])
lemma chain-DLf-invariant-lnth:
assumes
chain: chain $(\sim D L f)$ Sts and
fair-hd: DLf-invariant (lhd Sts) and
i-lt: enat $i<l l e n g t h ~ S t s$
shows DLf-invariant (lnth Sts i)
using i-lt
proof (induct i)
case 0
thus ?case
using fair-hd lhd-conv-lnth zero-enat-def by fastforce
next
case (Suc i)
note $i h=$ this(1) and si-lt $=$ this(2)
have enat $i<$ llength Sts
using si-lt Suc-ile-eq nless-le by blast
hence inv-i: DLf-invariant (lnth Sts i)
by (rule ih)
have step: lnth Sts $i \leadsto D L f$ lnth Sts (Suc i)
using chain chain-lnth-rel si-lt by blast
show ? case
by (rule step-DLf-invariant $[$ OF inv-i step $]$)

qed

```
lemma chain-DLf-invariant-llast:
    assumes
    chain: chain ( }~DLf)\mathrm{ Sts and
    fair-hd: DLf-invariant (lhd Sts) and
    fin: lfinite Sts
    shows DLf-invariant (llast Sts)
proof -
    obtain i :: nat where
        i: llength Sts = enat i
        using lfinite-llength-enat[OF fin] by blast
    have im1-lt: enat (i-1)< llength Sts
    by (metis chain chain-length-pos diff-less enat-ord-simps(2) i zero-enat-def zero-less-one)
    show ?thesis
    using chain-DLf-invariant-lnth[OF chain fair-hd im1-lt]
    by (metis Suc-diff-1 chain chain-length-pos eSuc-enat enat-ord-simps(2) i llast-conv-lnth
            zero-enat-def)
qed
```


5.4 Final State

inductive is-final-DLf-state :: ('p, 'f) DLf-state \Rightarrow bool where is-final-DLf-state (empty, None, A)
lemma is-final-DLf-state-iff-no-DLf-step:
assumes inv: DLf-invariant St
shows is-final-DLf-state $S t \longleftrightarrow\left(\forall S t^{\prime} . \neg S t \leadsto D L f S t^{\prime}\right)$

proof

assume is-final-DLf-state St
then obtain A :: ' f fset where
st: St $=($ empty, None, $A)$
by (auto simp: is-final-DLf-state.simps)
show $\forall S t^{\prime} . \neg S t \sim D L f S t^{\prime}$
unfolding st
proof (intro allI notI)
fix $S t^{\prime}$
assume (empty, None, A) $\sim D L f S t^{\prime}$
thus False
by cases auto
qed
next
assume no-step: $\forall S t^{\prime} . \neg S t \sim D L f S t^{\prime}$
show is-final-DLf-state St
proof (rule ccontr)
assume not-fin: $\neg i s$-final-DLf-state $S t$
obtain P :: ' p and Y :: 'f option and A :: ' f fset where
st: $S t=(P, Y, A)$
by (cases $S t$)
have $P \neq$ empty $\vee Y \neq$ None
using not-fin unfolding st is-final-DLf-state.simps by auto
moreover \{

```
        assume
        p:P\not= empty and
        y:Y = None
    have }\existsS\mp@subsup{t}{}{\prime}.St~DLfSt
    proof (cases select P)
        case sel:(Passive-Inference \iota)
        hence \iota-inf: \iota\inInf-F
            using inv p unfolding st by (metis DLf-invariant.cases fst-conv mem-Collect-eq
                passive-inferences-of-def select-in-felems subset-iff)
        have \iota-red: \iota\in no-labels.Red-I-G (fset A { {concl-of \iota})
            using \iota-inf no-labels.empty-ord.Red-I-of-Inf-to-N by auto
        show ?thesis
        using fair-DL.compute-infer[OF p sel \iota-red] unfolding st p y by blast
    next
        case (Passive-Formula C)
        then show ?thesis
        using fair-DL.choose-p[OF p] unfolding st p y by fast
    qed
    } moreover {
    assume Y}=\mathrm{ None
    then obtain }C::'f wher
        y: Y = Some C
        by blast
    have fin: finite (no-labels.Inf-between (fset A) {C})
        by (rule finite-Inf-between[of fset A, simplified])
    obtain }\iotas\mathrm{ :: 'f inference list where
        \iotas: set \iotas = no-labels.Inf-between (fset A) {C}
        using finite-imp-set-eq[OF fin] by blast
    have }\existsS\mp@subsup{t}{}{\prime}.St~DLfSt
        using fair-DL.schedule-infer[OF \iotas] unfolding st y by fast
    } ultimately show False
        using no-step by force
    qed
qed
```


5.5 Refinement

```
lemma fair-DL-step-imp-DL-step:
    assumes dlf: \((P, Y, A) \leadsto D L f\left(P^{\prime}, Y^{\prime}, A^{\prime}\right)\)
    shows fstate \((P, Y, A) \leadsto D L\) fstate \(\left(P^{\prime}, Y^{\prime}, A^{\prime}\right)\)
    using dlf
proof cases
    case (compute-infer \(\iota C\) )
    note defs \(=\) this \((1-4)\) and \(p-n e m p=\) this(5) and sel \(=\) this(6) and \(\iota\)-red \(=\) this(7)
    have pas-min-ı-uni-८: passive-inferences-of \(P-\{\iota\} \cup\{\iota\}=\) passive-inferences-of \(P\)
    by (metis Un-insert-right insert-Diff-single insert-absorb mem-Collect-eq p-nemp
            passive-inferences-of-def sel select-in-felems sup-bot.right-neutral)
    show ?thesis
    unfolding defs fstate-alt-def
    using DL.compute-infer[OF ı-red,
        of passive-inferences-of (remove (select \(P\) ) P) passive-formulas-of \(P]\)
```

```
    by (simp only: sel prod.sel option.set passive-inferences-of-remove-Passive-Inference
        passive-formulas-of-remove-Passive-Inference pas-min-\iota-uni-\iota)
next
    case (choose-p C)
    note defs = this(1-4) and p-nemp = this(5) and sel = this(6)
    have pas-min-c-uni-c: passive-formulas-of P-{C}\cup{C}= passive-formulas-of P
    by (metis Un-insert-right insert-Diff mem-Collect-eq p-nemp passive-formulas-of-def sel
        select-in-felems sup-bot.right-neutral)
    show ?thesis
    unfolding defs fstate-alt-def
    using DL.choose-p[of passive-inferences-of P passive-formulas-of (remove (select P) P) C
                fset A]
    unfolding sel by (simp only: prod.sel option.set passive-formulas-of-remove-Passive-Formula
                passive-inferences-of-remove-Passive-Formula pas-min-c-uni-c)
next
    case (delete-fwd C)
    note defs = this(1-4) and c-red = this(5)
    show ?thesis
    unfolding defs fstate-alt-def using DL.delete-fwd[OF c-red] by simp
next
    case (simplify-fwd C' C)
    note defs = this(1-4) and c-red = this(6)
    show ?thesis
        unfolding defs fstate-alt-def using DL.simplify-fwd[OF c-red] by simp
next
    case (delete-bwd C' C)
    note defs=this(1-4) and c'-red = this(6)
    show ?thesis
        unfolding defs fstate-alt-def using DL.delete-bwd[OF c'-red] by simp
next
    case (simplify-bwd C '' C' C)
    note defs = this(1-4) and c''-red = this(7)
    show ?thesis
        unfolding defs fstate-alt-def using DL.simplify-bwd[OF c''-red] by simp
next
    case (schedule-infer \iotas C)
    note defs=this(1-4) and }\iotas=this(5
    show ?thesis
        unfolding defs fstate-alt-def
        using DL.schedule-infer[OF \iotas, of passive-inferences-of P passive-formulas-of P] by simp
next
    case (delete-orphan-infers \iotas)
    note defs = this(1-3) and \iotas-ne = this(4) and \iotas-pas = this(5) and inter = this(6)
    have pas-min-\iotas-uni-\iotas: passive-inferences-of P - set \iotas U set \iotas = passive-inferences-of P
        by (simp add: \iotas-pas set-eq-subset)
    show ?thesis
        unfolding defs fstate-alt-def
        using DL.delete-orphan-infers[OF inter,
            of passive-inferences-of (fold (remove ○ Passive-Inference) \iotas P)
            passive-formulas-of P set-option Y]
    by (simp only: prod.sel passive-inferences-of-fold-remove-Passive-Inference
```

```
    passive-formulas-of-fold-remove-Passive-Inference pas-min-\iotas-uni-\iotas)
```

qed
lemma fair-DL-step-imp-GC-step:
$(P, Y, A) \sim D L f\left(P^{\prime}, Y^{\prime}, A^{\prime}\right) \Longrightarrow$ fstate $(P, Y, A) \sim L G C$ fstate $\left(P^{\prime}, Y^{\prime}, A^{\prime}\right)$
by (rule $D L$-step-imp-LGC-step[OF fair-DL-step-imp-DL-step])

5.6 Completeness

```
fun mset-of-fstate :: ('p, 'f) DLf-state \(\Rightarrow\) ' \(f\) multiset where
    mset-of-fstate \((P, Y, A)=\)
    image-mset concl-of (mset-set (passive-inferences-of \(P))+\) mset-set (passive-formulas-of \(P)+\)
    mset-set (set-option \(Y)+\) mset-set \((f s e t ~ A)\)
```

abbreviation Precprec-S :: 'f multiset \Rightarrow 'f multiset \Rightarrow bool (infix $\prec \prec S 50$) where
$(\prec \prec S) \equiv$ multp $(\prec S)$
lemma wfP-Precprec-S: wfP $(\prec \prec S)$
using minimal-element-def wfP-multp wf-Prec-S wfp-on-UNIV by blast
definition Less-state :: ('p, 'f) DLf-state $\Rightarrow(' p, ' f) D L f$-state \Rightarrow bool (infix $\sqsubset 50)$ where
$S t^{\prime} \sqsubset S t \longleftrightarrow$
(yy-of St' $=$ None $\wedge y y$-of St \neq None)
$\vee\left(\left(y y\right.\right.$-of $S t^{\prime}=N o n e \longleftrightarrow y y$-of $\left.S t=N o n e\right) \wedge$ mset-of-fstate $S t^{\prime} \prec \prec S$ mset-of-fstate $\left.S t\right)$
lemma wfP-Less-state: wfP (■)
proof -
let ?boolset $=\left\{\left(b^{\prime}, b::\right.\right.$ bool $\left.) . b^{\prime}<b\right\}$
let ?msetset $=\left\{\left(M^{\prime}, M\right) . M^{\prime} \prec \prec S M\right\}$
let ?pair-of $=\lambda$ St. $(y y$-of $S t \neq$ None, mset-of-fstate $S t)$
have wf-boolset: wf ?boolset
by (rule Wellfounded.wellorder-class.wf)
have wf-msetset: wf ?msetset
using wfP-Precprec-S wfP-def by auto
have wf-lex-prod: wf (?boolset <*lex*> ?msetset)
by (rule wf-lex-prod[OF wf-boolset wf-msetset $]$)
have Less-state-alt-def:
$\bigwedge S t^{\prime}$ St. St' $\sqsubset S t \longleftrightarrow\left(? p a i r-o f S t^{\prime}\right.$,?pair-of $\left.S t\right) \in$?boolset $<* l e x *>$?msetset
unfolding Less-state-def by auto
show ?thesis
unfolding wfP-def Less-state-alt-def using wf-app[of - ?pair-of] wf-lex-prod by blast
qed
lemma non-compute-infer-choose-p-DLf-step-imp-Less-state:
assumes
step: $S t \leadsto D L f S t^{\prime}$ and
$y y: y y$-of $S t \neq$ None $\vee y y$-of $S t^{\prime}=$ None
shows $S t^{\prime} \sqsubset S t$
using step
proof cases
case (compute-infer P ८ A C)
note defs $=$ this(1,2)
have False
using step yy unfolding defs by simp
thus ?thesis
by blast
next
case (choose-p P C A)
note defs $=$ this (1,2)
have False
using step yy unfolding defs by simp
thus ?thesis
by blast
next
case (delete-fwd C A P)
note defs $=$ this (1,2)
show ?thesis
unfolding defs Less-state-def by (auto intro!: subset-implies-multp)
next
case (simplify-fwd $C^{\prime} C A P$)
note defs $=$ this $(1,2)$ and prec $=$ this (3)
let ?new-bef $=$ image-mset concl-of $($ mset-set $($ passive-inferences-of $P))+$ mset-set $($ passive-formulas-of $P)+$ mset-set $($ fset $A)+\{\# C \#\}$
let ?new-aft $=$ image-mset concl-of $($ mset-set $($ passive-inferences-of $P))+$ mset-set (passive-formulas-of P) + mset-set $($ fset $A)+\left\{\# C^{\prime} \#\right\}$
have lt-new: ?new-aft $\prec \prec S$?new-bef
unfolding multp-def
proof (subst mult-cancelL[OF trans-Prec-S irrefl-Prec-S], fold multp-def) show $\left\{\# C^{\prime} \#\right\} \prec \prec S\{\# C \#\}$
unfolding multp-def using prec by (auto intro: singletons-in-mult)
qed
thus ?thesis
unfolding defs Less-state-def by simp
next
case (delete-bwd $C^{\prime} A C P$)
note defs $=$ this(1,2) and $c-n i=$ this(3)
show ?thesis
unfolding defs Less-state-def using c-ni
by (auto intro!: subset-implies-multp)
next
case (simplify-bwd $C^{\prime} A C^{\prime \prime} C P$)
note defs $=$ this $(1,2)$ and $c^{\prime}-n i=$ this(3) and prec $=$ this(4)
show ?thesis
proof (cases $C^{\prime \prime} \in$ passive-formulas-of P)
case $c^{\prime \prime}$-in: True
show ?thesis
unfolding defs Less-state-def using $c^{\prime}-n i$
by (auto simp: insert-absorb[OF $c^{\prime \prime}$-in] intro!: subset-implies-multp)
next
case $c^{\prime \prime}$-ni: False
have bef: add-mset C (image-mset concl-of (mset-set (passive-inferences-of $P))+$ mset-set $($ passive-formulas-of $P)+m s e t-s e t ~(i n s e r t ~ C '(f s e t ~ A)))=$ add-mset C
(image-mset concl-of $($ mset-set $($ passive-inferences-of $P))+$

```
            mset-set (passive-formulas-of P) + mset-set (fset A)) + {#C'#} (is ?old-bef = ?new-bef)
        using }\mp@subsup{c}{}{\prime}-ni\mathrm{ by auto
    have aft: add-mset C
        (image-mset concl-of (mset-set (passive-inferences-of P)) +
        mset-set (insert C'I}(\mathrm{ passive-formulas-of P))}+\operatorname{mset-set (fset A))}
    add-mset C
            (image-mset concl-of (mset-set (passive-inferences-of P)) +
            mset-set (passive-formulas-of P) + mset-set (fset A)) + {#C'# (is ?old-aft = ?new-aft)
        using }\mp@subsup{c}{}{\prime\prime}-ni by (simp add: finite-passive-formulas-of
    have lt-new: ?new-aft \prec\precS ?new-bef
        unfolding multp-def
    proof (subst mult-cancelL[OF trans-Prec-S irrefl-Prec-S], fold multp-def)
        show {#\mp@subsup{C}{}{\prime\prime}#} \prec\precS {#C'#}
            unfolding multp-def using prec by (auto intro: singletons-in-mult)
    qed
    show ?thesis
        unfolding defs Less-state-def by simp (simp only: bef aft lt-new)
    qed
next
    case (schedule-infer \iotas A C P)
    note defs = this(1,2)
    show ?thesis
    unfolding defs Less-state-def by auto
next
    case (delete-orphan-infers \iotas P A Y)
    note defs = this(1,2) and \iotas-nnil = this(3) and }\iotas\mathrm{ -sub = this(4) and }\iotas\mathrm{ -inter = this(5)
    have image-mset concl-of (mset-set (passive-inferences-of P - set \iotas)) \subset#
    image-mset concl-of (mset-set (passive-inferences-of P))
    by (metis Diff-empty Diff-subset \iotas-nnil \iotas-sub double-diff empty-subsetI
                finite-passive-inferences-of finite-subset image-mset-subset-mono mset-set-eq-iff set-empty
                subset-imp-msubset-mset-set subset-mset.nless-le)
    thus ?thesis
    unfolding defs Less-state-def by (auto intro!: subset-implies-multp)
qed
lemma yy-nonempty-DLf-step-imp-Less-state:
    assumes
        step:St ~DLf St' and
        yy:yy-of St }\not=\mathrm{ None and
        yy': yy-of St' = None
    shows St'\sqsubset
proof -
    have yy-of St \not=None \vee yy-of St' = None
        using yy by blast
    thus ?thesis
        using non-compute-infer-choose-p-DLf-step-imp-Less-state[OF step] by blast
qed
lemma fair-DL-Liminf-yy-empty:
    assumes
        len: llength Sts = a and
        full: full-chain (~DLf)Sts and
        inv: DLf-invariant (lhd Sts)
    shows Liminf-llist (lmap (set-option ○ yy-of)Sts)={}
```

```
proof (rule ccontr)
    assume lim-nemp: Liminf-llist (lmap (set-option ○ yy-of) Sts) }\not={
    obtain i :: nat where
    i-lt: enat i < llength Sts and
    inter-nemp: \bigcap((set-option ○ yy-of ○ lnth Sts)'{j.i\leqj^ enat j<llength Sts})}\not={
    using lim-nemp unfolding Liminf-llist-def by auto
    from inter-nemp obtain C :: 'f where
    c-in:}\forallP\in\mathrm{ lnth Sts'{j.i < j^ enat j < llength Sts}. C { set-option (yy-of P)
    by auto
hence c-in':}\forallj\geqi. enat j<llength Sts \longrightarrowC \in set-option (yy-of (lnth Sts j)
    by auto
    have si-lt: enat (Suc i) < llength Sts
    unfolding len by auto
    have yy-j:yy-of (lnth Sts j)\not=None if j-ge: j\geqi for j
    using c-in' len j-ge by auto
    hence yy-sj:yy-of (lnth Sts (Suc j)) \not= None if j-ge: j\geqi for j
    using le-Suc-eq that by presburger
    have step:lnth Sts j}~DLf lnth Sts (Suc j) if j-ge: j\geqi for j
    using full-chain-imp-chain[OF full] infinite-chain-lnth-rel len llength-eq-infty-conv-lfinite
    by blast
    have lnth Sts (Suc j)\sqsubset lnth Sts j if j-ge: j\geqi for j
    using yy-nonempty-DLf-step-imp-Less-state by (meson step j-ge yy-j yy-sj)
    hence (\sqsubset)-1-1 (lnth Sts j) (lnth Sts (Suc j)) if j-ge: j\geqi for j
    using j-ge by blast
    hence inf-down-chain: chain (\sqsubset)-1-1 (ldropn i Sts)
    by (simp add: chain-ldropnI si-lt)
    have inf-i: \neg lfinite (ldropn i Sts)
    using len by (simp add: llength-eq-infty-conv-lfinite)
    show False
    using inf-i inf-down-chain wfP-iff-no-infinite-down-chain-llist[of (\sqsubset)] wfP-Less-state
    by metis
qed
lemma DLf-step-imp-queue-step:
    assumes St ~DLf St'
    shows queue-step (passive-of St) (passive-of St')
    using assms
    by cases (auto simp: fold-map[symmetric] intro: queue-step-idleI queue-step-addI
        queue-step-removeI queue-step-fold-addI queue-step-fold-removeI)
lemma fair-DL-Liminf-passive-empty:
    assumes
    len: llength Sts = \infty and
    full: full-chain ( }~\mathrm{ DLf) Sts and
    init: is-initial-DLf-state (lhd Sts)
    shows Liminf-llist (lmap (elems ○ passive-of)Sts) = {}
proof -
    have chain-step: chain queue-step (lmap passive-of Sts)
```

using DLf-step-imp-queue-step chain-lmap full-chain-imp-chain[OF full]
by (metis (no-types, lifting))
have inf-oft: infinitely-often select-queue-step (lmap passive-of Sts)
proof
assume finitely-often select-queue-step (lmap passive-of Sts)
then obtain $i::$ nat where no-sel:
$\forall j \geq i . \neg$ select-queue-step (passive-of (lnth Sts j)) (passive-of (lnth Sts (Suc j)))
by (metis (no-types, lifting) enat-ord-code(4) finitely-often-def len llength-lmap lnth-lmap)
have si-lt: enat (Suc i) < llength Sts
unfolding len by auto
have step: lnth Sts $j \sim$ DLf lnth Sts (Suc j) if j-ge: $j \geq i$ for j
using full-chain-imp-chain[OF full] infinite-chain-lnth-rel len llength-eq-infty-conv-lfinite
by blast
have yy: yy-of (lnth Sts $j) \neq$ None $\vee y y$-of $($ lnth Sts $(S u c j))=$ None if j-ge: $j \geq i$ for j
using step $[O F j$ j-ge]
proof cases
case (compute-infer $P \iota A C$)
note defs $=$ this $(1,2)$ and $p-n e=$ this(3)
have False
using no-sel defs p-ne select-queue-stepI that by fastforce
thus ?thesis
by blast
next
case (choose-p P C A)
note defs $=$ this $(1,2)$ and $p-n e=$ this(3)
have False
using no-sel defs p-ne select-queue-stepI that by fastforce
thus ?thesis
by blast
qed auto
have lnth Sts (Suc j) \sqsubset lnth Sts j if j-ge: $j \geq i$ for j
by (rule non-compute-infer-choose-p-DLf-step-imp-Less-state[OF step[OF j-ge] yy[OF j-ge]])
hence $(\sqsubset)^{-1-1}($ lnth Sts $j)($ lnth Sts $($ Suc $j))$ if j-ge: $j \geq i$ for j
using j-ge by blast
hence inf-down-chain: chain $(\sqsubset)^{-1-1}$ (ldropn i Sts)
using chain-ldropn-lmapI[OF - si-lt, of - id, simplified llist.map-id] by simp
have inf-i: \neg lfinite (ldropn i Sts)
using len lfinite-ldropn llength-eq-infty-conv-lfinite by blast
show False
using inf-i inf-down-chain wfP-iff-no-infinite-down-chain-llist[of (ᄃ)] wfP-Less-state by blast
qed
have hd-emp: lhd (lmap passive-of Sts) = empty
using init full full-chain-not-lnull unfolding is-initial-DLf-state.simps by fastforce
have Liminf-llist (lmap elems (lmap passive-of Sts)) $=\{ \}$
by (rule fair[of lmap passive-of Sts, OF chain-step inf-oft hd-emp])
thus ?thesis
by (simp add: llist.map-comp)
qed
lemma fair-DL-Liminf-passive-formulas-empty: assumes
len: llength Sts $=\infty$ and
full: full-chain $(\sim D L f)$ Sts and
init: is-initial-DLf-state (lhd Sts)
shows Liminf-llist (lmap (passive-formulas-of \circ passive-of) Sts) $=\{ \}$
proof -
have lim-filt: Liminf-llist (lmap (Set.filter is-passive-formula \circ elems \circ passive-of) Sts $)=\{ \}$
using fair-DL-Liminf-passive-empty Liminf-llist-subset
by (metis (no-types) empty-iff full init len llength-lmap llist.map-comp lnth-lmap member-filter subsetI subset-antisym)
let $? g=$ Set.filter is-passive-formula \circ elems \circ passive-of
have inj-on passive-formula (Set.filter is-passive-formula (UNIV :: 'f passive-elem set))
unfolding inj-on-def by (metis member-filter passive-elem.collapse(2))
moreover have Sup-llist (lmap ?g Sts) \subseteq Set.filter is-passive-formula UNIV
unfolding Sup-llist-def by auto
ultimately have inj-pi: inj-on passive-formula (Sup-llist (lmap ?g Sts))
using inj-on-subset by blast
have lim-pass: Liminf-llist (lmap (λx. passive-formula'
(Set.filter is-passive-formula \circ elems \circ passive-of) $x)$ Sts $)=\{ \}$
using Liminf-llist-lmap-image $[$ OF inj-pi] lim-filt by simp
have Liminf-llist (lmap (λ St. $\{$ C. Passive-Formula $C \in$ elems (passive-of St) $\}$) Sts) $=\{ \}$
using lim-pass passive-formula-filter by (smt (verit) Collect-cong comp-apply llist.map-cong)
thus?thesis
unfolding passive-formulas-of-def comp-apply .
qed
lemma fair-DL-Liminf-passive-inferences-empty:
assumes
len: llength $S t s=\infty$ and
full: full-chain $(\sim D L f)$ Sts and
init: is-initial-DLf-state (lhd Sts)
shows Liminf-llist (lmap (passive-inferences-of \circ passive-of) Sts) $=\{ \}$
proof -
have lim-filt: Liminf-llist (lmap (Set.filter is-passive-inference \circ elems \circ passive-of) Sts) $=\{ \}$
using fair-DL-Liminf-passive-empty Liminf-llist-subset
by (metis (no-types) empty-iff full init len llength-lmap list.map-comp lnth-lmap member-filter subsetI subset-antisym)
let $? g=$ Set.filter is-passive-inference \circ elems \circ passive-of
have inj-on passive-inference (Set.filter is-passive-inference (UNIV :: 'f passive-elem set)) unfolding inj-on-def by (metis member-filter passive-elem.collapse(1))
moreover have Sup-llist (lmap ?g Sts) \subseteq Set.filter is-passive-inference UNIV
unfolding Sup-llist-def by auto
ultimately have inj-pi: inj-on passive-inference (Sup-llist (lmap ?g Sts))
using inj-on-subset by blast
have lim-pass: Liminf-llist (lmap (λx. passive-inference '
(Set.filter is-passive-inference \circ elems \circ passive-of) $x)$ Sts $)=\{ \}$
using Liminf-llist-lmap-image[OF inj-pi] lim-filt by simp
have Liminf-llist (lmap (λ St. $\{\iota$. Passive-Inference $\iota \in$ elems (passive-of St) $\}$) Sts) $=\{ \}$
using lim-pass passive-inference-filter by (smt (verit) Collect-cong comp-apply llist.map-cong)
thus ?thesis
unfolding passive-inferences-of-def comp-apply .
qed

theorem

assumes
full: full-chain $(\sim D L f)$ Sts and
init: is-initial-DLf-state (lhd Sts)
shows
fair-DL-Liminf-saturated: saturated (labeled-formulas-of (Liminf-fstate Sts)) and
fair-DL-complete-Liminf: $B \in$ Bot- $F \Longrightarrow$ passive-formulas-of (passive-of (lhd Sts)) $\models \cap \mathcal{G}\{B\} \Longrightarrow$ $\exists B^{\prime} \in$ Bot-F. $B^{\prime} \in$ formulas-union (Liminf-fstate Sts) and
fair-DL-complete: $B \in$ Bot- $F \Longrightarrow$ passive-formulas-of (passive-of (lhd Sts)) $\models \cap \mathcal{G}\{B\} \Longrightarrow$ \exists i. enat $i<$ llength Sts $\wedge\left(\exists B^{\prime} \in\right.$ Bot- $F . B^{\prime} \in$ all-formulas-of (lnth Sts $\left.\left.i\right)\right)$

proof -

have chain: chain $(\sim D L f)$ Sts
by (rule full-chain-imp-chain[OF full])
hence dl-chain: chain $(\sim D L)$ (lmap fstate Sts)
by (smt (verit, del-insts) chain-lmap fair-DL-step-imp-DL-step mset-of-fstate.cases)
have inv: DLf-invariant (lhd Sts)
using init initial-DLf-invariant by auto
have nnul: \neg lnull Sts
using chain chain-not-lnull by blast
hence lhd-lmap: $\bigwedge f$. lhd (lmap f Sts $)=f($ lhd Sts $)$
by (rule llist.map-sel(1))
have active-of $($ lhd Sts $)=\{\|\}$
by (metis is-initial-DLf-state.cases init snd-conv)
hence act: active-subset (snd (lhd (lmap fstate Sts))) =\{\}
unfolding active-subset-def lhd-lmap by (cases lhd Sts) auto
have pas-fml-and-t-inf: passive-subset (Liminf-llist (lmap (snd \circ fstate) Sts $)$) $=\{ \} \wedge$
Liminf-llist (lmap (fst \circ fstate) Sts) $=\{ \}$ (is ?pas-fml \wedge ?t-inf $)$
proof (cases lfinite Sts)
case fin: True
have lim-fst: Liminf-llist (lmap (fst \circ fstate $)$ Sts $)=$ fst $($ fstate $($ llast Sts $))$ and
lim-snd: Liminf-llist (lmap (snd \circ fstate) Sts) $=$ snd $($ fstate $($ llast Sts $))$
using lfinite-Liminf-llist fin nnul
by (metis comp-eq-dest-lhs lfinite-lmap llast-lmap llist.map-disc-iff)+
have last-inv: DLf-invariant (llast Sts)
by (rule chain-DLf-invariant-llast[OF chain inv fin])
have $\forall S t^{\prime} . \neg$ llast Sts $\leadsto D L f S t^{\prime}$
using full-chain-lnth-not-rel[OF full] by (metis fin full-chain-iff-chain full)
hence is-final-DLf-state (llast Sts)
unfolding is-final-DLf-state-iff-no-DLf-step[OF last-inv] .
then obtain $A::$ 'f fset where
at-l: llast Sts $=($ empty, None, A)
unfolding is-final-DLf-state.simps by blast
have ? pas-fml
unfolding passive-subset-def lim-snd at-l by auto
moreover have ?t-inf
unfolding lim-fst at-l by simp
ultimately show ?thesis
by blast
next
case False
hence len: llength Sts $=\infty$
by (simp add: not-lfinite-llength)
have ? pas-fml
unfolding Liminf-fstate-commute passive-subset-def Liminf-fstate-def
using fair-DL-Liminf-passive-formulas-empty[OF len full init]
fair-DL-Liminf-yy-empty[OF len full inv]
by simp
moreover have ?t-inf
unfolding fstate-alt-def using fair-DL-Liminf-passive-inferences-empty[OF len full init]
by simp
ultimately show ?thesis
by blast
qed
note pas-fml = pas-fml-and-t-inf[THEN conjunct1] and
t-inf $=$ pas-fml-and-t-inf[THEN conjunct2]
have pas-fml': passive-subset (Liminf-llist (lmap snd (lmap fstate Sts))) $=\{ \}$ using pas-fml by (simp add: llist.map-comp)
have t-inf': Liminf-llist (lmap fst (lmap fstate Sts) $)=\{ \}$
using t-inf by (simp add: llist.map-comp)
have no-prems-init: $\forall \iota \in$ Inf-F. prems-of $\iota=[] \longrightarrow \iota \in$ fst (lhd (lmap fstate Sts))
using inf-have-prems by blast
show saturated (labeled-formulas-of (Liminf-fstate Sts))
using DL-Liminf-saturated[OF dl-chain act pas-fml' no-prems-init t-inf $]$
unfolding Liminf-fstate-commute[folded llist.map-comp].
\{
assume
bot: $B \in B o t-F$ and
unsat: passive-formulas-of (passive-of (lhd Sts)) $\models \cap \mathcal{G}\{B\}$
have unsat': fst ' snd (lhd (lmap fstate Sts)) $\models \cap \mathcal{G}\{B\}$
using unsat unfolding lhd-lmap by (cases lhd Sts) (auto intro: no-labels-entails-mono-left)
show $\exists B^{\prime} \in$ Bot- $F . B^{\prime} \in$ formulas-union (Liminf-fstate Sts)
using DL-complete-Liminf[OF dl-chain act pas-fml' no-prems-init t-inf' bot unsat']
unfolding Liminf-fstate-commute[folded llist.map-comp]

```
        by (cases Liminf-fstate Sts) auto
    thus \existsi. enat i<llength Sts }\wedge(\exists\mp@subsup{B}{}{\prime}\in\mathrm{ Bot-F. B'}\in\mathrm{ all-formulas-of (lnth Sts i))
        unfolding Liminf-fstate-def Liminf-llist-def by auto
    }
qed
end
```


5.7 Specialization with FIFO Queue

As a proof of concept, we specialize the passive set to use a FIFO queue, thereby eliminating the locale assumptions about the passive set.

```
locale fifo-discount-loop \(=\)
    discount-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q G-I-q Equiv-F Prec-F
    for
        Bot-F :: 'f set and
        Inf- \(F\) :: 'f inference set and
        Bot- \(G\) :: ' \(g\) set and
        \(Q::{ }^{\prime} q\) set and
        entails- \(q::\) ' \(q \Rightarrow\) 'g set \(\Rightarrow\) 'g set \(\Rightarrow\) bool and
        Inf- \(G-q::\) ' \(q \Rightarrow\) ' \(g\) inference set and
        Red-I- \(q::{ }^{\prime} q \Rightarrow\) ' \(g\) set \(\Rightarrow\) ' \(g\) inference set and
        Red-F- \(q::\) ' \(q \Rightarrow\) ' \(g\) set \(\Rightarrow\) ' \(g\) set and
        \(\mathcal{G}-F-q::{ }^{\prime} q \Rightarrow\) ' \(f \Rightarrow\) ' \(g\) set and
        \(\mathcal{G}-I-q::\) ' \(q \Rightarrow\) 'f inference \(\Rightarrow\) ' \(g\) inference set option and
        Equiv- \(F::\) ' \(f \Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\langle\dot{=}\) 〉50) and
        Prec-F :: ' \(f \Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\langle\prec \cdot\rangle 50\) ) +
    fixes
        Prec-S :: 'f \(\Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\prec S 50\) )
    assumes
        wf-Prec-S: minimal-element \((\prec S)\) UNIV and
        transp-Prec-S: transp \((\prec S)\) and
        finite-Inf-between: finite \(A \Longrightarrow\) finite (no-labels.Inf-between \(A\{C\}\) )
begin
```

sublocale fifo-prover-queue
sublocale fair-discount-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q G-I-q Equiv-F Prec-F[] hd λy xs. if $y \in$ set $x s$ then xs else xs @ [y] removeAll fset-of-list Prec-S
proof
show po-on $(\prec S)$ UNIV
using wf-Prec-S minimal-element.po by blast
next
show wfp-on $(\prec S)$ UNIV
using wf-Prec-S minimal-element.wf by blast
next
show transp $(\prec S)$
by (rule transp-Prec-S)
next
show $\bigwedge A C$. finite $A \Longrightarrow$ finite (no-labels.Inf-between $A\{C\}$)
by (fact finite-Inf-between)
qed
end
end

