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Abstract

In this AFP entry, we show how to specify game-based cryptographic
security notions and formally prove secure several cryptographic construc-
tions from the literature using the CryptHOL framework. Among others,
we formalise the notions of a random oracle, a pseudo-random function,
an unpredictable function, and of encryption schemes that are indistinguish-
able under chosen plaintext and/or ciphertext attacks. We prove the random-
permutation/random-function switching lemma, security of the Elgamal and
hashed Elgamal public-key encryption scheme and correctness and security
of several constructions with pseudo-random functions.

Our proofs follow the game-hopping style advocated by Shoup [19] and
Bellare and Rogaway [4], from which most of the examples have been taken.
We generalise some of their results such that they can be reused in other
proofs. Thanks to CryptHOL’s integration with Isabelle’s parametricity in-
frastructure, many simple hops are easily justified using the theory of repre-
sentation independence.
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1 Specifying security using games
theory Diffie-Hellman imports
CryptHOL.Cyclic-Group-SPMF
CryptHOL.Computational-Model

begin

1.1 The DDH game
locale ddh =
fixes G :: ′grp cyclic-group (structure)

begin

type-synonym ′grp ′ adversary = ′grp ′⇒ ′grp ′⇒ ′grp ′⇒ bool spmf

definition ddh-0 :: ′grp adversary⇒ bool spmf
where ddh-0 A = do {

x← sample-uniform (order G );
y← sample-uniform (order G );
A (g [^] x) (g [^] y) (g [^] (x ∗ y))
}

definition ddh-1 :: ′grp adversary⇒ bool spmf
where ddh-1 A = do {

x← sample-uniform (order G );
y← sample-uniform (order G );
z← sample-uniform (order G );
A (g [^] x) (g [^] y) (g [^] z)
}

definition advantage :: ′grp adversary⇒ real
where advantage A = |spmf (ddh-0 A ) True − spmf (ddh-1 A ) True|

definition lossless :: ′grp adversary⇒ bool
where lossless A ←→ (∀α β γ . lossless-spmf (A α β γ))

lemma lossless-ddh-0:
[[ lossless A ; 0 < order G ]]
=⇒ lossless-spmf (ddh-0 A )
〈proof 〉

lemma lossless-ddh-1:
[[ lossless A ; 0 < order G ]]
=⇒ lossless-spmf (ddh-1 A )
〈proof 〉

end
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1.2 The LCDH game
locale lcdh =
fixes G :: ′grp cyclic-group (structure)

begin

type-synonym ′grp ′ adversary = ′grp ′⇒ ′grp ′⇒ ′grp ′ set spmf

definition lcdh :: ′grp adversary⇒ bool spmf
where lcdh A = do {

x← sample-uniform (order G );
y← sample-uniform (order G );
zs← A (g [^] x) (g [^] y);
return-spmf (g [^] (x ∗ y) ∈ zs)
}

definition advantage :: ′grp adversary⇒ real
where advantage A = spmf (lcdh A ) True

definition lossless :: ′grp adversary⇒ bool
where lossless A ←→ (∀α β . lossless-spmf (A α β ))

lemma lossless-lcdh:
[[ lossless A ; 0 < order G ]]
=⇒ lossless-spmf (lcdh A )
〈proof 〉

end

end

theory IND-CCA2 imports
CryptHOL.Computational-Model
CryptHOL.Negligible
CryptHOL.Environment-Functor

begin

locale pk-enc =
fixes key-gen :: security⇒ ( ′ekey × ′dkey) spmf — probabilistic
and encrypt :: security⇒ ′ekey⇒ ′plain⇒ ′cipher spmf — probabilistic
and decrypt :: security⇒ ′dkey⇒ ′cipher⇒ ′plain option — deterministic, but not used
and valid-plain :: security⇒ ′plain⇒ bool — checks whether a plain text is valid, i.e.,

has the right format

1.3 The IND-CCA2 game for public-key encryption

We model an IND-CCA2 security game in the multi-user setting as described in
[3].
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locale ind-cca2 = pk-enc +
constrains key-gen :: security⇒ ( ′ekey × ′dkey) spmf
and encrypt :: security⇒ ′ekey⇒ ′plain⇒ ′cipher spmf
and decrypt :: security⇒ ′dkey⇒ ′cipher⇒ ′plain option
and valid-plain :: security⇒ ′plain⇒ bool

begin

type-synonym ( ′ekey ′, ′dkey ′, ′cipher ′) state-oracle = ( ′ekey ′ × ′dkey ′ × ′cipher ′ list)
option

fun decrypt-oracle
:: security⇒ ( ′ekey, ′dkey, ′cipher) state-oracle⇒ ′cipher
⇒ ( ′plain option × ( ′ekey, ′dkey, ′cipher) state-oracle) spmf

where
decrypt-oracle η None cipher = return-spmf (None, None)
| decrypt-oracle η (Some (ekey, dkey, cstars)) cipher = return-spmf
(if cipher ∈ set cstars then None else decrypt η dkey cipher, Some (ekey, dkey, cstars))

fun ekey-oracle
:: security⇒ ( ′ekey, ′dkey, ′cipher) state-oracle⇒ unit⇒ ( ′ekey× ( ′ekey, ′dkey, ′cipher)

state-oracle) spmf
where
ekey-oracle η None - = do {

(ekey, dkey)← key-gen η ;
return-spmf (ekey, Some (ekey, dkey, []))
}

| ekey-oracle η (Some (ekey, rest)) - = return-spmf (ekey, Some (ekey, rest))

lemma ekey-oracle-conv:
ekey-oracle η σ x =
(case σ of None⇒ map-spmf (λ (ekey, dkey). (ekey, Some (ekey, dkey, []))) (key-gen η)
| Some (ekey, rest)⇒ return-spmf (ekey, Some (ekey, rest)))
〈proof 〉

context notes bind-spmf-cong[fundef-cong] begin
function encrypt-oracle
:: bool⇒ security⇒ ( ′ekey, ′dkey, ′cipher) state-oracle⇒ ′plain × ′plain
⇒ ( ′cipher × ( ′ekey, ′dkey, ′cipher) state-oracle) spmf

where
encrypt-oracle b η None m01 = do { (-, σ)← ekey-oracle η None (); encrypt-oracle b

η σ m01 }
| encrypt-oracle b η (Some (ekey, dkey, cstars)) (m0, m1) =
(if valid-plain η m0 ∧ valid-plain η m1 then do {

let pb = (if b then m0 else m1);
cstar← encrypt η ekey pb;
return-spmf (cstar, Some (ekey, dkey, cstar # cstars))
} else return-pmf None)
〈proof 〉
termination 〈proof 〉
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end

1.3.1 Single-user setting

type-synonym ( ′plain ′, ′cipher ′) call1 = unit + ′cipher ′+ ′plain ′× ′plain ′

type-synonym ( ′ekey ′, ′plain ′, ′cipher ′) ret1 =
′ekey ′+ ′plain ′ option + ′cipher ′

definition oracle1 :: bool⇒ security
⇒ (( ′ekey, ′dkey, ′cipher) state-oracle, ( ′plain, ′cipher) call1, ( ′ekey, ′plain, ′cipher) ret1)

oracle ′

where oracle1 b η = ekey-oracle η ⊕O (decrypt-oracle η ⊕O encrypt-oracle b η)

lemma oracle1-simps [simp]:
oracle1 b η s (Inl x) = map-spmf (apfst Inl) (ekey-oracle η s x)
oracle1 b η s (Inr (Inl y)) = map-spmf (apfst (Inr ◦ Inl)) (decrypt-oracle η s y)
oracle1 b η s (Inr (Inr z)) = map-spmf (apfst (Inr ◦ Inr)) (encrypt-oracle b η s z)
〈proof 〉

type-synonym ( ′ekey ′, ′plain ′, ′cipher ′) adversary1
′=

(bool, ( ′plain ′, ′cipher ′) call1, ( ′ekey ′, ′plain ′, ′cipher ′) ret1) gpv
type-synonym ( ′ekey ′, ′plain ′, ′cipher ′) adversary1 =
security⇒ ( ′ekey ′, ′plain ′, ′cipher ′) adversary1

′

definition ind-cca21 :: ( ′ekey, ′plain, ′cipher) adversary1 ⇒ security⇒ bool spmf
where
ind-cca21 A η = TRY do {

b← coin-spmf ;
(guess, s)← exec-gpv (oracle1 b η) (A η) None;
return-spmf (guess = b)
} ELSE coin-spmf

definition advantage1 :: ( ′ekey, ′plain, ′cipher) adversary1 ⇒ advantage
where advantage1 A η = |spmf (ind-cca21 A η) True − 1/2|

lemma advantage1-nonneg: advantage1 A η ≥ 0 〈proof 〉

abbreviation secure-for1 :: ( ′ekey, ′plain, ′cipher) adversary1 ⇒ bool
where secure-for1 A ≡ negligible (advantage1 A )

definition ibounded-by1
′ :: ( ′ekey, ′plain, ′cipher) adversary1

′⇒ nat⇒ bool
where ibounded-by1

′A q = interaction-any-bounded-by A q

abbreviation ibounded-by1 :: ( ′ekey, ′plain, ′cipher) adversary1 ⇒ (security ⇒ nat) ⇒
bool
where ibounded-by1 ≡ rel-envir ibounded-by1

′

definition lossless1
′ :: ( ′ekey, ′plain, ′cipher) adversary1

′⇒ bool
where lossless1

′A = lossless-gpv I -full A
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abbreviation lossless1 :: ( ′ekey, ′plain, ′cipher) adversary1 ⇒ bool
where lossless1 ≡ pred-envir lossless1

′

lemma lossless-decrypt-oracle [simp]: lossless-spmf (decrypt-oracle η σ cipher)
〈proof 〉

lemma lossless-ekey-oracle [simp]:
lossless-spmf (ekey-oracle η σ x)←→ (σ = None −→ lossless-spmf (key-gen η))
〈proof 〉

lemma lossless-encrypt-oracle [simp]:
[[ σ = None =⇒ lossless-spmf (key-gen η);∧

ekey m. valid-plain η m =⇒ lossless-spmf (encrypt η ekey m) ]]
=⇒ lossless-spmf (encrypt-oracle b η σ (m0, m1))←→ valid-plain η m0 ∧ valid-plain

η m1
〈proof 〉

1.3.2 Multi-user setting

definition oraclen :: bool⇒ security
⇒ ( ′i ⇒ ( ′ekey, ′dkey, ′cipher) state-oracle, ′i × ( ′plain, ′cipher) call1, ( ′ekey, ′plain,

′cipher) ret1) oracle ′

where oraclen b η = family-oracle (λ -. oracle1 b η)

lemma oraclen-apply [simp]:
oraclen b η s (i, x) = map-spmf (apsnd (fun-upd s i)) (oracle1 b η (s i) x)
〈proof 〉

type-synonym ( ′i, ′ekey ′, ′plain ′, ′cipher ′) adversaryn
′=

(bool, ′i × ( ′plain ′, ′cipher ′) call1, ( ′ekey ′, ′plain ′, ′cipher ′) ret1) gpv
type-synonym ( ′i, ′ekey ′, ′plain ′, ′cipher ′) adversaryn =
security⇒ ( ′i, ′ekey ′, ′plain ′, ′cipher ′) adversaryn

′

definition ind-cca2n :: ( ′i, ′ekey, ′plain, ′cipher) adversaryn ⇒ security⇒ bool spmf
where
ind-cca2n A η = TRY do {

b← coin-spmf ;
(guess, σ)← exec-gpv (oraclen b η) (A η) (λ -. None);
return-spmf (guess = b)
} ELSE coin-spmf

definition advantagen :: ( ′i, ′ekey, ′plain, ′cipher) adversaryn ⇒ advantage
where advantagen A η = |spmf (ind-cca2n A η) True − 1/2|

lemma advantagen-nonneg: advantagen A η ≥ 0 〈proof 〉

abbreviation secure-forn :: ( ′i, ′ekey, ′plain, ′cipher) adversaryn ⇒ bool
where secure-forn A ≡ negligible (advantagen A )
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definition ibounded-byn
′ :: ( ′i, ′ekey, ′plain, ′cipher) adversaryn

′⇒ nat⇒ bool
where ibounded-byn

′A q = interaction-any-bounded-by A q

abbreviation ibounded-byn :: ( ′i, ′ekey, ′plain, ′cipher) adversaryn⇒ (security⇒ nat)⇒
bool
where ibounded-byn ≡ rel-envir ibounded-byn

′

definition losslessn
′ :: ( ′i, ′ekey, ′plain, ′cipher) adversaryn

′⇒ bool
where losslessn

′A = lossless-gpv I -full A

abbreviation losslessn :: ( ′i, ′ekey, ′plain, ′cipher) adversaryn ⇒ bool
where losslessn ≡ pred-envir losslessn

′

definition cipher-queries :: ( ′i⇒ ( ′ekey, ′dkey, ′cipher) state-oracle)⇒ ′cipher set
where cipher-queries ose = (

⋃
(-, -, ciphers)∈ran ose. set ciphers)

lemma cipher-queriesI:
[[ ose n = Some (ek, dk, ciphers); x ∈ set ciphers ]] =⇒ x ∈ cipher-queries ose
〈proof 〉

lemma cipher-queriesE:
assumes x ∈ cipher-queries ose
obtains (cipher-queries) n ek dk ciphers where ose n = Some (ek, dk, ciphers) x ∈ set

ciphers
〈proof 〉

lemma cipher-queries-updE:
assumes x ∈ cipher-queries (ose(n 7→ (ek, dk, ciphers)))
obtains (old) x ∈ cipher-queries ose x /∈ set ciphers | (new) x ∈ set ciphers
〈proof 〉

lemma cipher-queries-empty [simp]: cipher-queries Map.empty = {}
〈proof 〉

end

end

1.4 The IND-CCA2 security for symmetric encryption schemes
theory IND-CCA2-sym imports
CryptHOL.Computational-Model

begin

locale ind-cca =
fixes key-gen :: ′key spmf
and encrypt :: ′key⇒ ′message⇒ ′cipher spmf
and decrypt :: ′key⇒ ′cipher⇒ ′message option
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and msg-predicate :: ′message⇒ bool
begin

type-synonym ( ′message ′, ′cipher ′) adversary =
(bool, ′message ′× ′message ′+ ′cipher ′, ′cipher ′ option + ′message ′ option) gpv

definition oracle-encrypt :: ′key⇒ bool⇒ ( ′message × ′message, ′cipher option, ′cipher
set) callee
where
oracle-encrypt k b L = (λ (msg1, msg0).
(case msg-predicate msg1 ∧ msg-predicate msg0 of

True⇒ do {
c← encrypt k (if b then msg1 else msg0);
return-spmf (Some c, {c} ∪ L)
}
| False⇒ return-spmf (None, L)))

lemma lossless-oracle-encrypt [simp]:
assumes lossless-spmf (encrypt k m1) and lossless-spmf (encrypt k m0)
shows lossless-spmf (oracle-encrypt k b L (m1, m0))
〈proof 〉

definition oracle-decrypt :: ′key⇒ ( ′cipher, ′message option, ′cipher set) callee
where oracle-decrypt k L c = return-spmf (if c ∈ L then None else decrypt k c, L)

lemma lossless-oracle-decrypt [simp]: lossless-spmf (oracle-decrypt k L c)
〈proof 〉

definition game :: ( ′message, ′cipher) adversary⇒ bool spmf
where
game A = do {

key← key-gen;
b← coin-spmf ;
(b ′, L ′)← exec-gpv (oracle-encrypt key b ⊕O oracle-decrypt key) A {};
return-spmf (b = b ′)
}

definition advantage :: ( ′message, ′cipher) adversary⇒ real
where advantage A = |spmf (game A ) True − 1 / 2|

lemma advantage-nonneg: 0 ≤ advantage A 〈proof 〉

end

end

theory IND-CPA imports
CryptHOL.Generative-Probabilistic-Value
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CryptHOL.Computational-Model
CryptHOL.Negligible

begin

1.5 The IND-CPA game for symmetric encryption schemes
locale ind-cpa =
fixes key-gen :: ′key spmf — probabilistic
and encrypt :: ′key⇒ ′plain⇒ ′cipher spmf — probabilistic
and decrypt :: ′key⇒ ′cipher⇒ ′plain option — deterministic, but not used
and valid-plain :: ′plain⇒ bool — checks whether a plain text is valid, i.e., has the right

format
begin

We cannot incorporate the predicate valid-plain in the type ′plain of plaintexts,
because the single ′plain must contain plaintexts for all values of the security pa-
rameter, as HOL does not have dependent types. Consequently, the oracle has to
ensure that the received plaintexts are valid.

