Enriched Category Basics

Eugene W. Stark
Department of Computer Science
Stony Brook University
Stony Brook, New York 11794 USA

June 17, 2024

Abstract

The notion of an enriched category generalizes the concept of category by replacing the hom-sets of an ordinary category by objects of an arbitrary monoidal category. In this article we give a formal definition of enriched categories and we give formal proofs of a relatively narrow selection of facts about them. One of the main results is a proof that a closed monoidal category can be regarded as a category "enriched in itself". The other main result is a proof of a version of the Yoneda Lemma for enriched categories.

Contents

Contents 2
Introduction 2
1 Closed Monoidal Categories 5
1.1 Definition and Basic Facts 5
1.1.1 An ECMC is a CMC 6
1.1.2 A CMC Extends to an ECMC 8
1.2 Internal Hom Functors 9
1.2.1 Exponentiation by Unity 12
1.2.2 Internal Currying 12
1.2.3 Yoneda Embedding 13
1.3 Enriched Structure 14
1.4 Cartesian Closed Monoidal Categories 16
2 Enriched Categories 19
2.1 Basic Definitions 20
2.1.1 Self-Enrichment 22
2.2 Underlying Category, Functor, and Natural Transformation 23
2.2.1 Underlying Category 23
2.2.2 Underlying Functor 23
2.2.3 Underlying Natural Transformation 24
2.2.4 Self-Enriched Case 25
2.3 Opposite of an Enriched Category 26
2.3.1 Relation between $\left(-{ }^{o p}\right)_{0}$ and $(-0)^{o p}$ 27
2.4 Enriched Hom Functors 29
2.4.1 Covariant Case 29
2.4.2 Contravariant Case 30
2.5 Enriched Yoneda Lemma 32
2.5.1 Preliminaries 32
2.5.2 Covariant Case 33
2.5.3 Contravariant Case 36
Bibliography 38

Introduction

The notion of an enriched category [1] generalizes the concept of category by replacing the hom-sets of an ordinary category by objects of an arbitrary monoidal category \mathcal{V}. The choice, for each object a, of a distinguished element $i d a: a \rightarrow a$ as an identity, is replaced by an arrow $I d a: \mathcal{I} \rightarrow$ Hom $a a$ of \mathcal{V}. The composition operation is similarly replaced by a family of arrows Comp abc:Hom $B C \otimes \operatorname{Hom} A B \rightarrow \operatorname{Hom} A C$ of \mathcal{V}. The identity and composition are required to satisfy unit and associativity laws which are expressed as commutative diagrams in \mathcal{V}. Of particular interest is the case in which \mathcal{V} is symmetric monoidal and closed; in that case, as Kelly states ([1], Section 1.6): "The structure of \mathcal{V}-CAT then becomes rich enough to permit of Yoneda-lemma arguments formally identical with those in CAT."

The goal of this article is to formalize the basic definition of enriched category and some related notions, and to prove a relatively narrow selection of facts about these definitions. For reference and inspiration, we follow the early sections of the book by Kelly [1]; however a comprehensive formalization of the material in that book is explicitly not our objective here. Rather, beyond the basic definitions we are primarily interested in the following two results: (1) that a closed monoidal category can be regarded as a category "enriched in itself"; and (2) the Yoneda Lemma for enriched categories (specifically, the weak form considered in Section 1.9 of [1]). We needed the basic definitions and result (1) for use in a separate article [4]. Although this material could have been included as part of that other article, as it is general material that does not depend on the specific application considered there, it seemed best to present it as a stand-alone development that would be more readily accessible for use by others. As far as result (2) is concerned, we originally formalized and proved it as part of our exploration leading up to [4]. Ultimately, we did not find result (2) to be necessary for the satisfactory development of that work, but as it is a result of general interest whose formalization did involve some struggle to achieve, it seems worthwhile to include it here.

This article is organized as follows: In Chapter 1 we give formal definitions for the notions "closed monoidal category" and "cartesian closed monoidal category" and prove some facts about them. This builds on the
formal development of the theory of monoidal categories in our previous article [3]. The main goals of this section are to prove some general facts about exponentials that are used in [4], and to do most of the preliminary work (the parts that do not specifically depend on the definition of enriched category) involved in showing that a closed monoidal category is "enriched in itself". In Chapter 2 we give definitions for "enriched category" and the related notions "enriched functor," "enriched natural transformation," and "underlying category," and we complete the formal statement and proof of "self-enrichment." We then continue with the definition of the opposite of an enriched category, give definitions for the notions of covariant and contravariant enriched hom functors, and prove corresponding covariant and contravariant versions of the Yoneda Lemma.

Chapter 1

Closed Monoidal Categories

A closed monoidal category is a monoidal category such that for every object b, the functor $-\otimes b$ is a left adjoint functor. A right adjoint to this functor takes each object c to the exponential $\exp b c$. The adjunction yields a natural bijection between $\operatorname{hom}(-\otimes b) c$ and hom $-(\exp b c)$. In enriched category theory, the notion of "hom-set" from classical category theory is generalized to that of "hom-object" in a monoidal category. When the monoidal category in question is closed, much of the theory of set-based categories can be reproduced in the more general enriched setting. The main purpose of this section is to prepare the way for such a development; in particular we do the main work required to show that a closed monoidal category is "enriched in itself."
theory ClosedMonoidalCategory
imports MonoidalCategory.CartesianMonoidalCategory
begin

1.1 Definition and Basic Facts

As is pointed out in [2], unless symmetry is assumed as part of the definition, there are in fact two notions of closed monoidal category: left-closed monoidal category and right-closed monoidal category. Here we define versions with and without symmetry, so that we can identify the places where symmetry is actually required.
locale closed-monoidal-category $=$ monoidal-category +
assumes left-adjoint-tensor: $\bigwedge b$. ide $b \Longrightarrow$ left-adjoint-functor $C C(\lambda x . x \otimes b)$
locale closed-symmetric-monoidal-category $=$
closed-monoidal-category +
symmetric-monoidal-category
Similarly to what we have done in previous work, besides the definition of closed-monoidal-category, which adds an assumed property to monoidal-category
but not any additional structure，we find it convenient also to define elemen－ tary－closed－monoidal－category，which assumes particular exponential struc－ ture to have been chosen，and uses this given structure to express the prop－ erties of a closed monoidal category in a more elementary way．

```
locale elementary-closed-monoidal-category \(=\)
    monoidal-category +
fixes \(\exp ::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\)
and eval \(::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a\)
and Curry \(::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a\)
assumes eval-in-hom-ax: \(\llbracket\) ide \(b\); ide \(c \rrbracket \Longrightarrow\) «eval \(b c: \exp b c \otimes b \rightarrow c\) »
and ide-exp [intro, simp]: \(\llbracket i d e b ; i d e ~ c \rrbracket \Longrightarrow i d e ~(e x p ~ b c)\)
and Curry-in-hom-ax: 【ide a; ide b; ide \(c ; « g: a \otimes b \rightarrow c » \rrbracket\)
    \(\Longrightarrow\) «Curry abcg:a \(\rightarrow \exp b c\) »
and Uncurry-Curry: 【ide a; ide b; ide \(c\); « \(g: a \otimes b \rightarrow c » \rrbracket\)
    \(\Longrightarrow\) eval \(b c \cdot(\) Curry abcg \(\quad \otimes b)=g\)
and Curry-Uncurry: 【ide a; ide b; ide \(c ; « h: a \rightarrow \exp b c » \rrbracket\)
                            \(\Longrightarrow\) Curry \(a b c(\) eval \(b c \cdot(h \otimes b))=h\)
locale elementary-closed-symmetric-monoidal-category \(=\)
    symmetric-monoidal-category +
    elementary-closed-monoidal-category
begin
    sublocale elementary-symmetric-monoidal-category
        \(C\) tensor \(\mathcal{I}\) lunit runit assoc sym
        \(\langle p r o o f\rangle\)
end
```

We now show that，except for the fact that a particular choice of struc－ ture has been made，closed monoidal categories and elementary closed monoidal categories amount to the same thing．

1．1．1 An ECMC is a CMC

```
context elementary-closed-monoidal-category
begin
notation Curry (Curry \([-,-,-])\)
abbreviation Uncurry (Uncurry[-, -])
where Uncurry \([b, c] f \equiv\) eval \(b c \cdot(f \otimes b)\)
lemma Curry-in-hom [intro]:
assumes \(i d e a\) and ide \(b\) and \(« g: a \otimes b \rightarrow c »\) and \(y=\exp b c\)
shows «Curry \([a, b, c] g: a \rightarrow y\) »
    \(\langle\) proof \(\rangle\)
```

```
lemma Curry-simps [simp]:
assumes ide a and ide b and «g:a\otimesb->c»
shows arr (Curry[a,b,c]g)
and dom (Curry[a,b,c]g)=a
and cod (Curry[a,b,c]g)= exp bc
    <proof\rangle
lemma eval-in-hom ECMC [intro]:
assumes ide b and ide c and x=expbc\otimesb
shows «eval b c:x }->\mathrm{ c»
    \langleproof\rangle
lemma eval-simps [simp]:
assumes ide b and ide c
shows arr (eval b c) and dom (eval b c) = exp b c\otimesb and cod (eval b c) =c
    <proof\rangle
lemma Uncurry-in-hom [intro]:
```



```
shows «Uncurry[b,c] f:x->c»
    \langleproof\rangle
lemma Uncurry-simps [simp]:
assumes ide b and ide c and «f : a }->\operatorname{exp}bc
shows arr (Uncurry[b,c]f)
and dom (Uncurry[b,c]f)=a\otimesb
and cod (Uncurry[b,c]f)=c
    <proof>
lemma Uncurry-exp:
assumes ide a and ide b
shows Uncurry[a,b] (exp a b) = eval a b
    \langleproof\rangle
lemma comp-Curry-arr:
assumes ide b and «f:x->a» and «g:a\otimesb 
shows Curry[a,b,c] g\cdotf=Curry[x,b,c] (g\cdot(f\otimesb))
<proof>
lemma terminal-arrow-from-functor-eval:
assumes ide b and ide c
shows terminal-arrow-from-functor C C ( }\lambdax.T(x,b))(exp b c) c (eval b c
<proof>
lemma is-closed-monoidal-category:
shows closed-monoidal-category C T \alpha \iota
    \langleproof\rangle
lemma retraction-eval-ide-self:
```

```
    assumes ide a
    shows retraction (eval a a)
    \langleproof\rangle
end
context elementary-closed-symmetric-monoidal-category
begin
    lemma is-closed-symmetric-monoidal-category:
    shows closed-symmetric-monoidal-category CT \alpha \iota\sigma
        \langleproof\rangle
end
```