6 Otter Loop

The Otter loop is one of the two best-known given clause procedures. It is formalized as an instance of the abstract procedure $G C$.

```
theory Otter-Loop
    imports
        More-Given-Clause-Architectures
        Given-Clause-Loops-Util
begin
datatype \(O L\)-label \(=\)
    New | XX | Passive \(|Y Y|\) Active
primrec nat-of-OL-label :: OL-label \(\Rightarrow\) nat where
    nat-of-OL-label New \(=4\)
    nat-of-OL-label XX \(=3\)
nat-of-OL-label Passive \(=2\)
| nat-of-OL-label \(Y Y=1\)
| nat-of-OL-label Active \(=0\)
definition \(O L\)-Prec- \(L::\) OL-label \(\Rightarrow\) OL-label \(\Rightarrow\) bool (infix \(\sqsubset L 50\) ) where
    OL-Prec-L l \(l^{\prime} \longleftrightarrow\) nat-of-OL-label \(l<n a t-o f-O L\)-label \(l^{\prime}\)
locale otter-loop \(=\) labeled-lifting-intersection Bot-F Inf-F Bot- \(G\) Q entails- \(q\) Inf- \(G-q\) Red-I- \(q\)
    Red-F-q G-F-q G \(-I-q\)
    \(\left\{\iota_{F L}::\left(' f \times\right.\right.\) OL-label) inference. Infer (map fst (prems-of \(\left.\left.\iota_{F L}\right)\right)\left(\right.\) fst \(\left(\right.\) concl-of \(\left.\left.\iota_{F L}\right)\right) \in\) Inf-F \(\}\)
    for
        Bot-F :: 'f set
        and Inf-F :: 'f inference set
        and Bot- \(G\) :: ' \(g\) set
        and \(Q::\) ' \(q\) set
        and entails- \(q::\) ' \(q \Rightarrow\) ' \(g\) set \(\Rightarrow\) ' \(g\) set \(\Rightarrow\) bool
        and Inf- \(G-q:: \zeta^{\prime} q \Rightarrow\) ' \(g\) inference set \(\rangle\)
        and Red-I-q :: ' \(q \Rightarrow{ }^{\prime} g\) set \(\Rightarrow{ }^{\prime} g\) inference set
        and Red-F-q :: ' \(q \Rightarrow{ }^{\prime} g\) set \(\Rightarrow{ }^{\prime} g\) set
        and \(\mathcal{G}-F-q:: '^{\prime} q \Rightarrow\) ' \(f\) ' \(g\) set
        and \(\mathcal{G}-I-q::{ }^{\prime} q \Rightarrow\) 'f inference \(\Rightarrow{ }^{\prime} g\) inference set option
    + fixes
        Equiv- \(F::{ }^{\prime} f \Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\doteq 50\) ) and
        Prec- \(F::\) ' \(f \Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\prec\) • 50)
    assumes
        equiv-equiv-F: equivp ( \(\doteq\) ) and
        wf-prec-F: minimal-element ( \(\prec \cdot)\) UNIV and
        compat-equiv-prec: \(C 1 \doteq D 1 \Longrightarrow C 2 \doteq D 2 \Longrightarrow C 1 \prec \cdot C 2 \Longrightarrow D 1 \prec \cdot D 2\) and
        equiv-F-grounding: \(q \in Q \Longrightarrow C 1 \doteq C 2 \Longrightarrow \mathcal{G}-F-q q C 1 \subseteq \mathcal{G}-F-q q C 2\) and
        prec-F-grounding: \(q \in Q \Longrightarrow C 2 \prec \cdot C 1 \Longrightarrow \mathcal{G}-F-q q C 1 \subseteq \mathcal{G}-F-q q C 2\) and
        static-ref-comp: statically-complete-calculus Bot-F Inf-F \((\models \cap \mathcal{G})\)
            no-labels.Red-I-G no-labels.Red-F-G-empty and
        inf-have-prems: \(\iota F \in\) Inf- \(F \Longrightarrow\) prems-of \(\iota F \neq[]\)
begin
```

```
lemma po-on-OL-Prec-L: po-on (\sqsubsetL) UNIV
    by (metis (mono-tags, lifting) OL-Prec-L-def irreflp-onI less-imp-neq order.strict-trans po-on-def
        transp-onI)
lemma wfp-on-OL-Prec-L: wfp-on (\sqsubsetL) UNIV
    unfolding wfp-on-UNIV OL-Prec-L-def by (simp add:wfP-app)
lemma Active-minimal: l2 # Active \Longrightarrow Active \sqsubsetL l2
    by (cases l2) (auto simp:OL-Prec-L-def)
lemma at-least-two-labels: \existsl2. Active \sqsubsetL l2
    using Active-minimal by blast
sublocale gc?: given-clause Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q \mathcal{G-F-q G-I-q}
    Equiv-F Prec-F OL-Prec-L Active
    apply unfold-locales
            apply (rule equiv-equiv-F)
            apply (simp add: minimal-element.po wf-prec-F)
            using minimal-element.wf wf-prec-F apply blast
            apply (rule po-on-OL-Prec-L)
            apply (rule wfp-on-OL-Prec-L)
            apply (fact compat-equiv-prec)
            apply (fact equiv-F-grounding)
            apply (fact prec-F-grounding)
        apply (fact Active-minimal)
    apply (rule at-least-two-labels)
    using static-ref-comp statically-complete-calculus.statically-complete apply fastforce
    apply (fact inf-have-prems)
    done
notation gc.step (infix ~GC 50)
```


6.1 Basic Definitions and Lemmas

```
fun state :: 'f set \(\times\) 'f set \(\times\) ' \(f\) set \(\times\) 'f set \(\times\) 'f set \(\Rightarrow(' f \times O L\)-label \()\) set where
    state \((N, X, P, Y, A)=\)
    \(\{(C\), New \() \mid C . C \in N\} \cup\{(C, X X) \mid C . C \in X\} \cup\{(C\), Passive \() \mid C . C \in P\} \cup\)
    \(\{(C, Y Y) \mid C . C \in Y\} \cup\{(C\), Active \() \mid C . C \in A\}\)
```

lemma state-alt-def:
state $(N, X, P, Y, A)=$
$(\lambda C .(C, N e w)) ' N \cup(\lambda C .(C, X X)) ' X \cup(\lambda C .(C$, Passive $))$ ' $P \cup(\lambda C .(C, Y Y))$ ' $Y \cup$
$(\lambda C .(C$, Active $)) \cdot A$
by auto
inductive $O L::(' f \times O L$-label) set $\Rightarrow(' f \times O L$-label) set \Rightarrow bool (infix $\sim O L 50)$ where
choose-n: $C \notin N \Longrightarrow$ state $(N \cup\{C\},\{ \}, P,\{ \}, A) \sim O L$ state $(N,\{C\}, P,\{ \}, A)$
\mid delete-fwd: $C \in$ no-labels.Red- $F(P \cup A) \vee\left(\exists C^{\prime} \in P \cup A . C^{\prime} \preceq \cdot C\right) \Longrightarrow$ state $(N,\{C\}, P,\{ \}, A) \sim O L$ state $(N,\{ \}, P,\{ \}, A)$
| simplify-fwd: $C \in$ no-labels.Red- $F\left(P \cup A \cup\left\{C^{\prime}\right\}\right) \Longrightarrow$ state $(N,\{C\}, P,\{ \}, A) \leadsto O L$ state $\left(N,\left\{C^{\prime}\right\}, P,\{ \}, A\right)$
\mid delete-bwd-p: $C^{\prime} \in$ no-labels.Red- $F\{C\} \vee C \prec \cdot C^{\prime} \Longrightarrow$ state $\left(N,\{C\}, P \cup\left\{C^{\prime}\right\},\{ \}, A\right) \leadsto O L$ state $(N,\{C\}, P,\{ \}, A)$
| simplify-bwd-p: $C^{\prime} \in$ no-labels.Red-F $\left\{C, C^{\prime \prime}\right\} \Longrightarrow$
state $\left(N,\{C\}, P \cup\left\{C^{\prime}\right\},\{ \}, A\right) \sim O L$ state $\left(N \cup\left\{C^{\prime}\right\},\{C\}, P,\{ \}, A\right)$
\mid delete-bwd-a: $C^{\prime} \in$ no-labels.Red- $F\{C\} \vee C \prec \cdot C^{\prime} \Longrightarrow$

```
    state \(\left(N,\{C\}, P,\{ \}, A \cup\left\{C^{\prime}\right\}\right) \leadsto O L\) state \((N,\{C\}, P,\{ \}, A)\)
| simplify-bwd-a: \(C^{\prime} \in\) no-labels.Red-F \(\left(\left\{C, C^{\prime \prime}\right\}\right) \Longrightarrow\)
    state \(\left(N,\{C\}, P,\{ \}, A \cup\left\{C^{\prime}\right\}\right) \sim O L\) state \(\left(N \cup\left\{C^{\prime \prime}\right\},\{C\}, P,\{ \}, A\right)\)
\(\mid\) transfer: state \((N,\{C\}, P,\{ \}, A) \leadsto O L\) state \((N,\{ \}, P \cup\{C\},\{ \}, A)\)
\(\mid\) choose- \(p: C \notin P \Longrightarrow\) state \((\},\{ \}, P \cup\{C\},\{ \}, A) \sim O L\) state \((\},\{ \}, P,\{C\}, A)\)
| infer: no-labels.Inf-between \(A\{C\} \subseteq\) no-labels.Red- \(I(A \cup\{C\} \cup M) \Longrightarrow\)
    state \((\},\{ \}, P,\{C\}, A) \sim O L\) state \((M,\{ \}, P,\{ \}, A \cup\{C\})\)
lemma prj-state-union-sets [simp]: fst'state \((N, X, P, Y, A)=N \cup X \cup P \cup Y \cup A\)
    using prj-fl-set-to-f-set-distr-union prj-labeledN-eq- \(N\) by auto
```

lemma active-subset-of-setOfFormulasWithLabelDiffActive:
$l \neq$ Active \Longrightarrow active-subset $\left\{\left(C^{\prime}, l\right)\right\}=\{ \}$
by (simp add: active-subset-def)
lemma state-add-C-New: state $(N, X, P, Y, A) \cup\{(C, N e w)\}=$ state $(N \cup\{C\}, X, P, Y, A)$
by auto
lemma state-add-C-XX: state $(N, X, P, Y, A) \cup\{(C, X X)\}=$ state $(N, X \cup\{C\}, P, Y, A)$
by auto
lemma state-add-C-Passive: state $(N, X, P, Y, A) \cup\{(C$, Passive $)\}=$ state $(N, X, P \cup\{C\}, Y, A)$
by auto
lemma state-add- C - $Y Y$: state $(N, X, P, Y, A) \cup\{(C, Y Y)\}=$ state $(N, X, P, Y \cup\{C\}, A)$
by auto
lemma state-add-C-Active: state $(N, X, P, Y, A) \cup\{(C$, Active $)\}=\operatorname{state}(N, X, P, Y, A \cup\{C\})$
by auto
lemma prj-ActiveSubset-of-state: fst' active-subset (state $(N, X, P, Y, A))=A$
unfolding active-subset-def by force

6.2 Refinement

lemma chooseN-in-GC: state $(N \cup\{C\},\{ \}, P,\{ \}, A) \leadsto G C$ state $(N,\{C\}, P,\{ \}, A)$
proof -
have $X X$-ls-New: $X X \sqsubset L$ New by (simp add: OL-Prec-L-def)
hence almost-thesis:
state $(N,\{ \}, P,\{ \}, A) \cup\{(C, N e w)\} \sim G C$ state $(N,\{ \}, P,\{ \}, A) \cup\{(C, X X)\}$
using relabel-inactive by blast
have rewrite-left: state $(N,\{ \}, P,\{ \}, A) \cup\{(C, N e w)\}=$ state $(N \cup\{C\},\{ \}, P,\{ \}, A)$ using state-add-C-New by blast
moreover have rewrite-right: state $(N,\{ \}, P,\{ \}, A) \cup\{(C, X X)\}=$ state $(N,\{C\}, P,\{ \}, A)$ using state-add- $C-X X$ by auto
ultimately show ?thesis using almost-thesis rewrite-left rewrite-right by simp
qed
lemma deleteFwd-in-GC:
assumes $C \in$ no-labels.Red- $F(P \cup A) \vee\left(\exists C^{\prime} \in P \cup A . C^{\prime} \preceq \cdot C\right)$
shows state $(N,\{C\}, P,\{ \}, A) \sim G C$ state $(N,\{ \}, P,\{ \}, A)$
using assms
proof
assume c-in-redf-PA: $C \in$ no-labels.Red-F $(P \cup A)$
have $P \cup A \subseteq N \cup\} \cup P \cup\} \cup A$ by auto
then have no-labels.Red- $F(P \cup A) \subseteq$ no-labels.Red- $F(N \cup\} \cup P \cup\} \cup A)$ using no-labels.Red-F-of-subset by simp
then have c-in-redf-NPA: $C \in$ no-labels.Red- $F(N \cup\} \cup P \cup\} \cup A)$
using c-in-redf-PA by auto
have NPA-eq-prj-state-NPA: $N \cup\} \cup P \cup\} \cup A=$ fst'state $(N,\{ \}, P,\{ \}, A)$ using prj-state-union-sets by simp
have $C \in$ no-labels.Red- $F($ fst'state $(N,\{ \}, P,\{ \}, A))$ using c-in-redf-NPA NPA-eq-prj-state-NPA by fastforce
then show ?thesis using remove-redundant-no-label by auto
next
assume $\exists C^{\prime} \in P \cup A . C^{\prime} \preceq \cdot C$
then obtain C^{\prime} where $C^{\prime} \in P \cup A$ and $c^{\prime}-l e-c: C^{\prime} \preceq . C$ by auto
then have $C^{\prime} \in P \vee C^{\prime} \in A$ by blast
then show ?thesis
proof
assume $C^{\prime} \in P$
then have c^{\prime}-Passive-in: $\left(C^{\prime}\right.$, Passive $) \in$ state $(N,\{ \}, P,\{ \}, A)$ by simp
have Passive $\sqsubset L X X$
by (simp add: OL-Prec-L-def)
then have state $(N,\{ \}, P,\{ \}, A) \cup\{(C, X X)\} \sim G C$ state $(N,\{ \}, P,\{ \}, A)$ using remove-succ-L c^{\prime}-le-c c^{\prime}-Passive-in by blast
then show ?thesis by auto
next
assume $C^{\prime} \in A$
then have c^{\prime}-Active-in-state-NPA: $\left(C^{\prime}\right.$, Active $) \in \operatorname{state}(N,\{ \}, P,\{ \}, A)$ by simp
also have Active-ls-x: Active $\sqsubset L X X$ using Active-minimal by simp
then have state $(N,\{ \}, P,\{ \}, A) \cup\{(C, X X)\} \sim G C$ state $(N,\{ \}, P,\{ \}, A)$ using remove-succ-L c^{\prime}-le-c Active-ls-x c^{\prime}-Active-in-state-NPA by blast
then show?thesis by auto
qed
qed
lemma simplifyFwd-in-GC:
$C \in$ no-labels.Red- $F\left(P \cup A \cup\left\{C^{\prime}\right\}\right) \Longrightarrow$
state $(N,\{C\}, P,\{ \}, A) \leadsto G C$ state $\left(N,\left\{C^{\prime}\right\}, P,\{ \}, A\right)$
proof -
assume c-in: $C \in$ no-labels.Red-F $\left(P \cup A \cup\left\{C^{\prime}\right\}\right)$
let ? $\mathcal{N}=$ state $(N,\{ \}, P,\{ \}, A)$
and $? \mathcal{M}=\{(C, X X)\}$ and $? \mathcal{M}^{\prime}=\left\{\left(C^{\prime}, X X\right)\right\}$
have $P \cup A \cup\left\{C^{\prime}\right\} \subseteq f_{s t}{ }^{6}\left(? \mathcal{N} \cup ? \mathcal{M}^{\prime}\right)$
by auto
then have no-labels.Red- $F\left(P \cup A \cup\left\{C^{\prime}\right\}\right) \subseteq$ no-labels.Red- $F\left(f s t^{\prime}\left(? \mathcal{N} \cup\right.\right.$? $\left.\left.\mathcal{M}^{\prime}\right)\right)$
using no-labels.Red-F-of-subset by auto
then have $C \in$ no-labels.Red- $F\left(f s t^{\prime}\left(? \mathcal{N} \cup\right.\right.$? $\left.\left.\mathcal{M}^{\prime}\right)\right)$ using c-in by auto

```
    then have c-x-in: (C,XX)\inRed-F (?N \cup ?M')
    using no-labels-Red-F-imp-Red-F by auto
    then have ?M}\subseteq\operatorname{Red}-F(?\mathcal{N}\cup?\mp@subsup{\mathcal{M}}{}{\prime}
    by auto
    then have active-subset-of-m': active-subset ? (\mathcal{M'}={}
    using active-subset-of-setOfFormulasWithLabelDiffActive by auto
    show ?thesis
    using c-x-in active-subset-of-m' process[of - - ?M - ?M M ] by auto
qed
lemma deleteBwdP-in-GC:
    assumes }\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F {C} }\C\prec.C'\
    shows state (N,{C},P\cup{\mp@subsup{C}{}{\prime}},{},A)~GC state (N,{C},P,{},A)
    using assms
    proof
    let ?\mathcal{N}= state (N,{C},P,{},A)
    assume c-ls-c': C\prec. C'
    have }(C,XX)\in\mathrm{ state ( }N,{C},P,{},A
        by simp
    then have ?N }\cup{(\mp@subsup{C}{}{\prime},\mathrm{ Passive ) } }~GC ?N 
        using c-ls-c' remove-succ-F by blast
    also have ?\mathcal{N}\cup{(\mp@subsup{C}{}{\prime},\mathrm{ Passive })}=\mathrm{ state (N, {C},P }\cup{\mp@subsup{C}{}{\prime}},{},A)
        by auto
    finally show ?thesis
        by auto
next
    let ?N = state (N,{C},P,{},A)
    assume c'-in-redf-c: C C'\in no-labels.Red-F-G {C}
    have {C}\subseteqfst* ?N by auto
    then have no-labels.Red-F {C}\subseteq no-labels.Red-F (fst` ?N )
        using no-labels.Red-F-of-subset by auto
    then have }\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F (fst' ?N )
        using c'-in-redf-c by blast
    then have ?N }\cup{(C\mp@subsup{C}{}{\prime},\mathrm{ Passive ) } }~GC\mathrm{ ?N 
        using remove-redundant-no-label by blast
    then show ?thesis
        by (metis state-add-C-Passive)
    qed
lemma simplifyBwdP-in-GC:
    assumes C'}\mp@subsup{C}{}{\prime}\mathrm{ no-labels.Red-F {C, C''}
    shows state (N,{C},P\cup{\mp@subsup{C}{}{\prime}},{},A)~GC state (N\cup{\mp@subsup{C}{}{\prime\prime}},{C},P,{},A)
proof -
    let ?\mathcal{N}= state (N,{C},P,{},A)
    and ?M}={(\mp@subsup{C}{}{\prime},\mathrm{ Passive })
    and ?.M
    have {C, C'\prime}}\subseteqfst*(?\mathcal{N}\cup?\mp@subsup{\mathcal{M}}{}{\prime}
    by (smt (z3) Un-commute Un-empty-left Un-insert-right insert-absorb2
        subset-Un-eq state-add-C-New prj-state-union-sets)
then have no-labels.Red-F {C, C'n}}\subseteq\mathrm{ no-labels.Red-F (fst`(?N }\cup\mathrm{ ? (M'))
    using no-labels.Red-F-of-subset by auto
then have C' }\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F (fst'(?N }\cup\mathrm{ ? (M'))
    using assms by auto
```

```
    then have ( }\mp@subsup{C}{}{\prime},\mathrm{ Passive })\in\operatorname{Red}-F(?\mathcal{N}\cup?\mathcal{M}
    using no-labels-Red-F-imp-Red-F by auto
    then have }\mathcal{M}\mathrm{ -in-redf: ? M}\subseteqRed-F (?\mathcal{N}\cup?\mp@subsup{\mathcal{M}}{}{\prime})\mathrm{ by auto
    have active-subset-M': active-subset ? }\mp@subsup{\mathcal{M}}{}{\prime}={
    using active-subset-of-setOfFormulasWithLabelDiffActive by auto
    have ?\mathcal{N}\cup?\mathcal{M}~GC ?\mathcal{N}\cup?\mp@subsup{\mathcal{M}}{}{\prime}
```



```
    also have ?\mathcal{N}\cup{(\mp@subsup{C}{}{\prime},\mathrm{ Passive ) } state (N,{C},P }\cup{\mp@subsup{C}{}{\prime}},{},A)
    by force
    also have ?N }\cup{(\mp@subsup{C}{}{\prime\prime},New)}=\mathrm{ state }(N\cup{\mp@subsup{C}{}{\prime\prime}},{C},P,{},A
    using state-add-C-New by blast
    finally show ?thesis
    by auto
qed
lemma deleteBwdA-in-GC:
```



```
    shows state (N,{C},P,{},A\cup{\mp@subsup{C}{}{\prime}})~GC state (N,{C},P,{},A)
    using assms
proof
    let ?\mathcal{N}= state (N,{C},P,{},A)
    assume c-ls-c': C}\prec\cdot\mp@subsup{C}{}{\prime
    have }(C,XX)\in\mathrm{ state (N, {C},P,{},A)
        by simp
    then have ?\mathcal{N}\cup{(\mp@subsup{C}{}{\prime},Active) }}~GC?\mathcal{N
        using c-ls-c' remove-succ-F by blast
    also have ?\mathcal{N}\cup{(\mp@subsup{C}{}{\prime},\mathrm{ Active ) } = state (N,{C},P,{},A }\cup{\mp@subsup{C}{}{\prime}})
        by auto
    finally show state }(N,{C},P,{},A\cup{\mp@subsup{C}{}{\prime}})~GC state (N,{C},P,{},A
        by auto
next
    let ?N = state ( N,{C},P,{},A)
    assume c'-in-redf-c: C' }\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F-G {C}
    have {C}}\subseteqfst` ?N 
        by (metis Un-commute Un-upper2 le-supI2 prj-state-union-sets)
    then have no-labels.Red-F {C}\subseteq no-labels.Red-F (fst` ?N )
        using no-labels.Red-F-of-subset by auto
    then have }\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F (fst' ?N )
        using c'-in-redf-c by blast
    then have ?\mathcal{N}\cup{(\mp@subsup{C}{}{\prime},\mathrm{ Active })}~GC?\mathcal{N}
        using remove-redundant-no-label by auto
    then show ?thesis
        by (metis state-add-C-Active)
qed
lemma simplifyBwdA-in-GC:
    assumes C'}\mp@subsup{C}{}{\prime}\mathrm{ no-labels.Red-F {C, C''}
    shows state (N,{C},P,{},A\cup{\mp@subsup{C}{}{\prime}})~GC state (N\cup{\mp@subsup{C}{}{\prime\prime}},{C},P,{},A)
proof -
    let ?\mathcal{N}=\operatorname{state}(N,{C},P,{},A) and ?\mathcal{M}={(\mp@subsup{C}{}{\prime},Active) } and ?.\mathcal{M'}={(\mp@subsup{C}{}{\prime\prime},New)}
```

```
    have {C, C''}\subseteqfst`}(?\mathcal{N}\cup?~\mathcal{M}
    by simp
    then have no-labels.Red-F {C, C''}}\subseteq\mathrm{ no-labels.Red-F (fst'(?N }\cup\mathrm{ ? (M'))
    using no-labels.Red-F-of-subset by auto
    then have }\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F (fst*}(?\mathcal{N}\cup?\mp@subsup{\mathcal{M}}{}{\prime})
        using assms by auto
    then have ( }\mp@subsup{C}{}{\prime},\mathrm{ Active ) }\in\operatorname{Red}-F(?\mathcal{N}\cup?.\mathcal{M}
    using no-labels-Red-F-imp-Red-F by auto
    then have }\mathcal{M}\mathrm{ -included: ? M}\subseteqRed-F (?\mathcal{N}\cup?\mathcal{M}
        by auto
    have active-subset ?}\mp@subsup{\mathcal{M}}{}{\prime}={
        using active-subset-of-setOfFormulasWithLabelDiffActive by auto
    then have state }(N,{C},P,{},A)\cup{(\mp@subsup{C}{}{\prime},\mathrm{ Active ) } }~GC state (N,{C},P,{},A)\cup{(\mp@subsup{C}{}{\prime\prime},New)
        using }\mathcal{M}\mathrm{ -included process[where ?M=?M
    then show ?thesis
        by (metis state-add-C-New state-add-C-Active)
qed
lemma transfer-in-GC: state (N,{C},P,{},A)~GC state (N,{},P\cup{C},{},A)
proof -
    let?\mathcal{N}= state (N,{},P,{},A)
    have Passive \sqsubsetL XX
    by (simp add: OL-Prec-L-def)
    then have ?\mathcal{N}\cup{(C,XX)}~GC?.N}\cup{(C,Passive)
        using relabel-inactive by auto
    then show ?thesis
    by (metis sup-bot-left state-add-C-XX state-add-C-Passive)
qed
lemma chooseP-in-GC: state ({}, {},P\cup{C},{},A)~GC state ({},{},P,{C},A)
proof -
    let ?\mathcal{N}= state ({}, {}, P, {},A)
    have YY \sqsubsetL Passive
        by (simp add:OL-Prec-L-def)
    moreover have YY\not= Active
    by simp
    ultimately have ?.N }\cup{(C,\mathrm{ Passive })}~GC\mathrm{ ?.N }\cup{(C,YY)
        using relabel-inactive by auto
    then show ?thesis
        by (metis sup-bot-left state-add-C-Passive state-add-C-YY)
qed
lemma infer-in-GC:
    assumes no-labels.Inf-between A {C}\subseteq no-labels.Red-I (A\cup{C}\cupM)
    shows state ({}, {},P,{C},A)~GC state (M, {},P,{},A\cup{C})
proof -
    let ?M}={(\mp@subsup{C}{}{\prime},New)|\mp@subsup{C}{}{\prime}.\mp@subsup{C}{}{\prime}\inM
    let ?\mathcal{N}= state ({},{},P,{},A)
    have active-subset-of-M: active-subset ?.\mathcal{M = {}}
    using active-subset-def by auto
```

```
    have \(A \cup\{C\} \cup M \subseteq\left(f s t^{*}\right.\) ? \(\left.\mathcal{N}\right) \cup\{C\} \cup\left(f s t^{*}\right.\) ? \(\left.\mathcal{M}\right)\)
    by fastforce
    then have no-labels.Red-I \((A \cup\{C\} \cup M) \subseteq\) no-labels.Red-I \(\left(\left(f s t^{*}\right.\right.\) ? \(\left.\mathcal{N}\right) \cup\{C\} \cup\left(f s t^{6}\right.\) ?M) \()\)
    using no-labels.empty-ord.Red-I-of-subset by auto
    moreover have fst' (active-subset ?N ) \(=A\)
    using prj-ActiveSubset-of-state by blast
    ultimately have no-labels.Inf-between \(\left(f_{s t}{ }^{*}(\right.\) active-subset ?N \(\left.)\right)\{C\} \subseteq\)
    no-labels.Red-I \(\left(\left(f s t^{6}\right.\right.\) ? \(\left.\mathcal{N}\right) \cup\{C\} \cup\left(f s t^{*}\right.\) ? \(\left.\left.\mathcal{M}\right)\right)\)
    using assms by auto
    then have ? \(\mathcal{N} \cup\{(C, Y Y)\} \sim G C\) ? \(\mathcal{N} \cup\{(C\), Active \()\} \cup\) ? \(\mathcal{M}\)
        using active-subset-of-M prj-fl-set-to-f-set-distr-union step.infer by force
    also have ? \(\mathcal{N} \cup\{(C, Y Y)\}=\) state \((\},\{ \}, P,\{C\}, A)\)
        by \(\operatorname{simp}\)
    also have ? \(\mathcal{N} \cup\{(C\), Active \()\} \cup ? \mathcal{M}=\) state \((M,\{ \}, P,\{ \}, A \cup\{C\})\)
        by force
    finally show ?thesis
        by \(\operatorname{simp}\)
qed
theorem \(O L\)-step-imp-GC-step: \(M \leadsto O L M^{\prime} \Longrightarrow M \sim G C M^{\prime}\)
proof (induction rule: OL.induct)
    case (choose-n N C P A)
    then show ?case
        using chooseN-in-GC by auto
next
    case (delete-fwd CPAN)
    then show ?case
        using deleteFwd-in-GC by auto
next
    case (simplify-fwd C P A \(C^{\prime} N\) )
    then show? case
        using simplifyFwd-in-GC by auto
next
    case (delete-bwd-p C' C N P A)
    then show ?case
        using delete \(B w d P-i n-G C\) by auto
next
    case (simplify-bwd-p \(C^{\prime} C C^{\prime \prime} N P A\) )
    then show ?case
        using simplify \(B w d P-i n-G C\) by auto
next
    case (delete-bwd-a \(C^{\prime} C N P A\) )
    then show? case
        using delete \(B w d A-i n-G C\) by auto
next
    case (simplify-bwd-a \(C^{\prime} C N P A C^{\prime \prime}\) )
    then show ?case
        using simplifyBwdA-in-GC by blast
next
    case (transfer NCPA)
    then show?case
        using transfer-in-GC by auto
next
    case (choose-p P C A)
```

```
    then show ?case
    using chooseP-in-GC by auto
next
    case (infer A C M P)
    then show ?case
        using infer-in-GC by auto
qed
```


6.3 Completeness

theorem

 assumes
 ol-chain: chain \((\sim O L)\) Sts and
 act: active-subset (lhd Sts) \(=\{ \}\) and
 pas: passive-subset (Liminf-llist Sts) \(=\{ \}\)
 shows
 OL-Liminf-saturated: saturated (Liminf-llist Sts) and
 OL-complete-Liminf: \(B \in\) Bot- \(F \Longrightarrow\) fst'lhd Sts \(\models \cap \mathcal{G}\{B\} \Longrightarrow\)
 \(\exists B L \in\) Bot-FL. BL \(\in\) Liminf-llist Sts and
 OL-complete: \(B \in\) Bot- \(F \Longrightarrow\) fst'lhd Sts \(\models \cap \mathcal{G}\{B\} \Longrightarrow\)
 \(\exists i\). enat \(i<\) llength Sts \(\wedge(\exists B L \in\) Bot-FL. BL \(\in\) lnth Sts \(i)\)
 proof -
have gc-chain: chain $(\sim G C)$ Sts
using ol-chain OL-step-imp-GC-step chain-mono by blast
show saturated (Liminf-llist Sts)
using assms(2) gc.fair-implies-Liminf-saturated gc-chain gc-fair gc-to-red pas by blast
\{
assume
bot: $B \in B o t-F$ and
unsat: fst'lhd Sts $\models \cap \mathcal{G}\{B\}$
show $\exists B L \in$ Bot-FL. $B L \in$ Liminf-llist Sts
by (rule gc-complete-Liminf[OF gc-chain act pas bot unsat])
then show $\exists i$. enat $i<$ llength Sts $\wedge(\exists B L \in$ Bot-FL. BL \in lnth Sts $i)$
unfolding Liminf-llist-def by auto
\}
qed
end
end

7 Definition of Fair Otter Loop

The fair Otter loop assumes that the passive queue is fair and ensures (dynamic) refutational completeness under that assumption. This section contains only the loop's definition.

```
theory Fair-Otter-Loop-Def
    imports
        Otter-Loop
        Prover-Queue
begin
```

```
7.1 Locale
type-synonym('p,'f) OLf-state = 'f fset }\times\mathrm{ 'f option }\times\mathrm{ ' 
locale fair-otter-loop =
    otter-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q \mathcal{G-I-q Equiv-F Prec-F +}
    fair-prover-queue empty select add remove felems
    for
        Bot-F :: 'f set and
    Inf-F :: 'f inference set and
    Bot-G ::'g set and
    Q :: 'q set and
    entails-q :: 'q }=>\mathrm{ 'g set }=>\mp@subsup{}{}{\prime}g\mathrm{ set }=>\mathrm{ bool and
    Inf-G-q ::' }q=>'g\mathrm{ 'inference set and
    Red-I-q ::' }q=\mp@subsup{|}{}{\prime}g\mathrm{ set }=>\mathrm{ ' 'g inference set and
    Red-F-q:: ' }q=>\mp@subsup{}{}{\prime}g\mathrm{ set }=>\mp@subsup{'}{}{\prime}g\mathrm{ set and
    \mathcal{G}-F-q ::' }q=>'f=>'g set and
    \mathcal{G}-I-q ::' 'q=>'f inference }=>\mathrm{ 'g inference set option and
    Equiv-F :: ' }f=>\mathrm{ ' }f=>\mathrm{ bool (infix <立 50) and
    Prec-F :: 'f => ' }f=\mathrm{ bool (infix <<.> 50) and
    empty :: 'p and
    select :: ' }p=>\mathrm{ 'f and
    add ::'f }=>\mathrm{ ' }p=>'p\mathrm{ and
    remove :: ' }=>\mp@subsup{}{}{\prime}p=>\mp@subsup{'}{}{\prime}p\mathrm{ and
    felems :: 'p = 'f fset +
    fixes
    Prec-S :: 'f }=>\mathrm{ 'f }=>\mathrm{ bool (infix }\precS 50
    assumes
    wf-Prec-S: minimal-element ( }\precS)\mathrm{ UNIV and
    transp-Prec-S: transp ( }\precS)\mathrm{ and
    finite-Inf-between: finite }A\Longrightarrow\mathrm{ finite (no-labels.Inf-between A {C})
begin
lemma trans-Prec-S: trans {(x,y). x \precS y}
    using transp-Prec-S transp-trans by blast
lemma irreflp-Prec-S: irreflp ( }\precS
    using minimal-element.wf wfP-imp-irreflp wf-Prec-S wfp-on-UNIV by blast
lemma irrefl-Prec-S: irrefl {(x,y).x\precS y}
    by (metis CollectD case-prod-conv irrefl-def irreflp-Prec-S irreflp-def)
```


7.2 Basic Definitions and Lemmas

```
abbreviation new-of \(::\left({ }^{\prime} p,{ }^{\prime} f\right)\) OLf-state \(\Rightarrow\) 'f fset where new-of \(S t \equiv f s t S t\)
abbreviation \(x x\)-of \(::(' p, ' f)\) OLf-state \(\Rightarrow\) 'f option where \(x x\)-of \(S t \equiv\) fst (snd \(S t\) )
abbreviation passive-of \(::(' p\), ' \(f)\) ) OLf-state \(\Rightarrow\) ' \(p\) where passive-of \(S t \equiv\) fst (snd (snd St))
abbreviation yy-of \(::\left({ }^{\prime} p, ' f\right)\) OLf-state \(\Rightarrow\) 'f option where \(y y\)-of \(S t \equiv\) fst (snd (snd (snd St)))
abbreviation active-of :: (' \(p\), 'f) OLf-state \(\Rightarrow\) 'f fset where active-of \(S t \equiv\) snd \((\) snd \((\) snd \((\) snd \(S t)))\)
abbreviation all-formulas-of :: (' \(p\), ' \(f\) ) OLf-state \(\Rightarrow\) ' \(f\) set where
```

```
all-formulas-of \(S t \equiv\) fset \((\) new-of \(S t) \cup\) set-option \((x x-o f\) St) \(\cup\) elems (passive-of \(S t) \cup\)
```

 set-option \((y y\)-of \(S t) \cup\) fset (active-of \(S t)\)
 fun fstate : : 'f fset \times 'f option \times ' $p \times$ 'f option \times ' f fset $\Rightarrow(' f \times$ OL-label $)$ set where fstate $(N, X, P, Y, A)=$ state $($ fset N, set-option X, elems P, set-option Y, fset A)
lemma fstate-alt-def:
fstate $S t=$ state (fset (fst St), set-option (fst (snd St)), elems (fst (snd (snd St))), set-option $($ fst $($ snd $($ snd $($ snd St) $)))$, fset (snd (snd (snd (snd St)))))
by (cases $S t$) auto
definition

```
Liminf-fstate :: ('p, 'f) OLf-state llist \(\Rightarrow\) ' \(f\) set \(\times\) ' \(f\) set \(\times\) ' \(f\) set \(\times\) ' \(f\) set \(\times\) ' \(f\) set
```

where
Liminf-fstate Sts =
(Liminf-llist (lmap (fset ○ new-of) Sts),
Liminf-llist (lmap (set-option \circ xx-of) Sts),
Liminf-llist (lmap (elems ○ passive-of) Sts),
Liminf-llist (lmap (set-option ○ yy-of) Sts),
Liminf-llist (lmap (fset \circ active-of) Sts))
lemma Liminf-fstate-commute: Liminf-llist (lmap fstate Sts) $=$ state (Liminf-fstate Sts)
proof -
have Liminf-llist (lmap fstate Sts) $=$
$(\lambda C .(C, N e w))$ 'Liminf-llist (lmap (fset o new-of) Sts) \cup
$(\lambda C .(C, X X))$ 'Liminf-llist (lmap (set-option ○ xx-of) Sts) \cup
$(\lambda C .(C$, Passive $))$ 'Liminf-llist (lmap (elems \circ passive-of) Sts $) \cup$
$(\lambda C .(C, Y Y))$ 'Liminf-llist (lmap (set-option $\circ y y$-of) Sts) \cup
($\lambda C .(C$, Active))' Liminf-llist (lmap (fset \circ active-of) Sts)
unfolding fstate-alt-def state-alt-def
apply (subst Liminf-llist-lmap-union, fast) +
apply (subst Liminf-llist-lmap-image, simp add: inj-on-convol-ident) +
by auto
thus ?thesis
unfolding Liminf-fstate-def by fastforce
qed
fun state-union :: ' f set \times ' f set \times ' f set \times ' f set \times ' f set \Rightarrow ' f set where state-union $(N, X, P, Y, A)=N \cup X \cup P \cup Y \cup A$
inductive fair-OL :: ('p, 'f) OLf-state $\Rightarrow(' p, ' f)$ OLf-state \Rightarrow bool (infix $\leadsto O L f 50$) where choose-n: $C|\notin| N \Longrightarrow(N|\cup|\{|C|\}$, None, P, None, $A) \leadsto O L f(N$, Some C, P, None, $A)$
\mid delete-fwd: $C \in$ no-labels.Red- $F($ elems $P \cup$ fset $A) \vee\left(\exists C^{\prime} \in\right.$ elems $P \cup$ fset $\left.A . C^{\prime} \preceq \cdot C\right) \Longrightarrow$ $(N$, Some C, P, None, $A) \sim O L f(N$, None, P, None, $A)$
| simplify-fwd: $C^{\prime} \prec S C \Longrightarrow C \in$ no-labels.Red- F (elems $P \cup$ fset $\left.A \cup\left\{C^{\prime}\right\}\right) \Longrightarrow$ $(N$, Some C, P, None, $A) \sim \operatorname{OLf}\left(N\right.$, Some C^{\prime}, P, None, $\left.A\right)$
\mid delete-bwd-p: $C^{\prime} \in$ elems $P \Longrightarrow C^{\prime} \in$ no-labels.Red- $F\{C\} \vee C \prec \cdot C^{\prime} \Longrightarrow$
$(N$, Some C, P, None, $A) \sim O L f\left(N\right.$, Some C, remove $C^{\prime} P$, None, $\left.A\right)$
| simplify-bwd-p: $C^{\prime \prime} \prec S C^{\prime} \Longrightarrow C^{\prime} \in$ elems $P \Longrightarrow C^{\prime} \in$ no-labels.Red- $F\left\{C, C^{\prime \prime}\right\} \Longrightarrow$
$(N$, Some C, P, None, $A) \sim O L f\left(N \mid \cup\left\{\left|C^{\prime \prime}\right|\right\}\right.$, Some C, remove $C^{\prime} P$, None, A)
\mid delete-bwd-a: $C^{\prime}|\notin| A \Longrightarrow C^{\prime} \in$ no-labels.Red- $F\{C\} \vee C \prec \cdot C^{\prime} \Longrightarrow$ $\left(N\right.$, Some C, P, None, $\left.A|\cup|\left\{\left|C^{\prime}\right|\right\}\right) \leadsto O L f(N$, Some C, P, None, A)
| simplify-bwd-a: $C^{\prime \prime} \prec S C^{\prime} \Longrightarrow C^{\prime}|\notin| A \Longrightarrow C^{\prime} \in$ no-labels.Red-F $\left\{C, C^{\prime \prime}\right\} \Longrightarrow$
$\left(N\right.$, Some C, P, None, $\left.A|\cup|\left\{\left|C^{\prime}\right|\right\}\right) \leadsto O L f\left(N|\cup|\left\{\left|C^{\prime \prime}\right|\right\}\right.$, Some C, P, None, $\left.A\right)$

```
transfer: (N, Some C, P, None, A) }~OLf(N,None, add C P, None, A)
```

| choose-p: $P \neq$ empty \Longrightarrow
$(\{\|\}$, None, P, None, $A) \sim \operatorname{OLf}(\{\|\}$, None, remove (select $P) P$, Some (select P), A)
\mid infer: no-labels.Inf-between $($ fset $A)\{C\} \subseteq$ no-labels.Red-I $(f s e t A \cup\{C\} \cup f s e t M) \Longrightarrow$

