
Gale-Stewart Games

Sebastiaan J. C. Joosten

May 26, 2024

Abstract

This is a formalisation of the main result of Gale and Stewart from
1953, showing that closed finite games are determined. This property
is now known as the Gale Stewart Theorem. While the original paper
shows some additional theorems as well, we only formalize this main
result, but do so in a somewhat general way. We formalize games of a
fixed arbitrary length, including infinite length, using co-inductive lists,
and show that defensive strategies exist unless the other player is win-
ning. For closed games, defensive strategies are winning for the closed
player, proving that such games are determined. For finite games,
which are a special case in our formalisation, all games are closed.

Contents
1 Introduction 1

2 Alternating lists 2

3 Gale Stewart Games 3
3.1 Basic definitions and their properties. 3
3.2 Winning strategies . 7
3.3 Defensive strategies . 9
3.4 Determined games . 10

1 Introduction
The original paper from Gale and Stewart [2] uses a function to point to
a previous position. This encoding of sequences is not followed in this for-
malization, as it is not the way we think of games these days. Instead, we
follow the approach taken in the formalization of Parity Games [1], where
co-inductive lists are used to talk about possibly infinite plays. Although we
rely on the Parity Games theory for some of the theorems about co-inductive
lists, none of the notions about games are shared with that formalization.

1

We have proven some basic lemmas about prefixes, extended naturals
(natural numbers plus infinity), and defined a function ’alternate’ alternat-
ing lists. We have done this in separate Isabelle theory files, so that they
can be reused independently without depending on the formalizations of in-
finite games presented here. In the same way this formalization is giving a
nod to the parity games formalization. In this document, we only present
the alternating lists, as this theory file contains new definitions, which are
relevant preliminaries to know about. The additional lemmas about prefixes
and extended natural numbers are less essential, they only contain ‘obvious’
properties, so we have left those theory files out of this document.

2 Alternating lists

In lists where even and odd elements play different roles, it helps to define
functions to take out the even elements. We defined the function (l)alternate
on (coinductive) lists to do exactly this, and define certain properties.
theory AlternatingLists

imports MoreCoinductiveList2
begin

The functions “alternate” and “lalternate” are our main workhorses: they
take every other item, so every item at even indices.
fun alternate where

alternate Nil = Nil |
alternate (Cons x xs) = Cons x (alternate (tl xs))

“lalternate” takes every other item from a co-inductive list.
primcorec lalternate :: ′a llist ⇒ ′a llist

where
lalternate xs = (case xs of LNil ⇒ LNil |

(LCons x xs) ⇒ LCons x (lalternate (ltl xs)))

lemma lalternate-ltake:
ltake (enat n) (lalternate xs) = lalternate (ltake (2∗n) xs)
〈proof 〉

lemma lalternate-llist-of [simp]:
lalternate (l list-of xs) = l list-of (alternate xs)
〈proof 〉

lemma lalternate-finite-helper :
assumes lfinite (lalternate xs)
shows lfinite xs
〈proof 〉

lemma alternate-list-of :

2

assumes lfinite xs
shows alternate (list-of xs) = list-of (lalternate xs)
〈proof 〉

lemma alternate-length:
length (alternate xs) = (1+length xs) div 2
〈proof 〉

lemma lalternate-llength:
l length (lalternate xs) ∗ 2 = (1+l length xs) ∨ l length (lalternate xs) ∗ 2 = l length

xs
〈proof 〉

lemma lalternate-finite[simp]:
shows lfinite (lalternate xs) = lfinite xs
〈proof 〉

lemma nth-alternate:
assumes 2∗n < length xs
shows alternate xs ! n = xs ! (2 ∗ n)
〈proof 〉

lemma lnth-lalternate:
assumes 2∗n < l length xs
shows lalternate xs $ n = xs $ (2 ∗ n)
〈proof 〉

lemma lnth-lalternate2[simp]:
assumes n < l length (lalternate xs)
shows lalternate xs $ n = xs $ (2 ∗ n)
〈proof 〉

end

3 Gale Stewart Games

Gale Stewart Games are infinite two player games.
theory GaleStewartGames

imports AlternatingLists MorePrefix MoreENat
begin

3.1 Basic definitions and their properties.

A GSgame G(A) is defined by a set of sequences that denote the winning
games for the first player. Our notion of GSgames generalizes both finite
and infinite games by setting a game length. Note that the type of n is
’enat’ (extended nat): either a nonnegative integer or infinity. Our only

3

requirement on GSgames is that the winning games must have the length
as specified as the length of the game. This helps certain theorems about
winning look a bit more natural.
locale GSgame =

fixes A N
assumes length:∀ e∈A. l length e = 2∗N

begin

A position is a finite sequence of valid moves.
definition position where

position (e:: ′a list) ≡ length e ≤ 2∗N

lemma position-maxlength-cannotbe-augmented:
assumes length p = 2∗N
shows ¬ position (p @ [m])
〈proof 〉