1.1.2 A CMC Extends to an ECMC

context closed-monoidal-category
begin
lemma has-exponentials:
assumes $i d e b$ and ide c
shows $\exists x$ e. ide $x \wedge « e: x \otimes b \rightarrow c » \wedge$
(\forall a g. ide $a \wedge$

$$
« g: a \otimes b \rightarrow c » \longrightarrow(\exists!f . « f: a \rightarrow x » \wedge g=e \cdot(f \otimes b)))
$$

$\langle p r o o f\rangle$
definition some-exp (exp?
where exp $^{?}$ b $c \equiv$ SOME x. ide $x \wedge$
$(\exists e . 《 e: x \otimes b \rightarrow c » \wedge$
$(\forall a g$. ide $a \wedge « g: a \otimes b \rightarrow c »$ $\longrightarrow(\exists!f \cdot « f: a \rightarrow x » \wedge g=e \cdot(f \otimes b))))$
definition some-eval (eval? ${ }^{?}$)
where eval? $b c \equiv S O M E$ e. «e : exp? $b c \otimes b \rightarrow c » \wedge$
$(\forall a g$. ide $a \wedge 《 g: a \otimes b \rightarrow c »$ $\longrightarrow(\exists!f . « f: a \rightarrow e x p ? \quad b » \wedge g=e \cdot(f \otimes b)))$
definition some-Curry (Curry? $\left.{ }^{?}[-,-,-]\right)$
where Curry ${ }^{?}[a, b, c] g \equiv$

$$
\text { THE } f . « f: a \rightarrow \exp ^{?} b c » \wedge g=e v a l ? b c \cdot(f \otimes b)
$$

abbreviation some-Uncurry (Uncurry? $\left.{ }^{?}[-,-]\right)$
where Uncurry? $[b, c] f \equiv$ eval? $b c \cdot(f \otimes b)$
lemma Curry-uniqueness:
assumes $i d e b$ and $i d e c$

```
shows ide (exp? b c) and «eval? b c: exp? b c\otimesb->c»
and \llbracketide a; «g:a\otimesb->c»\rrbracket
    \Longrightarrow \exists ! f . 《 f : a \rightarrow e x p ? ^ { ? } b c » \wedge g = U n c u r r y ? [ b , c ] f
    \langleproof\rangle
    lemma some-eval-in-hom [intro]:
assumes ide b and ide c and x =exp? b c\otimesb
shows «eval? b c:x }->c\mathrm{ »
    \langleproof\rangle
lemma some-Uncurry-some-Curry:
assumes ide a and ide b and «g:a\otimes | -> c»
shows «Curry?}[a,b,c]g:a->exp? b c
and Uncurry?}[b,c](Curry?[a,b,c]g)=
<proof>
lemma some-Curry-some-Uncurry:
assumes ide b and ide c and «h:a exp? b c»
shows Curry?}[a,b,c](Uncurry? [b,c]h)=
\langleproof\rangle
lemma extends-to-elementary-closed-monoidal-category }\mp@subsup{\}{MC}{}\mathrm{ :
shows elementary-closed-monoidal-category
            CT \alpha \iota some-exp some-eval some-Curry
    <proof\rangle
end
context closed-symmetric-monoidal-category
begin
    lemma extends-to-elementary-closed-symmetric-monoidal-category }\mp@subsup{\}{MC}{}\mathrm{ :
    shows elementary-closed-symmetric-monoidal-category
        CT \alpha\iota\sigma some-exp some-eval some-Curry
    <proof\rangle
end
```


1.2 Internal Hom Functors

For each object x of a closed monoidal category C, we can define a covariant endofunctor Exp \rightarrow - of C, which takes each arrow g to an arrow $« E x p \rightarrow$ $x g: \exp x(\operatorname{dom} g) \rightarrow \exp x(\operatorname{cod} g) »$. Similarly, for each object y, we can define a contravariant endofunctor $\operatorname{Exp} \leftarrow-y$ of C, which takes each arrow f of $C^{o p}$ to an arrow «Exp $\operatorname{Ex}^{\leftarrow} y: \exp (\operatorname{cod} f) y \rightarrow \exp (\operatorname{dom} f) y$ » of C. These two endofunctors commute with each other and compose to form a single binary "internal hom" functor Exp from $C^{o p} \times C$ to C.
context elementary－closed－monoidal－category
begin

```
abbreviation cov-Exp (Exp \(\rightarrow\) )
where \(E x p \rightarrow\) \(x g\) if arr \(g\)
    then Curry \([\exp x(\operatorname{dom} g), x, \operatorname{cod} g](g \cdot\) eval \(x(d o m g))\)
    else null
```

abbreviation cnt-Exp $\left(\right.$ Exp $\left.^{\leftarrow}\right)$
where $\operatorname{Exp}^{\leftarrow} f y \equiv$ if arr f
then Curry $[\exp (\operatorname{cod} f) y, \operatorname{dom} f, y]$
$(\operatorname{eval}(\operatorname{cod} f) y \cdot(\exp (\operatorname{cod} f) y \otimes f))$
else null
lemma cov-Exp-in-hom:
assumes ide x and arr g
shows «Exp $\rightarrow x g: \exp x(d o m g) \rightarrow \exp x(\operatorname{cod} g) »$
$\langle p r o o f\rangle$
lemma cnt-Exp-in-hom:
assumes $\operatorname{arr} f$ and ide y
shows «Exp ${ }^{\leftarrow} f y: \exp (\operatorname{cod} f) y \rightarrow \exp (\operatorname{dom} f) y »$
$\langle p r o o f\rangle$
lemma cov-Exp-ide:
assumes ide a and ide b
shows Exp $\rightarrow a b=\exp a b$
〈proof〉
lemma cnt-Exp-ide:
assumes ide a and ide b
shows Exp ${ }^{\leftarrow} a b=\exp a b$
〈proof〉
lemma cov-Exp-comp:
assumes ide x and seq $g f$
shows Exp $\rightarrow x(g \cdot f)=E x p \rightarrow x g \cdot \operatorname{Exp} \rightarrow x f$
〈proof〉
lemma cnt-Exp-comp:
assumes $\operatorname{seq} g f$ and ide y
shows $\operatorname{Exp}^{\leftarrow}(g \cdot f) y=\operatorname{Exp}^{\leftarrow} f y \cdot \operatorname{Exp}^{\leftarrow} g y$
〈proof〉
lemma functor-cov-Exp:
assumes ide x
shows functor $C C(E x p \rightarrow x)$
$\langle p r o o f\rangle$

```
interpretation Cop:dual-category C \langleproof\rangle
lemma functor-cnt-Exp:
assumes ide x
shows functor Cop.comp C ( }\lambdaf.Exp\leftarrowfx
    <proof\rangle
lemma cov-cnt-Exp-commute:
assumes arr f and arr g
shows Exp }\mp@subsup{\operatorname{Em}}{(dom f)g}{\prime}\cdot\operatorname{Exp}\leftarrowf(domg)
    Exp}\mp@subsup{}{}{\leftarrow}f(\operatorname{cod}g)\cdot\mp@subsup{\operatorname{Exp}}{}{->}(\operatorname{cod}f)
<proof\rangle
definition Exp
where Exp f g = Exp }->(\operatorname{dom}f)g\cdot\mp@subsup{\operatorname{Exp}}{}{\leftarrow}f(\operatorname{dom}g
lemma Exp-in-hom:
assumes arr f and arr g
shows«Exp fg:Exp (codf) (dom g) -> Exp (domf) (cod g)»
    \langleproof\rangle
lemma Exp-ide:
assumes ide a and ide b
shows Exp a b = exp a b
    <proof\rangle
lemma Exp-comp:
assumes seq gf and seq kh
shows Exp (g\cdotf) (k\cdoth)=Expfk\cdotExp gh
\langleproof\rangle
interpretation CopxC: product-category Cop.comp C \langleproof\rangle
lemma functor-Exp:
shows binary-functor Cop.comp C C (\lambdafg. Exp (fst fg) (snd fg))
    \langleproof\rangle
lemma Exp-x-ide:
assumes ide y
shows }(\lambdax.Exp x y) =( (\lambdax.Exp ז x y)
    \langleproof\rangle
lemma Exp-ide-y:
assumes ide x
shows }(\lambday.\operatorname{Exp}xy)=(\lambday.Exp->xy
    \langleproof\rangle
lemma Uncurry-Exp-dom:
assumes arr f
```

shows Uncurry $(\operatorname{dom} f)(\operatorname{cod} f)(\operatorname{Exp}(\operatorname{dom} f) f)=f \cdot \operatorname{eval}(\operatorname{dom} f)(\operatorname{dom} f)$ $\langle p r o o f\rangle$

1.2.1 Exponentiation by Unity

In this section we define and develop the properties of inverse arrows $U p a$ $: a \rightarrow \exp \mathcal{I} a$ and $D n a: \exp \mathcal{I} a \rightarrow a$, which exist in any closed monoidal category.
interpretation elementary-monoidal-category C tensor unity lunit runit assoc〈proof〉

```
abbreviation Up
where Up a = Curry[a,\mathcal{I},a] r[a]
abbreviation Dn
where Dn a \equiveval II a \cdot }\mp@subsup{\textrm{r}}{}{-1}[\operatorname{exp}\mathcal{I}a
lemma isomorphic-exp-unity:
assumes ide a
shows«Up a:a-> exp \mathcal{I a}
and «Dn a : exp \mathcal{I }a->a»
and inverse-arrows (Up a) (Dn a)
and isomorphic (exp I a) a
<proof\rangle
```

The maps $U p$ and $D n$ are natural in a.
lemma $U p-D n$-naturality:
assumes $\operatorname{arr} f$
shows Exp $\rightarrow \mathcal{I} f \cdot U p(\operatorname{dom} f)=U p(\operatorname{cod} f) \cdot f$
and $D n(\operatorname{cod} f) \cdot \operatorname{Exp} \rightarrow \mathcal{I} f=f \cdot \operatorname{Dn}(\operatorname{dom} f)$
$\langle p r o o f\rangle$

1.2.2 Internal Currying

Currying internalizes to an isomorphism between $\exp (x \otimes a) b$ and $\exp x$ (exp ab).
abbreviation curry
where curry $x b c \equiv$

```
Curry[exp (x\otimesb)c, x, exp b c]
    (Curry[exp (x\otimesb)c\otimesx,b,c]
        (eval (x\otimesb)c\cdot\textrm{a}[\operatorname{exp}(x\otimesb)c,x,b]))
```

abbreviation uncurry
where uncurry $x b c \equiv$

```
Curry \([\exp x(\exp b c), x \otimes b, c]\)
    \(\left(\operatorname{eval} b c \cdot(\operatorname{eval} x(\exp b c) \otimes b) \cdot \mathrm{a}^{-1}[\exp x(\exp b c), x, b]\right)\)
```

lemma internal-curry:

```
assumes ide x and ide a and ide b
shows «curry x a b : exp (x\otimesa)b-> exp x (exp a b)»
and «uncurry x a b: exp x (exp a b) ->exp (x\otimesa)b»
and inverse-arrows (curry x a b) (uncurry x a b)
<proof>
```

