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Abstract

The notion of an enriched category generalizes the concept of cate-
gory by replacing the hom-sets of an ordinary category by objects of an
arbitrary monoidal category. In this article we give a formal definition
of enriched categories and we give formal proofs of a relatively narrow
selection of facts about them. One of the main results is a proof that
a closed monoidal category can be regarded as a category “enriched
in itself”. The other main result is a proof of a version of the Yoneda
Lemma for enriched categories.
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Introduction

The notion of an enriched category [1] generalizes the concept of category
by replacing the hom-sets of an ordinary category by objects of an arbitrary
monoidal category V. The choice, for each object a, of a distinguished
element id a : a — a as an identity, is replaced by an arrow Id a : Z —
Hom a a of V. The composition operation is similarly replaced by a family
of arrows Comp a bc: Hom B C® Hom A B — Hom A C of V. The
identity and composition are required to satisfy unit and associativity laws
which are expressed as commutative diagrams in V. Of particular interest
is the case in which V is symmetric monoidal and closed; in that case, as
Kelly states ([1], Section 1.6): “The structure of V-CAT then becomes rich
enough to permit of Yoneda-lemma arguments formally identical with those
in CAT”

The goal of this article is to formalize the basic definition of enriched
category and some related notions, and to prove a relatively narrow selec-
tion of facts about these definitions. For reference and inspiration, we follow
the early sections of the book by Kelly [1]; however a comprehensive for-
malization of the material in that book is explicitly not our objective here.
Rather, beyond the basic definitions we are primarily interested in the fol-
lowing two results: (1) that a closed monoidal category can be regarded
as a category “enriched in itself”; and (2) the Yoneda Lemma for enriched
categories (specifically, the weak form considered in Section 1.9 of [1]). We
needed the basic definitions and result (1) for use in a separate article [4].
Although this material could have been included as part of that other arti-
cle, as it is general material that does not depend on the specific application
considered there, it seemed best to present it as a stand-alone development
that would be more readily accessible for use by others. As far as result (2) is
concerned, we originally formalized and proved it as part of our exploration
leading up to [4]. Ultimately, we did not find result (2) to be necessary for
the satisfactory development of that work, but as it is a result of general
interest whose formalization did involve some struggle to achieve, it seems
worthwhile to include it here.

This article is organized as follows: In Chapter 1 we give formal def-
initions for the notions “closed monoidal category” and “cartesian closed
monoidal category” and prove some facts about them. This builds on the



formal development of the theory of monoidal categories in our previous
article [3]. The main goals of this section are to prove some general facts
about exponentials that are used in [4], and to do most of the preliminary
work (the parts that do not specifically depend on the definition of enriched
category) involved in showing that a closed monoidal category is “enriched
in itself”. In Chapter 2 we give definitions for “enriched category” and the
related notions “enriched functor,” «
“underlying category,” and we complete the formal statement and proof of
“self-enrichment.” We then continue with the definition of the opposite of
an enriched category, give definitions for the notions of covariant and con-
travariant enriched hom functors, and prove corresponding covariant and
contravariant versions of the Yoneda Lemma.

enriched natural transformation,” and



Chapter 1

Closed Monoidal Categories

A closed monoidal category is a monoidal category such that for every ob-
ject b, the functor - ® b is a left adjoint functor. A right adjoint to this
functor takes each object ¢ to the exponential exp b c¢. The adjunction
yields a natural bijection between hom (— ® b) ¢ and hom — (exp b c).
In enriched category theory, the notion of “hom-set” from classical category
theory is generalized to that of “hom-object” in a monoidal category. When
the monoidal category in question is closed, much of the theory of set-based
categories can be reproduced in the more general enriched setting. The
main purpose of this section is to prepare the way for such a development;
in particular we do the main work required to show that a closed monoidal
category is “enriched in itself.”

theory ClosedMonoidalCategory

imports MonoidalCategory. CartesianMonoidal Category
begin

1.1 Definition and Basic Facts

As is pointed out in [2], unless symmetry is assumed as part of the defini-
tion, there are in fact two notions of closed monoidal category: left-closed
monoidal category and right-closed monoidal category. Here we define ver-
sions with and without symmetry, so that we can identify the places where
symmetry is actually required.

locale closed-monoidal-category =

monoidal-category +
assumes left-adjoint-tensor: \b. ide b = left-adjoint-functor C C (Az. z @ b)

locale closed-symmetric-monoidal-category =
closed-momnoidal-category +
symmetric-monoidal-category

Similarly to what we have done in previous work, besides the definition of
closed-monoidal-category, which adds an assumed property to monoidal-category



but not any additional structure, we find it convenient also to define elemen-
tary-closed-monoidal-category, which assumes particular exponential struc-
ture to have been chosen, and uses this given structure to express the prop-
erties of a closed monoidal category in a more elementary way.

locale elementary-closed-monoidal-category =
monoidal-category +

fixes exp : 'a = 'a = 'a

and eval :: 'a = 'a = 'a

and Curry :: 'a = 'a = 'a = 'a = a

assumes eval-in-hom-az: [ ide b; ide ¢ | = «eval b c: exp b c® b — c»

and ide-exp [intro, simp]: [ ide b; ide ¢ | = ide (exp b ¢)

and Curry-in-hom-az: [ ide a; ide b; ide ¢; «g: a ® b — ¢» |
= «Curryabcg:a— expbc»

and Uncurry-Curry: [ ide a; ide b; ide ¢; «g : a ® b — ¢» |
= evalbc- - (Curryabecg®b)=yg

and Curry-Uncurry: [ ide a; ide b; ide ¢; «h : a — exp b c» |
= Curryabc(evalbc-(h®Db)=h

locale elementary-closed-symmetric-monoidal-category =
symmetric-monoidal-category +
elementary-closed-monoidal-category

begin

sublocale elementary-symmetric-monoidal-category
C tensor T lunit runit assoc sym

(proof)

end

We now show that, except for the fact that a particular choice of struc-
ture has been made, closed monoidal categories and elementary closed monoidal
categories amount to the same thing.

1.1.1 An ECMC is a CMC

context elementary-closed-monoidal-category

begin
notation Curry (Curryl-, -, -])
abbreviation Uncurry (Uncurry[-, -])

where Uncurrylb, c] f = eval b ¢ - (f ® b)

lemma Curry-in-hom [intro]:
assumes ide ¢ and ide band «g: a @ b — c» and y = exp b ¢
shows «Curryla, b, c] g : a = y»

(proof )



lemma Curry-simps [simp]:
assumes ide a and ide b and «g: a ® b — c»
shows arr (Curryla, b, c| g)
and dom (Curryla, b, c] g) = a
and cod (Curryla, b, ¢] g) = exp b ¢
(proof )

lemma eval-in-homgcarc [intro]:
assumes ide b and ide cand x = exp b ¢ ® b
shows «eval b ¢ : x — c»

(proof)

lemma eval-simps [simp):
assumes ide b and ide c
shows arr (eval b ¢) and dom (eval b ¢) = exp b ¢ ® b and cod (eval b ¢) = ¢

(proof)

lemma Uncurry-in-hom [intro]:
assumes ide b and ide cand «f : a > expbcyand z =a ® b
shows « Uncurrylb, c] f : z — ¢»

