Proving a data flow analysis algorithm for
computing dominators

Nan Jiang
May 26, 2024

Abstract

This entry formalises a fast iterative algorithm for computing domi-
nators [1]. It gives a specification of computing dominators on a control
flow graph where each node refers to its reverse post order number. A
semilattice of reversed-ordered list which represents dominators is built
and a Kildall’s algorithm on the semilattice is defined for computing
dominators. Finally the soundness and completeness of the algorithm
are proved w.r.t. the specification.

Contents

1 The specification of computing dominators 1
2 More auxiliary lemmas for Lists Sorted wrt < 20
3 Operations on sorted lists 22
4 A semilattice of reversed-ordered list 24
5 A kildall’s algorithm for computing dominators 29
6 Properties of the kildall’s algorithm on the semilattice 31
7 Soundness and completeness 37

1 The specification of computing dominators

theory Cfg
imports Main
begin

The specification of computing dominators is defined. For fast data flow
analysis presented by CHK [1], a directed graph with explicit node list and

sets of initial nodes is defined. Each node refers to its rPO (reverse Pos-
tOrder) number w.r.t a DFST, and related properties as assumptions are
handled using a locale.

type-synonym ’a digraph = ('a x'a) set

record 'a graph-rec =
g-V ::'a list
g-V0 :: 'a set
g-F :: 'a digraph

tail :: 'a X 'a = 'a
head 2 'a X 'a = 'a

definition wf-cfg :: '‘a graph-rec = bool where
wf-cfg G = ¢g-V0 G C set(g-V G)

type-synonym node = nat

locale cfg-doms =
— Nodes are rPO numbers
fixes G :: nat graph-rec (structure)

— General properties

assumes wf-cfg: wf-cfg G

assumes tail[simp]: e = (u,v) = tail G e = u

assumes head[simp]: e = (u,v) = head G e = v

assumes tail-in-verts[simp|: e € g-E G = tail G e € set (g-V G)
assumes head-in-verts[simp]: e € g-E G = head G e € set (¢-V G)

— Properties of a cfg where nodes are rPO numbers

assumes entry0: ¢-V0 G = {0}

assumes dfst: Yo € set (g-V G) — {0}. Iprev. (prev, v) € g-E G A prev <
v

assumes reachable: Vv € set (¢-V G). v € (¢-E G)* “ {0}

assumes verts: ¢g-V G = [0 ..< (length (¢-V G))]

— It is required that the entry node has an immediate successor which is not itself;
Otherwise, no need to compute dominators It is required for proving the lemma:
"wf dom start (unstables r step start)”.

assumes succ-of-entry0: Is. (0,s) € g-E G N s # 0

begin

inductive path-entry :: nat digraph = nat list = nat = bool for E where
path-entry0: path-entry E || 0

| path-entry-prepend: | (u,v)€ E; path-entry E l u | = path-entry E (u#l) v

lemma path-entry0-empty-conv: path-entry E || v +— v =0
by (auto intro: path-entry0 elim: path-entry.cases)

inductive-cases path-entry-uncons: path-entry E (u'#1) w
inductive-simps path-entry-cons-conv: path-entry E (u'#1) w

lemma single-path-entry: path-entry E [p] w = p = 0
by (simp add: path-entry-cons-conv path-entry0-empty-conv)

lemma path-entry-append:
[path-entry E 1 v; (v,w)€E | = path-entry E (v#l) w
by (rule path-entry-prepend)

lemma entry-rtrancl-is-path:
assumes (0,v) € E*
obtains p where path-entry E p v
using assms
by induct (auto intro:path-entry0 path-entry-prepend)

lemma path-entry-is-trancl:
assumes path-entry E [v
and [# []
shows (0,v)eE*
using assms
apply induct
apply auto ||
apply (case-tac 1)
apply (auto simp add:path-entry0-empty-conv)
done

lemma tail-is-vert: (u,v) € g¢-F G = u € set (¢-V G)
by (auto dest: tail-in-verts[of (u,v)])

lemma head-is-vert: (u,v) € g-E G = v € set (¢-V Q)
by (auto dest: head-in-verts[of (u,v)])

lemma tail-is-vert2: (u,v) € (¢-E G)T = u € set (¢-V G)
by (induct rule:trancl.induct)(auto dest: tail-in-verts)

lemma head-is-vert2: (u,v) € (¢-E G)T = v € set (¢-V G)
by (induct rule:trancl.induct)(auto dest: head-in-verts)

lemma verts-set: set (g-V G) = {0 ..< length (¢-V G)}

proof—
from verts have set (g-V G) = set [0 ..< (length (¢g-V G))] by simp
also have set [0 ..< (length (¢-V G))] = {0 ..< (length (g-V G))} by simp
ultimately show ¢thesis by auto

qed

lemma fin-verts: finite (set (g-V G))
by (auto)

lemma zero-in-verts: 0 € set (g-V G)
using wf-cfg entry0 by (unfold wf-cfg-def) auto

lemma verts-not-empty: g-V G # ||
using zero-in-verts by auto

lemma len-verts-gt0: length (g-V G) > 0
by (simp add:verts-not-empty)

lemma len-verts-gt1: length (g-V G) > 1
proof—
from succ-of-entry0 obtain s where s € set (¢-V G) and s # 0 using
head-is-vert by auto
with zero-in-verts have {0,s} C set (¢-V G) and c: card {0, s} > 1 by auto
then have card {0, s} < card (set (g-V G)) by (auto simp add:card-mono)
with ¢ have card (set (g-V G)) > 1 by simp
then show %thesis using card-length|of g-V G| by auto
qed

lemma verts-ge-Suc0 : = [0..<length (g-V G)] = [0]
proof
assume [0..<length (¢g-V G)] = [0]
then have length [0..<length (¢g-V G)] = 1 by simp
with len-verts-gt1 show Fualse by auto
qged

lemma distinct-verts1: distinct [0..<length (g-V G)]
by simp

lemma distinct-verts2: distinct (g-V G)
by (insert distinct-vertsl verts) simp

lemma single-entry: is-singleton (g-V0 Q)
by (simp add:entry0)

lemma entry-is-0: the-elem (g-V0 G) = 0
by (simp add: entry0)

lemma wf-digraph: cfg-doms G by intro-locales

lemma path-entry-prepend-conv: path-entry (¢-E G) p n = p # [| = Jv.
path-entry (g-E G) (¢l p) v A (v, n) € (¢-E G)
proof (induct rule:path-entry.induct)
case path-entry0 then show ?case by auto
next
case (path-entry-prepend u v 1)
then show ?case by auto
qed

lemma path-verts: path-entry (¢-E G) p n => n € set (¢-V G)
proof (cases p = [])

case True

assume path-entry (g-F G) p n and p = []

then show %thesis by (simp add:path-entry0-empty-conv zero-in-verts)
next

case Fulse

assume path-entry (g-F G) p n and p # []

then have (0,n)€(g-E G)" by (auto simp add:path-entry-is-trancl)

then show ?thesis using head-is-vert2 by simp
qed

lemma path-in-verts:

assumes path-entry (¢-E G) L v

shows set | C set (g-V G)

using assms
proof (induct rule:path-entry.induct)

case path-entry0 then show ?case by auto
next

case (path-entry-prepend u v 1)

then show ?case using path-verts by auto
qed

lemma any-node-exits-path:
assumes v € set (g-V G)
shows Jp. path-entry (¢-E G) p v
using assms
proof (cases v = 0)
assume v € set (¢-V G) and v = 0
have path-entry (¢-E G) [] 0 by (auto simp add:path-entry0)
then show ?%thesis using (v = 0) by auto
next
assume v € set (¢g-V G) and v # 0
with reachable have v € (¢-F G)* “ {0} by auto
then have (0,v) € (¢g-F G)* by (simp add:Image-iff)
then show ?thesis by (auto intro:entry-rtrancl-is-path)
qed

lemma entry0-path: path-entry (g-E G) [] 0
by (auto simp add:path-entry.path-entry0)

definition reachable :: node = bool
where reachable v = v € (g-E G)* “ {0}

lemma path-entry-reachable:
assumes path-entry (¢-E G) p n
shows reachable n
using assms reachable

by (fastforce intro:path-verts simp add:reachable-def)

lemma nin-nodes-reachable: n ¢ set (g-V G) = — reachable n
proof(rule ccontr)

assume n ¢ set (¢g-V G) and nn: — - reachable n

from n ¢ set (g-V G)> have n # 0 using verts-set len-verts-gt0 entry0 by
auto

from nn have reachable n by auto

then have n € (¢g-FE G)* “ {0} by (simp add: reachable-def)

then have (0, n) € (¢g-E G)* by (auto simp add:Image-def)

with <n # 0> have An’. (0,n') € (¢g-E G)* A (n’, n) € (¢-F G) by (auto
intro:rtranclE)