Internal currying and uncurrying are the components of natural isomorphisms between the contravariant functors $\operatorname{Exp}^{\leftarrow}(-\otimes b) c$ and $\operatorname{Exp}{ }^{\leftarrow}-(\exp$ $b c)$.
lemma uncurry-naturality:
assumes $i d e b$ and ide c and Cop.arr f
shows uncurry (Cop.cod f) bc.Exp ${ }^{\leftarrow} f(\exp b c)=$
Curry $[\exp ($ Cop.dom f) $(\exp b c), \operatorname{Cop} \cdot \operatorname{cod} f \otimes b, c]$
(eval $(\operatorname{Cop} . \operatorname{dom} f \otimes b) c \cdot($ uncurry $(\operatorname{Cop} . \operatorname{dom} f) b c \otimes f \otimes b))$
and $\operatorname{Exp}^{\leftarrow}(f \otimes b) c \cdot$ uncurry (Cop.dom $\left.f\right) b c=$
Curry $[\exp ($ Cop.dom f) (exp b c), Cop.cod $f \otimes b, c]$
(eval (Cop.dom $f \otimes b) c \cdot($ uncurry $(\operatorname{Cop} . \operatorname{dom} f) b c \otimes f \otimes b))$
and uncurry $\left(\right.$ Cop.cod f) $b c \cdot \operatorname{Exp}{ }^{\leftarrow} f(\exp b c)=$
$\operatorname{Exp}^{\leftarrow}(f \otimes b) c \cdot$ uncurry $($ Cop.dom $f) b c$
〈proof〉
lemma natural-isomorphism-uncurry:
assumes ide b and ide c
shows natural-isomorphism Cop.comp C
$\left(\lambda x . \operatorname{Exp}^{\leftarrow} x(\exp b c)\right)\left(\lambda x . \operatorname{Exp}^{\leftarrow}(x \otimes b) c\right)$
$\left(\lambda f . \operatorname{uncurry}(\operatorname{Cop} . \operatorname{cod} f) b c \cdot \operatorname{Exp}^{\leftarrow} f(\exp b c)\right)$
$\langle p r o o f\rangle$
lemma natural-isomorphism-curry:
assumes ide b and ide c
shows natural-isomorphism Cop.comp C
$\left(\lambda x . \operatorname{Exp}^{\leftarrow}(x \otimes b) c\right)\left(\lambda x \cdot \operatorname{Exp}{ }^{\leftarrow} x(\exp b c)\right)$
$\left(\lambda f . \operatorname{curry}(\operatorname{Cop} . \operatorname{cod} f) b c \cdot \operatorname{Exp}^{\leftarrow}(f \otimes b) c\right)$
$\langle p r o o f\rangle$

1.2.3 Yoneda Embedding

The internal hom provides a closed monoidal category C with a "Yoneda embedding", which is a mapping that takes each arrow g of C to a natural transformation from the contravariant functor $\operatorname{Exp}{ }^{\leftarrow}-($ dom $g)$ to the contravariant functor $\operatorname{Exp}{ }^{\leftarrow}-(\operatorname{cod} g)$. Note that here the target category is C itself, not a category of sets and functions as in the classical case. Note also that we are talking here about ordinary functors and natural transformations. We can easily prove from general considerations that the Yoneda embedding (so-defined) is faithful. However, to obtain a fullness result requires the development of a certain amount of enriched category theory, which we do elsewhere.
lemma yoneda-embedding:

```
assumes «g:a }->\mathrm{ b»
shows natural-transformation Cop.comp C
    (\lambdax. Exp}\mp@subsup{}{}{\leftarrow}xa)(\lambdax.Exp Fxb)(\lambdax.Exp x g)
and Uncurry[a,b](Exp a g}\cdot\operatorname{Curry[\mathcal{I},a,a] l[a])\cdot\mp@subsup{l}{}{-1}[a]=g
<proof>
lemma yoneda-embedding-is-faithful:
assumes parg g}\mp@subsup{g}{}{\prime}\mathrm{ and ( }\lambdax\mathrm{ . Exp x g) = ( }\lambdax\mathrm{ . Exp x g')
shows g= g
<proof\rangle
```

The following is a version of the key fact underlying the classical Yoneda Lemma：for any natural transformation τ from $E x p \leftarrow-a$ to $E x p ~ \leftarrow-b$ ，there is a fixed arrow $g: a \rightarrow b$ ，depending only on the single component τa ，such that the compositions $\tau x \cdot e$ of an arbitrary component τx with arbitrary global elements $e: \mathcal{I} \rightarrow \exp x a$ depend on τ only via g ，and hence only via τa ．

```
lemma hom-transformation-expansion:
assumes natural-transformation
    Cop.comp \(C(\lambda x . E x p \leftarrow x a)\left(\lambda x . \operatorname{Exp}^{\leftarrow} \neq x b\right) \tau\)
and \(i d e ~ a\) and \(i d e b\)
shows «Uncurry \([a, b](\tau a \cdot \operatorname{Curry}[\mathcal{I}, a, a] \mathrm{l}[a]) \cdot \mathrm{l}^{-1}[a]: a \rightarrow b\) »
and \(\bigwedge x e\). \(\llbracket i d e x ; « e: \mathcal{I} \rightarrow \exp x a » \rrbracket \Longrightarrow\)
    \(\tau x \cdot e=\operatorname{Exp} x\left(\operatorname{Uncurry}[a, b](\tau a \cdot \operatorname{Curry}[\mathcal{I}, a, a] \mathrm{l}[a]) \cdot \mathrm{l}^{-1}[a]\right) \cdot e\)
\(\langle p r o o f\rangle\)
```


1．3 Enriched Structure

In this section we do the main work involved in showing that a closed monoidal category is＂enriched in itself＂．For this，we need to define，for each object a ，an arrow $\operatorname{Id} a: \mathcal{I} \rightarrow \exp a a$ to serve as the＂identity at a＂，and for every three objects a, b ，and c ，a＂compositor＂Comp a b c： $\exp b c \otimes \exp a b \rightarrow \exp a c$ ．We also need to prove that these satisfy the appropriate unit and associativity laws．Although essentially all the work is done here，the statement and proof of the the final result is deferred to a separate theory EnrichedCategory so that a mutual dependence between that theory and the present one is not introduced．

```
interpretation elementary-monoidal-category \(C\) tensor unity lunit runit assoc
    〈proof〉
definition \(I d\)
where \(I d a \equiv \operatorname{Curry}[\mathcal{I}, a, a] \perp[a]\)
lemma Id-in-hom [intro]:
assumes ide a
shows «Id \(a: \mathcal{I} \rightarrow \exp a\) a»
    〈proof〉
```

```
lemma Id-simps [simp]:
assumes ide a
shows arr (Id a)
and dom (Id a)=I
and cod (Id a) = exp a a
    <proof\rangle
The next definition follows Kelly [1], section 1.6.
definition Comp
where Comp a b c\equiv
    Curry[\operatorname{exp b c \otimes exp a b,a,c]}
    (eval b c \cdot (exp b c \otimes eval a b) \cdot a[exp b c, exp a b, a])
lemma Comp-in-hom [intro]:
assumes ide a and ide b and ide c
shows «Comp a b c: exp b c\otimesexp a b 
    \langleproof\rangle
lemma Comp-simps [simp]:
assumes ide a and ide b and ide c
shows arr (Comp a b c)
and dom (Comp a b c) = exp bc\otimesexp a b
and cod (Comp a b c) = exp a c
    <proof\rangle
lemma Comp-unit-right:
assumes ide a and ide b and ide c
shows《Comp a a b ( (exp a b \otimesId a) : exp a b \otimes\mathcal{I}->exp a b»
and Comp a ab ( (exp ab\otimesId a)=r[ exp ab]
<proof\rangle
lemma Comp-unit-left:
assumes ide a and ide b and ide c
```



```
and Comp a b b \cdot(Id b \otimes exp a b)=1[ exp ab
<proof>
lemma Comp-assoc}\mp@subsup{C}{ECMC}{
assumes ide a and ide b and ide c and ide d
shows «Comp a b d • (Comp b c d \otimes exp a b):
            (exp cd\otimesexpbc)\otimesexp ab exp ad»
and Comp a b d \cdot(Comp b c d \otimes exp a b)=
    Comp a c d \cdot (exp c d \otimesComp a b c) · a [exp c d, exp b c, exp a b]
<proof\rangle
end
end
```


1.4 Cartesian Closed Monoidal Categories

A cartesian closed monoidal category is a cartesian monoidal category that is a closed monoidal category with respect to a chosen product. This is not quite the same thing as a cartesian closed category, because a cartesian monoidal category (being a monoidal category) has chosen structure (the tensor, associators, and unitors), whereas we have defined a cartesian closed category to be an abstract category satisfying certain properties that are expressed without assuming any chosen structure.
theory CartesianClosedMonoidalCategory
imports Category3.CartesianClosedCategory MonoidalCategory.CartesianMonoidalCategory ClosedMonoidalCategory
begin
locale cartesian-closed-monoidal-category $=$ cartesian-monoidal-category + closed-monoidal-category
locale elementary-cartesian-closed-monoidal-category $=$ cartesian-monoidal-category + elementary-closed-monoidal-category
begin
lemmas prod-eq-tensor [simp]
end
The following is the main purpose for the current theory: to show that a cartesian closed category with chosen structure determines a cartesian closed monoidal category.

```
context elementary-cartesian-closed-category
begin
interpretation CMC: cartesian-monoidal-category \(C\) Prod \(\alpha \iota\)
    \(\langle p r o o f\rangle\)
interpretation CMC: closed-monoidal-category \(C\) Prod \(\alpha \iota\)
    〈proof〉
lemma extends-to-closed-monoidal-category \(y_{\text {ECC }}\) :
shows closed-monoidal-category \(C\) Prod \(\alpha \iota\)
    \(\langle p r o o f\rangle\)
    lemma extends-to-cartesian-closed-monoidal-category \({ }_{E C C C}\) :
shows cartesian-closed-monoidal-category C Prod \(\alpha\) ८
    \(\langle p r o o f\rangle\)
interpretation CMC: elementary-monoidal-category
```

