An Efficient Generalization of Counting Sort for Large, possibly Infinite Key Ranges

Pasquale Noce
Software Engineer at HID Global, Italy
pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at hidglobal dot com

May 26, 2024

Abstract

Counting sort is a well-known algorithm that sorts objects of any kind mapped to integer keys, or else to keys in one-to-one correspondence with some subset of the integers (e.g. alphabet letters). However, it is suitable for direct use, viz. not just as a subroutine of another sorting algorithm (e.g. radix sort), only if the key range is not significantly larger than the number of the objects to be sorted.

This paper describes a tail-recursive generalization of counting sort making use of a bounded number of counters, suitable for direct use in case of a large, or even infinite key range of any kind, subject to the only constraint of being a subset of an arbitrary linear order. After performing a pen-and-paper analysis of how such algorithm has to be designed to maximize its efficiency, this paper formalizes the resulting generalized counting sort (GCsort) algorithm and then formally proves its correctness properties, namely that (a) the counters' number is maximized never exceeding the fixed upper bound, (b) objects are conserved, (c) objects get sorted, and (d) the algorithm is stable.

Contents

1 Algorithm's description, analysis, and formalization 2
1.1 Introduction 2
1.1.1 Counting sort 2
1.1.2 Buckets' probability - Proof 4
1.1.3 Buckets' probability - Implementation 10
1.1.4 Buckets' number - Proof 17
1.1.5 Buckets' number - Implementation 20
1.1.6 Generalized counting sort (GCsort) 22
1.2 Formal definitions 25
1.3 Proof of a preliminary invariant 31
1.4 Proof of counters' optimization 32
4 Proof of algorithm's stability 47

1 Algorithm's description, analysis, and formalization

theory Algorithm
imports Main
begin

This paper is dedicated to Gaia, my sweet niece, whose arrival has blessed me and my family with joy and tenderness.

Moreover, I would like to thank my colleague Iacopo Rippa, who patiently listened to the ideas underlying sections 1.1.2 and 1.1.4, and helped me expand those ideas into complete proofs by providing me with valuable hints and test data.

1.1 Introduction

1.1.1 Counting sort

Counting sort is a well-known algorithm that sorts a collection of objects of any kind, as long as each such object is associated with a signed integer key, according to their respective keys (cf. [2], [8]). If $x s$ is the input array containing n objects to be sorted, out is the output, sorted array, and key is the function mapping objects to keys, counting sort works as follows (assuming arrays to be zero-based):

1. Search the minimum key $m i$ and the maximum key $m a$ occurring within $x s$ (which can be done via a single loop over $x s$).
2. Allocate an array $n s$ of $m a-m i+2$ unsigned integers and initialize all its elements to 0 .
3. For each i from 0 to $n-1$, increase $n s[k e y(x s[i])-m i+1]$ by 1 .
4. For each i from 2 to $m a-m i$, increase $n s[i]$ by $n s[i-1]$.
5. For each i from 0 to $n-1$, set $\operatorname{out}[n s[\operatorname{key}(x s[i])-m i]]$ to $x s[i]$ and increase $n s[\operatorname{key}(x s[i])-m i]$ by 1 .

Steps 1 and 2 take $O(n)$ and $O(m a-m i)$ time, respectively. Step 3 counts how many times each possible key occurs within $x s$, and takes $O(n)$ time. Step 4 computes the offset within out of the first object in $x s$, if any, having each possible key, and takes $O(m a-m i)$ time. Finally, step 5 fills out, taking $O(n)$ time. Thus, the overall running time is $O(n)+O(m a-m i)$, and the same is obviously true of memory space.
If the range of all the keys possibly occurring within $x s$, henceforth briefly referred to as the key range, is known in advance, the first two steps can be skipped by using the minimum and maximum keys in the key range as $m i, m a$ and pre-allocating (possibly statically, rather than dynamically, in real-world implementations) an array $n s$ of size $m a-m i+2$. However, this does not affect the asymptotic running time and memory space required by the algorithm, since both keep being $O(n)+O(m a-m i)$ independently of the distribution of the keys actually occurring in $x s$ within the key range.
As a result, counting sort is suitable for direct use, viz. not just as a subroutine of another sorting algorithm such as radix sort, only if the key range is not significantly larger than n. Indeed, if 100 objects with 100,000 possible keys have to be sorted, accomplishing this task by allocating, and iterating over, an array of 100,000 unsigned integers to count keys' occurrences would be quite impractical! Whence the question that this paper will try to answer: how can counting sort be generalized for direct use in case of a large key range?
Solving this problem clearly requires to renounce having one counter per key, rather using a bounded number of counters, independent of the key range's cardinality, and partitioning the key range into some number of intervals compatible with the upper bound on the counters' number. The resulting key intervals will then form as many buckets, and what will have to be counted is the number of the objects contained in each bucket.
Counting objects per bucket, rather than per single key, has the following major consequences, the former good, the latter bad:

- Keys are no longer constrained to be integers, but may rather be elements of any linear order, even of infinite cardinality.
In fact, in counting sort keys must be integers - or anything else in one-to-one correspondence with some subset of the integers, such as alphabet letters - since this ensures that the key range contains finitely many keys, so that finitely many counters are needed. Thus, the introduction of an upper bound for the number of counters makes this constraint vanish. As a result, keys of any kind are now allowed and the key range can even be infinite (mathematically, since any representation of the key range on a computer will always be finite). Notably, rational or real numbers may be used as keys, too.
This observation considerably extends the scope of application of the
special case where function key matches the identity function. In counting sort, this option is viable only if the objects to be sorted are themselves integers, whereas in the generalized algorithm it is viable whenever they are elements of any linear order, which also happens if they are rational or real numbers.
- Recursion needs to be introduced, since any bucket containing more than one object is in turn required to be sorted.
In fact, nothing prevents multiple objects from falling in the same bucket, and while this happens sorting is not accomplished. Therefore, the generalized algorithm must provide for recursive rounds, where each round splits any bucket containing multiple objects into finergrained buckets containing fewer objects. Recursion will then go on until every bucket contains at most one object, viz. until there remains no counter larger than one.

Of course, the fewer recursive rounds are required to complete sorting, the more the algorithm will be efficient, whence the following, fundamental question: how to minimize the number of the rounds? That is to say, how to maximize the probability that, as a result of the execution of a round, there be at most one object in each bucket, so that no more rounds be required? The intuitive answer is: first, by making the buckets equiprobable - or at least, by making their probabilities as much uniform as possible - , and second, by increasing the number of the buckets as much as possible. Providing pen-and-paper proofs of both of these statements, and showing how they can be enforced, is the purpose of the following sections.

1.1.2 Buckets' probability - Proof

Suppose that k objects be split randomly among n equiprobable buckets, where $k \leq n$. This operation is equivalent to selecting at random a sequence of k buckets, possibly with repetitions, so that the first object be placed into the first bucket of the sequence, the second object into the second bucket, and so on. Thus, the probability P that each bucket will contain at most one object - which will be called event E in what follows - is equal to the probability of selecting a sequence without repetitions among all the possible sequences of k buckets formed with the n given ones.
Since buckets are assumed to be equiprobable, so are all such sequences. Hence, P is equal to the ratio of the number of the sequences without repetitions to the number of all sequences, namely:

$$
\begin{equation*}
P=\frac{n!}{(n-k)!n^{k}} \tag{1}
\end{equation*}
$$

In the special case where $k=n$, this equation takes the following, simpler form:

$$
\begin{equation*}
P=\frac{n!}{n^{n}} \tag{2}
\end{equation*}
$$

Now, suppose that the n buckets be no longer equiprobable, viz. that they no longer have the same, uniform probability $1 / n$, rather having arbitrary, nonuniform probabilities p_{1}, \ldots, p_{n}. The equation for probability P applying to this case can be obtained through an iterative procedure, as follows.
Let i be an index in the range 1 to n such that p_{i} is larger than $1 / n$. After swapping index i for 1 , let x_{1} be the increment in probability p_{1} with respect to $1 / n$, so that $p_{1}=a_{0} / n+x_{1}$ with $a_{0}=1$ and $0<x_{1} \leq a_{0}(n-1) / n$ (as $p_{1}=1$ for $\left.x_{1}=a_{0}(n-1) / n\right)$. Then, let P_{1} be the probability of event E in case the first bucket has probability p_{1} and all the other $n-1$ buckets have the same, uniform probability $q_{1}=a_{0} / n-x_{1} /(n-1)$.
If $k<n$, event E occurs just in case either all k objects fall in as many distinct buckets with probability q_{1}, or $k-1$ objects do so whereas the remaining object falls in the bucket with probability p_{1}. As these events, say E_{A} and E_{B}, are incompatible, P_{1} matches the sum of their respective probabilities.
Since all the possible choices of k distinct buckets are mutually incompatible, while those of the buckets containing any two distinct objects are mutually independent, the probability of event E_{A} is equal to the product of the following factors:

- The number of the sequences without repetitions of k buckets formed with the $n-1$ ones with probability q_{1}, i.e. $(n-1)!/(n-1-k)!=$ $(n-k)(n-1)!/(n-k)$!.
- The probability of any such sequence, i.e. q_{1}^{k}.

By virtue of similar considerations, the probability of event E_{B} turns out to match the product of the following factors:

- The number of the sequences without repetitions of $k-1$ buckets formed with the $n-1$ ones with probability q_{1}, i.e. $(n-1)$!/ $(n-1-$ $k+1)!=(n-1)!/(n-k)!$.
- The probability of any such sequence, i.e. q_{1}^{k-1}.
- The number of the possible choices of the object falling in the first bucket, i.e. k.
- The probability of the first bucket, i.e. p_{1}.

Therefore, P_{1} is provided by the following equation:

$$
\begin{align*}
P_{1}= & \frac{(n-k)(n-1)!}{(n-k)!}\left(\frac{a_{0}}{n}-\frac{x_{1}}{n-1}\right)^{k} \tag{3}\\
& +k \frac{(n-1)!}{(n-k)!}\left(\frac{a_{0}}{n}-\frac{x_{1}}{n-1}\right)^{k-1}\left(\frac{a_{0}}{n}+x_{1}\right)
\end{align*}
$$

The correctness of this equation is confirmed by the fact that its right-hand side matches that of equation (1) for $x_{1}=0$, since P_{1} must degenerate to P in this case. In fact, being $a_{0}=1$, it results:

$$
\begin{aligned}
& \frac{(n-k)(n-1)!}{(n-k)!}\left(\frac{a_{0}}{n}-0\right)^{k}+k \frac{(n-1)!}{(n-k)!}\left(\frac{a_{0}}{n}-0\right)^{k-1}\left(\frac{a_{0}}{n}+0\right) \\
& \quad=(n-k+k) \frac{(n-1)!}{(n-k)!}\left(\frac{a_{0}}{n}\right)^{k} \\
& \quad=\frac{n!}{(n-k)!n^{k}}
\end{aligned}
$$

If $k=n$, event E_{A} is impossible, as there is no way to accommodate n objects within $n-1$ buckets without repetitions. Thus, P_{1} is given by the following equation, derived by deleting the first addend and replacing k with n in the right-hand side of equation (3):

$$
\begin{equation*}
P_{1}=n!\left(\frac{a_{0}}{n}-\frac{x_{1}}{n-1}\right)^{n-1}\left(\frac{a_{0}}{n}+x_{1}\right) \tag{4}
\end{equation*}
$$

Likewise, the right-hand side of this equation matches that of equation (2) for $x_{1}=0$, which confirms its correctness.
The conclusions reached so far can be given a concise form, suitable for generalization, through the following definitions, where i and j are any two natural numbers such that $0<k-j \leq n-i$ and a_{i} is some assigned real number:

$$
\begin{aligned}
A_{i, j} & \equiv \frac{(n-i)!}{(n-i-k+j)!}\left(\frac{a_{i}}{n-i}\right)^{k-j} \\
F_{i, j} & \equiv(k-j+1) A_{i, j} p_{i} \\
G_{i, j} & \equiv A_{i, j-1}+F_{i, j}
\end{aligned}
$$

Then, denoting the value of P in the uniform probability case with P_{0}, and $a_{0}(n-1) / n-x_{1}$ with a_{1}, so that $q_{1}=a_{1} /(n-1)$, equations (1), (3), and (4) can be rewritten as follows:

$$
\begin{align*}
& P_{0}=A_{0,0} \tag{5}\\
& P_{1}= \begin{cases}G_{1,1}=A_{1,0}+k A_{1,1} p_{1} & \text { if } k<n \\
F_{1,1}=k A_{1,1} p_{1} & \text { if } k=n\end{cases} \tag{6}
\end{align*}
$$

Even more than for their conciseness, these equations are significant insofar as they show that the right-hand side of equation (6) can be obtained from the one of equation (5) by replacing $A_{0,0}$ with either $G_{1,1}$ or $F_{1,1}$, depending on whether $k<n$ or $k=n$.
If p_{i} matches q_{1} for any i in the range 2 to $n, P=P_{1}$, thus P is given by equation (6). Otherwise, the procedure that has led to equation (6) can be applied again. For some index i in the range 2 to n such that p_{i} is larger than q_{1}, swap i for 2 , and let $x_{2}=p_{2}-a_{1} /(n-1), a_{2}=a_{1}(n-2) /(n-1)-x_{2}$, with $0<x_{2} \leq a_{1}(n-2) /(n-1)$. Moreover, let P_{2} be the probability of event E if the first two buckets have probabilities p_{1}, p_{2} and the other $n-2$ buckets have the same probability $q_{2}=a_{2} /(n-2)$.
Then, reasoning as before, it turns out that the equation for P_{2} can be obtained from equation (6) by replacing:

- $A_{1,0}$ with $G_{2,1}$ or $F_{2,1}$, depending on whether $k<n-1$ or $k=n-1$, and
- $A_{1,1}$ with $G_{2,2}$ or $F_{2,2}$, depending on whether $k-1<n-1$, i.e. $k<n$, or $k-1=n-1$, i.e. $k=n$.