7.3 Initial State and Invariant

inductive is-initial-OLf-state :: (' \quad, 'f) OLf-state \Rightarrow bool where is-initial-OLf-state (N, None, empty, None, $\{\|\}$)
inductive $O L f$-invariant $::\left(\begin{array}{l}\text { (}\end{array}\right.$, 'f) $O L f$-state \Rightarrow bool where $(N=\{\|\} \wedge X=$ None $) \vee Y=$ None \Longrightarrow OLf-invariant (N, X, P, Y, A)
lemma initial-OLf-invariant: is-initial-OLf-state $S t \Longrightarrow O L f$-invariant $S t$ unfolding is-initial-OLf-state.simps OLf-invariant.simps by auto
lemma step-OLf-invariant:
assumes step: $S t \leadsto O L f S t^{\prime}$
shows OLf-invariant $S t^{\prime}$
using step by cases (auto intro: OLf-invariant.intros)
lemma chain-OLf-invariant-lnth:
assumes
chain: chain $(\sim$ OLf) Sts and
fair-hd: OLf-invariant (lhd Sts) and
i-lt: enat $i<$ llength Sts
shows OLf-invariant (lnth Sts i)
using i - $l t$
proof (induct i)
case 0
thus ?case
using fair-hd lhd-conv-lnth zero-enat-def by fastforce
next
case (Suc i)
thus ?case
using chain chain-lnth-rel step-OLf-invariant by blast
qed
lemma chain-OLf-invariant-llast:
assumes
chain: chain $(\sim O L f)$ Sts and
fair-hd: OLf-invariant (lhd Sts) and
fin: lfinite Sts
shows OLf-invariant (llast Sts)
proof -
obtain $i::$ nat where
i : llength Sts $=$ enat i
using lfinite-llength-enat[OF fin] by blast
have im1-lt: enat $(i-1)<$ llength Sts
using i by (metis chain chain-length-pos diff-less enat-ord-simps(2) less-numeral-extra(1) zero-enat-def)
show ?thesis
using chain-OLf-invariant-lnth[OF chain fair-hd im1-lt]

```
    by (metis Suc-diff-1 chain chain-length-pos eSuc-enat enat-ord-simps(2) i llast-conv-lnth
    zero-enat-def)
qed
```


7.4 Final State

inductive is-final-OLf-state :: ('p, 'f) OLf-state \Rightarrow bool where
is-final-OLf-state ($\{|\mid\}$, None, empty, None, A)
lemma is-final-OLf-state-iff-no-OLf-step:
assumes inv: OLf-invariant St
shows is-final-OLf-state $S t \longleftrightarrow\left(\forall S t^{\prime} . \neg S t \leadsto O L f S t^{\prime}\right)$
proof
assume is-final-OLf-state St
then obtain A :: ' f fset where
st: St $=(\{\|\}$, None, empty, None, $A)$
by (auto simp: is-final-OLf-state.simps)
show $\forall S t^{\prime} . \neg S t \leadsto O L f S t^{\prime}$
unfolding st
proof (intro allI notI)
fix $S t^{\prime}$
assume $\left(\{|\mid\}\right.$, None, empty, None, $A) \sim O L f S t^{\prime}$
thus False
by cases auto
qed
next
assume no-step: $\forall S t^{\prime} . \neg S t \leadsto O L f S t^{\prime}$
show is-final-OLf-state $S t$
proof (rule ccontr)
assume not-fin: $\neg i s$-final-OLf-state St
obtain $N A::$ ' $f s e t$ and $X Y$:: 'f option and $P:: ~ ' p$ where
st: $S t=(N, X, P, Y, A)$
by (cases $S t$)
have inv': $(N=\{\|\} \wedge X=$ None $) \vee Y=$ None
using inv st OLf-invariant.simps by simp
have $N \neq\{| |\} \vee X \neq$ None $\vee P \neq$ empty $\vee Y \neq$ None
using not-fin unfolding st is-final-OLf-state.simps by auto
moreover \{
assume
$n: N \neq\{\|\}$ and
$x: X=$ None
obtain $N^{\prime}::$ ' f fset and $C::$ ' f where
$n^{\prime}: N=N^{\prime}|\cup|\{|C|\}$ and
$c-n i: C|\notin| N^{\prime}$
using n finsert-is-funion by blast
have $y: Y=$ None
using $n x i n v^{\prime}$ by meson
have $\exists S t^{\prime} . S t \leadsto O L f S t^{\prime}$
using fair-OL.choose-n[OF c-ni] unfolding st $n^{\prime} x y$ by fast
\} moreover \{
assume $X \neq$ None
then obtain C :: ' f where $x: X=$ Some C by blast
have y : $Y=$ None
using $x i n v^{\prime}$ by auto
have $\exists S t^{\prime} . S t \leadsto O L f S t^{\prime}$
using fair-OL.transfer unfolding st $x y$ by fast
\} moreover \{

assume

$p: P \neq e m p t y$ and
$n: N=\{\|\}$ and
$x: X=$ None and
$y: Y=$ None
have $\exists S t^{\prime} . S t \leadsto O L f S t^{\prime}$
using fair-OL.choose-p[OF p] unfolding st $n x y$ by fast
\} moreover \{
assume $Y \neq$ None
then obtain C :: ' f where
$y: Y=$ Some C
by blast
have $n: N=\{\|\}$ and
$x: X=$ None
using y inv ${ }^{\prime}$ by blast +
let $? M=$ concl-of' no-labels.Inf-between $($ fset $A)\{C\}$
have fin: finite ?M
by (simp add: finite-Inf-between)
have fset-abs-m: fset (Abs-fset ?M) $=$? M
by (rule Abs-fset-inverse[simplified, OF fin])
have inf-red: no-labels.Inf-between (fset A) $\{C\}$
\subseteq no-labels.Red-I-G $\left(f_{s e t} A \cup\{C\} \cup f\right.$ set $($ Abs-fset ?M) $)$
by (simp add: fset-abs-m no-labels.Inf-if-Inf-between no-labels.empty-ord.Red-I-of-Inf-to-N subsetI)
have $\exists S t^{\prime} . S t \leadsto O L f S t^{\prime}$
using fair-OL.infer[OF inf-red] unfolding st $n x y$ by fast
\} ultimately show False
using no-step by force
qed
qed

7.5 Refinement

lemma fair-OL-step-imp-OL-step:
assumes olf: $(N, X, P, Y, A) \leadsto O L f\left(N^{\prime}, X^{\prime}, P^{\prime}, Y^{\prime}, A^{\prime}\right)$
shows fstate $(N, X, P, Y, A) \leadsto O L$ fstate $\left(N^{\prime}, X^{\prime}, P^{\prime}, Y^{\prime}, A^{\prime}\right)$
using olf
proof cases
case (choose-n C)
note defs $=$ this $(1-7)$ and $c-n i=t h i s(8)$

```
show ?thesis
    unfolding defs fstate.simps option.set using OL.choose-n c-ni by simp
next
    case (delete-fwd C)
    note defs \(=\) this \((1-7)\) and \(c\)-red \(=\) this ( 8\()\)
    show ?thesis
        unfolding defs fstate.simps option.set by (rule OL.delete-fwd[OF c-red])
next
    case (simplify-fwd \(C^{\prime} C\) )
    note defs \(=\) this(1-7) and \(c\)-red \(=\) this(9)
    show ?thesis
        unfolding defs fstate.simps option.set by (rule OL.simplify-fwd \([\) OF c-red \(]\) )
next
    case (delete-bwd-p \(C^{\prime} C\) )
    note defs \(=\) this \((1-7)\) and \(c^{\prime}-i n-p=\) this(8) and \(c^{\prime}-r e d=\) this \((9)\)
    have \(p\)-rm-c'-uni-c': elems (remove \(\left.C^{\prime} P\right) \cup\left\{C^{\prime}\right\}=\) elems \(P\)
    unfolding felems-remove by (auto intro: \(c^{\prime}\)-in-p)
    have \(p\)-mns-c': elems \(P-\left\{C^{\prime}\right\}=\) elems (remove \(C^{\prime} P\) )
        unfolding felems-remove by auto
    show ?thesis
    unfolding defs fstate.simps option.set
    by (rule OL.delete-bwd-p[OF \(c^{\prime}\)-red, of - elems \(P-\left\{C^{\prime}\right\}\),
                unfolded \(\left.\left.p-r m-c^{\prime}-u n i-c^{\prime} p-m n s-c\right\rceil\right)\)
next
    case (simplify-bwd-p \(C^{\prime \prime} C^{\prime} C\) )
    note defs \(=\) this \((1-7)\) and \(c^{\prime}-i n-p=\) this \((9)\) and \(c^{\prime}\)-red \(=\) this(10)
    have \(p\)-rm-c'-uni-c': elems (remove \(\left.C^{\prime} P\right) \cup\left\{C^{\prime}\right\}=\) elems \(P\)
        unfolding felems-remove by (auto intro: \(c^{\prime}\)-in-p)
    have \(p\)-mns-c': elems \(P-\left\{C^{\prime}\right\}=\) elems (remove \(C^{\prime} P\) )
        unfolding felems-remove by auto
    show ?thesis
        unfolding defs fstate.simps option.set
        using OL.simplify-bwd-p[OF \(c^{\prime}\)-red, of fset \(N\) elems \(P-\left\{C^{\prime}\right\}\),
            unfolded \(p-r m-c^{\prime}-u n i-c^{\prime} p-m n s-c\) ]
        by \(\operatorname{simp}\)
next
    case (delete-bwd-a \(C^{\prime} C\) )
    note defs \(=\) this \((1-7)\) and \(c^{\prime}\)-red \(=\) this \((9)\)
    show ?thesis
        unfolding defs fstate.simps option.set using \(O L\).delete-bwd-a[OF c'-red] by simp
next
    case (simplify-bwd-a \(C^{\prime} C^{\prime \prime} C\) )
    note defs \(=\) this \((1-7)\) and \(c^{\prime}\)-red \(=\) this(10)
    show ?thesis
        unfolding defs fstate.simps option.set using OL.simplify-bwd-a[OF c'-red] by simp
next
    case (transfer C)
    note defs \(=\) this \((1-7)\)
    have \(p\)-uni-c: elems \(P \cup\{C\}=\) elems \((\) add \(C P)\)
        using felems-add by auto
```

```
show ?thesis
    unfolding defs fstate.simps option.set
    by (rule OL.transfer[of - C elems P, unfolded p-uni-c])
next
    case choose-p
    note defs = this(1-8) and p-nemp = this(9)
    have sel-ni-rm: select P & elems (remove (select P) P)
    unfolding felems-remove by auto
    have rm-sel-uni-sel: elems (remove (select P) P) \cup{select P} = elems P
    unfolding felems-remove using p-nemp select-in-felems
    by (metis Un-insert-right finsert.rep-eq finsert-fminus sup-bot-right)
    show ?thesis
    unfolding defs fstate.simps option.set
    using OL.choose-p[of select P elems (remove (select P) P), OF sel-ni-rm,
                unfolded rm-sel-uni-sel]
    by simp
next
    case (infer C)
    note defs=this(1-7) and infers = this(8)
    show ?thesis
        unfolding defs fstate.simps option.set using OL.infer[OF infers] by simp
qed
lemma fair-OL-step-imp-GC-step:
    (N,X,P,Y,A)~OLf (N', X', P', Y', A')\Longrightarrow
    fstate ( }N,X,P,Y,A)~GC fstate ( N', X', P', Y', A'
    by (rule OL-step-imp-GC-step[OF fair-OL-step-imp-OL-step])
end
end
```


8 iProver Loop

The iProver loop is a variant of the Otter loop that supports the elimination of clauses that are made redundant by their own children.

```
theory iProver-Loop
    imports Otter-Loop
begin
context otter-loop
begin
```


8.1 Definition

inductive $I L::\left({ }^{\prime} f \times\right.$ OL-label $)$ set $\Rightarrow\left({ }^{\prime} f \times\right.$ OL-label $)$ set \Rightarrow bool (infix $\left.\sim I L 50\right)$
where
$o l: S t \leadsto O L S t^{\prime} \Longrightarrow S t \leadsto I L S t^{\prime}$
\mid red-by-children: $C \in$ no-labels.Red- $F(A \cup M) \vee\left(M=\left\{C^{\prime}\right\} \wedge C^{\prime} \prec \cdot C\right) \Longrightarrow$ state $(\},\{ \}, P,\{C\}, A) \sim I L$ state $(M,\{ \}, P,\{ \}, A)$

8.2 Refinement

lemma red-by-children-in-GC:
assumes $C \in$ no-labels.Red- $F(A \cup M) \vee\left(M=\left\{C^{\prime}\right\} \wedge C^{\prime} \prec \cdot C\right)$
shows state $(\},\{ \}, P,\{C\}, A) \sim G C$ state $(M,\{ \}, P,\{ \}, A)$
proof -
let ? $\mathcal{N}=$ state $(\},\{ \}, P,\{ \}, A)$
and $? S t=\{(C, Y Y)\}$
and ?St' $=\{(x, N e w) \mid x . x \in M\}$
have $(C, Y Y) \in \operatorname{Red}-F\left(? \mathcal{N} \cup ? S t^{\prime}\right)$
using assms
proof
assume c-in: $C \in$ no-labels.Red- $F(A \cup M)$
have $A \cup M \subseteq A \cup M \cup P$ by auto
also have $f s t$ ' $\left(? \mathcal{N} \cup ? S t^{\prime}\right)=A \cup M \cup P$ by auto
then have $C \in$ no-labels.Red- $F(f s t$ ' $(? \mathcal{N} \cup ? S t$ ') $)$ by (metis (no-types, lifting) c-in calculation in-mono no-labels.Red-F-of-subset)
then show $(C, Y Y) \in \operatorname{Red}-F\left(? \mathcal{N} \cup ? S t^{\prime}\right)$ using no-labels-Red-F-imp-Red-F by blast

next

assume assm: $M=\left\{C^{\prime}\right\} \wedge C^{\prime} \prec \cdot C$
then have $C^{\prime} \in f_{s t}$ ' $\left(? \mathcal{N} \cup ? S t^{\prime}\right)$ by simp
then show $(C, Y Y) \in \operatorname{Red}-F\left(? \mathcal{N} \cup ? S t^{\prime}\right)$ by (metis (mono-tags) assm succ-F-imp-Red-F)
qed
then have St-included-in: ?St $\subseteq \operatorname{Red}-F(? \mathcal{N} \cup$?St')
by auto
have prj-of-active-subset-of-St': fst ' (active-subset ?St') $=\{ \}$
by (simp add: active-subset-def)
have ? $\mathcal{N} \cup$? $S t \sim G C$? $\mathcal{N} \cup$? $S t^{\prime}$
using process[of - ?N ? ? St - ?St'] St-included-in prj-of-active-subset-of-St' by auto
moreover have ? $\mathcal{N} \cup ? S t=$ state $(\},\{ \}, P,\{C\}, A)$
by simp
moreover have ? $\mathcal{N} \cup ? S t^{\prime}=\operatorname{state}(M,\{ \}, P,\{ \}, A)$
by auto
ultimately show state $(\},\{ \}, P,\{C\}, A) \sim G C$ state $(M,\{ \}, P,\{ \}, A)$
by simp
qed
theorem IL-step-imp-GC-step: $M \sim I L M^{\prime} \Longrightarrow M \sim G C M^{\prime}$
proof (induction rule: IL.induct)
case (ol St St')
then show ?case
by (simp add: OL-step-imp-GC-step)
next
case (red-by-children $C A M C^{\prime} P$)
then show ?case using red-by-children-in-GC
by auto
qed

8.3 Completeness

```
theorem
    assumes
        il-chain: chain (~IL) Sts and
        act: active-subset (lhd Sts) = {} and
        pas:passive-subset (Liminf-llist Sts) = {}
    shows
        IL-Liminf-saturated: saturated (Liminf-llist Sts) and
        IL-complete-Liminf: B B Bot-F\Longrightarrow fst`lhd Sts }\models\cap\mathcal{G}{B}
        \existsBL\inBot-FL. BL \inLiminf-llist Sts and
    IL-complete: B 
        \existsi. enat i< llength Sts }\wedge(\existsBL\inBot-FL.BL\inlnth Sts i
proof -
    have gc-chain: chain (~GC) Sts
        using il-chain IL-step-imp-GC-step chain-mono by blast
    show saturated (Liminf-llist Sts)
        using gc.fair-implies-Liminf-saturated gc-chain gc-fair gc-to-red act pas by blast
    {
        assume
            bot: B \in Bot-F and
            unsat: fst'lhd Sts }=\cap\mathcal{G}{B
        show }\existsBL\inBot-FL.BL\inLiminf-llist St
            by (rule gc-complete-Liminf[OF gc-chain act pas bot unsat])
        then show }\existsi.\mathrm{ enat }i<llength Sts \wedge(\existsBL\inBot-FL.BL\inlnth Sts i
            unfolding Liminf-llist-def by auto
    }
qed
end
end
```


9 Fair iProver Loop

The fair iProver loop assumes that the passive queue is fair and ensures (dynamic) refutational completeness under that assumption. From this completeness proof, we also easily derive (in a separate section) the completeness of the Otter loop.

```
theory Fair-iProver-Loop
    imports
        Given-Clause-Loops-Util
        Fair-Otter-Loop-Def
        iProver-Loop
begin
```


9.1 Locale

context fair-otter-loop
begin

9.2 Basic Definition

inductive fair-IL :: ('p, 'f) OLf-state \Rightarrow (' p, 'f) OLf-state \Rightarrow bool (infix $\leadsto I L f 50$) where ol: $S t \sim O L f S t^{\prime} \Longrightarrow S t \sim I L f S t^{\prime}$
\mid red-by-children: $C \in$ no-labels.Red- $F($ fset $A \cup$ fset $M) \vee f$ set $M=\left\{C^{\prime}\right\} \wedge C^{\prime} \prec \cdot C \Longrightarrow$ $(\{\mid \|\}$, None, P, Some $C, A) \leadsto \operatorname{ILf}(M$, None, P, None, $A)$

9.3 Initial State and Invariant

```
lemma step-ILf-invariant:
    assumes St ~ILf St'
    shows OLf-invariant St'
    using assms
proof cases
    case ol
    then show ?thesis
        using step-OLf-invariant by auto
next
    case (red-by-children C A M C' P)
    then show ?thesis
        using OLf-invariant.intros by presburger
qed
lemma chain-ILf-invariant-lnth:
    assumes
```

 chain: chain \((\sim I L f)\) Sts and
 fair-hd: OLf-invariant (lhd Sts) and
 \(i\)-lt: enat \(i<\) llength Sts
 shows OLf-invariant (lnth Sts i)
 using \(i\) - \(l t\)
 proof (induct i)
case 0
thus ?case
using fair-hd lhd-conv-lnth zero-enat-def by fastforce
next
case (Suc i)
thus ?case
using chain chain-lnth-rel step-ILf-invariant by blast
qed
lemma chain-ILf-invariant-llast:
assumes
chain: chain $(\sim I L f)$ Sts and
fair-hd: OLf-invariant (lhd Sts) and
fin: lfinite Sts
shows OLf-invariant (llast Sts)
proof -
obtain i :: nat where
i : llength Sts $=$ enat i
using lfinite-llength-enat[OF fin] by blast
have im1-lt: enat $(i-1)<$ llength Sts
using i by (metis chain chain-length-pos diff-less enat-ord-simps(2) less-numeral-extra(1)
zero-enat-def)
show ?thesis
using chain-ILf-invariant-lnth[OF chain fair-hd im1-lt]
by (metis Suc-diff-1 chain chain-length-pos eSuc-enat enat-ord-simps(2) i llast-conv-lnth zero-enat-def)
qed

9.4 Final State

lemma is-final-OLf-state-iff-no-ILf-step:
assumes inv: OLf-invariant St
shows is-final-OLf-state $S t \longleftrightarrow\left(\forall S t^{\prime} . \neg S t \sim I L f S t^{\prime}\right)$

proof

assume final: is-final-OLf-state St
then obtain $A::$ 'f fset where
st: St $=(\{\|\}$, None, empty, None, A)
by (auto simp: is-final-OLf-state.simps)
show $\forall S t^{\prime} . \neg S t \leadsto I L f S t^{\prime}$
unfolding st
proof (intro allI notI)
fix $S t^{\prime}$
assume $(\{\|\}$, None, empty, None, $A) \sim I L f S t^{\prime}$
thus False
proof cases
case ol
then show False
using final st is-final-OLf-state-iff-no-OLf-step $[O F$ inv $]$ by blast
qed
qed
next
assume $\forall S t^{\prime} . \neg S t \leadsto I L f S t^{\prime}$
hence $\forall S t^{\prime} . \neg S t \leadsto O L f S t^{\prime}$
using fair-IL.ol by blast
thus is-final-OLf-state St
using inv is-final-OLf-state-iff-no-OLf-step by blast
qed

9.5 Refinement

lemma fair-IL-step-imp-IL-step:
assumes ilf: $(N, X, P, Y, A) \leadsto \operatorname{ILf}\left(N^{\prime}, X^{\prime}, P^{\prime}, Y^{\prime}, A^{\prime}\right)$
shows f state $(N, X, P, Y, A) \leadsto I L$ fstate $\left(N^{\prime}, X^{\prime}, P^{\prime}, Y^{\prime}, A^{\prime}\right)$
using ilf
proof cases
case ol
note olf $=$ this (1)
have ol: fstate $(N, X, P, Y, A) \leadsto O L$ fstate $\left(N^{\prime}, X^{\prime}, P^{\prime}, Y^{\prime}, A^{\prime}\right)$
by (rule fair-OL-step-imp-OL-step $[$ OF olf $]$)
show ?thesis
by (rule IL.ol[OF ol])
next
case (red-by-children $C C^{\prime}$)
note defs $=$ this $(1-7)$ and c-in $=$ this (8)
have il: state $\left(\},\{ \}\right.$, elems $P,\{C\}$, fset $A) \sim I L$ state $\left(f\right.$ set $N^{\prime},\{ \}$, elems $P,\{ \}, f$ set $\left.A\right)$
by (rule IL.red-by-children[OF c-in])
show ?thesis
unfolding defs using $i l$ by auto
qed

```
\((N, X, P, Y, A) \sim \operatorname{ILf}\left(N^{\prime}, X^{\prime}, P^{\prime}, Y^{\prime}, A^{\prime}\right) \Longrightarrow\)
fstate \((N, X, P, Y, A) \sim G C\) fstate \(\left(N^{\prime}, X^{\prime}, P^{\prime}, Y^{\prime}, A^{\prime}\right)\)
by (rule IL-step-imp-GC-step[OF fair-IL-step-imp-IL-step])
```


9.6 Completeness

```
fun mset-of-fstate :: ('p, 'f) OLf-state \(\Rightarrow\) ' \(f\) multiset where
    mset-of-fstate \((N, X, P, Y, A)=\)
    mset-set \((f\) set \(N)+m\) set-set \((\) set-option \(X)+m s e t-s e t(\) elems \(P)+m s e t-s e t(\) set-option \(Y)+\)
    mset-set (fset A)
```

abbreviation Precprec-S :: 'f multiset \Rightarrow 'f multiset \Rightarrow bool (infix $\prec \prec S 50$) where
$(\prec \prec S) \equiv$ multp $(\prec S)$
lemma wfP-Precprec-S: wfP $(\prec \prec S)$
using minimal-element-def wfP-multp wf-Prec-S wfp-on-UNIV by blast
definition Less1-state :: ('p, 'f) OLf-state $\Rightarrow(' p, ' f) O L f$-state \Rightarrow bool (infix $\sqsubset 150)$ where
$S t^{\prime} \sqsubset 1 S t \longleftrightarrow$
mset-of-fstate $S t^{\prime} \prec \prec S$ mset-of-fstate $S t$
\vee (mset-of-fstate $S t^{\prime}=$ mset-of-fstate $S t$
$\wedge\left(\right.$ mset-set $\left(\right.$ fset (new-of $\left.\left.S t^{\prime}\right)\right) \prec \prec S$ mset-set (fset (new-of $\left.\left.S t\right)\right)$
$\vee\left(\right.$ mset-set $\left(\right.$ fset $\left(\right.$ new-of $\left.\left.S t^{\prime}\right)\right)=\operatorname{mset}$-set $(f s e t($ new-of $S t))$
\wedge mset-set (set-option $(x x$-of St' $)) \prec \prec S$ mset-set $($ set-option $(x x$-of St $))))$)
lemma wfP-Less1-state: wfP ($\sqsubset 1)$
proof -
let ?msetset $=\left\{\left(M^{\prime}, M\right) . M^{\prime} \prec \prec S M\right\}$
let ?triple-of $=$
$\lambda S t$. (mset-of-fstate St, mset-set (fset (new-of St)), mset-set (set-option (xx-of St)))
have wf-msetset: wf ?msetset
using wfP-Precprec-S wfP-def by auto
have wf-lex-prod: wf (?msetset <*lex*> ?msetset <*lex*> ?msetset)
by (rule wf-lex-prod[OF wf-msetset wf-lex-prod[OF wf-msetset wf-msetset]])
have Less1-state-alt-def: Λ St ${ }^{\prime}$ St. $S t^{\prime} \sqsubset 1$ St \longleftrightarrow
(?triple-of St', ?triple-of St) \in ?msetset $<* l e x *>$?msetset $<* l e x *>$?msetset
unfolding Less1-state-def by simp
show ?thesis
unfolding wfP-def Less1-state-alt-def using wf-app[of - ?triple-of] wf-lex-prod by blast
qed
definition Less2-state :: ('p, 'f) OLf-state $\Rightarrow(' p, ' f)$ OLf-state \Rightarrow bool (infix ᄃ2 50) where
$S t^{\prime} \sqsubset 2 S t \equiv$
mset-set (set-option (yy-of $\left.\left.S t^{\prime}\right)\right) \prec \prec S$ mset-set (set-option (yy-of St))
$\vee\left(\right.$ mset-set $\left(\right.$ set-option $\left(y y\right.$-of $\left.\left.S t^{\prime}\right)\right)=$ mset-set $($ set-option $(y y-o f S t))$
$\left.\wedge S t^{\prime} \sqsubset 1 S t\right)$
lemma wfP-Less2-state: wfP (ᄃ2)
proof -
let ?msetset $=\left\{\left(M^{\prime}, M\right) . M^{\prime} \prec \prec S M\right\}$
let ?stateset $=\left\{\left(S t^{\prime}, S t\right) . S t^{\prime} \sqsubset 1 S t\right\}$

```
    let ?pair-of \(=\lambda S t .(\) mset-set \((\) set-option \((y y-o f ~ S t)), S t)\)
    have wf-msetset: wf ?msetset
    using wfP-Precprec-S wfP-def by auto
    have wf-stateset: wf ?stateset
    using wfP-Less1-state wfP-def by auto
    have wf-lex-prod: wf (?msetset <*lex*>?stateset)
    by (rule wf-lex-prod[OF wf-msetset wf-stateset])
    have Less2-state-alt-def:
    \(\wedge S t^{\prime} S t . S t^{\prime} \sqsubset 2 S t \longleftrightarrow\) ? ?pair-of \(S t^{\prime}\), ?pair-of \(\left.S t\right) \in\) ? msetset \(<* l e x *>\) ?stateset
    unfolding Less2-state-def by simp
show ?thesis
    unfolding wfP-def Less2-state-alt-def using wf-app[of - ?pair-of] wf-lex-prod by blast
qed
lemma fair-IL-Liminf-yy-empty:
    assumes
        full: full-chain \((\sim I L f)\) Sts and
        inv: OLf-invariant (lhd Sts)
    shows Liminf-llist (lmap (set-option \(\circ\) yy-of) Sts) \(=\{ \}\)
proof (rule ccontr)
    assume lim-nemp: Liminf-llist (lmap (set-option \(\circ y y\)-of) Sts) \(\neq\{ \}\)
    have chain: chain \((\sim I L f)\) Sts
    by (rule full-chain-imp-chain [OF full])
obtain \(i::\) nat where
    \(i\)-lt: enat \(i<\) llength Sts and
    inter-nemp: \(\bigcap((\) set-option \(\circ\) yy-of \(\circ\) lnth Sts \() '\{j . i \leq j \wedge\) enat \(j<\) llength Sts \(\}) \neq\{ \}\)
    using lim-nemp unfolding Liminf-llist-def by auto
    have inv-at-i: OLf-invariant (lnth Sts \(i\) )
    by (simp add: chain chain-ILf-invariant-lnth i-lt inv)
    from inter-nemp obtain \(C\) :: ' \(f\) where
    c-in: \(\forall P \in\) lnth Sts ' \(\{j . i \leq j \wedge\) enat \(j<\) llength Sts \(\} . C \in\) set-option (yy-of \(P\) )
    by auto
hence \(c\)-in': \(\forall j \geq i\). enat \(j<\) llength Sts \(\longrightarrow C \in\) set-option (yy-of (lnth Sts \(j\) ))
    by auto
    have yy-at-i: yy-of (lnth Sts \(i\) ) \(=\) Some \(C\)
    using \(c\)-in' \(i\)-lt by blast
    have new-at-i: new-of (lnth Sts \(i)=\{\|\}\) and
    xx-at-i: new-of (lnth Sts \(i)=\{| |\}\)
    using yy-at-i chain-ILf-invariant-lnth[OF chain inv \(i\)-lt]
    by (force simp: OLf-invariant.simps)+
    have \(\exists S t^{\prime}\). lnth Sts \(i \leadsto I L f S t^{\prime}\)
    using is-final-OLf-state-iff-no-ILf-step[OF inv-at-i]
    by (metis fst-conv is-final-OLf-state.cases option.simps(3) snd-conv yy-at-i)
hence si-lt: enat (Suc i) < llength Sts
    by (metis Suc-ile-eq full full-chain-lnth-not-rel i-lt order-le-imp-less-or-eq)
```

