
Proving a data flow analysis algorithm for
computing dominators

Nan Jiang

May 26, 2024

Abstract

This entry formalises a fast iterative algorithm for computing domi-
nators [1]. It gives a specification of computing dominators on a control
flow graph where each node refers to its reverse post order number. A
semilattice of reversed-ordered list which represents dominators is built
and a Kildall’s algorithm on the semilattice is defined for computing
dominators. Finally the soundness and completeness of the algorithm
are proved w.r.t. the specification.

Contents
1 The specification of computing dominators 1

2 More auxiliary lemmas for Lists Sorted wrt < 20

3 Operations on sorted lists 22

4 A semilattice of reversed-ordered list 24

5 A kildall’s algorithm for computing dominators 29

6 Properties of the kildall’s algorithm on the semilattice 31

7 Soundness and completeness 37

1 The specification of computing dominators
theory Cfg
imports Main
begin

The specification of computing dominators is defined. For fast data flow
analysis presented by CHK [1], a directed graph with explicit node list and

1

sets of initial nodes is defined. Each node refers to its rPO (reverse Pos-
tOrder) number w.r.t a DFST, and related properties as assumptions are
handled using a locale.
type-synonym ′a digraph = (′a × ′a) set

record ′a graph-rec =
g-V :: ′a list
g-V0 :: ′a set
g-E :: ′a digraph

tail :: ′a × ′a ⇒ ′a
head :: ′a × ′a ⇒ ′a

definition wf-cfg :: ′a graph-rec ⇒ bool where
wf-cfg G ≡ g-V0 G ⊆ set(g-V G)

type-synonym node = nat

locale cfg-doms =
— Nodes are rPO numbers
fixes G :: nat graph-rec (structure)

— General properties
assumes wf-cfg: wf-cfg G
assumes tail[simp]: e = (u,v) =⇒ tail G e = u
assumes head[simp]: e = (u,v) =⇒ head G e = v
assumes tail-in-verts[simp]: e ∈ g-E G =⇒ tail G e ∈ set (g-V G)
assumes head-in-verts[simp]: e ∈ g-E G =⇒ head G e ∈ set (g-V G)

— Properties of a cfg where nodes are rPO numbers
assumes entry0: g-V0 G = {0}
assumes dfst: ∀ v ∈ set (g-V G) − {0}. ∃ prev. (prev, v) ∈ g-E G ∧ prev <

v
assumes reachable: ∀ v ∈ set (g-V G). v ∈ (g-E G)∗ ‘‘ {0}
assumes verts: g-V G = [0 ..< (length (g-V G))]

— It is required that the entry node has an immediate successor which is not itself;
Otherwise, no need to compute dominators It is required for proving the lemma:
”wf_dom start (unstables r step start)”.

assumes succ-of-entry0: ∃ s. (0,s) ∈ g-E G ∧ s 6= 0

begin

inductive path-entry :: nat digraph ⇒ nat list ⇒ nat ⇒ bool for E where
path-entry0: path-entry E [] 0
| path-entry-prepend: [[(u,v)∈ E ; path-entry E l u]] =⇒ path-entry E (u#l) v

lemma path-entry0-empty-conv: path-entry E [] v ←→ v = 0
by (auto intro: path-entry0 elim: path-entry.cases)

2

inductive-cases path-entry-uncons: path-entry E (u ′#l) w
inductive-simps path-entry-cons-conv: path-entry E (u ′#l) w

lemma single-path-entry: path-entry E [p] w =⇒ p = 0
by (simp add: path-entry-cons-conv path-entry0-empty-conv)

lemma path-entry-append:
[[path-entry E l v; (v,w)∈E]] =⇒ path-entry E (v#l) w
by (rule path-entry-prepend)

lemma entry-rtrancl-is-path:
assumes (0,v) ∈ E∗

obtains p where path-entry E p v
using assms
by induct (auto intro:path-entry0 path-entry-prepend)

lemma path-entry-is-trancl:
assumes path-entry E l v
and l 6= []
shows (0,v)∈E+

using assms
apply induct
apply auto []
apply (case-tac l)
apply (auto simp add:path-entry0-empty-conv)
done

lemma tail-is-vert: (u,v) ∈ g-E G =⇒ u ∈ set (g-V G)
by (auto dest: tail-in-verts[of (u,v)])

lemma head-is-vert: (u,v) ∈ g-E G =⇒ v ∈ set (g-V G)
by (auto dest: head-in-verts[of (u,v)])

lemma tail-is-vert2: (u,v) ∈ (g-E G)+ =⇒ u ∈ set (g-V G)
by (induct rule:trancl.induct)(auto dest: tail-in-verts)

lemma head-is-vert2: (u,v) ∈ (g-E G)+ =⇒ v ∈ set (g-V G)
by (induct rule:trancl.induct)(auto dest: head-in-verts)

lemma verts-set: set (g-V G) = {0 ..< length (g-V G)}
proof−

from verts have set (g-V G) = set [0 ..< (length (g-V G))] by simp
also have set [0 ..< (length (g-V G))] = {0 ..< (length (g-V G))} by simp
ultimately show ?thesis by auto

qed

lemma fin-verts: finite (set (g-V G))
by (auto)

3

lemma zero-in-verts: 0 ∈ set (g-V G)
using wf-cfg entry0 by (unfold wf-cfg-def) auto

lemma verts-not-empty: g-V G 6= []
using zero-in-verts by auto

lemma len-verts-gt0: length (g-V G) > 0
by (simp add:verts-not-empty)

lemma len-verts-gt1: length (g-V G) > 1
proof−

from succ-of-entry0 obtain s where s ∈ set (g-V G) and s 6= 0 using
head-is-vert by auto

with zero-in-verts have {0,s} ⊆ set (g-V G) and c: card {0, s} > 1 by auto
then have card {0, s} ≤ card (set (g-V G)) by (auto simp add:card-mono)
with c have card (set (g-V G)) > 1 by simp
then show ?thesis using card-length[of g-V G] by auto

qed

lemma verts-ge-Suc0 : ¬ [0..<length (g-V G)] = [0]
proof

assume [0..<length (g-V G)] = [0]
then have length [0..<length (g-V G)] = 1 by simp
with len-verts-gt1 show False by auto

qed

lemma distinct-verts1: distinct [0..<length (g-V G)]
by simp

lemma distinct-verts2: distinct (g-V G)
by (insert distinct-verts1 verts) simp

lemma single-entry: is-singleton (g-V0 G)
by (simp add:entry0)

lemma entry-is-0: the-elem (g-V0 G) = 0
by (simp add: entry0)

lemma wf-digraph: cfg-doms G by intro-locales

lemma path-entry-prepend-conv: path-entry (g-E G) p n =⇒ p 6= [] =⇒ ∃ v.
path-entry (g-E G) (tl p) v ∧ (v, n) ∈ (g-E G)
proof (induct rule:path-entry.induct)

case path-entry0 then show ?case by auto
next

case (path-entry-prepend u v l)
then show ?case by auto

qed

4

lemma path-verts: path-entry (g-E G) p n =⇒ n ∈ set (g-V G)
proof (cases p = [])

case True
assume path-entry (g-E G) p n and p = []
then show ?thesis by (simp add:path-entry0-empty-conv zero-in-verts)

next
case False
assume path-entry (g-E G) p n and p 6= []
then have (0,n)∈(g-E G)+ by (auto simp add:path-entry-is-trancl)
then show ?thesis using head-is-vert2 by simp

qed

lemma path-in-verts:
assumes path-entry (g-E G) l v

shows set l ⊆ set (g-V G)
using assms

proof (induct rule:path-entry.induct)
case path-entry0 then show ?case by auto

next
case (path-entry-prepend u v l)
then show ?case using path-verts by auto

qed

lemma any-node-exits-path:
assumes v ∈ set (g-V G)

shows ∃ p. path-entry (g-E G) p v
using assms

proof (cases v = 0)
assume v ∈ set (g-V G) and v = 0
have path-entry (g-E G) [] 0 by (auto simp add:path-entry0)
then show ?thesis using ‹v = 0› by auto

next
assume v ∈ set (g-V G) and v 6= 0
with reachable have v ∈ (g-E G)∗ ‘‘ {0} by auto
then have (0,v) ∈ (g-E G)∗ by (simp add:Image-iff)
then show ?thesis by (auto intro:entry-rtrancl-is-path)

qed

lemma entry0-path: path-entry (g-E G) [] 0
by (auto simp add:path-entry.path-entry0)

definition reachable :: node ⇒ bool
where reachable v ≡ v ∈ (g-E G)∗ ‘‘ {0}

lemma path-entry-reachable:
assumes path-entry (g-E G) p n

shows reachable n
using assms reachable

5

by (fastforce intro:path-verts simp add:reachable-def)

lemma nin-nodes-reachable: n /∈ set (g-V G) =⇒ ¬ reachable n
proof(rule ccontr)

assume n /∈ set (g-V G) and nn: ¬ ¬ reachable n
from ‹n /∈ set (g-V G)› have n 6= 0 using verts-set len-verts-gt0 entry0 by

auto
from nn have reachable n by auto
then have n ∈ (g-E G)∗ ‘‘ {0} by (simp add: reachable-def)
then have (0, n) ∈ (g-E G)∗ by (auto simp add:Image-def)
with ‹n 6= 0› have ∃n ′. (0,n ′) ∈ (g-E G)∗ ∧ (n ′, n) ∈ (g-E G) by (auto

intro:rtranclE)
then obtain n ′ where (0,n ′) ∈ (g-E G)∗ and (n ′, n) ∈ (g-E G)by auto
then have n ∈ set (g-V G) using head-is-vert by auto
with ‹n /∈ set (g-V G)› show False

by auto
qed

lemma reachable-path-entry: reachable n =⇒ ∃ p. path-entry (g-E G) p n
proof−

assume reachable n
then have (0,n) ∈ (g-E G)∗ by (auto simp add:reachable-def Image-iff)
then have 0 = n ∨ 0 6= n ∧ (0,n) ∈ (g-E G)+ by (auto simp add: rtrancl-eq-or-trancl)
then show ?thesis
proof

assume 0 = n
have path-entry (g-E G) [] 0 by (simp add:path-entry0)
with ‹0 = n› show ?thesis by auto

next
assume 0 6= n ∧ (0,n) ∈ (g-E G)+

then have (0,n) ∈ (g-E G)+ by (auto simp add:rtranclpD)
then have n ∈ set (g-V G) by (simp add:head-is-vert2)
then show ?thesis by (rule any-node-exits-path)

qed
qed

lemma path-entry-unconc:
assumes path-entry (g-E G) (la@lb) w
obtains v where path-entry (g-E G) lb v
using assms
apply (induct la@lb w arbitrary:la lb rule: path-entry.induct)
apply (fastforce intro:path-entry.intros)

by (auto intro:path-entry.intros iff add: Cons-eq-append-conv)

lemma path-entry-append-conv:
path-entry (g-E G) (v#l) w ←→ (path-entry (g-E G) l v ∧ (v,w) ∈ (g-E G))

proof
assume path-entry (g-E G) (v # l) w
then show path-entry (g-E G) l v ∧ (v, w) ∈ g-E G