As a result, P_{2} is provided by the following equation:

$$
P_{2}=\left\{\begin{array}{l}
G_{2,1}+k G_{2,2} p_{1}=A_{2,0}+k A_{2,1} p_{2}+k\left[A_{2,1}+(k-1) A_{2,2} p_{2}\right] p_{1} \tag{7}\\
\text { if } k<n-1, \\
F_{2,1}+k G_{2,2} p_{1}=k A_{2,1} p_{2}+k\left[A_{2,1}+(k-1) A_{2,2} p_{2}\right] p_{1} \\
\text { if } k=n-1, \\
k F_{2,2} p_{1}=k(k-1) A_{2,2} p_{2} p_{1} \\
\text { if } k=n .
\end{array}\right.
$$

Since the iterative procedure used to derive equations (6) and (7) can be further applied as many times as required, it follows that for any nonuniform probability distribution p_{1}, \ldots, p_{n}, the equation for P can be obtained from equation (5) with $n-1$ steps at most, where each step consists of replacing terms of the form $A_{i, j}$ with terms of either form $G_{i+1, j+1}$ or $F_{i+1, j+1}$, depending on whether $k-j<n-i$ or $k-j=n-i$.

Let us re-use letters n, k in lieu of $n-i$ and $k-j$, and use letters a, x as aliases for a_{i} and x_{i+1}. Then, any aforesaid replacement is equivalent to the insertion of either of the following expressions, regarded as images of as many functions G, F of real variable x :

$$
\begin{array}{rlrl}
G(x)= & \frac{(n-k)(n-1)!}{(n-k)!}\left(\frac{a}{n}-\frac{x}{n-1}\right)^{k} & \\
& +k \frac{(n-1)!}{(n-k)!}\left(\frac{a}{n}-\frac{x}{n-1}\right)^{k-1}\left(\frac{a}{n}+x\right) & & \text { for } k<n \\
F(x)= & n!\left(\frac{a}{n}-\frac{x}{n-1}\right)^{n-1}\left(\frac{a}{n}+x\right) & & \text { for } k=n \tag{9}
\end{array}
$$

in place of the following expression:

$$
\frac{n!}{(n-k)!}\left(\frac{a}{n}\right)^{k}= \begin{cases}G(0) & \text { if } k<n \tag{10}\\ F(0) & \text { if } k=n\end{cases}
$$

Equation (10) can be obtained from equations (8) and (9) in the same way as equations (3) and (4) have previously been shown to match equations (1) and (2) for $x_{1}=0$.
Since every such replacement takes place within a sum of nonnegative terms, P can be proven to be increasingly less than P_{0} for increasingly nonuniform probability distributions - which implies that the probability of event E is maximum in case of equiprobable buckets - by proving that functions G and F are strictly decreasing in $[0, b]$, where $b=a(n-1) / n$.
The slopes of the segments joining points $(0, G(0)),(b, G(b))$ and $(0, F(0))$, $(b, F(b))$ are:

$$
\begin{aligned}
& \frac{G(b)-G(0)}{b-0}=\frac{0-\frac{n!}{(n-k)!}\left(\frac{a}{n}\right)^{k}}{b}<0 \\
& \frac{F(b)-F(0)}{b-0}=\frac{0-n!\left(\frac{a}{n}\right)^{n}}{b}<0
\end{aligned}
$$

Therefore, by Lagrange's mean value theorem, there exist $c, d \in(0, b)$ such that $G^{\prime}(c)<0$ and $F^{\prime}(d)<0$. On the other hand, it is:

$$
\begin{aligned}
G^{\prime}(x)= & -k \frac{(n-1)!}{(n-k)!} \frac{n-k}{n-1}\left(\frac{a}{n}-\frac{x}{n-1}\right)^{k-1} \\
& -k \frac{(n-1)!}{(n-k)!} \frac{k-1}{n-1}\left(\frac{a}{n}-\frac{x}{n-1}\right)^{k-2}\left(\frac{a}{n}+x\right) \\
& +k \frac{(n-1)!}{(n-k)!}\left(\frac{a}{n}-\frac{x}{n-1}\right)^{k-1}, \\
F^{\prime}(x)= & -n!\left(\frac{a}{n}-\frac{x}{n-1}\right)^{n-2}\left(\frac{a}{n}+x\right)+n!\left(\frac{a}{n}-\frac{x}{n-1}\right)^{n-1}
\end{aligned}
$$

Thus, solving equations $G^{\prime}(x)=0$ and $F^{\prime}(x)=0$ for $x \neq b$, viz. for $a / n-$ $x /(n-1) \neq 0$, it results:

$$
\begin{aligned}
& G^{\prime}(x)=0 \\
& \Rightarrow k \frac{(n-1)!}{(n-k)!}\left(\frac{a}{n}-\frac{x}{n-1}\right)^{k-2}\left[\frac{k-n}{n-1}\left(\frac{a}{n}-\frac{x}{n-1}\right)\right. \\
& \left.+\frac{1-k}{n-1}\left(\frac{a}{n}+x\right)+\frac{a}{n}-\frac{x}{n-1}\right]=0 \\
& \Rightarrow \frac{1}{n(n-1)^{2}}\{(k-n)[(n-1) a-n x]+(1-k)[(n-1) a+n(n-1) x] \\
& \left.+(n-1)^{2} a-n(n-1) x\right\}=0 \\
& \Rightarrow \bar{k}(n-1) a-k n x-n(n-1) a+n^{2} x+(n-1) a+\bar{n}(n-1) x \\
& -k(n-1) a-k n(n-1) x+(n-1)^{2} a-\bar{n}(n-1) x=0 \\
& \Rightarrow-\sin x-n^{2} a+7 a+n^{2} x+7 a-\alpha-k n^{2} x+\operatorname{kn} x+n^{2} a-2 n a+\alpha=0 \\
& \Rightarrow \bar{n}^{2}(1-k) x=0 \\
& \Rightarrow x=0 \text {, } \\
& F^{\prime}(x)=0 \\
& \Rightarrow n!\left(\frac{a}{n}-\frac{x}{n-1}\right)^{n-2}\left(-\frac{a}{n}-x+\frac{a}{n}-\frac{x}{n-1}\right)=0 \\
& \Rightarrow \frac{n}{1-n} x=0 \\
& \Rightarrow x=0 \text {. }
\end{aligned}
$$

Hence, there is no $x \in(0, b)$ such that $G^{\prime}(x)=0$ or $F^{\prime}(x)=0$. Moreover, if there existed $y, z \in(0, b)$ such that $G^{\prime}(y)>0$ or $F^{\prime}(z)>0$, by Bolzano's theorem there would also exist u, v in the open intervals with endpoints c, y
and d, z, both included in $(0, b)$, such that $G^{\prime}(u)=0$ or $F^{\prime}(v)=0$, which is not the case. Therefore, $G^{\prime}(x)$ and $F^{\prime}(x)$ are negative for any $x \in(0, b)$, so that functions G and F are strictly decreasing in $[0, b]$, Q.E.D..

1.1.3 Buckets' probability - Implementation

Given $n>1$ buckets, numbered with indices 0 to $n-1$, and a finite set A of objects having minimum key $m i$ and maximum key $m a$, let $E(k), I(m i, m a)$ be the following events, defined as subsets of the whole range R of function $k e y$, with k varying over R :

$$
\begin{aligned}
E(k) & \equiv\left\{k^{\prime} \in R . k^{\prime} \leq k\right\} \\
I(m i, m a) & \equiv\left\{k^{\prime} \in R . m i \leq k^{\prime} \leq m a\right\}
\end{aligned}
$$

Furthermore, define functions r, f as follows:

$$
\begin{aligned}
r(k, n, m i, m a) & \equiv(n-1) \cdot P(E(k) \mid I(m i, m a)) \\
f(k, n, m i, m a) & \equiv \operatorname{floor}(r(k, n, m i, m a))
\end{aligned}
$$

where $P(E(k) \mid I(m i, m a))$ denotes the conditional probability of event $E(k)$, viz. for a key not to be larger than k, given event $I(m i, m a)$, viz. if the key is comprised between $m i$ and $m a$.
Then, the buckets' probabilities can be made as much uniform as possible by placing each object $x \in A$ into the bucket whose index matches the following value:

$$
i n d e x(k e y, x, n, m i, m a) \equiv f(k e y(x), n, m i, m a)
$$

For example, given $n=5$ buckets, suppose that the image of set A under function key consists of keys $k_{1}=m i, k_{2}, \ldots, k_{9}=m a$, where the conditional probabilities for a key comprised between k_{1} and k_{9} to match each of these keys have the following values:

$$
\begin{aligned}
& P_{1}=0.05, \\
& P_{2}=0.05, \\
& P_{3}=0.15, \\
& P_{4}=0.075, \\
& P_{5}=0.2, \\
& P_{6}=0.025, \\
& P_{7}=0.1, \\
& P_{8}=0.25, \\
& P_{9}=0.1
\end{aligned}
$$

Evidently, there is no way of partitioning set $\left\{k_{1}, \ldots, k_{9}\right\}$ into five equiprobable subsets comprised of contiguous keys. However, it results:

$$
\text { floor }\left(4 \cdot \sum_{i=1}^{n} P_{i}\right)= \begin{cases}0 & \text { for } n=1,2 \\ 1 & \text { for } n=3,4 \\ 2 & \text { for } n=5,6,7 \\ 3 & \text { for } n=8 \\ 4 & \text { for } n=9\end{cases}
$$

Hence, in spite of the highly nonuniform distribution of the keys' probabilities - key k_{8} 's probability is 10 times that of key $k_{6}-$, function index manages all the same to split the objects in A so as to make the buckets' probabilities more uniform - with the maximum one being about 3 times the minimum one - , as follows:

- Bucket 0 has probability 0.1 , as it collects the objects with keys k_{1}, k_{2}.
- Bucket 1 has probability 0.225 , as it collects the objects with keys k_{3}, k_{4}.
- Bucket 2 has probability 0.325 , as it collects the objects with keys k_{5}, k_{6}, k_{7}.
- Bucket 3 has probability 0.25 , as it collects the objects with key k_{8}.
- Bucket 4 has probability 0.1 , as it collects the objects with key k_{9}.

Remarkably, function index makes the buckets' probabilities exactly or almost uniform - meaning that the maximum one is at most twice the minimum nonzero one, possibly except for the last bucket alone - in the following most common, even though special, cases:

1. $I(m i, m a)$ is a finite set of equiprobable keys.
2. $I(m i, m a)$ is a closed interval of real numbers, i.e. $I(m i, m a)=[m i, m a] \subset$ \mathbb{R}, with $P(\{m i\})=0$, and function r is continuous for $k \in[m i, m a]$.

In case 1 , let m be the cardinality of $I(m i, m a)$. It is $m>0$ since $m i \in$ $I(m i, m a)$, so that each key in $I(m i, m a)$ has probability $1 / m$.
If $m \leq n-1$, then $(n-1) / m \geq 1$, thus f is nonzero and strictly increasing for $k \in I(m i, m a)$. Thus, in this subcase function index fills exactly m buckets, one for each single key in $I(m i, m a)$, whereas the remaining $n-m$ buckets, particularly the first one, are left unused. Therefore, every used bucket has probability $1 / m$.
If $m>n-1$ and m is divisible by $n-1$, let $q>1$ be the quotient of the division, so that $m=q(n-1)$. Dividing both sides of this equation by $m(n-1)$, it turns out that $1 /(n-1)=q / m$, and then $1 /(n-1)-1 / m=$ $(q-1) / m$. Hence, f matches zero for the first $q-1$ keys in $I(m i, m a)$, increases by one for each of the $n-2$ subsequent groups of q contiguous keys, and reaches value $n-1$ in correspondence with the last key. Indeed, $q-1+q(n-2)+1=q+q(n-2)=q(n-1)=m$.
Consequently, in this subcase function index places the objects mapped to the first $q-1$ keys into the first bucket - which then has probability $(q-1) / m-$, the objects mapped to the i-th subsequent group of q keys, where $1 \leq i \leq n-2$, into the bucket with index i - which then has probability $q / m-$ and the objects mapped to the last key into the last bucket - which then has probability $1 / m-$. Since $2(q-1) / m=2 q / m-2 / m \geq 2 q / m-q / m=q / m$, the maximum probability is at most twice the minimum one, excluding the last bucket if $q>2$.
If $m>n-1$ and m is not divisible by $n-1$, let q, r be the quotient and the remainder of the division, where $q>0$ and $n-1>r>0$. For any $i>0$, it is:

$$
\begin{align*}
m & =q(n-1)+r \\
& \Rightarrow \frac{q}{m(n-1)}=\frac{q(n-1)}{m(n-1)}+\frac{r}{m(n-1)} \\
& \Rightarrow \frac{i}{n-1}=\frac{i q}{m}+i \frac{r}{m(n-1)} \\
& \Rightarrow \frac{i q}{m}=\frac{i}{n-1}-\left(i \frac{r}{n-1}\right) \frac{1}{m} \tag{11}\\
& \Rightarrow \frac{i q+1}{m}=\frac{i}{n-1}+\left(1-i \frac{r}{n-1}\right) \frac{1}{m} \tag{12}
\end{align*}
$$

Both equations (11) and (12) have something significant to say for $i=1$.