(proof)

lemma Uncurry-simps [simp]:
assumes ide b and ide c and «f : a — exp b c»
shows arr (Uncurry[b, c| f)
and dom (Uncurrylb, ¢] f) = a® b
and cod (Uncurrylb, c] f) = ¢
(proof )

lemma Uncurry-ezp:
assumes ide a and ide b
shows Uncurryla, b] (exp a b) = eval a b

(proof)

lemma comp-Curry-arr:

assumes ide b and «f : x — a» and «g:a ® b — c»
shows Curryla, b, c] g - f = Curry[z, b, c] (g - (f ® b))
(proof)

lemma terminal-arrow-from-functor-eval:
assumes ide b and ide ¢
shows terminal-arrow-from-functor C C (Az. T (z, b)) (exp b ¢) ¢ (eval b ¢)

(proof)

lemma is-closed-monoidal-category:
shows closed-monoidal-category C' T « ¢

(proof)

lemma retraction-eval-ide-self:



assumes ide a
shows retraction (eval a a)

(proof)

end

context elementary-closed-symmetric-monoidal-category
begin

lemma is-closed-symmetric-monoidal-category:
shows closed-symmetric-monoidal-category C T « v o

(proof)

end

1.1.2 A CMC Extends to an ECMC

context closed-monoidal-category
begin

lemma has-exponentials:
assumes ide b and ide ¢
shows dz e idez N «e:z®b— c» A
(Ma g. ide a A
«g:a®b—cv — 3lf.«fra—=avANg=ce-(f ®D)))
(proof)

definition some-exp (exp”)
where ezp’ b ¢ = SOME z. ide © A
Fe.«e:z®@b— c» A
(Vag. idea N «g:a®b— c»
— 3lf.«fra=avNg=e-(f®D)))

definition some-cval (eval”)
where eval’ b ¢ = SOME e. «e: exp’ bec®@ b — c» A
(Vag. idea N «g:a® b— c»
— 3. «f:a—ep’ber ANg=c-(f D))

definition some-Curry (Curry’[-, -, -])
where Curry’[a, b, ] g =
THE f. «f a — exp’ bew A g=eval’ be- (f @ b)

abbreviation some-Uncurry (Uncurry’[-, -])
where Uncurry’[b, c| f = eval’ bc- (f @ b)

lemma Curry-uniqueness:
assumes ide b and ide ¢



shows ide (exp’ b ¢) and «eval’ bc:exp’ be® b— c»
and [ ide a; «g: a ® b — ¢» |
= 3lf. «f:a— exp’ ber A g = Uncurry’[b, c] f

(proof)

lemma some-eval-in-hom [introl:
assumes ide b and ide cand z = exp’ bc @ b
shows «eval’ bc:z — c»

(proof)

lemma some-Uncurry-some-Curry:

assumes ide a and ide b and «g: a ® b — c»
shows «Curry’la, b, c] g : a — exp” b c»

and Uncurry’[b, c] (Curry’la, b, ¢] g) = g
(proof)

lemma some-Curry-some-Uncurry:

assumes ide b and ide ¢ and «h : a — exp’ b c»
shows Curry’[a, b, ¢] (Uncurry’[b, ¢] h) = h
(proof)

lemma extends-to-elementary-closed-monoidal-categoryc prco:
shows elementary-closed-monoidal-category
C T a1 some-exp some-eval some-Curry

(proof)

end

context closed-symmetric-monoidal-category
begin

lemma extends-to-elementary-closed-symmetric-monoidal-categoryc o
shows elementary-closed-symmetric-monoidal-category
C T « o some-exp some-eval some-Curry

(proof)

end

1.2 Internal Hom Functors

For each object z of a closed monoidal category C, we can define a covariant
endofunctor Fxp~ = — of C, which takes each arrow g to an arrow « Ezp~—
xg: expx (dom g) — exp x (cod g)». Similarly, for each object y, we can
define a contravariant endofunctor Exp* — y of C, which takes each arrow
f of C°P to an arrow «Exp“ fy : exp (cod f) y — exp (dom f) y» of C.
These two endofunctors commute with each other and compose to form a
single binary “internal hom” functor Exp from C°P x C to C.



context elementary-closed-monoidal-category
begin

abbreviation cov-Ezp (Fxp™)

where Exp™ z g =ifarrg
then Curry[ezp x (dom g), z, cod g] (g - eval z (dom g))
else null

abbreviation cnt-Ezp (Exp)
where Exp* fy = if arr f
then Curry[exp (cod f) y, dom f, y]

(eval (cod f) y - (exp (cod f) y ® f))
else null

lemma cov-Ezp-in-hom:

assumes ide x and arr g

shows «Exp™ z g : exp z (dom g) — exp x (cod g)»
(proof)

lemma cnt-Erp-in-hom:

assumes arr f and ide y

shows «Exp* fy: exp (cod f) y — exp (dom f) y»
(proof )

lemma cov-Fxp-ide:
assumes ide a and ide b
shows Exp~™ ab=-expabd

(proof)

lemma cnt-Ezrp-ide:
assumes ide a and ide b
shows Exp* ab=-expabd

(proof)

lemma cov-FExp-comp:

assumes ide x and seq g f

shows Exp~ z (g-f) = Exp~ zg- Exp~ zf
(proof)

lemma cnt-Ezp-comp:

assumes seq g f and ide y

shows Fzp< (g - f) y = Exp* fy - Exp~ gy
(proof)

lemma functor-cov-Exp:
assumes ide
shows functor C C (Ezp™ z)

(proof)
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interpretation Cop: dual-category C (proof)

lemma functor-cnt-Exp:
assumes ide
shows functor Cop.comp C (\f. Exp* fx)

(proof)

lemma cov-cnt-Exp-commute:

assumes arr f and arr g

shows Ezp~ (dom f) g - Exp* f (dom g) =
Exp™ f (cod g) - Exp™ (cod f) g

(proof)

definition FExp
where Fzp f g = Exp~ (dom f) g - Exp* f (dom g)

lemma FEzp-in-hom:
assumes arr f and arr g
shows «Exp f g : Ezp (cod f) (dom g) — Ezp (dom f) (cod g)»

(proof)

lemma FEzp-ide:
assumes ide a and ide b
shows Fxp a b = exp a b

(proof)

lemma FEzp-comp:

assumes seq g f and seq k h

shows Exp (g - f) (k- h)=Exp fk-Ezpgh
(proof)

interpretation CopzC': product-category Cop.comp C {proof)

lemma functor-Ezxp:
shows binary-functor Cop.comp C C (Afg. Exp (fst fg) (snd fg))

(proof)

lemma FEzp-z-ide:

assumes ide y

shows (\z. Ezp z y) = (A\z. Ezp* z y)
(proof)

lemma Ezp-ide-y:

assumes ide

shows (\y. Exp z y) = (\y. Ezp™ z y)
(proof)

lemma Uncurry-Ezp-dom:
assumes arr f

11



shows Uncurry (dom f) (cod f) (Exp (dom f) f) = f - eval (dom f) (dom f)
(proof)

1.2.1 Exponentiation by Unity

In this section we define and develop the properties of inverse arrows Up a
a6 — expZ aand Dn a : exp I a — a, which exist in any closed monoidal
category.

interpretation elementary-monoidal-category C tensor unity lunit runit assoc
(proof)

abbreviation Up
where Up a = Curryla, Z, a] r[a]

abbreviation Dn

where Dn a = eval T a - v7 1]

exp I al
lemma isomorphic-exp-unity:
assumes ide a

shows «Up a:a — exp T a»

and «Dna:expZ a — a»

and inverse-arrows (Up a) (Dn a)
and isomorphic (exp T a) a

(proof)
The maps Up and Dn are natural in a.