then obtain n’ where (0,n) € (¢-E G)* and (n/, n) € (¢-E G)by auto

then have n € set (¢-V G) using head-is-vert by auto

with «n ¢ set (¢-V G)» show False

by auto

qed

lemma reachable-path-entry: reachable n = I p. path-entry (¢-E G) p n
proof—
assume reachable n
then have (0,n) € (¢-FE G)* by (auto simp add:reachable-def Image-iff)
then have 0 =nV 0# n A (0,n) € (¢-E G)T by (auto simp add: rtrancl-eg-or-trancl)
then show ?thesis
proof
assume (= n
have path-entry (¢-E G) || 0 by (simp add:path-entry0)
with <0 = n» show ?Zthesis by auto
next
assume 0 # n A (0,n) € (¢-E G)*
then have (0,n) € (¢-E G)* by (auto simp add:rtranclpD)
then have n € set (g-V G) by (simp add:head-is-vert2)
then show ?%thesis by (rule any-node-exits-path)
qed
qed

lemma path-entry-unconc:
assumes path-entry (¢-F G) (la@lb) w
obtains v where path-entry (¢-E G) b v
using assms
apply (induct la@lb w arbitrary:la b rule: path-entry.induct)
apply (fastforce intro:path-entry.intros)
by (auto intro:path-entry.intros iff add: Cons-eq-append-conv)

lemma path-entry-append-conv:

path-entry (g-E G) (v#l) w <— (path-entry (¢-E G) l v A (v,w) € (¢-F G))
proof

assume path-entry (¢-E G) (v # 1) w

then show path-entry (¢-FE G) lv A (v, w) € ¢-E G

by (auto simp add:path-entry-cons-conw)
next
assume path-entry (g-F G) L v A (v, w) € ¢-E G
then show path-entry (g-E G) (v # 1) w by (fastforce intro: path-entry-append)
qed

lemma take While Not-path-entry:
assumes path-entry E p x
and v € set p
and take While ((#) v) (rev p) = ¢
shows path-entry E (rev ¢) v
using assms
proof (induct rule: path-entry.induct)
case path-entry0
then show ?Zcase by auto
next
case (path-entry-prepend u va [)
then show ?case
proof(cases v € set [)
case True note v-in = this
then have take While ((#£) v) (rev (u # 1)) = takeWhile ((#) v) (rev 1) by auto
with path-entry-prepend.prems(2) have take While ((#£) v) (rev 1) = ¢ by simp
with v-in show %thesis using path-entry-prepend.hyps(3) by auto
next
case Fualse note v-nin = this
with path-entry-prepend.prems(1) have v-u: v = u by auto
then have take-eq: takeWhile ((#£) v) (rev (u # 1)) = take While ((#£) v) ((rev
) @ [u]) by auto
from v-nin have Az. = € set (revl) = ((#) v) = by auto
then have take While ((#) v) ((rev 1) Q [u]) = (rev 1) Q takeWhile ((#) v) [u]
by (rule take While-append2) simp
with v-u take-eq have take While ((#£) v) (rev (u # 1)) = (rev) by simp
then show ?thesis using path-entry-prepend.prems(2) path-entry-prepend.hyps(2)
v-u by auto
qed
qed

lemma path-entry-last: path-entry (¢-FE G) pn = p # [| = last p = 0
apply (induct rule: path-entry.induct)
apply simp
apply (simp add: path-entry-cons-conv neq-Nil-conv)
apply (auto simp add:path-entry0-empty-conv)
done

lemma path-entry-loop:
assumes n-path: path-entry (g-E G) p n
and n: n € setp
shows Jp’. path-entry (g-FE G) p’' n A n & set p’
using assms

proof —
let ?c = takeWhile ((#) n) (rev (p))
have Vz € set 7c. z # n by (auto dest: set-take WhileD)
then have n-nin: n ¢ set (rev ?c) by auto

from n-path obtain v where path-entry (¢-FE G) (p) v using path-entry-prepend-conv
by auto
with n have path-entry (¢-E G) (rev ?¢) n by (auto intro:take WhileNot-path-entry)

with n-nin show ?thesis by fastforce
qged

lemma path-entry-hd-edge:
assumes path-entry (g-E G) pa p
and pa # |]
shows (hd pa, p) € (¢-FE G)
using assms
by (induct rule: path-entry.induct) auto

lemma path-entry-edge:
assumes pa # ||
and path-entry (g-E G) pa p
shows Jueset pa. (path-entry (g-F G) (rev (take While ((£) u) (rev pa))) u) A
(u,p) € (9-E G)
using assms
proof—
from assms have 1: path-entry (g-E G) (rev (takeWhile ((#£) (hd pa)) (rev pa)))
(hd pa) by (auto intro:take WhileNot-path-entry)
from assms have 2: (hd pa, p)€ (¢g-E G) by (auto intro: path-entry-hd-edge)
have hd pa € set pa using assms(1) by auto
with 1 2 show “thesis by auto
qed

definition is-tail :: node = node X node = bool
where is-tail v e = (v = tail G e)

definition is-head :: node = node x node = bool
where is-head v e = (v = head G e)

definition succs:: node = node set
where succs v = (g-E G) ““ {v}

lemma succ-in-verts: s € succs n = {s,n} C set (g-V G)
by(simp add:succs-def tail-is-vert head-is-vert)

lemma succO-not-nil: succs 0 # {}
using succ-of-entry0 by (auto simp add:succs-def)

definition prevs:: node = node set where

prevs v = (converse (g-FE G))““ {v}

lemma v € succs u <— u € prevs v
by (auto simp add:succs-def prevs-def)

lemma succ-edge: Vv € succs n. (n,v) € g-E G
by (auto simp add:succs-def)

lemma prev-edge: u € set (g-V G) = Vv € prevs u. (v, u) € g-F G
by (auto simp add:prevs-def)

lemma succ-in-G: Vv € succs n. v € set (¢g-V G)
by (auto simp add: succs-def dest:head-in-verts)

lemma succ-is-subset-of-verts: Vv € set (g-V G). succs v C set(g-V G)
by (insert succ-in-G) auto

lemma fin-succs: Vv € set (g-V G). finite (suces v)
by (insert succ-is-subset-of-verts) (auto intro:rev-finite-subset)

lemma fin-succs” v < length (g-V G) = finite (succs v)
by (subgoal-tac v € set (g-V G))
(auto simp add: fin-succs verts-set)

lemma succ-range: Vv € suces n. v < length (¢-V G)
by (insert succ-in-G verts-set) auto

lemma path-entry-gt:

assumes V p. path-entry Epn — d € set p

and V p. path-entry Epn' — n € set p
shows V p. path-entry Epn’ — d € set p

using assms
proof (intro strip)

fix p

let ?npath = takeWhile ((#) n) (rev p)

have sub: set ?npath C set p apply (induct p) by (auto dest:set-take WhileD)

assume ass: path-entry E p n'
with assms(2) have n-in-p: n € set p by auto
then have n € set (rev p) by auto
with ass have path-entry E (rev ?npath) n
using take WhileNot-path-entry by auto

with assms(1) have d € set ?npath by fastforce
with sub show d € set p by auto

qed

definition dominate :: nat = nat = bool
where dominate nl1 n2 =
Y pa. path-entry (g-E G) pa n2 —

(n1 € set pa V nl = n2)

definition strict-dominate:: nat = nat = bool where
strict-dominate nl n2 =
Y pa. path-entry (¢-E G) pa n2 —
(n1 € set pa A nl # n2)

lemma any-dominate-unreachable: = reachable n = dominate d n
proof(unfold reachable-def dominate-def)
assume ass: n ¢ (g-E G)* “ {0}

have - (3 p. path-entry (¢-E G) p n)
proof (rule ccontr)
assume - (- (I p. path-entry (g-E G) p n))
then obtain p where p: path-entry (g-E G) p n by auto
then have n = 0 V reachable n by (auto intro:path-entry-reachable)
then show Fulse
proof
assume n = 0
then show Fulse using ass by auto
next
assume reachable n
then show Fulse using ass by (auto simp add:reachable-def)
qed
qed
then show V pa. path-entry (¢-E G) pa n — d € set pa V d = n by auto
qed

lemma any-sdominate-unreachable: — reachable n = strict-dominate d n
proof(unfold reachable-def strict-dominate-def)
assume ass:n ¢ (¢g-F G)* “ {0}

have — (3 p. path-entry (¢-E G) p n)
proof (rule ccontr)
assume - (- (I p. path-entry (¢-E G) p n))
then obtain p where p: path-entry (g-E G) p n by auto
then have n = 0 V reachable n by (auto intro:path-entry-reachable)
then show Fulse
proof
assume n = 0
then show Fulse using ass by auto
next
assume reachable n
then show Fulse using ass by (auto simp add:reachable-def)
qed
qed
then show V pa. path-entry (¢-E G) pan — d € set pa A d # n by auto
qed