type-synonym ( ′plain ′, ′cipher ′, ′state) adversary =
(( ′plain ′× ′plain ′) × ′state, ′plain ′, ′cipher ′) gpv
× ( ′cipher ′⇒ ′state⇒ (bool, ′plain ′, ′cipher ′) gpv)

definition encrypt-oracle :: ′key⇒ unit⇒ ′plain⇒ ( ′cipher × unit) spmf
where
encrypt-oracle key σ plain = do {

cipher← encrypt key plain;
return-spmf (cipher, ())
}

definition ind-cpa :: ( ′plain, ′cipher, ′state) adversary⇒ bool spmf
where
ind-cpa A = do {

let (A 1, A 2) = A ;
key← key-gen;
b← coin-spmf ;
(guess, -)← exec-gpv (encrypt-oracle key) (do {
((m0, m1), σ)← A 1;
if valid-plain m0 ∧ valid-plain m1 then do {

cipher← lift-spmf (encrypt key (if b then m0 else m1));
A 2 cipher σ

} else lift-spmf coin-spmf
}) ();

return-spmf (guess = b)
}

definition advantage :: ( ′plain, ′cipher, ′state) adversary⇒ real
where advantage A = |spmf (ind-cpa A ) True − 1/2|

lemma advantage-nonneg: advantage A ≥ 0 〈proof 〉
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definition ibounded-by :: ( ′plain, ′cipher, ′state) adversary⇒ enat⇒ bool
where
ibounded-by = (λ (A 1, A 2) q.
(∃q1 q2. interaction-any-bounded-by A 1 q1 ∧ (∀cipher σ . interaction-any-bounded-by
(A 2 cipher σ) q2) ∧ q1 + q2 ≤ q))

lemma ibounded-byE [consumes 1, case-names ibounded-by, elim?]:
assumes ibounded-by (A 1, A 2) q
obtains q1 q2
where q1 + q2 ≤ q
and interaction-any-bounded-by A 1 q1
and

∧
cipher σ . interaction-any-bounded-by (A 2 cipher σ) q2

〈proof 〉

lemma ibounded-byI [intro?]:
[[ interaction-any-bounded-by A 1 q1;

∧
cipher σ . interaction-any-bounded-by (A 2 ci-

pher σ) q2; q1 + q2 ≤ q ]]
=⇒ ibounded-by (A 1, A 2) q
〈proof 〉

definition lossless :: ( ′plain, ′cipher, ′state) adversary⇒ bool
where lossless = (λ (A 1,A 2). lossless-gpv I -full A 1∧ (∀cipher σ . lossless-gpv I -full
(A 2 cipher σ)))

end

end

theory IND-CPA-PK imports
CryptHOL.Computational-Model
CryptHOL.Negligible

begin

1.6 The IND-CPA game for public-key encryption with oracle access
locale ind-cpa-pk =
fixes key-gen :: ( ′pubkey × ′privkey, ′call, ′ret) gpv — probabilistic
and aencrypt :: ′pubkey⇒ ′plain⇒ ( ′cipher, ′call, ′ret) gpv — probabilistic w/ access

to an oracle
and adecrypt :: ′privkey⇒ ′cipher⇒ ( ′plain, ′call, ′ret) gpv — not used
and valid-plains :: ′plain⇒ ′plain⇒ bool — checks whether a pair of plaintexts is valid,

i.e., they have the right format
begin

We cannot incorporate the predicate valid-plain in the type ′plain of plaintexts,
because the single ′plain must contain plaintexts for all values of the security pa-
rameter, as HOL does not have dependent types. Consequently, the game has to
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ensure that the received plaintexts are valid.

type-synonym ( ′pubkey ′, ′plain ′, ′cipher ′, ′call ′, ′ret ′, ′state) adversary =
( ′pubkey ′⇒ (( ′plain ′× ′plain ′) × ′state, ′call ′, ′ret ′) gpv)
× ( ′cipher ′⇒ ′state⇒ (bool, ′call ′, ′ret ′) gpv)

fun ind-cpa :: ( ′pubkey, ′plain, ′cipher, ′call, ′ret, ′state) adversary ⇒ (bool, ′call, ′ret)
gpv
where
ind-cpa (A 1, A 2) = TRY do {
(pk, sk)← key-gen;
b← lift-spmf coin-spmf ;
((m0, m1), σ)← (A 1 pk);
assert-gpv (valid-plains m0 m1);
cipher← aencrypt pk (if b then m0 else m1);
guess← A 2 cipher σ ;
Done (guess = b)
} ELSE lift-spmf coin-spmf

definition advantage :: ( ′σ ⇒ ′call⇒ ( ′ret × ′σ) spmf )⇒ ′σ ⇒ ( ′pubkey, ′plain, ′cipher,
′call, ′ret, ′state) adversary⇒ real
where advantage oracle σ A = |spmf (run-gpv oracle (ind-cpa A ) σ) True − 1/2|

lemma advantage-nonneg: advantage oracle σ A ≥ 0 〈proof 〉

definition ibounded-by :: ( ′call ⇒ bool) ⇒ ( ′pubkey, ′plain, ′cipher, ′call, ′ret, ′state)
adversary⇒ enat⇒ bool
where
ibounded-by consider = (λ (A 1, A 2) q.
(∃q1 q2. (∀pk. interaction-bounded-by consider (A 1 pk) q1) ∧ (∀cipher σ . interac-

tion-bounded-by consider (A 2 cipher σ) q2) ∧ q1 + q2 ≤ q))

lemma ibounded-by ′E [consumes 1, case-names ibounded-by ′, elim?]:
assumes ibounded-by consider (A 1, A 2) q
obtains q1 q2
where q1 + q2 ≤ q
and

∧
pk. interaction-bounded-by consider (A 1 pk) q1

and
∧

cipher σ . interaction-bounded-by consider (A 2 cipher σ) q2
〈proof 〉

lemma ibounded-byI [intro?]:
[[
∧

pk. interaction-bounded-by consider (A 1 pk) q1;
∧

cipher σ . interaction-bounded-by
consider (A 2 cipher σ) q2; q1 + q2 ≤ q ]]
=⇒ ibounded-by consider (A 1, A 2) q
〈proof 〉

definition lossless :: ( ′pubkey, ′plain, ′cipher, ′call, ′ret, ′state) adversary⇒ bool
where lossless = (λ (A 1, A 2). (∀pk. lossless-gpv I -full (A 1 pk)) ∧ (∀cipher σ . loss-
less-gpv I -full (A 2 cipher σ)))
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end

end

theory IND-CPA-PK-Single imports
CryptHOL.Computational-Model

begin

1.7 The IND-CPA game (public key, single instance)
locale ind-cpa =
fixes key-gen :: ( ′pub-key × ′priv-key) spmf — probabilistic
and aencrypt :: ′pub-key⇒ ′plain⇒ ′cipher spmf — probabilistic
and adecrypt :: ′priv-key⇒ ′cipher⇒ ′plain option — deterministic, but not used
and valid-plains :: ′plain⇒ ′plain⇒ bool — checks whether a pair of plaintexts is valid,

i.e., they both have the right format
begin

We cannot incorporate the predicate valid-plain in the type ′plain of plaintexts,
because the single ′plain must contain plaintexts for all values of the security pa-
rameter, as HOL does not have dependent types. Consequently, the oracle has to
ensure that the received plaintexts are valid.

type-synonym ( ′pub-key ′, ′plain ′, ′cipher ′, ′state) adversary =
( ′pub-key ′⇒ (( ′plain ′× ′plain ′) × ′state) spmf )
× ( ′cipher ′⇒ ′state⇒ bool spmf )

primrec ind-cpa :: ( ′pub-key, ′plain, ′cipher, ′state) adversary⇒ bool spmf
where
ind-cpa (A 1, A 2) = TRY do {
(pk, sk)← key-gen;
((m0, m1), σ)← A 1 pk;
- :: unit← assert-spmf (valid-plains m0 m1);
b← coin-spmf ;
cipher← aencrypt pk (if b then m0 else m1);
b ′← A 2 cipher σ ;
return-spmf (b = b ′)
} ELSE coin-spmf

declare ind-cpa.simps [simp del]

definition advantage :: ( ′pub-key, ′plain, ′cipher, ′state) adversary⇒ real
where advantage A = |spmf (ind-cpa A ) True − 1/2|

definition lossless :: ( ′pub-key, ′plain, ′cipher, ′state) adversary⇒ bool
where
lossless A ←→
((∀pk. lossless-spmf (fst A pk)) ∧

(∀cipher σ . lossless-spmf (snd A cipher σ)))
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lemma lossless-ind-cpa:
[[ lossless A ; lossless-spmf (key-gen) ]] =⇒ lossless-spmf (ind-cpa A )
〈proof 〉

end

end

theory SUF-CMA imports
CryptHOL.Computational-Model
CryptHOL.Negligible
CryptHOL.Environment-Functor

begin

1.8 Strongly existentially unforgeable signature scheme
locale sig-scheme =
fixes key-gen :: security⇒ ( ′vkey × ′sigkey) spmf
and sign :: security⇒ ′sigkey⇒ ′message⇒ ′signature spmf
and verify :: security⇒ ′vkey⇒ ′message⇒ ′signature⇒ bool — verification is deter-

ministic
and valid-message :: security⇒ ′message⇒ bool

locale suf-cma = sig-scheme +
constrains key-gen :: security⇒ ( ′vkey × ′sigkey) spmf
and sign :: security⇒ ′sigkey⇒ ′message⇒ ′signature spmf
and verify :: security⇒ ′vkey⇒ ′message⇒ ′signature⇒ bool
and valid-message :: security⇒ ′message⇒ bool

begin

type-synonym ( ′vkey ′, ′sigkey ′, ′message ′, ′signature ′) state-oracle
= ( ′vkey ′× ′sigkey ′× ( ′message ′× ′signature ′) list) option

fun vkey-oracle :: security ⇒ (( ′vkey, ′sigkey, ′message, ′signature) state-oracle, unit,
′vkey) oracle ′

where
vkey-oracle η None - = do {
(vkey, sigkey)← key-gen η ;
return-spmf (vkey, Some (vkey, sigkey, []))
}
|
∧

log. vkey-oracle η (Some (vkey, sigkey, log)) - = return-spmf (vkey, Some (vkey, sigkey,
log))

context notes bind-spmf-cong[fundef-cong] begin
function sign-oracle

:: security ⇒ (( ′vkey, ′sigkey, ′message, ′signature) state-oracle, ′message, ′signature)
oracle ′
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where
sign-oracle η None m = do { (-, σ)← vkey-oracle η None (); sign-oracle η σ m }
|
∧

log. sign-oracle η (Some (vkey, skey, log)) m =
(if valid-message η m then do {

sig← sign η skey m;
return-spmf (sig, Some (vkey, skey, (m, sig) # log))
} else return-pmf None)
〈proof 〉
termination 〈proof 〉
end

lemma lossless-vkey-oracle [simp]:
lossless-spmf (vkey-oracle η σ x)←→ (σ = None −→ lossless-spmf (key-gen η))
〈proof 〉

lemma lossless-sign-oracle [simp]:
[[ σ = None =⇒ lossless-spmf (key-gen η);∧

skey m. valid-message η m =⇒ lossless-spmf (sign η skey m) ]]
=⇒ lossless-spmf (sign-oracle η σ m)←→ valid-message η m
〈proof 〉

lemma lossless-sign-oracle-Some: fixes log shows
lossless-spmf (sign-oracle η (Some (vkey, skey, log)) m)←→ lossless-spmf (sign η skey

m) ∧ valid-message η m
〈proof 〉

1.8.1 Single-user setting

type-synonym ′message ′ call1 = unit + ′message ′

type-synonym ( ′vkey ′, ′signature ′) ret1 =
′vkey ′+ ′signature ′

definition oracle1 :: security
⇒ (( ′vkey, ′sigkey, ′message, ′signature) state-oracle, ′message call1, ( ′vkey, ′signature)

ret1) oracle ′

where oracle1 η = vkey-oracle η ⊕O sign-oracle η

lemma oracle1-simps [simp]:
oracle1 η s (Inl x) = map-spmf (apfst Inl) (vkey-oracle η s x)
oracle1 η s (Inr y) = map-spmf (apfst Inr) (sign-oracle η s y)
〈proof 〉

type-synonym ( ′vkey ′, ′message ′, ′signature ′) adversary1
′=

(( ′message ′× ′signature ′), ′message ′ call1, ( ′vkey ′, ′signature ′) ret1) gpv
type-synonym ( ′vkey ′, ′message ′, ′signature ′) adversary1 =
security⇒ ( ′vkey ′, ′message ′, ′signature ′) adversary1

′

definition suf-cma1 :: ( ′vkey, ′message, ′signature) adversary1 ⇒ security⇒ bool spmf
where∧

log. suf-cma1 A η = do {
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((m, sig), σ)← exec-gpv (oracle1 η) (A η) None;
return-spmf (

case σ of None⇒ False
| Some (vkey, skey, log)⇒ verify η vkey m sig ∧ (m, sig) /∈ set log)

}

definition advantage1 :: ( ′vkey, ′message, ′signature) adversary1 ⇒ advantage
where advantage1 A η = spmf (suf-cma1 A η) True

lemma advantage1-nonneg: advantage1 A η ≥ 0 〈proof 〉

abbreviation secure-for1 :: ( ′vkey, ′message, ′signature) adversary1 ⇒ bool
where secure-for1 A ≡ negligible (advantage1 A )

definition ibounded-by1
′ :: ( ′vkey, ′message, ′signature) adversary1

′⇒ nat⇒ bool
where ibounded-by1

′A q = (interaction-any-bounded-by A q)

abbreviation ibounded-by1 :: ( ′vkey, ′message, ′signature) adversary1⇒ (security⇒ nat)
⇒ bool
where ibounded-by1 ≡ rel-envir ibounded-by1

′

definition lossless1
′ :: ( ′vkey, ′message, ′signature) adversary1

′⇒ bool
where lossless1

′A = (lossless-gpv I -full A )

abbreviation lossless1 :: ( ′vkey, ′message, ′signature) adversary1 ⇒ bool
where lossless1 ≡ pred-envir lossless1

′

1.8.2 Multi-user setting

definition oraclen :: security
⇒ ( ′i ⇒ ( ′vkey, ′sigkey, ′message, ′signature) state-oracle, ′i × ′message call1, ( ′vkey,
′signature) ret1) oracle ′

where oraclen η = family-oracle (λ -. oracle1 η)

lemma oraclen-apply [simp]:
oraclen η s (i, x) = map-spmf (apsnd (fun-upd s i)) (oracle1 η (s i) x)
〈proof 〉

type-synonym ( ′i, ′vkey ′, ′message ′, ′signature ′) adversaryn
′=

(( ′i × ′message ′× ′signature ′), ′i × ′message ′ call1, ( ′vkey ′, ′signature ′) ret1) gpv
type-synonym ( ′i, ′vkey ′, ′message ′, ′signature ′) adversaryn =
security⇒ ( ′i, ′vkey ′, ′message ′, ′signature ′) adversaryn

′

definition suf-cman :: ( ′i, ′vkey, ′message, ′signature) adversaryn⇒ security⇒ bool spmf
where∧

log. suf-cman A η = do {
((i, m, sig), σ)← exec-gpv (oraclen η) (A η) (λ -. None);
return-spmf (

case σ i of None⇒ False
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| Some (vkey, skey, log)⇒ verify η vkey m sig ∧ (m, sig) /∈ set log)
}

definition advantagen :: ( ′i, ′vkey, ′message, ′signature) adversaryn ⇒ advantage
where advantagen A η = spmf (suf-cman A η) True

lemma advantagen-nonneg: advantagen A η ≥ 0 〈proof 〉

abbreviation secure-forn :: ( ′i, ′vkey, ′message, ′signature) adversaryn ⇒ bool
where secure-forn A ≡ negligible (advantagen A )

definition ibounded-byn
′ :: ( ′i, ′vkey, ′message, ′signature) adversaryn

′⇒ nat⇒ bool
where ibounded-byn

′A q = (interaction-any-bounded-by A q)

abbreviation ibounded-byn :: ( ′i, ′vkey, ′message, ′signature) adversaryn ⇒ (security⇒
nat)⇒ bool
where ibounded-byn ≡ rel-envir ibounded-byn

′

definition losslessn
′ :: ( ′i, ′vkey, ′message, ′signature) adversaryn

′⇒ bool
where losslessn

′A = (lossless-gpv I -full A )

abbreviation losslessn :: ( ′i, ′vkey, ′message, ′signature) adversaryn ⇒ bool
where losslessn ≡ pred-envir losslessn

