Factorization of Polynomials with Algebraic
Coefficients*

Manuel Eberl René Thiemann

May 26, 2024

Abstract

The AFP already contains a verified implementation of algebraic
numbers. However, it is has a severe limitation in its factorization
algorithm of real and complex polynomials: the factorization is only
guaranteed to succeed if the coefficients of the polynomial are rational
numbers. In this work, we verify an algorithm to factor all real and
complex polynomials whose coefficients are algebraic. The existence of
such an algorithm proves in a constructive way that the set of complex
algebraic numbers is algebraically closed. Internally, the algorithm is
based on resultants of multivariate polynomials and an approximation
algorithm using interval arithmetic.

Contents

1 Introduction 2

2 Resultants and Multivariate Polynomials 2
2.1 Connecting Univariate and Multivariate Polynomials 2
2.2 Exact Division of Multivariate Polynomials 9
2.3 Implementation of Division on Multivariate Polynomials . . . 12
2.4 Class Instances for Multivariate Polynomials and Containers. 14
2.5 Resultants of Multivariate Polynomials 15

3 Testing for Integrality and Conversion to Integers 16

4 Representing Roots of Polynomials with Algebraic Coeffi-
cients 17
4.1 Preliminaries 17
4.2 More Facts about Resultants 19
4.3 Systems of Polynomials 19
4.4 Elimination of Auxiliary Variables 21

*Supported by FWF (Austrian Science Fund) project Y757.

4.5 A Representing Polynomial for the Roots of a Polynomial

with Algebraic Coefficients. 21

4.6 Soundness Proof for Complex Algebraic Polynomials 22
4.7 Soundness Proof for Real Algebraic Polynomials 22
4.8 Algebraic Closedness of Complex Algebraic Numbers 22
4.9 Executable Version to Compute Representative Polynomials . 23

5 Root Filter via Interval Arithmetic 24
5.1 Generic Frameworko 24

6 Roots of Real and Complex Algebraic Polynomials 27
7 Factorization of Polynomials with Algebraic Coefficients 30
7.1 Complex Algebraic Coefficients 30
7.2 Real Algebraic Coefficients 31

1 Introduction

The formalization of algebraic numbers [4, 6] includes an algorithm that
given a univariate polynomial f over Z or Q, it computes all roots of f
within R or C. In this AFP entry we verify a generalized algorithm that also
allows polynomials as input whose coefficients are complex or real algebraic
numbers, following [5, Section 3].

The verified algorithm internally computes resultants of multivariate
polynomials, where we utilize Braun and Traub’s subresultant algorithm
in our verified implementation [1, 2, 3]. In this way we achieve an efficient
implementation with minimal effort: only a division algorithm for multi-
variate polynomials is required, but no algorithm for computing greatest
common divisors of these polynomials.

Acknowledgments We thank Dmitriy Traytel for help with code gener-
ation for functions defined via lift-definition.

2 Resultants and Multivariate Polynomials

2.1 Connecting Univariate and Multivariate Polynomials

We define a conversion of multivariate polynomials into univariate polyno-
mials w.r.t. a fixed variable x and multivariate polynomials as coefficients.

theory Poly-Connection
imports
Polynomials. MPoly- Type- Univariate
Jordan-Normal-Form. Missing-Misc
Polynomial-Interpolation. Ring-Hom-Poly

Hermite-Lindemann. More- Multivariate- Polynomial-HLW
Polynomials. MPoly- Type-Class
begin

lemma mpoly-is-unitk:
fixes p :: ‘a = {comm-semiring-1, semiring-no-zero-divisors} mpoly
assumes p dvd 1
obtains ¢ where p = Const ¢ ¢ dvd 1

(proof)

lemma Const-eg-Const-iff [simp]:
Const ¢ = Const ¢’ <— ¢ = ¢’
{proof)

lemma is-unit-Constl [intro]: ¢ dvd 1 = Const ¢ dvd 1

(proof)

lemma is-unit-Const-iff:
fixes ¢ :: 'a :: {comm-semiring-1, semiring-no-zero-divisors}
shows Const ¢ dvd 1 +— ¢ dvd 1

(proof)

lemma vars-emptyE: vars p = {} = (A\c. p = Const c = P) = P
{proof)

lemma degree-gel:

assumes MPoly-Type.coeff p m # 0

shows MPoly-Type.degree p i > Poly-Mapping.lookup m i
(proof)

lemma monom-of-degree-exists:

assumes p # 0

obtains m where MPoly-Type.coeff p m # 0 Poly-Mapping.lookup m i =
MPoly-Type.degree p i
(proof)

lemma degree-lel:
assumes Am. Poly-Mapping.lookup m ¢ > n = MPoly-Type.coeff p m = 0
shows MPoly-Type.degree p i < n

(proof)

lemma coeff-gt-degree-eq-0:
assumes Poly-Mapping.lookup m i > MPoly-Type.degree p i
shows MPoly-Type.coeff p m = 0

{proof)

lemma vars-altdef: vars p = (U me{m. MPoly-Type.coeff p m # 0}. keys m)
(proof)

lemma degree-pos-iff: MPoly-Type.degree p x > 0 <— = € vars p
(proof)

lemma degree-eq-0-iff: MPoly-Type.degree p x = 0 «— x & vars p
(proof)

lemma MPoly- Type-monom-zero|simp|: MPoly-Type.monom m 0 = 0
(proof)

lemma vars-monom-keys”. vars (MPoly-Type.monom m ¢) = (if ¢ = 0 then {}
else keys m)
(proof)

lemma Const-eq-0-iff [simp]: Const ¢ = 0 +— ¢ =0

(proof)

lemma monom-remove-key: MPoly-Type.monom m (a :: 'a :: semiring-1) =
MPoly-Type.monom (remove-key x m) a x MPoly-Type.monom (Poly-Mapping.single
z (lookup m z)) 1
{proof)

lemma MPoly- Type-monom-0-iff [simp]: MPoly-Type.monom m x = 0 «— z = 0
{proof)

lemma vars-signof|[simp]: vars (signof z) = {}
{proof)

lemma prod-mset-Const: prod-mset (image-mset Const A) = Const (prod-mset A)
{proof)

lemma Const-eq-product-iff:

fixes ¢ :: 'a :: idom

assumes ¢ # 0

shows Const c =ax* b<+— (Fa’b". a = Consta’ AN b= Const b’ A ¢c = a'*
b’)
(proof)

lemma irreducible-Const-iff [simp]:
irreducible (Const (¢ :: 'a = idom)) <— irreducible c

(proof)

lemma Const-dvd-Const-iff [simp]: Const a dvd Const b «— a dvd b
(proof)

The lemmas above should be moved into the right theories. The part below
is on the new connection between multivariate polynomials and univariate
polynomials.