lemma Up-Dn-naturality:

assumes arr f

shows Exp~ Z f - Up (dom f) = Up (cod f) - f
and Dn (cod f) - Ezp~ Z f = f - Dn (dom f)
(proof)

1.2.2 Internal Currying

Currying internalizes to an isomorphism between exp (z ® a) b and ezp z
(exp a b).

abbreviation curry
where curry z b ¢ =
Currylezp (z ® b) ¢, x, exp b ]
(Currylexp (z ® b) ¢ ® x, b, ]
(eval (z ® b) ¢ - alexp (z ® b) ¢, z, b]))
abbreviation uncurry
where uncurry x b ¢ =
Currylezp x (exp b ¢), T @ b, ]
(eval b ¢ - (eval © (exp b ¢) ® b) - a~t[exp x (exp b ¢), x, b))

lemma internal-curry:

12



assumes ide z and ide a and ide b

shows «curryz a b : exp (x ® a) b — exp z (exp a b)»
and «uncurry z a b : exp x (exp a b) — ezxp (z ® a) b»
and inverse-arrows (curry z a b) (uncurry x a b)

(proof)

Internal currying and uncurrying are the components of natural isomor-
phisms between the contravariant functors Fzp™ (- ® b) ¢ and Exp - (exp
bc).

lemma uncurry-naturality:

assumes ide b and ide ¢ and Cop.arr f

shows uncurry (Cop.cod f) b ¢ - Exp* f (exp b ¢) =

Currylexp (Cop.dom f) (exp b ¢), Cop.cod f & b, (]
(eval (Cop.dom f ® b) ¢ - (uncurry (Cop.dom f) b ¢ @ f ® b))

and Ezp* (f ® b) ¢ - uncurry (Cop.dom f) b ¢ =

Currylexp (Cop.dom f) (exp b ¢), Cop.cod f @ b, (]

(eval (Cop.dom f @ b) ¢ - (uncurry (Cop.dom f) b ¢ ® f @ b))

and uncurry (Cop.cod f) b ¢ - Exp* [ (exp b ¢) =

Ezp* (f ® b) ¢ - uncurry (Cop.dom f) b ¢
(proof )

lemma natural-isomorphism-uncurry:
assumes ide b and ide ¢
shows natural-isomorphism Cop.comp C
(Az. Exp* z (exp b ¢)) (Az. Exp* (z ® b) ¢)
(M. uncurry (Cop.cod f) b ¢ - Exp* f (exp b ¢))
(proof )

lemma natural-isomorphism-curry:
assumes ide b and ide ¢
shows natural-isomorphism Cop.comp C
(Az. Exp*™ (z ® b) ¢) (A\z. Fzp*™ z (exp b ¢))
(M. curry (Cop.cod f) b ¢ - Exp™ (f ® b) ¢)
(proof)

1.2.3 Yoneda Embedding

The internal hom provides a closed monoidal category C with a "Yoneda
embedding", which is a mapping that takes each arrow g of C' to a natu-
ral transformation from the contravariant functor Ezp* - (dom g) to the
contravariant functor Ezp* - (cod g). Note that here the target category is
C itself, not a category of sets and functions as in the classical case. Note
also that we are talking here about ordinary functors and natural transfor-
mations. We can easily prove from general considerations that the Yoneda
embedding (so-defined) is faithful. However, to obtain a fullness result re-
quires the development of a certain amount of enriched category theory,
which we do elsewhere.

lemma yoneda-embedding:

13



assumes «g : a — b»
shows natural-transformation Cop.comp C
(Az. Ezp* z a) (Az. Exp* z b) (A\z. Exp z g)
and Uncurryla, b] (Ezp a g - Curry|Z, a, a] 1[a]) - 17[a] = ¢
(proof )

lemma yoneda-embedding-is-faithful:

assumes par g ¢’ and (Az. Fzp z g) = (Az. Exp z g')

shows g = ¢’

(proof )

The following is a version of the key fact underlying the classical Yoneda
Lemma: for any natural transformation 7 from Ezp“ - a to Fxp* - b, there
is a fixed arrow ¢ : @ — b, depending only on the single component 7 a, such
that the compositions 7 = - e of an arbitrary component 7 x with arbitrary
global elements e : Z — exp x a depend on 7 only via g, and hence only via
T a.

lemma hom-transformation-expansion:
assumes natural-transformation
Cop.comp C (\z. Exp* z a) (A\zx. Exp*~ zb) 7
and ide a and ide b
shows « Uncurry[a, b] (1 a - Curry[Z, a, a] 1[a]) - 171[a] : a — b»
and Az e. [ide x; «e : T — exp z ay] =
Tz e= Expx (Uncurry[a, b] (7 a - CurryZ, a, a] 1[a]) - 17 a]) - e
(proof )

1.3 Enriched Structure

In this section we do the main work involved in showing that a closed
monoidal category is “enriched in itself”. For this, we need to define, for
each object a, an arrow Id a : Z — exp a a to serve as the “identity at
a”, and for every three objects a, b, and ¢, a “compositor” Comp a b ¢ :
exp b ¢ ® exp a b — exp a c. We also need to prove that these satisfy the
appropriate unit and associativity laws. Although essentially all the work
is done here, the statement and proof of the the final result is deferred to
a separate theory EnrichedCategory so that a mutual dependence between

that theory and the present one is not introduced.

interpretation elementary-monoidal-category C tensor unity lunit runit assoc

(proof)

definition Id
where Id a = Curry|Z, a, a] 1]d]

lemma Id-in-hom [intro]:
assumes ide a
shows «Id a : Z — exp a a»

(proof)

14



lemma Id-simps [simp]:
assumes ide g

shows arr (Id a)

and dom (Id a) =T
and cod (Id a) = exp a a

(proof)
The next definition follows Kelly [1], section 1.6.

definition Comp
where Comp a b ¢ =
Currylezp b ¢ ® exp a b, a,
(eval b ¢ - (exp b ¢ ® eval a b) - alexp b ¢, exp a b, a))

lemma Comp-in-hom [intro:
assumes ide ¢ and ide b and ide ¢
shows «Comp a b c: exp bc® exp ab — exp a c»

(proof)

lemma Comp-simps [simp]:

assumes ide a and ide b and ide ¢

shows arr (Comp a b c)

and dom (Comp abc)=expbc® expab
and cod (Comp a bc) = expac

(proof)

lemma Comp-unit-right:

assumes ide a and ide b and ide ¢

shows «Comp aab - (expab® Ida):expab® T — expa by
and Comp aab - (exp a b ® Id a) = r[exp a b

(proof)

lemma Comp-unit-left:

assumes ide a and ide b and ide ¢

shows «Comp abb- (Idb® expabd): T Q expab— exp a by
and Comp abb- (Idb® exp a b) =1exp a b]

