
Formal Proof of Dilworth’s Theorem

Vivek Soorya Maadoori S. M. Meesum Shiv Pillai
T. V. H. Prathamesh Aditya Swami

March 25, 2025

Abstract

A chain is defined as a totally ordered subset of a partially ordered
set. A chain cover refers to a collection of chains of a partially ordered
set whose union equals the entire set. A chain decomposition is a chain
cover consisting of pairwise disjoint sets. An antichain is a subset
of elements of a partially ordered set in which no two elements are
comparable.

In 1950, Dilworth proved that in any finite partially ordered set, the
cardinality of a largest antichain equals the cardinality of a smallest
chain decomposition.[2]

In this paper, we formalise a proof of the theorem above, also known
as Dilworth’s theorem, based on a proof by Perles (1963) [3]. Our for-
malisation draws on the formalisation of Dilworth’s theorem for chain
covers in Coq by Abhishek Kr. Singh [4], and builds on the AFP en-
try containing formalisation of minimal and maximal elements in a set
by Martin Desharnais [1]. Our formalisation extends the prior work
in Coq by including a formal proof of Dilworth’s theorem for chain
decomposition.

Contents
1 Definitions 2

2 Preliminary Lemmas 3

3 Size of an antichain is less than or equal to the size of a
chain cover 8

4 Existence of a chain cover whose cardinality is the cardinal-
ity of the largest antichain 8
4.1 Preliminary lemmas . 8
4.2 Statement and Proof . 15

5 Dilworth’s Theorem for Chain Covers: Statement and Proof 33

1

6 Dilworth’s Decomposition Theorem 33
6.1 Preliminaries . 33
6.2 Statement and Proof . 37

theory Dilworth
imports Main HOL.Complete-Partial-Order HOL.Relation HOL.Order-Relation

Min-Max-Least-Greatest.Min-Max-Least-Greatest-Set
begin

Note: The Dilworth’s theorem for chain cover is labelled Dilworth and the
extension to chain decomposition is labelled Dilworth_Decomposition.
context order
begin

1 Definitions
definition chain-on :: - set ⇒ - set ⇒ bool where
chain-on A S ←→ ((A ⊆ S) ∧ (Complete-Partial-Order .chain (≤) A))

definition antichain :: - set ⇒ bool where
antichain S ←→ (∀ x ∈ S . ∀ y ∈ S . (x ≤ y ∨ y ≤ x) −→ x = y)

definition antichain-on :: - set ⇒ - set ⇒ bool where
(antichain-on A S) ←→
(partial-order-on A (relation-of (≤) A)) ∧ (S ⊆ A) ∧ (antichain S)

definition largest-antichain-on:: - set ⇒ - set ⇒ bool where
largest-antichain-on P lac ←→
(antichain-on P lac ∧ (∀ ac. antichain-on P ac −→ card ac ≤ card lac))

definition chain-cover-on:: - set ⇒ - set set ⇒ bool where
chain-cover-on S cv ←→ (

⋃
cv = S) ∧ (∀ x ∈ cv . chain-on x S)

definition antichain-cover-on:: - set ⇒ - set set ⇒ bool where
antichain-cover-on S cv ←→ (

⋃
cv = S) ∧ (∀ x ∈ cv . antichain-on S x)

definition smallest-chain-cover-on:: - set ⇒ - set set ⇒ bool where
smallest-chain-cover-on S cv ≡
(chain-cover-on S cv ∧
(∀ cv2 . (chain-cover-on S cv2 ∧ card cv2 ≤ card cv) −→ card cv = card cv2))

definition chain-decomposition where
chain-decomposition S cd ≡ ((chain-cover-on S cd) ∧

(∀ x ∈ cd. ∀ y ∈ cd. x 6= y −→ (x ∩ y = {})))

2

definition smallest-chain-decomposition:: - set ⇒ - set set ⇒ bool where
smallest-chain-decomposition S cd
≡ (chain-decomposition S cd
∧ (∀ cd2 . (chain-decomposition S cd2 ∧ card cd2 ≤ card cd)

−→ card cd = card cd2))

2 Preliminary Lemmas

The following lemma shows that given a chain and an antichain, if the
cardinality of their intersection is equal to 0, then their intersection is empty..
lemma inter-nInf :

assumes a1 : Complete-Partial-Order .chain (⊆) X
and a2 : antichain Y

and asmInf : card (X ∩ Y) = 0
shows X ∩ Y = {}

proof (rule ccontr)
assume X ∩ Y 6= {}
then obtain a b where 1 :a ∈ (X ∩ Y) b ∈ (X ∩ Y) using asmInf by blast
then have in-chain: a ∈ X ∧ b ∈ X using 1 by simp
then have 3 : (a ≤ b) ∨ (b ≤ a) using a1

by (simp add: chain-def)
have in-antichain: a ∈ Y ∧ b ∈ Y using 1 by blast
then have a = b using antichain-def a2 3

by (metis order-class.antichain-def)
then have ∀ a ∈ (X ∩ Y). ∀ b ∈ (X ∩ Y). a = b

using 1 a1 a2 order-class.antichain-def
by (smt (verit, best) IntE chain-def)

then have card (X ∩ Y) = 1 using 1 a1 a2 card-def
by (smt (verit, best) all-not-in-conv asmInf card-0-eq card-le-Suc0-iff-eq

finite-if-finite-subsets-card-bdd subset-eq subset-iff)
then show False using asmInf by presburger

qed

The following lemma shows that given a chain X and an antichain Y that
both are subsets of S, their intersection is either empty or has cardinality
one..
lemma chain-antichain-inter :

assumes a1 : Complete-Partial-Order .chain (⊆) X
and a2 : antichain Y
and a3 : X ⊆ S ∧ Y ⊆ S

shows (card (X ∩ Y) = 1) ∨ ((X ∩ Y) = {})
proof (cases card (X ∩ Y) ≥ 1)

case True
then obtain a b where 1 :a ∈ (X ∩ Y) b ∈ (X ∩ Y)

by (metis card-1-singletonE insert-subset obtain-subset-with-card-n)
then have a ∈ X ∧ b ∈ X using 1 by blast
then have 3 : (a ≤ b) ∨ (b ≤ a) using Complete-Partial-Order .chain-def a1

3

by (smt (verit, best))
have a ∈ Y ∧ b ∈ Y using 1 by blast
then have a = b using a2 order-class.antichain-def 3

by (metis)
then have ∀ a ∈ (X ∩ Y). ∀ b ∈ (X ∩ Y). a = b

using 1 a1 a2 order-class.antichain-def
by (smt (verit, best) Int-iff chainD)

then have card (X ∩ Y) = 1 using 1 a1 a2
by (metis One-nat-def True card.infinite card-le-Suc0-iff-eq

order-class.order-antisym zero-less-one-class.zero-le-one)
then show ?thesis by presburger

next
case False
then have card (X ∩ Y) < 1 by linarith
then have card (X ∩ Y) = 0 by blast
then have X ∩ Y = {} using assms inter-nInf by blast
then show ?thesis by force

qed

Following lemmas show that given a finite set S, there exists a chain decom-
position of S.
lemma po-restr : assumes partial-order-on B r

and A ⊆ B
shows partial-order-on A (r ∩ (A × A))

using assms
unfolding partial-order-on-def preorder-on-def antisym-def refl-on-def trans-def
by (metis (no-types, lifting) IntD1 IntD2 IntI Int-lower2 inf .orderE mem-Sigma-iff)

lemma eq-restr : (Restr (relation-of (≤) (insert a A)) A) = (relation-of (≤) A)
(is ?P = ?Q)

proof
show ?P ⊆ ?Q
proof

fix z
assume z ∈ ?P
then obtain x y where tuple: (x, y) = z using relation-of-def by blast
then have 1 : (x, y) ∈ ((relation-of (≤) (insert a A)) ∩ (A × A))

using relation-of-def
using ‹z ∈ Restr (relation-of (≤) (insert a A)) A› by blast

then have 2 : (x, y) ∈ (relation-of (≤) (insert a A)) by simp
then have 3 : (x, y) ∈ (A × A) using 1 by simp
then have (x, y) ∈ (A × A) ∧ (x ≤ y) using relation-of-def 2

by (metis (no-types, lifting) case-prodD mem-Collect-eq)
then have (x, y) ∈ (relation-of (≤) A) using relation-of-def by blast
then show z ∈ ?Q using tuple by fast

qed
next

show ?Q ⊆ ?P

4

proof
fix z
assume asm1 : z ∈ ?Q
then obtain x y where tuple: (x, y) = z by (metis prod.collapse)
then have 0 : (x, y) ∈ (A × A) ∧ (x ≤ y) using asm1 relation-of-def

by (metis (mono-tags, lifting) case-prod-conv mem-Collect-eq)
then have 1 : (x, y) ∈ (A × A) by fast
have rel: x ≤ y using 0 by blast
have (A × A) ⊆ ((insert a A) × (insert a A)) by blast
then have (x, y) ∈ ((insert a A) × (insert a A)) using 1 by blast
then have (x, y) ∈ (relation-of (≤) (insert a A))

using rel relation-of-def by blast
then have (x, y) ∈ ((relation-of (≤) (insert a A)) ∩ (A × A)) using 1 by fast
then show z ∈ ?P using tuple by fast

qed
qed

lemma part-ord:partial-order-on S (relation-of (≤) S)
by (smt (verit, ccfv-SIG) local.dual-order .eq-iff local.dual-order .trans

partial-order-on-relation-ofI)