The imported theories only allow a conversion from one-variable mpoly’s
to poly and vice-versa. However, we require a conversion from arbitrary

mpoly’s into poly’s with mpolys as coefficients.

definition mpoly-to-mpoly-poly :: nat = 'a :: comm-ring-1 mpoly = "a mpoly poly
where
mpoly-to-mpoly-poly p = (> m .
Polynomial.monom (MPoly-Type.monom (remove-key x m) (MPoly-Type. coeff
p m)) (lookup m x))

lemma mpoly-to-mpoly-poly-add [simpl:

mpoly-to-mpoly-poly = (p + q) = mpoly-to-mpoly-poly = p + mpoly-to-mpoly-poly
Tq

(proof)

lemma mpoly-to-mpoly-poly-monom: mpoly-to-mpoly-poly x (MPoly-Type.monom
m a) = Polynomial.monom (MPoly-Type.monom (remove-key x m) a) (lookup m
z)

(proof)

lemma remove-key-transfer [transfer-rule]:

rel-fun (=) (rel-fun (per-poly-mapping (=) (=)) (per-poly-mapping (=) (=)))
(NKO f k. f k when k # k0) remove-key

{proof)

lemma remove-key-0 [simp]: remove-key = 0 = 0
(proof)

lemma remove-key-single’ [simp]:
x # y = remove-key z (Poly-Mapping.single y n) = Poly-Mapping.single y n
(proof)

lemma poly-coeff-Sum-any:

assumes finite {z. fz # 0}

shows poly.coeff (Sum-any f) n = Sum-any (Az. poly.coeff (f z) n)
(proof)

lemma coeff-coeff-mpoly-to-mpoly-poly:
MPoly-Type.coeff (poly.coeff (mpoly-to-mpoly-poly x p) n) m =
(MPoly-Type.coeff p (m + Poly-Mapping.single x n) when lookup m x = 0)
(proof)

lemma mpoly-to-mpoly-poly-Const [simpl:
mpoly-to-mpoly-poly = (Const ¢) = [:Const c:]
(proof)

lemma mpoly-to-mpoly-poly- Var:
mpoly-to-mpoly-poly = (Var y) = (if x = y then [:0, I:] else [: Var y:])
(proof)

lemma mpoly-to-mpoly-poly- Var-this [simp]:

mpoly-to-mpoly-poly = (Var x) = [:0, 1]
x # y = mpoly-to-mpoly-poly = (Var y) = [: Var y:]
(proof)

lemma mpoly-to-mpoly-poly-uminus [simp]:
mpoly-to-mpoly-poly = (—p) = —mpoly-to-mpoly-poly x p
(proof)

lemma mpoly-to-mpoly-poly-diff [simp:

mpoly-to-mpoly-poly x (p — q) = mpoly-to-mpoly-poly x p — mpoly-to-mpoly-poly
T q

(proof)

lemma mpoly-to-mpoly-poly-0 [simp]:
mpoly-to-mpoly-poly x 0 = 0
(proof)

lemma mpoly-to-mpoly-poly-1 [simp):
mpoly-to-mpoly-poly x 1 = 1
(proof)

lemma mpoly-to-mpoly-poly-of-nat [simpl:
mpoly-to-mpoly-poly = (of-nat n) = of-nat n
(proof)

lemma mpoly-to-mpoly-poly-of-int [simp]:
mpoly-to-mpoly-poly = (of-int n) = of-int n
(proof)

lemma mpoly-to-mpoly-poly-numeral [simp]:
mpoly-to-mpoly-poly = (numeral n) = numeral n

(proof)

lemma coeff-monom-mult”:

MPoly-Type.coeff (MPoly-Type.monom m a * q) m’ =

(a * MPoly-Type.coeff ¢ (m’ — m) when lookup m’ > lookup m)
(proof)

lemma mpoly-to-mpoly-poly-mult-monom:
mpoly-to-mpoly-poly x (MPoly-Type.monom m a * q) =
Polynomial.monom (MPoly-Type.monom (remove-key x m) a) (lookup m z) *
mpoly-to-mpoly-poly x q
(is ?lhs = ?rhs)

(proof)

lemma mpoly-to-mpoly-poly-mult [simp:

mpoly-to-mpoly-poly x (p * q) = mpoly-to-mpoly-poly x p * mpoly-to-mpoly-poly x
q

(proof)

lemma coeff-mpoly-to-mpoly-poly:
Polynomial.coeff (mpoly-to-mpoly-poly = p) n =
Sum-any (Am. MPoly-Type.monom (remove-key x m) (MPoly-Type.coeff p m)
when Poly-Mapping.lookup m z = n)
(proof)

lemma mpoly-coeff-to-mpoly-poly-coeff:
MPoly-Type.coeff p m = MPoly-Type.coeff (poly.coeff (mpoly-to-mpoly-poly z p)
(lookup m x)) (remove-key x m)

(proof)

lemma degree-mpoly-to-mpoly-poly [simp]:
Polynomial.degree (mpoly-to-mpoly-poly x p) = MPoly-Type.degree p x
{proof)

The upcoming lemma is similar to reduce-nested-mpoly (extract-var ?p ?v)
= 7p.
lemma poly-mpoly-to-mpoly-poly:
poly (mpoly-to-mpoly-poly x p) (Var x) = p
(proof)

lemma mpoly-to-mpoly-poly-eq-iff [simp]:
mpoly-to-mpoly-poly x p = mpoly-to-mpoly-poly = g +— p = q
(proof)

Evaluation, i.e., insertion of concrete values is identical

lemma insertion-mpoly-to-mpoly-poly: assumes \ y. y £z = Ly=ay
shows poly (map-poly (insertion) (mpoly-to-mpoly-poly x p)) (v) = insertion

ap

(proof)

lemma mpoly-to-mpoly-poly-dvd-iff [simp]:
mpoly-to-mpoly-poly x p dvd mpoly-to-mpoly-poly x ¢ +— p dvd q
(proof)

lemma vars-coeff-mpoly-to-mpoly-poly: vars (poly.coeff (mpoly-to-mpoly-poly x p)
i) Cvars p — {x}
(proof)

locale transfer-mpoly-to-mpoly-poly =
fixes z :: nat
begin

definition R :: ‘a :: comm-ring-1 mpoly poly = 'a mpoly = bool where
R p p’ <— p = mpoly-to-mpoly-poly x p’

context

includes lifting-syntax
begin

lemma transfer-0 [transfer-rule]: R 0 0
and transfer-1 [transfer-rule]: R 1 1
and transfer-Const [transfer-rule]: R [:Const ¢:] (Const c)

and transfer-uminus [transfer-rule]: (R ===> R) uminus uminus
and transfer-of-nat [transfer-rule]: ((=) ===> R) of-nat of-nat
and transfer-of-int [transfer-rule]: ((=) ===> R) of-nat of-nat
and transfer-numeral [transfer-rule]: ((=) ===> R) of-nat of-nat
and transfer-add [transfer-rule]: (R ===> R ===> R) (+) (+)
and transfer-diff [transfer-rule]: (R ===> R ===> R) (+) (+)
and transfer-mult [transfer-rule]: (R ===> R ===> R) (*) (%)

and transfer-dvd [transfer-rule]: (R ===> R ===> (=)) (dvd) (dvd)
and transfer-monom [transfer-rule]:
(=) ===> (=) =—==>)
(Am a. Polynomial.monom (MPoly-Type.monom (remove-key © m) a)
(lookup m x))
MPoly-Type.monom
and transfer-coeff [transfer-rule]:
(R ===> (=) ===> (=))
(Ap m. MPoly-Type.coeff (poly.coeff p (lookup m x)) (remove-key x m))
MPoly-Type. coeff
and transfer-degree [transfer-rule]:
(R ===> (=)) Polynomial.degree (Ap. MPoly-Type.degree p x)
(proof)

lemma transfer-vars [transfer-rule]:
assumes [transfer-rule]: R p p’
shows (|J4. vars (poly.coeff p ©)) U (if Polynomial.degree p = 0 then {} else
{z}) = vars p’
(is AU 2B = -)

(proof)

lemma right-total [transfer-rule]: right-total R
{proof)

lemma bi-unique [transfer-rule]: bi-unique R
(proof)

end
end
lemma mpoly-degree-mult-eq:

fixes p q :: 'a :: idom mpoly
assumes p # 0 ¢ # 0

shows MPoly-Type.degree (p x q) © = MPoly-Type.degree p x + MPoly-Type.degree
qz
(proof)