(proof)

lemma Comp-assocgcyc:
assumes ide a and ide b and ide ¢ and ide d
shows «Comp a b d - (Comp b cd® exp ab) :
(exp cd @ exp b ¢c) ® exp a b — exp a dy»
and Comp abd - (Compbcd® expabd)=
Comp acd - (expcd® Compabc)-alexp cd, exp b c, exp a b
(proof)

end

end

15



1.4 Cartesian Closed Monoidal Categories

A cartesian closed monoidal category is a cartesian monoidal category that
is a closed monoidal category with respect to a chosen product. This is
not quite the same thing as a cartesian closed category, because a cartesian
monoidal category (being a monoidal category) has chosen structure (the
tensor, associators, and unitors), whereas we have defined a cartesian closed
category to be an abstract category satisfying certain properties that are
expressed without assuming any chosen structure.

theory CartesianClosedMonoidalCategory

imports Category3. CartesianClosedCategory MonoidalCategory. CartesianMonoidalCategory
ClosedMonoidalCategory

begin

locale cartesian-closed-monoidal-category =
cartesian-monoidal-category +
closed-monoidal-category

locale elementary-cartesian-closed-monoidal-category =
cartesian-monoidal-category +
elementary-closed-monoidal-category

begin

lemmas prod-eq-tensor [simp)

end

The following is the main purpose for the current theory: to show that
a cartesian closed category with chosen structure determines a cartesian
closed monoidal category.

context elementary-cartesian-closed-category

begin

interpretation CMC': cartesian-monoidal-category C Prod « ¢

(proof)

interpretation CMC' closed-monoidal-category C Prod « ¢
(proof)

lemma extends-to-closed-monoidal-categorypccc:
shows closed-monoidal-category C Prod a ¢

(proof)

lemma extends-to-cartesian-closed-monoidal-categorypccoc:
shows cartesian-closed-monoidal-category C' Prod o

(proof)

interpretation CMC': elementary-monoidal-category

16



C CMC .tensor CMC .unity CMC .lunit CMC.runit CMC'.assoc
(proof )

interpretation CMC': elementary-closed-monoidal-category
C Prod o v exp eval curry

(proof)

lemma extends-to-elementary-closed-monoidal-categorypcco:
shows elementary-closed-monoidal-category C' Prod « v exp eval curry

(proof)

lemma extends-to-elementary-cartesian-closed-monoidal-categorygccoc:
shows elementary-cartesian-closed-monoidal-category C Prod « v exp eval curry

(proof)

end

context elementary-cartesian-closed-monoidal-category
begin

interpretation elementary-monoidal-category C tensor unity lunit runit assoc

(proof)

The following fact is not used in the present article, but it is a natural and
likely useful lemma for which I constructed a proof at one point. The proof
requires cartesianness; I suspect this is essential, but I am not absolutely
certain of it.

lemma isomorphic-exp-prod:
assumes ide a and ide b and ide x
shows «(Currylezp x (a ® b), z, a] (p1[a, b] - eval z (a ® b)),
Currylezp z (a ® b), z, b] (pola, b] - eval z (a ® b)))
cexpz (a® b) — expxa® expx by
(is «(2C, ?D) : exzp z (a @ b) — exp x a ® exp = by)
and «Currylezp £ a @ exp x b, z, a ® )
(eval z a - (p1]exp x a, exp x b] - p1lezp T a ® exp x b, z],
polezp x a ® exp x b, z]),
eval x b - (polexp = a, exp x b] - p1[exp z a @ exp x b, ],
polexp z a ® exp x b, x]))
repra® exprb— expz (a® b)»
(is «Currylezp x a ® exp © b, x, a @ b] (?A, ?B)
cexpra® exprb— expr(a® b)»)
and inverse-arrows
(Currylezp z a ® exp z b, z, a ® b
(eval z a - (p1]exp x a, exp x b] - p1lezp T a ® exp x b, z],
polexp z a @ exp x b, xl),
eval x b - (polexp = a, exp b] pilexp z a @ exp x b, 2],
polezp x a ® exp x b, x])))
(Currylezp z (¢ ® b), z, a] (p [a, b - eval z (a ® b)),
Currylexp z (a @ b), ] (pola, b] - eval z (a ® b)))
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and isomorphic (exp z (a @ b)) (exp z a @ exp z b)
(proof)

end

end
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Chapter 2

Enriched Categories

The notion of an enriched category [1] generalizes the concept of category
by replacing the hom-sets of an ordinary category by objects of an arbitrary
monoidal category M. The choice, for each object a, of a distinguished ele-
ment id a : a — a as an identity, is replaced by an arrow Id a : Z — Hom
a a of M. The composition operation is similarly replaced by a family of
arrows Comp a b ¢ : Hom B C ® Hom A B — Hom A C of M. The identity
and composition are required to satisfy unit and associativity laws which
are expressed as commutative diagrams in M.

theory EnrichedCategory
imports ClosedMonoidalCategory
begin

context monoidal-category
begin

abbreviation ¢/ (171)
where ' = inv ¢

end

context elementary-symmetric-monoidal-category
begin

lemma sym-unit:

shows ¢ - s[Z, 7] =«
(proof)

lemma sym-inv-unit:

shows s[Z, Z] - inv ¢ = inv ¢

(proof)
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end

2.1 Basic Definitions

locale enriched-category =
monoidal-category +
fixes Obj :: o set
and Hom :: 'o = ‘o = 'a
and Id :: 'o = 'a
and Comp :: 'o = o= o= 'a
assumes ide-Hom [intro, simp]: [a € Obj; b € Obj] = ide (Hom a b)
and Id-in-hom [intro]: a € Obj = «Id a : T — Hom a a»
and Comp-in-hom [intro]: [a € Obj; b € Obj; ¢ € Obj] =
«Comp a bc: Hombc® Hom a b — Hom a c»
and Comp-Hom-Id: [a € Obj; b € Obj] =
Comp a ab- (Hom a b ® Id a) = r[Hom a b]
and Comp-Id-Hom: [a € Obj; b € Obj] =
Comp a bb-(Idb® Hom a b) = 1[Hom a b
and Comp-assoc: [a € Obj; b € Obj; ¢ € Obj; d € Obj] =
Comp abd - (Compbcd® Hom ab) =
Comp acd - (Homecd® Compabc)-
a[Hom ¢ d, Hom b ¢, Hom a b

A functor from an enriched category A to an enriched category B consists
of an object map F, : Objs — Objp and a map F, that assigns to each
pair of objects a b in Objs an arrow F, a b : Homy a b — Homp (F, a)
(F, b) of the underlying monoidal category, subject to equations expressing
that identities and composition are preserved.

locale enriched-functor =
monoidal-category C T a v +
A: enriched-category C T ot Objs Homa Idg Compa +
B: enriched-category C' T o v Objg Homp Idg Compp
for C :: 'm = 'm = 'm (infixr < 55)
and T :: 'm x 'm = 'm
and a :: 'm X 'm x 'm = 'm
and ¢ :: 'm
and Obj, :: 'a set
and Homy : 'a = 'a = 'm
and Idy :: 'a = 'm
and Compy :: 'a = 'a = 'a = 'm
and Objp :: b set
and Homp :: 'b = b= 'm
and Idg :: 'b = 'm
and Compp :: 'b= b= b= 'm
and F, :: ‘'a="b
and F, :: 'a = 'a = 'm +
assumes eztensionality: a ¢ Obja V b ¢ Obja = F, a b = null
assumes preserves-Obj [intro]: a € Objy = F, a € Objp
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and preserves-Hom: [a € Obja; b € Obja] =
«Fo ab: Homy ab— Homp (F, a) (F, b)»

and preserves-1d: a € Objga = F, aa-Idy a = Idg (F, a)

and preserves-Comp: [a € Obja; b € Obja; ¢ € Obja] =
Compp (Fo a) (Fo b) (Foc) - T (Fgbe, Fqgab) =
F,ac-Compsgabdec

locale fully-faithful-enriched-functor =
enriched-functor +
assumes locally-iso: [a € Obja; b € Objs] = iso (Fq a b)