The following lemma shows that a chain decomposition exists for any finite
set S.
lemma exists-cd: assumes finite S

shows ∃ cd. chain-decomposition S cd
using assms

proof(induction rule: finite.induct)
case emptyI
then show ?case using assms unfolding chain-decomposition-def chain-cover-on-def

by (metis Sup-empty empty-iff)
next

case (insertI A a)
show ?case using assms
proof (cases a ∈ A)

case True
then have 1 : (insert a A) = A by fast
then have ∃ X . chain-decomposition A X using insertI by simp
then show ?thesis using 1 by auto

next
case False
have subset-a: {a} ⊆ (insert a A) by simp
have chain-a: Complete-Partial-Order .chain (≤) {a}

using chain-singleton chain-def by auto
have subset-A: A ⊆ (insert a A) by blast
have partial-a: partial-order-on A ((relation-of (≤) (insert a A)) ∩ (A × A))

using po-restr insertI subset-A part-ord by blast
then have chain-on-A: chain-on {a} (insert a A)

unfolding order-class.chain-on-def using chain-a partial-a
insertI .prems chain-on-def by simp

5

then obtain X where chain-set: chain-decomposition A X
using insertI partial-a eq-restr
by auto

have chains-X : ∀ x ∈ (insert {a} X). chain-on x (insert a A)
using subset-A chain-set chain-on-def

chain-decomposition-def chain-cover-on-def chain-on-A
by auto

have subsets-X : ∀ x ∈ (insert {a} X). x ⊆ (insert a A)
using chain-set chain-decomposition-def subset-a chain-cover-on-def
by auto

have null-inter-X : ∀ x ∈ X . ∀ y ∈ X . x 6= y −→ x ∩ y = {}
using chain-set chain-decomposition-def
by (simp add: order-class.chain-decomposition-def)

have {a} /∈ X using False chain-set chain-decomposition-def chain-cover-on-def
by (metis UnionI insertCI)

then have null-inter-a: ∀ x ∈ X . {a} ∩ x = {}
using False chain-set order-class.chain-decomposition-def
using chain-decomposition-def chain-cover-on-def by auto

then have null-inter : ∀ x ∈ (insert {a} X). ∀ y ∈ (insert {a} X). x 6= y −→
x ∩ y = {}

using null-inter-X by simp
have union:

⋃
(insert {a} X) = (insert a A) using chain-set

by (simp add: chain-decomposition-def chain-cover-on-def)
have chain-decomposition (insert a A) (insert {a} X)
using subsets-X chains-X union null-inter unfolding chain-decomposition-def

chain-cover-on-def
by simp

then show ?thesis by blast
qed

qed

The following lemma shows that the chain decomposition of a set is a chain
cover.
lemma cd-cv:

assumes chain-decomposition P cd
shows chain-cover-on P cd
using assms unfolding chain-decomposition-def by argo

The following lemma shows that for any finite partially ordered set, there
exists a chain cover on that set.
lemma exists-chain-cover : assumes finite P

shows ∃ cv. chain-cover-on P cv
proof−

show ?thesis using assms exists-cd cd-cv by blast
qed

lemma finite-cv-set: assumes finite P
and S = {x. chain-cover-on P x}

6

shows finite S
proof−

have 1 : ∀ cv. chain-cover-on P cv −→ (∀ c ∈ cv. finite c)
unfolding chain-cover-on-def chain-on-def chain-def
using assms(1) rev-finite-subset by auto

have 2 : ∀ cv. chain-cover-on P cv −→ finite cv
unfolding chain-cover-on-def
using assms(1) finite-UnionD by auto

have ∀ cv. chain-cover-on P cv −→ (∀ c ∈ cv. c ⊆ P)
unfolding chain-cover-on-def by blast

then have ∀ cv. chain-cover-on P cv −→ cv ⊆ Fpow P using Fpow-def 1 by
fast

then have ∀ cv. chain-cover-on P cv −→ cv ∈ Fpow (Fpow P)
using Fpow-def 2 by fast

then have S ⊆ Fpow (Fpow P) using assms(2) by blast
then show ?thesis

using assms(1) by (meson Fpow-subset-Pow finite-Pow-iff finite-subset)
qed

The following lemma shows that for every element of an antichain in a set,
there exists a chain in the chain cover of that set, such that the element of
the antichain belongs to the chain.
lemma elem-ac-in-c: assumes a1 : antichain-on P ac

and chain-cover-on P cv
shows ∀ a ∈ ac. ∃ c ∈ cv. a ∈ c

proof−
have

⋃
cv = P using assms(2) chain-cover-on-def by simp

then have ac ⊆
⋃

cv using a1 antichain-on-def by simp
then show ∀ a ∈ ac. ∃ c ∈ cv. a ∈ c by blast

qed

For a function f that maps every element of an antichain to some chain it
belongs to in a chain cover, we show that, the co-domain of f is a subset of
the chain cover.
lemma f-image: fixes f :: - ⇒ - set

assumes a1 : (antichain-on P ac)
and a2 : (chain-cover-on P cv)
and a3 : ∀ a ∈ ac. ∃ c ∈ cv. a ∈ c ∧ f a = c

shows (f ‘ ac) ⊆ cv
proof

have 1 : ∀ a ∈ ac. ∃ c ∈ cv. a ∈ c using elem-ac-in-c a1 a2 by presburger
fix y
assume y ∈ (f ‘ ac)
then obtain x where f x = y x ∈ ac using a1 a2 by auto
then have x ∈ y using a3 by blast
then show y ∈ cv using a3 using ‹f x = y› ‹x ∈ ac› by blast

qed

7

3 Size of an antichain is less than or equal to the
size of a chain cover

The following lemma shows that given an antichain ac and chain cover cv on
a finite set, the cardinality of ac will be less than or equal to the cardinality
of cv.
lemma antichain-card-leq:

assumes (antichain-on P ac)
and (chain-cover-on P cv)
and finite P

shows card ac ≤ card cv
proof (rule ccontr)

assume a-contr : ¬ card ac ≤ card cv
then have 1 : card cv < card ac by simp
have finite-cv: finite cv using assms(2 ,3) chain-cover-on-def

by (simp add: finite-UnionD)
have 2 : ∀ a ∈ ac. ∃ c ∈ cv. a ∈ c using assms(1 ,2) elem-ac-in-c by simp
then obtain f where f-def : ∀ a ∈ ac. ∃ c ∈ cv. a ∈ c ∧ f a = c by metis
then have (f ‘ ac) ⊆ cv using f-image assms by blast
then have 3 : card (f ‘ ac) ≤ card cv using f-def finite-cv card-mono by metis
then have card (f ‘ ac) < card ac using 1 by auto
then have ¬ inj-on f ac using pigeonhole by blast
then obtain a b where p1 : f a = f b a 6= b a ∈ ac b ∈ ac

using inj-def f-def by (meson inj-on-def)
then have antichain-elem: a ∈ ac ∧ b ∈ ac using f-def by blast
then have ∃ c ∈ cv. f a = c ∧ f b = c using f-def 2 1 ‹f ‘ ac ⊆ cv› p1 (1) by

auto
then have chain-elem: ∃ c ∈ cv. a ∈ c ∧ b ∈ c

using f-def p1 (1) p1 (3) p1 (4) by blast
then have a ≤ b ∨ b ≤ a using chain-elem chain-cover-on-def chain-on-def

by (metis assms(2) chainD)
then have a = b

using antichain-elem assms(1) antichain-on-def antichain-def by auto
then show False using p1 (2) by blast

qed

4 Existence of a chain cover whose cardinality is
the cardinality of the largest antichain

4.1 Preliminary lemmas

The following lemma shows that the maximal set is an antichain.
lemma maxset-ac: antichain ({x . is-maximal-in-set P x})

using antichain-def local.is-maximal-in-set-iff by auto

The following lemma shows that the minimal set is an antichain.