A play is a sequence of valid moves of the right length.
definition play where

play (e:: ′a llist) ≡ l length e = 2∗N

lemma plays-are-positions-conv:
shows play (l list-of p) ←→ position p ∧ length p = 2∗N
〈proof 〉

lemma finite-plays-are-positions:
assumes play p lfinite p
shows position (list-of p)
〈proof 〉

end

We call our players Even and Odd, where Even makes the first move. This
means that Even is to make moves on plays of even length, and Odd on the
others. This corresponds nicely to Even making all the moves in an even
position, as the ‘nth’ and ‘lnth’ functions as predefined in Isabelle’s library
count from 0. In literature the players are sometimes called I and II.

A strategy for Even/Odd is simply a function that takes a position of
even/odd length and returns a move. We use total functions for strate-
gies. This means that their Isabelle-type determines that it is a strategy.
Consequently, we do not have a definition of ’strategy’. Nevertheless, we will
use σ as a letter to indicate when something is a strategy. We can combine
two strategies into one function, which gives a collective strategy that we
will refer to as the joint strategy.
definition joint-strategy :: (′b list ⇒ ′a) ⇒ (′b list ⇒ ′a) ⇒ (′b list ⇒ ′a) where

joint-strategy σe σo p = (if even (length p) then σe p else σo p)

4

Following a strategy leads to an infinite sequence of moves. Note that we
are not in the context of ’GSGame’ where ’N’ determines the length of our
plays: we just let sequences go on ad infinitum here. Rather than reasoning
about our own recursive definitions, we build this infinite sequence by reusing
definitions that are already in place. We do this by first defining all prefixes
of the infinite sequence we are interested in. This gives an infinite list such
that the nth element is of length n. Note that this definition allows us to
talk about how a strategy would continue if it were played from an arbitrary
position (not necessarily one that is reached via that strategy).
definition strategy-progression where
strategy-progression σ p = lappend (l list-of (prefixes p)) (ltl (iterates (augment-list

σ) p))

lemma induced-play-infinite:
¬ lfinite (strategy-progression σ p)
〈proof 〉

lemma plays-from-strategy-lengths[simp]:
length (strategy-progression σ p $ i) = i
〈proof 〉

lemma length-plays-from-strategy[simp]:
l length (strategy-progression σ p) = ∞
〈proof 〉

lemma length-ltl-plays-from-strategy[simp]:
l length (ltl (strategy-progression σ p)) = ∞
〈proof 〉

lemma plays-from-strategy-chain-Suc:
shows prefix (strategy-progression σ p $ n) (strategy-progression σ p $ Suc n)
〈proof 〉

lemma plays-from-strategy-chain:
shows n ≤ m =⇒ prefix (strategy-progression σ p $ n) (strategy-progression σ

p $ m)
〈proof 〉

lemma plays-from-strategy-remains-const:
assumes n ≤ i
shows take n (strategy-progression σ p $ i) = strategy-progression σ p $ n
〈proof 〉

lemma infplays-augment-one[simp]:
strategy-progression σ (p @ [σ p]) = strategy-progression σ p
〈proof 〉

lemma infplays-augment-many[simp]:
strategy-progression σ ((augment-list σ ^^ n) p) = strategy-progression σ p

5

〈proof 〉

lemma infplays-augment-one-joint[simp]:
even (length p) =⇒ strategy-progression (joint-strategy σe σo) (augment-list σe

p)
= strategy-progression (joint-strategy σe σo) p

odd (length p) =⇒ strategy-progression (joint-strategy σe σo) (augment-list σo p)
= strategy-progression (joint-strategy σe σo) p

〈proof 〉

Following two different strategies from a single position will lead to the
same plays if the strategies agree on moves played after that position. This
lemma allows us to ignore the behavior of strategies for moves that are
already played.
lemma infplays-eq:

assumes
∧

p ′. prefix p p ′ =⇒ augment-list s1 p ′ = augment-list s2 p ′

shows strategy-progression s1 p = strategy-progression s2 p
〈proof 〉

context GSgame
begin

By looking at the last elements of the infinite progression, we can get a single
sequence, which we trim down to the right length. Since it has the right
length, this always forms a play. We therefore name this the ’induced play’.
definition induced-play where

induced-play σ ≡ ltake (2∗N) o lmap last o ltl o strategy-progression σ

lemma induced-play-infinite-le[simp]:
enat x < l length (strategy-progression σ p)
enat x < l length (lmap f (strategy-progression σ p))
enat x < l length (ltake (2∗N) (lmap f (strategy-progression σ p))) ←→ x < 2∗N
〈proof 〉

lemma induced-play-is-lprefix:
assumes position p
shows lprefix (l list-of p) (induced-play σ p)
〈proof 〉

lemma length-induced-play[simp]:
l length (induced-play s p) = 2 ∗ N
〈proof 〉

lemma induced-play-lprefix-non-positions:
assumes length (p:: ′a list) ≥ 2 ∗ N
shows induced-play σ p = ltake (2 ∗ N) (l list-of p)
〈proof 〉