6

by (auto simp add:path-entry-cons-conv)
next

assume path-entry (g-E G) l v ∧ (v, w) ∈ g-E G
then show path-entry (g-E G) (v # l) w by (fastforce intro: path-entry-append)

qed

lemma takeWhileNot-path-entry:
assumes path-entry E p x

and v ∈ set p
and takeWhile ((6=) v) (rev p) = c

shows path-entry E (rev c) v
using assms

proof (induct rule: path-entry.induct)
case path-entry0
then show ?case by auto

next
case (path-entry-prepend u va l)
then show ?case
proof(cases v ∈ set l)

case True note v-in = this
then have takeWhile ((6=) v) (rev (u # l)) = takeWhile ((6=) v) (rev l) by auto
with path-entry-prepend.prems(2) have takeWhile ((6=) v) (rev l) = c by simp
with v-in show ?thesis using path-entry-prepend.hyps(3) by auto

next
case False note v-nin = this
with path-entry-prepend.prems(1) have v-u: v = u by auto
then have take-eq: takeWhile ((6=) v) (rev (u # l)) = takeWhile ((6=) v) ((rev

l) @ [u]) by auto
from v-nin have

∧
x. x ∈ set (rev l) =⇒ ((6=) v) x by auto

then have takeWhile ((6=) v) ((rev l) @ [u]) = (rev l) @ takeWhile ((6=) v) [u]
by (rule takeWhile-append2) simp

with v-u take-eq have takeWhile ((6=) v) (rev (u # l)) = (rev l) by simp
then show ?thesis using path-entry-prepend.prems(2) path-entry-prepend.hyps(2)

v-u by auto
qed

qed

lemma path-entry-last: path-entry (g-E G) p n =⇒ p 6= [] =⇒ last p = 0
apply (induct rule: path-entry.induct)
apply simp

apply (simp add: path-entry-cons-conv neq-Nil-conv)
apply (auto simp add:path-entry0-empty-conv)
done

lemma path-entry-loop:
assumes n-path: path-entry (g-E G) p n

and n: n ∈ set p
shows ∃ p ′. path-entry (g-E G) p ′ n ∧ n /∈ set p ′

using assms

7

proof −
let ?c = takeWhile ((6=) n) (rev (p))
have ∀ z ∈ set ?c. z 6= n by (auto dest: set-takeWhileD)
then have n-nin: n /∈ set (rev ?c) by auto

from n-path obtain v where path-entry (g-E G) (p) v using path-entry-prepend-conv
by auto
with n have path-entry (g-E G) (rev ?c) n by (auto intro:takeWhileNot-path-entry)

with n-nin show ?thesis by fastforce
qed

lemma path-entry-hd-edge:
assumes path-entry (g-E G) pa p

and pa 6= []
shows (hd pa, p) ∈ (g-E G)

using assms
by (induct rule: path-entry.induct) auto

lemma path-entry-edge:
assumes pa 6= []

and path-entry (g-E G) pa p
shows ∃ u∈set pa. (path-entry (g-E G) (rev (takeWhile ((6=) u) (rev pa))) u) ∧

(u,p) ∈ (g-E G)
using assms

proof−
from assms have 1: path-entry (g-E G) (rev (takeWhile ((6=) (hd pa)) (rev pa)))

(hd pa) by (auto intro:takeWhileNot-path-entry)
from assms have 2: (hd pa, p)∈ (g-E G) by (auto intro: path-entry-hd-edge)
have hd pa ∈ set pa using assms(1) by auto
with 1 2 show ?thesis by auto

qed

definition is-tail :: node ⇒ node × node ⇒ bool
where is-tail v e = (v = tail G e)

definition is-head :: node ⇒ node × node ⇒ bool
where is-head v e = (v = head G e)

definition succs:: node ⇒ node set
where succs v = (g-E G) ‘‘ {v}

lemma succ-in-verts: s ∈ succs n =⇒ {s,n} ⊆ set (g-V G)
by(simp add:succs-def tail-is-vert head-is-vert)

lemma succ0-not-nil: succs 0 6= {}
using succ-of-entry0 by (auto simp add:succs-def)

definition prevs:: node ⇒ node set where

8

prevs v = (converse (g-E G))‘‘ {v}

lemma v ∈ succs u ←→ u ∈ prevs v
by (auto simp add:succs-def prevs-def)

lemma succ-edge: ∀ v ∈ succs n. (n,v) ∈ g-E G
by (auto simp add:succs-def)

lemma prev-edge: u ∈ set (g-V G) =⇒ ∀ v ∈ prevs u. (v, u) ∈ g-E G
by (auto simp add:prevs-def)

lemma succ-in-G: ∀ v ∈ succs n. v ∈ set (g-V G)
by (auto simp add: succs-def dest:head-in-verts)

lemma succ-is-subset-of-verts: ∀ v ∈ set (g-V G). succs v ⊆ set(g-V G)
by (insert succ-in-G) auto

lemma fin-succs: ∀ v ∈ set (g-V G). finite (succs v)
by (insert succ-is-subset-of-verts) (auto intro:rev-finite-subset)

lemma fin-succs ′: v < length (g-V G) =⇒ finite (succs v)
by (subgoal-tac v ∈ set (g-V G))
(auto simp add: fin-succs verts-set)

lemma succ-range: ∀ v ∈ succs n. v < length (g-V G)
by (insert succ-in-G verts-set) auto

lemma path-entry-gt:
assumes ∀ p. path-entry E p n −→ d ∈ set p

and ∀ p. path-entry E p n ′ −→ n ∈ set p
shows ∀ p. path-entry E p n ′ −→ d ∈ set p

using assms
proof (intro strip)

fix p
let ?npath = takeWhile ((6=) n) (rev p)
have sub: set ?npath ⊆ set p apply (induct p) by (auto dest:set-takeWhileD)

assume ass: path-entry E p n ′

with assms(2) have n-in-p: n ∈ set p by auto
then have n ∈ set (rev p) by auto
with ass have path-entry E (rev ?npath) n

using takeWhileNot-path-entry by auto
with assms(1) have d ∈ set ?npath by fastforce
with sub show d ∈ set p by auto

qed

definition dominate :: nat ⇒ nat ⇒ bool
where dominate n1 n2 ≡

∀ pa. path-entry (g-E G) pa n2 −→

9

(n1 ∈ set pa ∨ n1 = n2)

definition strict-dominate:: nat ⇒ nat ⇒ bool where
strict-dominate n1 n2 ≡
∀ pa. path-entry (g-E G) pa n2 −→
(n1 ∈ set pa ∧ n1 6= n2)

lemma any-dominate-unreachable: ¬ reachable n =⇒ dominate d n
proof(unfold reachable-def dominate-def)

assume ass: n /∈ (g-E G)∗ ‘‘ {0}

have ¬ (∃ p. path-entry (g-E G) p n)
proof (rule ccontr)

assume ¬ (¬ (∃ p. path-entry (g-E G) p n))
then obtain p where p: path-entry (g-E G) p n by auto
then have n = 0 ∨ reachable n by (auto intro:path-entry-reachable)
then show False
proof

assume n = 0
then show False using ass by auto

next
assume reachable n
then show False using ass by (auto simp add:reachable-def)

qed
qed
then show ∀ pa. path-entry (g-E G) pa n −→ d ∈ set pa ∨ d = n by auto

qed

lemma any-sdominate-unreachable: ¬ reachable n =⇒ strict-dominate d n
proof(unfold reachable-def strict-dominate-def)

assume ass:n /∈ (g-E G)∗ ‘‘ {0}

have ¬ (∃ p. path-entry (g-E G) p n)
proof (rule ccontr)

assume ¬ (¬ (∃ p. path-entry (g-E G) p n))
then obtain p where p: path-entry (g-E G) p n by auto
then have n = 0 ∨ reachable n by (auto intro:path-entry-reachable)
then show False
proof

assume n = 0
then show False using ass by auto

next
assume reachable n
then show False using ass by (auto simp add:reachable-def)

qed
qed
then show ∀ pa. path-entry (g-E G) pa n −→ d ∈ set pa ∧ d 6= n by auto

qed

10

lemma dom-reachable: reachable n =⇒ dominate d n =⇒ reachable d
proof −

assume reach-n: reachable n
and dom-n: dominate d n

from reach-n have ∃ p. path-entry (g-E G) p n by (rule reachable-path-entry)
then obtain p where p: path-entry (g-E G) p n by auto

show reachable d
proof (cases d 6= n)

case True
with dom-n p have d-in: d ∈ set p by (auto simp add:dominate-def)
let ?pa = takeWhile ((6=) d) (rev p)

from d-in p have path-entry (g-E G) (rev ?pa) d using takeWhileNot-path-entry
by auto

then show ?thesis using path-entry-reachable by auto
next

case False
with reach-n show ?thesis by auto

qed
qed

lemma dominate-refl: dominate n n
by (simp add:dominate-def)

lemma entry0-dominates-all: ∀ p ∈ set (g-V G). dominate 0 p
proof(intro strip)

fix p
assume p ∈ set (g-V G)
show dominate 0 p
proof (cases p = 0)

case True
then show ?thesis by (auto simp add:dominate-def)

next
case False
assume p-neq0: p 6= 0
have ∀ pa. path-entry (g-E G) pa p −→ 0 ∈ set pa
proof (intro strip)

fix pa
assume path-p: path-entry (g-E G) pa p
show 0 ∈ set pa
proof (cases pa 6= [])

case True note pa-n-nil = this
with path-p have last-pa: last pa = 0 using path-entry-last by auto
from pa-n-nil have last pa ∈ set pa by simp
with last-pa show ?thesis by simp

next
case False
with path-p have p = 0 by (simp add:path-entry0-empty-conv)
with p-neq0 show ?thesis by auto