8

lemma minset-ac: antichain ({x . is-minimal-in-set P x})
using antichain-def is-minimal-in-set-iff by force

The following lemma shows that the null set is both an antichain and a chain
cover.
lemma antichain-null: antichain {}
proof−

show ?thesis using antichain-def by simp
qed

lemma chain-cover-null: assumes P = {} shows chain-cover-on P {}
proof−

show ?thesis using chain-cover-on-def
by (simp add: assms)

qed

The following lemma shows that for any arbitrary x that does not belong
to the largest antichain of a set, there exists an element y in the antichain
such that x is related to y or y is related to x.
lemma x-not-in-ac-rel: assumes largest-antichain-on P ac

and x ∈ P
and x /∈ ac
and finite P

shows ∃ y ∈ ac. (x ≤ y) ∨ (y ≤ x)
proof (rule ccontr)

assume ¬ (∃ y∈ac. x ≤ y ∨ y ≤ x)
then have 1 : ∀ y ∈ ac. (¬(x ≤ y) ∧ ¬(y ≤ x)) by simp
then have 2 : ∀ y ∈ ac. x 6= y by auto
then obtain S where S-def : S = {x} ∪ ac by blast
then have S-fin: finite S

using assms(4) assms(1) assms(2) largest-antichain-on-def antichain-on-def
by (meson Un-least bot.extremum insert-subset rev-finite-subset)

have S-on-P: antichain-on P S
using S-def largest-antichain-on-def antichain-on-def assms(1 ,2) 1 2 antichain-def

by auto
then have ac ⊂ S using S-def assms(3) by auto
then have card ac < card S using psubset-card-mono S-fin by blast
then show False using assms(1) largest-antichain-on-def S-on-P by fastforce

qed

The following lemma shows that for any subset Q of the partially ordered
P, if the minimal set of P is a subset of Q, then it is a subset of the minimal
set of Q as well.
lemma minset-subset-minset:

assumes finite P
and Q ⊆ P
and ∀ x. (is-minimal-in-set P x −→ x ∈ Q)

9

shows {x . is-minimal-in-set P x} ⊆ {x. is-minimal-in-set Q x}
proof

fix x
assume asm1 : x ∈ {z. is-minimal-in-set P z}
have 1 : x ∈ Q using asm1 assms(3)

by blast
have partial-Q: partial-order-on Q (relation-of (≤) Q)

using assms(1) assms(3) partial-order-on-def
by (simp add: partial-order-on-relation-ofI)

have ∀ q ∈ Q. q ∈ P using assms(2) by blast
then have is-minimal-in-set Q x using is-minimal-in-set-iff 1 partial-Q

using asm1 by force
then show x ∈ {z. is-minimal-in-set Q z} by blast

qed

The following lemma show that if P is not empty, the minimal set of P is
not empty.
lemma non-empty-minset: assumes finite P

and P 6= {}
shows {x . is-minimal-in-set P x} 6= {}

by (simp add: assms ex-minimal-in-set)

The following lemma shows that for all elements m of the minimal set, there
exists a chain c in the chain cover such that m belongs to c.
lemma elem-minset-in-chain: assumes finite P

and chain-cover-on P cv
shows is-minimal-in-set P a −→ (∃ c ∈ cv. a ∈ c)

using assms(2) chain-cover-on-def is-minimal-in-set-iff by auto

The following lemma shows that for all elements m of the maximal set, there
exists a chain c in the chain cover such that m belongs to c.
lemma elem-maxset-in-chain: assumes finite P

and chain-cover-on P cv
shows is-maximal-in-set P a −→ (∃ c ∈ cv. a ∈ c)

using chain-cover-on-def assms is-maximal-in-set-iff by auto

The following lemma shows that for a given chain cover and antichain on
P, if the cardinality of the chain cover is equal to the cardinality of the
antichain then for all chains c of the chain cover, there exists an element a
of the antichain such that a belongs to c.
lemma card-ac-cv-eq: assumes finite P

and chain-cover-on P cv
and antichain-on P ac
and card cv = card ac

shows ∀ c ∈ cv. ∃ a ∈ ac. a ∈ c
proof (rule ccontr)

assume ¬ (∀ c∈cv. ∃ a∈ac. a ∈ c)
then obtain c where c ∈ cv ∀ a ∈ ac. a /∈ c by blast

10

then have ∀ a ∈ ac. a ∈
⋃

(cv − {c}) (is ∀ a ∈ ac. a ∈ ?cv-c)
using assms(2 ,3) unfolding chain-cover-on-def antichain-on-def by blast

then have 1 : ac ⊆ ?cv-c by blast
have 2 : partial-order-on ?cv-c (relation-of (≤) ?cv-c)

using assms(1) assms(3) partial-order-on-def
by (simp add: partial-order-on-relation-ofI)

then have ac-on-cv-v: antichain-on ?cv-c ac
using 1 assms(3) antichain-on-def unfolding antichain-on-def by blast

have 3 : ∀ a ∈ (cv − {c}). a ⊆ ?cv-c by auto
have 4 : ∀ a ∈ (cv − {c}). Complete-Partial-Order .chain (≤) a using assms(2)

unfolding chain-cover-on-def chain-on-def
by (meson DiffD1 Union-upper chain-subset)

have 5 : ∀ a ∈ (cv − {c}). chain-on a ?cv-c using chain-on-def 2 3 4
by metis

have
⋃

(cv − {c}) = ?cv-c by simp
then have cv-on-cv-v: chain-cover-on ?cv-c (cv − {c})

using 5 chain-cover-on-def by simp
have card (cv − {c}) < card cv

by (metis ‹c ∈ cv› assms(1) assms(2) card-Diff1-less
chain-cover-on-def finite-UnionD)

then have card (cv − {c}) < card ac using assms(4) by simp
then show False using ac-on-cv-v cv-on-cv-v antichain-card-leq assms part-ord

by (metis Diff-insert-absorb Diff-subset Set.set-insert Union-mono assms(2 ,4)
card-Diff1-less-iff card-seteq chain-cover-on-def rev-finite-subset)

qed

The following lemma shows that if an element m from the minimal set is in
a chain, it is less than or equal to all elements in the chain.
lemma e-minset-lesseq-e-chain: assumes chain-on c P

and is-minimal-in-set P m
and m ∈ c

shows ∀ a ∈ c. m ≤ a
proof−

have 1 : c ⊆ P using assms(1) unfolding chain-on-def by simp
then have is-minimal-in-set c m using 1 assms(2 ,3) is-minimal-in-set-iff by

auto

then have 3 : ∀ a ∈ c. (a ≤ m) −→ a = m unfolding is-minimal-in-set-iff by
auto

have ∀ a ∈ c. ∀ b ∈ c. (a ≤ b) ∨ (b ≤ a) using assms(1)
unfolding chain-on-def chain-def by blast

then show ?thesis using 3 assms(3) by blast
qed

The following lemma shows that if an element m from the maximal set is in
a chain, it is greater than or equal to all elements in the chain.
lemma e-chain-lesseq-e-maxset: assumes chain-on c P

and is-maximal-in-set P m

11

and m ∈ c
shows ∀ a ∈ c. a ≤ m

using assms chainE chain-on-def is-maximal-in-set-iff local.less-le-not-le subsetD

by metis

The following lemma shows that for any two elements of an antichain, if
they both belong to the same chain in the chain cover, they must be the
same element.
lemma ac-to-c : assumes finite P

and chain-cover-on P cv
and antichain-on P ac

shows ∀ a ∈ ac. ∀ b ∈ ac. ∃ c ∈ cv. a ∈ c ∧ b ∈ c −→ a = b
proof−

show ?thesis
using assms chain-cover-on-def antichain-on-def

unfolding chain-cover-on-def chain-on-def chain-def antichain-on-def antichain-def

by (meson assms(2 ,3) elem-ac-in-c subsetD)
qed

The following lemma shows that for two finite sets, if their cardinalities are
equal, then their cardinalities would remain equal after removing a single
element from both sets.
lemma card-Diff1-eq: assumes finite A

and finite B
and card A = card B

shows ∀ a ∈ A. ∀ b ∈ B. card (A − {a}) = card (B − {b})
proof−

show ?thesis using assms(3) by auto
qed

The following lemma shows that for two finite sets A and B of equal cardi-
nality, removing two unique elements from A and one element from B will
ensure the cardinality of A is less than B.
lemma card-Diff2-1-less: assumes finite A