A natural transformation from an an enriched functor F = (F,, F,)
to an enriched functor G = (G,, G,) consists of a map 7 that assigns to
each object a € Obja a “component at a”, which is an arrow 7 a : T —
Homp (F, a) (G, a), subject to an equation that expresses the naturality
condition.

locale enriched-natural-transformation =

monoidal-category C T o v +

A: enriched-category C T o v Obja Homy Idy Compy +

B: enriched-category C T a v Objp Homp Idg Compp +

F: enriched-functor C T a1

Obja Homa Idsy Compy Objg Homp Idg Compp F, F, +
G: enriched-functor C T a ¢
Obja Homy Idy Comps Objg Homp Idg Compp G, G,
for C :: 'm = 'm = 'm (infixr » 55)
and T :: 'm x 'm = 'm
and a :: 'm X 'm x 'm = 'm
and ¢ :: 'm
and Obj, :: 'a set
and Homy :: 'a = 'a = 'm
and Idy :: 'a = 'm
and Compy :: 'a = 'a = 'a = 'm
and Objp :: b set
and Homp :: 'b = 'b = 'm
and Idg :: 'b = 'm
and Compg :: b= b= b= 'm
and F, : ‘a="b
and F'y, :: 'a = 'a = 'm
and G, :: '"a = b
and G, :: 'a = 'a = 'm
and 7 :: 'a = 'm +
assumes eztensionality: o ¢ Obja = 7 a = null
and component-in-hom [intro]: a € Objs = «7 a : T — Homp (F, a) (G, a)»
and naturality: [a € Obja; b € Obja] =
Compp (Fy a) (Fo b) (Go b) - (Tb® Fyab)-171[Homy ab] =
Compg (Fo a) (Go a) (Go b) - (Gy ab® 7 a) - v~ [Homy a b
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2.1.1 Self-Enrichment

context elementary-closed-monoidal-category
begin

Every closed monoidal category M admits a structure of enriched cate-
gory, where the exponentials in M itself serve as the “hom-objects” (cf. [1]

Section 1.6). Essentially all the work in proving this theorem has already
been done in EnrichedCategoryBasics. ClosedMonoidalCategory.

interpretation closed-monoidal-category
(proof)

interpretation EC: enriched-category C' T « v «Collect idey exp Id Comp
(proof)

theorem is-enriched-in-itself:
shows enriched-category C' T « ¢ (Collect ide) exp Id Comp
{proof )

The following mappings define a bijection between hom a b and hom T
(exp a b). These have functorial properties which are encountered repeat-
edly.

definition UP (-' [100] 100)
where tT = if arr t then Curry[Z, dom t, cod t] (t - 1[dom t]) else null

definition DN
where DN a bt = if arr t then Uncurryla, b] t - 171[a] else null

abbreviation DN’ (-*[-, -] [100] 99)
where t+[a, b)) = DN a b t

lemma UP-DN:

shows [intro|: arr t = «t' : T — exp (dom t) (cod t)»

and [intro|: [ide a; ide b; «t : T — exp a b»] = «t*[a, b]: a — b»

and [simp]: arr t = (tT)¥[dom t, cod t] = t

and [simp): [ide a; ide b; «t : T — exp a by] = (t*[a, b]))T = ¢
(proo)

lemma UP-simps [simp):
assumes arr ¢
shows arr (t7) and dom (') = T and cod (t7) = exp (dom t) (cod t)

(proof)
lemma DN-simps [simp]:
assumes ide a and ide b and arr t and dom t =7 and cod t = exp a b
shows arr (t*[a, b]) and dom (t*[a, b]) = a and cod (t*[a, b]) = b
(proof)

lemma UP-ide:
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assumes ide a
shows o' = Id a

(proof)

lemma DN-Id:

assumes ide a

shows (Id a)¥[a, a] = a
(proof)

lemma UP-comp:

assumes seq t u

shows (t - u)T = Comp (dom u) (cod u) (cod t) - (t' @ ul) - 171
(proof)

end

2.2 Underlying Category, Functor, and Natural Trans-
formation

2.2.1 Underlying Category

The underlying category (cf. [1] Section 1.3) of an enriched category has as
its arrows from a to b the arrows Z — Hom a b of M (i.e. the points of Hom
a b). The identity at a is Id a. The composition of arrows f and g is given
by the formula: Comp a b c- (g ® f) - 11
locale underlying-category =
M: monoidal-category +
A: enriched-category
begin

sublocale concrete-category Obj <Aa b. M.hom T (Hom a b)y «Id>
Aebagf.Compabe-(g®f)-1™hH
(proof)

abbreviation comp (infixr -g 55)
where comp = COMP

lemma hom-char:
assumes a € 0bj and b € Obj
shows hom (Mklde a) (Mklde b) = MkArr a b * M.hom Z (Hom a b)

(proof)

end

2.2.2 Underlying Functor

The underlying functor of an enriched functor F' : A — B takes an arrow
«f : a — a'» of the underlying category Ag (i.e. an arrow «Z — Hom a a'»
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of M) to the arrow «Fy, aa’- f: F, a — F, a’» of By (i.e. the arrow «F,
aa" - f:T — Hom (F, a) (F, a")» of M).

locale underlying-functor =
enriched-functor
begin

sublocale Ag: underlying-category C T « t Obja Homa Idg Compa (proof)
sublocale By: underlying-category C T « v Objgp Homp Idg Compp (proof)

notation Ag.comp (infixr - 49 55)
notation By.comp (infixr ‘¢ 55)

definition mapg
where mapg f = (if Ag.arr f
then Bo.MkArr (F, (Ag.Dom f)) (F, (Ao.Cod f))
(Fo (Ag.-Dom f) (Ag.Cod f) - Ag.Map f)
else Bo.null)

sublocale functor Ag.comp Bgy.comp mapg

(proof)

proposition is-functor:
shows functor Ay.comp By.comp mapg
(proof)

end

2.2.3 Underlying Natural Transformation

The natural transformation underlying an enriched natural transformation
7 has components that are essentially those of 7, except that we have to
bother ourselves about coercions between types.

locale underlying-natural-transformation =
enriched-natural-transformation
begin

sublocale Ag: underlying-category C T «  Obja Homa Idg Compa (proof)
sublocale By: underlying-category C T « v Objgp Homp Idg Compp (proof)
sublocale Fy: underlying-functor C' T « ¢

Obja Homga Ida Compa Objp Homp Idg Compp F, F, {proof)
sublocale G: underlying-functor C T « ¢

Obja Homa Idy Comps Objp Homp Idg Compp G, G, {proof)

definition map,s;
where map,y; a =
Bo.MkArr (Bo.Dom (Fo.mapy a)) (Bo.Dom (Go.mapy a))
(1 (Ag.Dom a))
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sublocale 7: NaturalTransformation.transformation-by-components
Ag.comp Bg.comp Fo.mapy Go.mapo mapoy;

(proof)

proposition is-natural-transformation:
shows natural-transformation Ag.comp Bg.comp Fo.mapy Go.mapg 7.map