Converts a multi-variate polynomial into a univariate polynomial via insert-
ing values for all but one variable
definition partial-insertion :: (nat = 'a) = nat = 'a :: comm-ring-1 mpoly = 'a
poly where

partial-insertion « x p = map-poly (insertion «) (mpoly-to-mpoly-poly z p)

lemma comm-ring-hom-insertion: comm-ring-hom (insertion «)

{proof)

lemma partial-insertion-add: partial-insertion a z (p + q) = partial-insertion o x
p + partial-insertion o x g

(proof)

lemma partial-insertion-monom: partial-insertion o x (MPoly-Type.monom m a)
= Polynomial.monom (insertion o (MPoly-Type.monom (remove-key z m) a))
(lookup m x)

{proof)

Partial insertion + insertion of last value is identical to (full) insertion

lemma insertion-partial-insertion: assumes \ y. y Az = fy=a y
shows poly (partial-insertion 8 x p) (o x) = insertion a p
(proof)

lemma insertion-coeff-mpoly-to-mpoly-poly|simp):
insertion « (coeff (mpoly-to-mpoly-poly = p) k) = coeff (partial-insertion o x p) k
(proof)

lemma degree-map-poly-Const: degree (map-poly (Const :: 'a :: semiring-0 = -)
f) = degree f
(proof)

lemma degree-partial-insertion-le-mpoly: degree (partial-insertion o z p) < degree
(mpoly-to-mpoly-poly z p)
(proof)

end

2.2 Exact Division of Multivariate Polynomials

theory MPoly-Divide
imports
Hermite-Lindemann. More-Multivariate- Polynomial- HLW
Polynomials. MPoly- Type-Class
Poly-Connection

begin

lemma poly-lead-coeff-dvd-lead-coeff:
assumes p dvd (q :: 'a :: idom poly)
shows Polynomial.lead-coeff p dvd Polynomial.lead-coeff q
(proof)

Since there is no particularly sensible algorithm for division with a remainder
on multivariate polynomials, we define the following division operator that
performs an exact division if possible and returns 0 otherwise.
instantiation mpoly :: (comm-semiring-1) divide

begin

definition divide-mpoly :: 'a mpoly = 'a mpoly = 'a mpoly where
divide-mpoly vy = (if y # 0 A y dvd x then THE 2. x = y * z else 0)

instance (proof)
end

instance mpoly :: (idom) idom-divide
{proof)

lemma (in transfer-mpoly-to-mpoly-poly) transfer-div [transfer-rule]:
assumes [transfer-rule]: R p’p R ¢’ q
assumes ¢ dvd p
shows R (p’ div q¢’) (p div q)
(proof)

instantiation mpoly :: ({normalization-semidom, idom}) normalization-semidom
begin

definition unit-factor-mpoly :: 'a mpoly = 'a mpoly where
unit-factor-mpoly p = Const (unit-factor (lead-coeff p))

definition normalize-mpoly :: 'a mpoly = 'a mpoly where
normalize-mpoly p = Rings.divide p (unit-factor p)

lemma unit-factor-mpoly-Const [simp]:
unit-factor (Const ¢) = Const (unit-factor c)
{proof)

lemma normalize-mpoly-Const [simp]:
normalize (Const ¢) = Const (normalize ¢)

(proof)

10

instance (proof)

end

The following is an exact division operator that can fail, i.e. if the divisor
does not divide the dividend, it returns None.

definition divide-option :: 'a :: idom-divide = 'a = 'a option (infixl div? 70)
where
divide-option p q¢ = (if q dvd p then Some (p div q) else None)

We now show that exact division on the ring R[X1,..., X,] can be reduced
to exact division on the ring R[X71, ..., X,][X], i.e. we can go from ‘a mpoly
to a 'a mpoly poly where the coefficients have one variable less than the
original multivariate polynomial. We basically simply use the isomorphism
between these two rings.

lemma divide-option-mpoly:
fixes p ¢ :: 'a :: idom-divide mpoly
shows p div? ¢ = (let V = vars p U vars q in
(if V= {} then
let a = MPoly-Type.coeff p 0; b = MPoly-Type.coeff q 0; ¢ = a div b
in if b % ¢ = a then Some (Const c) else None
else
let © = Max V;
p" = mpoly-to-mpoly-poly = p; q¢' = mpoly-to-mpoly-poly z q
in case p’ div? q' of
None = None
| Some r = Some (poly r (Var x)))) (is - = ?rhs)

(proof)
Next, we show that exact division on the ring R[X1,...,X,][Y] can be
reduced to exact division on the ring R[X7, ..., X,]. This is essentially just

polynomial division.

lemma divide-option-mpoly-poly:
fixes p q :: 'a :: idom-divide mpoly poly
shows p div? q =
(if p = 0 then Some 0
else if ¢ = 0 then None
else let dp = Polynomial.degree p; dqg = Polynomial.degree q
in if dp < dq then None
else case Polynomial.lead-coeff p div? Polynomial.lead-coeff q of
None = None
| Some ¢ = (
case (p — Polynomial.monom ¢ (dp — dq) * q) div? q of
None = None
| Some r = Some (Polynomial.monom ¢ (dp — dq) + r)))
(is - = ?rhs)

(proof)

11

These two equations now serve as two mutually recursive code equations
that allow us to reduce exact division of multivariate polynomials to exact
division of their coefficients. Termination of these code equations is not
shown explicitly, but is obvious since one variable is eliminated in every
step.
definition divide-option-mpoly :: 'a :: idom-divide mpoly = -

where divide-option-mpoly = divide-option

definition divide-option-mpoly-poly :: 'a :: idom-divide mpoly poly = -
where divide-option-mpoly-poly = divide-option

lemmas divide-option-mpoly-code [code] =
divide-option-mpoly [folded divide-option-mpoly-def divide-option-mpoly-poly-def]

lemmas divide-option-mpoly-poly-code [code] =
divide-option-mpoly-poly |folded divide-option-mpoly-def divide-option-mpoly-poly-def]

lemma divide-mpoly-code [code]:
fixes p q :: 'a :: idom-divide mpoly
shows p div ¢ = (case divide-option-mpoly p q of None = 0 | Some r =)
(proof)

end

2.3 Implementation of Division on Multivariate Polynomials

theory MPoly-Divide-Code
imports
MPoly-Divide
Polynomials. MPoly-Type-Class-FMap
Polynomials. MPoly- Type- Univariate
begin

We now set up code equations for some of the operations that we will need,
such as division, mpoly-to-poly, and mpoly-to-mpoly-poly.
lemma mapping-of-MPoly|[code]: mapping-of (MPoly p) = p

(proof)

lift-definition filter-pm :: (‘a = bool) = ('a = 'b :: zero) = (‘a =¢ 'b) is
AP fx. if Pxthen fz else 0
(proof)

lemma lookup-filter-pm: lookup (filter-pm P f) x = (if P x then lookup f x else 0)
(proof)

lemma filter-pm-code [code]: filter-pm P (Pm-fmap m) = Pm-fmap (fmfilter P m)
(proof)

12

lemma remove-key-conv-filter-pm [code]: remove-key x m = filter-pm (Ay. y # x)
m
(proof)

lemma finite-poly-coeff-nonzero: finite {n. poly.coeff p n # 0}
(proof)

lemma poly-degree-conv-Max:
assumes p # 0
shows Polynomial.degree p = Max {n. poly.coeff p n # 0}