and finite B
and card A = card B
and a ∈ A
and b ∈ A
and a 6= b

shows ∀ x ∈ B. card ((A − {a}) − {b}) < card (B − {x})
proof−

show ?thesis
by (metis DiffI assms card-Diff1-eq card-Diff1-less-iff finite-Diff singletonD)

qed

The following lemma shows that for all elements of a partially ordered set,

12

there exists an element in the minimal set that will be less than or equal to
it.
lemma min-elem-for-P: assumes finite P

shows ∀ p ∈ P. ∃ m. is-minimal-in-set P m ∧ m ≤ p
proof

fix p
assume asm:p ∈ P
obtain m where m: m ∈ P m ≤ p ∀ a ∈ P. a ≤ m −→ a = m

using finite-has-minimal2 [OF assms(1) asm] by metis
hence is-minimal-in-set P m unfolding is-minimal-in-set-iff

using part-ord by force
then show ∃m. is-minimal-in-set P m ∧ m ≤ p using m

by blast
qed

The following lemma shows that for all elements of a partially ordered set,
there exists an element in the maximal set that will be greater than or equal
to it.
lemma max-elem-for-P: assumes finite P

shows ∀ p ∈ P. ∃ m. is-maximal-in-set P m ∧ p ≤ m
using assms finite-has-maximal2
by (metis dual-order .strict-implies-order is-maximal-in-set-iff)

The following lemma shows that if the minimal set is not considered as the
largest antichain on a set, then there exists an element a in the minimal set
such that a does not belong to the largest antichain.
lemma min-e-nIn-lac: assumes largest-antichain-on P ac

and {x. is-minimal-in-set P x} 6= ac
and finite P

shows ∃m. (is-minimal-in-set P m) ∧ (m /∈ ac)
(is ∃m. (?ms m) ∧ (m /∈ ac))

proof (rule ccontr)
assume asm:¬ (∃ m. (?ms m) ∧ (m /∈ ac))
then have ∀ m. ¬(?ms m) ∨ m ∈ ac by blast
then have 1 : {m . ?ms m} ⊆ ac by blast
then show False
proof cases

assume {m . ?ms m} = ac
then show ?thesis using assms(2) by blast

next
assume ¬ ({m . ?ms m} = ac)
then have 1 :{m . ?ms m} ⊂ ac using 1 by simp
then obtain y where y-def : y ∈ ac ?ms y using asm assms(1 ,3)

by (metis chain-cover-null elem-ac-in-c empty-subsetI ex-in-conv
largest-antichain-on-def local.ex-minimal-in-set psubsetE)

then have y-in-P: y ∈ P
using y-def (1) assms(1) largest-antichain-on-def antichain-on-def by blast

then have 2 : ∀ x. (?ms x −→ x 6= y) using y-def (2) 1 assms(1 ,3)

13

using asm min-elem-for-P DiffE mem-Collect-eq psubset-imp-ex-mem sub-
set-iff

unfolding largest-antichain-on-def antichain-def antichain-on-def
by (smt (verit))

have partial-P: partial-order-on P (relation-of (≤) P)
using assms(1) largest-antichain-on-def antichain-on-def by simp

then have ∀ x. ?ms x −→ ¬ (y ≤ x) using 2 unfolding is-minimal-in-set-iff
using ‹y ∈ P›
using 2 y-def (2) by blast

then show False using y-def (2) by blast
qed

qed

The following lemma shows that if the maximal set is not considered as the
largest antichain on a set, then there exists an element a in the maximal set
such that a does not belong to the largest antichain.
lemma max-e-nIn-lac: assumes largest-antichain-on P ac

and {x . is-maximal-in-set P x} 6= ac
and finite P

shows ∃ m . is-maximal-in-set P m ∧ m /∈ ac
(is ∃ m. ?ms m ∧ m /∈ ac)

proof (rule ccontr)
assume asm:¬ (∃ m. ?ms m ∧ m /∈ ac)
then have ∀ m . ¬ ?ms m ∨ m ∈ ac by blast
then have 1 : {x . ?ms x} ⊆ ac by blast
then show False
proof cases

assume asm: {x . ?ms x} = ac
then show ?thesis using assms(2) by blast

next
assume ¬ ({x . ?ms x} = ac)
then have {x . ?ms x} ⊂ ac using 1 by simp
then obtain y where y-def : y ∈ ac ¬ (?ms y) using assms asm

by blast
then have y-in-P: y ∈ P

using y-def (1) assms(1) largest-antichain-on-def antichain-on-def by blast
then have 2 : ∀ x . ?ms x −→ x 6= y using y-def (2) by auto
have partial-P: partial-order-on P (relation-of (≤) P)

using assms(1) largest-antichain-on-def antichain-on-def by simp
then have ∀ x . ?ms x −→ ¬ (x ≤ y) using 2 unfolding is-maximal-in-set-iff

using ‹y ∈ P›
using local.dual-order .order-iff-strict by auto

then have 3 : ∀ x . ?ms x −→ (x > y) ∨ ¬ (x ≤ y) by blast
then show False
proof cases

assume asm1 : ∃ x. ?ms x ∧ (x > y)
have ∀ x ∈ ac. (x ≤ y) ∨ (y ≤ x) −→ x = y using assms(1) y-def (1)

unfolding largest-antichain-on-def antichain-on-def antichain-def by simp
then have ∀ x . ?ms x −→ (x > y) −→ x = y using 1 by auto

14

then have ∃ x. ?ms x ∧ y = x using asm1 by auto
then show ?thesis using 2 by blast

next
assume ¬ (∃ x. ?ms x ∧ (x > y))
then have ∀ x. ?ms x −→ ¬ (x ≤ y) using 3 by simp
have a: ∃ z . ?ms z ∧ y ≤ z

using max-elem-for-P[OF assms(3)] y-in-P partial-P
by fastforce

have ∀ a. ?ms a −→ (a ≤ y) ∨ (y ≤ a) −→ a = y using assms(1) y-def (1)
1

unfolding largest-antichain-on-def antichain-on-def antichain-def by blast
then have ∃ z .?ms z ∧ z = y using a by blast
then show ?thesis using 2 by blast

qed
qed

qed

4.2 Statement and Proof

Proves theorem for the empty set.
lemma largest-antichain-card-eq-empty:

assumes largest-antichain-on P lac
and P = {}

shows ∃ cv. (chain-cover-on P cv) ∧ (card cv = card lac)
proof−

have lac = {} using assms(1) assms(2)
unfolding largest-antichain-on-def antichain-on-def by simp

then show ?thesis using assms(2) chain-cover-null by auto
qed

Proves theorem for the non-empty set.
lemma largest-antichard-card-eq:

assumes asm1 : largest-antichain-on P lac
and asm2 : finite P
and asm3 : P 6= {}

shows ∃ cv. (chain-cover-on P cv) ∧ (card cv = card lac)
using assms

— Proof by induction on the cardinality of P
proof (induction card P arbitrary: P lac rule: less-induct)

case less
let ?max = {x . is-maximal-in-set P x}
let ?min = {x . is-minimal-in-set P x}
have partial-P: partial-order-on P (relation-of (≤) P)

using assms partial-order-on-def antichain-on-def largest-antichain-on-def
less.prems(1) by presburger

show ?case — the largest antichain is not the maximal set or the minimal set
proof (cases ∃ ac. (antichain-on P ac ∧ ac 6= ?min ∧ ac 6= ?max) ∧ card ac =

card lac)

15

case True
obtain ac where ac:antichain-on P ac ac 6= ?min ac 6= ?max card ac = card

lac
using True by force

then have largest-antichain-on P ac using asm1 largest-antichain-on-def
using less.prems(1) by presburger

then have lac-in-P: lac ⊆ P
using asm1 antichain-on-def largest-antichain-on-def less.prems(1) by pres-

burger
then have ac-in-P: ac ⊆ P

using ac(1) antichain-on-def by blast
define p-plus where p-plus = {x. x ∈ P ∧ (∃ y ∈ ac. y ≤ x)}