obtain $P::{ }^{\prime} p$ and $A::$ ' f fet where
at- i : lnth Sts $i=(\{\|\}$, None, P, Some C, A)
using OLf-invariant.simps inv-at-i yy-at-i by auto
have lnth Sts $i \sim \operatorname{ILf}$ lnth Sts (Suc i)
by (simp add: chain chain-lnth-rel si-lt)
hence $(\{\|\}$, None, P, Some C, A) $\sim I L f$ lnth Sts (Suc i)
unfolding at-i.
hence yy-of (lnth Sts (Suc i)) = None
proof cases
case ol
then show ?thesis
by cases simp
next
case (red-by-children $M C^{\prime}$)
then show ?thesis
by simp
qed
thus False
using c - $i n^{\prime}$ si-lt by simp
qed
lemma $x x$-nonempty-OLf-step-imp-Precprec-S:
assumes
step: $S t \leadsto O L f S t^{\prime}$ and
$x x: x x$-of $S t \neq$ None and
$x x^{\prime}: x x$-of $S t^{\prime} \neq$ None
shows mset-of-fstate $S t^{\prime} \prec \prec S$ mset-of-fstate $S t$
using step
proof cases
case (simplify-fwd $\left.C^{\prime} C P A N\right)$
note defs $=$ this $(1,2)$ and prec $=$ this(3)
have aft: add-mset $C^{\prime}($ mset-set $(f$ set $N)+m s e t-s e t($ elems $P)+\operatorname{mset}$-set $(f s e t A))=$ $m s e t-s e t(f$ set $N)+m s e t-s e t($ elems $P)+m s e t-s e t(f s e t A)+\left\{\# C^{\prime} \#\right\}$
(is ?old-aft = ?new-aft)
by auto
have bef: add-mset $C($ mset-set $(f$ set $N)+m$ set-set $($ elems $P)+m s e t-s e t(f s e t A))=$
mset-set $(f$ set $N)+m$ set-set $($ elems $P)+\operatorname{mset}$-set $($ fset $A)+\{\# C \#\}$
(is ?old-bef =?new-bef)
by auto
have ?new-aft $\prec \prec S$?new-bef
unfolding multp-def
proof (subst mult-cancelL[OF trans-Prec-S irrefl-Prec-S], fold multp-def)
show $\left\{\# C^{\prime} \#\right\} \prec \prec S\{\# C \#\}$
by (simp add: multp-def prec singletons-in-mult)
qed
hence? old-aft $\prec \prec S$?old-bef
unfolding bef aft .
thus ?thesis
unfolding defs by auto
next
case (delete-bwd-p $C^{\prime} P C N A$)
note defs $=$ this $(1,2)$ and $c^{\prime}-$ in $=$ this(3)

```
    have mset-set (elems P-{\mp@subsup{C}{}{\prime}})\subset# mset-set (elems P)
    by (metis Diff-iff c'-in finite-fset finite-set-mset-mset-set elems-remove insertCI
            insert-Diff subset-imp-msubset-mset-set subset-insertI subset-mset.less-le)
thus ?thesis
    unfolding defs using c'-in
    by (auto simp: elems-remove intro!: subset-implies-multp)
next
    case (simplify-bwd-p C'\prime C' P C N A)
    note defs = this(1,2) and prec = this(3) and c'-in = this(4)
    let ?old-aft = add-mset C (mset-set (insert C'' (fset N)) +mset-set (elems (remove C' P)) +
    mset-set (fset A))
    let ?old-bef =add-mset C (mset-set (fset N) +mset-set (elems P)}+m\mathrm{ met-set (fset A))
    have ?old-aft \prec\precS ?old-bef
    proof (cases C'\prime}\infset N
    case c'"-in: True
    have mset-set (elems P - {C'}) \subset# mset-set (elems P)
        by (metis c'-in finite-fset mset-set.remove multi-psub-of-add-self)
    thus ?thesis
        unfolding defs
        by (auto simp: elems-remove insert-absorb[OF c'l-in] intro!: subset-implies-multp)
    next
    case c'"-ni: False
    have aft: ?old-aft = add-mset C (mset-set (fset N) + mset-set (elems (remove C'P)) +
        mset-set (fset A)) + {#C'##}
        (is - = ?new-aft)
        using }\mp@subsup{c}{}{\prime\prime}-ni by aut
    have bef: ?old-bef =add-mset C (mset-set (fset N) + mset-set (elems (remove C'P)) +
        mset-set (fset A)) + {#C'#}
        (is - = ?new-bef)
        using c'-in by (auto simp: elems-remove mset-set.remove)
    have ?new-aft \prec\precS ?new-bef
        unfolding multp-def
    proof (subst mult-cancelL[OF trans-Prec-S irrefl-Prec-S], fold multp-def)
        show {#\mp@subsup{C}{}{\prime\prime}#} \prec\precS {#C'#
            unfolding multp-def using prec by (auto intro: singletons-in-mult)
    qed
    thus ?thesis
        unfolding bef aft .
qed
thus ?thesis
    unfolding defs by auto
next
    case (delete-bwd-a C' A C N P)
    note defs = this(1,2) and c'-ni = this(3)
    show ?thesis
    unfolding defs using c'-ni by (auto intro!: subset-implies-multp)
next
    case (simplify-bwd-a C'\prime C' A C N P)
    note defs = this(1,2) and prec = this(3) and c'-ni = this(4)
```

```
    have aft:
    add-mset C (mset-set (insert C'\prime}(fset N)) + mset-set (elems P) + mset-set (fset A)) =
        {#C#} + mset-set (elems P) + mset-set (fset A) + mset-set (insert C'' (fset N))
    (is ?old-aft = ?new-aft)
    by auto
have bef:
    add-mset C' (add-mset C (mset-set (fset N) + mset-set (elems P) + mset-set (fset A))) =
        {#C#} + mset-set (elems P) + mset-set (fset A) + ({#C'#} + mset-set (fset N))
    (is ?old-bef = ?new-bef)
    by auto
    have ?new-aft \prec\precS ?new-bef
    unfolding multp-def
    proof (subst mult-cancelL[OF trans-Prec-S irrefl-Prec-S], fold multp-def)
    show mset-set (insert C''(fset N)) \prec\precS {#C'#} + mset-set (fset N)
    proof (cases C'\prime}\inf\mathrm{ fet N)
        case True
        hence ins: insert C'I}(fset N)= fset 
            by blast
        show ?thesis
            unfolding ins by (auto intro!: subset-implies-multp)
    next
        case c'"-ni: False
        have aft: mset-set (insert C'' (fset N)) = mset-set (fset N) +{#C'#}
            using c c'-ni by auto
        have bef: {#C'#} + mset-set (fset N)=mset-set (fset N)+{#C'#}
            by auto
        show ?thesis
            unfolding aft bef multp-def
        proof (subst mult-cancelL[OF trans-Prec-S irrefl-Prec-S], fold multp-def)
            show {#\mp@subsup{C}{}{\prime\prime}#}}\prec\precS{#\mp@subsup{C}{}{\prime}#
                unfolding multp-def using prec by (auto intro: singletons-in-mult)
        qed
    qed
qed
hence ?old-aft \prec\precS ?old-bef
    unfolding bef aft .
thus ?thesis
    unfolding defs using c'-ni by auto
qed (use xx xx' in auto)
lemma xx-nonempty-ILf-step-imp-Precprec-S:
    assumes
        step:St ~ILf St' and
        xx: xx-of St }\not=\mathrm{ None and
        xx': xx-of St' }=\mathrm{ None
    shows mset-of-fstate St' }\prec\precS mset-of-fstate S
    using step
proof cases
    case ol
    then show ?thesis
        using xx-nonempty-OLf-step-imp-Precprec-S[OF - xx xx ] by blast
next
```

```
    case (red-by-children C A M C' P)
    note defs = this(1,2)
    have False
    using xx unfolding defs by simp
thus ?thesis
    by blast
qed
lemma fair-IL-Liminf-xx-empty:
    assumes
    len: llength Sts = \infty and
    full: full-chain (~ILf) Sts and
    inv: OLf-invariant (lhd Sts)
    shows Liminf-llist (lmap (set-option ○ xx-of)Sts) = {}
proof (rule ccontr)
    assume lim-nemp: Liminf-llist (lmap (set-option ○ xx-of) Sts) }\not={
obtain i :: nat where
    i-lt: enat i < llength Sts and
    inter-nemp:\bigcap((set-option ○ xx-of ○ lnth Sts)'{j. i\leqj^ enat j<llength Sts}) }={{
    using lim-nemp unfolding Liminf-llist-def by auto
    from inter-nemp obtain C :: 'f where
    c-in: }\forallP\inlnth Sts'{j.i\leqj^ enat j< llength Sts}. C { set-option (xx-of P
    by auto
hence c-in':}\forallj\geqi. enat j< llength Sts \longrightarrowC\in set-option (xx-of (lnth Sts j))
    by auto
have si-lt: enat (Suc i)< llength Sts
    unfolding len by auto
have xx-j: xx-of (lnth Sts j)\not=None if j-ge: j\geqi for j
    using c-in' len j-ge by auto
hence xx-sj: xx-of (lnth Sts (Suc j))}\not==\mathrm{ None if j-ge: j }\geqi\mathrm{ for j
    using le-Suc-eq that by presburger
have step: lnth Sts j ~ILf lnth Sts (Suc j) if j-ge: j\geqi for j
    using full-chain-imp-chain[OF full] infinite-chain-lnth-rel len llength-eq-infty-conv-lfinite
    by blast
have mset-of-fstate (lnth Sts (Suc j)) \prec\precS mset-of-fstate (lnth Sts j) if j-ge: j\geqi for j
    using xx-nonempty-ILf-step-imp-Precprec-S by (meson step j-ge xx-j xx-sj)
hence (\prec\precS)-1-1 (mset-of-fstate (lnth Sts j)) (mset-of-fstate (lnth Sts (Suc j)))
    if j-ge: j\geqi for j
    using j-ge by blast
    hence inf-down-chain: chain (\prec\precS)-1-1 (ldropn i (lmap mset-of-fstate Sts))
    using chain-ldropn-lmapI[OF - si-lt] by blast
    have inf-i: ᄀ lfinite (ldropn i Sts)
    using len by (simp add: llength-eq-infty-conv-lfinite)
    show False
    using inf-i inf-down-chain wfP-iff-no-infinite-down-chain-llist[of (\prec\precS)] wfP-Precprec-S
    by (metis lfinite-ldropn lfinite-lmap)
qed
```

lemma $x x$-nonempty-OLf-step-imp-Less1-state:
assumes step: $(N$, Some $C, P, Y, A) \sim O L f\left(N^{\prime}\right.$, Some $\left.C^{\prime}, P^{\prime}, Y^{\prime}, A^{\prime}\right)($ is ?bef $\leadsto O L f$?aft $)$
shows ?aft ᄃ1 ?bef
proof -
have mset-of-fstate? ?aft $\prec \prec S ~ m s e t-o f-f s t a t e$?bef
using $x x$-nonempty-OLf-step-imp-Precprec-S
by (metis fst-conv local.step option.distinct(1) snd-conv)
thus ?thesis
unfolding Less1-state-def by blast
qed
lemma yy-empty-OLf-step-imp-Less1-state:
assumes
step: $S t \sim O L f S t^{\prime}$ and
yy: yy-of St $=$ None and $y y^{\prime}: y y$-of $S t^{\prime}=$ None
shows $S t^{\prime} \sqsubset 1 S t$
using step
proof cases
case (choose-n C N P A)
note defs $=$ this (1,2) and $c-n i=\operatorname{this}(3)$
have mset-eq: mset-of-fstate $S t^{\prime}=m s e t-o f-f s t a t e ~ S t$
unfolding defs using c-ni by fastforce
have new-lt: mset-set (fset (new-of $\left.S t^{\prime}\right)$) $\prec \prec S$ mset-set (fset (new-of $\left.S t\right)$)
unfolding defs using c - $n i$
by (auto intro!: subset-implies-multp)
show ?thesis
unfolding Less1-state-def using mset-eq new-lt by blast
next
case (delete-fwd C P A N)
note defs $=$ this $(1,2)$
have mset-of-fstate $S t^{\prime} \prec \prec S$ mset-of-fstate $S t$
unfolding defs by (auto intro: subset-implies-multp)
thus ?thesis
unfolding Less1-state-def by blast
next
case (simplify-fwd $C^{\prime} C P A N$)
note defs $=$ this(1,2)
show ?thesis
unfolding defs by (rule xx-nonempty-OLf-step-imp-Less1-state[OF step[unfolded defs]])
next
case (delete-bwd-p $C^{\prime} P C N A$)
note defs $=$ this(1,2)
show ?thesis
unfolding defs by (rule xx-nonempty-OLf-step-imp-Less1-state[OF step[unfolded defs]])
next
case (simplify-bwd-p $C^{\prime \prime} C^{\prime} P C N A$)
note defs $=$ this $(1,2)$
show ?thesis
unfolding defs by (rule xx-nonempty-OLf-step-imp-Less1-state[OF step[unfolded defs]])
next
case (delete-bwd-a $\left.C^{\prime} A C N P\right)$
note defs $=$ this $(1,2)$
show ?thesis
unfolding defs by (rule xx-nonempty-OLf-step-imp-Less1-state[OF step[unfolded defs]])
next
case (simplify-bwd-a $C^{\prime \prime} C^{\prime} A C N P$)
note defs $=$ this(1,2)
show ?thesis
unfolding defs by (rule xx-nonempty-OLf-step-imp-Less1-state[OF step[unfolded defs]])
next
case (transfer N C P A)
note defs $=$ this(1,2)
show ?thesis
proof (cases $C \in$ elems P)
case c-in: True
have mset-of-fstate $S t^{\prime} \prec \prec S$ mset-of-fstate $S t$
unfolding defs using c-in add-again
by (auto intro!: subset-implies-multp)
thus ?thesis
unfolding Less1-state-def by blast
next
case $c-n i$: False
have mset-eq: mset-of-fstate $S t^{\prime}=m s e t-o f-f s t a t e ~ S t$ unfolding defs using c-ni by (auto simp: elems-add)
have new-mset-eq: mset-set (fset (new-of St' $)$) $=$ mset-set $($ fset $($ new-of $S t))$ unfolding defs using $c-n i$ by auto
have $x x$-lt: mset-set (set-option (xx-of St')) $\prec \prec S$ mset-set (set-option (xx-of St)) unfolding defs using c-ni by (auto intro!: subset-implies-multp)
show ?thesis
unfolding Less1-state-def using mset-eq new-mset-eq xx-lt by blast
qed
qed (use yy yy' in auto)
lemma yy-empty-ILf-step-imp-Less1-state:
assumes
step: St $\sim I L f S t^{\prime}$ and
$y y: y y$-of $S t=$ None and $y y^{\prime}: y y$-of $S t^{\prime}=$ None
shows $S t^{\prime} \sqsubset 1 S t$
using step
proof cases
case ol
then show ?thesis
using yy-empty-OLf-step-imp-Less1-state[OF - yy yy'] by blast
next
case (red-by-children $C A M C^{\prime} P$)
note defs $=$ this(1,2)
have False
using yy unfolding defs by simp
then show ?thesis
by blast
qed
lemma fair-IL-Liminf-new-empty: assumes
len: llength Sts $=\infty$ and
full: full-chain $(\sim I L f)$ Sts and
inv: OLf-invariant (lhd Sts)
shows Liminf-llist (lmap (fset \circ new-of) Sts $)=\{ \}$
proof (rule ccontr)
assume lim-nemp: Liminf-llist (lmap $($ fset \circ new-of $)$ Sts $) \neq\{ \}$

obtain i :: nat where

```
i-lt: enat i<llength Sts and
    inter-nemp:\bigcap((fset ○ new-of ○ lnth Sts)'{j. i\leqj^ enat j<llength Sts })}\not={
    using lim-nemp unfolding Liminf-llist-def by auto
```

 from inter-nemp obtain \(C\) :: ' \(f\) where
 \(c\)-in: \(\forall P \in\) lnth Sts' \(\{j . i \leq j \wedge\) enat \(j<\) llength \(S t s\} . C \in\) fset (new-of \(P\))
 by auto
 hence \(c\)-in': \(\forall j \geq\) i. enat \(j<\) llength Sts \(\longrightarrow C \in f\) set (new-of (lnth Sts \(j\)))
 by auto
 have si-lt: enat (Suc \(i\)) llength Sts
 by (simp add: len)
 have new- \(j\) : new-of (lnth Sts \(j) \neq\{\|\}\) if \(j\)-ge: \(j \geq i\) for \(j\)
 using \(c\)-in' len that by fastforce
 have yy: yy-of (lnth Sts \(j\)) \(=\) None if \(j\)-ge: \(j \geq i\) for \(j\)
 by (smt (z3) chain-ILf-invariant-lnth enat-ord-code(4) OLf-invariant.cases fst-conv full
 full-chain-imp-chain inv len new-j snd-conv j-ge)
 hence \(y y^{\prime}: y y\)-of (lnth Sts (Suc \(\left.\left.j\right)\right)=\) None if \(j\)-ge: \(j \geq i\) for \(j\)
 using \(j\)-ge by auto
 have step: lnth Sts \(j \leadsto I L f\) lnth Sts (Suc \(j\)) if \(j\)-ge: \(j \geq i\) for \(j\)
 using full-chain-imp-chain[OF full] infinite-chain-lnth-rel len llength-eq-infty-conv-lfinite
 by blast
 have lnth Sts (Suc \(j\)) \(\sqsubset 1\) lnth Sts \(j\) if \(j\)-ge: \(j \geq i\) for \(j\)
 by (rule yy-empty-ILf-step-imp-Less1-state[OF step[OF j-ge] yy[OF j-ge] yy \([\) OF j-ge]])
 hence \((\sqsubset 1)^{-1-1}(\) lnth Sts \(j)(\) lnth Sts \((S u c j))\) if \(j\)-ge: \(j \geq i\) for \(j\)
 using \(j\)-ge by blast
 hence inf-down-chain: chain \((\sqsubset 1)^{-1-1}\) (ldropn i Sts)
 using chain-ldropn-lmapI[OF - si-lt, of - id, simplified llist.map-id] by simp
 have inf- \(i\) : \(\neg\) lfinite (ldropn \(i\) Sts)
 using len lfinite-ldropn llength-eq-infty-conv-lfinite by blast
 show False
 using inf-i inf-down-chain wfP-iff-no-infinite-down-chain-llist[of (ᄃ1)] wfP-Less1-state
 by blast
 qed
lemma yy-empty-OLf-step-imp-Less2-state:
assumes step: $(N, X, P$, None, $A) \leadsto O L f\left(N^{\prime}, X^{\prime}, P^{\prime}\right.$, None, $\left.A^{\prime}\right)$ (is ?bef $\leadsto O L f$?aft)
shows ?aft ᄃ2 ?bef
proof -
have ?aft $\sqsubset 1$?bef
using yy-empty-OLf-step-imp-Less1-state by (simp add: step)
thus ?thesis

```
    unfolding Less2-state-def by force
qed
lemma non-choose-p-OLf-step-imp-Less2-state:
    assumes
        step: St }~OLf St' and
        yy: yy-of St' = None
    shows }S\mp@subsup{t}{}{\prime}\sqsubset2S
    using step
proof cases
    case (choose-n C N P A)
    note defs= this(1,Q)
    show ?thesis
        unfolding defs by (rule yy-empty-OLf-step-imp-Less2-state[OF step[unfolded defs]])
next
    case (delete-fwd C P A N)
    note defs = this(1,Q)
    show ?thesis
        unfolding defs by (rule yy-empty-OLf-step-imp-Less2-state[OF step[unfolded defs]])
next
    case (simplify-fwd C' C P A N)
    note defs = this(1,2)
    show ?thesis
        unfolding defs by (rule yy-empty-OLf-step-imp-Less2-state[OF step[unfolded defs]])
next
    case (delete-bwd-p C' P CN A)
    note defs = this(1,Q)
    show ?thesis
        unfolding defs by (rule yy-empty-OLf-step-imp-Less2-state[OF step[unfolded defs]])
next
    case (simplify-bwd-p C'l C' P C N A)
    note defs = this(1,2)
    show ?thesis
        unfolding defs by (rule yy-empty-OLf-step-imp-Less2-state[OF step[unfolded defs]])
next
    case (delete-bwd-a C' A C N P)
    note defs = this(1,2)
    show ?thesis
        unfolding defs by (rule yy-empty-OLf-step-imp-Less2-state[OF step[unfolded defs]])
next
    case (simplify-bwd-a C'\prime C' A C N P)
    note defs = this(1,2)
    show ?thesis
        unfolding defs by (rule yy-empty-OLf-step-imp-Less2-state[OF step[unfolded defs]])
next
    case (transfer N C P A)
    note defs = this(1,2)
    show ?thesis
        unfolding defs by (rule yy-empty-OLf-step-imp-Less2-state[OF step[unfolded defs]])
next
    case (choose-p P A)
    note defs = this(1,Q)
    have False
        using step yy unfolding defs by simp
    thus ?thesis
```

by blast
next
case (infer A C M P)
note defs $=$ this (1,2)
have mset-set (set-option (yy-of $\left.S t^{\prime}\right)$) $\prec \prec S$ mset-set (set-option (yy-of $\left.S t\right)$)
unfolding defs by (auto intro!: subset-implies-multp)
thus ?thesis
unfolding Less2-state-def by blast
qed
lemma non-choose-p-ILf-step-imp-Less2-state:
assumes
step: St $\sim I L f S t^{\prime}$ and
yy: yy-of St' $=$ None
shows $S t^{\prime}$ ᄃ2 $S t$
using step
proof cases
case ol
then show ?thesis
using non-choose-p-OLf-step-imp-Less2-state[OF - yy] by blast
next
case (red-by-children $C A M C^{\prime} P$)
note defs $=$ this (1,2)
show ?thesis
unfolding defs Less2-state-def by (simp add: subset-implies-multp)
qed
lemma OLf-step-imp-queue-step:
assumes $S t \sim O L f S t^{\prime}$
shows queue-step (passive-of $S t$) (passive-of $S t^{\prime}$)
using assms by cases (auto intro: queue-step-idleI queue-step-addI queue-step-removeI)
lemma ILf-step-imp-queue-step:
assumes step: $S t \sim I L f S t^{\prime}$
shows queue-step (passive-of $S t$) (passive-of $S t^{\prime}$)
using step
proof cases
case ol
then show ?thesis
using OLf-step-imp-queue-step by blast
next
case (red-by-children $C A M C^{\prime} P$)
note defs $=$ this (1,2)
show ?thesis
unfolding defs by (auto intro: queue-step-idleI)
qed
lemma fair-IL-Liminf-passive-empty:
assumes
len: llength Sts $=\infty$ and
full: full-chain $(\sim I L f)$ Sts and
init: is-initial-OLf-state (lhd Sts)
shows Liminf-llist (lmap (elems \circ passive-of) Sts $)=\{ \}$
proof -
have chain-step: chain queue-step (lmap passive-of Sts)
using ILf-step-imp-queue-step chain-lmap full-chain-imp-chain[OF full]
by (metis (no-types, lifting))

```
have inf-oft: infinitely-often select-queue-step (lmap passive-of Sts)
proof
    assume finitely-often select-queue-step (lmap passive-of Sts)
    then obtain i :: nat where
        no-sel:
        \forallj\geqi.\neg select-queue-step (passive-of (lnth Sts j)) (passive-of (lnth Sts (Suc j)))
    by (metis (no-types, lifting) enat-ord-code(4) finitely-often-def len llength-lmap lnth-lmap)
have si-lt: enat (Suc i)< llength Sts
    unfolding len by auto
```

 have step: lnth Sts \(j \leadsto I L f\) lnth Sts (Suc \(j\)) if \(j\)-ge: \(j \geq i\) for \(j\)
 using full-chain-imp-chain[OF full] infinite-chain-lnth-rel len llength-eq-infty-conv-lfinite
 by blast
 have yy: yy-of (lnth Sts (Suc \(j))=\) None if \(j\)-ge: \(j \geq i\) for \(j\)
 using step \([O F \quad j\)-ge]
 proof cases
case ol
then show?thesis
proof cases
case (choose-p P A)
note defs $=$ this $(1,2)$ and $p-n e=$ this(3)
have False
using no-sel defs p-ne select-queue-stepI that by fastforce
thus ?thesis
by blast
qed auto
next
case (red-by-children $C A M C^{\prime} P$)
then show ?thesis
by simp
qed
have lnth Sts (Suc j) ᄃ2 lnth Sts j if j-ge: $j \geq i$ for j
by (rule non-choose-p-ILf-step-imp-Less2-state [OF step [OF j-ge] yy[OF j-ge]])
hence (ᄃ2) ${ }^{-1-1}$ (lnth Sts j) (lnth Sts (Suc j)) if j-ge: $j \geq i$ for j
using j-ge by blast
hence inf-down-chain: chain (ᄃ2) ${ }^{-1-1}$ (ldropn i Sts)
using chain-ldropn-lmapI[OF - si-lt, of - id, simplified llist.map-id] by simp
have inf-i: \neg lfinite (ldropn i Sts)
using len lfinite-ldropn llength-eq-infty-conv-lfinite by blast
show False
using inf-i inf-down-chain wfP-iff-no-infinite-down-chain-llist[of (ᄃ2)] wfP-Less2-state
by blast
qed
have hd-emp: lhd (lmap passive-of Sts) = empty
using init full full-chain-not-lnull unfolding is-initial-OLf-state.simps by fastforce

```
    thm fair
    have Liminf-llist (lmap elems (lmap passive-of Sts)) = {}
    by (rule fair[of lmap passive-of Sts, OF chain-step inf-oft hd-emp])
thus ?thesis
    by (simp add: llist.map-comp)
qed
theorem
    assumes
    full: full-chain (~ILf) Sts and
    init: is-initial-OLf-state (lhd Sts)
shows
    fair-IL-Liminf-saturated: saturated (state (Liminf-fstate Sts)) and
    fair-IL-complete-Liminf: B B Bot-F\Longrightarrow fset (new-of (lhd Sts)) }\models\cap\mathcal{G}{B}
        \existsB}\mp@subsup{B}{}{\prime}\inBot-F. B'\in state-union (Liminf-fstate Sts) and
    fair-IL-complete: B Bot-F\Longrightarrow fset (new-of (lhd Sts)) \models\cap\mathcal{G {B} \Longrightarrow}
        \existsi. enat i< llength Sts }\wedge(\exists\mp@subsup{B}{}{\prime}\in\mathrm{ Bot-F. B'}\in\mathrm{ all-formulas-of (lnth Sts i))
proof -
    have chain: chain ( }~ILf)\mathrm{ Sts
    by (rule full-chain-imp-chain[OF full])
    have il-chain:chain (~IL) (lmap fstate Sts)
    by (rule chain-lmap[OF - chain]) (use fair-IL-step-imp-IL-step in force)
    have inv: OLf-invariant (lhd Sts)
    using init initial-OLf-invariant by blast
    have nnul: ᄀ lnull Sts
    using chain chain-not-lnull by blast
    hence lhd-lmap: \f.lhd (lmap f Sts) = f (lhd Sts)
    by (rule llist.map-sel(1))
    have active-of (lhd Sts)={||
    by (metis is-initial-OLf-state.cases init snd-conv)
    hence act: active-subset (lhd (lmap fstate Sts)) = {}
    unfolding active-subset-def lhd-lmap by (cases lhd Sts) auto
    have pas: passive-subset (Liminf-llist (lmap fstate Sts)) = {}
    proof (cases lfinite Sts)
    case fin: True
    have lim: Liminf-llist (lmap fstate Sts) = fstate (llast Sts)
        using lfinite-Liminf-llist fin nnul
        by (metis chain-not-lnull il-chain lfinite-lmap llast-lmap)
    have last-inv: OLf-invariant (llast Sts)
        by (rule chain-ILf-invariant-llast[OF chain inv fin])
    have }\forallS\mp@subsup{t}{}{\prime}.\neg \llast Sts ~ILf St'
        using full-chain-lnth-not-rel[OF full] by (metis fin full-chain-iff-chain full)
    hence is-final-OLf-state (llast Sts)
        unfolding is-final-OLf-state-iff-no-ILf-step[OF last-inv] .
    then obtain A :: 'f fset where
        at-l: llast Sts = ({||, None, empty,None, A)
        unfolding is-final-OLf-state.simps by blast
```

```
    show ?thesis
        unfolding is-final-OLf-state.simps passive-subset-def lim at-l by auto
    next
    case False
    hence len: llength Sts = \infty
        by (simp add: not-lfinite-llength)
    show ?thesis
        unfolding Liminf-fstate-commute passive-subset-def Liminf-fstate-def
        using fair-IL-Liminf-new-empty[OF len full inv]
            fair-IL-Liminf-xx-empty[OF len full inv]
            fair-IL-Liminf-passive-empty[OF len full init]
            fair-IL-Liminf-yy-empty[OF full inv]
        by simp
qed
show saturated (state (Liminf-fstate Sts))
    using IL-Liminf-saturated act Liminf-fstate-commute il-chain pas by fastforce
{
    assume
        bot: B}\inBot-F and
        unsat: fset (new-of (lhd Sts)) \models\cap\mathcal{G {B}}
    have unsat': fst`lhd (lmap fstate Sts) }\models\cap\mathcal{G}{B
        using unsat unfolding lhd-lmap by (cases lhd Sts) (auto intro: no-labels-entails-mono-left)
    have \existsBL\inBot-FL. BL\inLiminf-llist (lmap fstate Sts)
        using IL-complete-Liminf[OF il-chain act pas bot unsat'].
    thus \exists\mp@subsup{B}{}{\prime}\inBot-F. B' 
        unfolding Liminf-fstate-def Liminf-fstate-commute by auto
    thus \existsi. enat i< llength Sts }\wedge(\exists\mp@subsup{B}{}{\prime}\in\mathrm{ Bot-F. B' }\in\mathrm{ all-formulas-of (lnth Sts i))
        unfolding Liminf-fstate-def Liminf-llist-def by auto
}
qed
end
end
```


10 Completeness of Fair Otter Loop

The Otter loop is a special case of the iProver loop, with fewer rules. We can therefore reuse the fair iProver loop's completeness result to derive the (dynamic) refutational completeness of the fair Otter loop.

```
theory Fair-Otter-Loop-Complete
    imports Fair-iProver-Loop
begin
```


10.1 Completeness

```
context fair-otter-loop
```

begin

theorem

assumes

$$
\text { full: full-chain }(\sim O L f) \text { Sts and }
$$

init：is－initial－OLf－state（lhd Sts）

shows

fair－OL－Liminf－saturated：saturated（state（Liminf－fstate Sts））and
fair－OL－complete－Liminf：$B \in$ Bot－$F \Longrightarrow$ fset（new－of（lhd Sts））$\vDash \cap \mathcal{G}\{B\} \Longrightarrow$ $\exists B^{\prime} \in B o t-F . B^{\prime} \in$ state－union（Liminf－fstate Sts）and
fair－OL－complete：$B \in$ Bot－$F \Longrightarrow$ fset（new－of（lhd Sts））$\models \cap \mathcal{G}\{B\} \Longrightarrow$
\exists i．enat $i<$ llength Sts $\wedge\left(\exists B^{\prime} \in\right.$ Bot－$F . B^{\prime} \in$ all－formulas－of（lnth Sts $\left.\left.i\right)\right)$
proof－
have ilf－chain：chain $(\sim I L f)$ Sts
using Lazy－List－Chain．chain－mono fair－IL．ol full－chain－imp－chain full by blast
hence ilf－full：full－chain $(\sim I L f)$ Sts
by（metis chain－ILf－invariant－llast full－chain－iff－chain initial－OLf－invariant
is－final－OLf－state－iff－no－ILf－step is－final－OLf－state－iff－no－OLf－step full init）
show saturated（state（Liminf－fstate Sts））
by（rule fair－IL－Liminf－saturated［OF ilf－full init］）

\｛

assume
bot：$B \in B o t-F$ and
unsat：fset（new－of（lhd Sts））$\models \cap \mathcal{G}\{B\}$
show $\exists B^{\prime} \in$ Bot－F．$B^{\prime} \in$ state－union（Liminf－fstate Sts）
by（rule fair－IL－complete－Liminf［OF ilf－full init bot unsat $]$ ）
show \exists i．enat $i<$ llength Sts $\wedge\left(\exists B^{\prime} \in\right.$ Bot－F ．$B^{\prime} \in$ all－formulas－of（lnth Sts $\left.\left.i\right)\right)$
by（rule fair－IL－complete［OF ilf－full init bot unsat］）
\}
qed
end

10．2 Specialization with FIFO Queue

As a proof of concept，we specialize the passive set to use a FIFO queue，thereby eliminating the locale assumptions about the passive set．

```
locale fifo-otter-loop \(=\)
    otter-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q G-I-q Equiv-F Prec-F
    for
        Bot-F :: 'f set and
        Inf-F :: 'f inference set and
        Bot- \(G\) :: ' \(g\) set and
        \(Q::\) ' \(q\) set and
        entails- \(q::\) ' \(q \Rightarrow\) ' \(g\) set \(\Rightarrow\) 'g set \(\Rightarrow\) bool and
        Inf- \(G-q::\) ' \(q \Rightarrow\) ' \(g\) inference set and
        Red-I- \(q::\) ' \(q \Rightarrow\) 'g set \(\Rightarrow\) ' \(g\) inference set and
        Red-F-q :: ' \(q \Rightarrow\) ' \(g\) set \(\Rightarrow{ }^{\prime} g\) set and
        \(\mathcal{G}-F-q:: ' q \Rightarrow ' f \Rightarrow\) ' \(g\) set and
        \(\mathcal{G}-I-q:: ' q \Rightarrow\) 'f inference \(\Rightarrow\) ' \(g\) inference set option and
    Equiv- \(F::\) ' \(f \Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\langle\dot{=} 50\) ) and
    Prec-F :: ' \(f \Rightarrow\) ' \(f \Rightarrow\) bool (infix 〈々.〉50) +
fixes
    Prec-S :: ' \(\Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\prec S 50\) )
assumes
```

```
    w-Prec-S: minimal-element ( }\precS)\mathrm{ UNIV and
    transp-Prec-S: transp ( }\precS)\mathrm{ and
    finite-Inf-between: finite A\Longrightarrow finite (no-labels.Inf-between A {C})
begin
```

sublocale fifo-prover-queue
sublocale fair-otter-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q G-I-q Equiv-F Prec-F[] hd λy xs. if $y \in$ set $x s$ then xs else xs @ [y] removeAll fset-of-list Prec-S proof
show po-on $(\prec S)$ UNIV
using wf-Prec-S minimal-element.po by blast
next
show wfp-on $(\prec S)$ UNIV
using wf-Prec-S minimal-element.wf by blast
next
show transp $(\prec S)$
by (rule transp-Prec-S)
next
show $\bigwedge A C$. finite $A \Longrightarrow$ finite (no-labels.Inf-between $A\{C\}$)
by (fact finite-Inf-between)
qed
end
end

11 Zipperposition Loop with Ghost State

The Zipperposition loop is a variant of the DISCOUNT loop that can cope with inferences generating (countably) infinitely many conclusions. The version formalized here has an additional ghost component D in its state tuple, which is used in the refinement proof from the abstract procedure $L G C$.

```
theory Zipperposition-Loop
imports DISCOUNT-Loop
begin
```

context discount-loop
begin

11.1 Basic Definitions and Lemmas

```
fun flat-inferences-of :: 'f inference llist multiset }=>\mathrm{ 'f inference set where
    flat-inferences-of T}=\bigcup{\mathrm{ lset }\iota|\iota.\iota\in#T
fun
    zl-state :: 'f inference llist multiset }\times\mathrm{ 'f inference set }\times\mathrm{ 'f set }\times\mathrm{ ' f set }\times\mathrm{ 'f set }
        'f inference set }\times('f\timesDL-label) se
where
    zl-state (T, D, P,Y,A)=(flat-inferences-of T - D, labeled-formulas-of (P,Y,A))
lemma zl-state-alt-def:
    zl-state (T, D,P,Y,A)=
```

(flat-inferences-of $T-D,(\lambda C .(C, \text { Passive }))^{\prime} P \cup(\lambda C .(C, Y Y)) ' Y \cup(\lambda C .(C, A c t i v e))$ ' $\left.A\right)$ by auto

inductive

$Z L:: ~ ' f$ inference set $\times($ ' $f \times D L$-label $)$ set \Rightarrow ' f inference set $\times($ ' $f \times D L$-label $)$ set \Rightarrow bool (infix $\sim Z L 50$)
where
compute-infer: $\iota 0 \in$ no-labels.Red- $I(A \cup\{C\}) \Longrightarrow$
zl-state $(T+\{\# L C o n s \iota 0 \iota s \#\}, D, P,\{ \}, A) \sim Z L$ zl-state $(T+\{\# \iota s \#\}, D \cup\{\iota 0\}, P \cup\{C\},\{ \}$,
A)
| choose-p:zl-state $(T, D, P \cup\{C\},\{ \}, A) \sim Z L$ zl-state $(T, D, P,\{C\}, A)$
| delete-fwd: $C \in$ no-labels.Red-F $A \vee\left(\exists C^{\prime} \in A . C^{\prime} \preceq . C\right) \Longrightarrow$
zl-state $(T, D, P,\{C\}, A) \sim Z L$ zl-state $(T, D, P,\{ \}, A)$
| simplify-fwd: $C \in$ no-labels.Red- $F\left(A \cup\left\{C^{\prime}\right\}\right) \Longrightarrow$
zl-state $(T, D, P,\{C\}, A) \sim Z L$ zl-state $\left(T, D, P,\left\{C^{\prime}\right\}, A\right)$
\mid delete-bwd: $C^{\prime} \in$ no-labels.Red- $F\{C\} \vee C^{\prime} \succ C \Longrightarrow$
zl-state $\left(T, D, P,\{C\}, A \cup\left\{C^{\prime}\right\}\right) \sim Z L$ zl-state $(T, D, P,\{C\}, A)$
| simplify-bwd: $C^{\prime} \in$ no-labels.Red- $F\left\{C, C^{\prime \prime}\right\} \Longrightarrow$ zl-state $\left(T, D, P,\{C\}, A \cup\left\{C^{\prime}\right\}\right) \sim Z L$ zl-state $\left(T, D, P \cup\left\{C^{\prime \prime}\right\},\{C\}, A\right)$
| schedule-infer: flat-inferences-of $T^{\prime}=$ no-labels.Inf-between $A\{C\} \Longrightarrow$
zl-state $(T, D, P,\{C\}, A) \sim Z L$ zl-state $\left(T+T^{\prime}, D-\right.$ flat-inferences-of $\left.T^{\prime}, P,\{ \}, A \cup\{C\}\right)$
| delete-orphan-infers: lset $\iota s \cap$ no-labels.Inf-from $A=\{ \} \Longrightarrow$
$z l$-state $(T+\{\# \iota s \#\}, D, P, Y, A) \sim Z L$ zl-state $(T, D \cup$ lset $\iota s, P, Y, A)$