 \(\langle p r o o f\rangle\)
    ```
interpretation \(C M C\) : elementary-closed-monoidal-category
                                    \(C\) Prod \(\alpha \iota\) exp eval curry
        \(\langle p r o o f\rangle\)
```

 lemma extends-to-elementary-closed-monoidal-category \({ }_{E C C C}\) :
 shows elementary-closed-monoidal-category C Prod \(\alpha \iota\) exp eval curry
 \(\langle p r o o f\rangle\)
 lemma extends-to-elementary-cartesian-closed-monoidal-category \({ }_{E C C C}\) :
 shows elementary-cartesian-closed-monoidal-category C Prod \(\alpha \iota\) exp eval curry
 〈proof〉
 end
context elementary-cartesian-closed-monoidal-category
begin
interpretation elementary-monoidal-category C tensor unity lunit runit assoc $\langle p r o o f\rangle$

The following fact is not used in the present article, but it is a natural and likely useful lemma for which I constructed a proof at one point. The proof requires cartesianness; I suspect this is essential, but I am not absolutely certain of it.
lemma isomorphic-exp-prod:
assumes ide a and ide b and ide x
shows « $\left\langle\right.$ Curry $[\exp x(a \otimes b), x, a]\left(\mathfrak{p}_{1}[a, b] \cdot \operatorname{eval} x(a \otimes b)\right)$, $C u r r y[\exp x(a \otimes b), x, b]\left(\mathfrak{p}_{0}[a, b] \cdot\right.$ eval $\left.\left.x(a \otimes b)\right)\right\rangle$ $: \exp x(a \otimes b) \rightarrow \exp x a \otimes \exp x b »$
(is «<? $C, ? D\rangle: \exp x(a \otimes b) \rightarrow \exp x a \otimes \exp x b »)$
and «Curry $[\exp x a \otimes \exp x b, x, a \otimes b]$
$\left\langle\operatorname{eval} x a \cdot\left\langle\mathfrak{p}_{1}[\exp x a, \exp x b] \cdot \mathfrak{p}_{1}[\exp x a \otimes \exp x b, x]\right.\right.$,
$\left.\mathfrak{p}_{0}[\exp x a \otimes \exp x b, x]\right\rangle$,
eval $x b \cdot\left\langle\mathfrak{p}_{0}[\exp x a, \exp x b] \cdot \mathfrak{p}_{1}[\exp x a \otimes \exp x b, x]\right.$,
$\left.\left.\mathfrak{p}_{0}[\exp x a \otimes \exp x b, x]\right\rangle\right\rangle$
$: \exp x a \otimes \exp x b \rightarrow \exp x(a \otimes b) »$
(is «Curry $[\exp x a \otimes \exp x b, x, a \otimes b]\langle ? A, ? B\rangle$

$$
: \exp x a \otimes \exp x b \rightarrow \exp x(a \otimes b) »)
$$

and inverse-arrows
$(C u r r y[\exp x a \otimes \exp x b, x, a \otimes b]$
$\left\langle\operatorname{eval} x a \cdot\left\langle\mathfrak{p}_{1}[\exp x a, \exp x b] \cdot \mathfrak{p}_{1}[\exp x a \otimes \exp x b, x]\right.\right.$,
$\left.\mathfrak{p}_{0}[\exp x a \otimes \exp x b, x]\right\rangle$,
eval $x b \cdot\left\langle\mathfrak{p}_{0}[\exp x a, \exp x b] \cdot \mathfrak{p}_{1}[\exp x a \otimes \exp x b, x]\right.$,
$\left.\left.\left.\mathfrak{p}_{0}[\exp x a \otimes \exp x b, x]\right\rangle\right\rangle\right)$
$\left\langle C u r r y[\exp x(a \otimes b), x, a]\left(\mathfrak{p}_{1}[a, b] \cdot \operatorname{eval} x(a \otimes b)\right)\right.$,
Curry $[\exp x(a \otimes b), x, b]\left(\mathfrak{p}_{0}[a, b] \cdot\right.$ eval $\left.\left.x(a \otimes b)\right)\right\rangle$
and isomorphic $(\exp x(a \otimes b))(\exp x a \otimes \exp x b)$
$\langle p r o o f\rangle$
end
end

Chapter 2

Enriched Categories

The notion of an enriched category [1] generalizes the concept of category by replacing the hom-sets of an ordinary category by objects of an arbitrary monoidal category M. The choice, for each object a, of a distinguished element $i d a: a \rightarrow a$ as an identity, is replaced by an arrow Id $a: \mathcal{I} \rightarrow$ Hom $a a$ of M. The composition operation is similarly replaced by a family of arrows Comp abc:Hom B C $\otimes \operatorname{Hom} A B \rightarrow \operatorname{Hom} A C$ of M. The identity and composition are required to satisfy unit and associativity laws which are expressed as commutative diagrams in M.

```
theory EnrichedCategory
imports ClosedMonoidalCategory
begin
```


context monoidal-category

begin
abbreviation $\iota^{\prime}\left(\iota^{-1}\right)$
where $\iota^{\prime} \equiv \operatorname{inv} \iota$
end
context elementary-symmetric-monoidal-category
begin
lemma sym-unit:
shows $\iota \cdot \mathrm{s}[\mathcal{I}, \mathcal{I}]=\iota$ \langle proof \rangle
lemma sym-inv-unit:
shows $\mathrm{s}[\mathcal{I}, \mathcal{I}] \cdot \operatorname{inv} \iota=\operatorname{inv} \iota$
$\langle p r o o f\rangle$

2.1 Basic Definitions

```
locale enriched-category \(=\)
    monoidal-category +
fixes \(O b j\) :: 'o set
and Hom : : 'o \({ }^{\prime}{ }^{\prime} o \Rightarrow{ }^{\prime} a\)
and \(I d::{ }^{\prime} o \Rightarrow{ }^{\prime} a\)
and Comp :: 'o \({ }^{\prime}{ }^{\prime} o \Rightarrow{ }^{\prime} o \Rightarrow{ }^{\prime} a\)
assumes ide-Hom [intro, simp]: \(\llbracket a \in O b j ; b \in O b j \rrbracket \Longrightarrow i d e(H o m ~ a ~ b) ~\)
and Id-in-hom [intro]: \(a \in O b j \Longrightarrow\) «Id \(a: \mathcal{I} \rightarrow H o m ~ a ~ a » ~\)
and Comp-in-hom [intro]: \(\llbracket a \in O b j ; b \in O b j ; c \in O b j \rrbracket \Longrightarrow\)
                                    «Comp a b c: Hom b c \(\otimes\) Hom a \(b \rightarrow\) Hom a \(c\) »
and Comp-Hom-Id: \(\llbracket a \in O b j ; b \in O b j \rrbracket \Longrightarrow\)
    Comp a ab \(b(\) Hom \(a b \otimes I d a)=r[H o m a b]\)
and Comp-Id-Hom: \(\llbracket a \in O b j ; b \in O b j \rrbracket \Longrightarrow\)
    Comp \(a b b \cdot(I d b \otimes\) Hom a b \()=1\left[\begin{array}{lll}\text { Hom } a b\end{array}\right]\)
and Comp-assoc: \(\llbracket a \in O b j ; b \in O b j ; c \in O b j ; d \in O b j \rrbracket \Longrightarrow\)
    Comp a bd \(\cdot(\) Comp b c d \(\otimes\) Hom a b) \(=\)
    Comp a \(c d \cdot(H o m ~ c d \otimes C o m p ~ a b c)\).
    \(\mathrm{a}[\operatorname{Hom}\) c d, Hom b c, Hom a b]
```

A functor from an enriched category A to an enriched category B consists of an object map $F_{o}: O b j_{A} \rightarrow O b j_{B}$ and a map F_{a} that assigns to each pair of objects $a b$ in Obj_{A} an arrow $F_{a} a b: \operatorname{Hom}_{A} a b \rightarrow \operatorname{Hom}_{B}\left(F_{o} a\right)$ $\left(F_{o} b\right)$ of the underlying monoidal category, subject to equations expressing that identities and composition are preserved.

```
locale enriched-functor \(=\)
    monoidal-category \(C T \alpha \iota+\)
    A: enriched-category \(C T \alpha \iota \mathrm{Obj}_{A} \mathrm{Hom}_{A} \mathrm{Id}_{A} \mathrm{Comp}_{A}+\)
    B: enriched-category \(C T \alpha \iota \operatorname{Obj}_{B} \operatorname{Hom}_{B} \operatorname{Id}_{B} \operatorname{Comp}_{B}\)
for \(C:: ' m \Rightarrow\) ' \(m \Rightarrow\) ' \(m\) (infixr \(\langle\cdot\rangle 55\) )
and \(T::{ }^{\prime} m \times{ }^{\prime} m \Rightarrow{ }^{\prime} m\)
and \(\alpha:: ' m \times ' m \times ' m \Rightarrow{ }^{\prime} m\)
and \(\iota:: ' m\)
and \(O b j_{A}::\) ' a set
and \(\operatorname{Hom}_{A}::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} m\)
and \(I d_{A}::{ }^{\prime} a \Rightarrow{ }^{\prime} m\)
and \(\operatorname{Comp}_{A}:::^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} m\)
and \(O b j_{B}:: ' b\) set
and \(\operatorname{Hom}_{B}::{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} m\)
and \(I d_{B}::{ }^{\prime} b \Rightarrow{ }^{\prime} m\)
and \(\operatorname{Comp}_{B}:: ' b \Rightarrow{ }^{\prime} b{ }^{\prime} b \Rightarrow{ }^{\prime} m\)
and \(F_{o}::{ }^{\prime} a \Rightarrow{ }^{\prime} b\)
and \(F_{a}::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} m+\)
assumes extensionality: \(a \notin O b j_{A} \vee b \notin O b j_{A} \Longrightarrow F_{a} a b=\) null
assumes preserves-Obj [intro]: \(a \in O b j_{A} \Longrightarrow F_{o} a \in O b j_{B}\)
```

and preserves-Hom: $\llbracket a \in \operatorname{Obj}_{A} ; b \in \operatorname{Obj}_{A} \rrbracket \Longrightarrow$

$$
« F_{a} a b: \operatorname{Hom}_{A} a b \rightarrow \operatorname{Hom}_{B}\left(F_{o} a\right)\left(F_{o} b\right) »
$$

and preserves-Id: $a \in O b j_{A} \Longrightarrow F_{a} a a \cdot I d_{A} a=I d_{B}\left(F_{o} a\right)$
and preserves-Comp: $\llbracket a \in O b j_{A} ; b \in O b j_{A} ; c \in O b j_{A} \rrbracket \Longrightarrow$

$$
\operatorname{Comp}_{B}\left(F_{o} a\right)\left(F_{o} b\right)\left(F_{o} c\right) \cdot T\left(F_{a} b c, F_{a} a b\right)=
$$

$$
F_{a} a c \cdot C o m p_{A} a b c
$$

locale fully-faithful-enriched-functor $=$
enriched-functor +
assumes locally-iso: $\llbracket a \in O b j_{A} ; b \in O b j_{A} \rrbracket \Longrightarrow$ iso $\left(F_{a} a b\right)$
A natural transformation from an an enriched functor $F=\left(F_{o}, F_{a}\right)$ to an enriched functor $G=\left(G_{o}, G_{a}\right)$ consists of a map τ that assigns to each object $a \in O b j_{A}$ a "component at a ", which is an arrow $\tau a: \mathcal{I} \rightarrow$ $\operatorname{Hom}_{B}\left(F_{o} a\right)\left(G_{o} a\right)$, subject to an equation that expresses the naturality condition.