— set of all elements greater than or equal to any given element in the largest
antichain

define p-minus where p-minus = {x. x ∈ P ∧ (∃ y ∈ ac. x ≤ y)}
— set of all elements less than or equal to any given element in the largest

antichain
have 1 : ac ⊆ p-plus

— Shows that the largest antichain is a subset of p plus
unfolding p-plus-def

proof
fix x
assume a1 : x ∈ ac
then have a2 : x ∈ P

using asm1 largest-antichain-on-def antichain-on-def less.prems(1) ac by
blast

then have x ≤ x using antichain-def by auto
then show x ∈ {x ∈ P. ∃ y ∈ ac. y ≤ x} using a1 a2 by auto

qed
have 2 : ac ⊆ p-minus

— Shows that the largest antichain is a subset of p min
unfolding p-minus-def

proof
fix x
assume a1 : x ∈ ac
then have a2 : x ∈ P

using asm1 largest-antichain-on-def antichain-on-def less.prems(1) ac by
blast

then have x ≤ x using antichain-def by auto
then show x ∈ {x ∈ P. ∃ y ∈ ac. x ≤ y} using a1 a2 by auto

qed
have lac-subset: ac ⊆ (p-plus ∩ p-minus) using 1 2 by simp
have subset-lac: (p-plus ∩ p-minus) ⊆ ac
proof

fix x
assume x ∈ (p-plus ∩ p-minus)
then obtain a b where antichain-elems: a ∈ ac b ∈ ac a ≤ x x ≤ b

using p-plus-def p-minus-def by auto
then have a ≤ b by simp

16

then have a = b
using antichain-elems(1) antichain-elems(2) less.prems

asm1 largest-antichain-on-def antichain-on-def antichain-def ac by metis
then have (a ≤ x) ∧ (x ≤ a)

using antichain-elems(3) antichain-elems(4) by blast
then have x = a by fastforce
then show x ∈ ac using antichain-elems(1) by simp

qed
then have lac-pset-eq: ac = (p-plus ∩ p-minus) using lac-subset by simp
have P-PP-PM : (p-plus ∪ p-minus) = P
proof

show (p-plus ∪ p-minus) ⊆ P
proof

fix x
assume x ∈ (p-plus ∪ p-minus)
then have x ∈ p-plus ∨ x ∈ p-minus by simp
then have x ∈ P using p-plus-def p-minus-def by auto
then show x ∈ P .

qed
next

show P ⊆ (p-plus ∪ p-minus)
proof

fix x
assume x-in: x ∈ P
then have x ∈ ac ∨ x /∈ ac by simp
then have x ∈ (p-plus ∪ p-minus)
proof (cases x ∈ ac)

case True
then show ?thesis using lac-subset by blast

next
case False
then obtain y where y ∈ ac (x ≤ y) ∨ (y ≤ x)

using asm1 False x-in asm2
less.prems(1) less.prems(2)
‹largest-antichain-on P ac› x-in x-not-in-ac-rel by blast

then have (x ∈ p-plus) ∨ (x ∈ p-minus)
unfolding p-plus-def p-minus-def using x-in by auto

then show ?thesis by simp
qed
then show x ∈ p-plus ∪ p-minus by simp

qed
qed
obtain a where a-def : a ∈ ?min a /∈ ac

using asm1 ac True asm3 less.prems(1) less.prems(2) min-e-nIn-lac
by (metis ‹largest-antichain-on P ac› mem-Collect-eq)

then have ∀ x ∈ ac. ¬ (x ≤ a)
unfolding is-minimal-in-set-iff using partial-P lac-in-P
using ac(1) antichain-on-def
using local.nless-le by auto

17

then have a-not-in-PP: a /∈ p-plus using p-plus-def by simp
have a ∈ P using a-def

by (simp add: local.is-minimal-in-set-iff)
then have ppl: card p-plus < card P using P-PP-PM a-not-in-PP

by (metis Un-upper1 card-mono card-subset-eq less.prems(2)
order-le-imp-less-or-eq)

have p-plus-subset: p-plus ⊆ P using p-plus-def by simp
have antichain-lac: antichain ac

using assms(1) less.prems ac
unfolding largest-antichain-on-def antichain-on-def by simp

have finite-PP: finite p-plus using asm3 p-plus-subset finite-def
using less.prems(2) rev-finite-subset by blast

have finite-lac: finite ac using ac-in-P asm3 finite-def
using finite-subset less.prems(2) ac by auto

have partial-PP: partial-order-on p-plus (relation-of (≤) p-plus)
using partial-P p-plus-subset partial-order-on-def
by (smt (verit, best) local.antisym-conv local.le-less local.order-trans

partial-order-on-relation-ofI)
then have lac-on-PP: antichain-on p-plus ac

using antichain-on-def 1 antichain-lac by simp
have card-ac-on-P: ∀ ac. antichain-on P ac −→ card ac ≤ card ac

using asm1 largest-antichain-on-def less.prems(1) by auto
then have ∀ ac. antichain-on p-plus ac −→ card ac ≤ card ac

using p-plus-subset antichain-on-def largest-antichain-on-def
by (meson partial-P preorder-class.order-trans)

then have largest-antichain-on p-plus ac
using lac-on-PP unfolding largest-antichain-on-def
by (meson ‹largest-antichain-on P ac› antichain-on-def

largest-antichain-on-def p-plus-subset preorder-class.order-trans)
then have cv-PP: ∃ cv. chain-cover-on p-plus cv ∧ card cv = card ac
using less ppl by (metis 1 card.empty chain-cover-null finite-PP subset-empty)

then obtain cvPP where cvPP-def : chain-cover-on p-plus cvPP
card cvPP = card ac

using ac(4) by auto
obtain b where b-def : b ∈ ?max b /∈ ac

using asm1 True asm3 less.prems(1) less.prems(2) max-e-nIn-lac
using ‹largest-antichain-on P ac› ac(3) by blast

then have ∀ x ∈ ac. ¬ (b ≤ x)
unfolding is-maximal-in-set-iff using partial-P ac-in-P
nless-le by auto

then have b-not-in-PM : b /∈ p-minus using p-minus-def by simp
have b ∈ P using b-def is-maximal-in-set-iff by blast
then have pml: card p-minus < card P using b-not-in-PM
by (metis P-PP-PM Un-upper2 card-mono card-subset-eq less.prems(2) nat-less-le)
have p-min-subset: p-minus ⊆ P using p-minus-def by simp
have finite-PM : finite p-minus using asm3 p-min-subset finite-def

using less.prems(2) rev-finite-subset by blast
have partial-PM : partial-order-on p-minus (relation-of (≤) p-minus)

by (simp add: partial-order-on-relation-ofI)

18

then have lac-on-PM : antichain-on p-minus ac
using 2 antichain-lac antichain-on-def by simp

then have ∀ ac. antichain-on p-minus ac −→ card ac ≤ card ac
using card-ac-on-P P-PP-PM antichain-on-def largest-antichain-on-def
by (metis partial-P sup.coboundedI2)

then have largest-antichain-on p-minus ac
using lac-on-PM ‹largest-antichain-on P ac› antichain-on-def

largest-antichain-on-def p-min-subset preorder-class.order-trans
by meson

then have cv-PM : ∃ cv. chain-cover-on p-minus cv ∧ card cv = card ac
using less pml P-PP-PM ‹a ∈ P› a-not-in-PP finite-PM
by blast

then obtain cvPM where cvPM-def :
chain-cover-on p-minus cvPM
card cvPM = card ac

by auto
have lac-minPP: ac = {x . is-minimal-in-set p-plus x} (is ac = ?msPP)
proof

show ac ⊆ {x . is-minimal-in-set p-plus x}
proof

fix x
assume asm1 : x ∈ ac
then have x-in-PP: x ∈ p-plus using 1 by auto
obtain y where y-def : y ∈ p-plus y ≤ x

using 1 asm1 by blast
then obtain a where a-def : a ∈ ac a ≤ y using p-plus-def by auto
then have 0 : a ∈ p-plus using 1 by auto
then have I : a ≤ x using a-def y-def (2) by simp
then have II : a = x using asm1 a-def (1) antichain-lac unfolding an-

tichain-def by simp
then have III : y = x using y-def (2) a-def (2) by simp
have ∀ p ∈ p-plus. (p ≤ x) −→ p = x
proof

fix p
assume asmP: p ∈ p-plus
show p ≤ x −→ p = x
proof

assume p ≤ x
then show p = x

using asmP p-plus-def II a-def (1) antichain-def antichain-lac
local.dual-order .antisym local.order .trans mem-Collect-eq

by (smt (verit))
qed

qed
then have is-minimal-in-set p-plus x using is-minimal-in-set-iff

using partial-PP
using x-in-PP by auto

then show x ∈ {x . is-minimal-in-set p-plus x}
using x-in-PP

19

using ‹∀ p∈p-plus. p ≤ x −→ p = x› local.is-minimal-in-set-iff by force
qed

next
show {x . is-minimal-in-set p-plus x} ⊆ ac
proof

fix x
assume asm2 : x ∈ {x . is-minimal-in-set p-plus x}
then have I : ∀ a ∈ p-plus. (a ≤ x) −→ a = x