11.2 Refinement

```
lemma zl-compute-infer-in-lgc:
    assumes \(\iota 0 \in\) no-labels.Red-I \((A \cup\{C\})\)
    shows zl-state \((T+\{\# L C o n s ~ \iota 0 ~ \iota s \#\}, D, P,\{ \}, A) \sim L G C\)
        zl-state \((T+\{\# \iota s \#\}, D \cup\{\iota 0\}, P \cup\{C\},\{ \}, A)\)
proof -
    show ?thesis
    proof (cases \(\iota 0 \in D\) )
        case True
        hence infs: flat-inferences-of \((T+\{\# L C o n s ~ \iota 0 ~ \iota s \#\})-D=\)
            flat-inferences-of \((T+\{\# \iota s \#\})-(D \cup\{\iota 0\})\)
            by fastforce
        show ?thesis
            unfolding zl-state.simps infs
            by (rule step.process[of - labeled-formulas-of \((P,\{ \}, A)\}-\{(C\), Passive \()\}])\)
            (auto simp: active-subset-def)
    next
        case \(i 0-n i\) : False
        show ?thesis
            unfolding zl-state.simps
        proof (rule step.compute-infer[of - - \(0-\) - \(\{(\) C, Passive \()\}])\)
            show flat-inferences-of \((T+\{\# L C o n s ~ \iota 0 ~ \iota s \#\})-D=\)
                flat-inferences-of \((T+\{\# \iota s \#\})-(D \cup\{\iota 0\}) \cup\{\iota 0\}\)
                using \(i 0-n i\) by fastforce
    next
                show labeled-formulas-of \((P \cup\{C\},\{ \}, A)=\) labeled-formulas-of \((P,\{ \}, A) \cup\{(C\), Passive \()\}\)
                by auto
    next
                show active-subset \(\{(C\), Passive \()\}=\{ \}\)
                by (auto simp: active-subset-def)
    next
```

```
            show }\iota0\in\mathrm{ no-labels.Red-I-G (fst'(labeled-formulas-of (P,{},A) U{(C, Passive)}))
                by simp (metis (no-types) Un-commute Un-empty-right Un-insert-right Un-upper1 assms
                no-labels.empty-ord.Red-I-of-subset subset-iff)
    qed
    qed
qed
lemma zl-choose-p-in-lgc:zl-state (T, D,P\cup{C},{},A)~LGC zl-state (T, D,P,{C},A)
proof -
    let ?\mathcal{N}= labeled-formulas-of (P,{},A)
    and ?'\mathcal{T}= flat-inferences-of T-D
    have Passive }\negLY
    by (simp add: DL-Prec-L-def)
    hence (?\mathcal{T},?\mathcal{N}\cup{(C,Passive) }) ~LGC (?\mathcal{T},?\mathcal{N}\cup{(C,YY)})
    using relabel-inactive by blast
    hence (?\mathcal{T},labeled-formulas-of }(P\cup{C},{},A))~LGC(?\mathcal{T},\mathrm{ labeled-formulas-of }(P,{C},A)
        by (metis PYA-add-passive-formula POA-add-y-formula)
    thus ?thesis
    by auto
qed
lemma zl-delete-fwd-in-lgc:
    assumes C \in no-labels.Red-F A\vee (\exists\mp@subsup{C}{}{\prime}\inA.C}\mp@subsup{C}{}{\prime}\preceq.C
    shows zl-state (T, D,P,{C},A)~LGC zl-state (T,D,P,{},A)
    using assms
proof
    assume c-in: C\in no-labels.Red-F A
    hence }A\subseteqfst'labeled-formulas-of ( P, {},A
    by simp
    hence C \in no-labels.Red-F (fst'labeled-formulas-of (P,{},A))
        by (metis (no-types, lifting) c-in in-mono no-labels.Red-F-of-subset)
    thus ?thesis
        using remove-redundant-no-label by auto
next
    assume }\exists\mp@subsup{C}{}{\prime}\inA.\mp@subsup{C}{}{\prime}\preceq.
    then obtain C' where c'-in-and-c'-ls-c: }\mp@subsup{C}{}{\prime}\inA\wedge\mp@subsup{C}{}{\prime}\preceq.
        by auto
    hence ( }\mp@subsup{C}{}{\prime}\mathrm{ , Active) }\in\mathrm{ labeled-formulas-of ( }P,{},A
    by auto
    moreover have YY }\sqsupsetL\mathrm{ Active
    by (simp add: DL-Prec-L-def)
    ultimately show ?thesis
        by (metis POA-add-y-formula remove-succ-L c'-in-and-c'-ls-c zl-state.simps)
qed
lemma zl-simplify-fwd-in-lgc:
    assumes C\in no-labels.Red-F-\mathcal{G}}(A\cup{\mp@subsup{C}{}{\prime}}
    shows zl-state (T,D,P,{C},A)~LGC zl-state (T, D,P,{\mp@subsup{C}{}{\prime}},A)
proof -
    let ?N = labeled-formulas-of (P,{}, A)
    and ?\mathcal{M}={(C,YY)}
    and ?M}\mp@subsup{\mathcal{M}}{}{\prime}={(\mp@subsup{C}{}{\prime},YY)
    have }A\cup{\mp@subsup{C}{}{\prime}}\subseteqfst'(?\mathcal{N}\cup?\mp@subsup{\mathcal{M}}{}{\prime}
        by auto
    hence C\in no-labels.Red-F-G (fst`}(?\mathcal{N}\cup?\mathcal{M})
```

```
    by (smt (verit, ccfv-SIG) assms no-labels.Red-F-of-subset subset-iff)
    hence (C,YY)\inRed-F (?N \cup ?M')
    using no-labels-Red-F-imp-Red-F by simp
    hence ?\mathcal{M}\subseteqRed-F-\mathcal{G}(?\mathcal{N}\cup?\mathcal{M})
    by simp
    moreover have active-subset ? }\mp@subsup{\mathcal{M}}{}{\prime}={
    using active-subset-def by auto
    ultimately have (flat-inferences-of T - D, labeled-formulas-of (P,{},A)\cup{(C,YY)})~LGC
        (flat-inferences-of T - D, labeled-formulas-of (P, {},A)\cup{(C',YY)})
    using process[of - - ?M - ?M \ ] by auto
    thus ?thesis
        by simp
qed
lemma zl-delete-bwd-in-lgc:
    assumes }\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F-G {C} }\\mp@subsup{C}{}{\prime}\cdot\succ
    shows zl-state (T, D,P,{C},A\cup{\mp@subsup{C}{}{\prime}})~LGC zl-state (T,D,P,{C},A)
    using assms
proof
    let ?\mathcal{N}= labeled-formulas-of (P,{C},A)
    assume c'-in: C'}\in\mathrm{ no-labels.Red-F-G {C}
    have {C}\subseteqfst'?\mathcal{N}
        by simp
    hence C' }\mp@subsup{C}{}{\prime}\mathrm{ no-labels.Red-F-G (fst' ?N )
        by (metis (no-types, lifting) c'-in insert-Diff insert-subset no-labels.Red-F-of-subset)
    hence (flat-inferences-of T-D,?\mathcal{N}\cup{(\mp@subsup{C}{}{\prime},Active)})~LGC (flat-inferences-of T-D,?N}
        using remove-redundant-no-label by auto
    moreover have ?\mathcal{N}\cup{(\mp@subsup{C}{}{\prime},\mathrm{ Active ) } = labeled-formulas-of }(P,{C},A\cup{\mp@subsup{C}{}{\prime}})
        using PYA-add-active-formula by blast
    ultimately have (flat-inferences-of T - D, labeled-formulas-of (P,{C},A\cup{\mp@subsup{C}{}{\prime}}))~LGC
        zl-state (T, D, P,{C},A)
        by simp
    thus ?thesis
        by auto
next
    assume C ' }\succ\succ
    moreover have (C,YY)\in labeled-formulas-of (P,{C},A)
        by simp
    ultimately show ?thesis
        by (metis remove-succ-F PYA-add-active-formula zl-state.simps)
qed
lemma zl-simplify-bwd-in-lgc:
    assumes C' }\mp@subsup{C}{}{\prime}\mathrm{ no-labels.Red-F-G {C, C'n}
    shows zl-state (T, D,P,{C},A\cup{\mp@subsup{C}{}{\prime}})~LGC zl-state (T, D,P\cup{\mp@subsup{C}{}{\prime\prime}},{C},A)
proof -
    let ?\mathcal{M}={(\mp@subsup{C}{}{\prime},\mathrm{ Active })}
    and ?.\mathcal{M}
    and ?\mathcal{N}=labeled-formulas-of (P,{C},A)
    have {C, C''}}\subseteqfst`(?\mathcal{N}\cup?\mp@subsup{\mathcal{M}}{}{\prime}
        by simp
    hence C'\in no-labels.Red-F-G (fst* (?N \cup \cup?M'))
    by (smt (z3) DiffI Diff-eq-empty-iff assms empty-iff no-labels.Red-F-of-subset)
```

hence \mathcal{M}-included: $\quad ? \mathcal{M} \subseteq \operatorname{Red}-F-\mathcal{G}\left(? \mathcal{N} \cup ? \mathcal{M}^{\prime}\right)$
using no-labels-Red-F-imp-Red-F by auto
have active-subset ? $\mathcal{M}^{\prime}=\{ \}$
using active-subset-def by auto
hence (flat-inferences-of $T-D, ? \mathcal{N} \cup ? \mathcal{M}) \sim L G C$ (flat-inferences-of $T-D$, ? $\mathcal{N} \cup ? \mathcal{M}^{\prime}$)
using \mathcal{M}-included process $[$ of - ? $\mathcal{M}-$? $\mathcal{M}]$ by auto
moreover have ? $\mathcal{N} \cup ? \mathcal{M}=$ labeled-formulas-of $\left(P,\{C\}, A \cup\left\{C^{\prime}\right\}\right)$ and ? $\mathcal{N} \cup ? \mathcal{M}^{\prime}=$ labeled-formulas-of $\left(P \cup\left\{C^{\prime \prime}\right\},\{C\}, A\right)$
by auto
ultimately show ?thesis by auto
qed
lemma zl-schedule-infer-in-lgc:
assumes flat-inferences-of $T^{\prime}=$ no-labels.Inf-between $A\{C\}$
shows zl-state $(T, D, P,\{C\}, A) \sim L G C$
zl-state $\left(T+T^{\prime}, D-\right.$ flat-inferences-of $\left.T^{\prime}, P,\{ \}, A \cup\{C\}\right)$
proof -
let ? $\mathcal{N}=$ labeled-formulas-of $(P,\{ \}, A)$
have $f s t$ ' active-subset ? $\mathcal{N}=A$
by (meson prj-active-subset-of-state)
hence infs: flat-inferences-of $T^{\prime}=$ no-labels.Inf-between (fst'active-subset ? \mathcal{N}) $\{C\}$
using assms by simp
have inf: $($ flat-inferences-of $T-D$, ? $\mathcal{N} \cup\{(C, Y Y)\}) \sim L G C$
$\left((\right.$ flat-inferences-of $T-D) \cup$ flat-inferences-of $T^{\prime}, ? \mathcal{N} \cup\{(C$, Active $\left.)\}\right)$
by (rule step.schedule-infer $\left[\right.$ of - - flat-inferences-of $\left.T^{\prime}-? \mathcal{N} C Y Y\right]$) (use infs in auto)
have m-bef: labeled-formulas-of $(P,\{C\}, A)=? \mathcal{N} \cup\{(C, Y Y)\}$ by auto
have t-aft: flat-inferences-of $\left(T+T^{\prime}\right)-\left(D-\right.$ flat-inferences-of $\left.T^{\prime}\right)=$ (flat-inferences-of $T-D) \cup$ flat-inferences-of T^{\prime}
by auto
have m-aft: labeled-formulas-of $(P,\{ \}, A \cup\{C\})=? \mathcal{N} \cup\{(C$, Active $)\}$ by auto
show ?thesis
unfolding $z l$-state.simps m-bef t-aft m-aft using inf .
qed
lemma zl-delete-orphan-infers-in-lgc:
assumes inter: lset $\iota \mathrm{\cap}$ no-labels.Inf-from $A=\{ \}$
shows zl-state $(T+\{\# \iota s \#\}, D, P, Y, A) \sim L G C$ zl-state $(T, D \cup$ lset $\iota s, P, Y, A)$
proof -
let ? $\mathcal{N}=$ labeled-formulas-of (P, Y, A)
have inf: (flat-inferences-of $T \cup$ lset $\iota s-D$, ?N $)$
$\sim L G C$ (flat-inferences-of $T-(D \cup$ lset $\iota s)$, ?N $)$
by (rule step.delete-orphan-infers $[$ of - lset $\iota s-D]$)
(use inter prj-active-subset-of-state in auto)
have t-bef: flat-inferences-of $(T+\{\# \iota s \#\})-D=$ flat-inferences-of $T \cup$ lset $\iota s-D$
by auto
show ?thesis
unfolding zl-state.simps t-bef using inf .
qed

```
theorem ZL-step-imp-LGC-step:St }~ZLSt'\LongrightarrowSt ~LGC St
proof (induction rule: ZL.induct)
    case (compute-infer \iota0 A C T \iotas D P)
    thus ?case
        using zl-compute-infer-in-lgc by auto
next
    case (choose-p T D P C A)
    thus ?case
        using zl-choose-p-in-lgc by auto
next
    case (delete-fwd C A T D P)
    thus ?case
        using zl-delete-fwd-in-lgc by auto
next
    case (simplify-fwd C A C'T D P)
    thus ?case
        using zl-simplify-fwd-in-lgc by blast
next
    case (delete-bwd C' C T D P A)
    thus ?case
        using zl-delete-bwd-in-lgc by blast
next
    case (simplify-bwd C' C C'I T D P A)
    thus ?case
        using zl-simplify-bwd-in-lgc by blast
next
    case (schedule-infer T'A C T D P)
    thus ?case
        using zl-schedule-infer-in-lgc by blast
next
    case (delete-orphan-infers \iotas A T D P Y)
    thus ?case
        using zl-delete-orphan-infers-in-lgc by auto
qed
```


11.3 Completeness

```
theorem
    assumes
        zl-chain: chain (~ZL) Sts and
        act: active-subset (snd (lhd Sts)) = {} and
        pas:passive-subset (Liminf-llist (lmap snd Sts)) ={} and
        no-prems-init: }\forall\iota\inInf-F.prems-of \iota=[]\longrightarrow\iota\in fst (lhd Sts) and
    final-sched: Liminf-llist (lmap fst Sts) ={}
    shows
        ZL-Liminf-saturated: saturated (Liminf-llist (lmap snd Sts)) and
        ZL-complete-Liminf: B \in Bot-F\Longrightarrow ¢st'snd (lhd Sts) }\models\cap\mathcal{G}{B}
        \existsBL\inBot-FL. BL \inLiminf-llist (lmap snd Sts) and
    ZL-complete: B B Bot-F\Longrightarrow fst'snd (lhd Sts) }=\cap\mathcal{G}{B}
        \existsi. enat i<llength Sts }\wedge(\existsBL\inBot-FL.BL\in snd (lnth Sts i)
proof -
    have lgc-chain: chain (~LGC) Sts
        using zl-chain ZL-step-imp-LGC-step chain-mono by blast
    show saturated (Liminf-llist (lmap snd Sts))
```

using act final-sched lgc.fair-implies-Liminf-saturated lgc-chain lgc-fair lgc-to-red no-prems-init pas by blast

```
{
    assume
        bot: B}\inBot-F an
        unsat: fst' snd (lhd Sts) \models\cap\mathcal{G {B}}
    show ZL-complete-Liminf: }\existsBL\inBot-FL.BL\inLiminf-llist (lmap snd Sts
    by (rule lgc-complete-Liminf[OF lgc-chain act pas no-prems-init final-sched bot unsat])
    thus OL-complete: \existsi. enat i<llength Sts }\wedge(\existsBL\inBot-FL.BL\in snd (lnth Sts i))
    unfolding Liminf-llist-def by auto
    }
qed
end
end
```


12 Prover Lazy List Queues and Fairness

This section covers the to-do data structure that arises in the Zipperposition loop.

```
theory Prover-Lazy-List-Queue
    imports Prover-Queue
begin
```


12.1 Basic Lemmas

```
lemma ne-and-in-set-take-imp-in-set-take-remove1:
    assumes
        z}=y\mathrm{ and
        z\in set (take m xs)
    shows z\in set (take m (remove1 y xs))
    using assms
proof (induct xs arbitrary:m)
    case (Cons x xs)
    note ih = this(1) and z-ne-y = this(2) and z-in-take-xxs = this(3)
    show ?case
    proof (cases z = x)
    case True
    thus ?thesis
        by (metis (no-types, lifting) List.hd-in-set gr-zeroI hd-take in-set-remove1 list.sel(1)
            remove1.simps(2) take-eq-Nil z-in-take-xxs z-ne-y)
    next
    case z-ne-x: False
    have z-in-take-xs:z f set (take m xs)
        using z-in-take-xxs z-ne-x
        by (smt (verit, del-insts) butlast-take in-set-butlastD in-set-takeD le-cases3 set-ConsD
                take-Cons' take-all)
    show ?thesis
    proof (cases }y=x\mathrm{ )
```

```
    case y-eq-x:True
    show ?thesis
        using y-eq-x by (simp add: z-in-take-xs)
    next
    case y-ne-x: False
    have m>0
        by (metis gr0I list.set-cases list.simps(3) take-Cons' z-in-take-xxs)
    then obtain m':: nat where
        m: m=Suc m'
        using gr0-implies-Suc by presburger
    have z-in-take-xs':}z\in\operatorname{set}(take m'xs
        using z-in-take-xs z-in-take-xxs z-ne-x by (simp add: m)
    note ih =ih[OF z-ne-y z-in-take-xs']
    show ?thesis
        using y-ne-x ih unfolding m by simp
    qed
qed
qed simp
```


12.2 Locales

```
locale prover-lazy-list-queue \(=\)
    fixes
            empty :: ' \(q\) and
            add-llist :: 'e llist \(\Rightarrow{ }^{\prime} q \Rightarrow{ }^{\prime} q\) and
            remove-llist :: 'e llist \(\Rightarrow{ }^{\prime} q \Rightarrow{ }^{\prime} q\) and
            pick-elem :: ' \(q \Rightarrow{ }^{\prime} e \times{ }^{\prime} q\) and
            llists :: ' \(q\) = 'e llist multiset
    assumes
            llists-empty \([\) simp \(]\) : llists empty \(=\{\#\}\) and
            llists-not-empty: \(Q \neq\) empty \(\Longrightarrow\) llists \(Q \neq\{\#\}\) and
            llists-add \([\) simp \(]\) : llists (add-llist es \(Q\) ) \(=\) llists \(Q+\{\#\) es\# \(\}\) and
            llist-remove \([\) simp \(]\) : llists (remove-llist es \(Q)=\) llists \(Q-\{\# e s \#\}\) and
            llists-pick-elem: \((\exists\) es \(\in \#\) llists \(Q\). es \(\neq L N i l) \Longrightarrow\)
            \(\exists e\) es. LCons e es \(\in \#\) lists \(Q \wedge f s t(\) pick-elem \(Q)=e\)
            \(\wedge\) lists \((\) snd \((\) pick-elem \(Q))=\) llists \(Q-\{\#\) LCons e es\# \(\}+\{\# e s \#\}\)
begin
```

abbreviation has-elem $::$ ' $q \Rightarrow$ bool where
has-elem $Q \equiv \exists$ es $\in \#$ llists Q. es \neq LNil
inductive lqueue-step :: ' $q \times$ 'e set $\Rightarrow{ }^{\prime} q \times$ 'e set \Rightarrow bool where
lqueue-step-fold-add-llistI:
lqueue-step (Q, D) (fold add-llist ess $Q, D-\bigcup\{$ lset es \mid es. es \in set ess $\})$
| lqueue-step-fold-remove-llistI:
lqueue-step (Q, D) (fold remove-llist ess $Q, D \cup \bigcup$ \{lset es \mid es. es \in set ess $\}$)
| lqueue-step-pick-elemI: has-elem $Q \Longrightarrow$
lqueue-step $(Q, D)($ snd $($ pick-elem $Q), D \cup\{f$ st $($ pick-elem $Q)\})$
lemma lqueue-step-idleI: lqueue-step $Q D Q D$
using lqueue-step-fold-add-llistI[of fst $Q D$ snd $Q D[]$, simplified].
lemma lqueue-step-add-llistI: lqueue-step $(Q, D)($ add-llist es $Q, D-l s e t ~ e s)$
using lqueue-step-fold-add-llistI[of -- [es], simplified].
lemma lqueue-step-remove-llistI: lqueue-step (Q, D) (remove-llist es $Q, D \cup$ lset es) using lqueue-step-fold-remove-llistI[of -- [es], simplified].
lemma llists-fold-add-llist[simp]: llists (fold add-llist es Q) $=$ mset es + llists Q by (induct es arbitrary: Q) auto
lemma llists-fold-remove-llist[simp]: llists (fold remove-llist es Q) $=$ llists Q - mset es by (induct es arbitrary: Q) auto
inductive pick-lqueue-step-w-details :: ' $q \times{ }^{\prime}$ e set $\Rightarrow{ }^{\prime} e \Rightarrow{ }^{\prime} e$ llist \Rightarrow ' $q \times{ }^{\prime}$ e set \Rightarrow bool where pick-lqueue-step-w-detailsI: LCons e es $\in \#$ llists $Q \Longrightarrow$ fst $($ pick-elem $Q)=e \Longrightarrow$ llists $($ snd $($ pick-elem $Q))=$ llists $Q-\{\#$ LCons e es\# $\}+\{\# e s \#\} \Longrightarrow$ pick-lqueue-step-w-details (Q, D) e es (snd (pick-elem Q), $D \cup\{e\}$)
inductive pick-lqueue-step :: ' $q \times{ }^{\prime} e$ set \Rightarrow ' $q \times$ 'e set \Rightarrow bool where pick-lqueue-step I: pick-lqueue-step-w-details $Q D$ e es $Q D^{\prime} \Longrightarrow$ pick-lqueue-step $Q D Q D^{\prime}$

inductive

remove-lqueue-step-w-details :: ' $q \times$ 'e set \Rightarrow 'e llist list $\Rightarrow{ }^{\prime} q \times$ 'e set \Rightarrow bool
where
remove-lqueue-step-w-detailsI:
remove-lqueue-step-w-details (Q, D) ess (fold remove-llist ess $Q, D \cup \bigcup$ \{lset es \mid es. es \in set ess $\}$)
end
locale fair-prover-lazy-list-queue $=$ prover-lazy-list-queue empty add-llist remove-llist pick-elem llists for
empty :: ' q and
add-llist :: 'e llist $\Rightarrow{ }^{\prime} q \Rightarrow{ }^{\prime} q$ and
remove-llist :: 'e llist $\Rightarrow{ }^{\prime} q \Rightarrow{ }^{\prime} q$ and
pick-elem :: ' $q \Rightarrow{ }^{\prime} e \times{ }^{\prime} q$ and
llists :: ' $q \Rightarrow$ 'e llist multiset +
assumes fair: chain lqueue-step $Q D s \Longrightarrow$ infinitely-often pick-lqueue-step $Q D s \Longrightarrow$
LCons e es $\in \#$ lists (fst (lnth QDs i)) \Longrightarrow
$\exists j \geq i$. (\exists ess. LCons e es \in set ess
\wedge remove-lqueue-step-w-details (lnth QDs j) ess (lnth QDs (Suc j)))
\checkmark pick-lqueue-step-w-details (lnth QDs j) e es (lnth QDs (Suc j))
begin

```
lemma fair-strong:
    assumes
        chain: chain lqueue-step QDs and
        inf: infinitely-often pick-lqueue-step QDs and
        es-in: es \in# llists (fst (lnth QDs i)) and
        k-lt: enat k<llength es
    shows }\existsj\geqi\mathrm{ .
        ( \existsk k
            \wedge remove-lqueue-step-w-details (lnth QDs j) ess (lnth QDs (Suc j)))
            \checkmark ~ p i c k - l q u e u e - s t e p - w - d e t a i l s ~ ( l n t h ~ Q D s ~ j ) ~ ( l n t h ~ e s ~ k ) ~ ( l d r o p ~ ( S u c ~ k ) ~ e s ) ~ ( l n t h ~ Q D s ~ ( S u c ~ j ) ) ~
    using k-lt
proof (induct k)
```


case 0

note zero-lt $=$ this
have es-in': LCons (lnth es 0) (ldrop (Suc 0) es) $\in \#$ llists (fst (lnth QDs i))
using es-in by (metis zero-lt ldrop-0 ldrop-enat ldropn-Suc-conv-ldropn zero-enat-def)
show ?case
using fair[OF chain inf es-in']
by (metis dual-order.refl ldrop-enat ldropn-Suc-conv-ldropn zero-lt)
next
case (Suc k)
note $i h=t h i s(1)$ and $s k-l t=t h i s(2)$
have k-lt: enat $k<$ llength es
using sk-lt Suc-ile-eq order-less-imp-le by blast
obtain $j::$ nat where
j-ge: $j \geq i$ and
rem-or-pick-step: $\left(\exists k^{\prime} \leq k\right.$. \exists ess. ldrop (enat $\left.k^{\prime}\right)$ es \in set ess \wedge remove-lqueue-step-w-details (lnth QDs j) ess (lnth QDs (Suc j)))
\vee pick-lqueue-step-w-details (lnth QDs j) (lnth es k) (ldrop (enat (Suc k)) es) (lnth QDs (Suc j))
using $i h[O F k-l t]$ by blast
\{
assume $\exists k^{\prime} \leq k$. \exists ess. ldrop (enat k^{\prime}) es \in set ess
\wedge remove-lqueue-step-w-details (lnth QDs j) ess (lnth QDs (Suc j))
hence ?case
using j-ge le-SucI by blast
\}
moreover
\{
assume pick-lqueue-step-w-details (lnth QDs j) (lnth es k) (ldrop (enat (Suc k)) es) (lnth QDs (Suc j))
hence cons-in: LCons (lnth es (Suc k)) (ldrop (enat (Suc (Suc k))) es)
$\in \#$ llists $($ fst $($ lnth $Q D s(S u c j)))$
unfolding pick-lqueue-step-w-details.simps using sk-lt
by (metis fst-conv ldrop-enat ldropn-Suc-conv-ldropn union-mset-add-mset-right union-single-eq-member)
have ?case
using fair[OF chain inf cons-in] j-ge
by (smt (z3) dual-order.trans ldrop-enat ldropn-Suc-conv-ldropn le-Suc-eq sk-lt)
\}
ultimately show ?case
using rem-or-pick-step by blast
qed
end

12.3 Instantiation with FIFO Queue

As a proof of concept, we show that a FIFO queue can serve as a fair prover lazy list queue.
type-synonym 'e fifo $=$ nat $\times\left({ }^{\prime} e \times\right.$ 'e llist) list
locale fifo-prover-lazy-list-queue
begin
definition empty :: 'e fifo where

$$
\text { empty }=(0,[])
$$

fun add-llist :: 'e llist $\Rightarrow{ }^{\prime}$ 'e fifo \Rightarrow 'e fifo where
add-llist LNil (num-nils, ps) $=($ num-nils $+1, p s)$
\mid add-llist (LCons e es) (num-nils, ps) $=($ num-nils, ps @ $[(e, e s)])$
fun remove-llist :: 'e llist $\Rightarrow{ }^{\prime}$ ' fifo \Rightarrow 'e fifo where
remove-llist LNil (num-nils, ps) $=($ num-nils $-1, p s)$
\mid remove-llist (LCons e es) (num-nils, ps) $=($ num-nils, remove1 $(e, e s) p s)$
fun pick-elem :: 'e fifo \Rightarrow ' $e \times$ 'e fifo where
pick-elem $(-,[])=$ undefined
| pick-elem (num-nils, (e, es) \# ps) = (e,
(case es of
LNil \Rightarrow (num-nils $+1, p s)$
\mid LCons $e^{\prime} e s^{\prime} \Rightarrow\left(\right.$ num-nils, ps @ $\left.\left.\left.\left[\left(e^{\prime}, e s^{\prime}\right)\right]\right)\right)\right)$
fun lists :: 'e fifo \Rightarrow 'e llist multiset where
llists (num-nils, ps) = replicate-mset num-nils LNil $+\operatorname{mset}(\operatorname{map}(\lambda(e, e s) . L C o n s$ e es) ps)
sublocale prover-lazy-list-queue empty add-llist remove-llist pick-elem llists
proof
show llists empty $=\{\#\}$
unfolding empty-def by simp
next
fix Q :: 'e fifo
assume nemp: $Q \neq$ empty
thus llists $Q \neq\{\#\}$
proof (cases Q)
case q : (Pair num-nils ps)
show ?thesis
using nemp unfolding q empty-def by auto
qed
next
fix es :: 'e llist and Q :: 'e fifo
show llists (add-llist es Q) llists $Q+\{\#$ es\# $\}$
by (cases Q, cases es) auto
next
fix es :: 'e llist and Q :: 'e fifo
show llists (remove-llist es Q) llists $Q-\{\# e s \#\}$
proof (cases Q)
case q : (Pair num-nils ps)
show ?thesis
proof (cases es)
case LNil
note es $=$ this
have inter-emp: $\{\# L$ Cons $x y .(x, y) \in \#$ mset ps\#\} $\cap \#\{\#$ LNil\# $\}=\{\#\}$
by auto
show ?thesis
proof (cases num-nils)
case num-nils: 0
have nil-ni: LNil $\nexists \#\{\#$ LCons $x y .(x, y) \in \#$ mset $p s \#\}$

```
            by auto
            show ?thesis
            unfolding q es num-nils by (auto simp: diff-single-trivial[OF nil-ni])
        next
            case num-nils: (Suc n)
            show ?thesis
            unfolding q es num-nils by auto
        qed
    next
        case (LCons e es')
        note es = this
        show ?thesis
        proof (cases (e,es')\in# mset ps)
        case pair-in: True
        show ?thesis
            unfolding q es using pair-in by (auto simp: multiset-union-diff-assoc image-mset-Diff)
        next
        case pair-ni: False
        have cons-ni:
            LCons e es' }\ddagger#\mathrm{ replicate-mset num-nils LNil + {#LCons x y. (x,y) G# mset ps#}
            using pair-ni by auto
        show ?thesis
            unfolding q es using pair-ni cons-ni by (auto simp:diff-single-trivial)
        qed
    qed
    qed
next
    fix }Q\mathrm{ :: 'e fifo
    assume nnil: \exists es }\in# llists Q. es \not=LNi
    show \existse es.LCons e es }\in# llists Q\wedge fst (pick-elem Q) =e^ llists (snd (pick-elem Q)) = llists Q
- {#LCons e es#} + {#es#}
    using nnil
proof (cases Q)
    case q: (Pair num-nils ps)
    show ?thesis
    proof (cases ps)
        case ps:Nil
        have False
            using nnil unfolding q ps by (cases num-nils = 0) auto
        thus ?thesis
            by blast
    next
        case ps:(Cons p ps')
        show ?thesis
        proof (rule exI[of - fst p], rule exI[of - snd p]; intro conjI)
            show LCons (fst p) (snd p)\in# llists Q
                unfolding q ps by (cases p) auto
    next
                show fst (pick-elem Q) = fst p
                unfolding q ps by (cases p) auto
        next
                show llists (snd (pick-elem Q ) = llists Q - {#LCons (fst p) (snd p)#} + {#snd p#}
                proof (cases p)
                case p:(Pair e es)
                show ?thesis
```

```
            proof (cases es)
                case es:LNil
                show ?thesis
                    unfolding q ps p es by simp
            next
                case es:(LCons e' es')
                show ?thesis
                    unfolding q ps p es by simp
            qed
            qed
        qed
    qed
    qed
qed
sublocale fair-prover-lazy-list-queue empty add-llist remove-llist pick-elem llists
proof
    fix
        QDs :: ('e fifo × 'e set) llist and
        e:: 'e and
        es :: 'e llist and
        i :: nat
    assume
        chain: chain lqueue-step QDs and
        inf-pick: infinitely-often pick-lqueue-step QDs and
        cons-in: LCons e es }\in#\mathrm{ llists (fst (lnth QDs i))
    have len: llength QDs=\infty
    using inf-pick unfolding infinitely-often-alt-def
    by (metis Suc-ile-eq dual-order.strict-implies-order enat.exhaust enat-ord-simps(2)
            verit-comp-simplify1 (3))
{
    assume not-rem-step: }\neg(\existsj\geqi.\exists\mathrm{ ess. LCons e es }\in\mathrm{ set ess
    ^ remove-lqueue-step-w-details (lnth QDs j) ess (lnth QDs (Suc j)))
    obtain num-nils :: nat and ps :: ('e x 'e llist) list where
    fst-at-i: fst (lnth QDs i)}=(\mathrm{ num-nils, ps)
    by fastforce
    obtain k :: nat where
    k-lt: k < length (snd (fst (lnth QDs i))) and
    at-k: snd (fst (lnth QDs i))!k=(e, es)
    using cons-in unfolding fst-at-i
    by simp (smt (verit) empty-iff imageE in-set-conv-nth llist.distinct(1) llist.inject
            prod.collapse singleton-iff split-beta)
    have \forall\mp@subsup{k}{}{\prime}\leqk.\exists\mp@subsup{i}{}{\prime}\geqi.(e,es)\in\operatorname{set}(\mathrm{ take (Suc k')(snd (fst (lnth QDs i}\))))
    proof -
    have \existsi\mp@subsup{i}{}{\prime}\geqi.(e,es)\in\operatorname{set}(take (k+1-l)(snd (fst (lnth QDs i'))))
            if l-le: l\leqk for l
            using l-le
    proof (induct l)
            case 0
            show ?case
```

```
    proof (rule exI[of-i]; simp)
        show (e, es) \in set (take (Suc k) (snd (fst (lnth QDs i))))
        by (simp add: at-k k-lt take-Suc-conv-app-nth)
    qed
next
    case (Suc l)
    note ih = this(1) and sl-le = this(2)
    have l-le-k:l\leqk
        using sl-le by linarith
note ih = ih[OF l-le-k]
obtain }\mp@subsup{i}{}{\prime}:: nat wher
        i'-ge: i' \geqi and
        cons-at-i':}(e,es)\in\operatorname{set}(\mathrm{ take (k+1 - l) (snd (fst (lnth QDs i}\mp@subsup{i}{}{\prime})))
        using ih by blast
then obtain j0 :: nat where
        j0\geqi' and
        pick-lqueue-step (lnth QDs j0) (lnth QDs (Suc j0))
        using inf-pick unfolding infinitely-often-alt-def by auto
then obtain j :: nat where
    j-ge: j \geq i' and
    pick-step: pick-lqueue-step (lnth QDs j) (lnth QDs (Suc j)) and
    pick-step-min:
    \forallj'. j' \geq i' \longrightarrow ' j}<<j\longrightarrow\neg\mathrm{ pick-lqueue-step (lnth QDs j') (lnth QDs (Suc j'))
    using wfP-exists-minimal[OF wfP-less, of
        \lambdaj.j\geq\mp@subsup{i}{}{\prime}\wedge pick-lqueue-step (lnth QDs j) (lnth QDs (Suc j)) j0 \lambdaj.j]
        by blast
have cons-at-le-j:(e, es)\in set (take (k+1-l) (snd (fst (lnth QDs j}\mp@subsup{j}{}{\prime})))
    if j'-ge: j' \geq i' and j'-le: j'}\leqj\mathrm{ for }\mp@subsup{j}{}{\prime
proof -
    have (e,es)\in\operatorname{set}(take (k+1-l)(snd (fst (lnth QDs (i' +m)))))
        if i'm-le: i' +m\leqj for m
        using i'm-le
    proof (induct m)
        case 0
        then show ?case
            using cons-at-i' by fastforce
    next
        case (Suc m)
        note ih = this(1) and i'sm-le = this(2)
        have }\mp@subsup{i}{}{\prime}m\mathrm{ -lt: i' }\mp@subsup{i}{}{\prime}+m<
            using i'sm-le by linarith
        have i'm-le: i' }\mp@subsup{i}{}{\prime}m\leq
            using i'sm-le by linarith
        note ih = ih[OF i'm-le]
        have step: lqueue-step (lnth QDs (i' + m)) (lnth QDs (i' + Suc m))
            by (simp add: chain chain-lnth-rel len)
        show ?case
            using step
        proof cases
```

```
    case (lqueue-step-fold-add-llistI Q D ess)
    note defs = this
    have in-set-fold-add: (e, es) \in set (take n (snd (fold add-llist ess Q)))
    if (e,es)\in set (take n (snd Q)) for n
    using that
proof (induct ess arbitrary:Q)
    case (Cons es' ess')
    note ih = this(1) and in-q = this(2)
    have in-add: (e,es)\in set (take n (snd (add-llist es' Q)))
    proof (cases Q)
        case q: (Pair num-nils ps)
        show ?thesis
        proof (cases es')
            case es': LNil
            show ?thesis
            using in-q unfolding qes'
        next
            case es':(LCons e" es')
            show ?thesis
                using in-q unfolding qes' by simp
        qed
    qed
    show ?case
        using ih[OF in-add] by simp
    qed simp
    show ?thesis
    using ih unfolding defs by (auto intro: in-set-fold-add)
next
    case (lqueue-step-fold-remove-llistI Q D ess)
    note defs= this
    have notin-set-remove: (e, es) \in set (take n (snd (fold remove-llist ess Q)))
    if LCons e es }\not=\mathrm{ set ess and (e,es) G set (take n (snd Q)) for n
    using that
    proof (induct ess arbitrary:Q)
        case (Cons es' ess')
        note ih = this(1) and ni-es'ess' = this(2) and in-q = this(3)
        have ni-ess': LCons e es }\not\in\mathrm{ set ess'
            using ni-es'ess' by auto
        have in-rem: (e, es) \in set (take n (snd (remove-llist es'Q)))
            by (smt (verit, best) fifo-prover-lazy-list-queue.remove-llist.elims fst-conv in-q
                list.set-intros(1) ne-and-in-set-take-imp-in-set-take-remove1 ni-es'ess'
                snd-conv)
    show ?case
        using ih[OF ni-ess' in-rem] by auto
    qed simp
    have remove-lqueue-step-w-details (lnth QDs (i'+m)) ess (lnth QDs (i' + Suc m))
        unfolding defs by (rule remove-lqueue-step-w-detailsI)
    hence LCons e es & set ess
        using not-rem-step i'-ge by force
```

```
        thus ?thesis
            using ih unfolding defs by (auto intro: notin-set-remove)
    next
    case (lqueue-step-pick-elemI Q D)
    note defs = this(1,2) and rest = this(3)
    have pick-lqueue-step (lnth QDs (i' + m)) (lnth QDs (i' + Suc m))
    proof -
        have \existse es. pick-lqueue-step-w-details (lnth QDs (i' + m)) e es
        (lnth QDs (i' + Suc m))
        unfolding defs using pick-lqueue-step-w-detailsI
        by (metis add-Suc-right llists-pick-elem lqueue-step-pick-elemI(2) rest)
    thus ?thesis
        using pick-lqueue-stepI by fast
    qed
    moreover have }\neg\mathrm{ pick-lqueue-step (lnth QDs (i' +m)) (lnth QDs (i' + Suc m))
            using pick-step-min[rule-format, OF le-add1 i'm-lt] by simp
            ultimately show ?thesis
        by blast
    qed
    qed
    thus ?thesis
    by (metis j'-ge j'-le nat-le-iff-add)
qed
show ?case
proof (cases hd (snd (fst (lnth QDs j))) = (e,es))
    case eq-ees:True
    show ?thesis
    proof (rule exI[of - j]; intro conjI)
    show i\leqj
        using i'-ge j-ge le-trans by blast
    next
        show (e, es) \in set (take (k+1 - Suc l) (snd (fst (lnth QDs j))))
            by (metis (no-types, lifting) List.hd-in-set Suc-eq-plus1 cons-at-le-j diff-is-0-eq
                eq-ees hd-take j-ge le-imp-less-Suc nle-le not-less-eq-eq sl-le take-eq-Nil2
                zero-less-diff)
    qed
next
    case ne-ees: False
    show ?thesis
    proof (rule exI[of - Suc j], intro conjI)
        show i\leq Suc j
            using i'-ge j-ge by linarith
    next
        obtain Q :: 'e fifo and D :: 'e set and e' :: 'e and es' :: 'e llist where
            at-j: lnth QDs j = (Q,D) and
            at-sj: lnth QDs (Suc j) = (snd (pick-elem Q), D\cup{e'}) and
            pair-in: LCons e' es' }\in# llists Q and
            fst: fst (pick-elem Q) = e' and
            snd:llists (snd (pick-elem Q)) = llists Q - {#LCons e' es'#} + {#es'#}
            using pick-step unfolding pick-lqueue-step.simps pick-lqueue-step-w-details.simps
            by blast
```