Equation (11) takes the following form:

$$
\frac{q}{m}=\frac{1}{n-1}-\left(\frac{r}{n-1}\right) \frac{1}{m}
$$

where $r /(n-1)>0$, so that $q / m<1 /(n-1)$. This implies that, if k is the first key in $I(m i, m a)$ for which f matches any given value, the subsequent $q-1$ keys are never sufficient to increase f by one. Thus, function index fills every bucket but the last one - which collects the objects mapped to the last key only - with the objects mapped to $1+q-1=q$ keys at least. For its part, equation (12) takes the following form:

$$
\frac{q+1}{m}=\frac{1}{n-1}+\left(1-\frac{r}{n-1}\right) \frac{1}{m}
$$

where $1-r /(n-1)>0$, so that $(q+1) / m>1 /(n-1)$. Therefore, the q keys following any aforesaid key k are always sufficient to increase f by one. Hence, function index fills every bucket with the objects mapped to $1+q=q+1$ keys at most. A further consequence is that f changes from zero to one for k matching the $(q+1)$-th key in $I(m i, m a)$, which entails that the first bucket collects the objects mapped to exactly the first q keys. Which is the first i_{1}, if any, such that the bucket with index i_{1} collects the objects mapped to $q+1$, rather than q, keys? Such bucket, if any, is preceded by i_{1} buckets (as indices are zero-based), whose total probability is $i_{1} q / m$ (as each of those buckets accommodates a group of q keys). So, i_{1} is the least index, if any, such that $0<i_{1}<n-1$ and $\left[\left(i_{1}+1\right) q+1\right] / m<\left(i_{1}+1\right) /(n-1)$. Rewriting the latter inequality using equation (12), it results:

$$
\begin{aligned}
& \frac{1}{n-1}+\left[1-\left(i_{1}+1\right) \frac{r}{n-1}\right] \frac{1}{m}<\frac{i_{1}+1}{n-1} \\
& \quad \Rightarrow\left[1-\left(i_{1}+1\right) \frac{r}{n-1}\right] \frac{1}{m}<0 \\
& \quad \Rightarrow\left(i_{1}+1\right) \frac{r}{n-1}>1 \\
& \quad \Rightarrow i_{1}>\frac{n-1}{r}-1
\end{aligned}
$$

where $(n-1) / r-1>0$ since $r<n-1$. Hence, index i_{1} there exists just in case:

$$
\begin{aligned}
& \frac{n-1}{r}-1<n-2 \\
& \quad \Rightarrow \frac{n-1}{r}<n-1 \\
& \quad \Rightarrow r>1
\end{aligned}
$$

Likewise, let i_{2} be the next index, if any, such that the bucket with index i_{2} accommodates a group of $q+1$ keys. Such bucket, if any, is preceded by $i_{2}-1$ buckets accommodating q keys and one bucket accommodating $q+1$ keys, whose total probability is $\left(i_{2} q+1\right) / m$. Thus, i_{2} is the least index, if any, such that $i_{1}<i_{2}<n-1$ and $\left[\left(i_{2}+1\right) q+2\right] / m<\left(i_{2}+1\right) /(n-1)$. Adding term $1 / m$ to both sides of equation (12), the latter inequality can be rewritten as follows:

$$
\begin{aligned}
& \frac{i_{2}+1}{n-1}+\left[2-\left(i_{2}+1\right) \frac{r}{n-1}\right] \frac{1}{m}<\frac{i_{2}+1}{n-\mathbb{1}} \\
& \quad \Rightarrow\left[2-\left(i_{2}+1\right) \frac{r}{n-1}\right] \frac{1}{m}<0 \\
& \quad \Rightarrow\left(i_{2}+1\right) \frac{r}{n-1}>2 \\
& \quad \Rightarrow i_{2}>\frac{2(n-1)}{r}-1
\end{aligned}
$$

where $2(n-1) / r-1>[(n-1) / r-1]+1 \geq i_{1}$. Hence, index i_{2} there exists just in case:

$$
\begin{aligned}
& \frac{2(n-1)}{r}-1<n-2 \\
& \quad \Rightarrow \frac{2(n-1)}{r}<n-1 \\
& \quad \Rightarrow r>2
\end{aligned}
$$

To sum up, in this subcase function index turns out to work as follows:

- The $r-1$ buckets whose indices i_{j} match the least solutions of inequalities $i_{j}>j(n-1) / r-1$, for $1 \leq j \leq r-1$, accommodate a group of $q+1$ contiguous keys each, so that each one has probability $(q+1) / m$.
- The other $n-1-(r-1)=n-r$ buckets excluding the last one, particularly the first bucket, accommodate a group of q contiguous keys each, so that each one has probability q / m.
- The last bucket accommodates the last key alone, so that its probability is $1 / m$.

Indeed, $(q+1)(r-1)+q(n-r)+1=\not \subset<-q+r-1$ Furthermore, being $2 q / m \geq(q+1) / m$, the maximum value among buckets' probabilities is at most twice the minimum one, excluding the last bucket if $q>2$.
Two further observations can be made concerning case 1. First, if $m>n-1$, then the larger q gets, the more efficient it becomes to use the buckets' number n itself instead of $n-1$ within function r, placing the objects with index n, viz. mapped to the last key, into the bucket with index $n-1$. In fact, this ensures that all the buckets have almost uniform probabilities rather than leaving a bucket, the last one, with a small, or even negligible, probability.
Second, if keys are integers and $I(m i, m a)$ includes all the integers comprised between $m i$ and $m a$, it is $m=m a-m i+1$, whereas the cardinality of set $E(k) \cap I(m i, m a)$ is $k-m i+1$ for any $k \in I(m i, m a)$. Therefore, it results:

$$
r(k, n, m i, m a)=(n-1) \frac{k-m i+1}{m a-m i+1}
$$

so that function r resembles the approximate rank function R described in [1].

In case 2 , let Z be the set of the integers i such that $0 \leq i \leq n-1$. As $r(k, n, m i, m a)$ matches 0 for $k=m i$ and $n-1$ for $k=m a$, by the intermediate value theorem, for each $i \in Z$ there exists a least $k_{i} \in[m i, m a]$ such that $r\left(k_{i}, n, m i, m a\right)=i$, where $k_{0}=m i$. Then, let $B_{i}=\left[k_{i}, k_{i+1}\right)$ for each $i \in Z-\{n-1\}$ and $B_{n-1}=\left[k_{n-1}, m a\right]$.
For any $i \in Z-\{n-1\}, k \in B_{i}$, it is $r(k, n, m i, m a) \neq i+1$, since otherwise there would exist some $k<k_{i+1}$ in $[m i, m a]$ such that $r(k, n, m i, m a)=i+1$. On the other hand, being $k<k_{i+1}$, it is $r(k, n, m i, m a) \leq i+1$, since function r is increasing with respect to variable k. Hence, it turns out that $r(k, n, m i, m a)<i+1$. Moreover, the monotonicity of r also implies that $r(k, n, m i, m a) \geq i$. Therefore, it is $f(k, n, m i, m a)=i$, so that for any $i \in Z$, function index fills the bucket with index i with the objects mapped to the keys in B_{i}.
Consequently, for each $i \in Z-\{n-1\}$, the probability of the bucket with index i is:

$$
\begin{aligned}
P & \left(B_{i} \mid I(m i, m a)\right) \\
& =\frac{P\left(B_{i} \cap I(m i, m a)\right)}{P(I(m i, m a))} \\
& =\frac{P\left(\left(k_{i}, k_{i+1}\right] \cap I(m i, m a)\right)}{P(I(m i, m a))} \\
& =\frac{P\left(E\left(k_{i+1}\right) \cap I(m i, m a)\right)-P\left(E\left(k_{i}\right) \cap I(m i, m a)\right)}{P(I(m i, m a))} \\
& =\frac{P\left(E\left(k_{i+1}\right) \cap I(m i, m a)\right)}{P(I(m i, m a))}-\frac{P\left(E\left(k_{i}\right) \cap I(m i, m a)\right)}{P(I(m i, m a))} \\
& =P\left(E\left(k_{i+1}\right) \mid I(m i, m a)\right)-P\left(E\left(k_{i}\right) \mid I(m i, m a)\right) \\
& =\frac{(n-1) \cdot P\left(E\left(k_{i+1}\right) \mid I(m i, m a)\right)-(n-1) \cdot P\left(E\left(k_{i}\right) \mid I(m i, m a)\right)}{n-1} \\
& =\frac{r\left(k_{i+1}, n, m i, m a\right)-r\left(k_{i}, n, m i, m a\right)}{n-1} \\
& =\frac{i+1-k}{n-1} \\
& =\frac{1}{n-1}
\end{aligned}
$$

Observe that the computation uses:

- The definition of conditional probability.
- The fact that events B_{i} and $\left(k_{i}, k_{i+1}\right.$] differ by singletons $\left\{k_{i}\right\}$ and $\left\{k_{i+1}\right\}$, whose probability is zero.
Indeed, it is $P\left(\left\{k_{0}\right\}\right)=P(\{m i\})=0$ by hypothesis, whereas for any $k \in(m i, m a]$, it is $P(\{k\})=0$ due to the continuity of function r, and then of function $P(E(k) \cap I(m i, m a))$, in point k. In fact, for any $k^{\prime} \in$ $(m i, k)$ it is $E\left(k^{\prime}\right) \cap I(m i, m a)=\left[m i, k^{\prime}\right] \subset[m i, k)$, so that $P\left(E\left(k^{\prime}\right) \cap\right.$ $I(m i, m a)) \leq P([m i, k))$. However, it is also $E(k) \cap I(m i, m a)=$ $[m i, k]=[m i, k) \cup\{k\}$, so that $P(E(k) \cap I(m i, m a))=P([m i, k))+$ $P(\{k\})$. Thus, if $P(\{k\})>0$, then $P(E(k) \cap I(m i, m a))>P([m i, k))$, in contradiction with the assumption that:

$$
\lim _{k^{\prime} \rightarrow k^{-}} P\left(E\left(k^{\prime}\right) \cap I(m i, m a)\right)=P(E(k) \cap I(m i, m a))
$$

- The fact that event $E\left(k_{i+1}\right) \cap I(m i, m a)$ is equal to the union of the disjoint events $E\left(k_{i}\right) \cap I(m i, m a)$ and $\left(k_{i}, k_{i+1}\right] \cap I(m i, m a)$, so that the probability of the former event is equal to the sum of the probabilities of the latter ones.

As a result, all the buckets but the last one are equiprobable, whereas the last one has probability zero. Thus, in this case it is again more efficient to replace $n-1$ with n within function r, assigning the objects with index n, viz. mapped to the keys falling in B_{n}, to the bucket with index $n-1$, which ensures that all the buckets have uniform probabilities.
If function r is linear for $k \in[m i, m a]$, viz. if interval $[m i, m a]$ is endowed with a constant probability density, then the function's graph (with factor $n-1$ replaced by n) is the straight line passing through points ($m i, 0$) and ($m a, n$). Therefore, it results:

$$
r(k, n, m i, m a)=n \frac{k-m i}{m a-m i}
$$

so that function r matches the approximate rank function R described in [1].

1.1.4 Buckets' number - Proof

Given n equiprobable buckets and k objects to be partitioned randomly among such buckets, where $1<k \leq n$, the probability $P_{n, k}$ that each bucket will contain at most one object is given by equation (1), namely:

$$
P_{n, k}=\frac{n!}{(n-k)!n^{k}}
$$

Thus, it is:

$$
\begin{aligned}
& P_{n+1, k}-P_{n, k} \\
& \quad=\frac{(n+1)!}{(n-k+1)(n-k)!(n+1)^{k}}-\frac{n!}{(n-k)!n^{k}} \\
& \quad=\frac{(n+1)!n^{k}-n!(n-k+1)(n+1)^{k}}{(n-k+1)(n-k)!n^{k}(n+1)^{k}}
\end{aligned}
$$

Using the binomial theorem and Pascal's rule, the numerator of the fraction in the right-hand side of this equation can be expressed as follows:

$$
\begin{aligned}
& (n+1)!n^{k}-(n-k+1) n!(n+1)^{k} \\
& =n!(n+1) n^{k}+n!k(n+1)^{k}-n!n(n+1)^{k}-n!(n+1)^{k} \\
& =n!n^{k+1}+n!n^{k} \\
& +n!k\left[n^{k}+\binom{k}{1} n^{k-1}+\binom{k}{2} n^{k-2}+\ldots+\binom{k}{k-1} n+\binom{k}{k}\right] \\
& -n!n\left[n^{k}+\binom{k}{1} n^{k-1}+\binom{k}{2} n^{k-2}+\ldots+\binom{k}{k-1} n+\binom{k}{k}\right] \\
& -n!\left[n^{k}+\binom{k}{1} n^{k-1}+\binom{k}{2} n^{k-2}+\ldots+\binom{k}{k-1} n+\binom{k}{k}\right] \\
& =\bar{n}!n^{k+1}+\bar{n}!n^{k}+\bar{n}!k n r^{k} \\
& +n!k\binom{k}{1} n^{k-1}+n!k\binom{k}{2} n^{k-2}+\ldots+n!k\binom{k}{k-1} n+n!k \\
& -\overline{n!n^{k+1}}-\overline{n!k n n^{k}}-n!\binom{k}{2} n^{k-1}-\ldots-n!\binom{k}{k-1} n^{2}-n!\binom{k}{k} n \\
& -n!n^{k}-n!\binom{k}{1} n^{k-1}-n!\binom{k}{2} n^{k-2}-\ldots-n!\binom{k}{k-1} n-n! \\
& =n!(k-1)+n!n^{k-1}\left[k\binom{k}{1}-\binom{k}{1}-\binom{k}{2}\right]+\ldots \\
& +n!n\left[k\binom{k}{k-1}-\binom{k}{k-1}-\binom{k}{k}\right] \\
& =n!(k-1)+n!\cdot \sum_{i=1}^{k-1} n^{k-i}\left\{k\binom{k}{i}-\left[\binom{k}{i}+\binom{k}{i+1}\right]\right\} \\
& =n!(k-1)+n!\cdot \sum_{i=1}^{k-1} n^{k-i}\left[k\binom{k}{i}-\binom{k+1}{i+1}\right] \\
& =n!(k-1)+n!\cdot \sum_{i=1}^{k-1} n^{k-i}\left[\frac{k k!}{i!(k-i)!}-\frac{(k+1)!}{(i+1) i!(k-i)!}\right] \\
& =n!(k-1)+n!\cdot \sum_{i=1}^{k-1} n^{k-i} k!\frac{(i+1) k-(k+1)}{(i+1) i!(k-i)!} \\
& =n!(k-1)+n!\cdot \sum_{i=1}^{k-1} n^{k-i} k!\frac{i k-1}{(i+1) i!(k-i)!}>0
\end{aligned}
$$

Therefore, for any fixed $k>1$, sequence $\left(P_{n, k}\right)_{n \geq k}$ is strictly increasing, viz. the larger n is, such is also the probability that each of the n equiprobable buckets will contain at most one of the k given objects.
Moreover, it is $P_{n, k}=[n(n-1)(n-2)(n-3) \ldots(n-k+1)] / n^{k}<n^{k} / n^{k}=1$,
as the product enclosed within the square brackets comprises k factors, one equal to n and the other ones less than n.
On the other hand, it turns out that:

$$
\begin{aligned}
& n(n-1)(n-2)(n-3) \ldots(n-k+1) \\
& \quad=n^{2}[(n-2)(n-3) \ldots(n-k+1)]-n[(n-2)(n-3) \ldots(n-k+1)] \\
& \quad \geq n^{2}[(n-2)(n-3) \ldots(n-k+1)]-n \cdot n^{k-2} \\
& \quad=n[n(n-2)(n-3) \ldots(n-k+1)]-n^{k-1} \\
& \quad=n \cdot n^{2}[(n-3) \ldots(n-k+1)]-n \cdot 2 n[(n-3) \ldots(n-k+1)]-n^{k-1} \\
& \quad \geq n^{3}[(n-3) \ldots(n-k+1)]-2 n^{2} \cdot n^{k-3}-n^{k-1} \\
& \quad=n^{2}[n(n-3) \ldots(n-k+1)]-(1+2) n^{k-1} \ldots
\end{aligned}
$$

Hence, applying the same line of reasoning until the product within the square brackets disappears, it results:

$$
\begin{aligned}
& n(n-1)(n-2)(n-3) \ldots(n-k+1) \\
& \quad \geq n^{k}-[1+2+\ldots+(k-1)] n^{k-1} \\
& \quad=n^{k}-\frac{k(k-1)}{2} n^{k-1}
\end{aligned}
$$

so that:

$$
P_{n, k}=\frac{n(n-1)(n-2)(n-3) \ldots(n-k+1)}{n^{k}} \geq 1-\frac{k(k-1)}{2 n}
$$

Therefore, for any fixed $k>1$, the terms of sequence $\left(P_{n, k}\right)_{n \geq k}$ are comprised between the corresponding terms of sequence $(1-k(k-1) / 2 n)_{n \geq k}$ and constant sequence $(1)_{n \geq k}$. Since both of these sequences converge to 1 , by the squeeze theorem it is:

$$
\lim _{n \rightarrow \infty} P_{n, k}=1
$$

viz. the larger n is, the closer to 1 is the probability that each of the n equiprobable buckets will contain at most one of the k given objects.
As a result, the probability of placing at most one object into each bucket in any algorithm's round is maximized by increasing the number of the buckets as much as possible, Q.E.D..