{proof)

lemma mpoly-to-poly-code-aux:
fixes p :: ‘a :: comm-monoid-add mpoly and z :: nat
defines I = (Am. lookup m z) ° Set.filter (Am. Vyckeys m. y = xz) (keys
(mapping-of p))
shows I = {n. poly.coeff (mpoly-to-poly x p) n # 0}
and mpoly-to-poly tp = 0 +— I = {}
and [# {} = Polynomial.degree (mpoly-to-poly x p) = Max I
{proof)

lemma mpoly-to-poly-code [code]:
Polynomial.coeffs (mpoly-to-poly = p) =
(let I = (Am. lookup m) * Set.filter (Am. V ykeys m. y = z) (keys (mapping-of

p))
in if I = {} then || else map (An. MPoly-Type.coeff p (Poly-Mapping.single x
n)) [0..<Mazx I + 1))
(is ?lhs = ?rhs)

{(proof)

fun mpoly-to-mpoly-poly-impl-auz! :: nat = ((nat = nat) x 'a) list = nat =
((nat = nat) x ’a) list where
mpoly-to-mpoly-poly-impl-auzl i [| j =[]
| mpoly-to-mpoly-poly-impl-auzl i ((mon', ¢) # xs) j =
(if lookup mon’ i = j then [(remove-key i mon’, ¢)] else [|) @ mpoly-to-mpoly-poly-impl-auxl
118 j

lemma mpoly-to-mpoly-poly-impl-auzx1-altdef:
mpoly-to-mpoly-poly-impl-auzl i xs j =
map (A(mon, ¢). (remove-key i mon, c)) (filter (A(mon, ¢). lookup mon i = j)
xs)
(proof)

lemma map-of-mpoly-to-mpoly-poly-impl-auxl:

map-of (mpoly-to-mpoly-poly-impl-aux! i zs j) = (Amon.
(if lookup mon i > 0 then None

13

else map-of xs (mon + Poly-Mapping.single i j)))
(proof)

lemma lookup0-fmap-of-list-mpoly-to-mpoly-poly-impl-auzx1:
lookup0 (fmap-of-list (mpoly-to-mpoly-poly-impl-auzl i zs j)) = (Amon.
lookup0 (fmap-of-list xs) (mon + Poly-Mapping.single i j) when lookup mon i
= 0)
(proof)

definition mpoly-to-mpoly-poly-impl-auz2 where
mpoly-to-mpoly-poly-impl-auz2 i p j = poly.coeff (mpoly-to-mpoly-poly i p) j

lemma coeff-MPoly: MPoly-Type.coeff (MPoly f) m = lookup fm
(proof)

lemma mpoly-to-mpoly-poly-impl-auz2-code [code]:
mpoly-to-mpoly-poly-impl-auz2 i (MPoly (Pm-fmap (fmap-of-list xs))) j =
MPoly (Pm-fmap (fmap-of-list (mpoly-to-mpoly-poly-impl-auz! i xs j)))
(proof)

definition mpoly-to-mpoly-poly-impl :: nat = ’a :: comm-ring-1 mpoly = 'a mpoly
list where
mpoly-to-mpoly-poly-impl x p = (if p = 0 then [] else
map (mpoly-to-mpoly-poly-impl-auz2 x p) [0..<Suc (MPoly-Type.degree p z)])

lemma mpoly-to-mpoly-poly-eq-0-iff [simp]: mpoly-to-mpoly-poly x p = 0 +— p =
0
(proof)

lemma mpoly-to-mpoly-poly-code [code]:
Polynomial.coeffs (mpoly-to-mpoly-poly = p) = mpoly-to-mpoly-poly-impl x p
(proof)

value mpoly-to-mpoly-poly 0 (Var 0 =2 + Var 0 x Var 1 4+ Var 1 ~ 2 :: int mpoly)
value Rings.divide (Var 0 ~ 2 % Var 1 4+ Var 0 = Var 1 ~ 2 :: int mpoly) (Var 1)

end

2.4 Class Instances for Multivariate Polynomials and Con-
tainers

theory MPoly-Container
imports
Polynomials. MPoly- Type-Class
Containers.Set-Impl
begin

Basic setup for using multivariate polynomials in combination with container

14

framework.

derive (eq) ceq poly-mapping
derive (dlist) set-impl poly-mapping
derive (no) ccompare poly-mapping

end

2.5 Resultants of Multivariate Polynomials

We utilize the conversion of multivariate polynomials into univariate poly-
nomials for the definition of the resultant of multivariate polynomials via the
resultant for univariate polynomials. In this way, we can use the algorithm
to efficiently compute resultants for the multivariate case.

theory Multivariate-Resultant
imports

Poly-Connection
Algebraic-Numbers. Resultant
Subresultants. Subresultant
MPoly-Divide-Code
MPoly-Container

begin

hide-const (open)
MPoly-Type.degree
MPoly-Type. coeff
Symmetric- Polynomials.lead-coeff

lemma det-sylvester-matriz-higher-degree:

det (sylvester-mat-sub (degree f + n) (degree g) f g)

= det (sylvester-mat-sub (degree f) (degree g) f g) * (lead-coeff g * (—1) (degree
9))
{proof)
The conversion of multivariate into univariate polynomials permits us to
define resultants in the multivariate setting. Since in our application one
of the polynomials is already univariate, we use a non-symmetric definition
where only one of the input polynomials is multivariate.
definition resultant-mpoly-poly :: nat = 'a :: comm-ring-1 mpoly = 'a poly = 'a
mpoly where

resultant-mpoly-poly x p q = resultant (mpoly-to-mpoly-poly x p) (map-poly Const
)

This lemma tells us that there is only a minor difference between computing
the multivariate resultant and then plugging in values, or first inserting
values and then evaluate the univariate resultant.

lemma insertion-resultant-mpoly-poly: insertion « (resultant-mpoly-poly x p q) =
resultant (partial-insertion o x p) q *

15

(lead-coeff q = (—1)" degree q) (degree (mpoly-to-mpoly-poly = p) — degree
(partial-insertion « z p))
(proof)

lemma insertion-resultant-mpoly-poly-zero: fixes q :: 'a :: idom poly

assumes ¢: ¢ £ 0

shows insertion « (resultant-mpoly-poly x p q) = 0 «+— resultant (partial-insertion
azp)qg=20

(proof)

lemma vars-resultant: vars (resultant p q) C |J (vars ¢ (range (coeff p) U range

(coeff q)))
{proof)

By taking the resultant, one variable is deleted.

lemma vars-resultant-mpoly-poly: vars (resultant-mpoly-poly x p q) C vars p — {z}

(proof)

For resultants, we manually have to select the implementation that works
on integral domains, because there is no factorial ring instance for int mpoly.
lemma resultant-mpoly-poly-code[code]:

resultant-mpoly-poly x p q = resultant-impl-basic (mpoly-to-mpoly-poly x p) (map-poly
Const q)

(proof)

end

3 Testing for Integrality and Conversion to Inte-
gers

theory Is-Int-To-Int
imports
Polynomial-Interpolation.Is-Rat-To- Rat
begin

lemma inv-of-rat: inv of-rat (of-rat) = x

(proof)

lemma of-rat-Ints-iff: ((of-rat z :: 'a :: field-char-0) € Z) = (z € Z)
{proof)

lemma is-int-code[code-unfold):
shows (z € Z) = (is-rat x A is-int-rat (to-rat z))

(proof)

definition to-int :: ‘a :: is-rat = int where
to-int x = int-of-rat (to-rat x)

16

lemma of-int-to-int: © € Z = of-int (to-int) = x
{proof)

lemma to-int-of-int: to-int (of-int z) = x

{proof)

lemma to-rat-complex-of-real[simp|: to-rat (complez-of-real x) = to-rat x
(proof)

lemma to-int-complez-of-real[simp): to-int (complez-of-real x) = to-int x

{proof)

end

4 Representing Roots of Polynomials with Alge-
braic Coefficients

We provide an algorithm to compute a non-zero integer polynomial g from
a polynomial p with algebraic coefficients such that all roots of p are also
roots of q.