10

lemma dom-reachable: reachable n —> dominate d n —> reachable d
proof —
assume reach-n: reachable n
and dom-n: dominate d n
from reach-n have 3 p. path-entry (¢-E G) p n by (rule reachable-path-entry)
then obtain p where p: path-entry (¢-E G) p n by auto

show reachable d
proof (cases d # n)
case True
with dom-n p have d-in: d € set p by (auto simp add:dominate-def)
let ?pa = takeWhile ((#) d) (rev p)
from d-in p have path-entry (g-E G) (rev ?pa) d using take WhileNot-path-entry
by auto
then show %thesis using path-entry-reachable by auto
next
case Fulse
with reach-n show ?thesis by auto
qed
qed

lemma dominate-refl: dominate n n
by (simp add:dominate-def)

lemma entry0-dominates-all: Vp € set (g-V G). dominate 0 p
proof(intro strip)
fix p
assume p € set (g-V G)
show dominate 0 p
proof (cases p = 0)
case True
then show ?thesis by (auto simp add:dominate-def)
next
case Fulse
assume p-neql: p # 0
have V pa. path-entry (g-FE G) pa p — 0 € set pa
proof (intro strip)
fix pa
assume path-p: path-entry (¢-E G) pa p
show 0 € set pa
proof (cases pa # [])
case True note pa-n-nil = this
with path-p have last-pa: last pa = 0 using path-entry-last by auto
from pa-n-nil have last pa € set pa by simp
with last-pa show ?thesis by simp
next
case Fulse
with path-p have p = 0 by (simp add:path-entry0-empty-conv)
with p-neq0 show ?thesis by auto

11

qed
qed
then show %thesis by (auto simp add:dominate-def)
qed
qed

lemma strict-dominate i j = j € set (¢-V G) = i # j
using any-node-exits-path
by (auto simp add:strict-dominate-def)

definition non-strict-dominate:: nat = nat = bool where
non-strict-dominate n1 n2 = I pa. path-entry (g-E G) pa n2 A (nl ¢ set pa)

lemma any-sdominate-0: n € set (g-V G) = non-strict-dominate n 0
apply (simp add:non-strict-dominate-def)
by (auto intro:path-entry0)

lemma non-sdominate-succ: (i,j) € g-E G = k # i = non-strict-dominate k
i => non-strict-dominate k j
proof —
assume i-j: (i,j) € g-F G and k-neg-i: k # i and non-strict-dominate k i
then obtain pa where path-entry (g-FE G) pa i and k-nin-pa: k ¢ set pa by
(auto simp add:non-strict-dominate-def)
with i-j have path-entry (g-F G) (i#pa) j by (auto simp add:path-entry-prepend)
with k-neg-i k-nin-pa show ?thesis by (auto simp add:non-strict-dominate-def)
qged

lemma any-node-non-sdom0: non-strict-dominate k 0
by (auto intro:entry0-path simp add:non-strict-dominate-def)

lemma nonstrict-eq: non-strict-dominate i j = — strict-dominate i j
by (auto simp add:non-strict-dominate-def strict-dominate-def)

lemma dominate-trans:
assumes dominate nl n2
and dominate n2 n8
shows dominate n1 n3
using assms
proof(cases n1 = n2)
case True
then show ?thesis using assms(2) by auto
next
case Fulse
then show dominate n1 n3
proof (cases n1 = n3)
case True
then show ?thesis by (auto simp add:dominate-def)
next

12

case Fulse
show dominate n1 n3
proof (cases n2 = n3)
case True
then show ?thesis using assms(1) by auto
next
case Fulse
with «nl # n2> «<nl # n3> show ?thesis
proof (auto simp add: dominate-def)
fix pa
assume nl # n2 and ni # n3 and n2 # n3d
from «n1 # n2 assms(1) have ni-n2-pa: V pa. path-entry (¢g-E G) pa n2
— nl € set pa
by (auto simp add:dominate-def)
from «n2 # n3» assms(2) have V pa. path-entry (¢-E G) pa n3 — n2 €
set pa
by (auto simp add:dominate-def)
with nl-n2-pa have V pa. path-entry (¢g-E G) pa n3 — nl € set pa
by (rule path-entry-gt)
then show Apa. path-entry (¢-E G) pa n8 = nl € set pa by auto
qed
qed
qed
qed

lemma len-take While-lt: © € set xs = length (take While ((#) z) zs) < length xs
by (induct zs) auto

lemma len-take While-comp:
assumes nl € set zs
and n2 € set zs
and nl # n2
shows length (takeWhile ((#) nl) xs) # length (takeWhile ((#) n2) xs)
using assms
by (induct zs) auto

lemma len-take While-comp1:
assumes nl € set zs
and n2 € set xs
and nl # n2
shows length (takeWhile ((#£) nl1) (rev (z # xs))) # length (takeWhile ((#)
n2) (rev (z # xs)))

using assms len-take While-comp|of n1 rev zs n2] by fastforce

lemma len-take While-comp?2:
assumes nl € set zs
and n2 ¢ set s
shows length (takeWhile ((#) nl1) (rev (z # xs))) # length (takeWhile ((#)

n2) (rev (x # xs)))

13

using assms
proof—
let %zs1 = takeWhile ((#) nl) (rev (z # xs))
let ?xs2 = takeWhile ((#) n2) (rev (z # xs))
from assms have lenl: length (takeWhile ((#) nl) (rev zs)) < length (rev xs)
using len-take While-lt[of -rev zs] by auto

from assms(1) have ?zs1 = takeWhile ((#) nl) (rev xzs) by auto
then have len2: length ?zsl < length (rev zs) using len! by auto

from assms(2) have takeWhile ((#) n2) (rev zs Q [z]) = (rev xs) Q take While
((#) 72) [a]
by (fastforce intro:take While-append?2)
then have ?zs2 = (rev xs) Q take While ((#£) n2) [z] by simp
then show ?thesis using len2 by auto
qed

lemma len-comparel:
assumes nl = z and n2 # z

shows length (takeWhile ((#£) nl1) (rev (z # xs))) # length (takeWhile ((#)

n2) (rev (z # xs)))

using assms
proof(cases n1 € set xs A\ n2 € set xs)

case True

with assms show ?thesis using len-take While-comp1 by fastforce
next

let %zs1 = takeWhile ((#£) nl1) (rev (z # xs))

let %zs2 = takeWhile ((#£) n2) (rev (z # xs))

case Fulse
then have nl € set s A n2 ¢ set xs V nl ¢ set s A n2 € set xs V nl ¢ set xs
A n2 ¢ setzs by auto
then show ?thesis
proof
assume nl € set s A n2 ¢ set s
then show ?thesis by (fastforce dest: len-take While-comp?2)
next
assume nl ¢ set zs A n2 € set xs V nl ¢ set xs A n2 ¢ set xs
then show ?thesis
proof
assume nl ¢ set xs A n2 € set xs
then have nl: nl ¢ set zs and n2: n2 € set xs by auto
have length ?zs2 # length ?zsl using len-take While-comp2[OF n2 ni] by
auto
then show ?thesis by simp
next
assume nl ¢ set zs A n2 ¢ set xs
then have ni-nin: nl ¢ set xs and n2-nin: n2 ¢ set xs by auto
then have tI: takeWhile ((#) nl1) (rev zs Q [z]) = (rev zs) Q take While

14

((#) n1) [a]
and take While ((#) n2) (rev xs Q [z]) = (rev zs) Q take While ((3)

by (fastforce intro:take While-append2)+
with «n1 = 2> «n2 # ©» have t1" takeWhile ((#) n1) (rev xs Q [z]) = rev
s
and takeWhile ((#) n2) (rev xs Q [z]) = (rev zs) Q
[z] by auto
then have length (takeWhile ((#) n2) (rev zs Q [z])) = length ((rev zs) @

[2])
using arg-cong|of take While ((#£) n2) (rev zs Q [z]) rev s Q [z] length] by
fastforce
with t1’ show ?thesis by auto
qed
qed
qed

lemma len-compare?2:
assumes nl € set zs
and nl # n2
shows length (takeWhile ((#) nl1) (rev (z # xs))) # length (takeWhile ((#)
n2) (rev (x # xs)))
using assms
apply(case-tac n2 € set xs)
apply (fastforce dest: len-take While-comp1)
apply (fastforce dest:len-take While-comp2)
done

lemma len-take While-set:
assumes length (takeWhile ((#) nl1) xs) > length (take While ((#) n2) xs)
and nl # n2
and nl € set xs
and n?2 € set zs
shows set (take While ((#£) n2) xs) C set (takeWhile ((#) nl) xs)
using assms
proof (induct zs)
case Nil then show ?case by auto
next
case (Cons y ys)
note ind-hyp = Cons(1)
note len-n2-lt-ni-y-ys = Cons(2)
note nl-n-n2 = Cons(8)
note nl-in-y-ys = Cons(4)
note n2-in-y-ys = Cons(5)

let ?ysi-take = take While ((#) nl1) ys
let ?ys2-take = takeWhile ((#£) n2) ys

show ?case

15

proof(cases n1 € set ys)
case True note ni-in-ys = this
show ?thesis
proof(cases n2 € set ys)
case True note n2-in-ys = this
show ?thesis
proof (cases nl # y)
case True note ni-neq-y = this
show ?thesis
proof (cases n2 # y)
case True note n2-neq-y = this
from len-n2-lt-n1-y-ys have length ?ys2-take < length ?ysi-take
using ni-n-n2 nil-in-ys n2-in-ys nl-neg-y n2-neq-y by (induct ys) auto
from ind-hyp|OF this n1-n-n2 nl-in-ys n2-in-ys|
have set (takeWhile ((#) n2) ys) C set (takeWhile ((#) nl) ys) by auto
then show %thesis using ni-neq-y n2-neq-y by (induct ys) auto
next
case Fulse
with n1-n-n2 show ?thesis by auto
qed
next
case Fulse
with ni-n-n2 show %thesis using len-n2-lt-n1-y-ys by auto
qed
next
case Fulse
with n2-in-y-ys have n2 = y by auto
then show ?thesis by auto
qed
next
case Fulse
with nl-in-y-ys have ni1 = y by auto
with ni-n-n2 show ?%thesis using len-n2-lt-n1-y-ys by auto
qed
qed

lemma reachable-dom-acyclic:
assumes reachable n2
and dominate nl n2
and dominate n2 ni
shows nl = n2
using assms
proof —
from assms(1) assms(2) have reachable n1 by (auto intro: dom-reachable)
then have 3 pa. path-entry (g-E G) pa nl by (auto intro: reachable-path-entry)
then obtain pa where pa: path-entry (g-E G) pa n1 by auto

let ?n-take-n1 = takeWhile ((#£) nl) (rev pa)
let ?n-take-n2 = take While ((#£) n2) (rev pa)