′

end

end

theory Pseudo-Random-Function imports
CryptHOL.Computational-Model

begin

1.9 Pseudo-random function
locale random-function =
fixes p :: ′a spmf

begin

type-synonym ( ′b, ′a ′) dict = ′b ⇀ ′a ′

definition random-oracle :: ( ′b, ′a) dict⇒ ′b⇒ ( ′a × ( ′b, ′a) dict) spmf
where
random-oracle σ x =
(case σ x of Some y⇒ return-spmf (y, σ)
| None⇒ p >>= (λy. return-spmf (y, σ(x 7→ y))))

definition forgetful-random-oracle :: unit⇒ ′b⇒ ( ′a × unit) spmf
where
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forgetful-random-oracle σ x = p >>= (λy. return-spmf (y, ()))

lemma weight-random-oracle [simp]:
weight-spmf p = 1 =⇒ weight-spmf (random-oracle σ x) = 1
〈proof 〉

lemma lossless-random-oracle [simp]:
lossless-spmf p =⇒ lossless-spmf (random-oracle σ x)
〈proof 〉

sublocale finite: callee-invariant-on random-oracle λσ . finite (dom σ) I -full
〈proof 〉

lemma card-dom-random-oracle:
assumes interaction-any-bounded-by A q
and (y, σ ′) ∈ set-spmf (exec-gpv random-oracle A σ)
and fin: finite (dom σ)
shows card (dom σ ′) ≤ q + card (dom σ)
〈proof 〉

end

1.10 Pseudo-random function
locale prf =
fixes key-gen :: ′key spmf
and prf :: ′key⇒ ′domain⇒ ′range
and rand :: ′range spmf

begin

sublocale random-function rand 〈proof 〉

definition prf-oracle :: ′key⇒ unit⇒ ′domain⇒ ( ′range × unit) spmf
where prf-oracle key σ x = return-spmf (prf key x, ())

type-synonym ( ′domain ′, ′range ′) adversary = (bool, ′domain ′, ′range ′) gpv

definition game-0 :: ( ′domain, ′range) adversary⇒ bool spmf
where
game-0 A = do {

key← key-gen;
(b, -)← exec-gpv (prf-oracle key) A ();
return-spmf b
}

definition game-1 :: ( ′domain, ′range) adversary⇒ bool spmf
where
game-1 A = do {
(b, -)← exec-gpv random-oracle A Map.empty;
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return-spmf b
}

definition advantage :: ( ′domain, ′range) adversary⇒ real
where advantage A = |spmf (game-0 A ) True − spmf (game-1 A ) True|

lemma advantage-nonneg: advantage A ≥ 0
〈proof 〉

abbreviation lossless :: ( ′domain, ′range) adversary⇒ bool
where lossless ≡ lossless-gpv I -full

abbreviation (input) ibounded-by :: ( ′domain, ′range) adversary⇒ enat⇒ bool
where ibounded-by ≡ interaction-any-bounded-by

end

end

1.11 Random permutation
theory Pseudo-Random-Permutation imports
CryptHOL.Computational-Model

begin

locale random-permutation =
fixes A :: ′b set

begin

definition random-permutation :: ( ′a ⇀ ′b)⇒ ′a⇒ ( ′b × ( ′a ⇀ ′b)) spmf
where
random-permutation σ x =
(case σ x of Some y⇒ return-spmf (y, σ)
| None⇒ spmf-of-set (A − ran σ) >>= (λy. return-spmf (y, σ(x 7→ y))))

lemma weight-random-oracle [simp]:
[[ finite A; A − ran σ 6= {} ]] =⇒ weight-spmf (random-permutation σ x) = 1
〈proof 〉

lemma lossless-random-oracle [simp]:
[[ finite A; A − ran σ 6= {} ]] =⇒ lossless-spmf (random-permutation σ x)
〈proof 〉

sublocale finite: callee-invariant-on random-permutation λσ . finite (dom σ) I -full
〈proof 〉

lemma card-dom-random-oracle:
assumes interaction-any-bounded-by A q
and (y, σ ′) ∈ set-spmf (exec-gpv random-permutation A σ)
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and fin: finite (dom σ)
shows card (dom σ ′) ≤ q + card (dom σ)
〈proof 〉

end

end

1.12 Reducing games with many adversary guesses to games with sin-
gle guesses

theory Guessing-Many-One imports
CryptHOL.Computational-Model
CryptHOL.GPV-Bisim

begin

locale guessing-many-one =
fixes init :: ( ′c-o × ′c-a × ′s) spmf
and oracle :: ′c-o⇒ ′s⇒ ′call⇒ ( ′ret × ′s) spmf
and eval :: ′c-o⇒ ′c-a⇒ ′s⇒ ′guess⇒ bool spmf

begin

type-synonym ( ′c-a ′, ′guess ′, ′call ′, ′ret ′) adversary-single = ′c-a ′⇒ ( ′guess ′, ′call ′, ′ret ′)
gpv

definition game-single :: ( ′c-a, ′guess, ′call, ′ret) adversary-single⇒ bool spmf
where
game-single A = do {
(c-o, c-a, s)← init;
(guess, s ′)← exec-gpv (oracle c-o) (A c-a) s;
eval c-o c-a s ′ guess
}

definition advantage-single :: ( ′c-a, ′guess, ′call, ′ret) adversary-single⇒ real
where advantage-single A = spmf (game-single A ) True

type-synonym ( ′c-a ′, ′guess ′, ′call ′, ′ret ′) adversary-many = ′c-a ′⇒ (unit, ′call ′+ ′guess ′,
′ret ′+ unit) gpv

definition eval-oracle :: ′c-o⇒ ′c-a⇒ bool × ′s⇒ ′guess⇒ (unit × (bool × ′s)) spmf
where

eval-oracle c-o c-a = (λ (b, s ′) guess. map-spmf (λb ′. ((), (b ∨ b ′, s ′))) (eval c-o c-a s ′

guess))

definition game-multi :: ( ′c-a, ′guess, ′call, ′ret) adversary-many⇒ bool spmf
where
game-multi A = do {
(c-o, c-a, s)← init;
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(-, (b, -))← exec-gpv
(†(oracle c-o) ⊕O eval-oracle c-o c-a)
(A c-a)
(False, s);

return-spmf b
}

definition advantage-multi :: ( ′c-a, ′guess, ′call, ′ret) adversary-many⇒ real
where advantage-multi A = spmf (game-multi A ) True

type-synonym ′guess ′ reduction-state = ′guess ′+ nat

primrec process-call :: ′guess reduction-state ⇒ ′call ⇒ ( ′ret option × ′guess reduc-
tion-state, ′call, ′ret) gpv
where
process-call (Inr j) x = do {

ret← Pause x Done;
Done (Some ret, Inr j)
}
| process-call (Inl guess) x = Done (None, Inl guess)

primrec process-guess :: ′guess reduction-state⇒ ′guess⇒ (unit option × ′guess reduc-
tion-state, ′call, ′ret) gpv
where

process-guess (Inr j) guess = Done (if j > 0 then (Some (), Inr (j − 1)) else (None, Inl
guess))
| process-guess (Inl guess) - = Done (None, Inl guess)

abbreviation reduction-oracle :: ′guess + nat⇒ ′call + ′guess⇒ (( ′ret + unit) option ×
( ′guess + nat), ′call, ′ret) gpv
where reduction-oracle ≡ plus-intercept-stop process-call process-guess

definition reduction :: nat ⇒ ( ′c-a, ′guess, ′call, ′ret) adversary-many ⇒ ( ′c-a, ′guess,
′call, ′ret) adversary-single
where
reduction q A c-a = do {

j-star← lift-spmf (spmf-of-set {..<q});
(-, s)← inline-stop reduction-oracle (A c-a) (Inr j-star);
Done (projl s)
}

lemma many-single-reduction:
assumes bound:

∧
c-a c-o s. (c-o, c-a, s) ∈ set-spmf init =⇒ interaction-bounded-by (Not

◦ isl) (A c-a) q
and lossless-oracle:

∧
c-a c-o s s ′ x. (c-o, c-a, s) ∈ set-spmf init =⇒ lossless-spmf (oracle

c-o s ′ x)
and lossless-eval:

∧
c-a c-o s s ′guess. (c-o, c-a, s) ∈ set-spmf init =⇒ lossless-spmf (eval

c-o c-a s ′ guess)
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shows advantage-multi A ≤ advantage-single (reduction q A ) ∗ q
including lifting-syntax
〈proof 〉

end

end

1.13 Unpredictable function
theory Unpredictable-Function imports
Guessing-Many-One

begin

locale upf =
fixes key-gen :: ′key spmf
and hash :: ′key⇒ ′x⇒ ′hash

begin

type-synonym ( ′x ′, ′hash ′) adversary = (unit, ′x ′+ ( ′x ′× ′hash ′), ′hash ′+ unit) gpv

definition oracle-hash :: ′key⇒ ( ′x, ′hash, ′x set) callee
where
oracle-hash k = (λL y. do {

let t = hash k y;
let L = insert y L;
return-spmf (t, L)
})

definition oracle-flag :: ′key⇒ ( ′x × ′hash, unit, bool × ′x set) callee
where
oracle-flag = (λkey (flg, L) (y, t).

return-spmf ((), (flg ∨ (t = (hash key y) ∧ y /∈ L), L)))

abbreviation oracle :: ′key⇒ ( ′x + ′x × ′hash, ′hash + unit, bool × ′x set) callee
where oracle key ≡ †(oracle-hash key) ⊕O oracle-flag key

definition game :: ( ′x, ′hash) adversary⇒ bool spmf
where
game A = do {

key← key-gen;
(-, (flag ′, L ′))← exec-gpv (oracle key) A (False, {});
return-spmf flag ′

}

definition advantage :: ( ′x, ′hash) adversary⇒ real
where advantage A = spmf (game A ) True

type-synonym ( ′x ′, ′hash ′) adversary1 = ( ′x ′× ′hash ′, ′x ′, ′hash ′) gpv
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definition game1 :: ( ′x, ′hash) adversary1⇒ bool spmf
where
game1 A = do {

key← key-gen;
((m, h), L)← exec-gpv (oracle-hash key) A {};
return-spmf (h = hash key m ∧ m /∈ L)
}

definition advantage1 :: ( ′x, ′hash) adversary1⇒ real
where advantage1 A = spmf (game1 A ) True

lemma advantage-advantage1:
assumes bound: interaction-bounded-by (Not ◦ isl) A q
shows advantage A ≤ advantage1 (guessing-many-one.reduction q (λ - :: unit. A ) ())
∗ q
〈proof 〉

end

end

theory Security-Spec imports
Diffie-Hellman
IND-CCA2
IND-CCA2-sym
IND-CPA
IND-CPA-PK
IND-CPA-PK-Single
SUF-CMA
Pseudo-Random-Function
Pseudo-Random-Permutation
Unpredictable-Function

begin

end

2 Cryptographic constructions and their security
theory Elgamal imports
CryptHOL.Cyclic-Group-SPMF
CryptHOL.Computational-Model
Diffie-Hellman
IND-CPA-PK-Single
CryptHOL.Negligible

begin
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2.1 Elgamal encryption scheme
locale elgamal-base =
fixes G :: ′grp cyclic-group (structure)

begin

type-synonym ′grp ′ pub-key = ′grp ′

type-synonym ′grp ′ priv-key = nat
type-synonym ′grp ′ plain = ′grp ′

type-synonym ′grp ′ cipher = ′grp ′× ′grp ′

definition key-gen :: ( ′grp pub-key × ′grp priv-key) spmf
where
key-gen = do {

x← sample-uniform (order G );
return-spmf (g [^] x, x)
}

lemma key-gen-alt:
key-gen = map-spmf (λx. (g [^] x, x)) (sample-uniform (order G ))
〈proof 〉

definition aencrypt :: ′grp pub-key⇒ ′grp⇒ ′grp cipher spmf
where
aencrypt α msg = do {

y← sample-uniform (order G );
return-spmf (g [^] y, (α [^] y) ⊗ msg)
}

lemma aencrypt-alt:
aencrypt α msg = map-spmf (λy. (g [^] y, (α [^] y)⊗ msg)) (sample-uniform (order G ))
〈proof 〉

definition adecrypt :: ′grp priv-key⇒ ′grp cipher⇒ ′grp option
where
adecrypt x = (λ (β , ζ ). Some (ζ ⊗ (inv (β [^] x))))

abbreviation valid-plains :: ′grp⇒ ′grp⇒ bool
where valid-plains msg1 msg2 ≡ msg1 ∈ carrier G ∧ msg2 ∈ carrier G

sublocale ind-cpa: ind-cpa key-gen aencrypt adecrypt valid-plains 〈proof 〉
sublocale ddh: ddh G 〈proof 〉

fun elgamal-adversary :: ( ′grp pub-key, ′grp plain, ′grp cipher, ′state) ind-cpa.adversary
⇒ ′grp ddh.adversary
where
elgamal-adversary (A 1, A 2) α β γ = TRY do {

b← coin-spmf ;
((msg1, msg2), σ)← A 1 α;
— have to check that the attacker actually sends two elements from the group; otherwise
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flip a coin
- :: unit← assert-spmf (valid-plains msg1 msg2);
guess← A 2 (β , γ ⊗ (if b then msg1 else msg2)) σ ;
return-spmf (guess = b)
} ELSE coin-spmf

end

locale elgamal = elgamal-base + cyclic-group G
begin

theorem advantage-elgamal: ind-cpa.advantage A = ddh.advantage (elgamal-adversary
A )
including monad-normalisation
〈proof 〉

end

locale elgamal-asymp =
fixes G :: security⇒ ′grp cyclic-group
assumes elgamal:

∧
η . elgamal (G η)

begin

sublocale elgamal G η for η 〈proof 〉

theorem elgamal-secure:
negligible (λη . ind-cpa.advantage η (A η)) if negligible (λη . ddh.advantage η (elgamal-adversary

η (A η)))
〈proof 〉

end

context elgamal-base begin

lemma lossless-key-gen [simp]: lossless-spmf (key-gen)←→ 0 < order G
〈proof 〉

lemma lossless-aencrypt [simp]:
lossless-spmf (aencrypt key plain)←→ 0 < order G
〈proof 〉

lemma lossless-elgamal-adversary:
[[ ind-cpa.lossless A ; 0 < order G ]]
=⇒ ddh.lossless (elgamal-adversary A )
〈proof 〉

end

end
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2.2 Hashed Elgamal in the Random Oracle Model
theory Hashed-Elgamal imports
CryptHOL.GPV-Bisim
CryptHOL.Cyclic-Group-SPMF
CryptHOL.List-Bits
IND-CPA-PK
Diffie-Hellman

begin

type-synonym bitstring = bool list

locale hash-oracle = fixes len :: nat begin

type-synonym ′a state = ′a ⇀ bitstring

definition oracle :: ′a state⇒ ′a⇒ (bitstring × ′a state) spmf
where
oracle σ x =
(case σ x of None⇒ do {

bs← spmf-of-set (nlists UNIV len);
return-spmf (bs, σ(x 7→ bs))
} | Some bs⇒ return-spmf (bs, σ))

abbreviation (input) initial :: ′a state where initial ≡Map.empty

inductive invariant :: ′a state⇒ bool
where
invariant: [[ finite (dom σ); length ‘ ran σ ⊆ {len} ]] =⇒ invariant σ

lemma invariant-initial [simp]: invariant initial
〈proof 〉

lemma invariant-update [simp]: [[ invariant σ ; length bs = len ]] =⇒ invariant (σ(x 7→
bs))
〈proof 〉

lemma invariant [intro!, simp]: callee-invariant oracle invariant
〈proof 〉

lemma invariant-in-dom [simp]: callee-invariant oracle (λσ . x ∈ dom σ)
〈proof 〉

lemma lossless-oracle [simp]: lossless-spmf (oracle σ x)
〈proof 〉

lemma card-dom-state:
assumes σ ′: (x, σ ′) ∈ set-spmf (exec-gpv oracle gpv σ)
and ibound: interaction-any-bounded-by gpv n
shows card (dom σ ′) ≤ n + card (dom σ)
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〈proof 〉

end

locale elgamal-base =
fixes G :: ′grp cyclic-group (structure)
and len-plain :: nat

begin

sublocale hash: hash-oracle len-plain 〈proof 〉
abbreviation hash :: ′grp⇒ (bitstring, ′grp, bitstring) gpv
where hash x ≡ Pause x Done

type-synonym ′grp ′ pub-key = ′grp ′

type-synonym ′grp ′ priv-key = nat
type-synonym plain = bitstring
type-synonym ′grp ′ cipher = ′grp ′× bitstring

definition key-gen :: ( ′grp pub-key × ′grp priv-key) spmf
where
key-gen = do {

x← sample-uniform (order G );
return-spmf (g [^] x, x)
}

definition aencrypt :: ′grp pub-key⇒ plain⇒ ( ′grp cipher, ′grp, bitstring) gpv
where
aencrypt α msg = do {

y← lift-spmf (sample-uniform (order G ));
h← hash (α [^] y);
Done (g [^] y, h [⊕] msg)
}

definition adecrypt :: ′grp priv-key⇒ ′grp cipher⇒ (plain, ′grp, bitstring) gpv
where
adecrypt x = (λ (β , ζ ). do {

h← hash (β [^] x);
Done (ζ [⊕] h)
})

definition valid-plains :: plain⇒ plain⇒ bool
where valid-plains msg1 msg2←→ length msg1 = len-plain ∧ length msg2 = len-plain

lemma lossless-aencrypt [simp]: lossless-gpv I (aencrypt α msg)←→ 0 < order G
〈proof 〉

lemma interaction-bounded-by-aencrypt [interaction-bound, simp]:
interaction-bounded-by (λ -. True) (aencrypt α msg) 1
〈proof 〉
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sublocale ind-cpa: ind-cpa-pk lift-spmf key-gen aencrypt adecrypt valid-plains 〈proof 〉
sublocale lcdh: lcdh G 〈proof 〉

fun elgamal-adversary
:: ( ′grp pub-key, plain, ′grp cipher, ′grp, bitstring, ′state) ind-cpa.adversary
⇒ ′grp lcdh.adversary

where
elgamal-adversary (A 1, A 2) α β = do {
(((msg1, msg2), σ), s)← exec-gpv hash.oracle (A 1 α) hash.initial;
— have to check that the attacker actually sends an element from the group; otherwise

stop early
TRY do {

- :: unit← assert-spmf (valid-plains msg1 msg2);
h ′← spmf-of-set (nlists UNIV len-plain);
(guess, s ′)← exec-gpv hash.oracle (A 2 (β , h ′) σ) s;
return-spmf (dom s ′)
} ELSE return-spmf (dom s)
}

end

locale elgamal = elgamal-base +
assumes cyclic-group: cyclic-group G

begin

interpretation cyclic-group G 〈proof 〉

lemma advantage-elgamal:
includes lifting-syntax
assumes lossless: ind-cpa.lossless A
shows ind-cpa.advantage hash.oracle hash.initial A ≤ lcdh.advantage (elgamal-adversary