```
locale enriched-natural-transformation \(=\)
    monoidal-category CT \(\alpha \iota+\)
    A: enriched-category \(C T \alpha \iota \operatorname{Obj}_{A} \operatorname{Hom}_{A} \mathrm{Id}_{A} \mathrm{Comp}_{A}+\)
    B: enriched-category \(C T \alpha \iota \operatorname{Obj}_{B} \operatorname{Hom}_{B} \operatorname{Id}_{B} \operatorname{Comp}_{B}+\)
    \(F\) : enriched-functor \(C T \alpha \iota\)
        \(\mathrm{Obj}_{A} \mathrm{Hom}_{A} \mathrm{Id}_{A} \mathrm{Comp}_{A} \mathrm{Obj}_{B} \mathrm{Hom}_{B} \mathrm{Id}_{B} \mathrm{Comp}_{B} F_{o} F_{a}+\)
    G: enriched-functor \(C T \alpha \iota\)
        \(\mathrm{Obj}_{A} \mathrm{Hom}_{A} \mathrm{Id}_{A} \mathrm{Comp}_{A} \mathrm{Obj}_{B} \mathrm{Hom}_{B} \mathrm{Id}_{B} \operatorname{Comp}_{B} G_{o} G_{a}\)
for \(C::{ }^{\prime} m \Rightarrow{ }^{\prime} m \Rightarrow\) ' \(m\) (infixr \(\langle\cdot\rangle 55\) )
and \(T:: ' m \times{ }^{\prime} m \Rightarrow{ }^{\prime} m\)
and \(\alpha::{ }^{\prime} m \times{ }^{\prime} m \times{ }^{\prime} m \Rightarrow{ }^{\prime} m\)
and \(\iota::\) ' \(m\)
and \(O b j_{A}::\) 'a set
and \(\operatorname{Hom}_{A}::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} m\)
and \(I d_{A}::{ }^{\prime} a \Rightarrow{ }^{\prime} m\)
and \(\operatorname{Comp}_{A}::{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} m\)
and \(O b j_{B}:: ' b\) set
and \(\operatorname{Hom}_{B}::{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} m\)
and \(I d_{B}:: ' b \Rightarrow\) ' \(m\)
and \(\operatorname{Comp}_{B}:: ' b \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} m\)
and \(F_{o}::{ }^{\prime} a \Rightarrow{ }^{\prime} b\)
and \(F_{a}::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} m\)
and \(G_{o}::{ }^{\prime} a \Rightarrow{ }^{\prime} b\)
and \(G_{a}::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} m\)
and \(\tau:: ' a \Rightarrow{ }^{\prime} m+\)
assumes extensionality: \(a \notin O b j_{A} \Longrightarrow \tau a=\) null
and component-in-hom [intro]: \(a \in\) Obj \(_{A} \Longrightarrow « \tau a: \mathcal{I} \rightarrow \operatorname{Hom}_{B}\left(F_{o} a\right)\left(G_{o} a\right) »\)
and naturality: \(\llbracket a \in O b j_{A} ; b \in O b j_{A} \rrbracket \Longrightarrow\)
\(\operatorname{Comp}_{B}\left(F_{o} a\right)\left(F_{o} b\right)\left(G_{o} b\right) \cdot\left(\tau b \otimes F_{a} a b\right) \cdot 1^{-1}\left[\operatorname{Hom}_{A} a b\right]=\)
\(\operatorname{Comp}_{B}\left(F_{o} a\right)\left(G_{o} a\right)\left(G_{o} b\right) \cdot\left(G_{a} a b \otimes \tau a\right) \cdot \mathrm{r}^{-1}\left[H_{A} a b\right]\)
```


2．1．1 Self－Enrichment

```
context elementary-closed-monoidal-category
begin
```

Every closed monoidal category M admits a structure of enriched cate－ gory，where the exponentials in M itself serve as the＂hom－objects＂（ $c f$ ．［1］ Section 1．6）．Essentially all the work in proving this theorem has already been done in EnrichedCategoryBasics．ClosedMonoidalCategory．
interpretation closed－monoidal－category
$\langle p r o o f\rangle$
interpretation EC：enriched－category $C T \alpha \iota$ 〔Collect ide〉 exp Id Comp〈proof〉
theorem is－enriched－in－itself：
shows enriched－category $C T \alpha \iota($ Collect ide） \exp Id Comp

$$
\langle p r o o f\rangle
$$

The following mappings define a bijection between hom ab and hom \mathcal{I} $(\exp a b)$ ．These have functorial properties which are encountered repeat－ edly．

```
definition \(U P(-\uparrow\) [100] 100)
where \(t^{\uparrow} \equiv\) if arr \(t\) then Curry \([\mathcal{I}\), dom \(t, \operatorname{cod} t](t \cdot 1[\) dom \(t])\) else null
definition \(D N\)
where \(D N\) a bt \(\equiv\) if arr \(t\) then Uncurry \([a, b] t \cdot \mathrm{l}^{-1}[a]\) else null
abbreviation \(D N^{\prime}(-\downarrow[-,-][100] 99)\)
where \(t^{\downarrow}[a, b] \equiv D N a b t\)
lemma \(U P-D N\) :
shows [intro]: arr \(t \Longrightarrow 《 t^{\uparrow}: \mathcal{I} \rightarrow \exp (\operatorname{dom} t)(\operatorname{cod} t) »\)
and [intro]: 【ide a; ide b; «t: \(\mathcal{I} \rightarrow \exp a b » \rrbracket \Longrightarrow « t^{\downarrow}[a, b]: a \rightarrow b »\)
and \([\operatorname{simp}]\) : arr \(t \Longrightarrow\left(t^{\uparrow}\right)^{\downarrow}[\) dom \(t, \operatorname{cod} t]=t\)
and \([\) simp \(]: \llbracket i d e ~ a ; i d e ~ b ; « t: \mathcal{I} \rightarrow \exp a b » \rrbracket \Longrightarrow(t \downarrow[a, b])^{\uparrow}=t\)
    \(\langle\) proof \(\rangle\)
lemma UP-simps [simp]:
assumes arr \(t\)
shows \(\operatorname{arr}\left(t^{\uparrow}\right)\) and \(\operatorname{dom}\left(t^{\uparrow}\right)=\mathcal{I}\) and \(\operatorname{cod}\left(t^{\uparrow}\right)=\exp (\operatorname{dom} t)(\operatorname{cod} t)\)
    \(\langle p r o o f\rangle\)
lemma \(D N\)-simps [simp]:
assumes \(i d e a\) and \(i d e b\) and arr \(t\) and \(d o m t=\mathcal{I}\) and \(\operatorname{cod} t=\exp a b\)
shows \(\operatorname{arr}\left(t^{\downarrow}[a, b]\right)\) and \(\operatorname{dom}\left(t^{\downarrow}[a, b]\right)=a\) and \(\operatorname{cod}\left(t^{\downarrow}[a, b]\right)=b\)
    \(\langle p r o o f\rangle\)
lemma UP-ide:
```

```
assumes ide a
shows }\mp@subsup{a}{}{\uparrow}=Id
    \langleproof\rangle
lemma DN-Id:
assumes ide a
shows (Id a )}\downarrow[a,a]=
    <proof\rangle
lemma UP-comp:
assumes seq t u
shows}(t\cdotu\mp@subsup{)}{}{\uparrow}=\operatorname{Comp}(\operatorname{dom}u)(\operatorname{cod}u)(\operatorname{cod}t)\cdot(\mp@subsup{t}{}{\uparrow}\otimes\mp@subsup{u}{}{\uparrow})\cdot\mp@subsup{\iota}{}{-1
\langleproof\rangle
end
```


2．2 Underlying Category，Functor，and Natural Trans－ formation

2．2．1 Underlying Category

The underlying category（ $c f$ ．［1］Section 1．3）of an enriched category has as its arrows from a to b the arrows $\mathcal{I} \rightarrow H o m a b$ of M（i．e．the points of Hom $a b)$ ．The identity at a is $I d a$ ．The composition of arrows f and g is given by the formula：Comp abc $(g \otimes f) \cdot \iota^{-1}$ ．
locale underlying－category $=$
M：monoidal－category +
A：enriched－category
begin
sublocale concrete－category $O b j\langle\lambda a b$. ．hom $\mathcal{I}($ Hom a b）〉〈Id〉
$\left\langle\lambda c b a g f\right.$. Comp abc $\left.\cdot(g \otimes f) \cdot \iota^{-1}\right\rangle$
$\langle p r o o f\rangle$
abbreviation comp（infixr ${ }^{\circ}{ }^{0} 55$ ）
where comp $\equiv C O M P$
lemma hom－char：
assumes $a \in O b j$ and $b \in O b j$
shows hom（MkIde a）（MkIde b）＝MkArr a b＇M．hom I（Hom a b）
〈proof〉
end

2．2．2 Underlying Functor

The underlying functor of an enriched functor $F: A \longrightarrow B$ takes an arrow $« f: a \rightarrow a^{\prime}$ » of the underlying category A_{0}（i．e．an arrow « $\mathcal{I} \rightarrow$ Hom a a^{\prime} »
of M) to the arrow « $F_{a} a a^{\prime} \cdot f: F_{o} a \rightarrow F_{o} a^{\prime} »$ of B_{0} (i.e. the arrow « F_{a} $a a^{\prime} \cdot f: \mathcal{I} \rightarrow \operatorname{Hom}\left(F_{o} a\right)\left(F_{o} a^{\prime}\right)$ » of $\left.M\right)$.