16

show ni1 = n2
proof(rule ccontr)
assume nil-neqg-n2: nl # n2
then have pa-ni-n2: ¥ pa. path-entry (¢-E G) pa n2 — nl € set pa
and pa-n2-nl: Vpa. path-entry (¢-E G) pa nl — n2 € set pa using
assms(2) assms(3)
by (auto simp add:dominate-def)
then have ni-nl-pa: ¥V pa. path-entry (¢-E G) pa nl — nl € set pa by (rule
path-entry-gt)
with pa pa-n2-n1 have ni-in-pa: n1 € set pa
and n2-in-pa: n2 € set pa by auto
with nl-neg-n2 have len-neq: length ?n-take-n1 # length ?n-take-n2
by (auto simp add: len-take While-comp)

from pa ni-in-pa n2-in-pa have pathl: path-entry (g-E G) (rev ?n-take-nl) nl

and path2: path-entry (¢-E G) (rev ?n-take-n2) n2
using take WhileNot-path-entry by auto

have ni-not-in: nl ¢ set ?n-take-n1 by (auto dest: set-take WhileD|of - - rev

pal)
have n2-not-in: n2 ¢ set ?n-take-n2 by (auto dest: set-takeWhileD[of - - rev

pal)

show Fulse
proof(cases length ?n-take-n1 > length ?n-take-n2)
case True
then have set ?n-take-n2 C set ?n-take-nl
using nl-in-pa n2-in-pa by (auto dest: len-take While-set[of - rev pa])
then have nl ¢ set ?n-take-n2 using nl-not-in by auto
with path2 show Fulse using pa-ni-n2 by auto
next
case Fulse
with len-neq have length ?n-take-n2 > length ?n-take-n1 by auto
then have set ?n-take-nl C set ?n-take-n2
using nl-neg-n2 n2-in-pa nl-in-pa by (auto dest: len-take While-set)
then have n2 ¢ set ?n-take-nl using n2-not-in by auto
with path! show False using pa-n2-n1 by auto
qed
qed
qged

lemma sdom-dom: strict-dominate nl1 n2 —> dominate nl n2
by (auto simp add:strict-dominate-def dominate-def)

lemma dominate-sdominate: dominate nl n2 = nl # n2 = strict-dominate nl

n2
by (auto simp add:strict-dominate-def dominate-def)

17

lemma sdom-neq:
assumes reachable n2
and strict-dominate ni n2
shows n1 # n2
using assms
proof —
from assms(1) have 3 p. path-entry (¢g-E G) p n2 by (rule reachable-path-entry)

then obtain p where path-entry (¢-FE G) p n2 by auto
with assms(2) show ?thesis by (auto simp add:strict-dominate-def)
qed

lemma reachable-dom-acyclic2:
assumes reachable n2
and strict-dominate n1 n2
shows — dominate n2 ni
using assms
proof —
from assms have ni-dom-n2: dominate nl n2 and nil-neq-n2: nl # n2
by (auto simp add:sdom-dom sdom-neq)
with assms(1) have dominate n2 n1 = nl = n2 using reachable-dom-acyclic
by auto
with ni-neq-n2 show ?thesis by auto
qed

lemma not-dom-eq-not-sdom: — dominate nl n2 — - strict-dominate n1 n2
by (auto simp add:strict-dominate-def dominate-def)

lemma reachable-sdom-acyclic:
assumes reachable n2
and strict-dominate n1 n2
shows — strict-dominate n2 ni
using assms
apply (insert reachable-dom-acyclic2|OF assms(1) assms(2)])
by (auto simp add:not-dom-eg-not-sdom)

lemma strict-dominate-transi:
assumes strict-dominate nl n2
and dominate n2 n3
shows strict-dominate n1 n3
using assms
proof (cases reachable n2)
case True note reach-n2 = this
with assms(1) have ni-dom-n2: dominate nl n2 and nl-neg-n2: n1 # n2
by (auto simp add:sdom-dom sdom-neq)
with assms(2) have ni-dom-n3: dominate n1 n3 by (auto intro: dominate-trans)
have ni-neg-n3: n1 # n3
proof (rule ccontr)

18

assume — nl # nd then have nl = n8 by simp
with assms(2) have n2-dom-n1: dominate n2 ni by simp
with reach-n2 n1-dom-n2 have nl = n2 by (auto dest:reachable-dom-acyclic)
with ni-neq¢-n2 show Fulse by auto
qed
with nl-dom-n3 show %thesis by (simp add:strict-dominate-def dominate-def)
next
case Fulse note not-reach-n2 = this
have — reachable n3
proof (rule ccontr)
assume — — reachable n3
with assms(2) have reachable n2 by (auto intro: dom-reachable)
with not-reach-n2 show Fualse by auto
qed
then show ?thesis by (auto intro:any-sdominate-unreachable)
qed

lemma strict-dominate-trans2:
assumes dominate nl n2
and strict-dominate n2 n3
shows strict-dominate nl n3
using assms
proof (cases reachable n3)
case True
with assms(2) have n2-dom-n3: dominate n2 n3 and ni-neg-n2: n2 # nd
by (auto simp add:sdom-dom sdom-neq)
with assms(1) have ni-dom-n3: dominate n1 n3 by (auto intro: dominate-trans)
have ni-neg-n3: n1 # n8
proof (rule ccontr)
assume — nl # n3 then have ni = n3 by simp
with assms(1) have dominate n3 n2 by simp
with <reachable n3» n2-dom-n3 have n2 = n3 by (auto dest:reachable-dom-acyclic)
with ni-neg-n2 show Fualse by auto
qed
with ni-dom-n3 show %thesis by (simp add:strict-dominate-def dominate-def)
next
case Fulse
then have — reachable n3 by simp
then show %thesis by (auto intro:any-sdominate-unreachable)
qed

lemma strict-dominate-trans:
assumes strict-dominate nl n2
and strict-dominate n2 n3

shows strict-dominate n1 n3
using assms
apply (subgoal-tac dominate n2 n3)

apply(rule strict-dominate-transi)
apply (auto simp add: strict-dominate-def dominate-def)

19

done

lemma sdominate-dominate-succs:

assumes i-sdom-j: strict-dominate i j

and j-in-succ-k: j € succs k
shows dominate i k

proof (rule ccontr)

assume ass:— dominate © k

then obtain p where path-k: path-entry (g-FE G) p k and é-nin-p: i ¢ set p by
(auto simp add:dominate-def)

with j-in-succ-k i-sdom-j have i: i = k V i = j by (auto intro:path-entry-append
stmp add:succs-def strict-dominate-def)

from j-in-succ-k have reachable j using succ-in-verts reachable by (auto simp
add:reachable-def)

with i-sdom-j have i # j by (auto simp add: sdom-neq)

with 7 have i = k£ by auto

then have dominate i k by (auto simp add:dominate-refl)

with ass show Fualse by auto
qed

end

end

2 DMore auxiliary lemmas for Lists Sorted wrt <

theory Sorted-Less2
imports Main HOL— Data-Structures.Cmp HOL— Data-Structures.Sorted-Less
begin

lemma Cons-sorted-less: sorted (rev xs) = Vz€set zs. x < p = sorted (rev

(p # w5))
by (induct zs) (auto simp add:sorted-wrt-append)

lemma Cons-sorted-less-nth: ¥V x<length zs. zs | © < p = sorted (rev xs) =
sorted (rev (p # xs))

apply(subgoal-tac V z€set zs. x < p)

apply(fastforce dest: Cons-sorted-less)

apply(auto simp add: set-conv-nth)

done

lemma distinct-sorted-rev: sorted (rev xs) = distinct s
by (induct zs) (auto simp add:sorted-wrt-append)