1.1.5 Buckets' number - Implementation

Let n be the number of the objects to be sorted, and p the upper bound on the counters' number - and then on the buckets' number as well, since there must be exactly one counter per bucket - . This means that before the round begins, the objects to be split are located in m buckets B_{1}, \ldots, B_{m}, where $0<m \leq p$, respectively containing n_{1}, \ldots, n_{m} objects, where $n_{i}>0$ for each i from 1 to m and $n_{1}+\ldots+n_{m}=n$.
Moreover, let c be the number of the objects known to be the sole elements of their buckets, viz. to require no partition into finer-grained buckets, at the beginning of a given algorithm's round. Then, the number of the objects requiring to be split into finer-grained buckets in that round is $n-c$, whereas the number of the available buckets is $p-c$, since c counters must be left to store as many 1 s , one for each singleton bucket.
How to compute c ? At first glance, the answer seems trivial: by counting, among the counters input (either by the algorithm's caller or by the previous round) to the round under consideration, those that match 1. However, this value would not take into account the fact that, for each non-singleton bucket, the algorithm must find the leftmost occurrence of the minimum key, as well as the rightmost occurrence of the maximum key, and place the corresponding objects into two new singleton buckets, which shall be the first and the last finer-grained bucket, respectively.
The most fundamental reason for this is that, as a result of the partition of such a bucket, nothing prevents all its objects from falling in the same finergrained bucket - particularly, this happens whenever all its objects have the same key -, in which case the algorithm does not terminate unless some object is removed from the bucket prior to the partition, so as to reduce its size. Just as clearly, the algorithm must know where to place the finergrained buckets containing the removed objects with respect to the finergrained buckets resulting from the partition. This is exactly what is ensured by removing objects with minimum or maximum keys, whereas selecting the leftmost or the rightmost ones, respectively, preserves the algorithm's stability.
Actually, the algorithm's termination requires the removal of at least one object per non-singleton bucket, so the removal of one object only, either with minimum or maximum key, would be sufficient. Nonetheless, the leftmost minimum and the rightmost maximum can be searched via a single loop, and finding both of them enables to pass them as inputs to the function index described in section 1.1.3, or to whatever other function used to split buckets into finer-grained ones. Moreover, non-singleton buckets whose objects all have the same key can be detected as those whose minimum and maximum keys are equal. This allows to optimize the algorithm by preventing it from unnecessarily applying multiple recursive rounds to any such bucket; it shall
rather be left as is, just replacing its counter with as many 1s as its size to indicate that it is already sorted.
Therefore, as the round begins, the objects already known to be placed in singleton buckets are one for each bucket whose counter matches 1 , and two for each bucket whose counter is larger than 1. As a result, c shall be computed as follows. First, initialize c to zero. Then, for each i from 1 to m, increase c by one if $n_{i}=1$, by two otherwise.
Conversely, for any such i, the number N_{i} of the objects contained in bucket B_{i} having to be partitioned into finer-grained buckets is 0 if $n_{i}=1, n_{i}-2$ otherwise, so that $N_{1}+\ldots+N_{m}=n-c$. According to the findings of section 1.1.4, the number N_{i}^{\prime} of the resulting finer-grained buckets should be maximized, and the most efficient way to do this is to render N_{i}^{\prime} proportional to N_{i}, since otherwise, viz. if some buckets were preferred to some other ones, the unprivileged buckets would form as many bottlenecks.
This can be accomplished by means of the following procedure. First, initialize integers R and U to 0 . Then, for each i from 1 to m, check whether $N_{i} \leq 1$:

- If so, set N_{i}^{\prime} to N_{i}.

In fact, no finer-grained bucket is necessary if there are no objects to be split, while a single finer-grained bucket is sufficient for a lonely object.

- Otherwise, perform the integer division of $N_{i} \cdot(p-c)+R$ by $n-c$, and set integer Q to the resulting quotient and R to the resulting remainder. Then, if the minimum and maximum keys occurring in bucket B_{i} are equal, increase U by $Q-N_{i}$, otherwise set N_{i}^{\prime} to $U+Q$ and reset U to 0 .
In fact, as observed above, if its minimum and maximum keys are equal, bucket B_{i} can be split into $n_{i}=N_{i}+2$ singleton buckets. Hence, the difference $Q-N_{i}$ between the number of the available finer-grained buckets, i.e. $Q+2$ (where 2 is the number of the buckets containing the leftmost minimum and the rightmost maximum), and the number of those being used, i.e. $N_{i}+2$, can be added to the total number U of the available finer-grained buckets still unused in the current round. Such buckets can then be utilized as soon as a bucket B_{j} with $N_{j}>1$ whose minimum and maximum keys do not match is encountered next, in addition to those already reserved for B_{j}.

Of course, for any i from 1 to m such that $N_{i}>1$, it is $N_{i} \leq Q-$ viz. the number of the objects in B_{i} to be split is not larger than that of the finer-grained buckets where they are to be placed even if $U=0$, so that the probability of placing at most one object into each bucket is nonzero - just in case $n-c \leq p-c$, i.e. $n \leq p$. Indeed, it will be formally proven that
for $n \leq p$, this procedure is successful in maximizing the buckets' number in each round never exceeding the upper bound p.

1.1.6 Generalized counting sort (GCsort)

The conclusions of the efficiency analysis performed so far, put together, result in the following generalized counting sort (GCsort) algorithm.
Let $x s$ be the input array containing n objects to be sorted, and $n s$ an array of p integers, where $0<p$ and $n \leq p$. Moreover, let $x s^{\prime}$ and $n s^{\prime}$ be two further arrays of the same type and size of $x s$ and $n s$, respectively, and let i, i^{\prime}, and j be as many integers.
Then, GCsort works as follows (assuming arrays to be zero-based):

1. Initialize the first element of $n s$ to n and any other element to 0 .
2. Check whether $n s$ contains any element larger than 1. If not, terminate the algorithm and output $x s$ as the resulting sorted array.
3. Initialize i, i^{\prime}, and j to 0 .
4. Check whether $n s[i]=1$ or $n s[i]>1$:
(a) In the former case, set $x s^{\prime}[j]$ to $x s[j]$ and $n s^{\prime}\left[i^{\prime}\right]$ to 1 .

Then, increase i^{\prime} and j by 1.
(b) In the latter case, partition the bucket comprised of objects $x s[j]$ to $x s[j+n s[i]-1]$ into finer-grained buckets according to section 1.1.5, storing the resulting n^{\prime} buckets in $x s^{\prime}[j]$ to $x s^{\prime}[j+n s[i]-1]$ and their sizes in $n s^{\prime}\left[i^{\prime}\right]$ to $n s^{\prime}\left[i^{\prime}+n^{\prime}-1\right]$. Then, increase i^{\prime} by n^{\prime} and j by $n s[i]$.
5. Increase i by 1 , and then check whether $i<p$.

If so, go back to step 4.
Otherwise, perform the following operations:
(a) If $i^{\prime}<p$, set integers $n s^{\prime}\left[i^{\prime}\right]$ to $n s^{\prime}[p-1]$ to 0 .
(b) Swap addresses $x s$ and $x s^{\prime}$, as well as addresses $n s$ and $n s^{\prime}$.
(c) Go back to step 2 .

Since the algorithm is tail-recursive, the memory space required for its execution matches the one required for a single recursive round, which is $O(n)+O(p)$.
The best-case running time can be computed easily. The running time taken by step 1 is equal to p. Moreover, the partition of a bucket into finer-grained
ones is performed by determining their sizes, computing the cumulative sum of such sizes, and rearranging the bucket's objects according to the resulting offsets. All these operations only involve sequential, non-nested loops, which iterate through either the objects or the finer-grained counters pertaining to the processed bucket alone. Hence, the running time taken by a single recursive round is $O(n)+O(p)$, so that in the best case where at most one round is executed after step 1 , the running time taken by the algorithm is $O(n)+O(p)$, too.
The asymptotic worst-case running time can be computed as follows. Let $t_{n, p}$ be the worst-case running time taken by a single round. As $t_{n, p}$ is $O(n)+O(p)$, there exist three real numbers $a>0, b>0$, and c such that $t_{n, p} \leq a n+b p+c$. Moreover, let $U_{n, p}$ be the set of the p-tuples of natural numbers such that the sum of their elements matches n, and $\max (u)$ the maximum element of a given $u \in U_{n, p}$. Finally, let $T_{n, p, u}$ be the worst-case running time taken by the algorithm if it starts from step 2 , viz. skipping step 1 , using as initial content of array $n s$ the p-tuple $u \in U_{n, p}$.
Then, it can be proven by induction on $\max (u)$ that:

$$
T_{n, p, u} \leq\left\{\begin{array}{l}
a \frac{\max (u)}{2} n+\left[b \frac{\max (u)}{2}+1\right] p+c \frac{\max (u)}{2} \tag{13}\\
\quad \text { if } \max (u) \text { is even, } \\
a \frac{\max (u)-1}{2} n+\left[b \frac{\max (u)-1}{2}+1\right] p+c \frac{\max (u)-1}{2} \\
\quad \text { if } \max (u) \text { is odd }
\end{array}\right.
$$

In fact, if $\max (u)=0$, the initial p-tuple u matches the all-zero one. Hence, the algorithm executes step 2 just once and then immediately terminates. Therefore, the running time is p, which matches the right-hand side of inequality (13) for $\max (u)=0$.
If $\max (u)=1, u$ contains no element larger than 1 . Thus, again, the algorithm terminates just after the first execution of step 2. As a result, the running time is still p, which matches the right-hand side of inequality (13) for $\max (u)=1$.
If $\max (u)=2, u$ contains some element larger than 1 , so that one round is executed, taking time $t_{n, p}$ in the worst case. Once this round is over, array $n s$ will contain a p-tuple $u^{\prime} \in U_{n, p}$ such that $\max \left(u^{\prime}\right)=1$. Hence, step 2 is executed again, taking time p, and then the algorithm terminates. As a result, it is:

$$
T_{n, p, u} \leq a n+b p+c+p=a n+(b+1) p+c
$$

which matches the right-hand side of inequality (13) for $\max (u)=2$.
Finally, if $\max (u)>2, u$ has some element larger than 1 , so one round is executed, taking time $t_{n, p}$ in the worst case. Once this round is over, array $n s$ will contain a p-tuple $u^{\prime} \in U_{n, p}$ such that $\max \left(u^{\prime}\right) \leq \max (u)-2$, because of the removal of the leftmost minimum and the rightmost maximum from any non-singleton bucket. By the induction hypothesis, the worst-case time $T_{n, p, u^{\prime}}$ taken by the algorithm from this point onward complies with inequality (13), whose right-hand side is maximum if such is $\max \left(u^{\prime}\right)$, viz. if $\max \left(u^{\prime}\right)=\max (u)-2$.
As a result, if $\max (u)$ is even, it is:

$$
\begin{aligned}
T_{n, p, u} & \leq a n+b p+c \\
& +a \frac{\max (u)-2}{2} n+\left[b \frac{\max (u)-2}{2}+1\right] p+c \frac{\max (u)-2}{2} \\
= & a \frac{\max (u)}{2} n+\left[b \frac{\max (u)}{2}+1\right] p+c \frac{\max (u)}{2},
\end{aligned}
$$

which matches the right-hand side of inequality (13) for an even $\max (u)$. Similarly, if $\max (u)$ is odd, it is:

$$
\begin{aligned}
& T_{n, p, u} \leq a n+b p+c \\
&+a \frac{\max (u)-3}{2} n+\left[b \frac{\max (u)-3}{2}+1\right] p+c \frac{\max (u)-3}{2} \\
&= a \frac{\max (u)-1}{2} n+\left[b \frac{\max (u)-1}{2}+1\right] p+c \frac{\max (u)-1}{2},
\end{aligned}
$$

which matches the right-hand side of inequality (13) for an odd $\max (u)$.
With this, the proof of inequality (13) is complete. Now, let $T_{n, p}$ be the worst-case time taken by the algorithm executed in full. Step 1 is executed first, taking time p. Then, array $n s$ contains a p-tuple u such that $\max (u)=$ n, and by definition, the worst-case time taken by the algorithm from this point onward is $T_{n, p, u}$. Therefore, applying inequality (13), it turns out that:

$$
\begin{aligned}
& T_{n, p}=p+T_{n, p, u} \\
& \quad \leq \begin{cases}a \frac{n^{2}}{2}+\left(b \frac{n}{2}+2\right) p+c \frac{n}{2} & \text { if } n \text { is even } \\
a \frac{n^{2}-n}{2}+\left(b \frac{n-1}{2}+2\right) p+c \frac{n-1}{2} & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

As a result, the asymptotic worst-case running time taken by the algorithm is $O\left(n^{2}\right)+O(n p)$.