In this way, we have a constructive proof that the set of complex algebraic
numbers is algebraically closed.

theory Roots-of-Algebraic-Poly
imports
Algebraic-Numbers. Complex-Algebraic- Numbers
Multivariate- Resultant
Is-Int-To-Int
begin

4.1 Preliminaries
hide-const (open) up-ring.monom

hide-const (open) MPoly-Type.monom

lemma map-mpoly-Const: f 0 = 0 = map-mpoly f (Const i) = Const (f 1)
(proof)
lemma map-mpoly-Var: f 1 = 1 = map-mpoly (f :: 'b :: zero-neq-one = -) (Var
i) = Vari
(proof)

lemma map-mpoly-monom: f 0 = 0 = map-mpoly f (MPoly-Type.monom m a)
= (MPoly-Type.monom m (f a))

{proof)

lemma remove-key-single”:

17

remove-key v (Poly-Mapping.single wn) = (if v = w then 0 else Poly-Mapping.single
w n)
{proof)

context comm-monoid-add-hom

begin

lemma hom-Sum-any: assumes fin: finite {z. fx # 0}
shows hom (Sum-any f) = Sum-any (A z. hom (f z))
(proof)

lemma comm-monoid-add-hom-mpoly-map: comm-monoid-add-hom (map-mpoly
hom)
(proof)

lemma map-mpoly-hom-Const: map-mpoly hom (Const i) = Const (hom i)

(proof)

lemma map-mpoly-hom-monom: map-mpoly hom (MPoly-Type.monom m a) =
MPoly-Type.monom m (hom a)

(proof)
end

context comm-ring-hom
begin
lemma mpoly-to-poly-map-mpoly-hom: mpoly-to-poly x (map-mpoly hom p) = map-poly
hom (mpoly-to-poly z p)
(proof)

lemma comm-ring-hom-mpoly-map: comm-ring-hom (map-mpoly hom)
(proof)

lemma mpoly-to-mpoly-poly-map-mpoly-hom:
mpoly-to-mpoly-poly x (map-mpoly hom p) = map-poly (map-mpoly hom) (mpoly-to-mpoly-poly
z p)

(proof)
end

context inj-comm-ring-hom

begin

lemma inj-comm-ring-hom-mpoly-map: inj-comm-ring-hom (map-mpoly hom)
(proof)

lemma resultant-mpoly-poly-hom: resultant-mpoly-poly x (map-mpoly hom p) (map-poly
hom q) = map-mpoly hom (resultant-mpoly-poly = p q)

(proof)

end

lemma map-insort-key: assumes [simp]: A zy. g1 © < gl y +— g2 (fz) < g2 (f

Y)

18

shows map f (insort-key g1 a xs) = insort-key g2 (f a) (map f xs)
{proof)

lemma map-sort-key: assumes [simp]: \ zy. gl © < gl y +— ¢2 (fz) < g2 (f
v)
shows map f (sort-key g1 xzs) = sort-key g2 (map f xs)

{proof)

hide-const (open
hide-const (open
hide-const (open
hide-const (open

MPoly-Type.degree

MPoly- Type. coeffs

MPoly-Type. coeff
Symmetric-Polynomials.lead-coeff

— — — —

4.2 More Facts about Resultants

lemma resultant-iff-coprime-main:

fixes f g :: 'a :: field poly

assumes deg: degree f > 0V degree g > 0
shows resultant f g = 0 <— — coprime f g

(proof)

lemma resultant-zero-iff-coprime: fixes f g :: 'a :: field poly
assumes f £ 0V g # 0
shows resultant f g = 0 <— — coprime f g

(proof)

The problem with the upcoming lemma is that "root” and ”irreducibility”
refer to the same type. In the actual application we interested in "irre-
ducibility” over the integers, but the roots we are interested in are either
real or complex.

lemma resultant-zero-iff-common-root-irreducible: fixes f g :: 'a :: field poly
assumes r7: irreducible g
and root: poly g a = 0

shows resultant f g = 0 «— (3 z. poly fx = 0 A poly g x = 0)

(proof)

lemma resultant-zero-iff-common-root-complex: fixes f g :: complex poly
assumes ¢g: g # 0
shows resultant f g = 0 «— (3 z. poly fx = 0 A poly g x = 0)

(proof)

4.3 Systems of Polynomials

Definition of solving a system of polynomials, one being multivariate

definition mpoly-polys-solution :: 'a :: field mpoly = (nat = 'a poly) = nat set
= (nat = 'a) = bool where
mpoly-polys-solution p gs N o = (

19

insertion a p = 0 A\

(V i€ N. poly (gs i) (o (Suc i) = 0))

The upcoming lemma shows how to eliminate single variables in multi-

variate root-problems. Because of the problem mentioned in resultant-zero-iff-common-root-irreducible
we here restrict to polynomials over the complex numbers. Since the result

computations are homomorphisms, we are able to lift it to integer polyno-

mials where we are interested in real or complex roots.

lemma resultant-mpoly-polys-solution: fixes p :: complex mpoly
assumes nz: 0 ¢ qs ‘N
and i: i € N

shows mpoly-polys-solution (resultant-mpoly-poly (Suc i) p (gs 7)) gs (N — {i}) «
+— (3 v. mpoly-polys-solution p gs N (a((Suc %) := v)))

(proof)

We now restrict solutions to be evaluated to zero outside the variable range.
Then there are only finitely many solutions for our applications.

definition mpoly-polys-zero-solution :: 'a :: field mpoly = (nat = 'a poly) = nat
set = (nat = 'a) = bool where
mpoly-polys-zero-solution p qs N a = (mpoly-polys-solution p gs N «
A (Y i. i ¢ insert 0 (Suc ‘N) — «a i = 0))

lemma resultant-mpoly-polys-zero-solution: fixes p :: complex mpoly
assumes nz: 0 ¢ qs ‘' N
and i: i € N
shows
mpoly-polys-zero-solution (resultant-mpoly-poly (Suc i) p (gs 7)) gs (N — {i}) «
= 3 v. mpoly-polys-zero-solution p gs N (a(Suc i := v))
mpoly-polys-zero-solution p qs N «
= mpoly-polys-zero-solution (resultant-mpoly-poly (Suc i) p (¢s 7)) ¢s (N —
{i}) (a(Suc i := 0))
{proof)

The following two lemmas show that if we start with a system of polynomials
with finitely many solutions, then the resulting polynomial cannot be the
zero-polynomial.
lemma finite-resultant-mpoly-polys-non-empty: fixes p :: complex mpoly
assumes nz: 0 ¢ qs ‘' N
and i: i € N
and fin: finite {«. mpoly-polys-zero-solution p gs N a}
shows finite {a. mpoly-polys-zero-solution (resultant-mpoly-poly (Suc i) p (gs 1))
gs (N —{i}) a}
(proof)

lemma finite-resultant-mpoly-polys-empty: fixes p :: complex mpoly
assumes finite {«. mpoly-polys-zero-solution p gs {} a}
shows p # 0

(proof)

20

4.4 Elimination of Auxiliary Variables

fun eliminate-auz-vars :: 'a :: comm-ring-1 mpoly = (nat = 'a poly) = nat list

= 'a poly where

eliminate-auz-vars p gs [| = mpoly-to-poly 0 p
| eliminate-auz-vars p qs (i # is) = eliminate-aux-vars (resultant-mpoly-poly (Suc
) p (a5 9) as i

lemma eliminate-auz-vars-of-int-poly:

eliminate-auz-vars (map-mpoly (of-int :: - = 'a = {comm-ring-1,ring-char-0})
mp) (of-int-poly o g¢s) is

= of-int-poly (eliminate-auz-vars mp qs is)
(proof)

The polynomial of the elimination process will represent the first value «
(0::'a) of any solution to the multi-polynomial problem.

lemma eliminate-aux-vars: fixes p :: complex mpoly

assumes distinct is

and vars p C insert 0 (Suc © set is)

and finite {a. mpoly-polys-zero-solution p gs (set is) o}

and 0 ¢ gs ‘ set is

and mpoly-polys-solution p qs (set is) a
shows poly (eliminate-auz-vars p gs is) (a 0) = 0 A eliminate-auz-vars p qs is #
0

(proof)

4.5 A Representing Polynomial for the Roots of a Polyno-
mial with Algebraic Coefficients

First convert an algebraic polynomial into a system of integer polynomials.