using is-minimal-in-set-iff
by (metis dual-order .not-eq-order-implies-strict mem-Collect-eq)

have x ∈ p-plus using asm2
by (simp add: local.is-minimal-in-set-iff)

then obtain y where y-def : y ∈ ac y ≤ x using p-plus-def by auto
then have y ∈ p-plus using 1 by auto
then have y = x using y-def (2) I by simp
then show x ∈ ac using y-def (1) by simp

qed
qed
then have card-msPP: card ?msPP = card ac by simp
then have cvPP-elem-in-lac: ∀ m ∈ ?msPP. ∃ c ∈ cvPP. m ∈ c

using cvPP-def (1) partial-PP asm3 p-plus-subset
elem-minset-in-chain elem-ac-in-c

lac-on-PP
by (simp add: lac-minPP)

then have cv-for-msPP: ∀ m ∈ ?msPP. ∃ c ∈ cvPP. (∀ a ∈ c. m ≤ a)
using elem-minset-in-chain partial-PP assms(3)

cvPP-def (1) e-minset-lesseq-e-chain
unfolding chain-cover-on-def [of p-plus cvPP]
by fastforce

have lac-elem-in-cvPP: ∀ c ∈ cvPP. ∃ m ∈ ?msPP. m ∈ c
using cvPP-def card-msPP minset-ac card-ac-cv-eq
by (metis P-PP-PM finite-Un lac-minPP lac-on-PP less.prems(2))

then have ∀ c ∈ cvPP. ∃ m ∈ ?msPP. (∀ a ∈ c. m ≤ a)
using e-minset-lesseq-e-chain chain-cover-on-def cvPP-def (1)
by (metis mem-Collect-eq)

then have cvPP-lac-rel: ∀ c ∈ cvPP. ∃ x ∈ ac. (∀ a ∈ c. x ≤ a)
using lac-minPP by simp

have lac-maxPM : ac = {x . is-maximal-in-set p-minus x} (is ac = ?msPM)
proof

show ac ⊆ ?msPM
proof

fix x
assume asm1 : x ∈ ac
then have x-in-PM : x ∈ p-minus using 2 by auto
obtain y where y-def : y ∈ p-minus x ≤ y

using 2 asm1 by blast
then obtain a where a-def : a ∈ ac y ≤ a using p-minus-def by auto
then have I : x ≤ a using y-def (2) by simp
then have II : a = x

20

using asm1 a-def (1) antichain-lac unfolding antichain-def by simp
then have III : y = x using y-def (2) a-def (2) by simp
have ∀ p ∈ p-minus. (x ≤ p) −→ p = x
proof

fix p
assume asmP: p ∈ p-minus
show x ≤ p −→ p = x
proof

assume x ≤ p
then show p = x

using p-minus-def II a-def (1) antichain-def antichain-lac asmP
dual-order .antisym order .trans mem-Collect-eq

by (smt (verit))
qed

qed
then have is-maximal-in-set p-minus x

using partial-PM is-maximal-in-set-iff x-in-PM by force
then show x ∈ {x. is-maximal-in-set p-minus x}

using x-in-PM by auto
qed

next
show ?msPM ⊆ ac
proof

fix x
assume asm2 : x ∈ {x . is-maximal-in-set p-minus x}
then have I : ∀ a ∈ p-minus. (x ≤ a) −→ a = x

unfolding is-maximal-in-set-iff by fastforce
have x ∈ p-minus using asm2

by (simp add: local.is-maximal-in-set-iff)
then obtain y where y-def : y ∈ ac x ≤ y using p-minus-def by auto
then have y ∈ p-minus using 2 by auto
then have y = x using y-def (2) I by simp
then show x ∈ ac using y-def (1) by simp

qed
qed
then have card-msPM : card ?msPM = card ac by simp
then have cvPM-elem-in-lac: ∀ m ∈ ?msPM . ∃ c ∈ cvPM . m ∈ c

using cvPM-def (1) partial-PM asm3 p-min-subset elem-maxset-in-chain
elem-ac-in-c lac-maxPM lac-on-PM

by presburger
then have cv-for-msPM : ∀ m ∈ ?msPM . ∃ c ∈ cvPM . (∀ a ∈ c. a ≤ m)

using elem-maxset-in-chain partial-PM assms(3) cvPM-def (1)
e-chain-lesseq-e-maxset

unfolding chain-cover-on-def [of p-minus cvPM]
by (metis mem-Collect-eq)

have lac-elem-in-cvPM : ∀ c ∈ cvPM . ∃ m ∈ ?msPM . m ∈ c
using cvPM-def card-msPM

maxset-ac card-ac-cv-eq finite-subset lac-maxPM lac-on-PM less.prems(2)
p-min-subset partial-PM

21

by metis
then have ∀ c ∈ cvPM . ∃ m ∈ ?msPM . (∀ a ∈ c. a ≤ m)

using e-chain-lesseq-e-maxset chain-cover-on-def cvPM-def (1)
by (metis mem-Collect-eq)

then have cvPM-lac-rel: ∀ c ∈ cvPM . ∃ x ∈ ac. (∀ a ∈ c. a ≤ x)
using lac-maxPM by simp

obtain x cp cm where x-cp-cm: x ∈ ac cp ∈ cvPP (∀ a ∈ cp. x ≤ a)
cm ∈ cvPM (∀ a ∈ cm. a ≤ x)

using cv-for-msPP cv-for-msPM lac-minPP lac-maxPM assms(1)
unfolding largest-antichain-on-def antichain-on-def antichain-def

by (metis P-PP-PM Sup-empty Un-empty-right all-not-in-conv chain-cover-on-def

cvPM-def (1) cvPP-def (1) cvPP-lac-rel lac-elem-in-cvPM less.prems(3))

have ∃ f . ∀ cp ∈ cvPP. ∃ x ∈ ac. f cp = x ∧ x ∈ cp
— defining a function that maps chains in the p plus chain cover to the element in
the largest antichain that belongs to the chain.

using lac-elem-in-cvPP lac-minPP by metis
then obtain f where f-def : ∀ cp ∈ cvPP. ∃ x ∈ ac. f cp = x ∧ x ∈ cp by

blast
have lac-image-f : f ‘ cvPP = ac
proof

show (f ‘ cvPP) ⊆ ac
proof

fix y
assume y ∈ (f ‘ cvPP)
then obtain x where f x = y x ∈ cvPP using f-def by blast
then have y ∈ x using f-def by blast
then show y ∈ ac using f-def ‹f x = y› ‹x ∈ cvPP› by blast

qed
next

show ac ⊆ (f ‘ cvPP)
proof

fix y
assume y-in-lac: y ∈ ac
then obtain x where x ∈ cvPP y ∈ x

using cvPP-elem-in-lac lac-minPP by auto
then have f x = y using f-def y-in-lac

by (metis antichain-def antichain-lac cvPP-lac-rel)
then show y ∈ (f ‘ cvPP) using ‹x ∈ cvPP› by auto

qed
qed
have ∀ x ∈ cvPP. ∀ y ∈ cvPP. f x = f y −→ x = y
proof (rule ccontr)

assume ¬ (∀ x∈cvPP. ∀ y∈cvPP. f x = f y −→ x = y)
then have ∃ x ∈ cvPP. ∃ y ∈ cvPP. f x = f y ∧ x 6= y by blast
then obtain z x y where z-x-y: x ∈ cvPP y ∈ cvPP x 6= y z = f x z = f y

by blast
then have z-in: z ∈ ac using f-def by blast

22

then have ∀ a ∈ ac. (a ∈ x ∨ a ∈ y) −→ a = z
using ac-to-c partial-P asm3 p-plus-subset cvPP-def (1)

lac-on-PP z-x-y(1) z-x-y(2)
by (metis antichain-def antichain-lac cvPP-lac-rel f-def z-x-y(4) z-x-y(5))

then have ∀ a ∈ ac. a 6= z −→ a /∈ x ∧ a /∈ y by blast
then have ∀ a ∈ (ac − {z}). a ∈

⋃
((cvPP − {x}) − {y})

using cvPP-def (1) 1 unfolding chain-cover-on-def by blast
then have a: (ac − {z}) ⊆