A )
〈proof 〉

including monad-normalisation 〈proof 〉
including monad-normalisation
〈proof 〉

end

context elgamal-base begin

lemma lossless-key-gen [simp]: lossless-spmf key-gen←→ 0 < order G
〈proof 〉

lemma lossless-elgamal-adversary:
[[ ind-cpa.lossless A ;

∧
η . 0 < order G ]]

=⇒ lcdh.lossless (elgamal-adversary A )
〈proof 〉
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end

end

2.3 The random-permutation random-function switching lemma
theory RP-RF imports
Pseudo-Random-Function
Pseudo-Random-Permutation
CryptHOL.GPV-Bisim

begin

lemma rp-resample:
assumes B ⊆ A ∪ C A ∩ C = {} C ⊆ B and finB: finite B
shows bind-spmf (spmf-of-set B) (λx. if x ∈ A then spmf-of-set C else return-spmf x) =

spmf-of-set C
〈proof 〉

locale rp-rf =
rp: random-permutation A +
rf : random-function spmf-of-set A
for A :: ′a set
+
assumes finite-A: finite A
and nonempty-A: A 6= {}

begin

type-synonym ′a ′ adversary = (bool, ′a ′, ′a ′) gpv

definition game :: bool⇒ ′a adversary⇒ bool spmf where
game b A = run-gpv (if b then rp.random-permutation else rf .random-oracle) A

Map.empty

abbreviation prp-game :: ′a adversary⇒ bool spmf where prp-game ≡ game True
abbreviation prf-game :: ′a adversary⇒ bool spmf where prf-game ≡ game False

definition advantage :: ′a adversary⇒ real where
advantage A = |spmf (prp-game A ) True − spmf (prf-game A ) True|

lemma advantage-nonneg: 0 ≤ advantage A 〈proof 〉

lemma advantage-le-1: advantage A ≤ 1
〈proof 〉

context includes I .lifting begin
lift-definition I :: ( ′a, ′a) I is (λx. if x ∈ A then A else {}) 〈proof 〉
lemma outs-I -I [simp]: outs-I I = A 〈proof 〉
lemma responses-I -I [simp]: responses-I I x = (if x ∈ A then A else {}) 〈proof 〉
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lifting-update I .lifting
lifting-forget I .lifting
end

lemma rp-rf :
assumes bound: interaction-any-bounded-by A q

and lossless: lossless-gpv I A
and WT: I `g A

√

shows advantage A ≤ q ∗ q / card A
including lifting-syntax
〈proof 〉

end

end

2.4 Extending the input length of a PRF using a universal hash func-
tion

This example is taken from [19, §4.2].
theory PRF-UHF imports
CryptHOL.GPV-Bisim
Pseudo-Random-Function

begin

locale hash =
fixes seed-gen :: ′seed spmf
and hash :: ′seed⇒ ′domain⇒ ′range

begin

definition game-hash :: ′domain⇒ ′domain⇒ bool spmf
where
game-hash w w ′= do {

seed← seed-gen;
return-spmf (hash seed w = hash seed w ′∧ w 6= w ′)
}

definition game-hash-set :: ′domain set⇒ bool spmf
where
game-hash-set W = do {

seed ← seed-gen;
return-spmf (¬ inj-on (hash seed) W)
}

definition ε-uh :: real
where ε-uh = (SUP w w ′. spmf (game-hash w w ′) True)

lemma ε-uh-nonneg : ε-uh ≥ 0
〈proof 〉
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lemma hash-ineq-card:
assumes finite W
shows spmf (game-hash-set W) True ≤ ε-uh ∗ card W ∗ card W
〈proof 〉

end

locale prf-hash =
fixes f :: ′key⇒ ′α ⇒ ′γ
and h :: ′seed⇒ ′β ⇒ ′α
and key-gen :: ′key spmf
and seed-gen :: ′seed spmf
and range-f :: ′γ set
assumes lossless-seed-gen: lossless-spmf seed-gen
and range-f-finite: finite range-f
and range-f-nonempty: range-f 6= {}

begin

definition rand :: ′γ spmf
where rand = spmf-of-set range-f

lemma lossless-rand [simp]: lossless-spmf rand
〈proof 〉

definition key-seed-gen :: ( ′key ∗ ′seed) spmf
where
key-seed-gen = do {

k← key-gen;
s :: ′seed← seed-gen;
return-spmf (k, s)
}

interpretation prf : prf key-gen f rand 〈proof 〉
interpretation hash: hash seed-gen h〈proof 〉

fun f ′ :: ′key × ′seed⇒ ′β ⇒ ′γ
where f ′ (key, seed) x = f key (h seed x)

interpretation prf ′: prf key-seed-gen f ′ rand 〈proof 〉

definition reduction-oracle :: ′seed⇒ unit⇒ ′β ⇒ ( ′γ × unit, ′α, ′γ) gpv
where reduction-oracle seed x b = Pause (h seed b) (λx. Done (x, ()))

definition prf ′-reduction :: ( ′β , ′γ) prf ′.adversary⇒ ( ′α, ′γ) prf .adversary
where
prf ′-reduction A = do {

seed ← lift-spmf seed-gen;
(b, σ)← inline (reduction-oracle seed) A ();
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Done b
}

theorem prf-prf ′-advantage:
assumes prf ′.lossless A
and bounded: prf ′.ibounded-by A q
shows prf ′.advantage A ≤ prf .advantage (prf ′-reduction A ) + hash.ε-uh ∗ q ∗ q
including lifting-syntax
〈proof 〉 including monad-normalisation
〈proof 〉

end

end

2.5 IND-CPA from PRF
theory PRF-IND-CPA imports
CryptHOL.GPV-Bisim
CryptHOL.List-Bits
Pseudo-Random-Function
IND-CPA

begin

Formalises the construction from [16].

declare [[simproc del: let-simp]]

type-synonym key = bool list
type-synonym plain = bool list
type-synonym cipher = bool list ∗ bool list

locale otp =
fixes f :: key⇒ bool list⇒ bool list
and len :: nat
assumes length-f :

∧
xs ys. [[ length xs = len; length ys = len ]] =⇒ length (f xs ys) = len

begin

definition key-gen :: bool list spmf
where key-gen = spmf-of-set (nlists UNIV len)

definition valid-plain :: plain⇒ bool
where valid-plain plain←→ length plain = len

definition encrypt :: key⇒ plain⇒ cipher spmf
where
encrypt key plain = do {

r← spmf-of-set (nlists UNIV len);
return-spmf (r, xor-list plain (f key r))
}
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fun decrypt :: key⇒ cipher⇒ plain option
where decrypt key (r, c) = Some (xor-list (f key r) c)

lemma encrypt-decrypt-correct:
[[ length key = len; length plain = len ]]
=⇒ encrypt key plain >>= (λcipher. return-spmf (decrypt key cipher)) = return-spmf

(Some plain)
〈proof 〉

interpretation ind-cpa: ind-cpa key-gen encrypt decrypt valid-plain 〈proof 〉
interpretation prf : prf key-gen f spmf-of-set (nlists UNIV len) 〈proof 〉

definition prf-encrypt-oracle :: unit⇒ plain⇒ (cipher × unit, plain, plain) gpv
where
prf-encrypt-oracle x plain = do {

r← lift-spmf (spmf-of-set (nlists UNIV len));
Pause r (λpad. Done ((r, xor-list plain pad), ()))
}

lemma interaction-bounded-by-prf-encrypt-oracle [interaction-bound]:
interaction-any-bounded-by (prf-encrypt-oracle σ plain) 1
〈proof 〉

lemma lossless-prf-encyrpt-oracle [simp]: lossless-gpv I -top (prf-encrypt-oracle s x)
〈proof 〉

definition prf-adversary :: (plain, cipher, ′state) ind-cpa.adversary⇒ (plain, plain) prf .adversary
where
prf-adversary A = do {

let (A 1, A 2) = A ;
(((p1, p2), σ), n)← inline prf-encrypt-oracle A 1 ();
if valid-plain p1 ∧ valid-plain p2 then do {

b← lift-spmf coin-spmf ;
let pb = (if b then p1 else p2);
r← lift-spmf (spmf-of-set (nlists UNIV len));
pad← Pause r Done;
let c = (r, xor-list pb pad);
(b ′, -)← inline prf-encrypt-oracle (A 2 c σ) n;
Done (b ′= b)
} else lift-spmf coin-spmf
}

theorem prf-encrypt-advantage:
assumes ind-cpa.ibounded-by A q
and lossless-gpv I -full (fst A )
and

∧
cipher σ . lossless-gpv I -full (snd A cipher σ)

shows ind-cpa.advantage A ≤ prf .advantage (prf-adversary A ) + q / 2 ^ len
〈proof 〉
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including monad-normalisation 〈proof 〉 including monad-normalisation
〈proof 〉
including monad-normalisation 〈proof 〉

lemma interaction-bounded-prf-adversary:
fixes q :: nat
assumes ind-cpa.ibounded-by A q
shows prf .ibounded-by (prf-adversary A ) (1 + q)
〈proof 〉

lemma lossless-prf-adversary: ind-cpa.lossless A =⇒ prf .lossless (prf-adversary A )
〈proof 〉

end

locale otp-η =
fixes f :: security⇒ key⇒ bool list⇒ bool list
and len :: security⇒ nat
assumes length-f :

∧
η xs ys. [[ length xs = len η ; length ys = len η ]] =⇒ length (f η xs

ys) = len η

and negligible-len [negligible-intros]: negligible (λη . 1 / 2 ^ (len η))
begin

interpretation otp f η len η for η 〈proof 〉
interpretation ind-cpa: ind-cpa key-gen η encrypt η decrypt η valid-plain η for η 〈proof 〉
interpretation prf : prf key-gen η f η spmf-of-set (nlists UNIV (len η)) for η 〈proof 〉

lemma prf-encrypt-secure-for:
assumes [negligible-intros]: negligible (λη . prf .advantage η (prf-adversary η (A η)))
and q:

∧
η . ind-cpa.ibounded-by (A η) (q η) and [negligible-intros]: polynomial q

and lossless:
∧

η . ind-cpa.lossless (A η)
shows negligible (λη . ind-cpa.advantage η (A η))
〈proof 〉

end

end

2.6 IND-CCA from a PRF and an unpredictable function
theory PRF-UPF-IND-CCA
imports
Pseudo-Random-Function
CryptHOL.List-Bits
Unpredictable-Function
IND-CCA2-sym
CryptHOL.Negligible

begin

Formalisation of Shoup’s construction of an IND-CCA secure cipher from a PRF
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and an unpredictable function [19, §7].

type-synonym bitstring = bool list

locale simple-cipher =
PRF: prf prf-key-gen prf-fun spmf-of-set (nlists UNIV prf-clen) +
UPF: upf upf-key-gen upf-fun
for prf-key-gen :: ′prf-key spmf
and prf-fun :: ′prf-key⇒ bitstring⇒ bitstring
and prf-domain :: bitstring set
and prf-range :: bitstring set
and prf-dlen :: nat
and prf-clen :: nat
and upf-key-gen :: ′upf-key spmf
and upf-fun :: ′upf-key⇒ bitstring⇒ ′hash
+
assumes prf-domain-finite: finite prf-domain
assumes prf-domain-nonempty: prf-domain 6= {}
assumes prf-domain-length: x ∈ prf-domain =⇒ length x = prf-dlen
assumes prf-codomain-length:
[[ key-prf ∈ set-spmf prf-key-gen; m ∈ prf-domain ]] =⇒ length (prf-fun key-prf m) =

prf-clen
assumes prf-key-gen-lossless: lossless-spmf prf-key-gen
assumes upf-key-gen-lossless: lossless-spmf upf-key-gen

begin

type-synonym ′hash ′ cipher-text = bitstring × bitstring × ′hash ′

definition key-gen :: ( ′prf-key × ′upf-key) spmf where
key-gen = do {

k-prf ← prf-key-gen;
k-upf :: ′upf-key← upf-key-gen;
return-spmf (k-prf , k-upf )
}

lemma lossless-key-gen [simp]: lossless-spmf key-gen
〈proof 〉

fun encrypt :: ( ′prf-key × ′upf-key)⇒ bitstring⇒ ′hash cipher-text spmf
where
encrypt (k-prf , k-upf ) m = do {

x← spmf-of-set prf-domain;
let c = prf-fun k-prf x [⊕] m;
let t = upf-fun k-upf (x @ c);
return-spmf ((x, c, t))
}

lemma lossless-encrypt [simp]: lossless-spmf (encrypt k m)
〈proof 〉
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fun decrypt :: ( ′prf-key × ′upf-key)⇒ ′hash cipher-text⇒ bitstring option
where
decrypt (k-prf , k-upf ) (x, c, t) = (

if upf-fun k-upf (x @ c) = t ∧ length x = prf-dlen then
Some (prf-fun k-prf x [⊕] c)

else
None

)

lemma cipher-correct:
[[ k ∈ set-spmf key-gen; length m = prf-clen ]]
=⇒ encrypt k m >>= (λc. return-spmf (decrypt k c)) = return-spmf (Some m)
〈proof 〉

declare encrypt.simps[simp del]

sublocale ind-cca: ind-cca key-gen encrypt decrypt λm. length m = prf-clen 〈proof 〉
interpretation ind-cca ′: ind-cca key-gen encrypt λ - -. None λm. length m = prf-clen
〈proof 〉

definition intercept-upf-enc
:: ′prf-key⇒ bool⇒ ′hash cipher-text set × ′hash cipher-text set⇒ bitstring × bitstring
⇒ ( ′hash cipher-text option × ( ′hash cipher-text set × ′hash cipher-text set),

bitstring + (bitstring × ′hash), ′hash + unit) gpv
where
intercept-upf-enc k b = (λ (L, D) (m1, m0).
(case (length m1 = prf-clen ∧ length m0 = prf-clen) of

False⇒ Done (None, L, D)
| True⇒ do {

x← lift-spmf (spmf-of-set prf-domain);
let c = prf-fun k x [⊕] (if b then m1 else m0);
t← Pause (Inl (x @ c)) Done;
Done ((Some (x, c, projl t)), (insert (x, c, projl t) L, D))
}))

definition intercept-upf-dec
:: ′hash cipher-text set × ′hash cipher-text set⇒ ′hash cipher-text
⇒ (bitstring option × ( ′hash cipher-text set × ′hash cipher-text set),

bitstring + (bitstring × ′hash), ′hash + unit) gpv
where
intercept-upf-dec = (λ (L, D) (x, c, t).

if (x, c, t) ∈ L ∨ length x 6= prf-dlen then Done (None, (L, D)) else do {
Pause (Inr (x @ c, t)) Done;
Done (None, (L, insert (x, c, t) D))
})

definition intercept-upf ::
′prf-key⇒ bool⇒ ′hash cipher-text set × ′hash cipher-text set ⇒ bitstring × bitstring