(proof)

end

2.2.4 Self-Enriched Case

Here we show that a closed monoidal category C, regarded as a category
enriched in itself, it is isomorphic to its own underlying category. This
is useful, because it is somewhat less cumbersome to work directly in the
category C than in the higher-type version that results from the underlying
category construction. Kelly often regards these two categories as identical.

locale self-enriched-category =
elementary-closed-monoidal-category +
enriched-category C' T « v «Collect ide> exp Id Comp
begin

sublocale UC: underlying-category C T « ¢ «Collect ide> exp Id Comp {proof)

abbreviation toUC

where toUC g = if arr g
then UC.MkArr (dom g) (cod g) (g)
else UC.null

lemma toUC-simps [simp]:

assumes arr f

shows UC.arr (toUC f)

and UC.dom (toUC f) = toUC (dom f)
and UC.cod (toUC f) = toUC (cod f)

(proof)

lemma toUC-in-hom [intro]:
assumes arr f
shows UC.in-hom (toUC f) (UC.MkIde (dom f)) (UC.MkIde (cod f))

(proof)

sublocale toUC": functor C UC.comp toUC
(proof )

abbreviation frmUC

where frmUC g = if UC.arr g
then (UC.Map g)*[UC.Dom g, UC.Cod g
else null
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lemma frmUC-simps [simp]:

assumes UC.arr f

shows arr (frmUC f)

and dom (frmUC f) = frmUC (UC.dom f)
and cod (frmUC f) = frmUC (UC.cod f)

(proof)

lemma frmUC-in-hom [intro):
assumes UC.in-hom fa b
shows «frmUC f : frmUC a — frmUC by

(proof)

lemma DN-Map-comp:
assumes UC.seq g f
shows (UC.Map (UC.comp g f))*[UC.Dom f, UC.Cod g] =
(UC.Map g)*[UC.Dom g, UC.Cod g] -
(UC.Map f)*[UC.Dom f, UC.Cod f)

(proof)

sublocale frmUC: functor UC.comp C frmUC
(proof)

sublocale inverse-functors UC.comp C toUC frmUC
(proof)

lemma inverse-functors-toUC-frmUC"
shows inverse-functors UC.comp C toUC frmUC

(proof)

corollary enriched-category-isomorphic-to-underlying-category:

shows isomorphic-categories UC.comp C

(proof)

end

2.3 Opposite of an Enriched Category

Construction of the opposite of an enriched category (cf. [1] (1.19)) requires
that the underlying monoidal category be symmetric, in order to introduce

the required “twist” in the definition of composition.

locale opposite-enriched-category =
symmetric-monoidal-category +
EC': enriched-category

begin

interpretation elementary-symmetric-monoidal-category
C' tensor unity lunit runit assoc sym
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(proof)

abbreviation (input) Hom,,
where Hom,, a b = Hom b a

abbreviation Comp,,
where Comp,, a b ¢ = Comp ¢ b a - s{Hom ¢ b, Hom b a

sublocale enriched-category C T « v Obj Hom,p, Id Comp,,p
(proof)

end

2.3.1 Relation between (—°7)y and (—()°”

Kelly (comment before (1.22)) claims, for a category A enriched in a sym-
metric monoidal category, that we have (A°?)y = (Ap)°?. This point be-
comes somewhat confusing, as it depends on the particular formalization
one adopts for the notion of “category”.

As we can see from the next two facts (Op-UC-hom-char and
UC-Op-hom-char), the hom-sets Op.UC.hom a b and UC.Op.hom a b are
both obtained by using UC.MkArr to “tag” elements of hom Z (Hom
(UC.Dom b) (UC.Dom a)) with UC.Dom a and UC.Dom b. These two
hom-sets are formally distinct if (as is the case for us), the arrows of a
category are regarded as containing information about their domain and
codomain, so that the hom-sets are disjoint. On the other hand, if one
regards a category as a collection of mappings that assign to each pair of
objects a and b a corresponding set hom a b, then the hom-sets Op. UC.hom
a band UC.Op.hom a b could be arranged to be equal, as Kelly suggests.

locale category-enriched-in-symmetric-monoidal-category =
symmetric-monoidal-category +
enriched-category

begin

interpretation elementary-symmetric-monoidal-category
C tensor unity lunit runit assoc sym

(proof)

interpretation Op: opposite-enriched-category C T « v o Obj Hom Id Comp

(proof)
interpretation Opg: underlying-category C' T o v Obj Op.Homyy, Id Op.Compy

(proof)

interpretation UC: underlying-category C T « v Obj Hom Id Comp (proof)
interpretation UC.Op: dual-category UC.comp {proof)
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lemma Op-UC-hom-char:
assumes UC.ide a and UC.ide b
shows Opg.hom a b =
UC.MkArr (UC.Dom a) (UC.Dom b) *
hom T (Hom (UC.Dom b) (UC.Dom a))

(proof)

lemma UC-Op-hom-char:
assumes UC.ide a and UC.ide b
shows UC.Op.hom a b =
UC.MkArr (UC.Dom b) (UC.Dom a) *
hom I (Hom (UC.Dom b) (UC.Dom a))

(proof)

abbreviation toUCOp

where toUCOp f = if Opg.arr f
then UC.MkArr (Opg.Cod f) (Opg.Dom f) (Opg.Map f)
else UC.Op.null

sublocale toUCOp: functor Opg.comp UC.Op.comp toUCOp
(proof )

lemma functor-toUCOp:
shows functor Opy.comp UC.Op.comp toUCOp
(proof)

abbreviation toOpg
where toOpy f = if UC.Op.arr f
then Opo.MkArr (UC.Cod f) (UC.Dom f) (UC.Map f)
else Opg.null

sublocale toOpq: functor UC.Op.comp Opg.comp toOpg
(proof)

lemma functor-toOpg:
shows functor UC.Op.comp Opg.comp toOpg

(proof)

sublocale inverse-functors UC.Op.comp Opg.comp toUCOp toOpg
(proof)

lemma inverse-functors-toUCOp-toOpy:
shows inverse-functors UC.Op.comp Opg.comp toUCOp toOpg

(proof)

end
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2.4 Enriched Hom Functors

Here we exhibit covariant and contravariant hom functors as enriched func-
tors, as in [1] Section 1.6. We don’t bother to exhibit them as partial func-
tors of a single two-argument functor, as to do so would require us to define
the tensor product of enriched categories; something that would require
more technology for proving coherence conditions than we have developed
at present.