/

definition initial-root-problem :: 'a :: {is-rat,field-ged} poly = int mpoly x (nat
x 'a x int poly) list where
initial-root-problem p = (let
n = degree p;
cs = coeffs p;
res = remdups (filter (A c¢. ¢ ¢ Z) cs);
pairs = map (X c. (¢, min-int-poly c)) res;
spairs = sort-key (A (c,f). degree f) pairs; — sort by degree so that easy
computations will be done first
triples = zip [0 ..< length spairs] spairs;
mpoly = (sum (A i. let ¢ = coeff p i in
MPoly-Type.monom (Poly-Mapping.single 0 i) 1 % — x} * ...
(case find (A (4,d.f). d = ¢) triples of
None = Const (to-int c)
| Some (j,pair) = Var (Suc j)))
{.n})

in (mpoly, triples))

21

And then eliminate all auxiliary variables

definition representative-poly :: 'a :: {is-rat,field-char-0,field-gcd} poly = int poly
where
representative-poly p = (case initial-root-problem p of
(mp, triples) =
let is = map fst triples;
gs = (X j. snd (snd (triples ! 7)))
in eliminate-auz-vars mp qs is)

4.6 Soundness Proof for Complex Algebraic Polynomials

lemma get-representative-complez: fixes p :: complex poly
assumes p: p # 0
and algebraic: Ball (set (coeffs p)) algebraic
and res: initial-root-problem p = (mp, triples)
and is: is = map fst triples
and g¢s: A\ 7. j < length is => ¢s j = snd (snd (triples ! j))
and root: poly p z = 0

shows eliminate-aux-vars mp qs is represents x

(proof)

lemma representative-poly-complez: fixes z :: complex
assumes p: p # 0
and algebraic: Ball (set (coeffs p)) algebraic
and root: poly p x = 0
shows representative-poly p represents x

(proof)

4.7 Soundness Proof for Real Algebraic Polynomials

We basically use the result for complex algebraic polynomials which are a
superset of real algebraic polynomials.

lemma initial-root-problem-complez-of-real-poly:

initial-root-problem (map-poly complex-of-real p) =

map-prod id (map (map-prod id (map-prod complez-of-real id))) (initial-root-problem
p)
{proof)

lemma representative-poly-real: fixes x :: real
assumes p: p # 0
and algebraic: Ball (set (coeffs p)) algebraic
and root: poly p z = 0

shows representative-poly p represents x

(proof)

4.8 Algebraic Closedness of Complex Algebraic Numbers

lemma complex-algebraic-numbers-are-algebraically-closed:

22

assumes nc: - constant (poly p)
and alg: Ball (set (coeffs p)) algebraic
shows 3 z :: complex. algebraic z N\ poly p z = 0
(proof)

end

4.9 Executable Version to Compute Representative Polyno-
mials
theory Roots-of-Algebraic-Poly-Impl
imports
Roots-of-Algebraic-Poly
Polynomials. MPoly- Type-Class-FMap
begin

We need to specialize our code to real and complex polynomials, since alge-
braic and min-int-poly are not executable in their parametric versions.
definition initial-root-problem-real :: real poly = - where

[simp]: initial-root-problem-real p = initial-root-problem p

definition initial-root-problem-complex :: complex poly = - where
[simp]: initial-root-problem-complex p = initial-root-problem p

lemmas initial-root-problem-code =
ingtial-root-problem-real-def[unfolded initial-root-problem-def)
initial-root-problem-complez-def [unfolded initial-root-problem-def]

declare initial-root-problem-code[code]

lemma initial-root-problem-code-unfold|code-unfold):
initial-root-problem = initial-root-problem-complex
initial-root-problem = initial-root-problem-real

{proof)

definition representative-poly-real :: real poly = - where
[simp]: representative-poly-real p = representative-poly p

definition representative-poly-complex :: complex poly = - where
[simp]: representative-poly-complex p = representative-poly p

lemmas representative-poly-code =
representative-poly-real-def [unfolded representative-poly-def|
representative-poly-complez-def [unfolded representative-poly-def)

declare representative-poly-code[code]

lemma representative-poly-code-unfold|code-unfold):

23

representative-poly = representative-poly-complex
representative-poly = representative-poly-real

{proof)

end

5 Root Filter via Interval Arithmetic

5.1 Generic Framework

We provide algorithms for finding all real or complex roots of a polyno-
mial from a superset of the roots via interval arithmetic. These algorithms
are much faster than just evaluating the polynomial via algebraic number
computations.

theory Roots-via-1A
imports
Algebraic-Numbers. Interval- Arithmetic
begin

definition interval-of-real :: nat = real = real interval where
interval-of-real prec x =
(if is-rat « then Interval z
else let n = 2 " prec; ' = x * of-int n
in Interval (of-rat (Rat.Fract |z'] n)) (of-rat (Rat.Fract [z'] n)))

definition interval-of-complex :: nat = complex = complex-interval where
interval-of-complex prec z =
Complez-Interval (interval-of-real prec (Re z)) (interval-of-real prec (Im z))

fun poly-interval :: 'a :: {plus,times,zero} list = 'a = 'a where
poly-interval || - = 0

| poly-interval [c] - = ¢

| poly-interval (¢ # ¢s) x = ¢ + x * poly-interval cs

definition filter-fun-complex :: complex poly = nat = compler = bool where
filter-fun-complex p = (let ¢ = coeffs p in
(X prec. let cs = map (interval-of-complex prec) ¢
in (A z. 0 €. poly-interval cs (interval-of-complex prec x))))

definition filter-fun-real :: real poly = nat = real = bool where
filter-fun-real p = (let ¢ = coeffs p in
(X prec. let cs = map (interval-of-real prec) ¢

in (A z. 0 €; poly-interval cs (interval-of-real prec x))))

definition genuine-roots :: - poly = - list = - list where
genuine-roots p xs = filter (Az. poly p x = 0) xs

lemma zero-in-interval-0 [simp, intro]: 0 €; 0

24

{proof)

lemma zero-in-complez-interval-0 [simp, introl: 0 €. 0
{proof)

lemma length-coeffs-degree’:
length (coeffs p) = (if p = 0 then 0 else Suc (degree p))
(proof)

lemma poly-in-poly-interval-complex:
assumes list-all2 (e il. ¢ €. vl) (coeffs p) cs x €. il
shows poly p z €. poly-interval cs vl

(proof)

lemma poly-in-poly-interval-real: fixes z :: real
assumes list-all2 (Ac wl. ¢ €; wl) (coeffs p) cs x €; vl
shows poly p © €; poly-interval cs vl

(proof)

lemma in-interval-of-real [simp, intro|: © €; interval-of-real prec x

{proof)

lemma in-interval-of-complex [simp, intro|: z €. interval-of-complex prec z
(proof)

lemma distinct-genuine-roots [simp, intro]:
distinct xs = distinct (genuine-roots p xs)