11

qed
qed
then show ?thesis by (auto simp add:dominate-def)

qed
qed

lemma strict-dominate i j =⇒ j ∈ set (g-V G) =⇒ i 6= j
using any-node-exits-path
by (auto simp add:strict-dominate-def)

definition non-strict-dominate:: nat ⇒ nat ⇒ bool where
non-strict-dominate n1 n2 ≡ ∃ pa. path-entry (g-E G) pa n2 ∧ (n1 /∈ set pa)

lemma any-sdominate-0: n ∈ set (g-V G) =⇒ non-strict-dominate n 0
apply (simp add:non-strict-dominate-def)
by (auto intro:path-entry0)

lemma non-sdominate-succ: (i,j) ∈ g-E G =⇒ k 6= i =⇒ non-strict-dominate k
i =⇒ non-strict-dominate k j
proof −

assume i-j: (i,j) ∈ g-E G and k-neq-i: k 6= i and non-strict-dominate k i
then obtain pa where path-entry (g-E G) pa i and k-nin-pa: k /∈ set pa by

(auto simp add:non-strict-dominate-def)
with i-j have path-entry (g-E G) (i#pa) j by (auto simp add:path-entry-prepend)
with k-neq-i k-nin-pa show ?thesis by (auto simp add:non-strict-dominate-def)

qed

lemma any-node-non-sdom0: non-strict-dominate k 0
by (auto intro:entry0-path simp add:non-strict-dominate-def)

lemma nonstrict-eq: non-strict-dominate i j =⇒ ¬ strict-dominate i j
by (auto simp add:non-strict-dominate-def strict-dominate-def)

lemma dominate-trans:
assumes dominate n1 n2

and dominate n2 n3
shows dominate n1 n3

using assms
proof(cases n1 = n2)

case True
then show ?thesis using assms(2) by auto

next
case False
then show dominate n1 n3
proof (cases n1 = n3)

case True
then show ?thesis by (auto simp add:dominate-def)

next

12

case False
show dominate n1 n3
proof (cases n2 = n3)

case True
then show ?thesis using assms(1) by auto

next
case False
with ‹n1 6= n2› ‹n1 6= n3› show ?thesis
proof (auto simp add: dominate-def)

fix pa
assume n1 6= n2 and n1 6= n3 and n2 6= n3
from ‹n1 6= n2› assms(1) have n1-n2-pa: ∀ pa. path-entry (g-E G) pa n2

−→ n1 ∈ set pa
by (auto simp add:dominate-def)

from ‹n2 6= n3› assms(2) have ∀ pa. path-entry (g-E G) pa n3 −→ n2 ∈
set pa

by (auto simp add:dominate-def)
with n1-n2-pa have ∀ pa. path-entry (g-E G) pa n3 −→ n1 ∈ set pa

by (rule path-entry-gt)
then show

∧
pa. path-entry (g-E G) pa n3 =⇒ n1 ∈ set pa by auto

qed
qed

qed
qed

lemma len-takeWhile-lt: x ∈ set xs =⇒ length (takeWhile ((6=) x) xs) < length xs
by (induct xs) auto

lemma len-takeWhile-comp:
assumes n1 ∈ set xs

and n2 ∈ set xs
and n1 6= n2

shows length (takeWhile ((6=) n1) xs) 6= length (takeWhile ((6=) n2) xs)
using assms
by (induct xs) auto

lemma len-takeWhile-comp1:
assumes n1 ∈ set xs

and n2 ∈ set xs
and n1 6= n2

shows length (takeWhile ((6=) n1) (rev (x # xs))) 6= length (takeWhile ((6=)
n2) (rev (x # xs)))

using assms len-takeWhile-comp[of n1 rev xs n2] by fastforce

lemma len-takeWhile-comp2:
assumes n1 ∈ set xs

and n2 /∈ set xs
shows length (takeWhile ((6=) n1) (rev (x # xs))) 6= length (takeWhile ((6=)

n2) (rev (x # xs)))

13

using assms
proof−

let ?xs1 = takeWhile ((6=) n1) (rev (x # xs))
let ?xs2 = takeWhile ((6=) n2) (rev (x # xs))
from assms have len1: length (takeWhile ((6=) n1) (rev xs)) < length (rev xs)

using len-takeWhile-lt[of -rev xs] by auto

from assms(1) have ?xs1 = takeWhile ((6=) n1) (rev xs) by auto
then have len2: length ?xs1 < length (rev xs) using len1 by auto

from assms(2) have takeWhile ((6=) n2) (rev xs @ [x]) = (rev xs) @ takeWhile
((6=) n2) [x]

by (fastforce intro:takeWhile-append2)
then have ?xs2 = (rev xs) @ takeWhile ((6=) n2) [x] by simp
then show ?thesis using len2 by auto

qed

lemma len-compare1:
assumes n1 = x and n2 6= x

shows length (takeWhile ((6=) n1) (rev (x # xs))) 6= length (takeWhile ((6=)
n2) (rev (x # xs)))

using assms
proof(cases n1 ∈ set xs ∧ n2 ∈ set xs)

case True
with assms show ?thesis using len-takeWhile-comp1 by fastforce

next
let ?xs1 = takeWhile ((6=) n1) (rev (x # xs))
let ?xs2 = takeWhile ((6=) n2) (rev (x # xs))

case False
then have n1 ∈ set xs ∧ n2 /∈ set xs ∨ n1 /∈ set xs ∧ n2 ∈ set xs ∨ n1 /∈ set xs
∧ n2 /∈ set xs by auto

then show ?thesis
proof

assume n1 ∈ set xs ∧ n2 /∈ set xs
then show ?thesis by (fastforce dest: len-takeWhile-comp2)

next
assume n1 /∈ set xs ∧ n2 ∈ set xs ∨ n1 /∈ set xs ∧ n2 /∈ set xs
then show ?thesis
proof

assume n1 /∈ set xs ∧ n2 ∈ set xs
then have n1: n1 /∈ set xs and n2: n2 ∈ set xs by auto
have length ?xs2 6= length ?xs1 using len-takeWhile-comp2[OF n2 n1] by

auto
then show ?thesis by simp

next
assume n1 /∈ set xs ∧ n2 /∈ set xs
then have n1-nin: n1 /∈ set xs and n2-nin: n2 /∈ set xs by auto
then have t1: takeWhile ((6=) n1) (rev xs @ [x]) = (rev xs) @ takeWhile

14

((6=) n1) [x]
and takeWhile ((6=) n2) (rev xs @ [x]) = (rev xs) @ takeWhile ((6=)

n2) [x]
by (fastforce intro:takeWhile-append2)+

with ‹n1 = x› ‹n2 6= x› have t1 ′: takeWhile ((6=) n1) (rev xs @ [x]) = rev
xs

and takeWhile ((6=) n2) (rev xs @ [x]) = (rev xs) @
[x] by auto

then have length (takeWhile ((6=) n2) (rev xs @ [x])) = length ((rev xs) @
[x])

using arg-cong[of takeWhile ((6=) n2) (rev xs @ [x]) rev xs @ [x] length] by
fastforce

with t1 ′ show ?thesis by auto
qed

qed
qed

lemma len-compare2:
assumes n1 ∈ set xs

and n1 6= n2
shows length (takeWhile ((6=) n1) (rev (x # xs))) 6= length (takeWhile ((6=)

n2) (rev (x # xs)))
using assms
apply(case-tac n2 ∈ set xs)
apply (fastforce dest: len-takeWhile-comp1)

apply (fastforce dest:len-takeWhile-comp2)
done

lemma len-takeWhile-set:
assumes length (takeWhile ((6=) n1) xs) > length (takeWhile ((6=) n2) xs)

and n1 6= n2
and n1 ∈ set xs
and n2 ∈ set xs

shows set (takeWhile ((6=) n2) xs) ⊆ set (takeWhile ((6=) n1) xs)
using assms

proof (induct xs)
case Nil then show ?case by auto

next
case (Cons y ys)
note ind-hyp = Cons(1)
note len-n2-lt-n1-y-ys = Cons(2)
note n1-n-n2 = Cons(3)
note n1-in-y-ys = Cons(4)
note n2-in-y-ys = Cons(5)

let ?ys1-take = takeWhile ((6=) n1) ys
let ?ys2-take = takeWhile ((6=) n2) ys

show ?case

15

proof(cases n1 ∈ set ys)
case True note n1-in-ys = this
show ?thesis
proof(cases n2 ∈ set ys)