2.4.1 Covariant Case

locale covariant-Hom =
monotdal-category +

C': elementary-closed-monoidal-category +
enriched-category +
fixes z :: o
assumes z: t € 0bj

begin

interpretation C: enriched-category C T « v <Collect ide> exp C.Id C.Comp

(proof)
interpretation C: self-enriched-category C' T a ¢ exp eval Curry (proof)

abbreviation hom,
where hom, = Hom x

abbreviation hom,

where hom, = Ab c. if b € Obj N\ ¢ € Obj
then Curry[Hom b ¢, Hom x b, Hom z ¢] (Comp = b ¢)
else null

sublocale enriched-functor C' T a ¢
Obj Hom Id Comp
<Collect ide> exp C.Id C.Comp
hom, hom,

(proof)

lemma is-enriched-functor:

shows enriched-functor C' T « ¢
Obj Hom Id Comp
(Collect ide) exp C.Id C.Comp
hom, hom,

(proof)
sublocale Cy: underlying-category C' T « ¢ <Collect ide> exp C.Id C.Comp

(proof)
sublocale UC: underlying-category C T « ¢ Obj Hom Id Comp {proof)
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sublocale UF: underlying-functor C' T o ¢
Obj Hom Id Comp
«Collect idey exp C.Id C.Comp
hom, hom,

(proof)

The following is Kelly’s formula (1.31), for the result of applying the
ordinary functor underlying the covariant hom functor, to an arrow g : Z
— Hom b ¢ of Cy, resulting in an arrow Hom™ = g : Hom © b — Hom x
¢ of C. The point of the result is that this can be expressed explicitly as
Comp z b c- (g ® hom, b) - 171[hom, b]. This is all very confusing at first,
because Kelly identifies C' with the underlying category Cy of C regarded
as a self-enriched category, whereas here we cannot ignore the fact that they
are merely isomorphic via C.frmUC: UC.comp — Cy.comp. There is also
the bother that, for an arrow ¢ : Z — Hom b ¢ of C, the corresponding
arrow of the underlying category UC has to be formally constructed using
UC.MFkArr, i.e. as UC.MEArr b ¢ g.

lemma Kelly-1-31:

assumes b € Obj and ¢ € Obj and «g : T — Hom b c»

shows C.frmUC (UF.mapy (UC.MkArr b ¢ g)) =
Comp x b c - (g ® hom, b) - 17 hom, b]

(proof)

abbreviation mapg
where mapg b ¢ g = Comp z b ¢ - (9 @ Hom z b) - 17 [hom, 0]

end

context elementary-closed-monoidal-category
begin

lemma cov-Fxp-DN:
assumes «g : Z — exp a b»
and ide a and ide b and ide x
shows Ezp~ z (g ¥[a, b]) =
(Currylexp a b, exp z a, exp x b] (Comp x a b) - g) ‘exp = a, exp x b]
(proof)

end

2.4.2 Contravariant Case

locale contravariant-Hom =
symmetric-monoidal-category +
C': elementary-closed-symmetric-monoidal-category +
enriched-category +
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fixes y :: o
assumes y: y € Obj
begin

interpretation C': enriched-category C T a v <Collect idey exp C.1d C.Comp

(proof)
interpretation C: self-enriched-category C T « v exp eval Curry (proof)

sublocale Op: opposite-enriched-category C' T o v o Obj Hom Id Comp {proof)

abbreviation hom,
where hom, = \a. Hom a y

abbreviation hom,

where hom, = Ab c. if b € Obj A\ ¢ € Obj
then Curry[Hom ¢ b, Hom by, Hom ¢ y] (Op.Comp,p, y b ¢)
else null

sublocale enriched-functor C' T a ¢
Obj Op.Hom,, Id Op.Comp,,
<Collect ide> exp C.Id C.Comp
hom, hom,

(proof)

lemma is-enriched-functor:

shows enriched-functor C' T « ¢
Obj Op.Hom,y, Id Op.Comp,p,
(Collect ide) exp C.Id C.Comp
hom, hom,

(proof)

sublocale Cy: underlying-category C' T « v <Collect ide> exp C.Id C.Comp
(proof)

sublocale Opg: underlying-category C T « « Obj Op.Hom,, Id Op.Compgy,
(proof)

sublocale UF': underlying-functor C T « ¢
Obj Op.Hom,y, Id Op.Comp,p,
«Collect ide> exp C.1d C.Comp
hom, hom,

(proof)
The following is Kelly’s formula (1.32) for Hom* fy : Hom by — Hom
a .

lemma Kelly-1-32:

assumes a € Obj and b € Obj and «f : Z — Hom a b»

shows C.frmUC (UF.mapy (Opo.MkArr b a f)) =

Comp aby- (Homby® f)- v~ hom, b]
(proof)
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abbreviation mapg
where mapy a b f = Comp a by - (Hom by ® f) - v~ [hom, b

end

context elementary-closed-symmetric-monoidal-category
begin

interpretation enriched-category C T « 1 <Collect idey exp Id Comp
(proof)

interpretation self-enriched-category C' T « v exp eval Curry {proof)

sublocale Op: opposite-enriched-category C T « v o «Collect idey exp Id Comp
(proof)

lemma cnt-FExp-DN:
assumes «f : T — exp a b»
and ide a and ide b and ide y
shows Exp* (f *[a, b]) y =
(Currylexp a b, exp by, exp a y] (Op.Compop y b a) - f)
texp by, exp a vy
(proof)

end

2.5 Enriched Yoneda Lemma

In this section we prove the (weak) Yoneda lemma for enriched categories,
as in Kelly, Section 1.9. The weakness is due to the fact that the lemma
asserts only a bijection between sets, rather than an isomorphism of objects
of the underlying base category.

2.5.1 Preliminaries

The following gives conditions under which 7 defined as 7 2 = (T )" yields
an enriched natural transformation between enriched functors F' and G to
the self-enriched base category.

context elementary-closed-monoidal-category
begin

lemma transformation-lam-UP:
assumes enriched-functor C T a ¢

Obja Homa Ida Compy (Collect ide) exp Id Comp F, F,
assumes enriched-functor C T «

Obja Homa Ida Compy (Collect ide) exp Id Comp G, G,
and Az. ¢ ¢ Objs = T = = null
and A\z. z € Obja = «T z: Fo x = G, x»
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and Aa b. [a € Obja; b € Obja] =
T b Uncurry[F, a, F, b] (F, a b) =
eval (Go a) (Go b) - (Gg a b ® T a)
shows enriched-natural-transformation C T « ¢
Obja Homa Ids Compy (Collect ide) exp Id Comp
F, F, G, Gy (Az. (T z)1)
(proof)

end

Kelly (1.39) expresses enriched naturality in an alternate form, using
the underlying functors of the covariant and contravariant enriched hom

functors.

locale Kelly-1-39 =
symmetric-monoidal-category +
elementary-closed-monoidal-category +
enriched-natural-transformation
for a :: 'a
and b :: 'a +
assumes a: a € Obja
and b: b € Obja

begin

interpretation enriched-category C T a v «Collect idey exp Id Comp

(proof )
interpretation self-enriched-category C T « v exp eval Curry

(proof)

sublocale cov-Hom: covariant-Hom C T «a ¢
exp eval Curry Objg Homp Idg Compp <F, a

(proof)

sublocale cnt-Hom: contravariant-Hom C T a1 o
exp eval Curry Objp Homp Idg Compp <G, b»

(proof)

lemma Kelly-1-39:

shows cov-Hom.mapy (Fy b) (G, b) (7 b) - Fy ab=
ent-Hom.mapo (Fo a) (Go a) (T a) - Gg a'b

(proof)

end

2.5.2 Covariant Case

locale covariant-yoneda-lemma =
symmetric-monoidal-category +
C: closed-symmetric-monoidal-category +

covariant-Hom +
F: enriched-functor C T « v Obj Hom Id Comp <Collect ide> exp C.Id C.Comp
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begin

interpretation C': elementary-closed-symmetric-monoidal-category C T v o
exp eval Curry {proof)
interpretation C: self-enriched-category C T « v exp eval Curry (proof)

Every element e : T — F, x of F, x determines an enriched natural
transformation 7.: hom © — — F. The formula here is Kelly (1.47): 7, y:
hom x y — F y is obtained as the composite:

hom x yFa—gC)ye:I:p (Fz)(F y)Expe—eéF y)exp Z(Fy—Fuy
where the third component is a canonical isomorphism. This basically
amounts to evaluating F, x y on element e of F, z to obtain an element of
F, .