 have cons-at- \(j:(e, e s) \in \operatorname{set}(\operatorname{take}(k+1-l)(\operatorname{snd}(f s t(\operatorname{lnth} Q D s j))))\)
 using cons-at-le-j[of j] j-ge by blast

```
        show (e, es) \in set (take (k+1 - Suc l) (snd (fst (lnth QDs (Suc j)))))
        proof (cases Q)
            case q: (Pair num-nils ps)
        show ?thesis
        proof (cases ps)
            case Nil
            hence False
                using at-j cons-at-j q by force
            thus ?thesis
                by blast
        next
                case ps:(Cons p' ps')
                show ?thesis
                proof (cases p')
                    case p':(Pair el es')
                    have hd-at-j: hd (snd (fst (lnth QDs j))) = (e',es')
                    by (simp add: at-j p' ps q)
                    show ?thesis
                    proof (cases es')
                        case es': LNil
                        show ?thesis
                        using cons-at-j ne-ees Suc-diff-le l-le-k
                    unfolding q ps p}\mp@subsup{p}{}{\prime}e\mp@subsup{s}{}{\prime}\mathrm{ at-j at-sj hd-at-j by force
                next
                    case es':(LCons e" es')
                        show ?thesis
                        using cons-at-j ne-ees Suc-diff-le l-le-k
                    unfolding q ps p' es' at-j at-sj hd-at-j by force
                qed
                qed
                qed
            qed
        qed
        qed
    qed
    thus ?thesis
        by (metis Suc-eq-plus1 add-right-mono diff-Suc-Suc diff-diff-cancel diff-le-self)
qed
then obtain }\mp@subsup{i}{}{\prime}::\mathrm{ nat where
    i'-ge: i' }\geqi\mathrm{ and
    cons-at-i':(e, es) \in set (take 1 (snd (fst (lnth QDs i'))))
    by auto
then obtain j0 :: nat where
    j0\geqi' and
    pick-lqueue-step (lnth QDs j0) (lnth QDs (Suc j0))
    using inf-pick unfolding infinitely-often-alt-def by auto
then obtain j :: nat where
    j-ge: j\geq i' and
    pick-step: pick-lqueue-step (lnth QDs j) (lnth QDs (Suc j)) and
    pick-step-min:
```



```
using wfP-exists-minimal[OF wfP-less, of
    \lambdaj.j\geq\mp@subsup{i}{}{\prime}\wedge pick-lqueue-step (lnth QDs j) (lnth QDs (Suc j)) j0 \lambdaj.j]
    by blast
hence pick-step-det: \existse es. pick-lqueue-step-w-details (lnth QDs j) e es (lnth QDs (Suc j))
    unfolding pick-lqueue-step.simps by simp
have pick-lqueue-step-w-details (lnth QDs j) e es (lnth QDs (Suc j))
proof -
    have cons-at-j: (e, es) \in set (take 1 (snd (fst (lnth QDs j))))
    proof -
        have (e, es) \in set (take 1 (snd (fst (lnth QDs (i'}+l))))) if i'l-le: i' +l\leqj for 
        using i'l-le
    proof (induct l)
        case (Suc l)
        note ih = this(1) and i'sl-le = this(2)
        have i'l-lt: i' + l<j
        using i'sl-le by linarith
        have i'l-le:}\mp@subsup{i}{}{\prime}+l\leq
        using i'sl-le by linarith
        note ih = ih[OF i'l-le]
        have step: lqueue-step (lnth QDs (i' + l)) (lnth QDs (i' + Suc l))
        by (simp add: chain chain-lnth-rel len)
    show ?case
        using step
    proof cases
        case (lqueue-step-fold-add-llistI Q D ess)
        note defs = this
        have len-q: length (snd Q) \geq1
            using ih by (metis Suc-eq-plus1 add.commute empty-iff le-add1 length-0-conv
                    list.set(1) list-decode.cases local.lqueue-step-fold-add-llistI(1) prod.sel(1)
                take.simps(1))
        have take: take (Suc 0) (snd (fold add-llist ess Q)) = take (Suc 0) (snd Q)
            using len-q
        proof (induct ess arbitrary:Q)
            case Nil
            show ?case
                by (cases Q) auto
        next
            case (Cons es' ess')
            note ih = this(1) and len-q = this(2)
            have len-add: length (snd (add-llist es' Q )) \geq1
            proof (cases Q)
                case q:(Pair num-nils ps)
                show ?thesis
                proof (cases es')
                    case es':LNil
                        show ?thesis
                    using len-q unfolding q es' by simp
                    next
                case es':(LCons e" es')
```

```
        show ?thesis
            using len-q unfolding q es' by simp
        qed
    qed
    note ih = ih[OF len-add]
    show ?case
    using len-q by (simp add: ih, cases Q, cases es', auto)
qed
show ?thesis
    unfolding defs using ih take
    by simp (metis local.lqueue-step-fold-add-llistI(1) prod.sel(1))
next
    case (lqueue-step-fold-remove-llistI Q D ess)
    note defs = this
    have remove-lqueue-step-w-details (lnth QDs (i'+l)) ess (lnth QDs (i' + Suc l))
    unfolding defs by (rule remove-lqueue-step-w-detailsI)
moreover have }\neg\mathrm{ ( ( ess. LCons e es }\in\mathrm{ set ess
    \wedge ~ r e m o v e - l q u e u e - s t e p - w - d e t a i l s ~ ( l n t h ~ Q D s ~ ( i ' + l ) ) ~ e s s ~ ( l n t h ~ Q D s ~ ( i ' ~ + ~ S u c ~ l ) ) ) ~
    using not-rem-step add-Suc-right i'-ge trans-le-add1 by presburger
ultimately have ees-ni: LCons e es }\not\in\mathrm{ set ess
    by blast
obtain ps' :: ('e > 'e llist) list where
    snd-q: snd Q = (e, es) # ps'
    using ih by (metis (no-types, opaque-lifting) One-nat-def fst-eqD in-set-member
        in-set-takeD length-pos-if-in-set list.exhaust-sel
        lqueue-step-fold-remove-llistI(1) member-rec(1) member-rec(2) nth-Cons-0 take0
        take-Suc-conv-app-nth)
    obtain num-nils' :: nat where
        q: Q = (num-nils', (e, es) # ps')
        by (metis prod.collapse snd-q)
    have take-1: take 1 (snd (fold remove-llist ess Q)) = take 1 (snd Q)
    unfolding q using ees-ni
    proof (induct ess arbitrary: num-nils' ps')
    case (Cons es' ess')
    note ih = this(1) and ees-ni = this(2)
    have ees-ni': LCons e es & set ess'
        using ees-ni by simp
    note ih = ih[OF ees-ni]
    have es'-ne: es'}==LCons e e
        using ees-ni by auto
    show ?case
    proof (cases es')
        case LNil
        then show ?thesis
        using ih by auto
```

```
            next
                case es':(LCons e 'l es')
                show ?thesis
                using ih es'-ne unfolding es' by auto
            qed
        qed auto
        show ?thesis
            unfolding defs using ih take-1
            by simp (metis lqueue-step-fold-remove-llistI(1) prod.sel(1))
    next
        case (lqueue-step-pick-elemI Q D)
        note defs = this(1,2) and rest = this(3)
    have pick-lqueue-step (lnth QDs (i' + l)) (lnth QDs (Suc (i' +l)))
    proof -
        have \existse es. pick-lqueue-step-w-details (lnth QDs (i't
            (lnth QDs (Suc (i'}+l))
            unfolding defs using pick-lqueue-step-w-detailsI
            by (metis add-Suc-right llists-pick-elem lqueue-step-pick-elemI(2) rest)
        thus ?thesis
            using pick-lqueue-stepI by fast
        qed
        moreover have }\neg\mathrm{ pick-lqueue-step (lnth QDs (i'}+l))(\operatorname{lnth}QDs(Suc(\mp@subsup{i}{}{\prime}+l))
        using pick-step-min[rule-format, OF le-add1 i'l-lt].
        ultimately show ?thesis
        by blast
    qed
    qed (use cons-at-i' in auto)
    thus ?thesis
    by (metis dual-order.refl j-ge nat-le-iff-add)
qed
hence cons-in-fst: (e,es)\in\operatorname{set}(\operatorname{snd}(fst (lnth QDs j)))
    using in-set-takeD by force
obtain ps':: ('e > 'e llist) list where
    fst-at-j: snd (fst (lnth QDs j)) = (e, es) # ps'
    using cons-at-j by (metis One-nat-def cons-in-fst empty-iff empty-set length-pos-if-in-set
        list.set-cases nth-Cons-0 self-append-conv2 set-ConsD take0 take-Suc-conv-app-nth)
have fst-pick: fst (pick-elem (fst (lnth QDs j))) =e
    using fst-at-j by (metis fst-conv pick-elem.simps(2) surjective-pairing)
have snd-pick:llists (snd (pick-elem (fst (lnth QDs j)))) =
    llists (fst (lnth QDs j)) - {#LCons e es#} + {#es#}
    by (subst (1 2) surjective-pairing[of fst (lnth QDs j)], unfold fst-at-j, cases es, auto)
obtain Q :: 'e fifo and D :: 'e set where
    at-j: lnth QDs j = (Q,D)
    by fastforce
show ?thesis
    unfolding pick-lqueue-step-w-details.simps
proof (rule exI[of-e], rule exI[of-es], rule exI[of-Q], rule exI[of - D], intro conjI)
    show lnth QDs (Suc j)=(snd (pick-elem Q),D\cup{e})
    by (smt (verit, best) at-j fst-conv fst-pick pick-lqueue-step-w-details.simps
```

```
                pick-step-det snd-conv)
    next
            have LCons e es }\in#\mathrm{ llists (fst (lnth QDs j))
                by (subst surjective-pairing) (auto simp: fst-at-j)
            thus LCons e es }\in#\mathrm{ llists Q
                unfolding at-j by simp
    next
        show fst (pick-elem Q) =e
                using at-j fst-pick by force
    next
        show llists (snd (pick-elem Q)) = llists Q - {#LCons e es#} + {#es#}
            using at-j snd-pick by fastforce
    qed (rule refl at-j)+
    qed
    hence }\existsj\geqi.pick-lqueue-step-w-details(lnth QDs j)e es (lnth QDs (Suc j))
    using i'-ge j-ge le-trans by blast
}
thus }\existsj\geqi\mathrm{ .
    (\exists ess. LCons e es }\in\mathrm{ set ess }\wedge remove-lqueue-step-w-details (lnth QDs j) ess (lnth QDs (Suc j)))
    \checkmark ~ p i c k - l q u e u e - s t e p - w - d e t a i l s ~ ( l n t h ~ Q D s ~ j ) ~ e ~ e s ~ ( l n t h ~ Q D s ~ ( S u c ~ j ) ) ~
    by blast
qed
end
end
```


13 Fair Zipperposition Loop with Ghosts

```
theory Fair-Zipperposition-Loop
    imports
        Given-Clause-Loops-Util
        Zipperposition-Loop
    Prover-Lazy-List-Queue
begin
```

The fair Zipperposition loop makes assumptions about the scheduled inference queue and the passive clause queue and ensures (dynamic) refutational completeness under these assumptions. This version inherits the ghost state component from the "unfair" version of the loop.

13.1 Locale

type-synonym $\left(' t,{ }^{\prime} p, ' f\right)$ ZLf-state $=$ ' $t \times$ ' inference set \times ' $p \times$ ' f option \times ' f fset
locale fair-zipperposition-loop $=$
discount-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q G-I-q Equiv-F Prec-F + todo: fair-prover-lazy-list-queue t-empty t-add-llist t-remove-llist t-pick-elem t-llists + passive: fair-prover-queue p-empty p-select p-add p-remove p-felems for

Bot-F :: 'f set and
Inf-F :: 'f inference set and
Bot- G :: ' g set and
$Q::{ }^{\prime} q$ set and
entails- $q::$ ' $q \Rightarrow$ ' g set \Rightarrow 'g set \Rightarrow bool and Inf- $G-q::{ }^{\prime} q \Rightarrow{ }^{\prime} g$ inference set and

Red-I-q :: ' $q \Rightarrow$ ' g set \Rightarrow ' g inference set and
Red- $-q-q::{ }^{\prime} q \Rightarrow$ ' g set \Rightarrow ' g set and
$\mathcal{G}-F-q::{ }^{\prime} q \Rightarrow ' f \Rightarrow$ ' g set and
$\mathcal{G}-I-q::$ ' $q \Rightarrow$ 'f inference \Rightarrow ' g inference set option and
Equiv- $F::{ }^{\prime} f \Rightarrow$ ' $f \Rightarrow$ bool (infix $\doteq 50$) and
Prec- $F::$ ' $f \Rightarrow$ ' $f \Rightarrow$ bool (infix $\prec \cdot 50$) and
t-empty :: 't and
t-add-llist :: 'f inference llist \Rightarrow ' $t \Rightarrow$ ' t and
t-remove-llist :: 'f inference llist $\Rightarrow{ }^{\prime} t \Rightarrow{ }^{\prime} t$ and
t-pick-elem :: ' $t \Rightarrow$ 'f inference \times 't and
t-llists :: ' $t \Rightarrow$ 'f inference llist multiset and
p-empty :: 'p and
p-select :: ' $p \Rightarrow$ ' f and
p-add :: $f \Rightarrow{ }^{\prime} p \Rightarrow$ ' p and
p-remove : : ' $f \Rightarrow{ }^{\prime} p \Rightarrow{ }^{\prime} p$ and
p-felems $::$ ' $p \Rightarrow$ 'f fset +
fixes
Prec- S :: ' $f \Rightarrow$ 'f \Rightarrow bool (infix $\prec S 50$)
assumes
wf-Prec-S: minimal-element $(\prec S)$ UNIV and
transp-Prec-S: transp $(\prec S)$ and
countable-Inf-between: finite $A \Longrightarrow$ countable (no-labels.Inf-between $A\{C\}$)
begin
lemma trans-Prec-S: trans $\{(x, y) . x \prec S y\}$
using transp-Prec-S transp-trans by blast
lemma irreflp-Prec-S: irreftp $(\prec S)$
using minimal-element.wf wfP-imp-irreflp wf-Prec-S wfp-on-UNIV by blast
lemma irrefl-Prec-S: irrefl $\{(x, y) . x \prec S y\}$
by (metis CollectD case-prod-conv irrefl-def irreflp-Prec-S irreflp-def)

13.2 Basic Definitions and Lemmas

abbreviation todo-of $::\left({ }^{\prime} t,,^{\prime} p,{ }^{\prime} f\right) Z L f$-state $\Rightarrow{ }^{\prime} t$ where todo-of $S t \equiv f s t S t$
abbreviation done-of :: ('t, ' p, ' f) ZLf-state \Rightarrow 'f inference set where done-of $S t \equiv$ fst (snd $S t$)
abbreviation passive-of :: ('t, 'p, 'f) ZLf-state $\Rightarrow{ }^{\prime} p$ where passive-of $S t \equiv f s t($ snd $($ snd $S t))$
abbreviation $y y$-of $::(' t, ' p, ' f) Z L f$-state \Rightarrow ' f option where $y y$-of $S t \equiv$ fst $($ snd $($ snd $($ snd St) $))$
abbreviation active-of $::\left({ }^{\prime} t,{ }^{\prime} p\right.$, ' f) ZLf-state \Rightarrow 'f fset where active-of $S t \equiv \operatorname{snd}($ snd $($ snd $($ snd $S t)))$
abbreviation all-formulas-of :: ('t, 'p, 'f) ZLf-state \Rightarrow ' f set where all-formulas-of $S t \equiv$ passive.elems $($ passive-of $S t) \cup$ set-option $(y y$-of $S t) \cup f$ set $($ active-of $S t)$
fun zl-fstate $::\left(' t\right.$, ' $\left.p,{ }^{\prime} f\right)$ ZLf-state \Rightarrow 'f inference set $\times(' f \times D L$-label) set where zl-fstate $(T, D, P, Y, A)=z l$-state $(t$-llists T, D, passive.elems P, set-option Y, fset A)
lemma zl-fstate-alt-def:
$z l-f s t a t e S t=z l-s t a t e(t-l l i s t s(f s t S t), f s t(s n d S t)$, passive.elems $(f s t($ snd $($ snd $S t)))$, set-option $(f s t(\operatorname{snd}(\operatorname{snd}($ snd $S t))))$, fset $($ snd $($ snd $(\operatorname{snd}($ snd St $)))))$
by (cases St) auto

```
definition
    Liminf-zl-fstate :: ('t, 'p, 'f) ZLf-state llist => 'f set }\times\mathrm{ 'f set }\times\mathrm{ 'f set
where
    Liminf-zl-fstate Sts =
    (Liminf-llist (lmap (passive.elems ○ passive-of) Sts),
    Liminf-llist (lmap (set-option ○ yy-of) Sts),
    Liminf-llist (lmap (fset ○ active-of) Sts))
lemma Liminf-zl-fstate-commute:
    Liminf-llist (lmap (snd ○ zl-fstate) Sts) = labeled-formulas-of (Liminf-zl-fstate Sts)
proof -
    have Liminf-llist (lmap (snd \circ zl-fstate) Sts)=
        (\lambdaC. (C, Passive))'Liminf-llist (lmap (passive.elems \circ passive-of) Sts) \cup
        (\lambdaC.(C,YY))'Liminf-llist (lmap (set-option ○ yy-of)Sts) U
        (\lambdaC. (C,Active))'Liminf-llist (lmap (fset ○ active-of) Sts)
        unfolding zl-fstate-alt-def zl-state-alt-def
        apply simp
        apply (subst Liminf-llist-lmap-union, fast)+
        apply (subst Liminf-llist-lmap-image, simp add: inj-on-convol-ident)+
        by auto
    thus ?thesis
    unfolding Liminf-zl-fstate-def by fastforce
qed
fun formulas-union :: 'f set }\times\mathrm{ 'f set }\times\mathrm{ 'f set }=>\mathrm{ 'f set where
    formulas-union (P,Y,A)=P\cupY\cupA
inductive
    fair-ZL ::('t,'p,'f) ZLf-state = ('t,'p,'f) ZLf-state = bool (infix ~ZLf 50)
where
    compute-infer: (\exists\iotas\in# t-llists T.\iotas = LNil) \Longrightarrowt-pick-elem T = (\iota0, T') \Longrightarrow
    \iota 0 \in \text { no-labels.Red-I (fset A } \cup \{ C \} ) \Longrightarrow
    (T, D, P, None, A)~ZLf (T', D\cup{\iota0}, p-add C P, None, A)
| choose-p: P = p-empty \Longrightarrow
        (T, D, P, None, A) ~ ZLf (T, D, p-remove (p-select P) P, Some (p-select P), A)
|elete-fwd: C no-labels.Red-F (fset A)\vee (\exists\mp@subsup{C}{}{\prime}\infset A. C'`. C)\Longrightarrow
        (T, D, P, Some C,A)~ZLf (T, D, P, None, A)
| simplify-fwd: }\mp@subsup{C}{}{\prime}\precSC\LongrightarrowC\in\mathrm{ no-labels.Red-F (fset A { {C'})}
        (T, D, P, Some C,A) ~ ZLf (T, D, P, Some C', A)
| delete-bwd: C' }|\not\in|A\Longrightarrow\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F {C} }\vee\mp@subsup{C}{}{\prime}\cdot\succC
        (T, D, P, Some C,A |\cup{ {|\mp@subsup{C}{}{\prime}|})~ZLf (T, D, P, Some C, A)
| simplify-bwd: C' |\not\in A\Longrightarrow C' }\precS\mp@subsup{C}{}{\prime}\Longrightarrow\mp@subsup{C}{}{\prime}\in\mathrm{ no-labels.Red-F {C, C'} }
        (T, D, P, Some C, A |\cup|{|\mp@subsup{C}{}{\prime}|})~ZLf (T, D, p-add C'\prime P, Some C, A)
| schedule-infer: flat-inferences-of (mset \iotass) = no-labels.Inf-between (fset A) {C} \Longrightarrow
        (T, D, P, Some C,A) ~ZLf
        (fold t-add-llist \iotass T, D - flat-inferences-of (mset \iotass), P, None, A |\cup| {|C|})
| delete-orphan-infers:\iotas\in# t-llists T\Longrightarrow lset \iotas \cap no-labels.Inf-from (fset A)={}\Longrightarrow
        (T,D,P,Y,A)~ZLf(t-remove-llist \iotas T, D\cuplset \iotas, P, Y,A)
```

inductive compute-infer-step :: ('t, 'p, 'f) ZLf-state $\Rightarrow\left(' t,{ }^{\prime} p\right.$, 'f) ZLf-state \Rightarrow bool where
$(\exists \iota s \in \#$ t-llists $T . \iota s \neq L N i l) \Longrightarrow t$-pick-elem $T=\left(\iota 0, T^{\prime}\right) \Longrightarrow$
$\iota 0 \in$ no-labels.Red-I $($ fset $A \cup\{C\}) \Longrightarrow$
compute-infer-step $(T, D, P$, None, $A)\left(T^{\prime}, D \cup\{\iota 0\}\right.$, p-add C P, None, $\left.A\right)$

The step below is slightly more general than the corresponding step in $(\sim Z L f)$, in the way it
handles the D component. The extra generality simplifies an argument later, when we erase the D "ghost" component of the state.

```
inductive choose-p-step :: ('t, 'p, 'f) ZLf-state \(\Rightarrow\) ('t, 'p, 'f) ZLf-state \(\Rightarrow\) bool where
    \(P \neq p\)-empty \(\Longrightarrow\)
    choose-p-step \((T, D, P\), None, \(A)\left(T, D^{\prime}, p\right.\)-remove \((p\)-select \(P) P\), Some \((p\)-select \(\left.P), A\right)\)
```


13.3 Initial State and Invariant

inductive is-initial-ZLf-state :: ('t, 'p, 'f) ZLf-state \Rightarrow bool where flat-inferences-of (mset $\iota s s)=$ no-labels.Inf-from $\} \Longrightarrow$ is-initial-ZLf-state (fold t-add-llist ıss t-empty, $\}$, p-empty, None, $\{|\mid\})$
inductive $Z L f$-invariant :: ('t, 'p, 'f) ZLf-state \Rightarrow bool where flat-inferences-of (t-llists $T) \subseteq$ Inf- $F \Longrightarrow$ ZLf-invariant (T, D, P, Y, A)
lemma initial-ZLf-invariant: assumes is-initial-ZLf-state St
shows ZLf-invariant $S t$
using assms
proof
fix $\iota s s$
assume
st: St $=($ fold t-add-llist ıss t-empty, $\{ \}$, p-empty, None, $\{| |\})$ and $\iota s s$: flat-inferences-of (mset $\iota s s)=$ no-labels.Inf-from $\}$
have flat-inferences-of (t-llists (fold t-add-llist ıss t-empty)) \subseteq Inf- F using uss no-labels.Inf-if-Inf-from by force
thus ZLf-invariant St
unfolding st using ZLf-invariant.intros by blast
qed
lemma step-ZLf-invariant: assumes
inv: ZLf-invariant $S t$ and
step: $S t \sim Z L f S t^{\prime}$
shows ZLf-invariant $S t^{\prime}$
using step inv
proof cases
case (compute-infer $T \iota 0 T^{\prime} A C D P$)
note defs $=$ this (1,2) and has-el $=$ this(3) and pick $=$ this(4)
have $t^{\prime}: T^{\prime}=$ snd (t-pick-elem $\left.T\right)$
using pick by simp
obtain ιs^{\prime} where
$\iota 0 \iota s^{\prime}-i n$: LCons $\iota 0 \iota s^{\prime} \in \#$ t-llists T and lists-t': t-llists $T^{\prime}=t$-llists $T-\left\{\# L C o n s ~ \iota 0 ~ \iota s^{\prime} \#\right\}+\left\{\# \iota s^{\prime} \#\right\}$
using todo.llists-pick-elem[OF has-el, folded t \dagger pick by auto
let ? $I I=\{$ lset $\iota s \mid \iota s . \iota s \in \#$ t-llists $T\}$
let ? $I=\bigcup$? $I I$
have $\bigcup\left\{\right.$ lset $\iota s \mid \iota s . \iota s \in \#$ t-llists $\left.T-\left\{\# L C o n s \iota 0 \iota s^{\prime} \#\right\}+\left\{\# \iota s^{\prime} \#\right\}\right\}=$ $\left(\bigcup\left\{\right.\right.$ lset $\iota s \mid \iota s . \iota s \in \# t$-llists $T-\left\{\#\right.$ LCons $\left.\left.\left.\iota 0 \iota s^{\prime} \#\right\}\right\}\right) \cup$ lset ιs^{\prime} by auto

```
also have \(\ldots \subseteq\left(\bigcup\left\{\right.\right.\) lset \(\iota s \mid \iota s . \iota s \in \# t\)-llists \(T-\left\{\#\right.\) LCons \(\left.\left.\left.\iota 0 \iota s^{\prime} \#\right\}\right\}\right) \cup\{\iota 0\} \cup\) lset \(\iota s^{\prime}\)
    unfolding lists-t \({ }^{\prime}\)
    by auto
also have \(\ldots \subseteq ? I \cup\{\iota 0\} \cup l\) set \(\iota s^{\prime}\)
proof -
    have \(\bigcup\left\{\right.\) lset \(\iota s \mid \iota s . \iota s \in \#\) t-llists \(T-\left\{\#\right.\) LCons \(\left.\left.\iota 0 \iota s^{\prime} \#\right\}\right\} \subseteq \bigcup\{\) lset \(\iota s \mid \iota s . \iota s \in \#\) t-llists \(T\}\)
        using Union-Setcompr-member-mset-mono[of t-llists \(T-\left\{\#\right.\) LCons \(\left.\iota 0 \iota s^{\prime} \#\right\}\) t-llists \(T\) lset]
        by auto
    thus ?thesis
        by blast
qed
also have...\(\subseteq\) ? I
proof -
    have \(\iota 0 \in\) ? I
        using todo.llists-pick-elem[OF has-el, folded t'] pick by auto
    moreover have lset \(\iota s^{\prime} \subseteq\) ? I
        using todo.llists-pick-elem[OF has-el, folded \(\left.t^{\prime}\right]\) pick \(\iota 0 \iota s^{\prime}\)-in by auto
    ultimately show ?thesis
        by blast
qed
finally show ?thesis
    using inv unfolding defs ZLf-invariant.simps by (simp add: lists-t')
next
    case (schedule-infer ıss A C T D P)
    note defs \(=\) this (1,2) and \(\iota s s\)-inf-betw \(=\) this(3)
    have \(\bigcup\{\) lset \(\iota \mid \iota . \iota \in\) set \(\iota s s\} \subseteq\) Inf-F
        using \(\iota s s\)-inf-betw unfolding no-labels.Inf-between-def no-labels.Inf-from-def by auto
    thus ?thesis
        using inv unfolding defs ZLf-invariant.simps by simp blast
next
    case (delete-orphan-infers ıs T A D P Y)
    note defs \(=\) this(1,2)
    have \(\bigcup\{\) lset \(\iota \mid \iota . \iota \in \#\) t-lilists \(T-\{\# \iota s \#\}\} \subseteq \bigcup\{\) lset \(\iota \mid \iota . \iota \in \#\) t-lilists \(T\}\)
        using Union-Setcompr-member-mset-mono[of t-llists \(T-\{\# \iota s \#\}\) t-llists \(T\) lset] by auto
    thus ?thesis
        using inv unfolding defs ZLf-invariant.simps by simp
qed (auto simp: ZLf-invariant.simps)
lemma chain-ZLf-invariant-lnth:
    assumes
        chain: chain \((\sim Z L f)\) Sts and
        fair-hd: ZLf-invariant (lhd Sts) and
        \(i-l t\) : enat \(i<\) llength Sts
    shows ZLf-invariant (lnth Sts \(i\) )
    using \(i-l t\)
proof (induct \(i\) )
    case 0
    thus ?case
        using fair-hd lhd-conv-lnth zero-enat-def by fastforce
next
    case (Suc i)
    note \(i h=t h i s(1)\) and \(s i-l t=t h i s(2)\)
    have enat \(i<\) llength Sts
        using si-lt Suc-ile-eq nless-le by blast
```

```
    hence inv-i: ZLf-invariant (lnth Sts i)
    by (rule ih)
    have step: lnth Sts i}~\mathrm{ ZLf lnth Sts (Suc i)
    using chain chain-lnth-rel si-lt by blast
    show ?case
    by (rule step-ZLf-invariant[OF inv-i step])
qed
lemma chain-ZLf-invariant-llast:
    assumes
        chain: chain ( }~ZLf)\mathrm{ Sts and
    fair-hd: ZLf-invariant (lhd Sts) and
    fin: lfinite Sts
    shows ZLf-invariant (llast Sts)
proof -
    obtain i :: nat where
        i: llength Sts = enat i
        using lfinite-llength-enat[OF fin] by blast
    have im1-lt: enat (i - 1) < llength Sts
    using i by (metis chain chain-length-pos diff-less enat-ord-simps(2) less-numeral-extra(1)
                zero-enat-def)
    show ?thesis
    using chain-ZLf-invariant-lnth[OF chain fair-hd im1-lt]
    by (metis Suc-diff-1 chain chain-length-pos eSuc-enat enat-ord-simps(2) i llast-conv-lnth
        zero-enat-def)
qed
```


13.4 Final State

inductive is-final-ZLf-state :: ('t, 'p, 'f) ZLf-state \Rightarrow bool where is-final-ZLf-state (t-empty, D, p-empty, None, A)
lemma is-final-ZLf-state-iff-no-ZLf-step:
assumes inv: ZLf-invariant $S t$
shows is-final-ZLf-state $S t \longleftrightarrow\left(\forall S t^{\prime} . \neg S t \sim Z L f S t^{\prime}\right)$
proof
assume is-final-ZLf-state St
then obtain $D::$ ' f inference set and A :: ' f fset where
st: St $=(t$-empty, D, p-empty, None, $A)$
by (auto simp: is-final-ZLf-state.simps)
show $\forall S t^{\prime} . \neg S t \sim Z L f S t^{\prime}$
unfolding st
proof (intro allI notI)
fix $S t^{\prime}$
assume $(t$-empty, D, p-empty, None, $A) \sim Z L f S t^{\prime}$
thus False
by cases auto
qed
next
assume no-step: $\forall S t^{\prime} . \neg S t \leadsto Z L f S t^{\prime}$
show is-final-ZLf-state St
proof (rule ccontr)
assume not-fin: $\neg i s$-final-ZLf-state $S t$

```
obtain T :: 't and D :: 'f inference set and P :: ' }p\mathrm{ and }Y:: 'f option and
    A :: 'f fset where
    st:St=(T,D,P,Y,A)
    by (cases St)
have}T\not=t\mathrm{ -empty }\veeP\not=p\mathrm{ -empty }\veeY\not=None
    using not-fin unfolding st is-final-ZLf-state.simps by auto
moreover {
    assume
    t:T\not=t-empty and
    y: Y = None
    have }\existsS\mp@subsup{t}{}{\prime}.St~ZLf St
    proof (cases todo.has-elem T)
        case has-el:True
    obtain }\iota0\mathrm{ :: 'f inference and T' :: 't where
        pick:t-pick-elem T = (\iota0, T')
        by fastforce
    obtain }\iota\mp@subsup{s}{}{\prime}\mathrm{ where
        \iota0\iotas'-in:LCons \iota0 \iotas' \in# t-llists T and
        lists-t': t-llists T' = t-llists T - {#LCons \iota0 \iotas'#} + {#\iotas'#}
        using todo.llists-pick-elem[OF has-el] pick by auto
    have }\iota0\in\bigcup{\mathrm{ lset ८|८. ८ &# t-llists T}
        using }\iota0\iota\mp@subsup{s}{}{\prime}-\mathrm{ -in by auto
        hence }\iota0\in\operatorname{Inf-F
        using inv t unfolding st ZLf-invariant.simps by auto
    hence \iota0-red:\iota0 \in no-labels.Red-I-G (fset A \cup{concl-of \iota0})
        by (simp add: no-labels.empty-ord.Red-I-of-Inf-to-N)
    show ?thesis
        using fair-ZL.compute-infer[OF has-el pick \iota0-red] unfolding st y by blast
    next
        case has-no-el: False
    have nil-in: LNil \in# t-llists T
        by (metis has-no-el multiset-nonemptyE t todo.llists-not-empty)
    have nil-inter:lset LNil \cap no-labels.Inf-from (fset A)={}
        by simp
    show ?thesis
        using fair-ZL.delete-orphan-infers[OF nil-in nil-inter] unfolding st t y by fast
    qed
}
moreover
{
    assume
        p:P\not=p-empty and
        y:Y = None
have }\existsS\mp@subsup{t}{}{\prime}.St~ZLfSt
    using fair-ZL.choose-p[OF p] unfolding st p y by fast
```

```
    }
    moreover
    {
    assume Y}=\mathrm{ None
    then obtain C :: 'f where
        y: Y = Some C
        by blast
    obtain \iotas :: 'f inference llist where
        \iotass: flat-inferences-of (mset [\iotas]) = no-labels.Inf-between (fset A) {C}
        using countable-imp-lset[OF countable-Inf-between[OF finite-fset]] by force
    have \existsSt'.St }~ZLf St
        using fair-ZL.schedule-infer[OF \iotass] unfolding st y by fast
    } ultimately show False
    using no-step by force
qed
qed
```