case True note n2-in-ys = this
show ?thesis
proof (cases n1 6= y)

case True note n1-neq-y = this
show ?thesis
proof (cases n2 6= y)

case True note n2-neq-y = this
from len-n2-lt-n1-y-ys have length ?ys2-take < length ?ys1-take

using n1-n-n2 n1-in-ys n2-in-ys n1-neq-y n2-neq-y by (induct ys) auto
from ind-hyp[OF this n1-n-n2 n1-in-ys n2-in-ys]
have set (takeWhile ((6=) n2) ys) ⊆ set (takeWhile ((6=) n1) ys) by auto
then show ?thesis using n1-neq-y n2-neq-y by (induct ys) auto

next
case False
with n1-n-n2 show ?thesis by auto

qed
next

case False
with n1-n-n2 show ?thesis using len-n2-lt-n1-y-ys by auto

qed
next

case False
with n2-in-y-ys have n2 = y by auto
then show ?thesis by auto

qed
next

case False
with n1-in-y-ys have n1 = y by auto
with n1-n-n2 show ?thesis using len-n2-lt-n1-y-ys by auto

qed
qed

lemma reachable-dom-acyclic:
assumes reachable n2

and dominate n1 n2
and dominate n2 n1

shows n1 = n2
using assms

proof −
from assms(1) assms(2) have reachable n1 by (auto intro: dom-reachable)
then have ∃ pa. path-entry (g-E G) pa n1 by (auto intro: reachable-path-entry)
then obtain pa where pa: path-entry (g-E G) pa n1 by auto

let ?n-take-n1 = takeWhile ((6=) n1) (rev pa)
let ?n-take-n2 = takeWhile ((6=) n2) (rev pa)

16

show n1 = n2
proof(rule ccontr)

assume n1-neq-n2: n1 6= n2
then have pa-n1-n2: ∀ pa. path-entry (g-E G) pa n2 −→ n1 ∈ set pa

and pa-n2-n1: ∀ pa. path-entry (g-E G) pa n1 −→ n2 ∈ set pa using
assms(2) assms(3)

by (auto simp add:dominate-def)
then have n1-n1-pa: ∀ pa. path-entry (g-E G) pa n1 −→ n1 ∈ set pa by (rule

path-entry-gt)
with pa pa-n2-n1 have n1-in-pa: n1 ∈ set pa

and n2-in-pa: n2 ∈ set pa by auto
with n1-neq-n2 have len-neq: length ?n-take-n1 6= length ?n-take-n2

by (auto simp add: len-takeWhile-comp)

from pa n1-in-pa n2-in-pa have path1: path-entry (g-E G) (rev ?n-take-n1) n1

and path2: path-entry (g-E G) (rev ?n-take-n2) n2
using takeWhileNot-path-entry by auto

have n1-not-in: n1 /∈ set ?n-take-n1 by (auto dest: set-takeWhileD[of - - rev
pa])

have n2-not-in: n2 /∈ set ?n-take-n2 by (auto dest: set-takeWhileD[of - - rev
pa])

show False
proof(cases length ?n-take-n1 > length ?n-take-n2)

case True
then have set ?n-take-n2 ⊆ set ?n-take-n1

using n1-in-pa n2-in-pa by (auto dest: len-takeWhile-set[of - rev pa])
then have n1 /∈ set ?n-take-n2 using n1-not-in by auto
with path2 show False using pa-n1-n2 by auto

next
case False
with len-neq have length ?n-take-n2 > length ?n-take-n1 by auto
then have set ?n-take-n1 ⊆ set ?n-take-n2

using n1-neq-n2 n2-in-pa n1-in-pa by (auto dest: len-takeWhile-set)
then have n2 /∈ set ?n-take-n1 using n2-not-in by auto
with path1 show False using pa-n2-n1 by auto

qed
qed

qed

lemma sdom-dom: strict-dominate n1 n2 =⇒ dominate n1 n2
by (auto simp add:strict-dominate-def dominate-def)

lemma dominate-sdominate: dominate n1 n2 =⇒ n1 6= n2 =⇒ strict-dominate n1
n2

by (auto simp add:strict-dominate-def dominate-def)

17

lemma sdom-neq:
assumes reachable n2

and strict-dominate n1 n2
shows n1 6= n2

using assms
proof −

from assms(1) have ∃ p. path-entry (g-E G) p n2 by (rule reachable-path-entry)

then obtain p where path-entry (g-E G) p n2 by auto
with assms(2) show ?thesis by (auto simp add:strict-dominate-def)

qed

lemma reachable-dom-acyclic2:
assumes reachable n2

and strict-dominate n1 n2
shows ¬ dominate n2 n1

using assms
proof −

from assms have n1-dom-n2: dominate n1 n2 and n1-neq-n2: n1 6= n2
by (auto simp add:sdom-dom sdom-neq)

with assms(1) have dominate n2 n1 =⇒ n1 = n2 using reachable-dom-acyclic
by auto

with n1-neq-n2 show ?thesis by auto
qed

lemma not-dom-eq-not-sdom: ¬ dominate n1 n2 =⇒ ¬ strict-dominate n1 n2
by (auto simp add:strict-dominate-def dominate-def)

lemma reachable-sdom-acyclic:
assumes reachable n2

and strict-dominate n1 n2
shows ¬ strict-dominate n2 n1

using assms
apply (insert reachable-dom-acyclic2[OF assms(1) assms(2)])
by (auto simp add:not-dom-eq-not-sdom)

lemma strict-dominate-trans1:
assumes strict-dominate n1 n2

and dominate n2 n3
shows strict-dominate n1 n3

using assms
proof (cases reachable n2)

case True note reach-n2 = this
with assms(1) have n1-dom-n2: dominate n1 n2 and n1-neq-n2: n1 6= n2

by (auto simp add:sdom-dom sdom-neq)
with assms(2) have n1-dom-n3: dominate n1 n3 by (auto intro: dominate-trans)
have n1-neq-n3: n1 6= n3
proof (rule ccontr)

18

assume ¬ n1 6= n3 then have n1 = n3 by simp
with assms(2) have n2-dom-n1: dominate n2 n1 by simp
with reach-n2 n1-dom-n2 have n1 = n2 by (auto dest:reachable-dom-acyclic)
with n1-neq-n2 show False by auto

qed
with n1-dom-n3 show ?thesis by (simp add:strict-dominate-def dominate-def)

next
case False note not-reach-n2 = this
have ¬ reachable n3
proof (rule ccontr)

assume ¬ ¬ reachable n3
with assms(2) have reachable n2 by (auto intro: dom-reachable)
with not-reach-n2 show False by auto

qed
then show ?thesis by (auto intro:any-sdominate-unreachable)

qed

lemma strict-dominate-trans2:
assumes dominate n1 n2

and strict-dominate n2 n3
shows strict-dominate n1 n3

using assms
proof (cases reachable n3)

case True
with assms(2) have n2-dom-n3: dominate n2 n3 and n1-neq-n2: n2 6= n3

by (auto simp add:sdom-dom sdom-neq)
with assms(1) have n1-dom-n3: dominate n1 n3 by (auto intro: dominate-trans)
have n1-neq-n3: n1 6= n3
proof (rule ccontr)

assume ¬ n1 6= n3 then have n1 = n3 by simp
with assms(1) have dominate n3 n2 by simp

with ‹reachable n3› n2-dom-n3 have n2 = n3 by (auto dest:reachable-dom-acyclic)
with n1-neq-n2 show False by auto

qed
with n1-dom-n3 show ?thesis by (simp add:strict-dominate-def dominate-def)

next
case False
then have ¬ reachable n3 by simp
then show ?thesis by (auto intro:any-sdominate-unreachable)

qed

lemma strict-dominate-trans:
assumes strict-dominate n1 n2

and strict-dominate n2 n3
shows strict-dominate n1 n3

using assms
apply(subgoal-tac dominate n2 n3)
apply(rule strict-dominate-trans1)

apply (auto simp add: strict-dominate-def dominate-def)

19

done

lemma sdominate-dominate-succs:
assumes i-sdom-j: strict-dominate i j

and j-in-succ-k: j ∈ succs k
shows dominate i k

proof (rule ccontr)
assume ass:¬ dominate i k
then obtain p where path-k: path-entry (g-E G) p k and i-nin-p: i /∈ set p by