lemma sorted-le2lt:
assumes List.sorted s

and distinct xs

shows sorted xs

20

using assms
proof (induction xs)
case Nil then show ?case by auto
next
case (Cons z zs)
note ind-hyp-rs = Cons(1)
note sorted-le-z-rs = Cons(2)
note dist-z-zs = Cons(3)
from dist-z-zs have z-neq-rs: Vv € set xs. £ # v
and dist: distinct xs by auto
from sorted-le-z-zs have sorted-le-zs: List.sorted xs
and z-le-xs: Vv € set xs. v > x by auto
from z-neq-zs x-le-xs have x-lt-xzs: Vv € set zs. v > x by fastforce
from ind-hyp-xs|OF sorted-le-zs dist] have sorted xs by auto
with z-lt-zs show ?case by auto
qed

lemma sorted-less-sorted-list-of-set: sorted (sorted-list-of-set S)
by (auto intro:sorted-le2lt)

lemma distinct-sorted: sorted ts = distinct s
by (induct zs) (auto simp add: sorted-wrt-append)

lemma sorted-less-set-unique:
assumes sorted s
and sorted ys
and set zs = set ys
shows zs = ys
using assms
proof —
from assms(1) have distinct xs and List.sorted xs by (induct zs) auto
also from assms(2) have distinct ys and List.sorted ys by (induct ys) auto
ultimately show zs = ys using assms(3) by (auto intro: sorted-distinct-set-unique)
qed

lemma sorted-less-rev-set-unique:
assumes sorted (rev xs)
and sorted (rev ys)
and set xs = set ys
shows zs = ys
using assms sorted-less-set-uniquelof rev zs rev ys| by auto

lemma sorted-less-set-eq:
assumes sorted xs
shows zs = sorted-list-of-set (set xs)
using assms
apply(subgoal-tac sorted (sorted-list-of-set (set xs)))
apply(auto intro: sorted-less-set-unique sorted-le2lt)
done

21

lemma sorted-less-rev-set-eq:
assumes sorted (rev zs)
shows sorted-list-of-set (set xs) = rev xs
using assms sorted-less-set-eq[of rev xs] by auto

lemma sorted-insort-removel: sorted w = (insort a (removel a w)) = sorted-list-of-set
(insert a (set w))
proof—

assume sorted w

then have (sorted-list-of-set (set w — {a})) = removel a w using sorted-less-set-eq

by (fastforce simp add:sorted-list-of-set-remove)

hence insort a (removel a w) = insort a (sorted-list-of-set (set w — {a})) by
stmp

then show ?thesis by (auto simp add:sorted-list-of-set-insert)
qed

end

3 Operations on sorted lists

theory Sorted-List-Operations2
imports Sorted-Less2
begin

The definition and the inter_sorted_ correct lemma in this theory are the
same as those in Collections [2]. except the former is for a descending list
while the latter is for an ascending one.

fun inter-sorted-rev :: 'a:{linorder} list = 'a list = 'a list where
inter-sorted-rev [] 12 = ||
| inter-sorted-rev 11 [] = []
| inter-sorted-rev (x1 # 11) (22 # 12) =
(if (z1 > x2) then (inter-sorted-rev 1 (z2 # 12)) else
(if (z1 = x2) then 1 # (inter-sorted-rev 11 12) else inter-sorted-rev (x1 # 1)
12))

lemma inter-sorted-correct :
assumes [1-OK: sorted (rev 1)
assumes [2-OK: sorted (rev [2)
shows sorted (rev (inter-sorted-rev 11 12)) A set (inter-sorted-rev 11 12) = set
l1 N setl2
using assms
proof (induct l1 arbitrary: 12)
case Nil thus ?case by simp
next
case (Cons z1 11 12)
note x1-11-props = Cons(2)
note [2-props = Cons(3)

22

from xz1-11-props have l1-props: sorted (rev 1)
and z1-nin-l1: x1 ¢ set l1
and z1-gt: N\z. z € set ll = z1 >
by (auto simp add: Ball-def sorted-wrt-append)

note ind-hyp-11 = Cons(1)[OF l1-props]
show ?Zcase
using [2-props
proof (induct 12)
case Nil with z1-l1-props show ?case by simp
next
case (Cons z2 12)
note z2-12-props = Cons(2)
from 22-12-props have [2-props: sorted (rev 12)
and z2-nin-12: 22 ¢ set 12
and 22-gt: N\z. z € set 12 = 22 > z
by (auto simp add: Ball-def sorted-wrt-append)

note ind-hyp-12 = Cons(1)[OF 12-props]
show ?Zcase
proof (cases z1 > z2)
case True note zi1-gt-z2 = this
have set [1 N set (22 # 12) = set (x1 # 11)N set (2 # 12)
using x1-gt-x2 x1-nin-l1 x2-nin-12 x1-gt x2-gt
by fastforce
then show ?thesis using ind-hyp-11]{OF z2-12-props| using z1-gt-z2 x1-nin-11
x2-nin-12 x1-gt x2-gt
by (auto simp add:Ball-def sorted-wrt-append)
next
case Fualse note x2-ge-x1 = this
show ?thesis
proof (cases z1 = z2)
case True note zl-eq-z2 = this
then show ?thesis using ind-hyp-l11{OF 12-props]
using z1-eq-x2 xz1-nin-l1 x2-nin-12 x1-gt 2-gt by (auto simp add:Ball-def
sorted-wrt-append)
next
case Fulse note x1-neq-x2 = this
with z2-ge-z1 have z2-gt-z1 : 22 > z1 by auto
from ind-hyp-12 z2-ge-x1 x1-neq-z2 x2-gt r2-nin-12 x1-gt
show ?thesis by auto
qed
qed
qed
qed

lemma inter-sorted-rev-refl: inter-sorted-rev xs xs = ws
by (induct zs) auto

23

lemma inter-sorted-correct-col:

assumes sorted (rev zs)

and sorted (rev ys)
shows (inter-sorted-rev xs ys) = rev (sorted-list-of-set (set xs N set ys))

using assms
proof—

from assms have 1: sorted (rev (inter-sorted-rev zs ys))

and 2: set (inter-sorted-rev zs ys) = set xs N set ys using in-

ter-sorted-correct by auto

have sorted (rev (rev (sorted-list-of-set (set xs N set ys)))) by (simp add:sorted-less-sorted-list-of-set)

with 1 2 show ?thesis by (auto intro:sorted-less-rev-set-unique)
qed

lemma cons-set-eq: set (x # zs) N set s = set s
by auto

lemma inter-sorted-cons: sorted (rev (x # xs)) = inter-sorted-rev (z # xs) s =
z$
proof—

assume ass: sorted (rev (z # s))

then have sorted-zs: sorted (rev xs) by (auto simp add:sorted-wrt-append)

with ass have inter-sorted-rev (x # xs) xs = rev (sorted-list-of-set (set (x # xs)
N set zs))

by (simp add:inter-sorted-correct-col)

then have inter-sorted-rev (z # xs) xs = rev (rev zs)using sorted-zs by (simp
only: cons-set-eq sorted-less-rev-set-eq)

then show ?thesis using sorted-zs by auto
qed

end

4 A semilattice of reversed-ordered list

theory Dom-Semi-List
imports Main Jinja.Semilat Sorted-List-Operations2 Sorted-Less2 Cfg
begin

type-synonym node = nat

context cfg-doms
begin

definition nodes :: nat list
where nodes = (¢g-V G)

definition nodes-le :: node list = node list = bool where
nodes-le xs ys = (sorted (rev ys) A sorted (rev zs) A (set ys) C (set zs)) V zs = ys

24

definition nodes-sup ::node list = node list =-node list where
nodes-sup = (Az y. inter-sorted-rev x y)

definition nodes-semi :: node list sl where
nodes-semi = ((rev o sorted-list-of-set) ‘ (Pow (set (nodes))), nodes-le, nodes-sup

)

lemma subset-nodes-inpow:
assumes sorted (rev zs)
and set zs C set nodes
shows s € (rev o sorted-list-of-set) ‘ (Pow (set nodes))
proof —
from assms(1) have (sorted-list-of-set (set zs)) = rev xs by (auto intro:sorted-less-rev-set-eq)
then have rev (rev xs) = rev (sorted-list-of-set (set zs)) by simp
with assms(2) show ?thesis by auto
qed

lemma nil-in-A: || € (rev o sorted-list-of-set) ¢ (Pow (set nodes))
proof(simp add: Pow-def image-def)

have sorted-list-of-set {} =[] by auto

then show JzCset nodes. sorted-list-of-set x = [| by blast
qged

lemma single-n-in-A: p < length nodes = [p] € (rev o sorted-list-of-set) * (Pow
(set nodes))
proof (unfold nodes-def)
let 25 = (rev o sorted-list-of-set) ‘ (Pow (set (g-V G)))
assume p < length (¢-V Q)
then have p: {p} € Pow (set (¢g-V G)) by (auto simp add:Pow-def verts-set)
then have [p] €25 by (unfold image-def) force
then show [p] € 25 by auto
qed

lemma inpow-subset-nodes:

assumes zs € (rev o sorted-list-of-set) ‘ (Pow (set nodes))

shows set xs C set nodes

proof —

from assms obtain x where z: z € Pow (set nodes) and zs = (rev o sorted-list-of-set)
z by auto

then have eq: set s = set (sorted-list-of-set x) by auto

have Vz € Pow (set nodes). finite x by (auto intro: rev-finite-subset)

with z eq show set zs C set nodes by auto
qed

lemma inter-in-pow-nodes:
assumes s € (rev o sorted-list-of-set) ‘ (Pow (set nodes))
shows (rev o sorted-list-of-set)(set xs N set ys) € (rev o (sorted-list-of-set))
(Pow (set nodes))
using assms