{proof)

definition filter-fun :: ‘a poly = (nat = 'a :: comm-ring = bool) = bool where
filter-funp f = (Y nx. polypz=0— fnx)

lemma filter-fun-complex: filter-fun p (filter-fun-complex p)
(proof)

lemma filter-fun-real: filter-fun p (filter-fun-real p)
(proof)

context
fixes p :: 'a :: comm-ring poly and f
assumes [f: filter-fun p f

begin

lemma genuine-roots-step:

genuine-roots p ts = genuine-roots p (filter (f prec) xs)

(proof)

lemma genuine-roots-step-preserve-invar:

25

assumes {z. poly p z = 0} C set zs
shows {z. poly p z = 0} C set (filter (f prec) xs)

(proof)
end

lemma genuine-roots-finish:
fixes p :: ‘a :: field-char-0 poly
assumes {z. poly p z = 0} C set zs distinct xs
assumes length s = card {z. poly p z = 0}
shows genuine-roots p xs = s

(proof)

This is type of the initial search problem. It consists of a polynomial p, a
list s of candidate roots, the cardinality of the set of roots of p and a filter
function to drop non-roots that is parametric in a precision parameter.

typedef (overloaded) ‘a genuine-roots-aux =
{(p :: 'a :: field-char-0 poly, xs, n, ff).
distinct xs N\
{z. poly p z = 0} C set zs A
card {z. polyp z = 0} = n A
filter-fun p ff}
(proof)

setup-lifting type-definition-genuine-roots-aux

lift-definition genuine-roots’ :: nat = 'a :: field-char-0 genuine-roots-auz = 'a
list is
Aprec (p, zs, n, ff). genuine-roots p xs {proof)

lift-definition genuine-roots-impl-step’ :: nat = 'a :: field-char-0 genuine-roots-auz
= 'a genuine-roots-auz is

Aprec (p, zs, n, ff). (p, filter (ff prec) zs, n, ff)

(proof)

lift-definition gr-poly :: 'a :: field-char-0 genuine-roots-aur = 'a poly is
A(p = a poly, - - -). p {proof)

lift-definition gr-list :: 'a :: field-char-0 genuine-roots-aux = 'a list is
A~ zs 2 'a list, -, -). xs (proof)

/

lift-definition gr-numroots :: 'a :: field-char-0 genuine-roots-aur = nat is

A~ -, n, -). n (proof)

lemma genuine-roots’-code [code]:
genuine-roots’ prec gr =
(if length (gr-list gr) = gr-numroots gr then gr-list gr
else genuine-roots’ (2 x prec) (genuine-roots-impl-step’ prec gr))

(proof)

26

definition initial-precision :: nat where initial-precision = 10

definition genuine-roots-impl :: 'a genuine-roots-auz = 'a :: field-char-0 list where
genuine-roots-impl = genuine-roots’ initial-precision

lemma genuine-roots-impl: set (genuine-roots-impl p) = {z. poly (gr-poly p) z =

0}

distinct (genuine-roots-impl p)
(proof)

end

6 Roots of Real and Complex Algebraic Polyno-
mials

We are now able to actually compute all roots of polynomials with real and
complex algebraic coefficients. The main addition to calculating the repre-
sentative polynomial for a superset of all roots is to find the genuine roots.
For this we utilize the approximation algorithm via interval arithmetic.

theory Roots-of-Real-Complez-Poly
imports
Roots-of-Algebraic- Poly-Impl
Roots-via-1A
MPoly-Container
begin

hide-const (open) Module.smult

typedef (overloaded) ‘a rf-poly = { p :: ‘a :: idom poly. rsquarefree p}
(proof)

setup-lifting type-definition-rf-poly

context
begin
lifting-forget poly.lifting

lift-definition poly-rf :: ‘a :: idom rf-poly = 'a poly is \ x. = (proof)

definition roots-of-poly-dummy :: 'a::{ comm-ring-1,ring-no-zero-divisors} poly =
where roots-of-poly-dummy p = (SOME xs. set xs = {r. poly p r = 0} A distinct
xs)

lemma roots-of-poly-dummy-code[code]:

roots-of-poly-dummy p = Code.abort (STR ''roots—of—poly—dummy”) (A =z.
roots-of-poly-dummy p)

27

{proof)

lemma roots-of-poly-dummy: assumes p: p # 0

shows set (roots-of-poly-dummy p) = {z. poly p x = 0} distinct (roots-of-poly-dummy
p)

(proof)

lift-definition roots-of-complex-rf-poly-partl :: complex rf-poly = complex gen-
uine-roots-auzx is
A p. if Ball (set (Polynomial.coeffs p)) algebraic then
let ¢ = representative-poly p;
zeros = complex-roots-of-int-poly q
in (p,zeros,Polynomial.degree p, filter-fun-complex p)
else (p,roots-of-poly-dummy p,Polynomial.degree p, filter-fun-complex p)

(proof)

lift-definition roots-of-real-rf-poly-part1 :: real rf-poly = real genuine-roots-auz is
A p. let n = count-roots p in
if Ball (set (Polynomial.coeffs p)) algebraic then
let ¢ = representative-poly p;
zeros = real-roots-of-int-poly q
in (p,zeros,n, filter-fun-real p)
else (p,roots-of-poly-dummy p,n, filter-fun-real p)
(proof)

definition roots-of-complex-rf-poly :: complex rf-poly = complex list where
roots-of-complex-rf-poly p = genuine-roots-impl (roots-of-complex-rf-poly-partl p)

lemma roots-of-complex-rf-poly: set (roots-of-complez-rf-poly p) = {x. poly (poly-rf

p) x =0}
distinct (roots-of-complex-rf-poly p)

{proof)

definition roots-of-real-rf-poly :: real rf-poly = real list where
roots-of-real-rf-poly p = genuine-roots-impl (roots-of-real-rf-poly-part! p)

lemma roots-of-real-rf-poly: set (roots-of-real-rf-poly p) = {z. poly (poly-rf p) x =

0}

distinct (roots-of-real-rf-poly p)
(proof)

typedef (overloaded) ‘a rf-polys = { (a :: 'a :: idom, ps :: (‘a poly x nat) list).
Ball (fst set ps) rsquarefree}
(proof)

setup-lifting type-definition-rf-polys

28

lift-definition yun-polys :: 'a :: { euclidean-ring-gcd, field-char-0,semiring-gcd-mult-normalize}
poly = 'a rf-polys

is A\ p. yun-factorization ged p

(proof)

context
notes [[typedef-overloaded]]
begin
lift-definition (code-dt) yun-rf :: 'a :: idom rf-polys = 'a x ('a rf-poly x nat) list
isAz z
(proof)
end
end
definition polys-rf :: 'a :: idom rf-polys = 'a rf-poly list where
polys-rf = map fst o snd o yun-rf

lemma yun-polys: assumes p # 0

shows poly p x = 0 +— (3 ¢ € set (polys-rf (yun-polys p)). poly (poly-rf q) = =
0)

{proof)

definition roots-of-complex-rf-polys :: complex rf-polys = complez list where
roots-of-complez-rf-polys ps = concat (map roots-of-complex-rf-poly (polys-rf ps))

lemma roots-of-complez-rf-polys:
set (roots-of-complex-rf-polys ps) = {x. 3 p € set (polys-rf ps). poly (poly-rf p) =
(proof)

definition roots-of-real-rf-polys :: real rf-polys = real list where
roots-of-real-rf-polys ps = concat (map roots-of-real-rf-poly (polys-rf ps))

lemma roots-of-real-rf-polys:

set (roots-of-real-rf-polys ps) = {xz. 3 p € set (polys-rf ps). poly (poly-rf p) x = 0
}