```
locale underlying-functor =
    enriched-functor
begin
```

 sublocale \(A_{0}\) : underlying-category \(C T \alpha \iota \operatorname{Obj}_{A} \operatorname{Hom}_{A} \operatorname{Id} d_{A} \operatorname{Comp}_{A}\langle p r o o f\rangle\)
 sublocale \(B_{0}\) : underlying-category \(C T \alpha \iota \operatorname{Obj}_{B} \operatorname{Hom}_{B} \operatorname{Id} d_{B} \operatorname{Comp}{ }_{B}\langle\) proof \(\rangle\)
 notation \(A_{0}\).comp (infixr \(\cdot{ }_{A 0} 55\))
 notation \(B_{0}\).comp (infixr \(\cdot{ }_{B 0} 55\))
 definition map \(_{0}\)
 where \(\operatorname{map}_{0} f=\left(\right.\) if \(A_{0} . \operatorname{arr} f\)
 then \(B_{0} \cdot \operatorname{MkArr}\left(F_{o}\left(A_{0} \cdot \operatorname{Dom} f\right)\right)\left(F_{o}\left(A_{0} \cdot \operatorname{Cod} f\right)\right)\)
 \(\left(F_{a}\left(A_{0} . \operatorname{Dom} f\right)\left(A_{0} . \operatorname{Cod} f\right) \cdot A_{0} \cdot M a p f\right)\)
 else \(\left.B_{0} . n u l l\right)\)
 sublocale functor \(A_{0}\).comp \(B_{0}\).comp map \({ }_{0}\)
 〈proof〉
 proposition is-functor:
 shows functor \(A_{0}\).comp \(B_{0}\).comp map \(_{0}\)
 \(\langle\) proof \(\rangle\)
 end

2.2.3 Underlying Natural Transformation

The natural transformation underlying an enriched natural transformation τ has components that are essentially those of τ, except that we have to bother ourselves about coercions between types.

```
locale underlying-natural-transformation =
    enriched-natural-transformation
begin
```

sublocale A_{0} : underlying-category $C T \alpha \iota \operatorname{Obj}_{A} \operatorname{Hom}_{A} \operatorname{Id} d_{A} \operatorname{Comp}_{A}\langle p r o o f\rangle$ sublocale B_{0} : underlying-category $C T \alpha \iota \operatorname{Obj}_{B} \operatorname{Hom}_{B} I d_{B} \operatorname{Comp}_{B}\langle p r o o f\rangle$ sublocale F_{0} : underlying-functor $C T \alpha \iota$
$\operatorname{Obj}_{A} \operatorname{Hom}_{A} \mathrm{Id}_{A} \mathrm{Comp}_{A} \operatorname{Obj}_{B} \operatorname{Hom}_{B} \mathrm{Id}_{B} \operatorname{Comp}_{B} F_{o} F_{a}\langle p r o o f\rangle$ sublocale G_{0} : underlying-functor $C T \alpha \iota$
$\operatorname{Obj}_{A} \mathrm{Hom}_{A} \mathrm{Id}_{A} \mathrm{Comp}_{A} \operatorname{Obj}_{B} \operatorname{Hom}_{B} \operatorname{Id} d_{B} \operatorname{Comp}_{B} G_{o} G_{a}\langle p r o o f\rangle$
definition $m a p_{o b j}$
where mapobj $a \equiv$

$$
\begin{aligned}
& B_{0} \cdot \operatorname{MkArr}\left(B_{0} \cdot \operatorname{Dom}^{\left.\left(F_{0} \cdot m a p_{0} a\right)\right)}\left(B_{0} \cdot \operatorname{Dom}\left(G_{0} \cdot \mathrm{map}_{0} a\right)\right)\right. \\
& \quad\left(\tau\left(A_{0} \cdot \operatorname{Dom} a\right)\right)
\end{aligned}
$$

```
    sublocale \tau: NaturalTransformation.transformation-by-components
                        A
    <proof>
    proposition is-natural-transformation:
```



```
        \langleproof\rangle
end
```


2．2．4 Self－Enriched Case

Here we show that a closed monoidal category C ，regarded as a category enriched in itself，it is isomorphic to its own underlying category．This is useful，because it is somewhat less cumbersome to work directly in the category C than in the higher－type version that results from the underlying category construction．Kelly often regards these two categories as identical．

```
locale self-enriched-category =
    elementary-closed-monoidal-category +
    enriched-category CT 人 \iota〈Collect ide〉 exp Id Comp
begin
    sublocale UC: underlying-category C T \alpha \iota <Collect ide〉 exp Id Comp \langleproof\rangle
    abbreviation toUC
    where toUC g \equiv if arr g
    then UC.MkArr (dom g) (cod g) (g}\mp@subsup{g}{}{\uparrow
    else UC.null
lemma toUC-simps [simp]:
assumes arr f
shows UC.arr (toUC f)
and UC.dom (toUCf) = toUC (domf)
and UC.cod (toUCf)=toUC (\operatorname{cod}f)
    <proof\rangle
lemma toUC-in-hom [intro]:
assumes arr f
shows UC.in-hom (toUC f) (UC.MkIde (dom f)) (UC.MkIde ( cod f))
    \langleproof\rangle
sublocale toUC: functor C UC.comp toUC
        <proof\rangle
```

abbreviation frmUC
where $f r m U C ~ g \equiv$ if UC.arr g
then $(U C . M a p ~ g)^{\downarrow}[$ UC.Dom $g, U C . C o d ~ g]$
else null

```
lemma frmUC-simps [simp]:
assumes UC.arr f
shows arr (frmUC f)
and dom (frmUC f) = frmUC (UC.dom f)
and cod (frmUCf) =frmUC (UC.cod f)
    <proof>
lemma frmUC-in-hom [intro]:
assumes UC.in-hom f a b
shows«frmUC f: frmUC a frmUC b»
    <proof\rangle
lemma DN-Map-comp:
assumes UC.seq g f
shows (UC.Map (UC.comp g f))}\mp@subsup{)}{}{\downarrow}[UC.Dom f,UC.Cod g] =
    (UC.Map g)\downarrow}[UC.Dom g, UC.Cod g]
    (UC.Map f)\downarrow}\downarrow[UC.Dom f, UC.Cod f]
<proof>
sublocale frmUC: functor UC.comp C frmUC
<proof\rangle
sublocale inverse-functors UC.comp C toUC frmUC
<proof\rangle
lemma inverse-functors-toUC-frmUC:
shows inverse-functors UC.comp C toUC frmUC
    <proof\rangle
corollary enriched-category-isomorphic-to-underlying-category:
shows isomorphic-categories UC.comp C
    \langleproof\rangle
end
```


2.3 Opposite of an Enriched Category

Construction of the opposite of an enriched category (cf. [1] (1.19)) requires that the underlying monoidal category be symmetric, in order to introduce the required "twist" in the definition of composition.

```
locale opposite-enriched-category =
    symmetric-monoidal-category +
    EC: enriched-category
begin
    interpretation elementary-symmetric-monoidal-category
    C tensor unity lunit runit assoc sym
```

```
<proof\rangle
```

```
abbreviation (input) Homop
where Homop a b # Hom b a
abbreviation Compop
where Compop abc \ Comp c b a \ s[Hom c b, Hom b a]
sublocale enriched-category CT \alpha\iotaObj Homop Id Compop
<proof>
end
```


2．3．1 Relation between $\left(-{ }^{o p}\right)_{0}$ and $(-)^{o p}$

Kelly（comment before（1．22））claims，for a category A enriched in a sym－ metric monoidal category，that we have $\left(A^{o p}\right)_{0}=\left(A_{0}\right)^{o p}$ ．This point be－ comes somewhat confusing，as it depends on the particular formalization one adopts for the notion of＂category＂．

As we can see from the next two facts（Op－UC－hom－char and $U C$－Op－hom－char），the hom－sets Op．UC．hom a b and UC．Op．hom a b are both obtained by using UC．MkArr to＂tag＂elements of hom \mathcal{I}（Hom （UC．Dom b）（UC．Dom a））with UC．Dom a and UC．Dom b．These two hom－sets are formally distinct if（as is the case for us），the arrows of a category are regarded as containing information about their domain and codomain，so that the hom－sets are disjoint．On the other hand，if one regards a category as a collection of mappings that assign to each pair of objects a and b a corresponding set hom $a b$ ，then the hom－sets Op．UC．hom $a b$ and UC．Op．hom abcould be arranged to be equal，as Kelly suggests．

```
locale category-enriched-in-symmetric-monoidal-category \(=\)
    symmetric-monoidal-category +
    enriched-category
begin
    interpretation elementary-symmetric-monoidal-category
                        \(C\) tensor unity lunit runit assoc sym
        \(\langle p r o o f\rangle\)
    interpretation Op: opposite-enriched-category \(C T \alpha \iota \sigma\) Obj Hom Id Comp
〈proof〉
    interpretation \(O p_{0}\) : underlying-category \(C T \alpha \iota O b j O p\). Hom \(_{o p} I d\) Op.Comp \(p_{o p}\)
        〈proof〉
    interpretation \(U C\) : underlying-category \(C T \alpha \iota\) Obj Hom Id Comp 〈proof〉
    interpretation UC.Op: dual-category UC.comp 〈proof〉
```

```
lemma Op-UC-hom-char:
assumes UC.ide a and UC.ide b
shows Opo.hom a b=
    UC.MkArr (UC.Dom a) (UC.Dom b)`
                hom I (Hom (UC.Dom b) (UC.Dom a))
    \langleproof\rangle
lemma UC-Op-hom-char:
assumes UC.ide a and UC.ide b
shows UC.Op.hom a b=
    UC.MkArr (UC.Dom b) (UC.Dom a)`
            hom I (Hom (UC.Dom b) (UC.Dom a))
    <proof>
abbreviation toUCOp
where toUCOp f}\equiv\mathrm{ if Opop.arr f
                                    then UC.MkArr (Opor.Cod f) (Opo.Dom f) (Opor.Map f)
                                    else UC.Op.null
sublocale toUCOp: functor Opo.comp UC.Op.comp toUCOp
<proof\rangle
lemma functor-toUCOp:
shows functor Opo.comp UC.Op.comp toUCOp
    <proof\rangle
abbreviation toOpo
    where toOpo f \equiv if UC.Op.arr f
                            then Opo.MkArr (UC.Cod f) (UC.Domf) (UC.Map f)
                            else Opo.null
sublocale toOpo: functor UC.Op.comp Opo.comp to Opp
<proof>
lemma functor-toOpo:
shows functor UC.Op.comp Op (.comp to Op
    \langleproof\rangle
sublocale inverse-functors UC.Op.comp Opo.comp toUCOp toOpo
    <proof>
lemma inverse-functors-toUCOp-toOp
shows inverse-functors UC.Op.comp Op (comp toUCOp toOpo
    \langleproof\rangle
end
```


2．4 Enriched Hom Functors

Here we exhibit covariant and contravariant hom functors as enriched func－ tors，as in［1］Section 1．6．We don＇t bother to exhibit them as partial func－ tors of a single two－argument functor，as to do so would require us to define the tensor product of enriched categories；something that would require more technology for proving coherence conditions than we have developed at present．

2．4．1 Covariant Case