+ ′hash cipher-text
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⇒ (( ′hash cipher-text option + bitstring option) × ( ′hash cipher-text set × ′hash ci-
pher-text set),

bitstring + (bitstring × ′hash), ′hash + unit) gpv
where
intercept-upf k b = plus-intercept (intercept-upf-enc k b) intercept-upf-dec

lemma intercept-upf-simps [simp]:
intercept-upf k b (L, D) (Inr (x, c, t)) =
(if (x, c, t) ∈ L ∨ length x 6= prf-dlen then Done (Inr None, (L, D)) else do {

Pause (Inr (x @ c, t)) Done;
Done (Inr None, (L, insert (x, c, t) D))
})

intercept-upf k b (L, D) (Inl (m1, m0)) =
(case (length m1 = prf-clen ∧ length m0 = prf-clen) of

False⇒ Done (Inl None, L, D)
| True⇒ do {

x← lift-spmf (spmf-of-set prf-domain);
let c = prf-fun k x [⊕] (if b then m1 else m0);
t← Pause (Inl (x @ c)) Done;
Done (Inl (Some (x, c, projl t)), (insert (x, c, projl t) L, D))
})
〈proof 〉

lemma interaction-bounded-by-upf-enc-Inr [interaction-bound]:
interaction-bounded-by (Not ◦ isl) (intercept-upf-enc k b LD mm) 0
〈proof 〉

lemma interaction-bounded-by-upf-dec-Inr [interaction-bound]:
interaction-bounded-by (Not ◦ isl) (intercept-upf-dec LD c) 1
〈proof 〉

lemma interaction-bounded-by-intercept-upf-Inr [interaction-bound]:
interaction-bounded-by (Not ◦ isl) (intercept-upf k b LD x) 1
〈proof 〉

lemma interaction-bounded-by-intercept-upf-Inl [interaction-bound]:
isl x =⇒ interaction-bounded-by (Not ◦ isl) (intercept-upf k b LD x) 0
〈proof 〉

lemma lossless-intercept-upf-enc [simp]: lossless-gpv (I -full⊕I I -full) (intercept-upf-enc
k b LD mm)
〈proof 〉

lemma lossless-intercept-upf-dec [simp]: lossless-gpv (I -full⊕I I -full) (intercept-upf-dec
LD mm)
〈proof 〉

lemma lossless-intercept-upf [simp]: lossless-gpv (I -full ⊕I I -full) (intercept-upf k b
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LD x)
〈proof 〉

lemma results-gpv-intercept-upf [simp]: results-gpv (I -full ⊕I I -full) (intercept-upf k
b LD x) ⊆ responses-I (I -full ⊕I I -full) x × UNIV
〈proof 〉

definition reduction-upf :: (bitstring, ′hash cipher-text) ind-cca.adversary
⇒ (bitstring, ′hash) UPF.adversary

where reduction-upf A = do {
k← lift-spmf prf-key-gen;
b← lift-spmf coin-spmf ;
(-, (L, D))← inline (intercept-upf k b) A ({}, {});
Done () }

lemma lossless-reduction-upf [simp]:
lossless-gpv (I -full⊕I I -full) A =⇒ lossless-gpv (I -full⊕I I -full) (reduction-upf

A )
〈proof 〉

context includes lifting-syntax begin

lemma round-1:
assumes lossless-gpv (I -full ⊕I I -full) A
shows |spmf (ind-cca.game A ) True− spmf (ind-cca ′.game A ) True| ≤UPF.advantage
(reduction-upf A )
〈proof 〉 including monad-normalisation
〈proof 〉

definition oracle-encrypt2 ::
( ′prf-key × ′upf-key)⇒ bool⇒ (bitstring, bitstring) PRF.dict⇒ bitstring × bitstring
⇒ ( ′hash cipher-text option × (bitstring, bitstring) PRF.dict) spmf

where
oracle-encrypt2 = (λ (k-prf , k-upf ) b D (msg1, msg0). (case (length msg1 = prf-clen ∧

length msg0 = prf-clen) of
False⇒ return-spmf (None, D)
| True⇒ do {

x← spmf-of-set prf-domain;
P← spmf-of-set (nlists UNIV prf-clen);
let p = (case D x of Some r⇒ r | None⇒ P);
let c = p [⊕] (if b then msg1 else msg0);
let t = upf-fun k-upf (x @ c);
return-spmf (Some (x, c, t), D(x 7→ p))
}))

definition oracle-decrypt2:: ( ′prf-key × ′upf-key) ⇒ ( ′hash cipher-text, bitstring option,
′state) callee
where oracle-decrypt2 = (λkey D cipher. return-spmf (None, D))
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lemma lossless-oracle-decrypt2 [simp]: lossless-spmf (oracle-decrypt2 k Dbad c)
〈proof 〉

lemma callee-invariant-oracle-decrypt2 [simp]: callee-invariant (oracle-decrypt2 key) fst
〈proof 〉

lemma oracle-decrypt2-parametric [transfer-rule]:
(rel-prod P U ===> S ===> rel-prod (=) (rel-prod (=) H) ===> rel-spmf (rel-prod
(=) S))

oracle-decrypt2 oracle-decrypt2
〈proof 〉

definition game2 :: (bitstring, ′hash cipher-text) ind-cca.adversary⇒ bool spmf
where
game2 A ≡ do {

key← key-gen;
b← coin-spmf ;
(b ′, D)← exec-gpv
(oracle-encrypt2 key b ⊕O oracle-decrypt2 key) A Map-empty;

return-spmf (b = b ′)
}

fun intercept-prf ::
′upf-key⇒ bool⇒ unit⇒ (bitstring × bitstring) + ′hash cipher-text
⇒ (( ′hash cipher-text option + bitstring option) × unit, bitstring, bitstring) gpv

where
intercept-prf - - - (Inr -) = Done (Inr None, ())
| intercept-prf k b - (Inl (m1, m0)) = (case (length m1) = prf-clen∧ (length m0) = prf-clen
of

False⇒ Done (Inl None, ())
| True⇒ do {

x← lift-spmf (spmf-of-set prf-domain);
p← Pause x Done;
let c = p [⊕] (if b then m1 else m0);
let t = upf-fun k (x @ c);
Done (Inl (Some (x, c, t)), ())
})

definition reduction-prf
:: (bitstring, ′hash cipher-text) ind-cca.adversary⇒ (bitstring, bitstring) PRF.adversary

where
reduction-prf A = do {

k← lift-spmf upf-key-gen;
b← lift-spmf coin-spmf ;
(b ′, -)← inline (intercept-prf k b) A ();
Done (b ′= b)
}
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lemma round-2: |spmf (ind-cca ′.game A ) True− spmf (game2 A ) True|= PRF.advantage
(reduction-prf A )
〈proof 〉

definition oracle-encrypt3 ::
( ′prf-key × ′upf-key)⇒ bool⇒ (bool × (bitstring, bitstring) PRF.dict)⇒

bitstring × bitstring ⇒ ( ′hash cipher-text option × (bool × (bitstring, bitstring)
PRF.dict)) spmf
where
oracle-encrypt3 = (λ (k-prf , k-upf ) b (bad, D) (msg1, msg0).
(case (length msg1 = prf-clen ∧ length msg0 = prf-clen) of

False⇒ return-spmf (None, (bad, D))
| True⇒ do {

x← spmf-of-set prf-domain;
P← spmf-of-set (nlists UNIV prf-clen);
let (p, F) = (case D x of Some r⇒ (P, True) | None⇒ (P, False));
let c = p [⊕] (if b then msg1 else msg0);
let t = upf-fun k-upf (x @ c);
return-spmf (Some (x, c, t), (bad ∨ F, D(x 7→ p)))
}))

lemma lossless-oracle-encrypt3 [simp]:
lossless-spmf (oracle-encrypt3 k b D m10)
〈proof 〉

lemma callee-invariant-oracle-encrypt3 [simp]: callee-invariant (oracle-encrypt3 key b)
fst
〈proof 〉

definition game3 :: (bitstring, ′hash cipher-text) ind-cca.adversary⇒ (bool× bool) spmf

where
game3 A ≡ do {

key← key-gen;
b← coin-spmf ;
(b ′, (bad, D))← exec-gpv (oracle-encrypt3 key b ⊕O oracle-decrypt2 key) A (False,

Map-empty);
return-spmf (b = b ′, bad)
}

lemma round-3:
assumes lossless-gpv (I -full ⊕I I -full) A
shows |measure (measure-spmf (game3 A )) {(b, bad). b} − spmf (game2 A ) True|

≤ measure (measure-spmf (game3 A )) {(b, bad). bad}
〈proof 〉

lemma round-4:
assumes lossless-gpv (I -full ⊕I I -full) A
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shows map-spmf fst (game3 A ) = coin-spmf
〈proof 〉 including monad-normalisation
〈proof 〉

lemma game3-bad:
assumes interaction-bounded-by isl A q
shows measure (measure-spmf (game3 A )) {(b, bad). bad} ≤ q / card prf-domain ∗ q
〈proof 〉

theorem security:
assumes lossless: lossless-gpv (I -full ⊕I I -full) A
and bound: interaction-bounded-by isl A q
shows ind-cca.advantage A ≤

PRF.advantage (reduction-prf A ) + UPF.advantage (reduction-upf A ) +
real q / real (card prf-domain) ∗ real q (is ?LHS ≤ -)

〈proof 〉

theorem security1:
assumes lossless: lossless-gpv (I -full ⊕I I -full) A
assumes q: interaction-bounded-by isl A q
and q ′: interaction-bounded-by (Not ◦ isl) A q ′

shows ind-cca.advantage A ≤
PRF.advantage (reduction-prf A ) +
UPF.advantage1 (guessing-many-one.reduction q ′ (λ -. reduction-upf A ) ()) ∗ q ′+
real q ∗ real q / real (card prf-domain)

〈proof 〉

end

end

locale simple-cipher ′=
fixes prf-key-gen :: security⇒ ′prf-key spmf
and prf-fun :: security⇒ ′prf-key⇒ bitstring⇒ bitstring
and prf-domain :: security⇒ bitstring set
and prf-range :: security⇒ bitstring set
and prf-dlen :: security⇒ nat
and prf-clen :: security⇒ nat
and upf-key-gen :: security⇒ ′upf-key spmf
and upf-fun :: security⇒ ′upf-key⇒ bitstring⇒ ′hash
assumes simple-cipher:

∧
η . simple-cipher (prf-key-gen η) (prf-fun η) (prf-domain η)

(prf-dlen η) (prf-clen η) (upf-key-gen η)
begin

sublocale simple-cipher
prf-key-gen η prf-fun η prf-domain η prf-range η prf-dlen η prf-clen η upf-key-gen η

upf-fun η

for η

41



〈proof 〉

theorem security-asymptotic:
fixes q q ′ :: security⇒ nat
assumes lossless:

∧
η . lossless-gpv (I -full ⊕I I -full) (A η)

and bound:
∧

η . interaction-bounded-by isl (A η) (q η)
and bound ′:

∧
η . interaction-bounded-by (Not ◦ isl) (A η) (q ′ η)

and [negligible-intros]:
polynomial q ′ polynomial q
negligible (λη . PRF.advantage η (reduction-prf η (A η)))
negligible (λη . UPF.advantage1 η (guessing-many-one.reduction (q ′ η) (λ -. reduc-

tion-upf η (A η)) ()))
negligible (λη . 1 / card (prf-domain η))

shows negligible (λη . ind-cca.advantage η (A η))
〈proof 〉

end

end

theory Cryptographic-Constructions imports
Elgamal
Hashed-Elgamal
RP-RF
PRF-UHF
PRF-IND-CPA
PRF-UPF-IND-CCA

begin

end

theory Game-Based-Crypto imports
Security-Spec
Cryptographic-Constructions

begin

end
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Abstract

This tutorial demonstrates how cryptographic security notions, construc-
tions, and game-based security proofs can be formalized using the CryptHOL
framework. As a running example, we formalize a variant of the hash-based
ElGamal encryption scheme and its IND-CPA security in the random ora-
cle model. This tutorial assumes basic familiarity with Isabelle/HOL and
standard cryptographic terminology.

3 Introduction

CryptHOL [2, 11] is a framework for constructing rigorous game-based proofs us-
ing the proof assistant Isabelle/HOL [15]. Games are expressed as probabilistic
functional programs that are shallowly embedded in higher-order logic (HOL) us-
ing CryptHOL’s combinators. The security statements, both concrete and asymp-
totic, are expressed as Isabelle/HOL theorem statements, and their proofs are writ-
ten declaratively in Isabelle’s proof language Isar [21]. This way, Isabelle mechan-
ically checks that all definitions and statements are type-correct and each proof
step is a valid logical inference in HOL. This ensures that the resulting theorems
are valid in higher-order logic.
This tutorial explains the CryptHOL essentials using a simple security proof. Our
running example is a variant of the hashed ElGamal encryption scheme [7]. We for-
malize the scheme, the indistinguishability under chosen plaintext (IND-CPA) se-
curity property, the computational Diffie-Hellman (CDH) hardness assumption [5],
and the security proof in the random oracle model. This illustrates how the follow-
ing aspects of a cryptographic security proof are formalized using CryptHOL:

• Game-based security definitions (CDH in §4.1 and IND-CPA in §4.4)

• Oracles (a random oracle in §4.2)

• Cryptographic schemes, both generic (the concept of an encryption scheme)
and a particular instance (the hashed Elgamal scheme in §4.5)

• Security statements (concrete and asymptotic, §5.2 and §6.2)

43



• Reductions (from IND-CPA to CDH for hashed Elgamal in §5.1)

• Different kinds of proof steps (§5.3–5.8):

– Using intermediate games

– Defining failure events and applying indistinguishability-up-to lemmas

– Equivalence transformations on games

This tutorial assumes that the reader knows the basics of Isabelle/HOL and game-
based cryptography and wants to get hands-on experience with CryptHOL. The se-
mantics behind CryptHOL’s embedding in higher-order logic and its soundness are
not discussed; we refer the reader to the scientific articles for that [2, 11]. Shoup’s
tutorial [19] provides a good introduction to game-based proofs. The following
Isabelle features are frequently used in CryptHOL formalizations; the tutorials are
available from the Documentation panel in Isabelle/jEdit.

• Function definitions (tutorials prog-prove and functions, [10]) for games
and reductions

• Locales (tutorial locales, [1]) to modularize the formalization

• The Transfer package [9] for automating parametricity and representation
independence proofs

This document is generated from a corresponding Isabelle theory file available on-
line [13].1 It contains this text and all examples, including the security definitions
and proofs. We encourage all readers to download the latest version of the tutorial
and follow the proofs and examples interactively in Isabelle/HOL. In particular, a
Ctrl-click on a formal entity (function, constant, theorem name, ...) jumps to the
definition of the entity.
We split the tutorial into a series of recipes for common formalization tasks. In
each section, we cover a familiar cryptography concept and show how it is formal-
ized in CryptHOL. Simultaneously, we explain the Isabelle/HOL and functional
programming topics that are essential for formalizing game-based proofs.

3.1 Getting started

CryptHOL is available as part of the Archive of Formal Proofs [12]. Cryptography
formalizations based on CryptHOL are arranged in Isabelle theory files that import
the relevant libraries.

1The tutorial has been added to the Archive of Formal Proofs after the release of Isabelle2018.
Until the subsequent Isabelle release, the tutorial is only available in the development version at
https://devel.isa-afp.org/entries/Game_Based_Crypto.html. The version for Isabelle2018 is available
at http://www.andreas-lochbihler.de/pub/crypthol_tutorial.zip.
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3.2 Getting started

CryptHOL is available as part of the Archive of Formal Proofs [12]. Cryptography
formalizations based on CryptHOL are arranged in Isabelle theory files that import
the relevant libraries.

theory CryptHOL-Tutorial imports
CryptHOL.CryptHOL

begin

The file CryptHOL.CryptHOL is the canonical entry point into CryptHOL. For the
hashed Elgamal example in this tutorial, the CryptHOL library contains everything
that is needed. Additional Isabelle libraries can be imported if necessary.

4 Modelling cryptography using CryptHOL

This section demonstrates how the following cryptographic concepts are modelled
in CryptHOL.