(proof)

definition roots-of-complex-poly :: complex poly = complex list where
roots-of-complez-poly p = (if p = 0 then [] else roots-of-complex-rf-polys (yun-polys

)

lemma roots-of-complex-poly: assumes p: p # 0
shows set (roots-of-complex-poly p) = {z. poly p x = 0}
(proof)

definition roots-of-real-poly :: real poly = real list where
roots-of-real-poly p = (if p = 0 then [] else roots-of-real-rf-polys (yun-polys p))

29

lemma roots-of-real-poly: assumes p: p # 0
shows set (roots-of-real-poly p) = {z. poly p x = 0}
(proof)

lemma distinct-concat”:
[distinct (list-neq xs []);
N\ ys. ys € set xs = distinct ys;
N ys zs. [ys € set xs ; zs € set xs; ys # zs | = set ys N set zs = {}
| = distinct (concat xs)

{proof)

lemma roots-of-rf-yun-polys-distinct: assumes
rt: \ p. set (rop p) = {x. poly (poly-rf p) z = 0}
and dist: \ p. distinct (rop p)
shows distinct (concat (map rop (polys-rf (yun-polys p))))

{proof)

lemma distinct-roots-of-real-poly: distinct (roots-of-real-poly p)
(proof)

lemma distinct-roots-of-complex-poly: distinct (roots-of-complez-poly p)
(proof)

end

7 Factorization of Polynomials with Algebraic Co-
efficients

7.1 Complex Algebraic Coefficients

theory Factor-Complez-Poly
imports
Roots-of-Real-Complex-Poly
begin
hide-const (open) MPoly-Type.smult MPoly-Type.degree MPoly- Type.coeff MPoly-Type. coeffs

definition factor-complex-main :: complex poly = complex x (complex x nat) list
where
factor-complex-main p = let (¢,pis) = yun-rf (yun-polys p) in
(¢, concat (map (X (p,i). map (A r. (r,%)) (roots-of-complex-rf-poly p)) pis))

lemma roots-of-complex-poly-via-factor-complex-main:
map fst (snd (factor-complez-main p)) = roots-of-complez-poly p

(proof)

lemma distinct-factor-complex-main:
distinct (map fst (snd (factor-complex-main p)))

30

{proof)

lemma factor-complex-main: assumes rt: factor-complez-main p = (c,zis)

shows p = smult ¢ ([] (z, {)+axis. [— z, 1] i)
0 ¢ snd * set wis
(proof)

definition factor-complez-poly :: complex poly = complex x (complex poly x nat)
list where
factor-complex-poly p = (case factor-complez-main p of
(e,ris) = (¢, map (A (r,0). ([—r,1:],4)) ris))

lemma distinct-factor-complex-poly:
distinct (map fst (snd (factor-complex-poly p)))

(proof)

theorem factor-complez-poly: assumes fp: factor-complez-poly p = (c,qis)
shows
p = smult ¢ ([(q, ©)¢qis. ¢ " 0)
(,7) € set qis = irreducible ¢ A i # 0 N\ monic q¢ A\ degree q¢ = 1

(proof)

end

7.2 Real Algebraic Coefficients

We basically perform a factorization via complex algebraic numbers, take
all real roots, and then merge each pair of conjugate roots into a quadratic
factor.
theory Fuctor-Real-Poly
imports
Factor-Complex-Poly
begin

hide-const (open) Coset.order

fun delete-cnj :: compler = nat = (complex x nat) list = (complex x nat) list
where
delete-cnj x i ((y,j) # yjs) = (if © = y then if j = i then yjs else if j > i then
((y,j — ©) # yjs) else delete-cnj x (i — §) yjs else (y,j) # delete-cnj x i yjs)
| delete-cnj - - [] =]

lemma delete-cnj-length[termination-simpl: length (delete-cnj x i yjs) < length yjs
(proof)

fun complex-roots-to-real-factorization :: (complex x nat) list = (real poly x

nat)list where
complex-roots-to-real-factorization] = ||

31

| complex-roots-to-real-factorization ((x,i) # xzs) = (if ¢ € R then
([—(Re z),1:],i) # complez-roots-to-real-factorization xs else
let zx = cnj x; ys = delete-cnj xx i xs; p = map-poly Re ([:—x,1:] * [:—ax, I])
in (p,i) # complex-roots-to-real-factorization ys)

definition factor-real-poly :: real poly = real X (real poly x nat) list where
factor-real-poly p = case factor-complez-main (map-poly of-real p) of
(¢,ris) = (Re ¢, complex-roots-to-real-factorization ris)

/

lemma monic-imp-nonzero: monic x => x # 0 for x :: 'a :: semiring-1 poly {proof)

lemma delete-cnj-0: assumes 0 ¢ snd * set wis
shows 0 ¢ snd set (delete-cnj « si xis)

(proof)

lemma delete-cnj: assumes
order z (I (z, @)<ais. [(— x, I:] 74) > sisi # 0
shows ([] (z, i)ais. [[— z, I:] ~4) =
[[(— x, I:] 7 si* ([[(x, i)«delete-cnj z si xis. :— z, 1])

(proof)

theorem factor-real-poly: assumes fp: factor-real-poly p = (c,qis)
shows p = smult ¢ (] (q, i)<qis. ¢ " 1)
(q.§) € set qis = irreducible ¢ A j # 0 N\ monic q¢ A\ degree q € {1,2}
(proof)

end

References

[1] W. S. Brown. The subresultant PRS algorithm. ACM Trans. Math.
Softw., 4(3):237-249, 1978.

[2] W. S. Brown and J. F. Traub. On Euclid’s algorithm and the theory of
subresultants. Journal of the ACM, 18(4):505-514, 1971.

[3] S.Joosten, R. Thiemann, and A. Yamada. Subresultants. Archive of For-
mal Proofs, Apr. 2017. https://isa-afp.org/entries/Subresultants.html,
Formal proof development.

[4] S. J. C. Joosten, R. Thiemann, and A. Yamada. A verified imple-
mentation of algebraic numbers in Isabelle/HOL. J. Autom. Reason.,
64(3):363-389, 2020.

[5] A. W. Strzebonski. Computing in the field of complex algebraic numbers.
J. Symbolic Computation, 24:647-656, 1997.

32

https://isa-afp.org/entries/Subresultants.html

[6] R. Thiemann, A. Yamada, and S. Joosten. Algebraic numbers in Is-
abelle/HOL. Archive of Formal Proofs, Dec. 2015. https://isa-afp.org/
entries/Algebraic_ Numbers.html, Formal proof development.

33

https://isa-afp.org/entries/Algebraic_Numbers.html
https://isa-afp.org/entries/Algebraic_Numbers.html

	Introduction
	Resultants and Multivariate Polynomials
	Connecting Univariate and Multivariate Polynomials
	Exact Division of Multivariate Polynomials
	Implementation of Division on Multivariate Polynomials
	Class Instances for Multivariate Polynomials and Containers
	Resultants of Multivariate Polynomials

	Testing for Integrality and Conversion to Integers
	Representing Roots of Polynomials with Algebraic Coefficients
	Preliminaries
	More Facts about Resultants
	Systems of Polynomials
	Elimination of Auxiliary Variables
	A Representing Polynomial for the Roots of a Polynomial with Algebraic Coefficients
	Soundness Proof for Complex Algebraic Polynomials
	Soundness Proof for Real Algebraic Polynomials
	Algebraic Closedness of Complex Algebraic Numbers
	Executable Version to Compute Representative Polynomials

	Root Filter via Interval Arithmetic
	Generic Framework

	Roots of Real and Complex Algebraic Polynomials
	Factorization of Polynomials with Algebraic Coefficients
	Complex Algebraic Coefficients
	Real Algebraic Coefficients