```
locale covariant-Hom \(=\)
    monoidal-category +
    \(C\) : elementary-closed-monoidal-category +
    enriched-category +
fixes \(x::^{\prime} o\)
assumes \(x: x \in O b j\)
begin
```

 interpretation \(C\) : enriched-category \(C T \alpha \iota\) 〈Collect ide〉exp C.Id C.Comp
 〈proof〉
 interpretation C: self-enriched-category \(C T \alpha \iota\) exp eval Curry \(\langle p r o o f\rangle\)
 abbreviation hom \(_{o}\)
 where hom \(_{o} \equiv\) Hom \(x\)
 abbreviation homa \(_{a}\)
 where \(h o m_{a} \equiv \lambda b c\). if \(b \in \operatorname{Obj} \wedge c \in O b j\)
 then Curry[Hom b c, Hom x b, Hom x c] (Comp x b c)
 else null
 sublocale enriched-functor \(C T \alpha \iota\)
 Obj Hom Id Comp
 〈Collect ide〉 exp C.Id C.Comp
 homo \(_{o}\) homa \(_{a}\)
 \(\langle p r o o f\rangle\)
 lemma is-enriched-functor:
 shows enriched-functor \(C T \alpha \iota\)
 Obj Hom Id Comp
 (Collect ide) exp C.Id C.Comp
 homo \(_{\text {homa }}\)
 \(\langle p r o o f\rangle\)
 sublocale \(C_{0}\) : underlying-category \(C T \alpha \iota\langle\) Collect ide〉 exp C.Id C.Comp
 $\langle p r o o f\rangle$
sublocale UC: underlying-category $C T \alpha \iota$ Obj Hom Id Comp $\langle p r o o f\rangle$

```
sublocale UF: underlying-functor C T \alpha \iota
                        Obj Hom Id Comp
        <Collect ide〉 exp C.Id C.Comp
        homo homa
    <proof>
```

The following is Kelly＇s formula（1．31），for the result of applying the ordinary functor underlying the covariant hom functor，to an arrow $g: \mathcal{I}$ $\rightarrow \operatorname{Hom} b c$ of C_{0} ，resulting in an arrow $\operatorname{Hom}^{\rightarrow} x g: \operatorname{Hom} x b \rightarrow$ Hom x c of C ．The point of the result is that this can be expressed explicitly as Comp $x b c \cdot\left(g \otimes h o m_{o} b\right) \cdot l^{-1}\left[h o m_{o} b\right]$ ．This is all very confusing at first， because Kelly identifies C with the underlying category C_{0} of C regarded as a self－enriched category，whereas here we cannot ignore the fact that they are merely isomorphic via C ．frmUC：UC．comp $\rightarrow C_{0}$ ．comp．There is also the bother that，for an arrow $g: \mathcal{I} \rightarrow H o m b c$ of C ，the corresponding arrow of the underlying category $U C$ has to be formally constructed using UC．MkArr，i．e．as UC．MkArr b c g．
lemma Kelly－1－31：
assumes $b \in O b j$ and $c \in O b j$ and $« g: \mathcal{I} \rightarrow H o m b c »$
shows C．frmUC（UF．map 0 （UC．MkArr b c g））$=$
Comp xbc $\cdot\left(g \otimes \operatorname{hom}_{o} b\right) \cdot l^{-1}\left[\operatorname{hom}_{o} b\right]$
〈proof〉
abbreviation map_{0}
where $\operatorname{map}_{0} b$ c $g \equiv \operatorname{Compxbc} \cdot(g \otimes \operatorname{Hom} x b) \cdot 1^{-1}\left[h_{o m o} b\right]$
end
context elementary－closed－monoidal－category
begin
lemma cov－Exp－DN：
assumes $« g: \mathcal{I} \rightarrow$ exp ab＞
and ide a and ide b and ide x
shows Exp $\rightarrow x(g \downarrow[a, b])=$
（Curry［exp a b，exp xa，exp xb］（Comp xab）$\cdot g) \downarrow[\exp x a, \exp x b]$
〈proof〉
end

2．4．2 Contravariant Case

locale contravariant－Hom $=$ symmetric－monoidal－category +
C：elementary－closed－symmetric－monoidal－category + enriched－category＋

```
fixes y :: 'o
assumes y: y \inObj
begin
    interpretation C: enriched-category C T \alpha \iota〈Collect ide〉 exp C.Id C.Comp
        \langleproof\rangle
    interpretation C: self-enriched-category C T \alpha \iota exp eval Curry \langleproof\rangle
    sublocale Op: opposite-enriched-category C T \alpha \iota\sigma Obj Hom Id Comp \langleproof\rangle
    abbreviation homo
    where homo \equiv\lambdaa. Hom a y
    abbreviation homa
    where homa}\equiv\\bc. if b\inObj ^c\inOb
        then Curry[Hom c b, Hom b y, Hom c y] (Op.Compop y b c)
        else null
    sublocale enriched-functor C T \alpha \iota
        Obj Op.Homop Id Op.Compop
        <Collect ide〉 exp C.Id C.Comp
        homo homa
    <proof\rangle
    lemma is-enriched-functor:
    shows enriched-functor CT \alpha \iota
        Obj Op.Homop Id Op.Compop
        (Collect ide) exp C.Id C.Comp
        homo homa
    <proof\rangle
    sublocale C Co:underlying-category C T \alpha \iota<Collect ide` exp C.Id C.Comp
<proof\rangle
    sublocale Opo: underlying-category C T \alpha \iota Obj Op.Homop Id Op.Compop
<proof\rangle
    sublocale UF: underlying-functor C T \alpha \iota
                        Obj Op.Homop Id Op.Compop
                        <Collect ide` exp C.Id C.Comp
                homo homa
        <proof\rangle
```

The following is Kelly＇s formula（1．32）for $\mathrm{Hom}^{\leftarrow} f y:$ Hom b $y \rightarrow$ Hom a y ．
lemma Kelly－1－32：
assumes $a \in O b j$ and $b \in O b j$ and $« f: \mathcal{I} \rightarrow$ Hom a b»
shows C．frmUC（UF．map $\left.\left(O p_{0} \cdot M k A r r b a f\right)\right)=$
Comp aby $($ Hom by $\otimes f) \cdot \mathrm{r}^{-1}\left[\mathrm{hom}_{o} b\right]$
$\langle p r o o f\rangle$

```
    abbreviation mapo
    where mapo abf\equivComp aby (Hom b y \otimesf) \cdotr r
end
context elementary-closed-symmetric-monoidal-category
begin
    interpretation enriched-category C T \alpha \iota\Collect ide` exp Id Comp
        <proof>
    interpretation self-enriched-category C T \alpha \iota exp eval Curry \langleproof\rangle
    sublocale Op: opposite-enriched-category C T \alpha \iota\sigma〈Collect ide〉 exp Id Comp
        <proof\rangle
    lemma cnt-Exp-DN:
    assumes «f:\mathcal{I}->exp a b»
    and ide a and ide b and ide y
    shows Exp}\mp@subsup{}{}{\leftarrow}(f\downarrow[a,b])y
        (Curry[exp a b, exp b y, exp a y] (Op.Compop y b a) \cdotf)
        \downarrow [exp b y, exp a y]
    <proof\rangle
end
```


2．5 Enriched Yoneda Lemma

In this section we prove the（weak）Yoneda lemma for enriched categories， as in Kelly，Section 1．9．The weakness is due to the fact that the lemma asserts only a bijection between sets，rather than an isomorphism of objects of the underlying base category．

2．5．1 Preliminaries

The following gives conditions under which τ defined as $\tau x=(\mathcal{T} x)^{\uparrow}$ yields an enriched natural transformation between enriched functors F and G to the self－enriched base category．

```
context elementary-closed-monoidal-category
begin
    lemma transformation-lam-UP:
    assumes enriched-functor \(C T \alpha \iota\)
            \(\mathrm{Obj}_{A} \mathrm{Hom}_{A} \mathrm{Id}_{A} \mathrm{Comp}_{A}(\) Collect ide \() \exp\) Id Comp Fo \(F_{a}\)
    assumes enriched-functor \(C T \alpha \iota\)
            \(\mathrm{Obj}_{A} \mathrm{Hom}_{A} \mathrm{Id}_{A} \mathrm{Comp}_{A}\left(\right.\) Collect ide) exp Id Comp \(G_{o} G_{a}\)
and \(\bigwedge x . x \notin\) Obj \(_{A} \Longrightarrow \mathcal{T} x=\) null
and \(\bigwedge x . x \in O b j_{A} \Longrightarrow « \mathcal{T} x: F_{o} x \rightarrow G_{o} x 》\)
```

```
and \(\bigwedge a b . \llbracket a \in O b j_{A} ; b \in O b j_{A} \rrbracket \Longrightarrow\)
        \(\mathcal{T} b \cdot \operatorname{Uncurry}\left[F_{o} a, F_{o} b\right]\left(F_{a} a b\right)=\)
        \(\operatorname{eval}\left(G_{o} a\right)\left(G_{o} b\right) \cdot\left(G_{a} a b \otimes \mathcal{T} a\right)\)
```

 shows enriched-natural-transformation \(C T \alpha \iota\)
 Obj \(_{A} \mathrm{Hom}_{A} \mathrm{Id}_{A} \mathrm{Comp}_{A}\) (Collect ide) exp Id Comp
 \(F_{o} F_{a} G_{o} G_{a}\left(\lambda x .(\mathcal{T} x)^{\uparrow}\right)\)
 \(\langle p r o o f\rangle\)
 end

Kelly（1．39）expresses enriched naturality in an alternate form，using the underlying functors of the covariant and contravariant enriched hom functors．