1.2 Formal definitions

Here below, a formal definition of GCsort is provided, which will later enable to formally prove the correctness of the algorithm. Henceforth, the main points of the formal definitions and proofs are commented. For further information, see Isabelle documentation, particularly [6], [5], [4], and [3].
The following formalization of GCsort does not define any specific function index to be used to split buckets into finer-grained ones. It rather defines only the type index-sign of such functions, matching the signature of the function index described in section 1.1.3, along with three predicates that whatever chosen index function is required to satisfy for GCsort to work correctly:

- Predicate index-less requires function index to map any object within a given bucket to an index less than the number of the associated finer-grained buckets (less than instead of not larger than since type 'a list is zero-based).
- Predicate index-mono requires function index to be monotonic with respect to the keys of the objects within a given bucket.
- Predicate index-same requires function index to map any two distinct objects within a given bucket that have the same key to the same index (premise distinct is added to enable this predicate to be used by the simplifier).

```
type-synonym (' \(\left.a,{ }^{\prime} b\right)\) index-sign \(=\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a \Rightarrow n a t \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow n a t\)
definition index-less :: (' \(a\), ' \(b::\) linorder) index-sign \(\Rightarrow\left(' a \Rightarrow{ }^{\prime} b\right) \Rightarrow\) bool
where
index-less index key \(\equiv\)
    \(\forall x n\) mi ma. key \(x \in\{m i . . m a\} \longrightarrow 0<n \longrightarrow\)
        index key \(x\) n mi ma \(<n\)
definition index-mono :: ('a, 'b::linorder) index-sign \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\) bool
where
index-mono index key \(\equiv\)
    \(\forall x y n\) mi ma. \(\{\) key \(x\), key \(y\} \subseteq\{m i . . m a\} \longrightarrow\) key \(x \leq k e y y \longrightarrow\)
        index key \(x\) n mi ma \(\leq\) index key y \(n\) mi ma
definition index-same :: (' \(a\), 'b::linorder) index-sign \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\) bool
where
```

index-same index key \equiv
$\forall x y n$ mi ma. key $x \in\{m i . . m a\} \longrightarrow x \neq y \longrightarrow$ key $x=$ key $y \longrightarrow$ index key x n mi ma $=$ index key y $n m i m a$

Functions bn-count and bn-comp count, respectively, the objects known to be placed in singleton buckets in a given round, and the finer-grained buckets available to partition a given non-singleton bucket, according to section 1.1.5.

```
fun bn-count :: nat list \(\Rightarrow\) nat where
bn-count [] \(=0 \mid\)
bn-count \((\) Suc \((\) Suc \((S u c(S u c ~ n))) \# n s)=S u c(S u c(b n-c o u n t ~ n s)) \mid\)
bn-count ( \(n \# n s\) ) \(=n+b n\)-count \(n s\)
fun \(b n\)-comp \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\times\) nat where
bn-comp (Suc (Suc n)) p qr=
    \(((\) Suc \((\) Suc \(n) * p+r) \operatorname{div} q,(\) Suc \((\) Suc \(n) * p+r) \bmod q) \mid\)
\(b n\)-comp \(n\) p \(q\) r \(=(n, r)\)
fun bn-valid :: nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) bool where
bn-valid (Suc (Suc n)) p \(q=(q \in\{0<. . p\}) \mid\)
bn-valid \(n\) p \(q=\) True
```

Functions mini and maxi return the indices of the leftmost minimum and the rightmost maximum within a given non-singleton bucket.
primrec (nonexhaustive) mini :: 'a list $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ ' $b::$ linorder $) \Rightarrow$ nat where $\operatorname{mini}(x \# x s)$ key $=$
(let $m=$ mini $x s$ key in if $x s=[] \vee$ key $x \leq$ key $(x s!m)$ then 0 else Suc $m)$
primrec (nonexhaustive) maxi :: 'a list $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ 'b::linorder $) \Rightarrow$ nat where $\operatorname{maxi}(x \# x s)$ key $=$
(let $m=$ maxi xs key in if $x s=[] \vee$ key $(x s!m)<k e y x$ then 0 else Suc m)

Function enum counts the objects contained in each finer-grained bucket reserved for the partition of a given non-singleton bucket.

```
primrec enum :: 'a list }=>('a,'b) index-sign => ('a = 'b) =
    nat }=>\mp@subsup{'}{}{\prime}b=>'b=> nat list wher
enum [] index key n mi ma=replicate n 0|
enum (x # xs) index key n mi ma=
    (let i = index key x n mi ma;
        ns = enum xs index key n mi ma
        in ns[i:= Suc (ns!i)])
```

Function offs computes the cumulative sum of the resulting finer-grained buckets' sizes so as to generate the associated offsets' list.

```
primrec offs :: nat list }=>\mathrm{ nat }=>\mathrm{ nat list where
offs [] i = [] |
offs (n# ns) i=i# offs ns (i+n)
```

Function fill fills the finer-grained buckets with their respective objects.

```
primrec fill \(::\) ' \(a\) list \(\Rightarrow\) nat list \(\Rightarrow(' a, ' b)\) index-sign \(\Rightarrow(' a \Rightarrow ' b) \Rightarrow\)
    nat \(\Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} a\) option list where
fill [] ns index key \(n\) mi ma \(=\) replicate \(n\) None \(\mid\)
fill ( \(x \#\) xs ) ns index key \(n\) mi ma \(=\)
    (let \(i=\) index key \(x\) (length ns) mi ma;
        \(y s=\) fill xs \((n s[i:=\) Suc (ns!i)]) index key n mi ma
    in ys[ns ! \(i:=\) Some \(x]\) )
```

Then, function round formalizes a single GCsort's recursive round.

```
definition round-suc-suc :: (' \(a\), ' \(b::\) linorder) index-sign \(\Rightarrow(' a \Rightarrow\) ' \(b) \Rightarrow\)
    'a list \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\times\) nat list \(\times\) 'a list where
round-suc-suc index key ws \(n n^{\prime} u \equiv\)
    let \(n m i=\) mini ws key; nma \(=\) maxi ws key;
        \(x m i=w s!n m i ; x m a=w s!n m a ; m i=k e y x m i ; m a=k e y x m a\)
    in if \(m i=m a\)
        then \(\left(u+n^{\prime}-n\right.\), replicate (Suc (Suc n)) (Suc 0), ws)
        else
            let \(k=\) case \(n\) of Suc (Suc \(i) \Rightarrow u+n^{\prime} \mid-\Rightarrow n\);
                        \(z s=\) nths ws \((-\{n m i, n m a\}) ; m s=\) enum zs index key \(k m i m a\)
            in \(\left(u+n^{\prime}-k\right.\), Suc 0 \# ms @ [Suc 0],
                        xmi \# map the (fill zs (offs ms 0) index key n mi ma) @ [xma])
fun round \(::\left({ }^{\prime} a, ~ ' b::\right.\) linorder \()\) index-sign \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\)
    nat \(\times\) nat list \(\times\) 'a list \(\Rightarrow\) nat \(\times\) nat list \(\times\) 'a list where
round index key p q r \((u,[], x s)=(u,[], x s) \mid\)
round index key pqr(u,0\#ns,xs)= round index key p qr(u,ns,xs)|
round index key \(p\) q \(r(u\), Suc \(0 \# n s, x s)=\)
    (let \(\left(u^{\prime}, n s^{\prime}, x s^{\prime}\right)=\) round index key p q \(r(u, n s, t l x s)\)
        in ( \(u^{\prime}\), Suc 0 \# ns \({ }^{\prime}\), hd xs \# xs \(\left.{ }^{\prime}\right)\) ) |
round index key p qr (u, Suc (Suc n) \# ns, xs) \(=\)
    (let \(w s=\) take \((\) Suc \((S u c ~ n)) x s ;\left(n^{\prime}, r^{\prime}\right)=b n\)-comp n \(p q r\);
            ( \(v, m s^{\prime}, w s^{\prime}\) ) \(=\) round-suc-suc index key ws \(n n^{\prime} u\);
            \(\left(u^{\prime}, n s^{\prime}, x s^{\prime}\right)=\) round index key p \(q r^{\prime}(v, n s\), drop (Suc (Suc n)) xs)
            in \(\left.\left(u^{\prime}, m s^{\prime} @ n s^{\prime}, w s^{\prime} @ x s^{\prime}\right)\right)\)
```

Finally，function gcsort－aux formalizes GCsort．Since the algorithm is tail－ recursive，this function complies with the requirements for an auxiliary tail－ recursive function applying to step 1 of the proof method described in［7］－ henceforth briefly referred to as the proof method－．This feature will later enable to formally prove the algorithm＇s correctness properties by means of such method．

```
abbreviation gcsort-round :: ('a, 'b::linorder) index-sign \(\Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) ' \(b\) ) \(\Rightarrow\)
    nat \(\Rightarrow\) nat list \(\Rightarrow\) 'a list \(\Rightarrow\) nat \(\times\) nat list \(\times\) 'a list where
gcsort-round index key p ns xs \(\equiv\)
    round index key ( \(p\) - bn-count ns) (length \(x s-b n\)-count ns) 0 ( \(0, n s, x s\) )
function gcsort-aux :: ('a, 'b::linorder) index-sign \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\) nat \(\Rightarrow\)
    nat \(\times\) nat list \(\times\) 'a list \(\Rightarrow\) nat \(\times\) nat list \(\times\) 'a list where
gcsort-aux index key \(p(u, n s, x s)=(\) if find \((\lambda n\). Suc \(0<n) n s=\) None
    then ( \(u, n s, x s\) )
    else gcsort-aux index key \(p\) (gcsort-round index key \(p\) ns xs))
〈proof〉
```

First of all，even before accomplishing step 2 of the proof method，it is necessary to prove that function gcsort－aux always terminates by showing that the maximum bucket＇s size decreases in each recursive round．

```
lemma add-zeros:
    foldl \((+)(m::\) nat \()(\) replicate \(n 0)=m\)
\(\langle p r o o f\rangle\)
lemma add-suc:
foldl (+) (Suc m) ns = Suc (foldl (+) mns)
\(\langle p r o o f\rangle\)
lemma add-update:
    \(i<\) length \(n s \Longrightarrow\) foldl \((+) m(n s[i:=S u c(n s!i)])=\) Suc \((f o l d l(+) m n s)\)
\(\langle p r o o f\rangle\)
lemma add-le:
    ( \(m:: n a t) \leq\) foldl \((+) m n s\)
〈proof〉
lemma add-mono:
( \(m::\) nat \() \leq n \Longrightarrow\) foldl \((+) m n s \leq\) foldl \((+) n n s\)
〈proof〉
lemma add-max [rule-format]:
\(n s \neq[] \longrightarrow \operatorname{Max}(\) set ns \() \leq\) foldl \((+)(0::\) nat \() n s\)
```

```
\langleproof\rangle
```

lemma enum-length:
length (enum xs index key n mi ma) $=n$
$\langle p r o o f\rangle$
lemma enum-add-le:
foldl $(+) 0$ (enum xs index key n mi ma) \leq length $x s$
$\langle p r o o f\rangle$
lemma enum-max-le:
$0<n \Longrightarrow \operatorname{Max}($ set $($ enum xs index key n mi ma) $) \leq$ length xs
(is - $\Longrightarrow \operatorname{Max}($ set ? $n s) \leq-$)
\langle proof \rangle
lemma mini-less:
$0<$ length $x s \Longrightarrow$ mini $x s$ key $<$ length $x s$
$\langle p r o o f\rangle$
lemma maxi-less:
$0<$ length $x s \Longrightarrow$ maxi $x s$ key $<$ length $x s$
$\langle p r o o f\rangle$
lemma mini-lb:
$x \in$ set $x s \Longrightarrow$ key $(x s!$ mini $x s$ key $) \leq$ key x
$\langle p r o o f\rangle$
lemma maxi-ub:
$x \in$ set $x s \Longrightarrow$ key $x \leq$ key (xs ! maxi xs key)
$\langle p r o o f\rangle$
lemma mini-maxi-neq [rule-format]:
Suc $0<$ length xs \longrightarrow mini xs key \neq maxi xs key
$\langle p r o o f\rangle$
lemma mini-maxi-nths:
length (nths xs $(-\{$ mini xs key, maxi xs key $\}))=$
(case length xs of $0 \Rightarrow 0 \mid$ Suc $0 \Rightarrow 0 \mid$ Suc $($ Suc $n) \Rightarrow n)$
$\langle p r o o f\rangle$
lemma mini-maxi-nths-le:
length $x s \leq$ Suc $($ Suc $n) \Longrightarrow$ length (nths xs $(-\{$ mini xs key, maxi xs key $\})) \leq n$
$\langle p r o o f\rangle$
lemma round-nil:
$(f$ st $($ snd $($ round index key p q r $t)) \neq[])=(\exists n \in \operatorname{set}(f$ st $($ snd $t)) .0<n)$
$\langle p r o o f\rangle$
lemma round-max-eq [rule-format]:

```
fst (snd t) \not= [] \longrightarrow Max (set (fst (snd t))) = Suc 0 \longrightarrow
    Max (set (fst (snd (round index key p q r t)))) = Suc 0
<proof\rangle
lemma round-max-less [rule-format]:
fst (snd t) \not= [] \longrightarrow Suc 0 < Max (set (fst (snd t))) \longrightarrow
    Max (set (fst (snd (round index key p q r t) ))) < Max (set (fst (snd t)))
<proof>
termination gcsort-aux
<proof>
```

Now steps 2,3 ，and 4 of the proof method，which are independent of the properties to be proven，can be accomplished．Particularly，function gcsort constitutes the complete formal definition of GCsort，as it puts the algo－ rithm＇s inputs and outputs into their expected form．

Observe that the conditional expression contained in the definition of func－ tion gcsort－aux need not be reflected in the definition of inductive set gc－ sort－set as just one alternative gives rise to a recursive call，viz．as its only purpose is to ensure the function＇s termination．
definition gcsort－in $::$＇a list \Rightarrow nat \times nat list \times＇a list where
gcsort－in $x s \equiv(0,[$ length $x s], x s)$
definition gcsort－out $::$ nat \times nat list \times＇a list \Rightarrow＇a list where
gcsort－out \equiv snd \circ snd
definition gcsort ：：（＇a，＇b：：linorder）index－sign $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ nat \Rightarrow ＇a list \Rightarrow＇a list where
gcsort index key p xs \equiv gcsort－out（gcsort－aux index key p（gcsort－in xs））
inductive－set gcsort－set ：：（＇a，＇b：：linorder）index－sign $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ nat \Rightarrow nat \times nat list \times＇a list $\Rightarrow(n a t \times$ nat list \times＇a list $)$ set
for index key $p t$ where
$R 0: t \in$ gcsort－set index key $p t \mid$
R1：$(u, n s, x s) \in$ gcsort－set index key $p t \Longrightarrow$
gcsort－round index key p ns $x s \in$ gcsort－set index key $p t$
lemma gcsort－subset：
assumes $A: t^{\prime} \in$ gcsort－set index key $p t$
shows gcsort－set index key $p t^{\prime} \subseteq$ gcsort－set index key $p t$
〈proof〉
lemma gcsort－aux－set：
gcsort－aux index key $p t \in$ gcsort－set index key $p t$
〈proof〉