• A security property without oracles (§4.1)

• An oracle (§4.2)

• A cryptographic concept (§4.3)

• A security property with an oracle (§4.4)

• A concrete cryptographic scheme (§4.5)

4.1 Security notions without oracles: the CDH assumption

In game-based cryptography, a security property is specified using a game between
a benign challenger and an adversary. The probability of an adversary to win the
game against the challenger is called its advantage. A cryptographic construc-
tion satisfies a security property if the advantage for any “feasible” adversary is
“negligible”. A typical security proof reduces the security of a construction to
the assumed security of its building blocks. In a concrete security proof, where
the security parameter is implicit, it is therefore not necessary to formally define
“feasibility” and ”negligibility”, as the security statement establishes a concrete
relation between the advantages of specific adversaries.2 We return to asymptotic
security statements in §6.
A formalization of a security property must therefore specify all of the following:

2The cryptographic literature sometimes abstracts over the adversary and defines the advantage
to be the advantage of the best "feasible" adversary against a game. Such abstraction would require a
formalization of feasibility, for which CryptHOL currently does not offer any support. We therefore
always consider the advantage of a specific adversary.
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• The operations of the scheme (e.g., an algebraic group, an encryption scheme)

• The type of adversary

• The game with the challenger

• The advantage of the adversary as a function of the winning probability

For hashed Elgamal, the cyclic group must satisfy the computational Diffie-Hellman
assumption. To keep the proof simple, we formalize the equivalent list version of
CDH.

Definition (The list computational Diffie-Hellman game). Let G be a group of or-
der q with generator g. The List Computational Diffie-Hellman (LCDH) assump-
tion holds for G if any “feasible” adversary has “negligible” probability in winning
the following LCDH game against a challenger:

1. The challenger picks x and y randomly (and independently) from {0, . . . ,q−
1}.

2. It passes gx and gy to the adversary. The adversary generates a set L of
guesses about the value of gxy.

3. The adversary wins the game if gxy ∈ L.

The scheme for LCDH uses only a cyclic group. To make the LCDH formal-
isation reusable, we formalize the LCDH game for an arbitrary cyclic group G
using Isabelle’s module system based on locales. The locale list-cdh fixes G to
be a finite cyclic group that has elements of type ′grp and comes with a gener-
ator gG . Basic facts about finite groups are formalized in the CryptHOL theory
CryptHOL.Cyclic-Group.3

locale list-cdh = cyclic-group G
for G :: ′grp cyclic-group (structure)

begin

The LCDH game does not need oracles. The adversary is therefore just a proba-
bilistic function from two group elements to a set of guesses, which are again group
elements. In CryptHOL, the probabilistic nature is expressed by the adversary re-
turning a discrete subprobability distribution over sets of guesses, as expressed by
the type constructor spmf. (Subprobability distributions are like probability dis-
tributions except that the whole probability mass may be less than 1, i.e., some

3The syntax directive structure tells Isabelle that all group operations in the context of the locale
refer to the group G unless stated otherwise. For example, gG can be written as g inside the locale.

Isabelle automatically adds the locale parameters and the assumptions on them to all definitions
and lemmas inside that locale. Of course, we could have made the group G an explicit argument of
all functions ourselves, but then we would not benefit from Isabelle’s module system, in particular
locale instantiation.
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probability may be “lost”. A subprobability distribution is called lossless, written
lossless-spmf, if its probability mass is 1.) We define the following abbreviation as
a shorthand for the type of LCDH adversaries.4

type-synonym ′grp ′ adversary = ′grp ′⇒ ′grp ′⇒ ′grp ′ set spmf

The LCDH game itself is expressed as a function from the adversary A to the sub-
probability distribution of the adversary winning. CryptHOL provides operators to
express these distributions as probabilistic programs and reason about them using
program logics:

• The do notation desugars to monadic sequencing in the monad of subproba-
bilities [20]. Intuitively, every line x← p; samples an element x from the dis-
tribution p. The sampling is independent, unless the distribution p depends
on previously sampled variables. At the end of the block, the return-spmf _
returns whether the adversary has won the game.

• sample-uniform n denotes the uniform distribution over the set {0, ..., n −
1}.

• order G denotes the order of G and ([^]) :: ′grp⇒ nat ⇒ ′grp is the group
exponentiation operator.

The LCDH game formalizes the challenger’s behavior against an adversary A . In
the following definition, the challenger randomly (and independently) picks two
natural numbers x and y that are between 0 and G ’s order and passes them to the
adversary. The adversary then returns a set zs of guesses for gx ∗ y, where g is
the generator of G . The game finally returns a boolean that indicates whether the
adversary produced a right guess. Formally, game A is a boolean random variable.

definition game :: ′grp adversary⇒ bool spmf where
game A = do {

x← sample-uniform (order G );
y← sample-uniform (order G );
zs← A (g [^] x) (g [^] y);
return-spmf (g [^] (x ∗ y) ∈ zs)
}

The advantage of the adversary is equivalent to its probability of winning the
LCDH game. The function spmf :: ′a spmf ⇒ ′a ⇒ real returns the probability
of an elementary event under a given subprobability distribution.

definition advantage :: ′grp adversary⇒ real
where advantage A = spmf (game A ) True

4Actually, the type of group elements has already been fixed in the locale list-cdh to the type
variable ′grp. Unfortunately, such fixed type variables cannot be used in type declarations inside a
locale in Isabelle2018. The type-synonym adversary is therefore parametrized by a different type
variable ′grp ′, but it will be used below only with ′grp.
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end

This completes the formalisation of the LCDH game and we close the locale list-cdh
with end. The above definitions are now accessible under the names game and ad-
vantage. Furthermore, when we later instantiate the locale list-cdh, they will be
specialized to the given pararameters. We will return to this topic in §4.5.

4.2 A Random Oracle

A cryptographic oracle grants an adversary black-box access to a certain informa-
tion or functionality. In this section, we formalize a random oracle, i.e., an oracle
that models a random function with a finite codomain. In the Elgamal security
proof, the random oracle represents the hash function: the adversary can query the
oracle for a value and the oracle responds with the corresponding “hash”.
Like for the LCDH formalization, we wrap the random oracle in the locale ran-
dom-oracle for modularity. The random oracle will return a bitstring, i.e. a list of
booleans, of length len.

type-synonym bitstring = bool list

locale random-oracle =
fixes len :: nat

begin

In CryptHOL, oracles are modeled as probabilistic transition systems that given an
initial state and an input, return a subprobability distribution over the output and
the successor state. The type synonym ( ′s, ′a, ′b) oracle ′ abbreviates ′s⇒ ′a⇒ ( ′b
× ′s) spmf.
A random oracle accepts queries of type ′a and generates a random bitstring of
length len. The state of the random oracle remembers its previous responses in a
mapping of type ′a ⇀ bitstring. Upon a query x, the oracle first checks whether
this query was received before. If so, the oracle returns the same answer again.
Otherwise, the oracle randomly samples a bitstring of length len, stores it in its
state, and returns it alongside with the new state.

type-synonym ′a state = ′a ⇀ bitstring

definition oracle :: ′a state⇒ ′a⇒ (bitstring × ′a state) spmf
where
oracle σ x = (case σ x of

None⇒ do {
bs← spmf-of-set (nlists UNIV len);
return-spmf (bs, σ(x 7→ bs)) }

| Some bs⇒ return-spmf (bs, σ))

Initially, the state of a random oracle is the empty map λx. None, as no queries
have been asked. For readability, we introduce an abbreviation:
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abbreviation (input) initial :: ′a state where initial ≡Map.empty

This actually completes the formalization of the random oracle. Before we close
the locale, we prove two technical lemmas:

1. The lemma lossless-oracle states that the distribution over answers and suc-
cessor states is lossless, i.e., a full probability distribution. Many reasoning
steps in game-based proofs are only valid for lossless distributions, so it is
generally recommended to prove losslessness of all definitions if possible.

2. The lemma fresh describes random oracle’s behavior when the query is fresh.
This lemma makes it possible to automatically unfold the random oracle only
when it is known that the query is fresh.

lemma lossless-oracle [simp]: lossless-spmf (oracle σ x)
〈proof 〉

lemma fresh:
oracle σ x =
(do { bs← spmf-of-set (nlists UNIV len);

return-spmf (bs, σ(x 7→ bs)) })
if σ x = None
〈proof 〉

end

Remark: Independence is the default. Note that - spmf represents a discrete
probability distribution rather than a random variable. The difference is that every
spmf is independent of all other spmfs. There is no implicit space of elementary
events via which information may be passed from one random variable to the other.
If such information passing is necessary, this must be made explicit in the program.
That is why the random oracle explicitly takes a state of previous responses and
returns the updated states. Later, whenever the random oracle is used, the user
must pass the state around as needed. This also applies to adversaries that may
want to store some information.

4.3 Cryptographic concepts: public-key encryption

A cryptographic concept consists of a set of operations and their functional be-
haviour. We have already seen two simple examples: the cyclic group in §4.1 and
the random oracle in §4.2. We have formalized both of them as locales; we have not
modelled their functional behavior as this is not needed for the proof. In this sec-
tion, we now present a more realistic example: public-key encryption with oracle
access.
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A public-key encryption scheme consists of three algorithms: key generation, en-
cryption, and decryption. They are all probabilistic and, in the most general case,
they may access an oracle jointly with the adversary, e.g., a random oracle mod-
elling a hash function. As before, the operations are modelled as parameters of a
locale, ind-cpa-pk.

• The key generation algorithm key-gen outputs a public-private key pair.

• The encryption operation encrypt takes a public key and a plaintext of type
′plain and outputs a ciphertext of type ′cipher.

• The decryption operation decrypt takes a private key and a ciphertext and
outputs a plaintext.

• Additionally, the predicate valid-plains tests whether the adversary has cho-
sen a valid pair of plaintexts. This operation is needed only in the IND-CPA
game definition in the next section, but we include it already here for conve-
nience.

locale ind-cpa-pk =
fixes key-gen :: ( ′pubkey × ′privkey, ′query, ′response) gpv

and encrypt :: ′pubkey⇒ ′plain⇒ ( ′cipher, ′query, ′response) gpv
and decrypt :: ′privkey⇒ ′cipher⇒ ( ′plain, ′query, ′response) gpv
and valid-plains :: ′plain⇒ ′plain⇒ bool

begin

The three actual operations are generative probabilistic values (GPV) of type (-,
′query, ′response) gpv. A GPV is a probabilistic algorithm that has not yet been
connected to its oracles; see the theoretical paper [2] for details. The interface to
the oracle is abstracted in the two type parameters ′query for queries and ′response
for responses. As before, we omit the specification of the functional behavior,
namely that decrypting an encryption with a key pair returns the plaintext.

4.4 Security notions with oracles: IND-CPA security

In general, there are several security notions for the same cryptographic concept.
For encryption schemes, an indistinguishability notion of security [8] is often used.
We now formalize the notion indistinguishability under chosen plaintext attacks
(IND-CPA) for public-key encryption schemes. Goldwasser et al. [18] showed that
IND-CPA is equivalent to semantic security.

Definition (IND-CPA [19]). Let key-gen, encrypt and decrypt denote a public-
key encryption scheme. The IND-CPA game is a two-stage game between the
adversary and a challenger:

Stage 1 (find):
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1. The challenger generates a public key pk using key-gen and gives the
public key to the adversary.

2. The adversary returns two messages m0 and m1.

3. The challenger checks that the two messages are a valid pair of plain-
texts. (For example, both messages must have the same length.)

Stage 2 (guess):

1. The challenger flips a coin b (either 0 or 1) and gives encrypt pk mb to
the adversary.

2. The adversary returns a bit b ′.

The adversary wins the game if his guess b ′ is the value of b. Let Pwin denote the
winning probability. His advantage is |Pwin − 1 / 2|

Like with the encryption scheme, we will define the game such that the challenger
and the adversary have access to a shared oracle, but the oracle is still unspecified.
Consequently, the corresponding CryptHOL game is a GPV, like the operations
of the abstract encryption scheme. When we specialize the definitions in the next
section to the hashed Elgamal scheme, the GPV will be connected to the random
oracle.
The type of adversary is now more complicated: It is a pair of probabilistic func-
tions with oracle access, one for each stage of the game. The first computes the
pair of plaintext messages and the second guesses the challenge bit. The additional
′state parameter allows the adversary to maintain state between the two stages.

type-synonym ( ′pubkey ′, ′plain ′, ′cipher ′, ′query ′, ′response ′, ′state) adversary =
( ′pubkey ′⇒ (( ′plain ′× ′plain ′) × ′state, ′query ′, ′response ′) gpv)
× ( ′cipher ′⇒ ′state⇒ (bool, ′query ′, ′response ′) gpv)

The IND-CPA game formalization below follows the above informal definition.
There are three points that need some explanation. First, this game differs from
the simpler LCDH game in that it works with GPVs instead of SPMFs. Therefore,
probability distributions like coin flips coin-spmf must be lifted from SPMFs to
GPVs using the coercion lift-spmf. Second, the assertion assert-gpv (valid-plains
m0 m1) ensures that the pair of messages is valid. Third, the construct TRY _ ELSE
_ catches a violated assertion. In that case, the adversary’s advantage drops to 0
because the result of the game is a coin flip, as we are in the ELSE branch.

fun game :: ( ′pubkey, ′plain, ′cipher, ′query, ′response, ′state) adversary
⇒ (bool, ′query, ′response) gpv

where
game (A 1, A 2) = TRY do {
(pk, sk)← key-gen;
((m0, m1), σ)← A 1 pk;
assert-gpv (valid-plains m0 m1);
b← lift-spmf coin-spmf ;
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Figure 1: Graphic representation of the generic IND-CPA game.

cipher← encrypt pk (if b then m0 else m1);
b ′← A 2 cipher σ ;
Done (b ′= b)
} ELSE lift-spmf coin-spmf

Figure 1 visualizes this game as a grey box. The dashed boxes represent parameters
of the game or the locale, i.e., parts that have not yet been instantiated. The actual
probabilistic program is shown on the left half, which uses the dashed boxes as
sub-programs. Arrows in the grey box from the left to the right pass the contents of
the variables to the sub-program. Those in the other direction bind the result of the
sub-program to new variables. The arrows leaving box indicate the query-response
interaction with an oracle. The thick arrows emphasize that the adversary’s state is
passed around explicitly. The double arrow represents the return value of the game.
We will use this to define the adversary’s advantage.
As the oracle is not specified in the game, the advantage, too, is parametrized by
the oracle, given by the transition function oracle :: ( ′s, ′query, ′response) oracle ′

and the initial state σ :: ′s its initial state. The operator run-gpv connects the game
with the oracle, whereby the GPV becomes an SPMF.

fun advantage :: ( ′σ , ′query, ′response) oracle ′× ′σ
⇒ ( ′pubkey, ′plain, ′cipher, ′query, ′response, ′state) adversary⇒ real

where
advantage (oracle, σ) A = |spmf (run-gpv oracle (game A ) σ) True − 1/2|

end

4.5 Concrete cryptographic constructions: the hashed ElGamal en-
cryption scheme

With all the above modelling definitions in place, we are now ready to explain
how concrete cryptographic constructions are expressed in CryptHOL. In general,
a cryptographic construction builds a cryptographic concept from possibly several
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simpler cryptographic concepts. In the running example, the hashed ElGamal ci-
pher [7] constructs a public-key encryption scheme from a finite cyclic group and
a hash function. Accordingly, the formalisation consists of three steps:

1. Import the cryptographic concepts on which the construction builds.

2. Define the concrete construction.

3. Instantiate the abstract concepts with the construction.

First, we declare a new locale that imports the two building blocks: the cyclic group
from the LCDH game with namespace lcdh and the random oracle for the hash
function with namespace ro. This ensures that the construction can be used for
arbitrary cyclic groups. For the message space, it suffices to fix the length len-plain
of the plaintexts.

locale hashed-elgamal =
lcdh: list-cdh G +
ro: random-oracle len-plain
for G :: ′grp cyclic-group (structure)
and len-plain :: nat

begin

Second, we formalize the hashed ElGamal encryption scheme. Here is the well-
known informal definition.

Definition (Hashed Elgamal encryption scheme). Let G be a cyclic group of or-
der q that has a generator g. Furthermore, let h be a hash function that maps the
elements of G to bitstrings, and ⊕ be the xor operator on bitstrings. The Hashed-
ElGamal encryption scheme is given by the following algorithms:

Key generation Pick an element x randomly from the set {0, . . . ,q−1} and output
the pair (gx,x), where gx is the public key and x is the private key.

Encryption Given the public key pk and the message m, pick y randomly from
the set {0, . . . ,q− 1} and output the pair (gy,h(pky)⊕m). Here ⊕ denotes
the bitwise exclusive-or of two bitstrings.

Decryption Given the private key sk and the ciphertext (α,β ), output h(αsk)⊕β .

As we can see, the public key is a group element, the private key a natural number,
a plaintext a bitstring, and a ciphertext a pair of a group element and a bitstring.5

For readability, we introduce meaningful abbreviations for these concepts.

type-synonym ′grp ′ pub-key = ′grp ′

5More precisely, the private key ranges between 0 and q− 1 and the bitstrings are of length
len-plain. However, Isabelle/HOL’s type system cannot express such properties that depend on locale
parameters.