```
locale Kelly-1-39 =
    symmetric-monoidal-category +
    elementary-closed-monoidal-category +
    enriched-natural-transformation
    for }a:: '
    and b :: ' }a
    assumes a: a \inObj
    and b: b\inObj
begin
```

 interpretation enriched-category \(C T \alpha \iota \prec\) Collect ide〉 exp Id Comp
 〈proof〉
 interpretation self-enriched-category \(C T \alpha \iota\) exp eval Curry
 \(\langle p r o o f\rangle\)
 sublocale cov-Hom: covariant-Hom \(C T \alpha \iota\)
 exp eval Curry \(\operatorname{Obj}_{B} \operatorname{Hom}_{B} \operatorname{Id}_{B} \operatorname{Comp}_{B}\left\langle F_{o} a\right\rangle\)
 \(\langle p r o o f\rangle\)
 sublocale cnt-Hom: contravariant-Hom \(C T \alpha \iota \sigma\)
 exp eval Curry \(\mathrm{Obj}_{B} \mathrm{Hom}_{B} \mathrm{Id}_{B} \mathrm{Comp}_{B}\left\langle G_{o}\right.\) b〉
 \(\langle p r o o f\rangle\)
 lemma Kelly-1-39:
 shows cov-Hom.map \(\left(F_{o} b\right)\left(G_{o} b\right)(\tau b) \cdot F_{a} a b=\)
 cnt-Hom.map \({ }_{0}\left(F_{o} a\right)\left(G_{o} a\right)(\tau a) \cdot G_{a} a b\)
 \(\langle p r o o f\rangle\)
 end

2．5．2 Covariant Case

locale covariant－yoneda－lemma $=$
symmetric－monoidal－category +
C ：closed－symmetric－monoidal－category +
covariant－Hom +
$F:$ enriched－functor $C T \alpha \iota$ Obj Hom Id Comp〈Collect ide〉 exp C．Id C．Comp

begin

interpretation C : elementary-closed-symmetric-monoidal-category $C T \alpha \iota \sigma$ exp eval Curry $\langle p r o o f\rangle$
interpretation C: self-enriched-category $C T \alpha \iota$ exp eval Curry $\langle p r o o f\rangle$
Every element $e: \mathcal{I} \rightarrow F_{o} x$ of $F_{o} x$ determines an enriched natural transformation τ_{e} : hom $x-\rightarrow F$. The formula here is Kelly (1.47): $\tau_{e} y$: hom $x y \rightarrow F y$ is obtained as the composite:

$$
\operatorname{hom} x y \xrightarrow{F_{a x} y} \exp (F x)(F y)^{E x p \leftarrow e(F y)} \exp \mathcal{I}(F y) \longrightarrow F y
$$

where the third component is a canonical isomorphism. This basically amounts to evaluating $F_{a} x y$ on element e of $F_{o} x$ to obtain an element of $F_{o} y$.

Note that the above composite gives an arrow $\tau_{e} y: h o m x y \rightarrow F y$, whereas the definition of enriched natural transformation formally requires $\tau_{e} y: \mathcal{I} \rightarrow \exp (h o m x y)(F y)$. So we need to transform the composite to achieve that.
abbreviation generated-transformation
where generated-transformation $e \equiv$

$$
\lambda y \cdot\left(\operatorname{eval} \mathcal{I}\left(F_{o} y\right) \cdot \mathrm{r}^{-1}\left[\exp \mathcal{I}\left(F_{o} y\right)\right] \cdot \operatorname{Exp}^{\leftarrow} e\left(F_{o} y\right) \cdot F_{a} x y\right)^{\uparrow}
$$

lemma enriched-natural-transformation-generated-transformation:
assumes $« e: \mathcal{I} \rightarrow F_{o} x »$
shows enriched-natural-transformation $C T \alpha \iota$
Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
hom $_{o}$ hom $_{a} F_{o} F_{a}$ (generated-transformation e)
$\langle p r o o f\rangle$
If τ : hom $x-\rightarrow F$ is an enriched natural transformation, then there exists an element $e_{\tau}: \mathcal{I} \rightarrow F x$ that generates τ via the preceding formula. The idea (Kelly 1.46) is to take:

$$
e_{\tau}=\mathcal{I} \xrightarrow{\text { Id } x}{h o m_{o}}^{x} \xrightarrow{\tau x} F x
$$

This amounts to the "evaluation of τx at the identity on x ".
However, note once again that, according to the formal definition of enriched natural transformation, we have $\tau x: \mathcal{I} \rightarrow \exp \left(h o m_{o} x\right)\left(F_{o} x\right)$, so it is necessary to transform this to an arrow: $(\tau x) \downarrow\left[h_{o m} x, F_{o} x\right]: h_{o m}$ $x \rightarrow F x$.
abbreviation generating-elem
where generating-elem $\tau \equiv(\tau x)^{\downarrow}\left[\operatorname{hom}_{o} x, F_{o} x\right] \cdot I d x$
lemma generating-elem-in-hom:
assumes enriched-natural-transformation $C T \alpha \iota$
Obj Hom Id Comp (Collect ide) exp C.Id C.Comp

$$
\operatorname{hom}_{o} \operatorname{hom}_{a} F_{o} F_{a} \tau
$$

shows «generating-elem $\tau: \mathcal{I} \rightarrow F_{o} x$ »
〈proof〉
Now we have to verify the elements of the diagram after Kelly (1.47):

The left square is enriched naturality of τ (Kelly (1.39)). The middle square commutes trivially. The right square commutes by the naturality of the canonical isomorphismm from $\left[\mathcal{I}, h_{o m} a\right]$ to $h o m_{o} a$. The top edge composes to $h_{o m} a$ (an identity). The commutativity of the entire diagram shows that τa is recovered from e_{τ}. Note that where τa appears, what is actually meant formally is $\left.(\tau a)^{\downarrow} \downarrow h o m_{o} a, F_{o} a\right]$.

```
lemma center-square:
assumes enriched-natural-transformation \(C T \alpha \iota\)
        Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
        homo \(_{o}\) homa \(_{a} F_{o} F_{a} \tau\)
and \(a \in O b j\)
shows C.Exp \(\mathcal{I}\left(\tau a \downarrow\left[h_{o m} a, F_{o} a\right]\right) \cdot C \cdot E x p(I d x)\left(h_{o m} a\right)=\)
    \(C \cdot \operatorname{Exp}(\operatorname{Id} x)\left(F_{o} a\right) \cdot C \cdot \operatorname{Exp}\left(h o m_{o} x\right)\left(\tau a \downarrow\left[h o m_{o} a, F_{o} a\right]\right)\)
\(\langle p r o o f\rangle\)
lemma right-square:
assumes enriched-natural-transformation \(C T \alpha \iota\)
        Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
        hom \(_{o}\) homa \(_{a} F_{o} F_{a} \tau\)
and \(a \in O b j\)
shows \(\tau a{ }^{\downarrow}\left[h_{o m} a, F_{o} a\right] \cdot C . D n\left(h_{o m} a\right)=\)
        \(C . D n\left(F_{o} a\right) \cdot C . E x p \mathcal{I}\left(\tau a \downarrow\left[h o m_{o} a, F_{o} a\right]\right)\)
\(\langle p r o o f\rangle\)
lemma top-path:
assumes \(a \in O b j\)
```

```
shows eval \(\mathcal{I}\left(h o m_{o} a\right) \cdot \mathrm{r}^{-1}\left[\exp \mathcal{I}\left(h o m o l_{o} a\right)\right] \cdot C \cdot E x p(I d x)\left(h_{o m} a\right) \cdot\)
    hom \(_{a} \times a=\)
    hom \(_{o} a\)
\(\langle p r o o f\rangle\)
```

The left square is an instance of Kelly（1．39），so we can get that by instantiating that result．The confusing business is that the target enriched category is the base category C ．
lemma left－square：
assumes enriched－natural－transformation $C T \alpha \iota$
Obj Hom Id Comp（Collect ide）exp C．Id C．Comp
homo $_{o}$ hom $_{a} F_{o} F_{a} \tau$
and $a \in O b j$
shows $\operatorname{Exp} \rightarrow\left(h o m_{o} x\right)\left((\tau a) \downarrow\left[h o m_{o} a, F_{o} a\right]\right) \cdot h o m_{a} x a=$ $\operatorname{Exp}^{\leftarrow}\left((\tau x)^{\downarrow}\left[h o m_{o} x, F_{o} x\right]\right)\left(F_{o} a\right) \cdot F_{a} x a$
$\langle p r o o f\rangle$
lemma transformation－generated－by－element：
assumes enriched－natural－transformation $C T \alpha \iota$
Obj Hom Id Comp（Collect ide）exp C．Id C．Comp
hom $_{o}$ homa $_{a} F_{o} F_{a} \tau$
and $a \in O b j$
shows $\tau a=$ generated－transformation（generating－elem τ ）a
〈proof〉
lemma element－of－generated－transformation：
assumes $e \in \operatorname{hom} \mathcal{I}\left(F_{o} x\right)$
shows generating－elem（generated－transformation e ）$=e$
〈proof〉
We can now state and prove the（weak）covariant Yoneda lemma（Kelly， Section 1．9）for enriched categories．

```
theorem covariant-yoneda:
shows bij-betw generated-transformation
    (hom I (Fox))
    (Collect (enriched-natural-transformation CT \alpha \iota
                        Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
                        homo homa Foo Fa))
<proof\rangle
end
```


2．5．3 Contravariant Case

The（weak）contravariant Yoneda lemma is obtained by just replacing the enriched category by its opposite in the covariant version．

[^0]```
 covariant-yoneda-lemma \(C T \alpha \iota \sigma\) exp eval Curry Obj Hom \({ }_{o p}\) Id Comp op y \(F_{o}\)
\(F_{a}\)
 for \(C::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) (infixr 〈.〉 55)
 and \(T::{ }^{\prime} a \times{ }^{\prime} a \Rightarrow{ }^{\prime} a\)
 and \(\alpha::{ }^{\prime} a \times{ }^{\prime} a \times{ }^{\prime} a \Rightarrow^{\prime} a\)
 and \(\iota::{ }^{\prime} a\)
 and \(\sigma::{ }^{\prime} a \times{ }^{\prime} a \Rightarrow{ }^{\prime} a\)
 and \(\exp ::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a\)
 and eval \(::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\)
 and Curry :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a\)
 and Obj :: 'b set
 and Hom \(:: \quad b \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} a\)
 and \(I d::{ }^{\prime} b \Rightarrow{ }^{\prime} a\)
 and Comp \(::{ }^{\prime} b \Rightarrow{ }^{\prime} b{ }^{\prime} b \Rightarrow^{\prime} a\)
 and \(y:: \quad b\)
 and \(F_{o}:: ' b \Rightarrow{ }^{\prime} a\)
 and \(F_{a}::{ }^{\prime} b \Rightarrow{ }^{\prime} b{ }^{\prime} a\)
 begin
 corollary contravariant-yoneda:
 shows bij-betw generated-transformation
 (hom I (\(F_{o} y\)))
 (Collect
 (enriched-natural-transformation
 CT \(\alpha \iota\) Obj Hom \(_{\text {op }}\) Id Comp \(_{\text {op }}\) (Collect ide) exp C.Id C.Comp
 hom \(_{o}\) homa \(\left._{a} F_{o} F_{a}\right)\))
 \(\langle p r o o f\rangle\)
end
end
```


## Bibliography

[1] G. M. Kelly. Basic concepts of enriched category theory. Reprints in Theory and Applications of Categories, 10, 2005. http://www.tac.mta. ca/tac/reprints/articles/10/tr10.pdf.
[2] nLab. internal hom. nLab (various contributors), $2009-2024$. https:// ncatlab.org/nlab/show/internal+hom, [Online; accessed 22-May-2024].
[3] E. W. Stark. Monoidal categories. Archive of Formal Proofs, May 2017. https://isa-afp.org/entries/MonoidalCategory.html, Formal proof development.
[4] E. W. Stark. Residuated transition systems II: Categorical properties. Archive of Formal Proofs, June 2024. (submitted for publication).


[^0]:    locale contravariant－yoneda－lemma $=$
    opposite－enriched－category $C T \alpha \iota \sigma$ Obj Hom Id Comp +