6

lemma infplays-augment-many-lprefix[simp]:
shows lprefix (l list-of ((augment-list σ ^^ n) p)) (induced-play σ p)

= position ((augment-list σ ^^ n) p) (is ?lhs = ?rhs)
〈proof 〉

3.2 Winning strategies

A strategy is winning (in position p) if, no matter the moves by the other
player, it leads to a sequence in the winning set.
definition strategy-winning-by-Even where

strategy-winning-by-Even σe p ≡ (∀ σo. induced-play (joint-strategy σe σo) p ∈
A)
definition strategy-winning-by-Odd where

strategy-winning-by-Odd σo p ≡ (∀ σe. induced-play (joint-strategy σe σo) p /∈
A)

It immediately follows that not both players can have a winning strategy.
lemma at-most-one-player-winning:
shows ¬ (∃ σe. strategy-winning-by-Even σe p) ∨ ¬ (∃ σo. strategy-winning-by-Odd
σo p)
〈proof 〉

If a player whose turn it is not makes any move, winning strategies remain
winning. All of the following proofs are duplicated for Even and Odd, as
the game is entirely symmetrical. These ’dual’ theorems can be obtained by
considering a game in which an additional first and final move are played yet
ignored, but it is quite convenient to have both theorems at hand regardless,
and the proofs are quite small, so we accept the code duplication.
lemma any-moves-remain-winning-Even:

assumes odd (length p) strategy-winning-by-Even σ p
shows strategy-winning-by-Even σ (p @ [m])
〈proof 〉

lemma any-moves-remain-winning-Odd:
assumes even (length p) strategy-winning-by-Odd σ p
shows strategy-winning-by-Odd σ (p @ [m])
〈proof 〉

If a player does not have a winning strategy, a move by that player will not
give it one.
lemma non-winning-moves-remains-non-winning-Even:

assumes even (length p) ∀ σ. ¬ strategy-winning-by-Even σ p
shows ¬ strategy-winning-by-Even σ (p @ [m])
〈proof 〉

lemma non-winning-moves-remains-non-winning-Odd:

7

assumes odd (length p) ∀ σ. ¬ strategy-winning-by-Odd σ p
shows ¬ strategy-winning-by-Odd σ (p @ [m])
〈proof 〉

If a player whose turn it is makes a move according to its stragey, the new
position will remain winning.
lemma winning-moves-remain-winning-Even:

assumes even (length p) strategy-winning-by-Even σ p
shows strategy-winning-by-Even σ (p @ [σ p])
〈proof 〉

lemma winning-moves-remain-winning-Odd:
assumes odd (length p) strategy-winning-by-Odd σ p
shows strategy-winning-by-Odd σ (p @ [σ p])
〈proof 〉

We speak of winning positions as those positions in which the player has a
winning strategy. This is mainly for presentation purposes.
abbreviation winning-position-Even where

winning-position-Even p ≡ position p ∧ (∃ σ. strategy-winning-by-Even σ p)
abbreviation winning-position-Odd where

winning-position-Odd p ≡ position p ∧ (∃ σ. strategy-winning-by-Odd σ p)

lemma winning-position-can-remain-winning-Even:
assumes even (length p) ∀ m. position (p @ [m]) winning-position-Even p
shows ∃ m. winning-position-Even (p @ [m])
〈proof 〉

lemma winning-position-can-remain-winning-Odd:
assumes odd (length p) ∀ m. position (p @ [m]) winning-position-Odd p
shows ∃ m. winning-position-Odd (p @ [m])
〈proof 〉

lemma winning-position-will-remain-winning-Even:
assumes odd (length p) position (p @ [m]) winning-position-Even p
shows winning-position-Even (p @ [m])
〈proof 〉

lemma winning-position-will-remain-winning-Odd:
assumes even (length p) position (p @ [m]) winning-position-Odd p
shows winning-position-Odd (p @ [m])
〈proof 〉

lemma induced-play-eq:
assumes ∀ p ′. prefix p p ′ −→ (augment-list s1) p ′ = (augment-list s2) p ′

shows induced-play s1 p = induced-play s2 p
〈proof 〉

end

8

end

3.3 Defensive strategies

A strategy is defensive if a player can avoid reaching winning positions. If
the opponent is not already in a winning position, such defensive strategies
exist. In closed games, a defensive strategy is winning for the closed player,
so these strategies are a crucial step towards proving that such games are
determined.
theory GaleStewartDefensiveStrategies

imports GaleStewartGames
begin

context GSgame
begin

definition move-defensive-by-Even where
move-defensive-by-Even m p ≡ even (length p) −→ ¬ winning-position-Odd (p @