53



type-synonym ′grp ′ priv-key = nat
type-synonym plain = bitstring
type-synonym ′grp ′ cipher = ′grp ′× bitstring

We next translate the three algorithms into CryptHOL definitions. The definitions
are straightforward except for the hashing. Since we analyze the security in the
random oracle model, an application of the hash function H is modelled as a query
to the random oracle using the GPV hash. Here, Pause x Done calls the oracle with
query x and returns the oracle’s response. Furthermore, we define the plaintext
validity predicate to check the length of the adversary’s messages produced by the
adversary.

abbreviation hash :: ′grp⇒ (bitstring, ′grp, bitstring) gpv
where
hash x ≡ Pause x Done

definition key-gen :: ( ′grp pub-key × ′grp priv-key) spmf
where
key-gen = do {

x← sample-uniform (order G );
return-spmf (g [^] x, x)
}

definition encrypt :: ′grp pub-key⇒ plain⇒ ( ′grp cipher, ′grp, bitstring) gpv
where
encrypt α msg = do {

y← lift-spmf (sample-uniform (order G ));
h← hash (α [^] y);
Done (g [^] y, h [⊕] msg)
}

definition decrypt :: ′grp priv-key⇒ ′grp cipher⇒ (plain, ′grp, bitstring) gpv
where
decrypt x = (λ (β , ζ ). do {

h← hash (β [^] x);
Done (ζ [⊕] h)
})

definition valid-plains :: plain⇒ plain⇒ bool
where
valid-plains msg1 msg2←→ length msg1 = len-plain ∧ length msg2 = len-plain

The third and last step instantiates the interface of the encryption scheme with the
hashed Elgamal scheme. This specializes all definition and theorems in the locale
ind-cpa-pk to our scheme.

sublocale ind-cpa: ind-cpa-pk (lift-spmf key-gen) encrypt decrypt valid-plains 〈proof 〉

Figure 2 illustrates the instantiation. In comparison to Fig. 1, the boxes for the key
generation and the encryption algorithm have been instantiated with the hashed El-
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Figure 2: The IND-CPA game instantiated with the Hashed-ElGamal encryption
scheme and accessing a random oracle.

gamal definitions from this section. We nevertheless draw the boxes to indicate that
the definitions of these algorithms has not yet been inlined in the game definition.
The thick grey border around the key generation algorithm denotes the lift-spmf op-
erator, which embeds the probabilistic key-gen without oracle access into the type
of GPVs with oracle access. The oracle has also been instantiated with the random
oracle oracle imported from hashed-elgamal’s parent locale random-oracle with
prefix ro.

5 Cryptographic proofs in CryptHOL

This section explains how cryptographic proofs are expressed in CryptHOL. We
will continue our running example by stating and proving the IND-CPA security
of the hashed Elgamal encryption scheme under the computational Diffie-Hellman
assumption in the random oracle model, using the definitions from the previous
section. More precisely, we will formalize a reduction argument (§5.1) and bound
the IND-CPA advantage using the CDH advantage. We will not formally state
the result that CDH hardness in the cyclic group implies IND-CPA security, which
quantifies over all feasible adversaries–to that end, we would have to formally de-
fine feasibility, for which CryptHOL currently does not offer any support.
The actual proof of the bound consists of several game transformations. We will fo-
cus on those steps that illustrate common steps in cryptographic proofs (§5.3–§5.8)
.

5.1 The reduction

The security proof involves a reduction argument: We will derive a bound on the
advantage of an arbitrary adversary in the IND-CPA game game for hashed Elga-
mal that depends on another adversary’s advantage in the LCDH game game of the
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Figure 3: The reduction for the Elgamal security proof.

underlying group. The reduction transforms every IND-CPA adversary A into a
LCDH adversary elgamal-reduction A , using A as a black box. In more detail, it
simulates an execution of the IND-CPA game including the random oracle. At the
end of the game, the reduction outputs the set of queries that the adversary has sent
to the random oracle. The reduction works as follows given a two part IND-CPA
adversary A = (A 1, A 2) (Figure 3 visualizes the reduction as the dotted box):

1. It receives two group elements α and β from the LCDH challenger.

2. The reduction passes α to the adversary as the public key and runs A 1 to
get messages m1 and m2. The adversary is given access to the random oracle
with the initial state λx. None.

3. The assertion checks that the adversary returns two valid plaintexts, i.e., m1
and m2 are strings of length len-plain.

4. Instead of actually performing an encryption, the reduction generates a ran-
dom bitstring h of length len-plain (nlists UNIV len-plain denotes the set
of all bitstrings of length len-plain and spmf-of-set converts the set into a
uniform distribution over the set.)

5. The reduction passes (β , h) as the challenge ciphertext to the adversary in
the second phase of the IND-CPA game.

6. The actual guess b ′ of the adversary is ignored; instead the reduction returns
the set dom s ′ of all queries that the adversary made to the random oracle as
its guess for the CDH game.

7. If any of the steps after the first phase fails, the reduction’s guess is the set
dom s of oracle queries made during the first phase.
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fun elgamal-reduction
:: ( ′grp pub-key, plain, ′grp cipher, ′grp, bitstring, ′state) ind-cpa.adversary
⇒ ′grp lcdh.adversary

where
elgamal-reduction (A 1, A 2) α β = do {
(((m1, m2), σ), s)← exec-gpv ro.oracle (A 1 α) ro.initial;
TRY do {

- :: unit← assert-spmf (valid-plains m1 m2);
h← spmf-of-set (nlists UNIV len-plain);
(b ′, s ′)← exec-gpv ro.oracle (A 2 (β , h) σ) s;
return-spmf (dom s ′)
} ELSE return-spmf (dom s)
}

5.2 Concrete security statement

A concrete security statement in CryptHOL has the form: Subject to some side con-
ditions for the adversary A , the advantage in one game is bounded by a function
of the transformed adversary’s advantage in a different game.6

theorem concrete-security:
assumes side conditions for A
shows advantage1 A ≤ f (advantage2 (reduction A ))

For the hashed Elgamal scheme, the theorem looks as follows, i.e., the function f
is the identity function.

theorem concrete-security-elgamal:
assumes lossless: ind-cpa.lossless A
shows ind-cpa.advantage (ro.oracle, ro.initial) A ≤ lcdh.advantage (elgamal-reduction

A )

Such a statement captures the essence of a concrete security proof. For if there
was a feasible adversary A with non-negligible advantage against the game, then
elgamal-reduction A would be an adversary against the game with at least the
same advantage. This implies the existence of an adversary with non-negligible
advantage against the cryptographic primitive that was assumed to be secure. What
we cannot state formally is that the transformed adversary elgamal-reduction A is
feasible as we have not formalized the notion of feasibility. The readers of the
formalization must convince themselves that the reduction preserves feasibility.
In the case of elgamal-reduction, this should be obvious from the definition (given
the theorem’s side condition) as the reduction does nothing more than sampling
and redirecting data.

6A security proof often involves several reductions. The bound then depends on several advan-
tages, one for each reduction.
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Our proof for the concrete security theorem needs the side condition that the adver-
sary is lossless. Losslessness for adversaries is similar to losslessness for subprob-
ability distributions. It ensures that the adversary always terminates and returns
an answer to the challenger. For the IND-CPA game, we define losslessness as
follows:

definition (in ind-cpa-pk) lossless
:: ( ′pubkey, ′plain, ′cipher, ′query, ′response, ′state) adversary⇒ bool

where
lossless = (λ (A 1, A 2). (∀pk. lossless-gpv I -full (A 1 pk))

∧ (∀cipher σ . lossless-gpv I -full (A 2 cipher σ)))

So now let’s start with the proof.

proof −

As a preparatory step, we split the adversary A into its two phases A 1 and A 2.
We could have made the two phases explicit in the theorem statement, but our
form is easier to read and use. We also immediately decompose the losslessness
assumption on A .7

obtain A 1 A 2 where A [simp]: A = (A 1, A 2) by (cases A )
from lossless have lossless1 [simp]:

∧
pk. lossless-gpv I -full (A 1 pk)

and lossless2 [simp]:
∧

σ cipher. lossless-gpv I -full (A 2 σ cipher)
by(auto simp add: ind-cpa.lossless-def )

5.3 Recording adversary queries

As can be seen in Fig. 2, both the adversary and the encryption of the challenge
ciphertext use the random oracle. The reduction, however, returns only the queries
that the adversary makes to the oracle (in Fig. 3, h is generated independently of
the random oracle). To bridge this gap, we introduce an interceptor between the
adversary and the oracle that records all adversary’s queries.

define interceptor :: ′grp set⇒ ′grp⇒ (bitstring × ′grp set, -, -) gpv
where
interceptor σ x = (do {

h← hash x;
Done (h, insert x σ)
}) for σ x

We integrate this interceptor into the game using the inline function as illustrated
in Fig. 4 and name the result game0.

define game0 where

7Later in the proof, we will often prove losslessness of the definitions in the proof. We will
not show them in this document, but they are in the Isabelle sources from which this document is
generated.
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Figure 4: The IND-CPA game after expanding the key generation algorithm’s def-
inition and inlining the query-recording hash oracle. The red boxes represent the
inline operator.

game0 = TRY do {
(pk, -)← lift-spmf key-gen;
(((m1, m2), σ), s)← inline interceptor (A 1 pk) {};
assert-gpv (valid-plains m1 m2);
b← lift-spmf coin-spmf ;
c← encrypt pk (if b then m1 else m2);
(b ′, s ′)← inline interceptor (A 2 c σ) s;
Done (b ′= b)
} ELSE lift-spmf coin-spmf

We claim that the above modifications do not affect the output of the IND-CPA
game at all. This might seem obvious since we are only logging the adversary’s
queries without modifying them. However, in a formal proof, this needs to be
precisely justified.
More precisely, we have been very careful that the two games game A and game0
have identical structure. They differ only in that game0 uses the adversary (λpk.
inline interceptor (A 1 pk) /0, λcipher σ . inline interceptor (A 2 cipher σ)) instead
of A . The formal justification for this replacement happens in two steps:

1. We replace the oracle transformer interceptor with id-oracle, which merely
passes queries and results to the oracle.

2. Inlining the identity oracle transformer id-oracle does not change an adver-
sary and can therefore be dropped.

The first step is automated using Isabelle’s Transfer package [9], which is based
on Mitchell’s representation independence [14]. The replacement is controlled by
so-called transfer rules of the form R x y which indicates that x shall replace y;
the correspondence relation R captures the kind of replacement. The transfer proof
method then constructs a constraint system with one constraint for each atom in the
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proof goal where the correspondence relation and the replacement are unknown. It
then tries to solve the constraint system using the rules that have been declared with
the attribute [transfer-rule]. Atoms that do not have a suitable transfer rule are not
changed and their correspondence relation is instantiated with the identity relation
(=).
The second step is automated using Isabelle’s simplifier.
In the example, the crucial change happens in the state of the oracle transformer:
interceptor records all queries in a set whereas id-oracle has no state, which is
modelled with the singleton type unit. To capture the change, we define the cor-
respondence relation cr on the states of the oracle transformers. (As we are in the
process of adding this state, this state is irrelevant and cr is therefore always true.
We nevertheless have to make an explicit definition such that Isabelle does not au-
tomatically beta-reduce terms, which would confuse transfer.) We then prove that
it relates the initial states and that cr is a bisimulation relation for the two oracle
transformers; see [2] for details. The bisimulation proof itself is automated, too:
A bit of term rewriting (unfolding) makes the two oracle transformers structurally
identical except for the state update function. Having proved that the state update
function λ - σ . σ is a correct replacement for insert w.r.t. cr, the transfer-prover
then lifts this replacement to the bisimulation rule. Here, transfer-prover is simi-
lar to transfer except that it works only for transfer rules and builds the constraint
system only for the term to be replaced.
The theory source of this tutorial contains a step-by-step proof to illustrate how
transfer works.

{ define cr :: unit⇒ ′grp set⇒ bool where cr σ σ ′= True for σ σ ′

have [transfer-rule]: cr () {} by(simp add: cr-def ) — initial states
have [transfer-rule]: ((=) ===> cr ===> cr) (λ - σ . σ) insert — state update

by(simp add: rel-fun-def cr-def )
have [transfer-rule]: — cr is a bisimulation for the oracle transformers
(cr ===> (=) ===> rel-gpv (rel-prod (=) cr) (=)) id-oracle interceptor
unfolding interceptor-def [abs-def ] id-oracle-def [abs-def ] bind-gpv-Pause bind-rpv-Done
by transfer-prover

have ind-cpa.game A = game0 unfolding game0-def A ind-cpa.game.simps
by transfer (simp add: bind-map-gpv o-def ind-cpa.game.simps split-def )

}

5.4 Equational program transformations

Before we move on, we need to simplify game0 and inline a few of the definitions.
All these simplifications are equational program transformations, so the Isabelle
simplifier can justify them. We combine the interceptor with the random oracle
oracle into a new oracle oracle ′with which the adversary interacts.

define oracle ′ :: ′grp set × ( ′grp ⇀ bitstring)⇒ ′grp⇒ -
where oracle ′= (λ (s, σ) x. do {
(h, σ ′)← case σ x of
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None⇒ do {
bs← spmf-of-set (nlists UNIV len-plain);
return-spmf (bs, σ(x 7→ bs)) }

| Some bs⇒ return-spmf (bs, σ);
return-spmf (h, insert x s, σ ′)
})
have ∗: exec-gpv ro.oracle (inline interceptor A s) σ =
map-spmf (λ (a, b, c). ((a, b), c)) (exec-gpv oracle ′A (s, σ)) for A σ s
by(simp add: interceptor-def oracle ′-def ro.oracle-def Let-def

exec-gpv-inline exec-gpv-bind o-def split-def cong del: option.case-cong-weak)

We also want to inline the key generation and encryption algorithms, push the TRY
_ ELSE _ towards the assertion (which is possible because the adversary is lossless
by assumption), and rearrange the samplings a bit. The latter is automated using
monad-normalisation [17].8

have game0: run-gpv ro.oracle game0 ro.initial = do {
x← sample-uniform (order G );
y← sample-uniform (order G );
b← coin-spmf ;
(((msg1, msg2), σ), (s, s-h))←

exec-gpv oracle ′ (A 1 (g [^] x)) ({}, ro.initial);
TRY do {

- :: unit← assert-spmf (valid-plains msg1 msg2);
(h, s-h ′)← ro.oracle s-h (g [^] (x ∗ y));
let cipher = (g [^] y, h [⊕] (if b then msg1 else msg2));
(b ′, (s ′, s-h ′′))← exec-gpv oracle ′ (A 2 cipher σ) (s, s-h ′);
return-spmf (b ′= b)
} ELSE do {

b← coin-spmf ;
return-spmf b
}
}
including monad-normalisation
by(simp add: game0-def key-gen-def encrypt-def ∗ exec-gpv-bind bind-map-spmf as-

sert-spmf-def
try-bind-assert-gpv try-gpv-bind-lossless split-def o-def if-distribs lcdh.nat-pow-pow)

This call to Isabelle’s simplifier may look complicated at first, but it can be con-
structed incrementally by adding a few theorems and looking at the resulting goal
state and searching for suitable theorems using find-theorems. As always in Is-
abelle, some intuition and knowledge about the library of lemmas is crucial.

• We knew that the definitions game0-def, key-gen-def, and encrypt-def should
be unfolded, so they are added first to the simplifier’s set of rewrite rules.

8The tool monad-normalisation augments Isabelle’s simplifier with a normalization procedure for
commutative monads based on higher-order ordered rewriting. It can also commute across control
structures like if and case. Although it is not complete as a decision procedure (as the normal forms
are not unique), it usually works in practice.
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Figure 5: The IND-CPA game after flattening. The blue box around the encryption
algorithm and the random oracle represents the expanded definition of them.

• The equations exec-gpv-bind, try-bind-assert-gpv, and try-gpv-bind-lossless
ensure that the operator exec-gpv, which connects the game0 with the random
oracle, is distributed over the sequencing. Together with ∗, this gives the
adversary access to oracle ′ instead of the interceptor and the random oracle,
and makes the call to the random oracle in the encryption of the chosen
message explicit.

• The theorem lcdh.nat-pow-pow rewrites the iterated exponentiation (g [^] x)
[^] y to g [^] (x ∗ y).

• The other theorems bind-map-spmf, assert-spmf-def, split-def, o-def, and if-distribs
take care of all the boilerplate code that makes all these transformations type-
correct. These theorems often have to be used together.

Note that the state of the oracle oracle ′ is changed between A 1 and A 2. Namely,
the random oracle’s part s-h may change when the chosen message is encrypted,
but the state that records the adversary’s queries s is passed on unchanged.