⋃
((cvPP − {x}) − {y}) (is ?lac-z ⊆ ?cvPP-xy)

by blast
have b: partial-order-on ?cvPP-xy (relation-of (≤) ?cvPP-xy)

using partial-PP cvPP-def (1) partial-order-on-def
dual-order .eq-iff dual-order .eq-iff
dual-order .trans partial-order-on-relation-ofI
dual-order .trans partial-order-on-relation-ofI

by (smt (verit))
then have ac-on-cvPP-xy: antichain-on ?cvPP-xy ?lac-z

using a lac-on-PP antichain-on-def unfolding antichain-on-def
by (metis DiffD1 antichain-def antichain-lac)

have c: ∀ a ∈ ((cvPP − {x}) − {y}). a ⊆ ?cvPP-xy by auto
have d: ∀ a ∈ ((cvPP − {x}) − {y}). Complete-Partial-Order .chain (≤) a

using cvPP-def (1)
unfolding chain-cover-on-def chain-on-def
using z-x-y(2) by blast

have e: ∀ a ∈ ((cvPP − {x}) − {y}). chain-on a ?cvPP-xy
using b c d chain-on-def
by (metis Diff-iff Sup-upper chain-cover-on-def cvPP-def (1))

have f : finite ?cvPP-xy using finite-PP cvPP-def (1)
unfolding chain-cover-on-def chain-on-def
by (metis (no-types, opaque-lifting) Diff-eq-empty-iff Diff-subset

Un-Diff-cancel Union-Un-distrib finite-Un)
have

⋃
((cvPP − {x}) − {y}) = ?cvPP-xy by blast

then have cv-on: chain-cover-on ?cvPP-xy ((cvPP − {x}) − {y})
using chain-cover-on-def [of ?cvPP-xy ((cvPP − {x}) − {y})]

e chain-on-def by argo
have card ((cvPP − {x}) − {y}) < card cvPP
using z-x-y(1) z-x-y(2) finite-PP cvPP-def (1) chain-cover-on-def finite-UnionD

by (metis card-Diff2-less)
then have card ((cvPP − {x}) − {y}) < card (ac − {z})

using cvPP-def (2) finite-PP finite-lac cvPP-def (1) chain-cover-on-def
finite-UnionD z-x-y(1) z-x-y(2) z-x-y(3) z-in card-Diff2-1-less

by metis
then show False using antichain-card-leq ac-on-cvPP-xy cv-on f by fastforce

qed
then have inj-f : inj-on f cvPP using inj-on-def by auto
then have bij-f : bij-betw f cvPP ac using lac-image-f bij-betw-def by blast
have ∃ g. ∀ cm ∈ cvPM . ∃ x ∈ ac. g cm = x ∧ x ∈ cm

using lac-elem-in-cvPM lac-maxPM by metis
then obtain g where g-def : ∀ cm ∈ cvPM . ∃ x ∈ ac. g cm = x ∧ x ∈ cm

by blast

23

have lac-image-g: g ‘ cvPM = ac
proof

show g ‘ cvPM ⊆ ac
proof

fix y
assume y ∈ g ‘ cvPM
then obtain x where x: g x = y x ∈ cvPM using g-def by blast
then have y ∈ x using g-def by blast
then show y ∈ ac using g-def x by auto

qed
next

show ac ⊆ g ‘ cvPM
proof

fix y
assume y-in-lac: y ∈ ac
then obtain x where x: x ∈ cvPM y ∈ x

using cvPM-elem-in-lac lac-maxPM by auto
then have g x = y using g-def y-in-lac

by (metis antichain-def antichain-lac cvPM-lac-rel)
then show y ∈ g ‘ cvPM using x by blast

qed
qed
have ∀ x ∈ cvPM . ∀ y ∈ cvPM . g x = g y −→ x = y
proof (rule ccontr)

assume ¬ (∀ x∈cvPM . ∀ y∈cvPM . g x = g y −→ x = y)
then have ∃ x ∈ cvPM . ∃ y ∈ cvPM . g x = g y ∧ x 6= y by blast
then obtain z x y where z-x-y: x ∈ cvPM y ∈ cvPM

x 6= y z = g x z = g y by blast
then have z-in: z ∈ ac using g-def by blast
then have ∀ a ∈ ac. (a ∈ x ∨ a ∈ y) −→ a = z

using ac-to-c partial-P asm3 z-x-y(1) z-x-y(2)
by (metis antichain-def antichain-lac cvPM-lac-rel g-def z-x-y(4) z-x-y(5))

then have ∀ a ∈ ac. a 6= z −→ a /∈ x ∧ a /∈ y by blast
then have ∀ a ∈ (ac − {z}). a ∈

⋃
((cvPM − {x}) − {y})

using cvPM-def (1) 2 unfolding chain-cover-on-def by blast
then have a: (ac − {z}) ⊆

⋃
((cvPM − {x}) − {y}) (is ?lac-z ⊆ ?cvPM-xy)

by blast
have b: partial-order-on ?cvPM-xy (relation-of (≤) ?cvPM-xy)

using partial-PP partial-order-on-def
by (smt (verit) local.dual-order .eq-iff

local.dual-order .trans partial-order-on-relation-ofI)
then have ac-on-cvPM-xy: antichain-on ?cvPM-xy ?lac-z

using a antichain-on-def unfolding antichain-on-def
by (metis DiffD1 antichain-def antichain-lac)

have c: ∀ a ∈ ((cvPM − {x}) − {y}). a ⊆ ?cvPM-xy by auto
have d: ∀ a ∈ ((cvPM − {x}) − {y}). Complete-Partial-Order .chain (≤) a

using cvPM-def (1)
unfolding chain-cover-on-def chain-on-def

24

by (metis DiffD1)
have e: ∀ a ∈ ((cvPM − {x}) − {y}). chain-on a ?cvPM-xy

using b c d chain-on-def
by (metis Diff-iff Union-upper chain-cover-on-def cvPM-def (1))

have f : finite ?cvPM-xy using finite-PM cvPM-def (1)
unfolding chain-cover-on-def chain-on-def
by (metis (no-types, opaque-lifting) Diff-eq-empty-iff Diff-subset

Un-Diff-cancel Union-Un-distrib finite-Un)
have

⋃
((cvPM − {x}) − {y}) = ?cvPM-xy by blast

then have cv-on: chain-cover-on ?cvPM-xy ((cvPM − {x}) − {y})
using chain-cover-on-def e by simp

have card ((cvPM − {x}) − {y}) < card cvPM
using z-x-y(1) z-x-y(2) finite-PM cvPM-def (1) chain-cover-on-def fi-

nite-UnionD
by (metis card-Diff2-less)

then have card ((cvPM − {x}) − {y}) < card (ac − {z})
using cvPM-def (2) finite-PM finite-lac cvPM-def (1) chain-cover-on-def

finite-UnionD z-x-y(1) z-x-y(2) z-x-y(3) z-in card-Diff2-1-less
by metis

then show False using antichain-card-leq ac-on-cvPM-xy cv-on f by fastforce
qed
then have inj-g: inj-on g cvPM using inj-on-def by auto
then have bij-g: bij-betw g cvPM ac using lac-image-g bij-betw-def by blast
define h where h = inv-into cvPP f
then have bij-h: bij-betw h ac cvPP

using f-def bij-f bij-betw-inv-into by auto
define i where i = inv-into cvPM g
then have bij-i: bij-betw i ac cvPM

using g-def bij-f bij-g bij-betw-inv-into by auto
obtain j where j-def : ∀ x ∈ ac. j x = (h x) ∪ (i x)

using h-def i-def f-def g-def bij-h bij-i
by (metis sup-apply)

have ∀ x ∈ ac. ∀ y ∈ ac. j x = j y −→ x = y
proof (rule ccontr)

assume ¬ (∀ x ∈ ac. ∀ y ∈ ac. j x = j y −→ x = y)
then have ∃ x ∈ ac. ∃ y ∈ ac. j x = j y ∧ x 6= y by blast
then obtain z x y where z-x-y: x ∈ ac y ∈ ac z = j x z = j y x 6= y

by auto
then have z-x: z = (h x) ∪ (i x) using j-def by simp
have z = (h y) ∪ (i y) using j-def z-x-y by simp
then have union-eq: (h x) ∪ (i x) = (h y) ∪ (i y) using z-x by simp
have x-hx: x ∈ (h x) using h-def f-def bij-f bij-h

by (metis bij-betw-apply f-inv-into-f lac-image-f z-x-y(1))
have x-ix: x ∈ (i x) using i-def g-def bij-g bij-i

by (metis bij-betw-apply f-inv-into-f lac-image-g z-x-y(1))
have y ∈ (h y) using h-def f-def bij-f bij-h

by (metis bij-betw-apply f-inv-into-f lac-image-f z-x-y(2))
then have y ∈ (h x) ∪ (i x) using union-eq by simp
then have y-in: y ∈ (h x) ∨ y ∈ (i x) by simp