1．3 Proof of a preliminary invariant

This section is dedicated to the proof of the invariance of predicate add－inv， defined here below，over inductive set gcsort－set．This invariant will later be used to prove GCsort＇s correctness properties．
Another predicate，$b n-i n v$ ，is also defined，using predicate $b n$－valid defined above．

```
fun \(b n\)-inv \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\times\) nat list \(\times\) 'a list \(\Rightarrow\) bool where
bn-inv \(p q(u, n s, x s)=\)
    ( \(\forall n \in\) set \(n s\). case \(n\) of Suc (Suc m) \(\Rightarrow\) bn-valid mpq|- True)
fun add-inv :: nat \(\Rightarrow\) nat \(\times\) nat list \(\times\) 'a list \(\Rightarrow\) bool where
add-inv \(n(u, n s, x s)=\)
    \((\) foldl \((+) 0 n s=n \wedge\) length \(x s=n)\)
```

lemma gcsort-add-input:
add-inv (length xs) (0 , [length $x s$], $x s$)
$\langle p r o o f\rangle$
lemma add-base:
foldl $(+)(k+m) n s=$ foldl $(+) m n s+(k:: n a t)$
$\langle p r o o f\rangle$
lemma add-base-zero:
foldl $(+) k n s=$ foldl $(+) 0 n s+(k:: n a t)$
〈proof〉
lemma bn-count-le:
bn-count $n s \leq$ foldl $(+) 0 n s$
$\langle p r o o f\rangle$

Here below is the proof of the main property of predicate bn－inv，which states that if the objects＇number is not larger than the counters＇upper bound，then，as long as there are buckets to be split，the arguments p and q passed by function round to function $b n$－comp are such that $0<q \leq p$ ．

```
lemma bn-inv-intro [rule-format]:
foldl (+) 0 ns \(\leq p \longrightarrow\)
    bn-inv ( \(p\) - bn-count ns) (foldl (+) 0 ns -bn-count ns) \((u, n s, x s)\)
〈proof〉
```

In what follows，the invariance of predicate add－inv over inductive set gc－ sort－set is then proven as lemma gcsort－add－inv．It holds under the condi－ tions that the objects＇number is not larger than the counters＇upper bound
and function index satisfies predicate index－less，and states that，if the coun－ ters＇sum initially matches the objects＇number，this is still true after any recursive round．

```
lemma bn-comp-fst-ge [rule-format]:
    \(b n\)-valid \(n p q \longrightarrow n \leq f s t(b n-c o m p n p q r)\)
\(\langle p r o o f\rangle\)
lemma bn-comp-fst-nonzero:
    \(b n\)-valid \(n\) p \(q \Longrightarrow 0<n \Longrightarrow 0<f s t(b n\)-comp \(n\) p q \(r\) )
〈proof〉
lemma bn-comp-snd-less:
    \(r<q \Longrightarrow\) snd \((b n-c o m p n\) n \(q r)<q\)
\(\langle p r o o f\rangle\)
```

lemma add-replicate:
foldl $(+) k($ replicate $m n)=k+m * n$
〈proof〉
lemma fill-length:
length (fill xs ns index key n mi ma) $=n$
\langle proof \rangle
lemma enum-add [rule-format]:
assumes
A: index-less index key and
B: $0<n$
shows $(\forall x \in$ set x s. key $x \in\{m i . . m a\}) \longrightarrow$
foldl $(+) 0$ (enum xs index key n mi ma) $=$ length xs
$\langle p r o o f\rangle$

```
lemma round-add-inv [rule-format]:
    index-less index key \(\longrightarrow\) bn-inv p q \(t \longrightarrow a d d\)-inv \(n t \longrightarrow\)
        add-inv \(n\) (round index key \(p\) q rt)
〈proof〉
```

lemma gcsort-add-inv:
assumes A : index-less index key
shows $\llbracket t^{\prime} \in$ gcsort-set index key $p t ;$ add-inv $n t ; n \leq p \rrbracket \Longrightarrow$
add-inv $n t^{\prime}$
$\langle p r o o f\rangle$

1．4 Proof of counters＇optimization

In this section，it is formally proven that the number of the counters（and then of the buckets as well）used in each recursive round is maximized never exceeding the fixed upper bound．

This property is formalized by theorem round－len，which holds under the condition that the objects＇number is not larger than the counters＇upper bound and states what follows：
－While there is some bucket with size larger than two，the sum of the number of the used counters and the number of the unused ones－viz． those，if any，left unused due to the presence of some bucket with size larger than two and equal minimum and maximum keys（cf．section 1．1．5）－matches the counters＇upper bound．
In addition to ensuring the upper bound＇s enforcement，this implies that the number of the used counters matches the upper bound unless there is some aforesaid bucket not followed by any other bucket with size larger than two and distinct minimum and maximum keys．
－Once there is no bucket with size larger than two－in which case a round is executed just in case there is some bucket with size two－－， the number of the used counters matches the objects＇number．
In fact，the algorithm immediately terminates after such a round since every resulting bucket has size one，so that increasing the number of the used counters does not matter in this case．

```
lemma round-len-less [rule-format]:
    bn-inv p q \(t \longrightarrow r<q \longrightarrow\)
    \((r+(\) foldl \((+) 0(f s t(\) snd \(t))-b n\)-count \((f s t(\) snd \(t))) * p) \bmod q=0 \longrightarrow\)
        (fst (round index key p qri) +
            length \((\) fst \((\) snd \((\) round index key p q r t) ) )) \(* q=\)
        \((f s t t+b n\)-count \((f s t(s n d t))) * q+\)
            \((\) foldl \((+) 0(f s t(s n d t))-b n\)-count \((f s t(s n d t))) * p+r\)
〈proof〉
lemma round-len-eq [rule-format]:
    bn-count \((\) fst \((\) snd \(t))=\) foldl \((+) 0(\) fst \((\) snd \(t)) \longrightarrow\)
        length \((f s t(\) snd \((\) round index key p q r t \()\) )) \(=\) foldl \((+) 0(f s t(\) snd \(t))\)
〈proof〉
```


theorem round－len：

assumes

```
\[
\text { A: length } x s=\text { foldl }(+) 0 n s \text { and }
\]
\(B\) ：length \(x s \leq p\)
shows if bn－count \(n s<\) length \(x s\) then fst（gcsort－round index key \(p\) ns xs）+ length \((\) fst \((\) snd（gcsort－round index key \(p\) ns \(x s)))=p\) else length \((f s t\)（snd（gcsort－round index key p ns xs）））＝length \(x s\)
（is if－then fst ？\(t+-=-\) else－）
\(\langle p r o o f\rangle\)
end
```


2 Proof of objects' conservation

theory Conservation
imports
Algorithm
HOL-Library.Multiset
begin

In this section, it is formally proven that GCsort conserves objects, viz. that the objects' list returned by function gcsort contains as many occurrences of any given object as the input objects' list.
Here below, steps 5, 6, and 7 of the proof method are accomplished. Particularly, count-inv is the predicate that will be shown to be invariant over inductive set gcsort-set.
fun count-inv :: ('a nat) \Rightarrow nat \times nat list \times 'a list \Rightarrow bool where
count-inv $f(u, n s, x s)=(\forall x$. count $($ mset xs) $x=f x)$
lemma gcsort-count-input:
count-inv (count (mset xs)) (0, [length xs], xs)
$\langle p r o o f\rangle$
lemma gcsort-count-intro:
count-inv $f t \Longrightarrow$ count (mset (gcsort-out $t)$) $x=f x$
$\langle p r o o f\rangle$

The main task to be accomplished to prove that GCsort conserves objects is to prove that so does function fill in case its input offsets' list is computed via the composition of functions offs and enum, as happens within function round.
To achieve this result, a multi-step strategy will be adopted. The first step, addressed here below, opens with the definition of predicate offs-pred, satisfied by an offsets' list $n s$ and an objects' list $x s$ just in case each bucket delimited by $n s$ is sufficiently large to accommodate the corresponding objects in $x s$. Then, lemma offs-pred-cons shows that this predicate, if satisfied initially, keeps being true if each object in $x s$ is consumed as happens within function fill, viz. increasing the corresponding offset in $n s$ by one.

```
definition offs-num :: nat \(\Rightarrow{ }^{\prime}\) a list \(\Rightarrow\left({ }^{\prime} a\right.\), 'b) index-sign \(\Rightarrow\)
    \(\left({ }^{\prime} a \Rightarrow ' b\right) \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow\) nat \(\Rightarrow\) nat where
offs-num \(n\) xs index key mi ma \(i \equiv\)
    length \([x \leftarrow x s\). index key \(x\) n mi ma \(=i]\)
abbreviation offs-set-next \(::\) nat list \(\Rightarrow{ }^{\prime} a\) list \(\Rightarrow(' a, ' b)\) index-sign \(\Rightarrow\)
```

$$
\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} b{ }^{\prime} b \Rightarrow \text { nat } \Rightarrow \text { nat set where }
$$

offs-set-next ns xs index key mi ma $i \equiv$
$\{k . k<$ length $n s \wedge i<k \wedge 0<$ offs-num (length ns) xs index key mi ma $k\}$
abbreviation offs-set-prev :: nat list \Rightarrow 'a list $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)$ index-sign \Rightarrow
$\left(' a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow$ nat \Rightarrow nat set where
offs-set-prev ns xs index key mi ma $i \equiv$
$\{k . i<$ length $n s \wedge k<i \wedge 0<$ offs-num (length ns) xs index key mi ma $k\}$
definition offs-next :: nat list \Rightarrow nat \Rightarrow 'a list $\Rightarrow(' a, ' b)$ index-sign \Rightarrow
$\left(' a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow$ nat \Rightarrow nat where
offs-next ns ub xs index key mi ma $i \equiv$
if offs-set-next ns xs index key mi ma $i=\{ \}$
then ub else ns! Min (offs-set-next ns xs index key mi ma i)
definition offs-none :: nat list \Rightarrow nat \Rightarrow 'a list $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)$ index-sign \Rightarrow
$(' a \Rightarrow ' b) \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow$ nat \Rightarrow bool where
offs-none ns ub xs index key mi ma $i \equiv$
($\exists j<$ length ns. $0<$ offs-num (length ns) xs index key mi ma $j \wedge$
$i \in\{n s!j+$ offs-num (length ns) xs index key mi ma $j . .<$
offs-next ns ub xs index key mi ma j\}) \vee
offs-num (length ns) xs index key mi ma $0=0 \wedge$
$i<o f f s-n e x t ~ n s ~ u b ~ x s ~ i n d e x ~ k e y ~ m i ~ m a ~ 0 \vee ~$
$0<$ offs-num (length ns) xs index key mi ma $0 \wedge$ $i<n s!0$
definition offs-pred $::$ nat list \Rightarrow nat \Rightarrow 'a list $\Rightarrow\left({ }^{\prime} a, ' b\right)$ index-sign \Rightarrow
$\left(' a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow$ bool where
offs-pred ns ub xs index key mi ma \equiv $\forall i<$ length ns. offs-num (length ns) xs index key mi ma $i \leq$ offs-next ns ub xs index key mi ma $i-n s!i$

lemma offs-num-cons:

offs-num $n(x \#$ xs $)$ index key mi ma $i=$ (if index key x n mi ma $=i$ then Suc else id) (offs-num n xs index key mi ma i) \langle proof \rangle
lemma offs-next-prev:
($0<$ offs-num (length ns) xs index key mi ma $i \wedge$ offs-set-next ns xs index key mi ma $i \neq\{ \} \wedge$
Min (offs-set-next ns xs index key mi ma $i)=j)=$
($0<$ offs-num (length ns) xs index key mi ma $j \wedge$
offs-set-prev ns xs index key mi ma $j \neq\{ \} \wedge$
Max (offs-set-prev ns xs index key mi ma j) $=i$)
(is ? $P=? Q$)
$\langle p r o o f\rangle$
lemma offs-next-cons-eq:
assumes

A: index key x (length ns) mi ma $=i$ and
$B: i<$ length $n s$ and
$C: 0<$ offs-num (length ns) ($x \#$ xs) index key mi ma j

shows

offs-set-prev ns (x \# xs) index key mi ma $i=\{ \} \vee$
Max (offs-set-prev ns ($x \neq$ xs) index key mi ma i) $\neq j \Longrightarrow$
offs-next (ns $i i:=\operatorname{Suc}(n s!i)])$ ub xs index key mi ma $j=$ offs-next ns ub ($x \#$ xs) index key mi ma j
(is ? $P \vee$? $Q \Longrightarrow-$)
$\langle p r o o f\rangle$
lemma offs-next-cons-neq:

assumes

A: index key x (length ns) mi ma $=i$ and
B: offs-set-prev ns ($x \#$ xs) index key mi ma $i \neq\{ \}$ and
C : Max (offs-set-prev ns (x \# xs) index key mi ma i) $=j$
shows offs-next (ns $[i:=$ Suc ($n s!i)]$) ub xs index key mi ma $j=$
(if $0<$ offs-num (length ns) xs index key mi ma i
then Suc ($n s!i$)
else offs-next ns ub (x \# xs) index key mi ma i)
$\langle p r o o f\rangle$
lemma offs-pred-ub-aux [rule-format]:
assumes A : offs-pred ns ub xs index key mi ma
shows $i<$ length $n s \Longrightarrow$
$\forall j<$ length ns. $i \leq j \longrightarrow 0<$ offs-num (length ns) xs index key mi ma $j \longrightarrow$ $n s!j+$ offs-num (length ns) xs index key mi ma $j \leq u b$
$\langle p r o o f\rangle$
lemma offs-pred-ub:
【offs-pred ns ub xs index key mi ma; $i<$ length ns;
$0<$ offs-num (length ns) xs index key mi ma $i \rrbracket \Longrightarrow$
$n s!i+$ offs-num (length ns) xs index key mi ma $i \leq u b$
$\langle p r o o f\rangle$
lemma offs-pred-asc-aux [rule-format]:
assumes A : offs-pred ns ub xs index key mi ma
shows $i<$ length ns \Longrightarrow
$\forall j k . k<$ length $n s \longrightarrow i \leq j \longrightarrow j<k \longrightarrow$
$0<$ offs-num (length ns) xs index key mi ma $j \longrightarrow$
$0<$ offs-num (length ns) xs index key mi ma $k \longrightarrow$
$n s!j+o f f s$-num (length ns) xs index key mi ma $j \leq n s!k$
$\langle p r o o f\rangle$
lemma offs-pred-asc:
【offs-pred ns ub xs index key mi ma; $i<j ; j<$ length ns;
$0<$ offs-num (length ns) xs index key mi ma i;
$0<$ offs-num (length ns) xs index key mi ma $j \rrbracket \Longrightarrow$
$n s!i+$ offs-num (length ns) xs index key mi ma $i \leq n s!j$

```
\langleproof\rangle
lemma offs-pred-next:
    assumes
    A: offs-pred ns ub xs index key mi ma and
    B:i< length ns and
    C:0<offs-num (length ns) xs index key mi ma i
    shows ns!i < offs-next ns ub xs index key mi ma i
\langleproof\rangle
lemma offs-pred-next-cons-less:
    assumes
    A: offs-pred ns ub (x # xs) index key mi ma and
    B: index key x (length ns) mi ma=i and
    C:offs-set-prev ns (x # xs) index key mi ma i\not={} and
    D:Max (offs-set-prev ns (x # xs) index key mi ma i) = j
    shows offs-next ns ub (x # xs) index key mi ma j <
    offs-next (ns[i:= Suc (ns!i)]) ub xs index key mi ma j
    (is ?M<?N)
<proof\rangle
lemma offs-pred-next-cons:
    assumes
    A: offs-pred ns ub (x # xs) index key mi ma and
    B: index key x (length ns) mi ma=i and
    C:i< length ns and
    D:0< offs-num (length ns) (x # xs) index key mi ma j
    shows offs-next ns ub (x # xs) index key mi ma j\leq
    offs-next (ns[i:= Suc (ns!i)]) ub xs index key mi ma j
    (is ?M\leq?N)
\langleproof\rangle
lemma offs-pred-cons:
    assumes
    A: offs-pred ns ub (x # xs) index key mi ma and
    B: index key x (length ns) mi ma=i and
    C:i< length ns
shows offs-pred (ns[i:= Suc (ns!i)]) ub xs index key mi ma
<proof\rangle
```

The next step consists of proving, as done in lemma fill-count-item in what follows, that if certain conditions hold, particularly if offsets' list $n s$ and objects' list $x s$ satisfy predicate offs-pred, then function fill conserves objects if called using $x s$ and $n s$ as its input arguments.
This lemma is proven by induction on $x s$. Hence, lemma offs-pred-cons, proven in the previous step, is used to remove the antecedent containing predicate offs-pred from the induction hypothesis, which has the form of an
implication.

```
lemma offs-next-zero:
    assumes
        A: i< length ns and
    B:offs-num (length ns) xs index key mi ma i=0 and
    C:offs-set-prev ns xs index key mi ma i={}
    shows offs-next ns ub xs index key mi ma 0 =
    offs-next ns ub xs index key mi ma i
<proof\rangle
lemma offs-next-zero-cons-eq:
    assumes
    A: index key x (length ns) mi ma=i and
    B:offs-num (length ns) (x# xs) index key mi ma 0 = 0 and
    C: offs-set-prev ns (x # xs) index key mi ma i\not= {}
        (is ?A A -)
    shows offs-next (ns[i:= Suc (ns!i)]) ub xs index key mi ma 0 =
    offs-next ns ub (x # xs) index key mi ma 0
<proof>
lemma offs-next-zero-cons-neq:
    assumes
    A: index key x (length ns) mi ma = i and
    B:i< length ns and
    C:0<i and
    D: offs-set-prev ns (x # xs) index key mi ma i= {}
shows offs-next (ns[i:= Suc (ns!i)]) ub xs index key mi ma 0 =
    (if 0<offs-num (length ns) xs index key mi ma i
        then Suc (ns!i)
        else offs-next ns ub (x # xs) index key mi ma i)
<proof\rangle
lemma offs-pred-zero-cons-less:
    assumes
    A: offs-pred ns ub (x # xs) index key mi ma and
    B: index key x (length ns) mi ma=i and
    C:i< length ns and
    D:0<i and
    E: offs-set-prev ns (x# xs) index key mi ma i={}
shows offs-next ns ub (x # xs) index key mi ma 0 <
    offs-next (ns[i:= Suc (ns!i)]) ub xs index key mi ma 0
    (is ?M<? N
<proof>
lemma offs-pred-zero-cons:
```


assumes

```
A: offs-pred ns ub ( \(x\) \# xs) index key mi ma and
\(B\) : index key \(x\) (length ns) mi ma=i and
```

```
    C:i< length ns and
    D:offs-num (length ns) ( }x#\mathrm{ # xs) index key mi ma 0 = 0
    shows offs-next ns ub (x # xs) index key mi ma 0\leq
    offs-next (ns[i:= Suc (ns!i)]) ub xs index key mi ma 0
    (is ?M}\leq?NN
<proof\rangle
lemma replicate-count:
    count (mset (replicate n x)) x=n
<proof\rangle
lemma fill-none [rule-format]:
    assumes A: index-less index key
    shows
    (\forallx\in set xs. key x 
    ns\not=[]\longrightarrow
    offs-pred ns ub xs index key mi ma \longrightarrow
    offs-none ns ub xs index key mi ma i \longrightarrow
        fill xs ns index key ub mi ma!i=None
<proof\rangle
lemma fill-index-none [rule-format]:
    assumes
    A: index-less index key and
    B: key x }\in{mi..ma} and
    C:ns\not=[] and
    D: offs-pred ns ub (x # xs) index key mi ma
    shows }\forallx\in\mathrm{ set xs. key }x\in{mi..ma}
    fill xs (ns[(index key x (length ns) mi ma) :=
            Suc (ns! index key x (length ns) mi ma)]) index key ub mi ma!
            (ns! index key x (length ns) mi ma) = None
    (is - \Longrightarrow fill - ?ns' - - - ! (-!?i) = -)
    <proof\rangle
lemma fill-count-item [rule-format]:
    assumes A: index-less index key
    shows
    (\forallx\in set xs. key x 
    ns\not=[]\longrightarrow
    offs-pred ns ub xs index key mi ma \longrightarrow
    length xs \lequb \longrightarrow
    count (mset (map the (fill xs ns index key ub mi ma))) x=
    count (mset xs) x ( (if the None = x then ub - length xs else 0)
<proof\rangle
```

Finally, lemma offs-enum-pred here below proves that, if $n s$ is the offsets' list obtained by applying the composition of functions offs and enum to objects' list $x s$, then predicate offs-pred is satisfied by $n s$ and $x s$.

This result is in turn used, together with lemma fill-count-item, to prove lemma fill-offs-enum-count-item, which states that function fill conserves objects if its input offsets' list is computed via the composition of functions offs and enum.

lemma enum-offs-num:

$i<n \Longrightarrow$ enum xs index key n mi ma $!i=$ offs-num n xs index key mi ma i $\langle p r o o f\rangle$
lemma offs-length:
length (offs ns i) $=$ length ns
$\langle p r o o f\rangle$
lemma offs-add [rule-format]:
$i<$ length $n s \longrightarrow$ offs ns $k!i=$ foldl $(+) k$ (take $i n s)$
$\langle p r o o f\rangle$
lemma offs-mono-aux:
$i \leq j \Longrightarrow j<$ length $n s \Longrightarrow$ offs ns $k!i \leq$ offs ns $k!(i+(j-i))$
$\langle p r o o f\rangle$
lemma offs-mono:
$i \leq j \Longrightarrow j<$ length $n s \Longrightarrow$ offs ns $k!i \leq$ offs ns $k!j$
\langle proof \rangle
lemma offs-update:
$j<$ length $n s \Longrightarrow$
offs $(n s[i:=\operatorname{Suc}(n s!i)]) k!j=($ if $j \leq i$ then id else Suc) $($ offs ns $k!j)$
$\langle p r o o f\rangle$
lemma offs-equal-suc:

assumes

A: Suc $i<$ length ns and
$B: n s!i=0$
shows offs ns $m!i=o f f s$ ns $m!$ Suc i
$\langle p r o o f\rangle$
lemma offs-equal [rule-format]:
$i<j \Longrightarrow j<$ length $n s \Longrightarrow$
$(\forall k \in\{i . .<j\} . n s!k=0) \longrightarrow$ offs ns $m!i=o f f s n s m!j$
$\langle p r o o f\rangle$
lemma offs-enum-last [rule-format]:
assumes
A: index-less index key and
$B: 0<n$ and
$C: \forall x \in$ set $x s$. key $x \in\{m i . . m a\}$
shows offs (enum xs index key n mi ma) $k!(n-S u c 0)+$
offs－num n xs index key mi ma $(n-S u c 0)=$ length $x s+k$ $\langle p r o o f\rangle$
lemma offs－enum－ub［rule－format］：

assumes

A：index－less index key and
$B: i<n$ and
$C: \forall x \in$ set $x s$. key $x \in\{m i . . m a\}$
shows offs（enum xs index key n mi ma）$k!i \leq$ length $x s+k$
$\langle p r o o f\rangle$
lemma offs－enum－next－ge［rule－format $]$ ：

assumes

A：index－less index key and
$B: i<n$
shows $\forall x \in$ set $x s$ ．key $x \in\{m i . . m a\} \Longrightarrow$
offs（enum xs index key n mi ma）$k!i \leq$
offs－next（offs（enum xs index key n mi ma）k）（length $x s+k$ ）
xs index key mi ma i
（is－\Longrightarrow offs ？ns $-!-\leq-$ ）
\langle proof \rangle
lemma offs－enum－zero－aux［rule－format］：
【index－less index key； $0<n ; \forall x \in$ set xs．key $x \in\{m i . . m a\}$ ；
offs－num n xs index key mi ma $(n-$ Suc 0）$=0 \rrbracket \Longrightarrow$
offs（enum xs index key n mi ma）$k!(n-$ Suc 0$)=$ length $x s+k$
〈proof〉
lemma offs－enum－zero［rule－format］：

assumes

A：index－less index key and
$B: i<n$ and
$C: \forall x \in$ set xs．key $x \in\{m i . . m a\}$ and
D：offs－num n xs index key mi ma $i=0$
shows offs（enum xs index key n mi ma）$k!i=$
offs－next（offs（enum xs index key n mi ma）k）（length xs $+k$ ）
xs index key mi ma i
$\langle p r o o f\rangle$
lemma offs－enum－next－cons $[$ rule－format $]$ ：
assumes
A：index－less index key and
$B: \forall x \in$ set xs．key $x \in\{m i . . m a\}$
shows（if $i<$ index key $x n$ mi ma then (\leq) else $(<)$ ）
（offs－next（offs（enum xs index key n mi ma）k）
（length $x s+k$ ）xs index key mi ma i ）
（offs－next（offs（（enum xs index key n mi ma）［index key x n mi ma ：＝ Suc（enum xs index key n mi ma！index key x n mi ma）］）k）
（Suc（length $x s+k))(x \#$ xs $)$ index key mi ma $i)$

```
    (is (if i< ?'' then - else -)
    (offs-next (offs ?ns -) - - - - -)
    (offs-next (offs ?ns' -) - - - --))
<proof\rangle
lemma offs-enum-pred [rule-format]:
    assumes A: index-less index key
    shows }(\forallx\in\mathrm{ set xs. key }x\in{mi..ma})
    offs-pred (offs (enum xs index key n mi ma) k) (length xs + k)
        xs index key mi ma
<proof\rangle
lemma fill-offs-enum-count-item [rule-format]:
    \llbracketindex-less index key; \forallx\in set xs. key x }\in{mi..ma};0<n\rrbracket
    count (mset (map the (fill xs (offs (enum xs index key n mi ma) 0)
            index key (length xs) mi ma))) x=
    count (mset xs) x
<proof\rangle
```

Using lemma fill-offs-enum-count-item, step 9 of the proof method can now be dealt with. It is accomplished by proving lemma gcsort-count-inv, which states that the number of the occurrences of whatever object in the objects' list is still the same after any recursive round.
lemma nths-count:
count (mset (nths xs A)) $x=$
count (mset xs) $x-$ card $\{i . i<$ length $x s \wedge i \notin A \wedge x s!i=x\}$
$\langle p r o o f\rangle$
lemma round-count-inv [rule-format]:
index-less index key \longrightarrow bn-inv p q $t \longrightarrow$ add-inv $n t \longrightarrow$ count-inv $f t \longrightarrow$ count-inv f (round index key p q r t)
$\langle p r o o f\rangle$
lemma gcsort-count-inv:
assumes
A: index-less index key and
B: add-inv $n t$ and
$C: n \leq p$
shows $\llbracket t^{\prime} \in$ gcsort-set index key $p t$; count-inv $f t \rrbracket \Longrightarrow$
count-inv $f t^{\prime}$
$\langle p r o o f\rangle$

The only remaining task is to address step 10 of the proof method, which is done by proving theorem gcsort-count. It holds under the conditions that the objects' number is not larger than the counters' upper bound and
function index satisfies predicate index-less, and states that for any object, function gcsort leaves unchanged the number of its occurrences within the input objects' list.

```
theorem gcsort-count:
    assumes
    A: index-less index key and
    B:length xs \leq p
    shows count (mset (gcsort index key p xs)) x = count (mset xs) x
\langleproof\rangle
end
```


3 Proof of objects' sorting

theory Sorting
imports Conservation
begin

In this section, it is formally proven that GCsort actually sorts objects.
Here below, steps 5, 6, and 7 of the proof method are accomplished. Predicate sort-inv is satisfied just in case, for any bucket delimited by the input counters' list $n s$, the keys of the corresponding objects within the input objects' list $x s$ are not larger than those of the objects, if any, to the right of that bucket. The underlying idea is that this predicate:

- is trivially satisfied by the output of function gcsort-in, which places all objects into a single bucket, and
- implies that $x s$ is sorted if every bucket delimited by $n s$ has size one, as happens when function gcsort-aux terminates.

```
fun sort-inv :: (' \(a \Rightarrow\) 'b::linorder \() \Rightarrow\) nat \(\times\) nat list \(\times\) 'a list \(\Rightarrow\) bool where
sort-inv key ( \(u, n s, x s)=\)
    ( \(\forall i<\) length ns. \(\forall j<\) offs ns \(0!i . \forall k \in\{o f f s\) ns \(0!i . .<l e n g t h x s\}\).
    key \((x s!j) \leq k e y(x s!k))\)
lemma gcsort-sort-input:
    sort-inv key ( 0 , [length \(x s]\), xs)
\(\langle p r o o f\rangle\)
lemma offs-nth:
    assumes
        A: find \((\lambda n\). Suc \(0<n) n s=\) None and
```

```
    B: foldl (+) \(0 n s=n\) and
    \(C: k<n\)
    shows \(\exists i<\) length ns. offs ns \(0!i=k\)
<proof〉
lemma gcsort-sort-intro:
    \(\llbracket\) sort-inv key \(t\); add-inv \(n t\); find \((\lambda n\). Suc \(0<n)(\) fst \((\) snd \(t))=N o n e \rrbracket \Longrightarrow\)
    sorted (map key (gcsort-out \(t\) ))
\(\langle p r o o f\rangle\)
```

As lemma gcsort-sort-intro comprises an additional assumption concerning the form of the fixed points of function gcsort-aux, step 8 of the proof method is necessary this time to prove that such assumption is satisfied.

```
lemma gcsort-sort-form:
find \((\lambda n\). Suc \(0<n)(\) fst \((\) snd \((\) gcsort-aux index key \(p t)))=\) None
\(\langle p r o o f\rangle\)
```

Here below, step 9 of the proof method is accomplished.
In the most significant case of the proof by recursion induction of lemma round-sort-inv, namely that of a bucket B with size larger than two and distinct minimum and maximum keys, the following line of reasoning is adopted. Let x be an object contained in a finer-grained bucket B^{\prime} resulting from B 's partition, and y an object to the right of B^{\prime}. Then:

- If y is contained in some other finer-grained bucket resulting from B 's partition, inequality key $x \leq k e y y$ holds because predicate sort-inv is satisfied by a counters' list generated by function enum and an objects' list generated by function fill in case fill's input offsets' list is computed via the composition of functions offs and enum, as happens within function round. This is proven beforehand in lemma fill-sort-inv.
- Otherwise, inequality key $x \leq k e y y$ holds as well because object x was contained in B by lemma fill-offs-enum-count-item, object y occurred to the right of B by lemma round-count-inv, and by hypothesis, the key of any object in B was not larger than that of any object to the right of B.

Using lemma round-sort-inv, the invariance of predicate sort-inv over inductive set gcsort-set is then proven in lemma gcsort-sort-inv.
lemma mini-maxi-keys-le:

```
x\in set xs \Longrightarrow key (xs!mini xs key) \leq key (xs!maxi xs key)
\langleproof\rangle
lemma mini-maxi-keys-eq [rule-format]:
    key (xs!mini xs key)=key (xs! maxi xs key) }\longrightarrowx\in\mathrm{ set xs }
    key x = key (xs!maxi xs key)
\langleproof\rangle
lemma offs-suc:
    i< length ns \Longrightarrow offs ns (Suc k)!i=Suc (offs ns k!i)
<proof\rangle
lemma offs-base-zero:
i< length ns \Longrightarrowoffs ns k!i=offs ns 0!i+k
<proof\rangle
lemma offs-append:
offs (ms @ ns)k=offs ms k @ offs ns (foldl (+)kms)
<proof\rangle
lemma offs-enum-next-le [rule-format]:
    assumes
    A: index-less index key and
    B:i<j and
    C:j<n and
    D:}\forallx\in\mathrm{ set xs. key }x\in{mi..ma
shows offs-next (offs (enum xs index key n mi ma) k) (length xs + k)
    xs index key mi ma i
(is - \leqoffs ?ns - !-)
<proof\rangle
lemma offs-pred-ub-less:
\llbracketoffs-pred ns ub xs index key mi ma; i< length ns;
    0< offs-num (length ns) xs index key mi ma i\rrbracket\Longrightarrow
        ns!i<ub
\langleproof\rangle
lemma fill-count-none [rule-format]:
assumes A: index-less index key
shows
(}\forallx\in\mathrm{ set xs. key }x\in{mi..ma})
ns\not=[]\longrightarrow
    offs-pred ns ub xs index key mi ma \longrightarrow
    length xs \lequb \longrightarrow
            count (mset (fill xs ns index key ub mi ma)) None =ub - length xs
<proof\rangle
```

lemma fill-offs-enum-count-none [rule-format]:
【index-less index key; $\forall x \in$ set xs. key $x \in\{m i . . m a\} ; 0<n \rrbracket \Longrightarrow$

```
    count (mset (fill xs (offs (enum xs index key n mi ma) 0)
    index key (length xs) mi ma)) None = 0
<proof\rangle
lemma fill-index [rule-format]:
    assumes A: index-less index key
    shows
    (\forallx\in set xs. key x }\in{mi..ma})
    offs-pred ns ub xs index key mi ma \longrightarrow
    i< length ns \longrightarrow
    0< offs-num (length ns) xs index key mi ma i \longrightarrow
    j\in{ns!i..<offs-next ns ub xs index key mi ma i}}
    fill xs ns index key ub mi ma!j=Some x }
            index key x (length ns) mi ma=i
<proof>
lemma fill-offs-enum-index [rule-format]:
index-less index key \Longrightarrow
    \forallx\in set xs. key x }\in{mi..ma}
    i<n\Longrightarrow
    0< offs-num n xs index key mi ma i\Longrightarrow
j\in{offs(enum xs index key n mi ma) 0!i..<
    offs-next (offs (enum xs index key n mi ma) 0) (length xs)
            xs index key mi ma i} \Longrightarrow
fill xs (offs (enum xs index key n mi ma) 0) index key (length xs)
    mi ma!j = Some x \Longrightarrow
    index key x n mi ma=i
<proof\rangle
lemma fill-sort-inv [rule-format]:
    assumes
    A: index-less index key and
    B: index-mono index key and
    C:}\forallx\in\mathrm{ set xs. key }x\in{mi..ma
    shows sort-inv key (u, enum xs index key n mi ma,
        map the (fill xs (offs(enum xs index key n mi ma) 0)
            index key (length xs) mi ma))
    (is sort-inv - (-, ?ns, -))
<proof\rangle
lemma round-sort-inv [rule-format]:
    index-less index key \longrightarrow index-mono index key \longrightarrowbn-inv p q t \longrightarrow
    add-inv n t \longrightarrow sort-inv key t < sort-inv key (round index key p q r t)
<proof\rangle
lemma gcsort-sort-inv:
    assumes
    A: index-less index key and
    B: index-mono index key and
```

C : add-inv $n t$ and
D: $n \leq p$
shows $\llbracket t^{\prime} \in$ gcsort-set index key $p t$; sort-inv key $t \rrbracket \Longrightarrow$
sort-inv key t^{\prime}
$\langle p r o o f\rangle$

The only remaining task is to address step 10 of the proof method, which is done by proving theorem gcsort-sorted. It holds under the conditions that the objects' number is not larger than the counters' upper bound and function index satisfies both predicates index-less and index-mono, and states that function gcsort is successful in sorting the input objects' list.

```
theorem gcsort-sorted:
    assumes
    A: index-less index key and
    B: index-mono index key and
    C: length xs \leqp
    shows sorted (map key (gcsort index key p xs))
<proof\rangle
end
```


4 Proof of algorithm's stability

theory Stability
imports Sorting
begin

In this section, it is formally proven that GCsort is stable, viz. that the sublist of the output of function gcsort built by picking out the objects having a given key matches the sublist of the input objects' list built in the same way.
Here below, steps 5, 6, and 7 of the proof method are accomplished. Particularly, stab-inv is the predicate that will be shown to be invariant over inductive set gcsort-set.

```
fun stab-inv : : (' b \(\Rightarrow^{\prime}\) 'a list \() \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\) nat \(\times\) nat list \(\times{ }^{\prime}\) a list \(\Rightarrow\)
    bool where
stab-inv f key \((u, n s, x s)=(\forall k .[x \leftarrow x s\). key \(x=k]=f k)\)
```

lemma gcsort-stab-input:
stab-inv $(\lambda k .[x \leftarrow x s$. key $x=k])$ key $(0,[$ length $x s], x s)$
$\langle p r o o f\rangle$

lemma gcsort-stab-intro:

```
stab-inv \(f\) key \(t \Longrightarrow[x \leftarrow\) gcsort-out \(t\). key \(x=k]=f k\)
\(\langle p r o o f\rangle\)
```

In what follows, step 9 of the proof method is accomplished.
First, lemma fill-offs-enum-stable proves that function fill, if its input offsets' list is computed via the composition of functions offs and enum, does not modify the sublist of its input objects' list formed by the objects having a given key. Moreover, lemmas mini-stable and maxi-stable prove that the extraction of the leftmost minimum and the rightmost maximum from an objects' list through functions mini and maxi is endowed with the same property.
These lemmas are then used to prove lemma gcsort-stab-inv, which states that the sublist of the objects having a given key within the objects' list is still the same after any recursive round.

```
lemma fill-stable [rule-format]:
    assumes
    A: index-less index key and
    \(B\) : index-same index key
    shows
    \((\forall x \in\) set \(x s\). key \(x \in\{m i . . m a\}) \longrightarrow\)
    \(n s \neq[] \longrightarrow\)
    offs-pred ns ub xs index key mi ma \(\longrightarrow\)
            map the \([w \leftarrow\) fill xs ns index key ub mi ma. \(\exists x . w=\) Some \(x \wedge\) key \(x=k]=\)
                \([x \leftarrow x s . k=k e y x]\)
\(\langle p r o o f\rangle\)
```

lemma fill-offs-enum-stable [rule-format]:
assumes
A: index-less index key and
B: index-same index key
shows
$\forall x \in$ set xs. key $x \in\{m i . . m a\} \Longrightarrow$
$0<n \Longrightarrow$
$[x \leftarrow$ map the (fill xs (offs (enum xs index key n mi ma) 0)
index key (length xs) mi ma). key $x=k]=[x \leftarrow x s$. $k=$ key $x]$
(is $-\Longrightarrow-\Longrightarrow[-\leftarrow$ map the ?ys. -$]=-$
is $-\Longrightarrow-\Longrightarrow[-\leftarrow$ map the (fill - ?ns - - - -). -] $=-$)
$\langle p r o o f\rangle$
lemma mini-first [rule-format]:
$x s \neq[] \longrightarrow i<$ mini xs key \longrightarrow
key (xs! mini xs key) < key (xs!i)
$\langle p r o o f\rangle$

```
lemma maxi-last [rule-format]:
    \(x s \neq[] \longrightarrow\) maxi xs key \(<i \longrightarrow i<\) length \(x s \longrightarrow\)
    key (xs!i)<key (xs! maxi xs key)
\(\langle p r o o f\rangle\)
lemma nths-range:
nths xs \(A=\) nths xs \((A \cap\{. .<\) length \(x s\})\)
\(\langle p r o o f\rangle\)
lemma filter-nths-diff:
    assumes
    A: \(i<\) length \(x s\) and
    \(B: \neg P(x s!i)\)
shows \([x \leftarrow n t h s\) xs \((A-\{i\}) . P x]=[x \leftarrow n t h s x s A . P x]\)
<proof〉
lemma mini-stable:
    assumes
    \(A: x s \neq[]\) and
    \(B\) : mini xs key \(\in A\)
        (is ?nmi \(\in-\) )
shows \([x \leftarrow[x s!? n m i] @\) nths \(x s(A-\{\) ? \(n m i\})\). key \(x=k]=\)
    \([x \leftarrow\) nths xs A. key \(x=k]\)
    (is \([x \leftarrow[? x m i] @---]=-\) )
\(\langle p r o o f\rangle\)
lemma maxi-stable:
assumes
    \(A: x s \neq[]\) and
    \(B\) : maxi xs key \(\in A\)
        (is ? \(n m a \in-\) )
shows \([x \leftarrow n t h s\) xs \((A-\{? n m a\}) @[x s!? n m a]\). key \(x=k]=\)
    \([x \leftarrow n\) ths xs A. key \(x=k]\)
    (is [xヶ-@ [?xma]. -] =-)
\(\langle\) proof〉
lemma round-stab-inv [rule-format]:
index-less index key \(\longrightarrow\) index-same index key \(\longrightarrow\) bn-inv p q \(t \longrightarrow\)
    add-inv \(n t \longrightarrow\) stab-inv \(f\) key \(t \longrightarrow\) stab-inv f key (round index key p q r t)
\(\langle p r o o f\rangle\)
lemma gcsort-stab-inv:
    assumes
    A: index-less index key and
    \(B\) : index-same index key and
    \(C\) : add-inv \(n t\) and
    D: \(n \leq p\)
shows \(\llbracket t^{\prime} \in\) gcsort-set index key p \(t\); stab-inv f key \(t \rrbracket \Longrightarrow\)
    stab-inv f key \(t^{\prime}\)
```

$\langle p r o o f\rangle$

The only remaining task is to address step 10 of the proof method, which is done by proving theorem gcsort-stable. It holds under the conditions that the objects' number is not larger than the counters' upper bound and function index satisfies both predicates index-less and index-same, and states that function gcsort leaves unchanged the sublist of the objects having a given key within the input objects' list.

```
theorem gcsort-stable:
    assumes
        A: index-less index key and
    B: index-same index key and
    C: length xs \leqp
    shows [x\leftarrowgcsort index key p xs. key x = k]=[x\leftarrowxs. key x = k]
<proof\rangle
end
```


References

[1] P. E. Black. Histogram sort - Dictionary of Algorithms and Data Structures, Feb. 2019. https://www.nist.gov/dads/HTML/histogramSort. html.
[2] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley, 2nd edition, 1998.
[3] A. Krauss. Defining Recursive Functions in Isabelle/HOL. https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/ doc/functions.pdf.
[4] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs. https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/ isar-overview.pdf.
[5] T. Nipkow. Programming and Proving in Isabelle/HOL, June 2019. https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/ prog-prove.pdf.
[6] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, June 2019. https://isabelle.in.tum.de/ website-Isabelle2019/dist/Isabelle2019/doc/tutorial.pdf.
[7] P. Noce. A General Method for the Proof of Theorems on Tail-recursive Functions. Archive of Formal Proofs, Dec. 2013. http://isa-afp.org/ entries/Tail_Recursive_Functions.html, Formal proof development.
[8] Wikipedia contributors. Counting sort - Wikipedia, The Free Encyclopedia, Sept. 2019. https://en.wikipedia.org/w/index.php?title= Counting_sort\&oldid=915065502.