5.5 Capturing a failure event

Suppose that two games behave the same except when a so-called failure event
occurs [19]. Then the chance of an adversary distinguishing the two games is
bounded by the probability of the failure event. In other words, the simulation of
the reduction is allowed to break if the failure event occurs. In the running example,
such an argument is a key step to derive the bound on the adversary’s advantage.
But to reason about failure events, we must first introduce them into the games
we consider. This is because in CryptHOL, the probabilistic programs describe
probability distributions over what they return (return-spmf ). The variables that
are used internally in the program are not accessible from the outside, i.e., there is
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no memory to which these are written. This has the advantage that we never have
to worry about the names of the variables, e.g., to avoid clashes. The drawback is
that we must explicitly introduce all the events that we are interested in.
Introducing a failure event into a game is straightforward. So far, the games game
and game0 simply denoted the probability distribution of whether the adversary has
guessed right. For hashed Elgamal, the simulation breaks if the adversary queries
the random oracle with the same query g [^] (x ∗ y) that is used for encrypting the
chosen message mb. So we simply change the return type of the game to return
whether the adversary guessed right and whether the failure event has occurred.
The next definition game1 does so. (Recall that oracle ′ stores in its first state com-
ponent s the queries by the adversary.) In preparation of the next reasoning step, we
also split off the first two samplings, namely of x and y, and make them parameters
of game1.

define game1 :: nat⇒ nat⇒ (bool × bool) spmf
where game1 x y = do {
b← coin-spmf ;
(((m1, m2), σ), (s, s-h))← exec-gpv oracle ′ (A 1 (g [^] x)) ({}, ro.initial);
TRY do {

- :: unit← assert-spmf (valid-plains m1 m2);
(h, s-h ′)← ro.oracle s-h (g [^] (x ∗ y));
let c = (g [^] y, h [⊕] (if b then m1 else m2));
(b ′, (s ′, s-h ′′))← exec-gpv oracle ′ (A 2 c σ) (s, s-h ′);
return-spmf (b ′= b, g [^] (x ∗ y) ∈ s ′)
} ELSE do {

b← coin-spmf ;
return-spmf (b, g [^] (x ∗ y) ∈ s)
}
} for x y

It is easy to prove that game0 combined with the random oracle is a projection of
game1 with the sampling added, as formalized in game0-game1.

let ?sample = λ f :: nat⇒ nat⇒ - spmf . do {
x← sample-uniform (order G );
y← sample-uniform (order G );
f x y }

have game0-game1:
run-gpv ro.oracle game0 ro.initial = map-spmf fst (?sample game1)
by(simp add: game0 game1-def o-def split-def map-try-spmf map-scale-spmf )

5.6 Game hop based on a failure event

A game hop based on a failure event changes one game into another such that they
behave identically unless the failure event occurs. The fundamental-lemma bounds
the absolute difference between the two games by the probability of the failure
event. In the running example, we would like to avoid querying the random oracle
when encrypting the chosen message. The next game game2 is identical except that
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the call to the random oracle oracle is replaced with sampling a random bitstring.9

define game2 :: nat⇒ nat⇒ (bool × bool) spmf
where game2 x y = do {
b← coin-spmf ;
(((m1, m2), σ), (s, s-h))← exec-gpv oracle ′ (A 1 (g [^] x)) ({}, ro.initial);
TRY do {

- :: unit← assert-spmf (valid-plains m1 m2);
h← spmf-of-set (nlists UNIV len-plain);
— We do not query the random oracle for g [^] (x ∗ y), but instead sample a random

bitstring h directly. So the rest differs from game1 only if the adversary queries g [^] (x ∗
y).

let cipher = (g [^] y, h [⊕] (if b then m1 else m2));
(b ′, (s ′, s-h ′))← exec-gpv oracle ′ (A 2 cipher σ) (s, s-h);
return-spmf (b ′= b, g [^] (x ∗ y) ∈ s ′)
} ELSE do {

b← coin-spmf ;
return-spmf (b, g [^] (x ∗ y) ∈ s)
}
} for x y

To apply the fundamental-lemma, we first have to prove that the two games are
indeed the same except when the failure event occurs.

have rel-spmf (λ (win, bad) (win ′, bad ′). bad = bad ′∧ (¬ bad ′−→ win = win ′)) (game2
x y) (game1 x y) for x y
proof −

This proof requires two invariants on the state of oracle ′. First, s = dom s-h. Sec-
ond, s only becomes larger. The next two statements capture the two invariants:

interpret inv-oracle ′: callee-invariant-on oracle ′ (λ (s, s-h). s = dom s-h) I -full
by unfold-locales(auto simp add: oracle ′-def split: option.split-asm if-split)

interpret bad: callee-invariant-on oracle ′ (λ (s, -). z ∈ s) I -full for z
by unfold-locales(auto simp add: oracle ′-def )

First, we identify a bisimulation relation ?X between the different states of oracle ′

for the second phase of the game. Namely, the invariant s = dom s-h holds, the
set of queries are the same, and the random oracle’s state (a map from queries to
responses) differs only at the point g [^] (x ∗ y).

let ?X = λ (s, s-h) (s ′, s-h ′). s = dom s-h ∧ s ′= s ∧ s-h = s-h ′(g [^] (x ∗ y) := None)

Then, we can prove that ?X really is a bisimulation for oracle ′ except when the
failure event occurs. The next statement expresses this.

let ?bad = λ (s, s-h). g [^] (x ∗ y) ∈ s
let ?R = (λ (a, s1 ′) (b, s2 ′). ?bad s1 ′= ?bad s2 ′∧ (¬ ?bad s2 ′−→ a = b ∧ ?X s1 ′ s2 ′))
have bisim: rel-spmf ?R (oracle ′ s1 plain) (oracle ′ s2 plain)

9In Shoup’s terminology [19], such a step makes (a gnome sitting inside) the random oracle
forgetting the query.
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if ?X s1 s2 for s1 s2 plain using that
by(auto split: prod.splits intro!: rel-spmf-bind-reflI simp add: oracle ′-def rel-spmf-return-spmf2

fun-upd-twist split: option.split dest!: fun-upd-eqD)
have inv: callee-invariant oracle ′ ?bad

— Once the failure event has happened, it will not be forgotten any more.
by(unfold-locales)(auto simp add: oracle ′-def split: option.split-asm)

Now we are ready to prove that the two games game1 and game2 are sufficiently
similar. The Isar proof now switches into an apply script that manipulates the goal
state directly. This is sometimes convenient when it would be too cumbersome to
spell out every intermediate goal state.

show ?thesis
unfolding game1-def game2-def
— Peel off the first phase of the game using the structural decomposition rules rel-spmf-bind-reflI

and rel-spmf-try-spmf.
apply(clarsimp intro!: rel-spmf-bind-reflI simp del: bind-spmf-const)
apply(rule rel-spmf-try-spmf )
subgoal TRY for b m1 m2 σ s s-h

apply(rule rel-spmf-bind-reflI)
— Exploit that in the first phase of the game, the set s of queried strings and the map

of the random oracle s-h are updated in lock step, i.e., s = dom s-h.
apply(drule inv-oracle ′.exec-gpv-invariant; clarsimp)
— Has the adversary queried the random oracle with g [^] (x ∗ y) during the first phase?
apply(cases g [^] (x ∗ y) ∈ s)
subgoal True — Then the failure event has already happened and there is nothing more

to do. We just have to prove that the two games on both sides terminate with the same
probability.

by(auto intro!: rel-spmf-bindI1 rel-spmf-bindI2 lossless-exec-gpv[where I=I -full]
dest!: bad.exec-gpv-invariant)

subgoal False — Then let’s see whether the adversary queries g [^] (x ∗ y) in the second
phase. Thanks to ro.fresh, the call to the random oracle simplifies to sampling a random
bitstring.

apply(clarsimp iff del: domIff simp add: domIff ro.fresh intro!: rel-spmf-bind-reflI)
apply(rule rel-spmf-bindI[where R=?R])
— The lemma exec-gpv-oracle-bisim-bad-full lifts the bisimulation for oracle ′ to the

adversary A 2 interacting with oracle ′.
apply(rule exec-gpv-oracle-bisim-bad-full[OF - - bisim inv inv])

apply(auto simp add: fun-upd-idem)
done

done
subgoal ELSE by(rule rel-spmf-reflI) clarsimp
done

qed

Now we can add the sampling of x and y in front of game1 and game2, apply the
fundamental-lemma.

hence rel-spmf (λ (win, bad) (win ′, bad ′). (bad←→ bad ′) ∧ (¬ bad ′−→ win←→ win ′))
(?sample game2) (?sample game1)
by(intro rel-spmf-bind-reflI)
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hence |measure (measure-spmf (?sample game2)) {(win, -). win}−measure (measure-spmf
(?sample game1)) {(win, -). win}|
≤ measure (measure-spmf (?sample game2)) {(-, bad). bad}

unfolding split-def by(rule fundamental-lemma)
moreover

The fundamental-lemma is written in full generality for arbitrary events, i.e., sets
of elementary events. But in this formalization, the events of interest (correct guess
and failure) are elementary events. We therefore transform the above statement to
measure the probability of elementary events using spmf.

have measure (measure-spmf (?sample game2)) {(win, -). win} = spmf (map-spmf fst
(?sample game2)) True

and measure (measure-spmf (?sample game1)) {(win, -). win} = spmf (map-spmf fst
(?sample game1)) True

and measure (measure-spmf (?sample game2)) {(-, bad). bad} = spmf (map-spmf snd
(?sample game2)) True

unfolding spmf-conv-measure-spmf measure-map-spmf by(auto simp add: vimage-def
split-def )
ultimately have hop12:
|spmf (map-spmf fst (?sample game2)) True − spmf (map-spmf fst (?sample game1))

True|
≤ spmf (map-spmf snd (?sample game2)) True
by simp

5.7 Optimistic sampling: the one-time-pad

This step is based on the one-time-pad, which is an instance of optimistic sampling.
If two runs of the two games in an optimistic sampling step would use the same
random bits, then their results would be different. However, if the adversary’s
choices are independent of the random bits, we may relate runs that use different
random bits, as in the end, only the probabilities have to match. The previous
game hop from game1 to game2 made the oracle’s responses in the second phase
independent from the encrypted ciphertext. So we can now change the bits used
for encrypting the chosen message and thereby make the ciphertext independent of
the message.
To that end, we parametrize game2 by the part that does the optimistic sampling
and call this parametrized version game3.

define game3 :: (bool⇒ bitstring⇒ bitstring⇒ bitstring spmf )⇒ nat⇒ nat⇒ (bool ×
bool) spmf
where game3 f x y = do {
b← coin-spmf ;
(((m1, m2), σ), (s, s-h))← exec-gpv oracle ′ (A 1 (g [^] x)) ({}, ro.initial);
TRY do {

- :: unit← assert-spmf (valid-plains m1 m2);
h ′← f b m1 m2;
let cipher = (g [^] y, h ′);
(b ′, (s ′, s-h ′))← exec-gpv oracle ′ (A 2 cipher σ) (s, s-h);
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return-spmf (b ′= b, g [^] (x ∗ y) ∈ s ′)
} ELSE do {

b← coin-spmf ;
return-spmf (b, g [^] (x ∗ y) ∈ s)
}
} for f x y

Clearly, if we plug in the appropriate function ?f, then we get game2:

let ?f = λb m1 m2. map-spmf (λh. (if b then m1 else m2) [⊕] h) (spmf-of-set (nlists UNIV
len-plain))
have game2-game3: game2 x y = game3 ?f x y for x y
by(simp add: game2-def game3-def Let-def bind-map-spmf xor-list-commute o-def )

CryptHOL’s one-time-pad lemma now allows us to remove the exclusive or with
the chosen message, because the resulting distributions are the same. The proof
is slightly non-trivial because the one-time-pad lemma holds only if the xor’ed
bitstrings have the right length, which the assertion valid-plains ensures. The con-
gruence rules try-spmf-cong bind-spmf-cong [ OF refl ] if-cong [ OF refl ] extract
this information from the program of the game.

let ?f ′= λb m1 m2. spmf-of-set (nlists UNIV len-plain)
have game3: game3 ?f x y = game3 ?f ′ x y for x y
by(auto intro!: try-spmf-cong bind-spmf-cong[OF refl] if-cong[OF refl]

simp add: game3-def split-def one-time-pad valid-plains-def
simp del: map-spmf-of-set-inj-on bind-spmf-const split: if-split)

The rest of the proof consists of simplifying game3 ?f ′. The steps are similar to
what we have shown before, so we do not explain them in detail. The interested
reader can look at them in the theory file from which this document was gener-
ated. At a high level, we see that there is no need to track the adversary’s queries
in game2 or game3 any more because this information is already stored in the ran-
dom oracle’s state. So we change the oracle ′ back into oracle using the Transfer
package. With a bit of rewriting, the result is then the game for the adversary elga-
mal-reduction A . Moreover, the guess b ′ of the adversary is independent of b in
game3 ?f, so the first boolean returned by game3 ?f ′ is just a coin flip.

have game3-bad: map-spmf snd (?sample (game3 ?f ′)) = lcdh.game (elgamal-reduction
A )
have game3-guess: map-spmf fst (game3 ?f ′ x y) = coin-spmf for x y

5.8 Combining several game hops

Finally, we combine all the (in)equalities of the previous steps to obtain the desired
bound using the lemmas for reasoning about reals from Isabelle’s library.

have ind-cpa.advantage (ro.oracle, ro.initial)A = |spmf (map-spmf fst (?sample game1))
True − 1 / 2|
using ind-cpa-game-eq-game0 by(simp add: game0-game1 o-def )
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also have . . . = |1 / 2 − spmf (map-spmf fst (?sample game1)) True|
by(simp add: abs-minus-commute)

also have 1 / 2 = spmf (map-spmf fst (?sample game2)) True
by(simp add: game2-game3 game3 o-def game3-guess spmf-of-set)

also have |. . . − spmf (map-spmf fst (?sample game1)) True| ≤ spmf (map-spmf snd
(?sample game2)) True
by(rule hop12)

also have . . . = lcdh.advantage (elgamal-reduction A )
by(simp add: game2-game3 game3 game3-bad lcdh.advantage-def o-def del: map-bind-spmf )

finally show ?thesis .

This completes the concrete proof and we can end the locale hashed-elgamal.

qed

end

6 Asymptotic security

An asymptotic security statement can be easily derived from a concrete security
theorem. This is done in two steps: First, we have to introduce a security parameter
η into the definitions and assumptions. Only then can we state asymptotic security.
The proof is easy given the concrete security theorem.

6.1 Introducing a security parameter

Since all our definitions were done in locales, it is easy to introduce a security
parameter after the fact. To that end, we define copies of all locales where their pa-
rameters now take the security parameter as an additional argument. We illustrate
it for the locale ind-cpa-pk.
The sublocale command brings all the definitions and theorems of the original
ind-cpa-pk into the copy and adds the security parameter where necessary. The
type security is a synonym for nat.

locale ind-cpa-pk ′=
fixes key-gen :: security⇒ ( ′pubkey × ′privkey, ′query, ′response) gpv

and encrypt :: security⇒ ′pubkey⇒ ′plain⇒ ( ′cipher, ′query, ′response) gpv
and decrypt :: security⇒ ′privkey⇒ ′cipher⇒ ( ′plain, ′query, ′response) gpv
and valid-plains :: security⇒ ′plain⇒ ′plain⇒ bool

begin
sublocale ind-cpa-pk key-gen η encrypt η decrypt η valid-plains η for η 〈proof 〉
end

We do so similarly for list-cdh, random-oracle, and hashed-elgamal.

locale hashed-elgamal ′=
lcdh: list-cdh ′ G +
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ro: random-oracle ′ len-plain
for G :: security⇒ ′grp cyclic-group
and len-plain :: security⇒ nat

begin
sublocale hashed-elgamal G η len-plain η for η 〈proof 〉

6.2 Asymptotic security statements

For asymptotic security statements, CryptHOL defines the predicate negligible. It
states that the given real-valued function approaches 0 faster than the inverse of
any polynomial. A concrete security statement translates into an asymptotic one as
follows:

• All advantages in the bound become negligibility assumptions.

• All side conditions of the concrete security theorems remain assumptions,
but wrapped into an eventually statement. This expresses that the side con-
dition holds eventually, i.e., there is a security parameter from which on it
holds.

• The conclusion is that the bounded advantage is negligible.

theorem asymptotic-security-elgamal:
assumes negligible (λη . lcdh.advantage η (elgamal-reduction η (A η)))

and eventually (λη . ind-cpa.lossless (A η)) at-top
shows negligible (λη . ind-cpa.advantage η (ro.oracle η , ro.initial) (A η))

The proof is canonical, too: Using the lemmas about negligible and Eberl’s library
for asymptotic reasoning [6], we transform the asymptotic statement into a concrete
one and then simply use the concrete security statement.

〈proof 〉

end
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