13.5 Refinement

lemma fair-ZL-step-imp-ZL-step:

```
    assumes zlf: (T,D,P,Y,A) ~ ZLf (T', D', P', Y', A')
```

 shows \(z l\)-fstate \((T, D, P, Y, A) \sim Z L\) zl-fstate \(\left(T^{\prime}, D^{\prime}, P^{\prime}, Y^{\prime}, A^{\prime}\right)\)
 using \(z l f\)
 proof cases
case (compute-infer 10 C)
note defs $=$ this $(1-5)$ and has-el $=$ this(6$)$ and pick $=$ this(7) and ι-red $=$ this(8$)$
obtain ιs^{\prime} where
$\iota 0 \iota s^{\prime}-i n$: LCons $\iota 0 \iota s^{\prime} \in \#$ t-lisists T and
lists-t': t-llists $T^{\prime}=t$-llists $T-\left\{\#\right.$ LCons $\left.\iota 0 \iota s^{\prime} \#\right\}+\left\{\# \iota s^{\prime} \#\right\}$
using todo.llists-pick-elem[OF has-el] pick by auto
show ?thesis
unfolding defs zl-fstate-alt-def prod.sel option.set lists-t'
using ZL.compute-infer [OF ι-red, of t-llists $T-\left\{\# L C o n s \iota 0 \iota s^{\prime} \#\right\} \iota s^{\prime} D$ passive.elems $\left.P\right]$
$\iota 0 \iota s^{\prime}-i n$
by auto
next
case choose-p
note defs $=$ this $(1-6)$ and $p-n e m p=$ this (7)
have elems-rem-sel-uni-sel:
passive.elems $(p$-remove $(p$-select $P) P) \cup\{p$-select $P\}=$ passive.elems P
using p-nemp by force
show ?thesis
unfolding defs zl-fstate-alt-def prod.sel option.set
using ZL.choose-p[of t-llists T D passive.elems (p-remove (p-select P) P) p-select P
fset A]
by (metis elems-rem-sel-uni-sel)
next
case (delete-fwd C)
note defs $=$ this $(1-6)$ and c-red $=$ this (7)
show ?thesis
unfolding defs zl-fstate-alt-def using ZL.delete-fwd[OF c-red] by simp next
case (simplify-fwd $C^{\prime} C$)
note defs $=$ this $(1-6)$ and c-red $=$ this (8)
show ?thesis
unfolding defs zl-fstate-alt-def using ZL.simplify-fwd[OF c-red] by simp
next
case (delete-bwd $C^{\prime} C$)
note defs $=$ this $(1-6)$ and c^{\prime}-red $=$ this(8)
show ?thesis
unfolding defs zl-fstate-alt-def using ZL.delete-bwd[OF c'-red] by simp next
case (simplify-bwd $C^{\prime} C^{\prime \prime} C$)
note defs $=$ this $(1-6)$ and $c^{\prime \prime}$-red $=$ this (9)
show ?thesis
unfolding defs zl-fstate-alt-def using ZL.simplify-bwd $\left[O F c^{\prime \prime}\right.$-red $]$ by simp
next
case (schedule-infer ıss C)
note defs $=$ this $(1-6)$ and $\iota s s=$ this (7)
show ?thesis
unfolding defs zl-fstate-alt-def prod.sel option.set
using ZL.schedule-infer[OF ıss, of t-llists T D passive.elems $P]$
by (simp add: Un-commute)
next
case (delete-orphan-infers ιs)
note defs $=$ this $(1-5)$ and ιs-in $=$ this(6) and inter $=$ this (7)
show ?thesis
unfolding defs zl-fstate-alt-def todo.llist-remove prod.sel option.set
using ZL.delete-orphan-infers[OF inter, of t-llists $T-\{\# \iota s \#\} D$ passive.elems P set-option Y]

$$
\iota s-i n
$$

by simp
qed
lemma fair-ZL-step-imp-GC-step:

```
(T, D,P,Y,A) ~ZLf (T', D', P', Y', A')\Longrightarrow
    zl-fstate (T, D, P,Y,A)~LGC zl-fstate ( }\mp@subsup{T}{}{\prime},\mp@subsup{D}{}{\prime},\mp@subsup{P}{}{\prime},\mp@subsup{Y}{}{\prime},\mp@subsup{A}{}{\prime}
by (rule ZL-step-imp-LGC-step[OF fair-ZL-step-imp-ZL-step])
```


13.6 Completeness

fun mset-of-zl-fstate :: (' $\left.t,{ }^{\prime} p, ' f\right)$ ZLf-state \Rightarrow ' f multiset where mset-of-zl-fstate $(T, D, P, Y, A)=$ mset-set (passive.elems $P)+m s e t-s e t($ set-option $Y)+m s e t-s e t(f s e t ~ A)$
abbreviation Precprec-S :: 'f multiset \Rightarrow 'f multiset \Rightarrow bool (infix $\prec \prec S 50$) where $(\prec \prec S) \equiv$ multp $(\prec S)$
lemma wfP-Precprec-S: wfP $(\prec \prec S)$
using minimal-element-def wfP-multp wf-Prec-S wfp-on-UNIV by blast
definition Less-state $::\left(' t,{ }^{\prime} p, ' f\right)$ ZLf-state $\Rightarrow(' t, ' p, ' f) Z L f$-state \Rightarrow bool (infix $\left.\sqsubset 50\right)$ where
$S t^{\prime} \sqsubset S t \longleftrightarrow$
mset-of-zl-fstate $S t^{\prime} \prec \prec S$ mset-of-zl-fstate St

```
\vee (mset-of-zl-fstate St' = mset-of-zl-fstate St
    ^ (mset-set (passive.elems (passive-of St')) \prec\precS mset-set (passive.elems (passive-of St))
        \vee ~ ( p a s s i v e . e l e m s ~ ( p a s s i v e - o f ~ S t ' ) ~ = ~ p a s s i v e . e l e m s ~ ( p a s s i v e - o f ~ S t )
            \wedge (mset-set (set-option (yy-of St')) \prec\precS mset-set (set-option (yy-of St))
                    \vee ~ ( m s e t - s e t ~ ( s e t - o p t i o n ~ ( y y - o f ~ S t ' ) ) ~ = ~ m s e t - s e t ~ ( s e t - o p t i o n ~ ( y y - o f ~ S t ) ) ~ )
                    \wedge size (t-llists (todo-of St'))}<\mathrm{ size (t-llists (todo-of St)))))))
lemma wfP-Less-state:wfP (\sqsubset)
proof -
    let ?msetset = {(M',M). M'\prec\precSM}
    let ?natset = {( n', n :: nat). n'< n}
    let ?quad-of = \lambdaSt. (mset-of-zl-fstate St,mset-set (passive.elems (passive-of St)),
    mset-set (set-option (yy-of St)), size (t-llists (todo-of St)))
    have wf-msetset: wf ?msetset
    using wfP-Precprec-S wfP-def by auto
    have wf-natset: wf ?natset
    by (rule Wellfounded.wellorder-class.wf)
    have wf-lex-prod:wf (?msetset <*lex*> ?msetset <*lex*> ?msetset <*lex*> ?natset)
    by (rule wf-lex-prod[OF wf-msetset wf-lex-prod[OF wf-msetset
        wf-lex-prod[OF wf-msetset wf-natset]]])
    have Less-state-alt-def: \St' St. St'}\sqsubsetSt
        (?quad-of St', ?quad-of St) \in ?msetset <*lex*> ?msetset <*lex*> ?msetset <*lex*> ?natset
    unfolding Less-state-def by auto
    show ?thesis
    unfolding wfP-def Less-state-alt-def using wf-app[of - ?quad-of] wf-lex-prod by blast
qed
lemma non-compute-infer-ZLf-step-imp-Less-state:
    assumes
        step: St ~ZLf St' and
        non-ci: \neg compute-infer-step St St'
    shows St' }\sqsubsetS
    using step
proof cases
    case (compute-infer T \iota0 \iotas A C D P)
    hence False
    using non-ci[unfolded compute-infer-step.simps] by blast
    thus ?thesis
        by blast
next
    case (choose-p P T D A)
    note defs = this(1,Q)
    have all: add-mset (p-select P) (mset-set (passive.elems P - {p-select P})) =
    mset-set (passive.elems P)
    by (metis finite-fset local.choose-p(3) mset-set.remove passive.select-in-felems)
    have pas: mset-set (passive.elems P - {p-select P}) \prec\precS mset-set (passive.elems P)
    by (metis all multi-psub-of-add-self subset-implies-multp)
    show ?thesis
    unfolding defs Less-state-def by (simp add: all pas)
next
```

```
case (delete-fwd C A T D P)
note defs = this(1,2)
show ?thesis
    unfolding defs Less-state-def by (auto intro!: subset-implies-multp)
next
    case (simplify-fwd C' C A T D P)
    note defs = this(1,2) and prec = this(3)
    let ?new-bef = mset-set (passive.elems P) + mset-set (fset A) + {#C#}
    let ?new-aft = mset-set (passive.elems P) +mset-set (fset A) +{#C'#}
    have ?new-aft \prec\precS ?new-bef
    unfolding multp-def
    proof (subst mult-cancelL[OF trans-Prec-S irrefl-Prec-S], fold multp-def)
    show {#\mp@subsup{C}{}{\prime}#}\prec\precS{#C#}
        unfolding multp-def using prec by (auto intro: singletons-in-mult)
    qed
    thus ?thesis
    unfolding defs Less-state-def by simp
next
    case (delete-bwd C' A C T D P)
    note defs=this(1,2) and c-ni=this(3)
    show ?thesis
    unfolding defs Less-state-def using c-ni
    by (auto intro!: subset-implies-multp)
next
    case (simplify-bwd C'A C'\prime}C T D P
    note defs = this(1,2) and c'-ni=this(3) and prec = this(4)
    show ?thesis
    proof (cases C'\prime}\in\mathrm{ passive.elems P)
    case c'"-in: True
    show ?thesis
        unfolding defs Less-state-def using c'-ni
        by (auto simp: insert-absorb[OF c''-in] intro!: subset-implies-multp)
    next
    case c'"-ni: False
    have bef: add-mset C (mset-set (passive.elems P) + mset-set (insert C' (fset A)))=
        add-mset C (mset-set (passive.elems P) + mset-set (fset A)) + {#C'#}
        (is ?old-bef = ?new-bef)
        using c'-ni by auto
    have aft: add-mset C (mset-set (insert C'I (passive.elems P)) + mset-set (fset A)) =
        add-mset C (mset-set (passive.elems P) + mset-set (fset A)) + {#C'##
        (is ?old-aft = ?new-aft)
        using c'\prime}-ni by sim
    have ?new-aft \prec\precS ?new-bef
        unfolding multp-def
    proof (subst mult-cancelL[OF trans-Prec-S irrefl-Prec-S], fold multp-def)
        show {#\mp@subsup{C}{}{\prime\prime}#} \prec\precS {#C'#}
            unfolding multp-def using prec by (auto intro: singletons-in-mult)
    qed
    thus ?thesis
        unfolding defs Less-state-def by (simp add: bef aft)
```

qed
next
case (schedule-infer ıss A C T D P)
note defs $=$ this $(1,2)$
show ?thesis
unfolding defs Less-state-def
by simp (metis finite-fset insert-absorb mset-set.insert multi-psub-of-add-self subset-implies-multp)
next
case (delete-orphan-infers ıs T A D P Y)
note defs $=$ this (1,2) and $\iota s=$ this(3)
have size $(t$-llists $T-\{\# \iota s \#\})<$ size $(t$-llists $T)$
using ιs by (simp add: size-Diff1-less)
thus ?thesis
unfolding defs Less-state-def by simp
qed
lemma yy-nonempty-ZLf-step-imp-Less-state:
assumes
step: $S t \sim Z L f S t^{\prime}$ and
yy: yy-of $S t \neq$ None
shows $S t^{\prime} \sqsubset S t$
proof -
have \neg compute-infer-step St $S t^{\prime}$
using yy unfolding compute-infer-step.simps by auto
thus ?thesis
using non-compute-infer-ZLf-step-imp-Less-state[OF step] by blast
qed
lemma fair-ZL-Liminf-yy-empty:
assumes
len: llength Sts $=\infty$ and
full: full-chain $(\sim Z L f)$ Sts and
inv: ZLf-invariant (lhd Sts)
shows Liminf-llist (lmap (set-option \circ yy-of) Sts) $=\{ \}$
proof (rule ccontr)
assume lim-nemp: Liminf-llist (lmap (set-option $\circ y y-o f)$ Sts) $\neq\{ \}$
obtain $i::$ nat where
i-lt: enat $i<$ llength Sts and
inter-nemp $: \bigcap(($ set-option \circ yy-of \circ lnth Sts) ' $\{j . i \leq j \wedge$ enat $j<$ llength Sts $\}) \neq\{ \}$
using lim-nemp unfolding Liminf-llist-def by auto
from inter-nemp obtain C :: ' f where
c-in: $\forall P \in$ lnth Sts' $\{j . i \leq j \wedge$ enat $j<$ llength Sts $\} . C \in$ set-option (yy-of P)
by auto
hence c-in': $\forall j \geq i$. enat $j<$ llength Sts $\longrightarrow C \in$ set-option (yy-of (lnth Sts j))
by auto
have si-lt: enat (Suc i) < llength Sts
unfolding len by auto
have $y y-j: y y$-of (lnth Sts $j) \neq$ None if j-ge: $j \geq i$ for j
using c-in' len j-ge by auto
have step: lnth Sts $j \sim Z L f$ lnth Sts (Suc j) if j-ge: $j \geq i$ for j
using full-chain-imp-chain[OF full] infinite-chain-lnth-rel len llength-eq-infty-conv-lfinite by blast
have lnth Sts (Suc j) \sqsubset lnth $S t s j$ if j-ge: $j \geq i$ for j
using yy-nonempty-ZLf-step-imp-Less-state by (meson step j-ge yy-j)
hence $(\sqsubset)^{-1-1}$ (lnth Sts j) (lnth Sts (Suc j))
if j-ge: $j \geq i$ for j
using j-ge by blast
hence inf-down-chain: chain $(\sqsubset)^{-1-1}$ (ldropn i Sts)
by (simp add: chain-ldropnI si-lt)
have inf-i: \neg lfinite (ldropn i Sts)
using len by (simp add: llength-eq-infty-conv-lfinite)
show False
using inf-i inf-down-chain wfP-iff-no-infinite-down-chain-llist[of ($\sqsubset)]$ wfP-Less-state by metis
qed
lemma ZLf-step-imp-passive-queue-step:
assumes $S t \sim Z L f S t^{\prime}$
shows passive.queue-step (passive-of $S t$) (passive-of $S t^{\prime}$)
using assms
by cases (auto intro: passive.queue-step-idleI passive.queue-step-addI
passive.queue-step-removeI)
lemma choose-p-step-imp-select-passive-queue-step:
assumes choose-p-step St St'
shows passive.select-queue-step (passive-of St) (passive-of $S t^{\prime}$)
using assms
proof cases
case (1 P T D A)
note defs $=$ this $(1,2)$ and $p-n e m p=\operatorname{this}(3)$
show ?thesis
unfolding defs prod.sel by (rule passive.select-queue-stepI[OF p-nemp])
qed
lemma fair-ZL-Liminf-passive-empty: assumes
len: llength Sts $=\infty$ and
full: full-chain $(\sim Z L f)$ Sts and
init: is-initial-ZLf-state (lhd Sts) and
fair: infinitely-often compute-infer-step Sts \longrightarrow infinitely-often choose-p-step Sts
shows Liminf-llist (lmap (passive.elems \circ passive-of) Sts) $=\{ \}$
proof -
have chain-step: chain passive.queue-step (lmap passive-of Sts)
using ZLf-step-imp-passive-queue-step chain-lmap full-chain-imp-chain[OF full]
by (metis (no-types, lifting))
have inf-oft: infinitely-often passive.select-queue-step (lmap passive-of Sts)
proof
assume finitely-often passive.select-queue-step (lmap passive-of Sts)
hence fin-cp: finitely-often choose-p-step Sts
unfolding finitely-often-def choose-p-step-imp-select-passive-queue-step by (smt choose-p-step-imp-select-passive-queue-step enat-ord-code(4) len llength-lmap

```
        lnth-lmap)
    hence fin-ci: finitely-often compute-infer-step Sts
    using fair by blast
    obtain i :: nat where
        i:\forallj\geqi.\neg compute-infer-step (lnth Sts j) (lnth Sts (Suc j))
    using fin-ci len unfolding finitely-often-def by auto
    have si-lt: enat (Suc i) < llength Sts
    unfolding len by auto
    have not-ci: \neg compute-infer-step (lnth Sts j) (lnth Sts (Suc j)) if j-ge: j\geqi for j
    using i j-ge by auto
    have step:lnth Sts j ~ZLf lnth Sts (Suc j) if j-ge: j\geqi for j
    by (simp add: full-chain-lnth-rel[OF full] len)
    have lnth Sts (Suc j)\sqsubset lnth Sts j if j-ge: j\geqi for j
    by (rule non-compute-infer-ZLf-step-imp-Less-state[OF step[OF j-ge] not-ci[OF j-ge]])
    hence (\sqsubset)-1-1 (lnth Sts j) (lnth Sts (Suc j)) if j-ge: j\geqi for j
        using j-ge by blast
    hence inf-down-chain: chain (\sqsubset)-1-1 (ldropn i Sts)
    using chain-ldropn-lmapI[OF - si-lt, of - id, simplified llist.map-id] by simp
    have inf-i: ᄀ lfinite (ldropn i Sts)
    using len lfinite-ldropn llength-eq-infty-conv-lfinite by blast
    show False
        using inf-i inf-down-chain wfP-iff-no-infinite-down-chain-llist[of (\sqsubset)] wfP-Less-state
        by blast
qed
have hd-emp:lhd (lmap passive-of Sts) = p-empty
    using init full full-chain-not-lnull unfolding is-initial-ZLf-state.simps by fastforce
    have Liminf-llist (lmap passive.elems (lmap passive-of Sts)) = {}
    by (rule passive.fair[OF chain-step inf-oft hd-emp])
thus ?thesis
    by (simp add: llist.map-comp)
qed
lemma ZLf-step-imp-todo-queue-step:
    assumes St ~ZLf St'
    shows todo.lqueue-step (todo-of St, done-of St) (todo-of St', done-of St')
    using assms
proof cases
    case (compute-infer T \iota0 T' A C D P)
    note defs = this(1,2) and has-el = this(3) and pick = this(4)
    have t': T' = snd (t-pick-elem T)
    using pick by simp
    show ?thesis
    unfolding defs prod.sel t' using todo.lqueue-step-pick-elemI[OF has-el] by (simp add: pick)
next
    case (schedule-infer \iotass A C T D P)
    note defs = this(1,2) and betw = this(3)
    show ?thesis
    unfolding defs prod.sel using todo.lqueue-step-fold-add-llistI[of T D \iotass] by simp
```

qed (auto intro: todo.lqueue-step-idleI todo.lqueue-step-fold-add-llistI
todo.lqueue-step-remove-llistI)
lemma fair-ZL-Liminf-todo-empty:
assumes
len: llength Sts $=\infty$ and
full: full-chain $(\sim Z L f)$ Sts and
init: is-initial-ZLf-state (lhd Sts)
shows Liminf-llist (lmap (λ St. flat-inferences-of (t-llists (todo-of St)) - done-of St) Sts) $=$ \{\}
proof -
define Infs where
Infs $=$ lmap $(\lambda$ St. flat-inferences-of $(t-l l i s t s ~(t o d o-o f ~ S t)) ~-d o n e-o f ~ S t) S t s$
define flat-Ts where
flat-Ts $=$ lmap $(\lambda$ St. flat-inferences-of $(t-l l i s t s(t o d o-o f ~ S t)))$ Sts
define $T D s$ where
TDs $=\operatorname{lmap}(\lambda S t .($ todo-of St, done-of St) $)$ Sts

\{

fix $i \iota$
assume ι-in-infs: $\iota \in$ lnth Infs i
have lt-sts: enat $n<$ llength Sts for n by (simp add: len)
have $l t$-tds: enat $n<l l e n g t h ~ T D s$ for n by (simp add: TDs-def len)
have chain-ts: chain todo.lqueue-step TDs proof have fst-tds: lmap fst TDs = lmap todo-of Sts unfolding TDs-def by (simp add: llist.map-comp) have snd-tds: lmap snd TDs = lmap done-of Sts unfolding TDs-def by (simp add: llist.map-comp)
show ?thesis
unfolding fst-tds
using TDs-def ZLf-step-imp-todo-queue-step chain-lmap full full-chain-imp-chain by (metis (lifting))
qed
have inf-oft: infinitely-often todo.pick-lqueue-step TDs
proof
assume finitely-often todo.pick-lqueue-step TDs
then obtain $i::$ nat where
no-pick: $\forall j \geq i$. \neg todo.pick-lqueue-step $($ lnth TDs $j)(\operatorname{lnth} T D s(S u c j))$ by (metis infinitely-often-alt-def lt-tds)
have si-lt: enat (Suc i) < llength Sts unfolding len by auto
have step: lnth Sts $j \leadsto Z L f$ lnth Sts (Suc j) if j-ge: $j \geq i$ for j using full-chain-imp-chain[OF full] infinite-chain-lnth-rel len llength-eq-infty-conv-lfinite by blast
have non-ci: \neg compute-infer-step (lnth Sts j) (lnth Sts (Suc j)) if j-ge: $j \geq i$ for j

```
    proof -
    \{
        assume compute-infer-step (lnth Sts j) (lnth Sts (Suc j))
        hence \(\exists j \geq i\). todo.pick-lqueue-step (lnth TDs j) (lnth TDs (Suc j))
            using assms
        proof cases
            case ( \(1 T \iota 0 T^{\prime} A C D P\) )
            note \(s t s-a t-j=\) this(1) and sts-at-sj \(=\) this(2) and has-el \(=\) this(3) and pick \(=\) this(4)
            obtain \(\iota 0^{\prime}\) :: 'f inference and \(\iota s\) :: ' \(f\) inference llist where
                cons-in0: LCons \(\iota 0^{\prime} \iota s \in \#\) t-lists \(T\) and
                fst0: fst ( \(t\)-pick-elem \(T\) ) \(=\iota 0^{\prime}\) and
                snd0: t-llists \((\) snd \((t\)-pick-elem \(T))=\) t-llists \(T-\left\{\#\right.\) LCons \(\left.\iota 0^{\prime} \iota s \#\right\}+\{\# \iota s \#\}\)
                using todo.llists-pick-elem[OF has-el] by blast
            have \(\iota 0^{\prime}: \iota 0^{\prime}=\iota 0\)
                using pick fst0 by auto
            have
                cons-in: LCons 10 ८s \(\in \#\) t-llists \(T\) and
                fst: fst \((t\)-pick-elem \(T)=\iota 0\) and
                snd: t-llists \((\) snd \((t\)-pick-elem \(T))=\) t-lilists \(T-\{\# L C o n s ~ \iota 0 ~ \iota s \#\}+\{\# \iota s \#\}\)
                unfolding \(\iota 0^{\prime}\) [symmetric] by (auto simp: cons-in0 fst0 snd0)
            have td-at-j: lnth TDs \(j=(T, D)\)
                using sts-at-j TDs-def lt-tds by auto
            have td-at-sj: lnth TDs \((S u c j)=(\) snd \((t\)-pick-elem \(T)\), insert \(\iota 0 D)\)
                using sts-at-sj TDs-def lt-tds pick by force
            have todo.pick-lqueue-step (lnth TDs j) (lnth TDs (Suc j))
                by (simp add: todo.pick-lqueue-step.simps todo.pick-lqueue-step-w-details.simps,
                    rule exI \([o f-\iota s]\), rule exI \([o f-T]\), rule ex \([\) of - \(D]\),
                    simp add: td-at-j td-at-sj cons-in fst snd)
            thus ?thesis
                using \(j\)-ge by blast
        qed
    \}
    thus ?thesis
        using no-pick by blast
    qed
have lnth Sts (Suc \(j\) ) \(\sqsubset\) lnth \(S t s j\) if \(j\)-ge: \(j \geq i\) for \(j\)
    by (rule non-compute-infer-ZLf-step-imp-Less-state[OF step[OF j-ge] non-ci[OF j-ge]])
    hence \((\sqsubset)^{-1-1}\) (lnth Sts \(j\) ) (lnth Sts (Suc \(\left.j\right)\) ) if \(j\)-ge: \(j \geq i\) for \(j\)
    using \(j\)-ge by blast
    hence inf-down-chain: chain \((\sqsubset)^{-1-1}\) (ldropn \(i\) Sts)
        using chain-ldropn-lmapI[OF - si-lt, of - id, simplified llist.map-id] by simp
    have inf-i: \(\neg\) lfinite (ldropn i Sts)
    using len lfinite-ldropn llength-eq-infty-conv-lfinite by blast
    show False
    using inf-i inf-down-chain wfP-iff-no-infinite-down-chain-llist[of (ᄃ)] wfP-Less-state
    by blast
qed
```

```
have }\iota\in\operatorname{lnth}\mathrm{ flat-Ts i
    using \iota-in-infs unfolding Infs-def flat-Ts-def by (simp add: lt-sts)
then obtain \iotas :: 'f inference llist where
    \iotas-in:\iotas\in# t-llists (fst (lnth TDs i)) and
    \iota-in-\iotas:\iota\inlset \iotas
    using lnth-lmap[OF lt-sts] unfolding flat-Ts-def TDs-def
    by (smt (verit, ccfv-SIG) Union-iff flat-inferences-of.simps fst-conv mem-Collect-eq)
obtain k :: nat where
    k-lt: enat k<llength \iotas and
    at-k:lnth \iotas k=\iota
    using \iota-in-\iotas by (meson in-lset-conv-lnth)
obtain j :: nat where
    j-ge: j\geqi and
    rem-or-pick-step: ( \exists k
        ldrop (enat k') \iotas \in set \iotass ^ todo.remove-lqueue-step-w-details (lnth TDs j) \iotass
            (lnth TDs (Suc j)))
        \checkmark ~ t o d o . p i c k - l q u e u e - s t e p - w - d e t a i l s ~ ( l n t h ~ T D s ~ j ) ~ ( l n t h ~ \iota s ~ k ) ~ ( l d r o p ~ ( e n a t ~ ( S u c ~ k ) ) ~ \iota s )
        (lnth TDs (Suc j))
using todo.fair-strong[OF chain-ts inf-oft \iotas-in k-lt] by blast
have }\existsj.j\geqi\wedgej<llength Sts ^\iota\not\inlnth Infs 
proof (rule exI[of - Suc j], intro conjI)
    {
        assume \existsk'sk.\exists\iotass.ldrop (enat k') \iotas \in set \iotass
            \todo.remove-lqueue-step-w-details (lnth TDs j) \iotass (lnth TDs (Suc j))
        then obtain k' :: nat and \iotass :: 'f inference llist list where
            k
            in-\iotass:ldrop (enat k') \iotas \in set \iotass and
            rem-step: todo.remove-lqueue-step-w-details (lnth TDs j) \iotass (lnth TDs (Suc j))
            by blast
    have \iota\not\inlnth Infs (Suc j)
        using rem-step
    proof cases
        case (remove-lqueue-step-w-detailsI Q D)
        note at-j = this(1) and at-sj = this(2)
        have don:done-of (lnth Sts (Suc j)) = DU\bigcup {lset \iotas |\iotas.\iotas \in set \iotass}
            unfolding at-sj using TDs-def at-sj len by auto
        have }\iota\inlset (ldrop (enat k') \iotas
        proof -
            have nth-drop: lnth (ldrop (enat k') \iotas) (k-k')=\iota
                by (simp add: at-k k'-le k-lt)
            thus ?thesis
                using at-k k'-le k-lt by (smt (verit, del-insts) enat.distinct(1)
                    enat-diff-cancel-left enat-minus-mono1 enat-ord-simps(1) idiff-enat-enat
                    in-lset-conv-lnth llength-ldrop nless-le order-le-less-subst2)
        qed
        hence }\iota\in\bigcup{\mathrm{ lset }\iotas|\iotas.\iotas\in\mathrm{ set }\iotass
            using in-\iotass by blast
        thus ?thesis
```

```
                unfolding Infs-def lnth-lmap[OF lt-sts] don by auto
        qed
    }
    moreover
    {
        assume todo.pick-lqueue-step-w-details (lnth TDs j) (lnth \iotas k) (ldrop (enat (Suc k))\iotas)
            (lnth TDs (Suc j))
        hence \iota & lnth Infs (Suc j)
        proof cases
            case (pick-lqueue-step-w-detailsI Q D)
            note at-j =this(1) and at-sj=this(2)
            have don: done-of (lnth Sts (Suc j)) = D\cup{\iota}
                using at-sj at-k by (simp add: TDs-def len)
            show ?thesis
                unfolding Infs-def lnth-lmap[OF lt-sts] don by auto
        qed
    }
    ultimately show \iota\not\in lnth Infs (Suc j)
        using rem-or-pick-step by blast
    qed (use j-ge lt-sts in auto)
}
thus ?thesis
    unfolding Infs-def[symmetric] Liminf-llist-def
    by clarsimp (smt Infs-def Collect-empty-eq INT-iff Inf-set-def dual-order.refl llength-lmap
            mem-Collect-eq)
qed
theorem
    assumes
    full: full-chain (~ZLf) Sts and
    init: is-initial-ZLf-state (lhd Sts) and
    fair: infinitely-often compute-infer-step Sts \longrightarrow infinitely-often choose-p-step Sts
shows
    fair-ZL-Liminf-saturated: saturated (labeled-formulas-of (Liminf-zl-fstate Sts)) and
    fair-ZL-complete-Liminf: B B Bot-F\Longrightarrow passive.elems (passive-of (lhd Sts)) }=\cap\mathcal{G}{B}
        \exists\mp@subsup{B}{}{\prime}\inBot-F. B' f formulas-union (Liminf-zl-fstate Sts) and
    fair-ZL-complete: B Bot-F\Longrightarrow passive.elems (passive-of (lhd Sts)) \models\cap\mathcal{G {B} \Longrightarrow}
        \existsi. enat i< llength Sts }\wedge(\exists\mp@subsup{B}{}{\prime}\in\mathrm{ Bot-F. B'}\in\mathrm{ all-formulas-of (lnth Sts i))
proof -
    have chain: chain (~ZLf) Sts
    by (rule full-chain-imp-chain[OF full])
have zl-chain: chain (~ZL) (lmap zl-fstate Sts)
    using chain fair-ZL-step-imp-ZL-step chain-lmap by (smt (verit) zl-fstate.cases)
    have inv: ZLf-invariant (lhd Sts)
    using init initial-ZLf-invariant by auto
    have nnul: ᄀ lnull Sts
    using chain chain-not-lnull by blast
    hence lhd-lmap: \f.lhd (lmap f Sts) = f (lhd Sts)
    by (rule llist.map-sel(1))
    have active-of (lhd Sts)={||}
```

by (metis is-initial-ZLf-state.cases init snd-conv)
hence act: active-subset (snd (lhd (lmap zl-fstate Sts))) =\{\}
unfolding active-subset-def lhd-lmap by (cases lhd Sts) auto
have pas-fml-and-t-inf: passive-subset (Liminf-llist (lmap (snd \circ zl-fstate) Sts $))=\{ \} \wedge$
Liminf-llist (lmap (fst ○ zl-fstate) Sts) $=\{ \}$ (is ?pas-fml \wedge ?t-inf)
proof (cases lfinite Sts)
case fin: True
have lim-fst: Liminf-llist (lmap (fst \circ zl-fstate) Sts) $=$ fst (zl-fstate (llast Sts) $)$ and lim-snd: Liminf-llist (lmap (snd \circ zl-fstate $)$ Sts $)=$ snd $($ zl-fstate $($ llast Sts $))$
using lfinite-Liminf-llist fin nnul
by (metis comp-eq-dest-lhs linite-lmap llast-lmap llist.map-disc-iff)+
have last-inv: ZLf-invariant (llast Sts)
by (rule chain-ZLf-invariant-llast[OF chain inv fin])
have $\forall S t^{\prime} . \neg$ llast Sts $\leadsto Z L f S t^{\prime}$
using full-chain-lnth-not-rel[OF full] by (metis fin full-chain-iff-chain full)
hence is-final-ZLf-state (llast Sts)
unfolding is-final-ZLf-state-iff-no-ZLf-step[OF last-inv] .
then obtain $D::$ ' f inference set and A :: ' f fset where
at-l: llast Sts $=(t$-empty, D, p-empty, None, $A)$
unfolding is-final-ZLf-state.simps by blast
have ?pas-fml
unfolding passive-subset-def lim-snd at-l by auto
moreover have ?t-inf
unfolding lim-fst at-l by simp
ultimately show ?thesis
by blast
next
case False
hence len: llength Sts $=\infty$
by (simp add: not-lfinite-llength)
have ? pas-fml
unfolding Liminf-zl-fstate-commute passive-subset-def Liminf-zl-fstate-def using fair-ZL-Liminf-passive-empty[OF len full init fair]
fair-ZL-Liminf-yy-empty[OF len full inv]
by simp
moreover have ?t-inf
unfolding zl-fstate-alt-def comp-def zl-state.simps prod.sel
using fair-ZL-Liminf-todo-empty[OF len full init].
ultimately show ?thesis
by blast
qed
note pas-fml = pas-fml-and-t-inf[THEN conjunct1] and
$t-i n f=$ pas-fml-and-t-inf[THEN conjunct2]
obtain $\iota s s$:: 'f inference llist list where
$h d: l h d S t s=($ fold t-add-llist ıss t-empty, $\{ \}$, p-empty, None, $\{\|\})$ and
infs: flat-inferences-of (mset $\iota s s)=\{\iota \in$ Inf-F. prems-of $\iota=[]\}$
using init[unfolded is-initial-ZLf-state.simps no-labels.Inf-from-empty] by blast

```
have hd': lhd (lmap zl-fstate Sts)=
    zl-fstate (fold t-add-llist \iotass t-empty, {}, p-empty, None, {||})
    using hd by (simp add: lhd-lmap)
have no-prems-init: }\forall\iota\inInf-F.prems-of \iota=[]\longrightarrow\iota\in fst(lhd (lmap zl-fstate Sts))
    unfolding zl-fstate-alt-def hd' zl-state-alt-def prod.sel using infs by simp
show saturated (labeled-formulas-of (Liminf-zl-fstate Sts))
    using ZL-Liminf-saturated[of lmap zl-fstate Sts, unfolded llist.map-comp,
            OF zl-chain act pas-fml no-prems-init t-inf]
    unfolding Liminf-zl-fstate-commute .
{
    assume
        bot: B \in Bot-F and
        unsat: passive.elems (passive-of (lhd Sts)) \models\capG\mathcal{G}}
    have unsat': fst ' snd (lhd (lmap zl-fstate Sts)) \models\cap\mathcal{G {B}}
        using unsat unfolding lhd-lmap by (cases lhd Sts) (auto intro: no-labels-entails-mono-left)
    have \existsBL\inBot-FL.BL\inLiminf-llist (lmap (snd ozl-fstate) Sts)
        using ZL-complete-Liminf[of lmap zl-fstate Sts, unfolded llist.map-comp,
            OF zl-chain act pas-fml no-prems-init t-inf bot unsat ] .
    thus \exists\mp@subsup{B}{}{\prime}\inBot-F. B' G formulas-union (Liminf-zl-fstate Sts)
        unfolding Liminf-zl-fstate-def Liminf-zl-fstate-commute by auto
    thus \existsi. enat i<llength Sts }\wedge(\exists\mp@subsup{B}{}{\prime}\in\mathrm{ Bot-F. B' }\in\mathrm{ all-formulas-of (lnth Sts i))
        unfolding Liminf-zl-fstate-def Liminf-llist-def by auto
}
qed
end
end
```