¢

25

proof —
let %res = set xs N set ys
from assms have set s C set nodes using inpow-subset-nodes by auto
then have ?%res C set nodes by auto
then show ?thesis using subset-nodes-inpow by auto
qed

lemma nodes-le-order: order nodes-le ((rev o sorted-list-of-set) ‘ (Pow (set nodes)))
proof —
let A = (rev o sorted-list-of-set) ‘ (Pow (set nodes))

have Vz € ?A. sorted (rev x) by (auto intro: sorted-less-sorted-list-of-set)
then have Vze€?A. nodes-le x x by (auto simp add:nodes-le-def)

moreover have Vze?A. Vye?A. (nodes-le x y A nodes-le y 1 — x = y)
proof (intro strip)
fix x y
assume z € YA and y € ?A and nodes-le x y N nodes-le y x
then have sorted (rev z) A sorted (rev (y::nat list)) N setx = setyV z =y
by (auto simp add: nodes-le-def intro:subset-antisym sorted-less-sorted-list-of-set)
then show z = y by (auto dest: sorted-less-rev-set-unique)
qged

moreover have Vze ?A. Vye ?A4.Vze ?A . nodes-le x y N\ nodes-le y z —
nodes-le x z
by (auto simp add: nodes-le-def)

ultimately show ?thesis by (unfold order-def lesub-def lesssub-def) fastforce
qed

lemma nodes-semi-auxi:
let A = (rev o sorted-list-of-set) ‘ (Pow (set (nodes)));
r = nodes-le;
f = Az y. (inter-sorted-rev x y))
in semilat(A, r, f)
proof —
let A = (rev o sorted-list-of-set) ‘ (Pow (set (nodes)))
let ?r = nodes-le
let ?f = (\z y. (inter-sorted-rev z y))

have order ?r ?A by (rule nodes-le-order)

moreover have closed ?A ?f
proof (unfold closed-def, intro strip)
fix zs ys assume zs-in: zs € A and ys-in: ys € %A
then have sorted-zs: sorted (rev xs)
and sorted-ys: sorted (rev ys)
by (auto intro: sorted-less-sorted-list-of-set)

26

then have inter-zs-ys: set (?f zs ys) = set xs N set ys and
sorted-res: sorted (rev (2f xs ys))
using inter-sorted-correct by auto

from zs-in have set xs C set nodes using inpow-subset-nodes by auto
with inter-zs-ys have set (2f xs ys) C set nodes by auto
with sorted-res show s Uer yse ?A using subset-nodes-inpow by (auto simp
add:plussub-def)
qed

moreover have (Vz€?A. Vye?A. x Ty x Ugry) A (Va€?A. Vye?A. y Ty
Ugr y)
proof(rule conjl, intro strip)
fix zs ys
assume zs-in: zs € ?A and ys-in: ys € 7A
then have sorted-zs: sorted (rev xs) and sorted-ys: sorted (rev ys)
by (auto intro: sorted-less-sorted-list-of-set)
then have set (?f zs ys) C set xs and sorted-f-zs-ys: sorted (rev (2f xs ys))
by (auto simp add: inter-sorted-correct)
then show zs Co,. zs Uer ys by (simp add: lesub-def sorted-zs sorted-ys
sorted-f-zs-ys nodes-le-def plussub-def)
next
show Vzc?A. Vyc?A. y Ty, x Uery
proof (intro strip)
fix zs ys
assume zs-in: s € ?A and ys-in: ys € 7A
then have sorted-zs: sorted (rev zs) and sorted-ys: sorted (rev ys)
by (auto intro: sorted-less-sorted-list-of-set)
then have set (?f zs ys) C set ys and sorted-f-zs-ys: sorted (rev (?f zs ys))
by (auto simp add: inter-sorted-correct)
then show ys Co. xs Uer ys by (simp add: lesub-def sorted-ys sorted-s
sorted-f-zs-ys nodes-le-def plussub-def)
qed
qged

moreover have V1€ ?A. Vyc?A. V2€?A. 2 Co. 2 Ny Eop 2z — 2 Uery Copz
proof (intro strip)
fix zs ys zs
assume zin: zs € ?A and yin: ys € ?A and zin: zs € YA and 2s Co. 25 A ys
Cop 28
then have xs-zs: xs Co,. zs and ys-zs: ys Co,. zs and sorted-xs: sorted (rev xs)
and sorted-ys: sorted (rev ys) by (auto simp add: sorted-less-sorted-list-of-set)
then have inter-ws-ys: set (?f zs ys) = (set s N set ys) and sorted-f-zs-ys:
sorted (rev (2f zs ys))
by (auto simp add: inter-sorted-correct)

from xs-zs ys-zs sorted-zs have sorted-zs: sorted (rev zs)
and set zs C set xs

27

and set zs C set ys by (auto simp add: lesub-def
nodes-le-def)
then have zs: set zs C set zs N set ys by auto
with inter-zs-ys sorted-zs sorted-f-xs-ys show xs Uer ys Eo,. 25
by (auto simp add:plussub-def lesub-def sorted-xs sorted-ys sorted-f-zs-ys
sorted-zs nodes-le-def)
qed
ultimately show ?thesis by (unfold semilat-def) simp
qed

lemma nodes-semi-is-semilat: semilat (nodes-semi)
using nodes-semi-auri
by (auto simp add: nodes-sup-def nodes-semi-def)

lemma sorted-rev-subset-len-lt:
assumes sorted (rev a)
and sorted (rev b)
and set a C set b
shows length a < length b
using assms
proof—
from assms(1) assms(2) have dist-a: distinct o and dist-b: distinct b by (auto
dest: distinct-sorted-rev)
from assms(3) have card (set a) < card (set b) by (auto intro: psubset-card-mono)
with dist-a dist-b show %thesis by (auto simp add: distinct-card)
qed

lemma wf-nodes-le-auxi: wf {(y, z). (sorted (rev y) A sorted (rev z) N sety C set
z) Nz # y}
apply (rule wf-measure [THEN wf-subset])
apply(simp only: measure-def inv-image-def)
apply clarify
apply(frule sorted-rev-subset-len-lt)
defer
defer
apply fastforce
by (auto intro:sorted-less-rev-set-unique)

lemma wf-nodes-le-auxi2:

wf {(y, x). sorted (rev y) A sorted (rev z) A sety C set x A rev x # rev y}
using wf-nodes-le-auxi by auto

lemma wf-nodes-le: wf {(y, x). nodes-le z y A\ © # y}
proof —
have eq-set: {(y, z). (sorted (rev y) A sorted (rev z) A set y C set) N z # y}

{(y,). nodes-le x y N x # y} by (unfold nodes-le-def) auto
have {(y, z). (sorted (rev y) A sorted (rev x) A set y C set) Az # y} =
{(y, z). (sorted (rev y) A sorted (rev z) A set y C set z) N = # y}

28

by (auto simp add:sorted-less-rev-set-unique)
from this wf-nodes-le-auxi have wf {(y, z). (sorted (rev y) A sorted (rev x) A
set y C set &) A x # y} by (rule subst)
with eg-set show ?thesis by (rule subst)
qed

lemma acc-nodes-le: acc nodes-le
apply (unfold acc-def lesssub-def lesub-def)
apply (rule wf-nodes-le)
done

lemma acc-nodes-le2: acc (fst (snd nodes-sems))
apply (unfold nodes-semi-def)
apply (auto simp add: lesssub-def lesub-def intro: acc-nodes-le)
done

lemma nodes-le-refl [iff] : nodes-le s s
apply (unfold nodes-le-def lesssub-def lesub-def)

apply (auto)
done

end

end

5 A kildall’s algorithm for computing dominators

theory Dom-Kildall
imports Dom-Semi-List HOL— Library. While-Combinator Jinja.SemilatAlg
begin

A kildall’s algorithm for computing dominators. It uses the ideas and the
framework of kildall’s algorithm implemented in Jinja [3], and modifications
are needed to make it work for a fast algorithm for computing dominators

type-synonym state-dom = nat list

primrec propa ::
's binop = (nat x 's) list = 's list = nat list = 's list x nat list
where
propa f] 75 wl = (Ts,wl)
| propa f (q'# qs) 7s wl = (let (¢,7) = ¢’;
u= (7 Us7slg);
wl" = (if u = 7slq then wl
else (insort q (removel q wl)))
in propa f qs (7s[q := u]) wl’)

definition iter :
's binop = 's step-type = s list = nat list = 's list X nat list