(auto simp add:dominate-def)
with j-in-succ-k i-sdom-j have i: i = k ∨ i = j by (auto intro:path-entry-append

simp add:succs-def strict-dominate-def)

from j-in-succ-k have reachable j using succ-in-verts reachable by (auto simp
add:reachable-def)

with i-sdom-j have i 6= j by (auto simp add: sdom-neq)
with i have i = k by auto
then have dominate i k by (auto simp add:dominate-refl)
with ass show False by auto

qed

end

end

2 More auxiliary lemmas for Lists Sorted wrt <

theory Sorted-Less2
imports Main HOL−Data-Structures.Cmp HOL−Data-Structures.Sorted-Less

begin

lemma Cons-sorted-less: sorted (rev xs) =⇒ ∀ x∈set xs. x < p =⇒ sorted (rev
(p # xs))

by (induct xs) (auto simp add:sorted-wrt-append)

lemma Cons-sorted-less-nth: ∀ x<length xs. xs ! x < p =⇒ sorted (rev xs) =⇒
sorted (rev (p # xs))

apply(subgoal-tac ∀ x∈set xs. x < p)
apply(fastforce dest:Cons-sorted-less)
apply(auto simp add: set-conv-nth)
done

lemma distinct-sorted-rev: sorted (rev xs) =⇒ distinct xs
by (induct xs) (auto simp add:sorted-wrt-append)

lemma sorted-le2lt:
assumes List.sorted xs

and distinct xs
shows sorted xs

20

using assms
proof (induction xs)

case Nil then show ?case by auto
next

case (Cons x xs)
note ind-hyp-xs = Cons(1)
note sorted-le-x-xs = Cons(2)
note dist-x-xs = Cons(3)
from dist-x-xs have x-neq-xs: ∀ v ∈ set xs. x 6= v

and dist: distinct xs by auto
from sorted-le-x-xs have sorted-le-xs: List.sorted xs

and x-le-xs: ∀ v ∈ set xs. v ≥ x by auto
from x-neq-xs x-le-xs have x-lt-xs: ∀ v ∈ set xs. v > x by fastforce
from ind-hyp-xs[OF sorted-le-xs dist] have sorted xs by auto
with x-lt-xs show ?case by auto

qed

lemma sorted-less-sorted-list-of-set: sorted (sorted-list-of-set S)
by (auto intro:sorted-le2lt)

lemma distinct-sorted: sorted xs =⇒ distinct xs
by (induct xs) (auto simp add: sorted-wrt-append)

lemma sorted-less-set-unique:
assumes sorted xs

and sorted ys
and set xs = set ys

shows xs = ys
using assms

proof −
from assms(1) have distinct xs and List.sorted xs by (induct xs) auto
also from assms(2) have distinct ys and List.sorted ys by (induct ys) auto
ultimately show xs = ys using assms(3) by (auto intro: sorted-distinct-set-unique)

qed

lemma sorted-less-rev-set-unique:
assumes sorted (rev xs)

and sorted (rev ys)
and set xs = set ys

shows xs = ys
using assms sorted-less-set-unique[of rev xs rev ys] by auto

lemma sorted-less-set-eq:
assumes sorted xs

shows xs = sorted-list-of-set (set xs)
using assms
apply(subgoal-tac sorted (sorted-list-of-set (set xs)))
apply(auto intro: sorted-less-set-unique sorted-le2lt)

done

21

lemma sorted-less-rev-set-eq:
assumes sorted (rev xs)

shows sorted-list-of-set (set xs) = rev xs
using assms sorted-less-set-eq[of rev xs] by auto

lemma sorted-insort-remove1: sorted w =⇒ (insort a (remove1 a w)) = sorted-list-of-set
(insert a (set w))
proof−

assume sorted w
then have (sorted-list-of-set (set w − {a})) = remove1 a w using sorted-less-set-eq

by (fastforce simp add:sorted-list-of-set-remove)
hence insort a (remove1 a w) = insort a (sorted-list-of-set (set w − {a})) by

simp
then show ?thesis by (auto simp add:sorted-list-of-set-insert)

qed

end

3 Operations on sorted lists
theory Sorted-List-Operations2
imports Sorted-Less2
begin

The definition and the inter_sorted_correct lemma in this theory are the
same as those in Collections [2]. except the former is for a descending list
while the latter is for an ascending one.
fun inter-sorted-rev :: ′a::{linorder} list ⇒ ′a list ⇒ ′a list where

inter-sorted-rev [] l2 = []
| inter-sorted-rev l1 [] = []
| inter-sorted-rev (x1 # l1) (x2 # l2) =

(if (x1 > x2) then (inter-sorted-rev l1 (x2 # l2)) else
(if (x1 = x2) then x1 # (inter-sorted-rev l1 l2) else inter-sorted-rev (x1 # l1)

l2))

lemma inter-sorted-correct :
assumes l1-OK : sorted (rev l1)
assumes l2-OK : sorted (rev l2)

shows sorted (rev (inter-sorted-rev l1 l2)) ∧ set (inter-sorted-rev l1 l2) = set
l1 ∩ set l2
using assms
proof (induct l1 arbitrary: l2)

case Nil thus ?case by simp
next

case (Cons x1 l1 l2)
note x1-l1-props = Cons(2)
note l2-props = Cons(3)

22

from x1-l1-props have l1-props: sorted (rev l1)
and x1-nin-l1: x1 /∈ set l1
and x1-gt:

∧
x. x ∈ set l1 =⇒ x1 > x

by (auto simp add: Ball-def sorted-wrt-append)

note ind-hyp-l1 = Cons(1)[OF l1-props]
show ?case
using l2-props
proof (induct l2)

case Nil with x1-l1-props show ?case by simp
next

case (Cons x2 l2)
note x2-l2-props = Cons(2)
from x2-l2-props have l2-props: sorted (rev l2)

and x2-nin-l2: x2 /∈ set l2
and x2-gt:

∧
x. x ∈ set l2 =⇒ x2 > x

by (auto simp add: Ball-def sorted-wrt-append)

note ind-hyp-l2 = Cons(1)[OF l2-props]
show ?case
proof (cases x1 > x2)

case True note x1-gt-x2 = this
have set l1 ∩ set (x2 # l2) = set (x1 # l1)∩ set (x2 # l2)

using x1-gt-x2 x1-nin-l1 x2-nin-l2 x1-gt x2-gt
by fastforce

then show ?thesis using ind-hyp-l1[OF x2-l2-props] using x1-gt-x2 x1-nin-l1
x2-nin-l2 x1-gt x2-gt

by (auto simp add:Ball-def sorted-wrt-append)
next

case False note x2-ge-x1 = this
show ?thesis
proof (cases x1 = x2)

case True note x1-eq-x2 = this
then show ?thesis using ind-hyp-l1[OF l2-props]

using x1-eq-x2 x1-nin-l1 x2-nin-l2 x1-gt x2-gt by (auto simp add:Ball-def
sorted-wrt-append)

next
case False note x1-neq-x2 = this
with x2-ge-x1 have x2-gt-x1 : x2 > x1 by auto
from ind-hyp-l2 x2-ge-x1 x1-neq-x2 x2-gt x2-nin-l2 x1-gt
show ?thesis by auto

qed
qed

qed
qed

lemma inter-sorted-rev-refl: inter-sorted-rev xs xs = xs
by (induct xs) auto

23

lemma inter-sorted-correct-col:
assumes sorted (rev xs)

and sorted (rev ys)
shows (inter-sorted-rev xs ys) = rev (sorted-list-of-set (set xs ∩ set ys))

using assms
proof−

from assms have 1: sorted (rev (inter-sorted-rev xs ys))
and 2: set (inter-sorted-rev xs ys) = set xs ∩ set ys using in-

ter-sorted-correct by auto
have sorted (rev (rev (sorted-list-of-set (set xs ∩ set ys)))) by (simp add:sorted-less-sorted-list-of-set)
with 1 2 show ?thesis by (auto intro:sorted-less-rev-set-unique)

qed

lemma cons-set-eq: set (x # xs) ∩ set xs = set xs
by auto

lemma inter-sorted-cons: sorted (rev (x # xs)) =⇒ inter-sorted-rev (x # xs) xs =
xs
proof−

assume ass: sorted (rev (x # xs))
then have sorted-xs: sorted (rev xs) by (auto simp add:sorted-wrt-append)
with ass have inter-sorted-rev (x # xs) xs = rev (sorted-list-of-set (set (x # xs)
∩ set xs))

by (simp add:inter-sorted-correct-col)
then have inter-sorted-rev (x # xs) xs = rev (rev xs)using sorted-xs by (simp

only:cons-set-eq sorted-less-rev-set-eq)
then show ?thesis using sorted-xs by auto

qed

end

4 A semilattice of reversed-ordered list
theory Dom-Semi-List
imports Main Jinja.Semilat Sorted-List-Operations2 Sorted-Less2 Cfg
begin

type-synonym node = nat

context cfg-doms
begin

definition nodes :: nat list
where nodes ≡ (g-V G)

definition nodes-le :: node list ⇒ node list ⇒ bool where
nodes-le xs ys ≡ (sorted (rev ys) ∧ sorted (rev xs) ∧ (set ys) ⊆ (set xs)) ∨ xs = ys

24

definition nodes-sup ::node list ⇒ node list ⇒node list where
nodes-sup = (λx y. inter-sorted-rev x y)

definition nodes-semi :: node list sl where
nodes-semi ≡ ((rev ◦ sorted-list-of-set) ‘ (Pow (set (nodes))), nodes-le, nodes-sup
)

lemma subset-nodes-inpow:
assumes sorted (rev xs)

and set xs ⊆ set nodes
shows xs ∈ (rev ◦ sorted-list-of-set) ‘ (Pow (set nodes))

proof −
from assms(1) have (sorted-list-of-set (set xs)) = rev xs by (auto intro:sorted-less-rev-set-eq)
then have rev (rev xs) = rev (sorted-list-of-set (set xs)) by simp
with assms(2) show ?thesis by auto

qed

lemma nil-in-A: [] ∈ (rev ◦ sorted-list-of-set) ‘ (Pow (set nodes))
proof(simp add: Pow-def image-def)

have sorted-list-of-set {} = [] by auto
then show ∃ x⊆set nodes. sorted-list-of-set x = [] by blast

qed

lemma single-n-in-A: p < length nodes =⇒ [p] ∈ (rev ◦ sorted-list-of-set) ‘ (Pow
(set nodes))
proof (unfold nodes-def)

let ?S = (rev ◦ sorted-list-of-set) ‘ (Pow (set (g-V G)))
assume p < length (g-V G)
then have p: {p} ∈ Pow (set (g-V G)) by (auto simp add:Pow-def verts-set)
then have [p] ∈?S by (unfold image-def) force
then show [p] ∈ ?S by auto

qed

lemma inpow-subset-nodes:
assumes xs ∈ (rev ◦ sorted-list-of-set) ‘ (Pow (set nodes))

shows set xs ⊆ set nodes
proof −
from assms obtain x where x: x ∈ Pow (set nodes) and xs = (rev ◦ sorted-list-of-set)