Note that the above composite gives an arrow 7, y: hom z y — F y,
whereas the definition of enriched natural transformation formally requires
Te y: L — exp (hom z y) (F y). So we need to transform the composite to
achieve that.

abbreviation generated-transformation
where generated-transformation e =
Ny. (eval T (Fyy) - v Yexp T (Fo y)] - Exp e (Fo y) - Fq xy)T

lemma enriched-natural-transformation-generated-transformation:
assumes «e : L — F, x»
shows enriched-natural-transformation C T « ¢

Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
hom, hom, F, F, (generated-transformation e)

(proof)

If 7: hom © — — F is an enriched natural transformation, then there
exists an element e; : Z — F z that generates 7 via the preceding formula.
The idea (Kelly 1.46) is to take:

Id x T
er =71 =3 hom, © —5 F x

This amounts to the “evaluation of 7 x at the identity on x”.

However, note once again that, according to the formal definition of
enriched natural transformation, we have 7 z : Z — exp (hom, z) (F, x),
S0 it is necessary to transform this to an arrow: (7 z) *[hom, z, F, z]: hom,
z— Fu

abbreviation generating-elem

where generating-elem T = (1 ) Y[hom, z, F, z] - Id x

lemma generating-elem-in-hom:
assumes enriched-natural-transformation C' T « ¢
Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
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hom, homg F, Fg, T
shows «generating-elem 7 : T — F, x»

(proof)
Now we have to verify the elements of the diagram after Kelly (1.47):

homo a

/\

hom, a —————— [hom, x, hom, a
homg T a

Id =, hom, a)
\L[homo z, T al \L[I’ T a

[Te z, Fo al [Id z, Fo a]

[hom, x, F, a]

[Te - Id z, Fo al

The left square is enriched naturality of 7 (Kelly (1.39)). The middle
square commutes trivially. The right square commutes by the naturality
of the canonical isomorphismm from [Z, hom, a] to hom, a. The top edge
composes to hom, a (an identity). The commutativity of the entire diagram
shows that 7 a is recovered from e;. Note that where 7 a appears, what is
actually meant formally is (7 a) *[hom, a, F, al.

lemma center-square:
assumes enriched-natural-transformation C' T « ¢
Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
hom, homy, F, F, T
and a € Obj
shows C.Ezp T (7 a ‘[hom, a, F, a]) - C.Ezp (Id z) (hom, a) =
C.Ezp (Id x) (F, a) - C.Exp (hom, z) (T a *[hom, a, F, a])
(proof)

lemma right-square:
assumes enriched-natural-transformation C' T « ¢
Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
hom, hom, F, F, T
and a € Obj
shows 7 a Y[hom, a, F, a] - C.Dn (hom, a) =
C.Dn (F, a) - C.Ezp I (7 a ‘[hom, a, F, a))
(proof )

lemma top-path:
assumes a € Obj
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shows eval Z (hom, a) - v=[exp T (hom, a)] - C.Ezp (Id x) (hom, a) -
homg, z a =
hom, a

(proof)

The left square is an instance of Kelly (1.39), so we can get that by
instantiating that result. The confusing business is that the target enriched
category is the base category C.

lemma left-square:

assumes enriched-natural-transformation C' T « ¢
Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
hom, hom, F, F, T

and a € Obj

shows Exzp~ (hom, z) ((7 a) ‘*[hom, a, F, a]) - hom, = a =

Erp™ ((r x) Y[hom, z, F, z]) (F, a) - Fy z a
(proof)

lemma transformation-generated-by-element:

assumes enriched-natural-transformation C T « ¢
Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
hom, homg, F, F, T

and o € Obj

shows 7 a = generated-transformation (generating-elem 7) a

(proof)

lemma element-of-generated-transformation:
assumes ¢ € hom I (F, 1)
shows generating-elem (generated-transformation e) = e

(proof)

We can now state and prove the (weak) covariant Yoneda lemma (Kelly,
Section 1.9) for enriched categories.

theorem covariant-yoneda:
shows bij-betw generated-transformation
(hom I (F, x))
(Collect (enriched-natural-transformation C T o ¢
Obj Hom Id Comp (Collect ide) exp C.Id C.Comp
hom, hom, F, Fp))
{proof)

end

2.5.3 Contravariant Case

The (weak) contravariant Yoneda lemma is obtained by just replacing the
enriched category by its opposite in the covariant version.

locale contravariant-yoneda-lemma =
opposite-enriched-category C' T o v o Obj Hom Id Comp +
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covariant-yoneda-lemma C T o v o exp eval Curry Obj Homey, Id Comp,y, y Fo
F,
for C :: 'a = 'a = 'a (infixr ¢» 55)
and T :: 'a x 'a = 'a
and a:: 'a x ‘a X 'a = 'a
and ¢ :: 'a
and o :: ‘a X 'a = 'a
and ezxp :: 'a = 'a = 'a
and eval :: 'a = 'a = 'a
and Curry :: 'a = 'a = 'a = 'a = a
and Obj :: b set
and Hom :: 'b = 'b = 'a
and Id :: 'b = 'a
and Comp :: b= b= b= "a
and y :: b
and F, :: 'b = 'a
and F, :: 'b = "b="a
begin

corollary contravariant-yoneda:
shows bij-betw generated-transformation
(hom I (Fo y))
(Collect
(enriched-natural-transformation
C T a v Obj Hom,y Id Comp,, (Collect ide) exp C.Id C.Comp
hom, hom, Fo, Fg))
(proof)

end

end

37



Bibliography

[1] G. M. Kelly. Basic concepts of enriched category theory. Reprints in
Theory and Applications of Categories, 10, 2005. http://www.tac.mta.
ca/tac/reprints/articles/10/tr10.pdf.

[2] nLab. internal hom. nLab (various contributors), 2009 — 2024. https://
ncatlab.org/nlab/show/internal4+hom, [Online; accessed 22-May-2024].

[3] E. W. Stark. Monoidal categories. Archive of Formal Proofs, May 2017.
https:/ /isa-afp.org/entries/Monoidal Category.html, Formal proof devel-
opment.

[4] E. W. Stark. Residuated transition systems II: Categorical properties.
Archive of Formal Proofs, June 2024. (submitted for publication).

38


http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf
https://ncatlab.org/nlab/show/internal+hom
https://ncatlab.org/nlab/show/internal+hom
https://isa-afp.org/entries/MonoidalCategory.html

	Contents
	Introduction
	Closed Monoidal Categories
	Definition and Basic Facts
	An ECMC is a CMC
	A CMC Extends to an ECMC

	Internal Hom Functors
	Exponentiation by Unity
	Internal Currying
	Yoneda Embedding

	Enriched Structure
	Cartesian Closed Monoidal Categories

	Enriched Categories
	Basic Definitions
	Self-Enrichment

	Underlying Category, Functor, and Natural Transformation
	Underlying Category
	Underlying Functor
	Underlying Natural Transformation
	Self-Enriched Case

	Opposite of an Enriched Category
	Relation between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (-op)0 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (-0)op

	Enriched Hom Functors
	Covariant Case
	Contravariant Case

	Enriched Yoneda Lemma
	Preliminaries
	Covariant Case
	Contravariant Case


	Bibliography