[m])
definition move-defensive-by-Odd where

move-defensive-by-Odd m p ≡ odd (length p) −→ ¬ winning-position-Even (p @
[m])

lemma defensive-move-exists-for-Even:
assumes [intro]:position p
shows winning-position-Odd p ∨ (∃ m. move-defensive-by-Even m p) (is ?w ∨ ?d)
〈proof 〉

lemma defensive-move-exists-for-Odd:
assumes [intro]:position p
shows winning-position-Even p ∨ (∃ m. move-defensive-by-Odd m p) (is ?w ∨ ?d)
〈proof 〉

definition defensive-strategy-Even where
defensive-strategy-Even p ≡ SOME m. move-defensive-by-Even m p
definition defensive-strategy-Odd where
defensive-strategy-Odd p ≡ SOME m. move-defensive-by-Odd m p

lemma position-augment:
assumes position ((augment-list f ^^ n) p)
shows position p
〈proof 〉

lemma defensive-strategy-Odd:
assumes ¬ winning-position-Even p

9

shows ¬ winning-position-Even (((augment-list (joint-strategy σe defensive-strategy-Odd))
^^ n) p)
〈proof 〉

lemma defensive-strategy-Even:
assumes ¬ winning-position-Odd p
shows ¬ winning-position-Odd (((augment-list (joint-strategy defensive-strategy-Even
σo)) ^^ n) p)
〈proof 〉

end

locale closed-GSgame = GSgame +
assumes closed:e ∈ A =⇒ ∃ p. lprefix (l list-of p) e ∧ (∀ e ′. lprefix (l list-of p) e ′

−→ l length e ′ = 2∗N −→ e ′ ∈ A)

locale finite-GSgame = GSgame +
assumes fin:N 6= ∞

begin

Finite games are closed games. As a corollary to the GS theorem, this lets
us conclude that finite games are determined.
sublocale closed-GSgame
〈proof 〉
end

context closed-GSgame begin
lemma never-winning-is-losing-even:

assumes position p ∀ n. ¬ winning-position-Even (((augment-list σ) ^^ n) p)
shows induced-play σ p /∈ A
〈proof 〉

lemma every-position-is-determined:
assumes position p
shows winning-position-Even p ∨ winning-position-Odd p (is ?we ∨ ?wo)
〈proof 〉

end

end

3.4 Determined games
theory GaleStewartDeterminedGames

imports GaleStewartDefensiveStrategies
begin

10

locale closed-GSgame = GSgame +
assumes closed:e ∈ A =⇒ ∃ p. lprefix (l list-of p) e ∧ (∀ e ′. lprefix (l list-of p) e ′

−→ l length e ′ = 2∗N −→ e ′ ∈ A)

locale finite-GSgame = GSgame +
assumes fin:N 6= ∞

begin

Finite games are closed games. As a corollary to the GS theorem, this lets
us conclude that finite games are determined.
sublocale closed-GSgame
〈proof 〉
end

context closed-GSgame begin
lemma never-winning-is-losing-even:

assumes position p ∀ n. ¬ winning-position-Even (((augment-list σ) ^^ n) p)
shows induced-play σ p /∈ A
〈proof 〉

By proving that every position is determined, this proves that every game
is determined (since a game is determined if its initial position [] is)
lemma every-position-is-determined:

assumes position p
shows winning-position-Even p ∨ winning-position-Odd p (is ?we ∨ ?wo)
〈proof 〉
lemma empty-position: position [] 〈proof 〉
lemmas every-game-is-determined = every-position-is-determined[OF empty-position]

We expect that this theorem can be easier to apply without the ’position p’
requirement, so we present that theorem as well.
lemma every-position-has-winning-strategy:

shows (∃ σ. strategy-winning-by-Even σ p) ∨ (∃ σ. strategy-winning-by-Odd σ
p) (is ?we ∨ ?wo)
〈proof 〉

end

end

References

[1] C. Dittmann. Positional determinacy of parity games. Archive of For-
mal Proofs, Nov. 2015. https://isa-afp.org/entries/Parity_Game.html,
Formal proof development.

11

https://isa-afp.org/entries/Parity_Game.html

[2] D. Gale and F. M. Stewart. Infinite games with perfect information.
Contributions to the Theory of Games, 2(245-266):2–16, 1953.

12

	Introduction
	Alternating lists
	Gale Stewart Games
	Basic definitions and their properties.
	Winning strategies
	Defensive strategies
	Determined games