x by auto
then have eq: set xs = set (sorted-list-of-set x) by auto
have ∀ x ∈ Pow (set nodes). finite x by (auto intro: rev-finite-subset)
with x eq show set xs ⊆ set nodes by auto

qed

lemma inter-in-pow-nodes:
assumes xs ∈ (rev ◦ sorted-list-of-set) ‘ (Pow (set nodes))

shows (rev ◦ sorted-list-of-set)(set xs ∩ set ys) ∈ (rev ◦ (sorted-list-of-set)) ‘
(Pow (set nodes))

using assms

25

proof −
let ?res = set xs ∩ set ys
from assms have set xs ⊆ set nodes using inpow-subset-nodes by auto
then have ?res ⊆ set nodes by auto
then show ?thesis using subset-nodes-inpow by auto

qed

lemma nodes-le-order : order nodes-le ((rev ◦ sorted-list-of-set) ‘ (Pow (set nodes)))
proof −

let ?A = (rev ◦ sorted-list-of-set) ‘ (Pow (set nodes))

have ∀ x ∈ ?A. sorted (rev x) by (auto intro: sorted-less-sorted-list-of-set)
then have ∀ x∈?A. nodes-le x x by (auto simp add:nodes-le-def)

moreover have ∀ x∈?A. ∀ y∈?A. (nodes-le x y ∧ nodes-le y x −→ x = y)
proof (intro strip)

fix x y
assume x ∈ ?A and y ∈ ?A and nodes-le x y ∧ nodes-le y x
then have sorted (rev x) ∧ sorted (rev (y::nat list)) ∧ set x = set y ∨ x = y
by (auto simp add: nodes-le-def intro:subset-antisym sorted-less-sorted-list-of-set)

then show x = y by (auto dest: sorted-less-rev-set-unique)
qed

moreover have ∀ x∈ ?A. ∀ y∈ ?A. ∀ z∈ ?A . nodes-le x y ∧ nodes-le y z −→
nodes-le x z

by (auto simp add: nodes-le-def)

ultimately show ?thesis by (unfold order-def lesub-def lesssub-def) fastforce
qed

lemma nodes-semi-auxi:
let A = (rev ◦ sorted-list-of-set) ‘ (Pow (set (nodes)));

r = nodes-le;
f = (λx y. (inter-sorted-rev x y))

in semilat(A, r , f)
proof −

let ?A = (rev ◦ sorted-list-of-set) ‘ (Pow (set (nodes)))
let ?r = nodes-le
let ?f = (λx y. (inter-sorted-rev x y))

have order ?r ?A by (rule nodes-le-order)

moreover have closed ?A ?f
proof (unfold closed-def , intro strip)

fix xs ys assume xs-in: xs ∈ ?A and ys-in: ys ∈ ?A
then have sorted-xs: sorted (rev xs)

and sorted-ys: sorted (rev ys)
by (auto intro: sorted-less-sorted-list-of-set)

26

then have inter-xs-ys: set (?f xs ys) = set xs ∩ set ys and
sorted-res: sorted (rev (?f xs ys))

using inter-sorted-correct by auto

from xs-in have set xs ⊆ set nodes using inpow-subset-nodes by auto
with inter-xs-ys have set (?f xs ys) ⊆ set nodes by auto
with sorted-res show xs t?f ys∈ ?A using subset-nodes-inpow by (auto simp

add:plussub-def)
qed

moreover have (∀ x∈?A. ∀ y∈?A. x v?r x t?f y) ∧ (∀ x∈?A. ∀ y∈?A. y v?r x
t?f y)

proof(rule conjI , intro strip)
fix xs ys
assume xs-in: xs ∈ ?A and ys-in: ys ∈ ?A
then have sorted-xs: sorted (rev xs) and sorted-ys: sorted (rev ys)

by (auto intro: sorted-less-sorted-list-of-set)
then have set (?f xs ys) ⊆ set xs and sorted-f-xs-ys: sorted (rev (?f xs ys))

by (auto simp add: inter-sorted-correct)
then show xs v?r xs t?f ys by (simp add: lesub-def sorted-xs sorted-ys

sorted-f-xs-ys nodes-le-def plussub-def)
next

show ∀ x∈?A. ∀ y∈?A. y v?r x t?f y
proof (intro strip)

fix xs ys
assume xs-in: xs ∈ ?A and ys-in: ys ∈ ?A
then have sorted-xs: sorted (rev xs) and sorted-ys: sorted (rev ys)

by (auto intro: sorted-less-sorted-list-of-set)
then have set (?f xs ys) ⊆ set ys and sorted-f-xs-ys: sorted (rev (?f xs ys))

by (auto simp add: inter-sorted-correct)
then show ys v?r xs t?f ys by (simp add: lesub-def sorted-ys sorted-xs

sorted-f-xs-ys nodes-le-def plussub-def)
qed

qed

moreover have ∀ x∈?A. ∀ y∈?A. ∀ z∈?A. x v?r z ∧ y v?r z −→ x t?f y v?rz
proof (intro strip)

fix xs ys zs
assume xin: xs ∈ ?A and yin: ys ∈ ?A and zin: zs ∈ ?A and xs v?r zs ∧ ys

v?r zs
then have xs-zs: xs v?r zs and ys-zs: ys v?r zs and sorted-xs: sorted (rev xs)

and sorted-ys: sorted (rev ys) by (auto simp add: sorted-less-sorted-list-of-set)
then have inter-xs-ys: set (?f xs ys) = (set xs ∩ set ys) and sorted-f-xs-ys:

sorted (rev (?f xs ys))
by (auto simp add: inter-sorted-correct)

from xs-zs ys-zs sorted-xs have sorted-zs: sorted (rev zs)
and set zs ⊆ set xs

27

and set zs ⊆ set ys by (auto simp add: lesub-def
nodes-le-def)

then have zs: set zs ⊆ set xs ∩ set ys by auto
with inter-xs-ys sorted-zs sorted-f-xs-ys show xs t?f ys v?r zs

by (auto simp add:plussub-def lesub-def sorted-xs sorted-ys sorted-f-xs-ys
sorted-zs nodes-le-def)

qed
ultimately show ?thesis by (unfold semilat-def) simp

qed

lemma nodes-semi-is-semilat: semilat (nodes-semi)
using nodes-semi-auxi
by (auto simp add: nodes-sup-def nodes-semi-def)

lemma sorted-rev-subset-len-lt:
assumes sorted (rev a)

and sorted (rev b)
and set a ⊂ set b

shows length a < length b
using assms

proof−
from assms(1) assms(2) have dist-a: distinct a and dist-b: distinct b by (auto

dest: distinct-sorted-rev)
from assms(3) have card (set a) < card (set b) by (auto intro: psubset-card-mono)
with dist-a dist-b show ?thesis by (auto simp add: distinct-card)

qed

lemma wf-nodes-le-auxi: wf {(y, x). (sorted (rev y) ∧ sorted (rev x) ∧ set y ⊂ set
x) ∧ x 6= y}

apply(rule wf-measure [THEN wf-subset])
apply(simp only: measure-def inv-image-def)
apply clarify
apply(frule sorted-rev-subset-len-lt)

defer
defer
apply fastforce

by (auto intro:sorted-less-rev-set-unique)

lemma wf-nodes-le-auxi2:
wf {(y, x). sorted (rev y) ∧ sorted (rev x) ∧ set y ⊂ set x ∧ rev x 6= rev y}
using wf-nodes-le-auxi by auto

lemma wf-nodes-le: wf {(y, x). nodes-le x y ∧ x 6= y}
proof −

have eq-set: {(y, x). (sorted (rev y) ∧ sorted (rev x) ∧ set y ⊆ set x) ∧ x 6= y}
=

{(y, x). nodes-le x y ∧ x 6= y} by (unfold nodes-le-def) auto
have {(y, x). (sorted (rev y) ∧ sorted (rev x) ∧ set y ⊂ set x) ∧ x 6= y} =

{(y, x). (sorted (rev y) ∧ sorted (rev x) ∧ set y ⊆ set x) ∧ x 6= y}

28

by (auto simp add:sorted-less-rev-set-unique)
from this wf-nodes-le-auxi have wf {(y, x). (sorted (rev y) ∧ sorted (rev x) ∧

set y ⊆ set x) ∧ x 6= y} by (rule subst)
with eq-set show ?thesis by (rule subst)

qed

lemma acc-nodes-le: acc nodes-le
apply (unfold acc-def lesssub-def lesub-def)
apply (rule wf-nodes-le)
done

lemma acc-nodes-le2: acc (fst (snd nodes-semi))
apply (unfold nodes-semi-def)
apply (auto simp add: lesssub-def lesub-def intro: acc-nodes-le)
done

lemma nodes-le-refl [iff] : nodes-le s s
apply (unfold nodes-le-def lesssub-def lesub-def)
apply (auto)
done

end

end

5 A kildall’s algorithm for computing dominators
theory Dom-Kildall
imports Dom-Semi-List HOL−Library.While-Combinator Jinja.SemilatAlg
begin

A kildall’s algorithm for computing dominators. It uses the ideas and the
framework of kildall’s algorithm implemented in Jinja [3], and modifications
are needed to make it work for a fast algorithm for computing dominators
type-synonym state-dom = nat list

primrec propa ::
′s binop ⇒ (nat × ′s) list ⇒ ′s list ⇒ nat list ⇒ ′s list ∗ nat list

where
propa f [] τs wl = (τs,wl)
| propa f (q ′# qs) τs wl = (let (q,τ) = q ′;

u = (τ tf τs!q);
wl ′ = (if u = τs!q then wl

else (insort q (remove1 q wl)))
in propa f qs (τs[q := u]) wl ′)

definition iter ::
′s binop ⇒ ′s step-type ⇒ ′s list ⇒ nat list ⇒ ′s list × nat list