29

where
iter f step T w =
while (A(Ts,w). w # [])
(A(Ts,w). let p = hd w
in propa f (step p (7slp)) 7s (t w))
(Ts,w)

definition unstables :: state-dom ord = state-dom step-type = state-dom list =
nat list
where

unstables r step Ts = sorted-list-of-set {p. p < size Ts A — stable r step Ts p}

definition Fkildall :: state-dom ord = state-dom binop = state-dom step-type =
state-dom list = state-dom list where
kildall v f step s = fst(iter f step Ts (unstables r step 75))

lemma init-worklist-is-sorted: sorted (unstables r step T5)
by (simp add:sorted-less-sorted-list-of-set unstables-def)

context cfg-doms
begin

definition transf :: node = state-dom = state-dom where
transf n input = (n # input)

definition ezec :: node = state-dom = (node x state-dom) list
where ezec n zs = map (Apc. (pe, (transf n xs))) (rev (sorted-list-of-set(succs

n)))

lemma transf-res-is-rev: sorted (rev ns) = n > hd ns = sorted (rev ((transf n

(ns))))

by (induct ns) (auto simp add:transf-def sorted-wrt-append)

abbreviation start = [| # (replicate (length (g-V G) — 1) ((rev[0..<length(g-V
@)

definition dom-kildall :: state-dom list = state-dom list
where dom-kildall = kildall (fst (snd nodes-semi)) (snd (snd nodes-semi)) exec

definition dom:: nat = nat = bool where
dom i j =(let res = (dom-kildall start) |j in i € (set res) Vi =3j)

lemma dom-refl: dom i ¢
by (unfold dom-def) simp

definition strict-dom :: nat = nat = bool where
strict-dom i j = (let res = (dom-kildall start) \j in @ € set res)

30

lemma strict-doml1: (dom-kildall ([] # (replicate (length (¢-V G) — 1) ((rev[0..<length(g-V
G = res = i € set res = strict-dom i j
by (auto simp add:strict-dom-def)

lemma strict-domD:

strict-dom i j =

dom-kildall ((] # (replicate (length (g-V G) — 1) ((rev[0..<length(g-V G)))))))lj
= a4 —=

1 € seta

by (auto simp add:strict-dom-def)

lemma sdom-dom: strict-dom i j = dom i j
by (unfold strict-dom-def) (auto simp add:dom-def)

lemma not-sdom-not-dom: —strict-dom i j = i # j = —~dom i j
by (unfold strict-dom-def) (auto simp add:dom-def)

lemma dom-sdom: dom i j = i # j = strict-dom i j
by (unfold dom-def) (auto simp add:dom-def strict-dom-def)

end

end

6 Properties of the kildall’s algorithm on the semi-
lattice

theory Dom-Kildall-Property
imports Dom-Kildall Jinja.Listn Jinja.Kildall-1
begin

lemma sorted-list-len-lt: © C y = finite y = length (sorted-list-of-set z) <
length (sorted-list-of-set y)
proof—
let %x = sorted-list-of-set x
let 2y = sorted-list-of-set y
assume z-y: ¢ C y and fin-y: finite y
then have card-z-y: card x < card y and fin-z: finite
by (auto simp add:psubset-card-mono finite-subset)
with fin-y have length %z = card z and length ?y = card y by auto
with card-z-y show ?thesis by auto
qed

lemma wf-sorted-list:
wf (A (z,y). (sorted-list-of-set z, sorted-list-of-set y)) * finite-psubset)

31

apply (unfold finite-psubset-def)

apply (rule wf-measure [THEN wf-subset))

apply (simp add: measure-def inv-image-def image-def)
by (auto intro: sorted-list-len-lt)

lemma sorted-list-psub:

sorted w —>

w# [—

(sorted-list-of-set (set (t w)), w) € (M=, y). (sorted-list-of-set x, sorted-list-of-set
y)) ‘{(4, B). A C B A finite B}
proof(intro strip, simp add:image-iff)

assume sorted-w: sorted w and w-n-nil: w # []

let %a = set (tl w)

let b = set w

from sorted-w have sorted-tl-w: sorted (tl w) and dist: distinct w by (induct w)
(auto simp add: sorted-wrt-append)
with w-n-nil have a-psub-b: ?a C ?b by (induct w)auto
from sorted-w sorted-tl-w have w = sorted-list-of-set ?b and tl w = sorted-list-of-set
(set (¢l w))
by (auto simp add: sorted-less-set-eq)
with a-psub-b show Ja b. a C b A finite b A sorted-list-of-set (set (tl w)) =
sorted-list-of-set a N\ w = sorted-list-of-set b
by auto
qed

locale dom-sl = cfg-doms +

fixes A and r and f and step and start and n

defines A = ((rev o sorted-list-of-set) ‘ (Pow (set (nodes))))

defines r = nodes-le

defines f = nodes-sup

defines n = (size nodes)

defines step = exec

defines start = ([] # (replicate (length (g-V G) — 1) ((rev]0..<n]))))::state-dom
list

begin

lemma is-semi: semilat(A,r,f)
by (insert nodes-semi-is-semilat) (auto simp add:nodes-semi-def A-def r-def f-def)

— used by acc_le_listl
lemma Cons-less-Conss [simp]:
afas [Cr] y#Hys = (@ Cr y AN as [T ys V o =y A a8 [Ty ys)
apply (unfold lesssub-def)
apply auto
apply (unfold lesssub-def lesub-def r-def)
apply (simp only: nodes-le-refl)
done

32

lemma acc-le-list] [intro!]:

acc r => acc (Listn.le r)

apply (unfold acc-def)

apply (subgoal-tac Wellfounded.wf(UN n. {(ys,xs). size s = n A size ys = n A
xs <-(Listn.le) ys}))

apply (erule wf-subset)

apply (blast intro: lesssub-lengthD)

apply (rule wf-UN)

prefer 2

apply (rename-tac m n)

apply (case-tac m=n)

apply simp

apply (fast introl: equalsOI dest: not-sym)

apply (rename-tac n)

apply (induct-tac n)

apply (simp add: lesssub-def cong: conj-cong)

apply (rename-tac k)

apply (simp add: wf-eq-minimal)

apply (simp (no-asm) add: length-Suc-conv cong: conj-cong)

apply clarify

apply (rename-tac M m)

apply (case-tac Iz zs. size xs = k N z#zs € M)

prefer 2

apply (erule thin-rl)

apply (erule thin-rl)

apply blast

apply (erule-tac © = {a. Jzs. size xs = k N a#zs:M} in allE)

apply (erule impFE)

apply blast

apply (thin-tac 3z xs. P z xs for P)

apply clarify

apply (rename-tac mazA xs)

apply (erule-tac x = {ys. size ys = size xs N\ mazA#ys € M} in allF)

apply (erule impFE)

apply blast

apply clarify

apply (thin-tac m € M)

apply (thin-tac mazA#xs € M)

apply (rule bexl)

prefer 2

apply assumption

apply clarify

apply simp

apply blast

done

lemma wf-listn: wf {(y,7). © T pisin.te r Y}
by (insert acc-nodes-le acc-le-listI r-def) (simp add:acc-def)

33

lemma wf-listn”: wf {(y,z). z [C,] v}
by (rule wf-listn)

lemma wf-listn-termination-rel:

wf {((4,2) T Cristnie ryr <tlexx> (A(z, y). (sorted-list-of-set x, sorted-list-of-set
y)) ¢ finite-psubset)

by (insert wf-listn wf-sorted-list) (fastforce dest:wf-lex-prod)

lemma inA-is-sorted: s € A = sorted (rev zs)
by (auto simp add:A-def sorted-less-sorted-list-of-set)

lemma list-nA-lt-refl: xs € nlists n A — xs [Cy] s
proof

assume zs € nlists n A

then have set zs C A by (rule nlistsE-set)

then have Vi<length xs. zsli € A by auto

then have Y i<length zs. sorted (rev (zsli)) by (simp add:inA-is-sorted)

then show zs [C;] zs by (unfold Listn.le-def lesub-def)

(auto simp add:list-all2-conv-all-nth Listn.le-def r-def nodes-le-def)

qed

lemma nil-inA: [|] € A
apply (unfold A-def)
apply (subgoal-tac {} € Pow (set nodes))
apply (subgoal-tac [| = (Az. rev (sorted-list-of-set z)) {})
apply (fastforce intro:rev-image-eql)
by auto

lemma upt-n-in-pow-nodes: {0..<n} € Pow (set nodes)
by (auto simp add:n-def nodes-def verts-set)

lemma rev-all-inA: rev [0..<n] € A
proof(unfold A-def,simp)
let ?f = Az. rev (sorted-list-of-set x)
have rev [0..<n] =?2f {0..<n} by auto
with upt-n-in-pow-nodes show rev [0..<n] € ?f ¢ Pow (set nodes)
by (fastforce intro: image-eql)
qed

lemma len-start-is-n: length start = n
by (insert len-verts-gt0) (auto simp add:start-def n-def nodes-def dest:Suc-pred)

lemma len-start-is-len-verts: length start = length (g-V G)
using len-verts-gt0 by (simp add:start-def)

lemma start-len-gt-0: length start > 0
by (insert len-verts-gt0) (simp add:start-def)