14 Fair Zipperposition Loop without Ghosts

This version of the fair Zipperposition loop eliminates the ghost state component D, thus confirming that D is indeed a ghost.

```
theory Fair-Zipperposition-Loop-without-Ghosts
    imports Fair-Zipperposition-Loop
begin
```


14.1 Locale

type-synonym ('t, 'p, 'f) ZLf-wo-ghosts-state $=$ ' $t \times{ }^{\prime} p \times$ 'f option \times 'f fset
locale fair-zipperposition-loop-wo-ghosts $=$
w-ghosts?: fair-zipperposition-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q \mathcal{G}-I-q Equiv-F Prec-F t-empty t-add-llist t-remove-llist t-pick-elem t-llists p-empty p-select p-add p-remove p-felems Prec-S
for
Bot-F :: 'f set and
Inf-F :: 'f inference set and
Bot- G :: ' g set and

```
\(Q::{ }^{\prime} q\) set and
    entails- \(q::\) ' \(q \Rightarrow\) ' \(g\) set \(\Rightarrow\) ' \(g\) set \(\Rightarrow\) bool and
    Inf- \(G-q::{ }^{\prime} q \Rightarrow\) ' \(g\) inference set and
    Red-I- \(q::{ }^{\prime} q \Rightarrow\) ' \(g\) set \(\Rightarrow\) ' \(g\) inference set and
    Red-F- \(q::{ }^{\prime} q \Rightarrow{ }^{\prime} g\) set \(\Rightarrow\) ' \(g\) set and
    \(\mathcal{G}-F-q:: ' q \Rightarrow\) ' \(f \Rightarrow\) ' \(g\) set and
    \(\mathcal{G}-I-q::{ }^{\prime} q \Rightarrow\) 'f inference \(\Rightarrow{ }^{\prime} g\) inference set option and
    Equiv- \(F::{ }^{\prime} f \Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\doteq 50\) ) and
    Prec- \(F::\) ' \(f \Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\prec \cdot 50\) ) and
    t-empty :: 't and
    \(t\)-add-llist :: 'f inference llist \(\Rightarrow\) ' \(t \Rightarrow\) ' \(t\) and
    \(t\)-remove-llist :: 'f inference llist \(\Rightarrow^{\prime} t \Rightarrow\) ' \(t\) and
    \(t\)-pick-elem :: ' \(t \Rightarrow\) 'f inference \(\times\) ' \(t\) and
    \(t\)-llists :: ' \(t \Rightarrow\) 'f inference llist multiset and
    \(p\)-empty :: ' \(p\) and
    \(p\)-select \(::\) ' \(p \Rightarrow\) ' \(f\) and
    \(p\)-add \(:: ' f \Rightarrow\) ' \(p \Rightarrow\) ' \(p\) and
    \(p\)-remove :: ' \(\Rightarrow{ }^{\prime} p \Rightarrow{ }^{\prime} p\) and
    p-felems :: ' \(p \Rightarrow\) 'f fset and
    Prec- \(S::\) ' \(f \Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\prec S 50\) )
```


begin

fun wo-ghosts-of :: ('t, 'p, 'f) ZLf-state $\Rightarrow(' t, ' p, ' f)$ ZLf-wo-ghosts-state where wo-ghosts-of $(T, D, P, Y, A)=(T, P, Y, A)$

inductive

fair-ZL-wo-ghosts ::
('t, 'p, 'f) ZLf-wo-ghosts-state $\Rightarrow(' t, ' p, ' f)$ ZLf-wo-ghosts-state \Rightarrow bool
(infix \sim ZLfw 50)
where
compute-infer: $(\exists \iota s \in \#$ t-llists $T . \iota s \neq L N i l) \Longrightarrow t$-pick-elem $T=\left(\iota 0, T^{\prime}\right) \Longrightarrow$
$\iota 0 \in$ no-labels.Red-I (fset $A \cup\{C\}) \Longrightarrow$
$(T, P$, None,$A) \sim Z L f w\left(T^{\prime}\right.$, p-add $C P$, None, $\left.A\right)$
\mid choose- $p: P \neq p$-empty \Longrightarrow
$(T, P$, None,$A) \sim Z L f w(T, p$-remove $(p$-select $P) P$, Some $(p$-select $P), A)$
\mid delete-fwd: $C \in$ no-labels.Red- $F(f$ set $A) \vee\left(\exists C^{\prime} \in f\right.$ set $\left.A . C^{\prime} \preceq \cdot C\right) \Longrightarrow$ (T, P, Some $C, A) \sim Z L f w ~(T, P$, None, A)
\mid simplify-fwd: $C^{\prime} \prec S C \Longrightarrow C \in$ no-labels.Red-F (fset $\left.A \cup\left\{C^{\prime}\right\}\right) \Longrightarrow$
$(T, P$, Some $C, A) \sim Z L f w\left(T, P\right.$, Some $\left.C^{\prime}, A\right)$
\mid delete-bwd: $C^{\prime}|\notin| A \Longrightarrow C^{\prime} \in$ no-labels.Red- $F\{C\} \vee C^{\prime} \cdot \succ C \Longrightarrow$ $\left(T, P\right.$, Some $\left.C, A|\cup|\left\{\left|C^{\prime}\right|\right\}\right) \sim Z L f w(T, P$, Some $C, A)$
\mid simplify-bwd: $C^{\prime}|\notin| A \Longrightarrow C^{\prime \prime} \prec S C^{\prime} \Longrightarrow C^{\prime} \in$ no-labels.Red-F $\left\{C, C^{\prime}\right\} \Longrightarrow$
$\left(T, P\right.$, Some $\left.C, A|\cup|\left\{\left|C^{\prime}\right|\right\}\right) \sim Z L f w\left(T, p\right.$-add $C^{\prime \prime} P$, Some $\left.C, A\right)$
\mid schedule-infer: flat-inferences-of (mset ıss) $=$ no-labels.Inf-between $(f$ set $A)\{C\} \Longrightarrow$
$(T, P$, Some $C, A) \sim Z L f w($ fold t-add-llist ıss T, P, None, $A|\cup|\{|C|\})$
| delete-orphan-infers: $\iota s \in \#$ t-llists $T \Longrightarrow$ lset $\iota s \cap$ no-labels.Inf-from $($ fset $A)=\{ \} \Longrightarrow$ $(T, P, Y, A) \sim Z L f w(t$-remove-llist ıs $T, P, Y, A)$

inductive

compute-infer-step ::
('t, 'p, 'f) ZLf-wo-ghosts-state $\Rightarrow(' t, ' p, ' f) Z L f-w o-g h o s t s-s t a t e \Rightarrow b o o l$
where
$(\exists \iota s \in \# t$-llists $T . \iota s \neq L N i l) \Longrightarrow t$-pick-elem $T=\left(\iota 0, T^{\prime}\right) \Longrightarrow$
$\iota 0 \in$ no-labels.Red-I $($ fset $A \cup\{C\}) \Longrightarrow$
compute-infer-step $(T, P$, None, $A)\left(T^{\prime}, p\right.$-add C P, None, $\left.A\right)$

inductive

choose-p-step :: ('t, 'p, 'f) ZLf-wo-ghosts-state \Rightarrow ('t, 'p, 'f) ZLf-wo-ghosts-state \Rightarrow bool where

$$
P \neq p \text {-empty } \Longrightarrow
$$

```
choose-p-step (T, P, None, A) (T, p-remove (p-select P) P, Some (p-select P), A)
```

lemma w-ghosts-compute-infer-step-imp-compute-infer-step:
assumes w-ghosts.compute-infer-step St St'
shows compute-infer-step (wo-ghosts-of St) (wo-ghosts-of St')
using assms by cases (simp add: compute-infer-step.intros)
lemma choose-p-step-imp-w-ghosts-choose-p-step:
assumes choose-p-step (wo-ghosts-of St) (wo-ghosts-of St')
shows w-ghosts.choose-p-step St St'
using assms
proof cases
case ($1 P T A$)
note $w g$-st $=$ this(1) and $w g-s t^{\prime}=t h i s(2)$ and rest $=$ this(3)
have st: $S t=(T$, done-of $S t, P$, None, $A)$
using $w g$-st by (smt (verit) fst-conv snd-conv wo-ghosts-of.elims)
have $s t^{\prime}: S t^{\prime}=\left(T\right.$, done-of $S t^{\prime}, p$-remove $(p$-select $P) P$, Some $(p$-select $\left.P), A\right)$
using $w g$-st' by (smt (verit) fst-conv snd-conv wo-ghosts-of.elims)
show ?thesis
by (subst st, subst st ${ }^{\prime}$, simp add: rest w-ghosts.choose-p-step.intros)
qed

14.2 Basic Definitions and Lemmas

abbreviation todo-of :: ('t, 'p, 'f) ZLf-wo-ghosts-state \Rightarrow ' t where
todo-of $S t \equiv f s t S t$
abbreviation passive-of :: ('t, 'p, 'f) ZLf-wo-ghosts-state \Rightarrow ' p where passive-of $S t \equiv$ fst (snd St)
abbreviation $y y$-of $::(' t$, ' p, 'f) ZLf-wo-ghosts-state \Rightarrow ' f option where $y y$-of $S t \equiv f s t($ snd (snd St))
abbreviation active-of :: ('t, ' p, ' f) ZLf-wo-ghosts-state \Rightarrow ' fset where active-of $S t \equiv \operatorname{snd}($ snd $($ snd $S t))$
abbreviation all-formulas-of :: ('t, 'p, 'f) ZLf-wo-ghosts-state \Rightarrow 'f set where all-formulas-of $S t \equiv$ passive.elems (passive-of St) \cup set-option (yy-of St) \cup fset (active-of St)
definition
Liminf-zl-fstate :: ('t, ' p, ' f) ZLf-wo-ghosts-state llist \Rightarrow 'f set \times 'f set \times 'f set where
Liminf-zl-fstate Sts =
(Liminf-llist (lmap (passive.elems ○ passive-of) Sts),
Liminf-llist (lmap (set-option \circ yy-of) Sts),
Liminf-llist (lmap (fset ○ active-of) Sts))

14.3 Initial States and Invariants

inductive is-initial-ZLf-wo-ghosts-state :: ('t, 'p, 'f) ZLf-wo-ghosts-state \Rightarrow bool where flat-inferences-of $($ mset $\iota s s)=$ no-labels.Inf-from $\} \Longrightarrow$ is-initial-ZLf-wo-ghosts-state (fold t-add-llist uss t-empty, p-empty, None, $\{|\mid\}$)

```
lemma is-initial-ZLf-state-imp-is-initial-ZLf-wo-ghosts-state:
    assumes is-initial-ZLf-state St
    shows is-initial-ZLf-wo-ghosts-state (wo-ghosts-of St)
    using assms by cases (auto intro: is-initial-ZLf-wo-ghosts-state.intros)
lemma is-initial-ZLf-wo-ghosts-state-imp-is-initial-ZLf-state:
    assumes
        init: is-initial-ZLf-wo-ghosts-state (wo-ghosts-of St) and
        don: done-of St = {}
    shows is-initial-ZLf-state St
    using init
    by cases (smt don is-initial-ZLf-state.simps prod.inject prod.exhaust-sel wo-ghosts-of.elims)
end
```


14.4 Abstract Nonsense for Ghost-Ghostless Conversion

This subsection was originally contributed by Andrei Popescu.

```
locale bisim =
    fixes erase :: 'state0 \(\Rightarrow\) 'state
    and \(R::\) 'state \(\Rightarrow\) 'state \(\Rightarrow\) bool (infix \(\sim 60\) )
    and \(R 0\) :: 'state \(0 \Rightarrow\) 'state \(0 \Rightarrow\) bool (infix \(\sim 060\) )
    assumes simul: \(\wedge\) Sto St'. erase Sto \(\leadsto S t^{\prime} \Longrightarrow \exists\) Sto \(^{\prime}\). erase \(S t 0^{\prime}=\) St \(^{\prime} \wedge\) Sto \(\leadsto 0\) Sto \({ }^{\prime}\)
begin
definition lift :: 'state0 \(\Rightarrow\) 'state \(\Rightarrow\) 'state0 where
    lift St0 St \({ }^{\prime}=\left(\right.\) SOME St0 \({ }^{\prime}\). erase St0' \(=\) St \(^{\prime} \wedge\) St0 \(\leadsto 0\) St0 \()\)
lemma lift: erase \(S t 0 \sim S t^{\prime} \Longrightarrow\) erase (lift Sto \(\left.S t^{\prime}\right)=S t^{\prime} \wedge S t 0 \leadsto 0\) lift St0 St \({ }^{\prime}\)
    by (smt (verit) lift-def simul someI)
lemmas erase-lift \(=\) lift \([\) THEN conjunct1]
lemmas R0-lift \(=\) lift \([\) THEN conjunct2]
primcorec theSts0 :: 'state \(0 \Rightarrow\) 'state llist \(\Rightarrow\) 'state 0 llist where
    theSts0 St0 Sts =
        (case Sts of
        LNil \(\Rightarrow\) LCons St0 LNil
        \(\mid\) LCons St Sts \({ }^{\prime} \Rightarrow\) LCons St0 (theSts0 (lift St0 St) Sts' \(\left.{ }^{\prime}\right)\)
lemma theSts0-LNil[simp]: theSts0 St0 LNil = LCons St0 LNil
    by (subst theSts0.code) auto
lemma theSts0-LCons[simp]: theSts0 St0 (LCons St Sts') \(=\) LCons St0 (theSts0 (lift St0 St) Sts')
    by (subst theStsO.code) auto
lemma simul-chain0:
    assumes chain: lnull Sts \(\vee(\) chain \((\sim)\) Sts \(\wedge\) erase St0 \(\leadsto\) lhd Sts \()\)
    shows \(\exists\) Sts0. lhd Sts0 \(=\) St0 \(\wedge\) lmap erase (ltl Sts0) \(=\) Sts \(\wedge\) chain \((\sim 0)\) Sts0
proof(rule exI[of - theSts0 St0 Sts], safe)
    show lhd (theSts0 St0 Sts) \(=\) St0
        by (simp add: llist.case-eq-if)
next
    show lmap erase (ltl (theSts0 St0 Sts)) = Sts
```

```
    using chain
    apply (coinduction arbitrary: Sts St0)
    using lift by (auto simp: llist.case-eq-if) (metis chain.simps eq-LConsD lnull-def)
next
    {
        fix Sts'
    assume }\exists\mathrm{ St0 Sts. (lnull Sts }\vee chain (~) Sts \wedge erase St0 ~ lhd Sts) ^ Sts' = theSts0 St0 St
    hence chain (~0) Sts'
        apply (coinduct rule: chain.coinduct)
        apply clarsimp
        apply (erule disjE)
        apply (metis lnull-def theStsO-LNil)
        by (smt (verit, ccfv-threshold) R0-lift chain.simps erase-lift lhd-LCons theSts0-LCons
            theSts0-LNil)
    }
    thus chain (~0) (theSts0 St0 Sts)
        using assms by auto
qed
lemma simul-chain:
    assumes
        chain: chain (~)Sts and
        hd:lhd Sts = erase St0
    shows \existsSts0.lhd Sts0 = St0 ^ lmap erase Sts0 = Sts ^ chain (~0) Sts0
proof -
    {
        assume nnul: \neg lnull (ltl Sts)
        have chain (~) (ltl Sts) ^ erase St0 ~lhd (ltl Sts)
        (is ?thesis1 ^ ?thesis2)
    proof
        show ?thesis1
            by (simp add: nnul chain chain-ltl)
    next
        show ?thesis2
                by (metis chain chain-consE hd lhd-LCons-ltl lnull-def lnull-ltlI nnul)
    qed
    }
    hence nil-or-chain:lnull (ltl Sts) \vee (chain (~) (ltl Sts) ^ erase St0 ~lhd (ltl Sts))
    by blast
    obtain Sts0 where
        hd-sts0:lhd Sts0 = St0 and
        erase-tl-sts0:lmap erase (ltl Sts0) = ltl Sts and
        chain-sts0: chain (~0) Sts0
    using simul-chain0[OF nil-or-chain] by blast
    have erase-hd-sts0: erase (lhd Sts0) = lhd Sts
    by (simp add: hd hd-sts0)
    have erase-sts0: lmap erase Sts0 = Sts
    proof (cases Sts0 rule: llist.exhaust-sel)
    case LNil
    hence False
            using chain-LNil chain-sts0 by blast
    thus ?thesis
```

```
    by blast
next
    case LCons
    note sts0 = this
    show ?thesis
    proof (cases Sts rule: llist.exhaust-sel)
        case LNil
        hence False
            using chain chain-LNil by blast
        thus ?thesis
            by blast
    next
        case LCons
        note sts = this
        show ?thesis
        by (subst sts0, subst sts, simp add: erase-hd-sts0 erase-tl-sts0)
    qed
qed
show ?thesis
    by (rule exI[of - Sts0]) (use hd-sts0 erase-sts0 chain-sts0 in blast)
qed
end
```


14.5 Ghost-Ghostless Conversions, the Concrete Version

context fair-zipperposition-loop-wo-ghosts
begin

lemma

todo-of-wo-ghosts-of[simp]: todo-of (wo-ghosts-of St) $=w$-ghosts.todo-of St and passive-of-wo-ghosts-of [simp]: passive-of (wo-ghosts-of St) $=w$-ghosts.passive-of St and yy-of-wo-ghosts-of[simp]: yy-of (wo-ghosts-of St) = w-ghosts.yy-of St and active-of-wo-ghosts-of $[$ simp $]$: active-of (wo-ghosts-of St) $=$ w-ghosts.active-of St by (cases St; simp)+
lemma fair-ZL-step-imp-fair-ZL-wo-ghosts-step:
assumes $S t \sim Z L f S t^{\prime}$
shows wo-ghosts-of $S t \sim Z L f w$ wo-ghosts-of S^{\prime}
using assms by cases (use fair-ZL-wo-ghosts.intros in auto)
lemma fair-ZL-wo-ghosts-step-imp-fair-ZL-step:
assumes wo-ghosts-of St0 \sim ZLfw St'
shows $\exists S t 0^{\prime}$. wo-ghosts-of St0' $=S t^{\prime} \wedge S t 0 \sim Z L f S t 0^{\prime}$
using assms
proof cases
case (compute-infer $T \iota 0 T^{\prime} A C P$)
note wo-st0 $=$ this(1) and $s t^{\prime}=$ this(2) and rest $=$ this $(3-5)$
define D :: ' f inference set where
$D=$ done-of St0
define St0' $::(' t$, ' p, ' f) ZLf-state where St0' $=\left(T^{\prime}, D \cup\{\iota 0\}, p\right.$-add $C P$, None, $\left.A\right)$
have wo-st0': wo-ghosts-of St0' $=$ St $^{\prime}$

```
    unfolding St0'-def st' by simp
    have st0: St0 = (T, D, P, None, A)
    using wo-st0 by (smt (verit) D-def fst-conv snd-conv wo-ghosts-of.elims)
have step0:St0 ~ZLf St0'
    unfolding st0 St0'-def by (rule fair-ZL.compute-infer[OF rest])
show ?thesis
    by (rule exI[of - St0 ]) (use wo-st0' step0 in blast)
next
    case (choose-p P T A)
    note wo-st0 = this(1) and st' = this(2) and rest = this(3)
    define D :: 'f inference set where
        D = done-of St0
    define St0' :: ('t, 'p, 'f) ZLf-state where
        St0' = (T, D, p-remove (p-select P) P, Some (p-select P),A)
    have wo-st0': wo-ghosts-of St0' = St'
        unfolding St0'-def st' by simp
    have st0: St0 = (T, D, P, None, A)
        using wo-st0 by (smt (verit) D-def fst-conv snd-conv wo-ghosts-of.elims)
    have step0: St0 ~ZLf St0'
        unfolding st0 St0'-def by (rule fair-ZL.choose-p[OF rest])
    show ?thesis
        by (rule exI[of - St0 ]) (use wo-st0' step0 in blast)
next
    case (delete-fwd C A T P)
    note wo-st0 = this(1) and st' = this(2) and rest = this(3)
    define }D\mathrm{ :: 'f inference set where
        D = done-of St0
    define St0':: ('t, 'p, 'f) ZLf-state where
        St0' = (T, D, P, None, A)
    have wo-st0': wo-ghosts-of St0' = St'
        unfolding St0'-def st' by simp
    have st0: St0 = (T, D, P, Some C, A)
        using wo-st0 by (smt (verit) D-def fst-conv snd-conv wo-ghosts-of.elims)
    have step0:St0 ~ZLf St0'
        unfolding st0 St0'-def by (rule fair-ZL.delete-fwd[OF rest])
    show ?thesis
    by (rule exI[of - St0 ]) (use wo-st0' step0 in blast)
next
    case (simplify-fwd C' C A T P)
    note wo-st0 = this(1) and st' = this(2) and rest = this(3,4)
    define D :: 'f inference set where
        D = done-of St0
define St0' :: ('t, 'p, 'f) ZLf-state where
    Sto' = (T, D, P, Some C', A)
```

```
have wo-st0': wo-ghosts-of St0' \(=S t^{\prime}\)
    unfolding \(S t 0^{\prime}\)-def st' by simp
    have st0: Sto \(=(T, D, P\), Some \(C, A)\)
    using wo-st0 by (smt (verit) D-def fst-conv snd-conv wo-ghosts-of.elims)
have step 0: St0 \(\sim Z L f\) St0'
    unfolding st0 St0'-def by (rule fair-ZL.simplify-fwd[OF rest])
    show ?thesis
    by (rule exI[of - St0 \(]\) ) (use wo-st0' step0 in blast)
next
    case (delete-bwd \(C^{\prime} A C T P\) )
    note wo-st0 \(=\) this(1) and \(s t^{\prime}=\) this(2) and rest \(=\) this(3,4)
    define \(D\) :: ' \(f\) inference set where
        \(D=\) done-of St0
    define St0' :: ('t, 'p, 'f) ZLf-state where
        Sto' \(=(T, D, P\), Some \(C, A)\)
    have wo-st0': wo-ghosts-of St0' \(=\) St \(^{\prime}\)
        unfolding \(S t 0^{\prime}\)-def \(s t^{\prime}\) by simp
    have st0: St0 \(=\left(T, D, P\right.\), Some \(\left.C, A|\cup|\left\{\left|C^{\prime}\right|\right\}\right)\)
        using wo-st0 by (smt (verit) D-def fst-conv snd-conv wo-ghosts-of.elims)
    have step0: St0 \(\sim\) ZLf St0'
        unfolding stO StO'-def by (rule fair-ZL.delete-bwd [OF rest \(]\) )
    show ?thesis
    by (rule exI[of - St0 \(]\) ) (use wo-st0' step0 in blast)
next
case (simplify-bwd \(C^{\prime} A C^{\prime \prime} C T P\) )
note wo-stO \(=\) this(1) and st' \(=\) this(2) and rest \(=\) this (3-5)
define \(D\) :: ' \(f\) inference set where
    \(D=\) done-of St0
define St0' :: ('t, 'p, 'f) ZLf-state where
    St0' \(=\left(T, D, p\right.\)-add \(C^{\prime \prime} P\), Some \(\left.C, A\right)\)
have wo-st0': wo-ghosts-of St0' \(=\) St \(^{\prime}\)
    unfolding \(S t 0^{\prime}\)-def \(s t^{\prime}\) by \(\operatorname{simp}\)
have st0: St0 \(=\left(T, D, P\right.\), Some \(\left.C, A|\cup|\left\{\left|C^{\prime}\right|\right\}\right)\)
    using wo-st0 by (smt (verit) D-def fst-conv snd-conv wo-ghosts-of.elims)
have step 0: St0 \(\sim\) ZLf St0'
    unfolding st0 St0'-def by (rule fair-ZL.simplify-bwd[OF rest])
show ?thesis
    by (rule exI[of - St0 \(]\) ) (use wo-st0' step0 in blast)
next
    case (schedule-infer ıss A C T P)
    note wo-st0 \(=\) this(1) and \(s t^{\prime}=\) this(2) and rest \(=\) this(3)
    define \(D\) :: 'f inference set where
        \(D=\) done-of St0
```

```
define St0' :: ('t, 'p, 'f) ZLf-state where
    St0' = (fold t-add-llist \iotass T, D - flat-inferences-of (mset \iotass), P, None, A |\cup| {|C|})
    have wo-st0': wo-ghosts-of St0' = St'
    unfolding St0'-def st' by simp
    have st0: St0 = (T, D, P, Some C, A)
    using wo-st0 by (smt (verit) D-def fst-conv snd-conv wo-ghosts-of.elims)
    have step0: St0 ~ZLf St0'
    unfolding st0 St0'-def by (rule fair-ZL.schedule-infer[OF rest])
    show ?thesis
    by (rule exI[of - St0 ]) (use wo-st0' step0 in blast)
next
    case (delete-orphan-infers \iotas T A P Y)
    note wo-st0 = this(1) and st' = this(2) and rest = this(3,4)
    define D :: 'f inference set where
    D = done-of St0
    define St0' :: ('t, 'p, 'f) ZLf-state where
    St0'}=(t\mathrm{ -remove-llist ıs T, D U lset ıs,P,Y,A)
    have wo-st0': wo-ghosts-of St0' = St'
    unfolding St0'-def st' by simp
    have st0: St0 = (T,D,P,Y,A)
    using wo-st0 by (smt (verit) D-def fst-conv snd-conv wo-ghosts-of.elims)
have step0: St0 ~ZLf St0'
    unfolding st0 St0'-def by (rule fair-ZL.delete-orphan-infers[OF rest])
    show ?thesis
    by (rule exI[of - St0 ]) (use wo-st0' step0 in blast)
qed
interpretation bisim: bisim wo-ghosts-of (~ZLfw) (~ZLf)
proof qed (fact fair-ZL-wo-ghosts-step-imp-fair-ZL-step)
lemma chain-fair-ZL-step-wo-ghosts-imp-chain-fair-ZL-step:
    assumes chain: chain (~ZLfw) Sts
    shows \existsSts0.lmap wo-ghosts-of Sts0 = Sts ^chain (~ZLf) Sts0 ^done-of (lhd Sts0) = {}
proof -
    define St0 :: ('t, 'p,'f) ZLf-state where
        St0 = (todo-of (lhd Sts), {}, passive-of (lhd Sts), yy-of (lhd Sts), active-of (lhd Sts))
    have hd: lhd Sts = wo-ghosts-of St0
    unfolding St0-def by (cases lhd Sts) auto
    obtain Sts0 where
    wog0: lmap wo-ghosts-of Sts0 = Sts and
    chain0: chain (~ZLf) Sts0 and
    hd0:lhd Sts0 = St0
    using bisim.simul-chain[OF chain hd] by blast
    have don0: done-of (lhd StsO) = {}
    unfolding hd0 StO-def by simp
```

```
    show ?thesis
    using wog0 chain0 don0 by blast
qed
```

lemma full-chain-fair-ZL-step-wo-ghosts-imp-full-chain-fair-ZL-step:
assumes full-chain $(\sim Z L f w)$ Sts
shows \exists Sts0. Sts $=$ lmap wo-ghosts-of Sts0 \wedge full-chain $(\sim Z L f)$ Sts0 \wedge done-of $($ lhd Sts0) $=\{ \}$
by (smt (verit) assms chain-fair-ZL-step-wo-ghosts-imp-chain-fair-ZL-step empty-def
fair-ZL-step-imp-fair-ZL-wo-ghosts-step full-chain-iff-chain full-chain-not-lnull lfinite-lmap
llast-lmap llist.map-disc-iff passive.felems-empty todo.llists-empty)

14.6 Completeness

theorem
 assumes

full: full-chain $(\sim$ ZLfw) Sts and
init: is-initial-ZLf-wo-ghosts-state (lhd Sts) and
fair: infinitely-often compute-infer-step Sts \longrightarrow infinitely-often choose-p-step Sts

shows

fair-ZL-wo-ghosts-Liminf-saturated: saturated (labeled-formulas-of (Liminf-zl-fstate Sts)) and
fair-ZL-wo-ghosts-complete-Liminf: $B \in B o t-F \Longrightarrow$
passive.elems (passive-of (lhd Sts)) $\models \cap \mathcal{G}\{B\} \Longrightarrow$
$\exists B^{\prime} \in$ Bot-F. $B^{\prime} \in$ formulas-union (Liminf-zl-fstate Sts) and
fair-ZL-wo-ghosts-complete: $B \in B o t-F \Longrightarrow$ passive.elems (passive-of (lhd Sts)) $\models \cap \mathcal{G}\{B\} \Longrightarrow$ $\exists i$. enat $i<$ llength Sts $\wedge(\exists B \in$ Bot- $F . B \in$ all-formulas-of (lnth Sts $i))$

proof -

obtain Sts0 :: ('t, 'p, 'f) ZLf-state llist where
full0: full-chain $(\sim Z L f)$ Sts0 and
sts0: lmap wo-ghosts-of Sts0 = Sts and
don0: done-of (lhd Sts0) $=\{ \}$
using full-chain-fair-ZL-step-wo-ghosts-imp-full-chain-fair-ZL-step[OF full] by blast
have init0: is-initial-ZLf-state (lhd Sts0)
proof -
have $h d$: lhd (lmap wo-ghosts-of Sts0) $=$ wo-ghosts-of (lhd Sts0)
using fullo full-chain-not-lnull llist.map-sel(1) by blast
show ?thesis
by (rule is-initial-ZLf-wo-ghosts-state-imp-is-initial-ZLf-state[OF
init[unfolded sts0[symmetric] hd] don0])
qed
have fair0: infinitely-often w-ghosts.compute-infer-step Sts0 \longrightarrow
infinitely-often w-ghosts.choose-p-step Sts0
proof
assume inf-ci0: infinitely-often w-ghosts.compute-infer-step Sts0
have infinitely-often compute-infer-step Sts
unfolding sts 0 [symmetric]
by (rule infinitely-often-lifting[of - $\lambda x . x$, unfolded llist.map-ident, OF - inf-ciO])
(use w-ghosts-compute-infer-step-imp-compute-infer-step in auto)
hence inf-cp: infinitely-often choose-p-step Sts
by (simp add: fair)
show infinitely-often w-ghosts.choose-p-step Sts0
by (rule infinitely-often-lifting[of $--\lambda x . x$, unfolded llist.map-ident,

```
            OF - inf-cp[unfolded sts0[symmetric]]])
    (use choose-p-step-imp-w-ghosts-choose-p-step in auto)
qed
have saturated (labeled-formulas-of (w-ghosts.Liminf-zl-fstate Sts0))
    using fair-ZL-Liminf-saturated[OF full0 init0 fair0] .
thus saturated (labeled-formulas-of (Liminf-zl-fstate Sts))
    unfolding w-ghosts.Liminf-zl-fstate-def Liminf-zl-fstate-def sts0[symmetric]
    by (simp add: llist.map-comp)
{
    assume
        bot: B \in Bot-F and
        unsat: passive.elems (passive-of (lhd Sts)) \models\cap\mathcal{G {B}}
    have unsat0: passive.elems (w-ghosts.passive-of (lhd StsO)) }\models\cap\mathcal{G}{B
    proof -
        have lhd (lmap wo-ghosts-of Sts0) = wo-ghosts-of (lhd Sts0)
        using fullO full-chain-not-lnull llist.map-sel(1) by blast
        hence passive-of (lhd (lmap wo-ghosts-of Sts0)) = w-ghosts.passive-of (lhd StsO)
            by simp
        thus ?thesis
            using unsat unfolding sts0[symmetric] by auto
    qed
```



```
        by (rule fair-ZL-complete-Liminf[OF full0 init0 fair0 bot unsat0])
    thus }\exists\mp@subsup{B}{}{\prime}\inBot-F.\mp@subsup{B}{}{\prime}\in\mathrm{ formulas-union (Liminf-zl-fstate Sts)
        unfolding w-ghosts.Liminf-zl-fstate-def Liminf-zl-fstate-def sts0[symmetric]
        by (simp add: llist.map-comp)
    thus \existsi. enat i< llength Sts }\wedge(\existsB\in\mathrm{ Bot-F.B G all-formulas-of (lnth Sts i))
        unfolding Liminf-zl-fstate-def Liminf-llist-def by auto
}
qed
end
```


14.7 Specialization with FIFO Queue

As a proof of concept, we specialize the passive set to use a FIFO queue, thereby eliminating the locale assumptions about the passive set.

```
locale fifo-zipperposition-loop \(=\)
    discount-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q G-I-q Equiv-F Prec-F
    for
        Bot-F :: 'f set and
        Inf-F :: 'f inference set and
        Bot- \(G\) :: ' \(g\) set and
        \(Q::\) ' \(q\) set and
        entails- \(q::\) ' \(q \Rightarrow\) ' \(g\) set \(\Rightarrow\) ' \(g\) set \(\Rightarrow\) bool and
        Inf- \(G-q::{ }^{\prime} q \Rightarrow\) ' \(g\) inference set and
        Red-I- \(q::{ }^{\prime} q \Rightarrow\) 'g set \(\Rightarrow\) ' \(g\) inference set and
        Red- \(-\mathrm{F}-\mathrm{q}::{ }^{\prime} q \Rightarrow\) ' \(g\) set \(\Rightarrow\) ' \(g\) set and
    \(\mathcal{G}-F-q:: ' q \Rightarrow\) ' \(\Rightarrow\) ' \(g\) set and
    \(\mathcal{G}-I-q::{ }^{\prime} q \Rightarrow\) 'f inference \(\Rightarrow{ }^{\prime} g\) inference set option and
    Equiv- \(F::\) ' \(f \Rightarrow\) ' \(f \Rightarrow\) bool (infix \(\langle\dot{=}\) 50) and
```

```
    Prec-F :: 'f => 'f => bool(infix <\prec.〉 50) +
    fixes
        Prec-S :: 'f }=>\mathrm{ 'f }=>\mathrm{ bool (infix }\precS 50
    assumes
        wf-Prec-S: minimal-element ( }\precS)\mathrm{ UNIV and
        transp-Prec-S: transp ( }\precS)\mathrm{ and
        countable-Inf-between: finite A \Longrightarrow countable (no-labels.Inf-between A {C})
begin
sublocale fifo-prover-queue
```

sublocale fifo-prover-lazy-list-queue
sublocale fair-zipperposition-loop Bot-F Inf-F Bot-G Q entails-q Inf-G-q Red-I-q Red-F-q G-F-q G-I-q
Equiv-F Prec-F empty add-llist remove-llist pick-elem llists [] hd
λy xs. if $y \in$ set $x s$ then xs else xs @ [y] removeAll fset-of-list Prec-S
proof
show po-on $(\prec S)$ UNIV
using wf-Prec-S minimal-element.po by blast
next
show wfp-on $(\prec S)$ UNIV
using wf-Prec-S minimal-element.wf by blast
next
show transp $(\prec S)$
by (rule transp-Prec-S)
next
show $\bigwedge A C$. finite $A \Longrightarrow$ countable (no-labels.Inf-between $A\{C\}$)
by (fact countable-Inf-between)
qed
end
end

15 Given Clause Loops

This section imports all the theory files of the given clause procedure formalization.

```
theory Given-Clause-Loops
    imports
        Fair-DISCOUNT-Loop
    Fair-Otter-Loop-Complete
    Fair-Zipperposition-Loop-without-Ghosts
begin
end
```