29

where
iter f step τs w =
while (λ(τs,w). w 6= [])

(λ(τs,w). let p = hd w
in propa f (step p (τs!p)) τs (tl w))

(τs,w)

definition unstables :: state-dom ord ⇒ state-dom step-type ⇒ state-dom list ⇒
nat list
where

unstables r step τs = sorted-list-of-set {p. p < size τs ∧ ¬ stable r step τs p}

definition kildall :: state-dom ord ⇒state-dom binop ⇒ state-dom step-type ⇒
state-dom list ⇒ state-dom list where

kildall r f step τs = fst(iter f step τs (unstables r step τs))

lemma init-worklist-is-sorted: sorted (unstables r step τs)
by (simp add:sorted-less-sorted-list-of-set unstables-def)

context cfg-doms

begin

definition transf :: node ⇒ state-dom ⇒ state-dom where
transf n input ≡ (n # input)

definition exec :: node ⇒ state-dom ⇒ (node × state-dom) list
where exec n xs = map (λpc. (pc, (transf n xs))) (rev (sorted-list-of-set(succs

n)))

lemma transf-res-is-rev: sorted (rev ns) =⇒ n > hd ns =⇒ sorted (rev ((transf n
(ns))))

by (induct ns) (auto simp add:transf-def sorted-wrt-append)

abbreviation start ≡ [] # (replicate (length (g-V G) − 1) ((rev[0..<length(g-V
G)])))

definition dom-kildall :: state-dom list ⇒ state-dom list
where dom-kildall = kildall (fst (snd nodes-semi)) (snd (snd nodes-semi)) exec

definition dom:: nat ⇒ nat ⇒ bool where
dom i j ≡(let res = (dom-kildall start) !j in i ∈ (set res) ∨ i = j)

lemma dom-refl: dom i i
by (unfold dom-def) simp

definition strict-dom :: nat ⇒ nat ⇒ bool where
strict-dom i j ≡ (let res = (dom-kildall start) !j in i ∈ set res)

30

lemma strict-domI1: (dom-kildall ([] # (replicate (length (g-V G) − 1) ((rev[0..<length(g-V
G)])))))!j = res =⇒ i ∈ set res =⇒ strict-dom i j

by (auto simp add:strict-dom-def)

lemma strict-domD:
strict-dom i j =⇒
dom-kildall (([] # (replicate (length (g-V G) − 1) ((rev[0..<length(g-V G)])))))!j

= a =⇒
i ∈ set a
by (auto simp add:strict-dom-def)

lemma sdom-dom: strict-dom i j =⇒ dom i j
by (unfold strict-dom-def) (auto simp add:dom-def)

lemma not-sdom-not-dom: ¬strict-dom i j =⇒ i 6= j =⇒ ¬dom i j
by (unfold strict-dom-def) (auto simp add:dom-def)

lemma dom-sdom: dom i j =⇒ i 6= j =⇒ strict-dom i j
by (unfold dom-def) (auto simp add:dom-def strict-dom-def)

end

end

6 Properties of the kildall’s algorithm on the semi-
lattice

theory Dom-Kildall-Property
imports Dom-Kildall Jinja.Listn Jinja.Kildall-1
begin

lemma sorted-list-len-lt: x ⊂ y =⇒ finite y =⇒ length (sorted-list-of-set x) <
length (sorted-list-of-set y)
proof−

let ?x = sorted-list-of-set x
let ?y = sorted-list-of-set y
assume x-y: x ⊂ y and fin-y: finite y
then have card-x-y: card x < card y and fin-x: finite x

by (auto simp add:psubset-card-mono finite-subset)
with fin-y have length ?x = card x and length ?y = card y by auto
with card-x-y show ?thesis by auto

qed

lemma wf-sorted-list:
wf ((λ(x,y). (sorted-list-of-set x, sorted-list-of-set y)) ‘ finite-psubset)

31

apply (unfold finite-psubset-def)
apply (rule wf-measure [THEN wf-subset])
apply (simp add: measure-def inv-image-def image-def)
by (auto intro: sorted-list-len-lt)

lemma sorted-list-psub:
sorted w −→
w 6= [] −→
(sorted-list-of-set (set (tl w)), w) ∈ (λ(x, y). (sorted-list-of-set x, sorted-list-of-set

y)) ‘ {(A, B). A ⊂ B ∧ finite B}
proof(intro strip, simp add:image-iff)

assume sorted-w: sorted w and w-n-nil: w 6= []
let ?a = set (tl w)
let ?b = set w

from sorted-w have sorted-tl-w: sorted (tl w) and dist: distinct w by (induct w)
(auto simp add: sorted-wrt-append)

with w-n-nil have a-psub-b: ?a ⊂ ?b by (induct w)auto
from sorted-w sorted-tl-w have w = sorted-list-of-set ?b and tl w = sorted-list-of-set
(set (tl w))

by (auto simp add: sorted-less-set-eq)
with a-psub-b show ∃ a b. a ⊂ b ∧ finite b ∧ sorted-list-of-set (set (tl w)) =

sorted-list-of-set a ∧ w = sorted-list-of-set b
by auto

qed

locale dom-sl = cfg-doms +
fixes A and r and f and step and start and n
defines A ≡ ((rev ◦ sorted-list-of-set) ‘ (Pow (set (nodes))))
defines r ≡ nodes-le
defines f ≡ nodes-sup
defines n ≡ (size nodes)
defines step ≡ exec
defines start ≡ ([] # (replicate (length (g-V G) − 1) ((rev[0..<n]))))::state-dom

list

begin

lemma is-semi: semilat(A,r ,f)
by(insert nodes-semi-is-semilat) (auto simp add:nodes-semi-def A-def r-def f-def)

— used by acc_le_listI
lemma Cons-less-Conss [simp]:

x#xs [<r] y#ys = (x <r y ∧ xs [vr] ys ∨ x = y ∧ xs [<r] ys)
apply (unfold lesssub-def)
apply auto
apply (unfold lesssub-def lesub-def r-def)
apply (simp only: nodes-le-refl)
done

32

lemma acc-le-listI [intro!]:
acc r =⇒ acc (Listn.le r)
apply (unfold acc-def)
apply (subgoal-tac Wellfounded.wf (UN n. {(ys,xs). size xs = n ∧ size ys = n ∧

xs <-(Listn.le r) ys}))
apply (erule wf-subset)
apply (blast intro: lesssub-lengthD)

apply (rule wf-UN)
prefer 2
apply (rename-tac m n)
apply (case-tac m=n)
apply simp

apply (fast intro!: equals0I dest: not-sym)
apply (rename-tac n)
apply (induct-tac n)
apply (simp add: lesssub-def cong: conj-cong)

apply (rename-tac k)
apply (simp add: wf-eq-minimal)
apply (simp (no-asm) add: length-Suc-conv cong: conj-cong)
apply clarify
apply (rename-tac M m)
apply (case-tac ∃ x xs. size xs = k ∧ x#xs ∈ M)
prefer 2
apply (erule thin-rl)
apply (erule thin-rl)
apply blast

apply (erule-tac x = {a. ∃ xs. size xs = k ∧ a#xs:M} in allE)
apply (erule impE)
apply blast

apply (thin-tac ∃ x xs. P x xs for P)
apply clarify
apply (rename-tac maxA xs)
apply (erule-tac x = {ys. size ys = size xs ∧ maxA#ys ∈ M} in allE)
apply (erule impE)
apply blast

apply clarify
apply (thin-tac m ∈ M)
apply (thin-tac maxA#xs ∈ M)
apply (rule bexI)
prefer 2
apply assumption

apply clarify
apply simp
apply blast
done

lemma wf-listn: wf {(y,x). x <Listn.le r y}
by(insert acc-nodes-le acc-le-listI r-def) (simp add:acc-def)

33

lemma wf-listn ′: wf {(y,x). x [<r] y}
by (rule wf-listn)

lemma wf-listn-termination-rel:
wf ({(y,x). x <Listn.le r y} <∗lex∗> (λ(x, y). (sorted-list-of-set x, sorted-list-of-set

y)) ‘ finite-psubset)
by (insert wf-listn wf-sorted-list) (fastforce dest:wf-lex-prod)

lemma inA-is-sorted: xs ∈ A =⇒ sorted (rev xs)
by (auto simp add:A-def sorted-less-sorted-list-of-set)

lemma list-nA-lt-refl: xs ∈ nlists n A −→ xs [vr] xs
proof

assume xs ∈ nlists n A
then have set xs ⊆ A by (rule nlistsE-set)
then have ∀ i<length xs. xs!i ∈ A by auto
then have ∀ i<length xs. sorted (rev (xs!i)) by (simp add:inA-is-sorted)
then show xs [vr] xs by(unfold Listn.le-def lesub-def)

(auto simp add:list-all2-conv-all-nth Listn.le-def r-def nodes-le-def)
qed

lemma nil-inA: [] ∈ A
apply (unfold A-def)
apply (subgoal-tac {} ∈ Pow (set nodes))
apply (subgoal-tac [] = (λx. rev (sorted-list-of-set x)) {})

apply (fastforce intro:rev-image-eqI)
by auto

lemma upt-n-in-pow-nodes: {0..<n} ∈ Pow (set nodes)
by(auto simp add:n-def nodes-def verts-set)

lemma rev-all-inA: rev [0..<n] ∈ A
proof(unfold A-def ,simp)

let ?f = λx. rev (sorted-list-of-set x)
have rev [0..<n] =?f {0..<n} by auto
with upt-n-in-pow-nodes show rev [0..<n] ∈ ?f ‘ Pow (set nodes)

by (fastforce intro: image-eqI)
qed

lemma len-start-is-n: length start = n
by (insert len-verts-gt0) (auto simp add:start-def n-def nodes-def dest:Suc-pred)

lemma len-start-is-len-verts: length start = length (g-V G)
using len-verts-gt0 by (simp add:start-def)

lemma start-len-gt-0: length start > 0
by (insert len-verts-gt0) (simp add:start-def)