34

lemma start-subset-A: set start C A
by (auto simp add:nil-inA rev-all-inA start-def)

lemma start-in-A : start € (nlists n A)
by (insert start-subset-A len-start-is-n)(fastforce intro:nlistsI)

lemma sorted-start-nth: i < n => sorted (rev (start!i))
apply(subgoal-tac startli € A)
apply (fastforce dest:inA-is-sorted)
by (auto simp add:start-subset-A len-start-is-n)

lemma start-nth0-empty: start!0 = ||
by (simp add:start-def)

lemma start-nth-lt0-all: V pe{1..< length start}. start'p = (rev [0..<n])
by (auto simp add:start-def)

lemma in-nodes-lt-n: x € set (¢-V G) = =z < n
by (simp add:n-def nodes-def verts-set)

lemma start-nth0-unstable-auzi: = [0] Ty (rev [0..<n])
by (insert len-verts-gt1 verts-ge-Suc0)
(auto simp add:r-def lesssub-def lesub-def nodes-le-def n-def nodes-def)

lemma start-nthO0-unstable: — stable r step start 0
proof(rule notl ,auto simp add: start-nthO-empty stable-def step-def exec-def transf-def)

assume ass: Vzeset (sorted-list-of-set (succs 0)). [0] Ty start | ©

from succ-of-entry0 obtain s where s € succs 0 and s # 0 A s € set (g-V G)
using head-is-vert

by (auto simp add:succs-def)
then have s € set (sorted-list-of-set (suces 0))
and start!s = (rev [0..<n]) using fin-succs verts-set len-verts-gt0 by (auto

stmp add:start-def)

then show Fulse using ass start-nth0-unstable-auzi by auto
qed

lemma start-nth-unstable:

assumes p € {1 ..< length (¢-V G)}

and suces p # {}
shows — stable r step start p

proof (rule notl, unfold stable-def)

let ?step-p = step p (start ! p)

let ?rev-all = rev[0..<length(g-V G)]

assume sta: V (g, 7)Eset ?step-p. T Ty start ! g

from assms(1) have n-sorted: = sorted (rev (p # ?rev-all))

and p:p € set (¢-V G) and start!p = ?rev-all using verts-set by
(auto simp add:n-def nodes-def start-def sorted-wrt-append)

35

with sta have step-p: V(q, 7)Eset ?step-p. sorted (rev (p # ?rev-all)) V (p #
frev-all = start!q)
by (auto simp add:step-def exec-def transf-def lesssub-def lesub-def r-def nodes-le-def)

from assms(2) fin-succs p obtain a b where a-b: (a, b) € set ?step-p by (auto
simp add:step-def exec-def transf-def)

with step-p have sorted (rev (p # ?rev-all)) V (p # ?rev-all = start!a) by auto

with n-sorted have eg-p-cons: (p # ?rev-all = startla) by auto

from p have V (q, 7)Eset ?step-p. ¢ < n using succ-in-G fin-succs verts-set n-def
nodes-def by (auto simp add:step-def exec-def)

with a-b have a < n using len-start-is-n by auto

then have sorted (rev (start!a)) using sorted-start-nth by auto

with eg-p-cons n-sorted show False by auto

qed

lemma start-unstable-cond:
assumes succs p £ {}
and p < length (¢g-V G)
shows — stable r step start p
using assms start-nth0-unstable start-nth-unstable
by(cases p = 0) auto

lemma unstable-start: unstables r step start = sorted-list-of-set ({p. suces p # {}
A p < length start})
using len-start-is-len-verts start-unstable-cond
by (subgoal-tac {p. p < length start A — stable r step start p} = {p. succs p #
{} A p < length start})
(auto simp add: unstables-def stable-def step-def exec-def)

end
declare sorted-list-of-set-insert-remove[simp del]

context dom-sl
begin

lemma (in dom-sl) decomp-propa: /\ss w.

(V(g,t)Eset gs. ¢ < sizessNt € A) =

sorted w =

set ss C A =

propa | qs ss w = (merges f qs ss, (sorted-list-of-set ({q. It.(q,t)Eset gs A t g
(sslq) # sslq} U set w)))
lemma (in Semilat)list-update-le-listI [rule-format]:

setzs C A — setys C A — x5 [C,] ys — p < size 15 —

z G, yslp — z€6A —

zs[p == z Uy zslp] [C,] ys

36

7 Soundness and completeness

theory Dom-Kildall-Correct
imports Dom-Kildall- Property
begin

context dom-sl
begin

lemma entry-dominate-dom:

assumes i € set (g-V G)

and dominate ¢ 0
shows dom i 0

using assms
proof—

from assms(1) entry0-dominates-all have dominate 0 i by auto

with assms(2) reachable have i = 0 using reachable-dom-acyclic by (auto simp
add:reachable-def)

then show ?thesis using dom-refl by auto
qed

lemma path-entry-dom:
fixes pa 7 d
assumes path-entry (¢-E G) pa i
and dom d i
shows d € set pa vV d =1
using assms
proof(induct rule:path-entry.induct)
case path-entry0
then show ?case using zero-dom-zero by auto
next
case (path-entry-prepend u v 1)
note u-v = path-entry-prepend.hyps(1)
note ind = path-entry-prepend.hyps(3)
note d-v = path-entry-prepend.prems
show ?Zcase
proof(cases d # v)
case True note d-n-v = this
from u-v have v € succs u by (simp add:succs-def)
with d-v d-n-v have dom d u by (auto intro:adom-succs)
with ind have d € set [V d = u by auto
then show ?thesis by auto
next
case Fulse
then show ?thesis by auto
qed
qed

— soundenss

37

lemma dom-sound: dom i j = dominate 1 j
by (fastforce simp add: dominate-def dest:path-entry-dom)

lemma sdom-sound: strict-dom i j = j € set (g-V G) = strict-dominate i j
proof —

assume sdom: strict-dom i j and j € set (g-V G)

then have i-n-j: i # j by (rule sdom-asyc)

from sdom have dom ¢ j using sdom-dom by auto

then have domi: dominate i j by (rule dom-sound)

with i-n-j show ?thesis by (fastforce dest: dominate-sdominate)
qed

— completeness

lemma dom-complete-auzi: i < length start = (dom-kildall start)!i = ss' N k ¢
set ss' = non-strict-dominate k i
proof—

assume i-lt: ¢ < length start and dom-kil: (dom-kildall start)!i = ss'A\ k ¢ set
ss’

then have dom-iter: (fst (iter f step start (unstables r step start)))li = ss’ and
k-nin: k ¢ set ss’

using nodes-semi-def r-def f-def step-def dom-kildall-def kildall-def by auto

then obtain s w where iter: iter f step start (unstables r step start) = (s, w)
by fastforce

with dom-iter have s!li = ss’ by auto

with iter-dom-invariant-complete iter k-nin i-lt len-start-is-n

show ?thesis by auto
qed

lemma notsdom-notsdominate: — strict-dom i j => j < length start => non-strict-dominate
i]
proof—
assume i-not-sdom-j: — strict-dom i j and j-lt: j < length start
then obtain res where j-res: dom-kildall start ! j = res by (auto simp add:strict-dom-def)
then have strict-dom i j = (i € set res) by (auto simp add:strict-dom-def start-def
n-def nodes-def)
with i-not-sdom-j have i-nin: i ¢ set res by auto
with j-res j-It show non-strict-dominate ¢ j using dom-complete-auxi by fastforce
qed

lemma notsdom-notsdominate” — strict-dom i j = j < length start = —
strict-dominate i j

using notsdom-notsdominate nonstrict-eq by auto

lemma dom-complete: strict-dominate © j = j < size start = strict-dom 7 j
by (insert notsdom-notsdominate’) (auto intro: contrapos-nn nonstrict-eq)

38

end

end

References

[1] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance
algorithm. Technical report, Rice University, Houston, Jan. 2006. https:
//scholarship.rice.edu/handle/1911/96345.

[2] P. Lammich. Operations on sorted lists. 2009. https://www.isa-afp.org/
browser__info/current/AFP /Collections/Sorted List_ Operations.html.

[3] T. Nipkow and G. Klein. Operations on sorted lists. 2000. https://www.
isa-afp.org/browser info/current/AFP/Jinja/Kildall.html.

39

https://scholarship.rice.edu/handle/1911/96345
https://scholarship.rice.edu/handle/1911/96345
https://www.isa-afp.org/browser_info/current/AFP/Collections/Sorted_List_Operations.html
https://www.isa-afp.org/browser_info/current/AFP/Collections/Sorted_List_Operations.html
https://www.isa-afp.org/browser_info/current/AFP/Jinja/Kildall.html
https://www.isa-afp.org/browser_info/current/AFP/Jinja/Kildall.html

	The specification of computing dominators
	More auxiliary lemmas for Lists Sorted wrt <
	Operations on sorted lists
	A semilattice of reversed-ordered list
	A kildall's algorithm for computing dominators
	Properties of the kildall's algorithm on the semilattice
	Soundness and completeness