34

lemma start-subset-A: set start ⊆ A
by(auto simp add:nil-inA rev-all-inA start-def)

lemma start-in-A : start ∈ (nlists n A)
by (insert start-subset-A len-start-is-n)(fastforce intro:nlistsI)

lemma sorted-start-nth: i < n =⇒ sorted (rev (start!i))
apply(subgoal-tac start!i ∈ A)
apply (fastforce dest:inA-is-sorted)
by (auto simp add:start-subset-A len-start-is-n)

lemma start-nth0-empty: start!0 = []
by (simp add:start-def)

lemma start-nth-lt0-all: ∀ p∈{1..< length start}. start!p = (rev [0..<n])
by (auto simp add:start-def)

lemma in-nodes-lt-n: x ∈ set (g-V G) =⇒ x < n
by (simp add:n-def nodes-def verts-set)

lemma start-nth0-unstable-auxi: ¬ [0] vr (rev [0..<n])
by (insert len-verts-gt1 verts-ge-Suc0)
(auto simp add:r-def lesssub-def lesub-def nodes-le-def n-def nodes-def)

lemma start-nth0-unstable: ¬ stable r step start 0
proof(rule notI ,auto simp add: start-nth0-empty stable-def step-def exec-def transf-def)

assume ass: ∀ x∈set (sorted-list-of-set (succs 0)). [0] vr start ! x
from succ-of-entry0 obtain s where s ∈ succs 0 and s 6= 0 ∧ s ∈ set (g-V G)

using head-is-vert
by (auto simp add:succs-def)

then have s ∈ set (sorted-list-of-set (succs 0))
and start!s = (rev [0..<n]) using fin-succs verts-set len-verts-gt0 by (auto

simp add:start-def)
then show False using ass start-nth0-unstable-auxi by auto

qed

lemma start-nth-unstable:
assumes p ∈ {1 ..< length (g-V G)}

and succs p 6= {}
shows ¬ stable r step start p

proof (rule notI , unfold stable-def)
let ?step-p = step p (start ! p)
let ?rev-all = rev[0..<length(g-V G)]
assume sta: ∀ (q, τ)∈set ?step-p. τ vr start ! q

from assms(1) have n-sorted: ¬ sorted (rev (p # ?rev-all))
and p:p ∈ set (g-V G) and start!p = ?rev-all using verts-set by

(auto simp add:n-def nodes-def start-def sorted-wrt-append)

35

with sta have step-p: ∀ (q, τ)∈set ?step-p. sorted (rev (p # ?rev-all)) ∨ (p #
?rev-all = start!q)

by (auto simp add:step-def exec-def transf-def lesssub-def lesub-def r-def nodes-le-def)

from assms(2) fin-succs p obtain a b where a-b: (a, b) ∈ set ?step-p by (auto
simp add:step-def exec-def transf-def)

with step-p have sorted (rev (p # ?rev-all)) ∨ (p # ?rev-all = start!a) by auto
with n-sorted have eq-p-cons: (p # ?rev-all = start!a) by auto

from p have ∀ (q, τ)∈set ?step-p. q < n using succ-in-G fin-succs verts-set n-def
nodes-def by (auto simp add:step-def exec-def)

with a-b have a < n using len-start-is-n by auto
then have sorted (rev (start!a)) using sorted-start-nth by auto
with eq-p-cons n-sorted show False by auto

qed

lemma start-unstable-cond:
assumes succs p 6= {}

and p < length (g-V G)
shows ¬ stable r step start p

using assms start-nth0-unstable start-nth-unstable
by(cases p = 0) auto

lemma unstable-start: unstables r step start = sorted-list-of-set ({p. succs p 6= {}
∧ p < length start})

using len-start-is-len-verts start-unstable-cond
by (subgoal-tac {p. p < length start ∧ ¬ stable r step start p} = {p. succs p 6=
{} ∧ p < length start})

(auto simp add: unstables-def stable-def step-def exec-def)

end

declare sorted-list-of-set-insert-remove[simp del]

context dom-sl
begin

lemma (in dom-sl) decomp-propa:
∧

ss w.
(∀ (q,t)∈set qs. q < size ss ∧ t ∈ A) =⇒
sorted w =⇒
set ss ⊆ A =⇒
propa f qs ss w = (merges f qs ss, (sorted-list-of-set ({q. ∃ t.(q,t)∈set qs ∧ t tf

(ss!q) 6= ss!q} ∪ set w)))
lemma (in Semilat)list-update-le-listI [rule-format]:

set xs ⊆ A −→ set ys ⊆ A −→ xs [vr] ys −→ p < size xs −→
x vr ys!p −→ x∈A −→
xs[p := x tf xs!p] [vr] ys

36

7 Soundness and completeness
theory Dom-Kildall-Correct
imports Dom-Kildall-Property
begin

context dom-sl
begin

lemma entry-dominate-dom:
assumes i ∈ set (g-V G)

and dominate i 0
shows dom i 0

using assms
proof−

from assms(1) entry0-dominates-all have dominate 0 i by auto
with assms(2) reachable have i = 0 using reachable-dom-acyclic by (auto simp

add:reachable-def)
then show ?thesis using dom-refl by auto

qed

lemma path-entry-dom:
fixes pa i d
assumes path-entry (g-E G) pa i

and dom d i
shows d ∈ set pa ∨ d = i

using assms
proof(induct rule:path-entry.induct)

case path-entry0
then show ?case using zero-dom-zero by auto

next
case (path-entry-prepend u v l)
note u-v = path-entry-prepend.hyps(1)
note ind = path-entry-prepend.hyps(3)
note d-v = path-entry-prepend.prems
show ?case
proof(cases d 6= v)

case True note d-n-v = this
from u-v have v ∈ succs u by (simp add:succs-def)
with d-v d-n-v have dom d u by (auto intro:adom-succs)
with ind have d ∈ set l ∨ d = u by auto
then show ?thesis by auto

next
case False
then show ?thesis by auto

qed
qed

— soundenss

37

lemma dom-sound: dom i j =⇒ dominate i j
by (fastforce simp add: dominate-def dest:path-entry-dom)

lemma sdom-sound: strict-dom i j =⇒ j ∈ set (g-V G) =⇒ strict-dominate i j
proof −

assume sdom: strict-dom i j and j ∈ set (g-V G)
then have i-n-j: i 6= j by (rule sdom-asyc)
from sdom have dom i j using sdom-dom by auto
then have domi: dominate i j by (rule dom-sound)
with i-n-j show ?thesis by (fastforce dest: dominate-sdominate)

qed

— completeness

lemma dom-complete-auxi: i < length start =⇒ (dom-kildall start)!i = ss ′ ∧ k /∈
set ss ′ =⇒ non-strict-dominate k i
proof−

assume i-lt: i < length start and dom-kil: (dom-kildall start)!i = ss ′∧ k /∈ set
ss ′

then have dom-iter : (fst (iter f step start (unstables r step start)))!i = ss ′ and
k-nin: k /∈ set ss ′

using nodes-semi-def r-def f-def step-def dom-kildall-def kildall-def by auto
then obtain s w where iter : iter f step start (unstables r step start) = (s, w)

by fastforce
with dom-iter have s!i = ss ′ by auto
with iter-dom-invariant-complete iter k-nin i-lt len-start-is-n
show ?thesis by auto

qed

lemma notsdom-notsdominate: ¬ strict-dom i j =⇒ j < length start =⇒ non-strict-dominate
i j
proof−

assume i-not-sdom-j: ¬ strict-dom i j and j-lt: j < length start
then obtain res where j-res: dom-kildall start ! j = res by (auto simp add:strict-dom-def)
then have strict-dom i j = (i ∈ set res) by (auto simp add:strict-dom-def start-def

n-def nodes-def)
with i-not-sdom-j have i-nin: i /∈ set res by auto
with j-res j-lt show non-strict-dominate i j using dom-complete-auxi by fastforce

qed

lemma notsdom-notsdominate ′: ¬ strict-dom i j =⇒ j < length start =⇒ ¬
strict-dominate i j

using notsdom-notsdominate nonstrict-eq by auto

lemma dom-complete: strict-dominate i j =⇒ j < size start =⇒ strict-dom i j
by (insert notsdom-notsdominate ′) (auto intro: contrapos-nn nonstrict-eq)

38

end

end

References

[1] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance
algorithm. Technical report, Rice University, Houston, Jan. 2006. https:
//scholarship.rice.edu/handle/1911/96345.

[2] P. Lammich. Operations on sorted lists. 2009. https://www.isa-afp.org/
browser_info/current/AFP/Collections/Sorted_List_Operations.html.

[3] T. Nipkow and G. Klein. Operations on sorted lists. 2000. https://www.
isa-afp.org/browser_info/current/AFP/Jinja/Kildall.html.

39

https://scholarship.rice.edu/handle/1911/96345
https://scholarship.rice.edu/handle/1911/96345
https://www.isa-afp.org/browser_info/current/AFP/Collections/Sorted_List_Operations.html
https://www.isa-afp.org/browser_info/current/AFP/Collections/Sorted_List_Operations.html
https://www.isa-afp.org/browser_info/current/AFP/Jinja/Kildall.html
https://www.isa-afp.org/browser_info/current/AFP/Jinja/Kildall.html

	The specification of computing dominators
	More auxiliary lemmas for Lists Sorted wrt <
	Operations on sorted lists
	A semilattice of reversed-ordered list
	A kildall's algorithm for computing dominators
	Properties of the kildall's algorithm on the semilattice
	Soundness and completeness