25

then show False
proof (cases y ∈ (h x))

case True
have ∃ c ∈ cvPP. (h x) = c using h-def f-def bij-h bij-f

by (simp add: bij-betw-apply z-x-y(1))
then obtain c where c-def : c ∈ cvPP (h x) = c by simp
then have x ∈ c ∧ y ∈ c using x-hx True by simp

then have x = y using z-x-y(1) z-x-y(2) asm1 c-def (1) cvPP-def less.prems
ac

unfolding largest-antichain-on-def antichain-on-def antichain-def
chain-cover-on-def chain-on-def chain-def

by (metis)
then show ?thesis using z-x-y(5) by simp

next
case False
then have y-ix: y ∈ (i x) using y-in by simp
have ∃ c ∈ cvPM . (i x) = c using i-def g-def bij-i bij-g

by (simp add: bij-betw-apply z-x-y(1))
then obtain c where c-def : c ∈ cvPM (i x) = c by simp
then have x ∈ c ∧ y ∈ c using x-ix y-ix by simp
then have x = y

using z-x-y(1) z-x-y(2) asm1 ac c-def (1) cvPM-def less.prems
unfolding largest-antichain-on-def antichain-on-def antichain-def

chain-cover-on-def chain-on-def chain-def
by (metis)

then show ?thesis using z-x-y(5) by simp
qed

qed
then have inj-j: inj-on j ac using inj-on-def by auto
obtain cvf where cvf-def : cvf = {j x | x . x ∈ ac} by simp
then have cvf = j ‘ ac by blast
then have bij-j: bij-betw j ac cvf using inj-j bij-betw-def by auto
then have card-cvf : card cvf = card ac

by (metis bij-betw-same-card)
have j-h-i: ∀ x ∈ ac. ∃ cp ∈ cvPP. ∃ cm ∈ cvPM . (h x = cp) ∧ (i x = cm)

∧ (j x = (cp ∪ cm))
using j-def bij-h bij-i by (meson bij-betwE)

have
⋃

cvf = (p-plus ∪ p-minus)
proof

show
⋃

cvf ⊆ (p-plus ∪ p-minus)
proof

fix y
assume y ∈

⋃
cvf

then obtain z where z-def : z ∈ cvf y ∈ z by blast
then obtain cp cm where cp-cm: cp ∈ cvPP cm ∈ cvPM z = (cp ∪ cm)

using cvf-def h-def i-def j-h-i by blast
then have y ∈ cp ∨ y ∈ cm using z-def (2) by simp

then show y ∈ (p-plus ∪ p-minus) using cp-cm(1) cp-cm(2) cvPP-def
cvPM-def

26

unfolding chain-cover-on-def chain-on-def by blast
qed

next
show (p-plus ∪ p-minus) ⊆

⋃
cvf

proof
fix y
assume y ∈ (p-plus ∪ p-minus)
then have y-in: y ∈ p-plus ∨ y ∈ p-minus by simp
have p-plus =

⋃
cvPP ∧ p-minus =

⋃
cvPM using cvPP-def cvPM-def

unfolding chain-cover-on-def by simp
then have y ∈ (

⋃
cvPP) ∨ y ∈ (

⋃
cvPM) using y-in by simp

then have ∃ cp ∈ cvPP. ∃ cm ∈ cvPM . (y ∈ cp) ∨ (y ∈ cm)
using cvPP-def cvPM-def
by (meson Union-iff x-cp-cm(2) x-cp-cm(4))

then obtain cp cm where cp-cm: cp ∈ cvPP cm ∈ cvPM y ∈ (cp ∪ cm)
by blast

have 1 : ∃ cm ∈ cvPM . ∃ x ∈ ac. (x ∈ cp) ∧ (x ∈ cm)
using cp-cm(1) f-def cvPM-elem-in-lac lac-maxPM by metis

have 2 : ∃ cp ∈ cvPP. ∃ x ∈ ac. (x ∈ cp) ∧ (x ∈ cm)
using cp-cm(2) g-def cvPP-elem-in-lac lac-minPP
by meson

then show y ∈
⋃

cvf
proof (cases y ∈ cp)

case True
obtain x cmc where x-cm: x ∈ ac x ∈ cp x ∈ cmc cmc ∈ cvPM

using 1 by blast
have f cp = x using cp-cm(1) x-cm(1) f-def

by (metis antichain-def antichain-lac cvPP-lac-rel x-cm(2))
then have h-x: h x = cp using h-def cp-cm(1) inj-f by auto
have g cmc = x using x-cm(4) x-cm(1) g-def

by (metis antichain-def antichain-lac cvPM-lac-rel x-cm(3))
then have i-x: i x = cmc using i-def

by (meson bij-betw-inv-into-left bij-g x-cm(4))
then have j x = h x ∪ i x using j-def x-cm(1) by simp
then have (h x ∪ i x) ∈ cvf using cvf-def x-cm(1) by auto
then have (cp ∪ cmc) ∈ cvf using h-x i-x by simp
then show ?thesis using True by blast

next
case False
then have y-in: y ∈ cm using cp-cm(3) by simp
obtain x cpc where x-cp: x ∈ ac x ∈ cm x ∈ cpc cpc ∈ cvPP

using 2 by blast
have g cm = x using cp-cm(2) x-cp(1) x-cp(2) g-def

by (metis antichain-def antichain-lac cvPM-lac-rel)
then have x-i: i x = cm using i-def x-cp(1)

by (meson bij-betw-inv-into-left bij-g cp-cm(2))
have f cpc = x using x-cp(4) x-cp(1) x-cp(3) f-def

by (metis antichain-def antichain-lac cvPP-lac-rel)
then have x-h: h x = cpc using h-def x-cp(1) inj-f x-cp(4) by force

27

then have j x = h x ∪ i x using j-def x-cp(1) by simp
then have (h x ∪ i x) ∈ cvf using cvf-def x-cp(1) by auto
then have (cpc ∪ cm) ∈ cvf using x-h x-i by simp
then show ?thesis using y-in by blast

qed
qed

qed
then have cvf-P:

⋃
cvf = P using P-PP-PM by simp

have ∀ x ∈ cvf . chain-on x P
proof

fix x
assume asm1 : x ∈ cvf
then obtain a where a-def : a ∈ ac j a = x using cvf-def by blast
then obtain cp cm where cp-cm: cp ∈ cvPP cm ∈ cvPM h a = cp ∧ i a =

cm
using h-def i-def bij-h bij-i j-h-i by blast

then have x-union: x = (cp ∪ cm) using j-def a-def by simp
then have a-in: a ∈ cp ∧ a ∈ cm using cp-cm h-def f-def i-def g-def

by (metis ‹a ∈ ac› bij-betw-inv-into-right bij-f bij-g)
then have a-rel-cp: ∀ b ∈ cp. (a ≤ b)

using a-def (1) cp-cm(1) lac-minPP e-minset-lesseq-e-chain
by (metis antichain-def antichain-lac cvPP-lac-rel)

have a-rel-cm: ∀ b ∈ cm. (b ≤ a)
using a-def (1) cp-cm(2) lac-maxPM e-chain-lesseq-e-maxset a-in
by (metis antichain-def antichain-lac cvPM-lac-rel)

then have ∀ a ∈ cp. ∀ b ∈ cm. (b ≤ a) using a-rel-cp by fastforce
then have ∀ x ∈ (cp ∪ cm). ∀ y ∈ (cp ∪ cm). (x ≤ y) ∨ (y ≤ x)

using cp-cm(1) cp-cm(2) cvPP-def cvPM-def
unfolding chain-cover-on-def chain-on-def chain-def
by (metis Un-iff)

then have Complete-Partial-Order .chain (≤) (cp ∪ cm) using chain-def by
auto

then have chain-x: Complete-Partial-Order .chain (≤) x using x-union by
simp

have x ⊆ P using cvf-P asm1 by blast
then show chain-on x P using chain-x partial-P chain-on-def by simp

qed
then have chain-cover-on P cvf using cvf-P chain-cover-on-def [of P cvf] by

simp
then show caseTrue: ?thesis using card-cvf ac by auto

next — the largest antichain is equal to the maximal set or the minimal set
case False
assume ¬ (∃ ac. (antichain-on P ac ∧ ac 6= ?min ∧ ac 6= ?max) ∧ card ac =

card lac)
then have ¬ ((lac 6= ?max) ∧ (lac 6= ?min))

using less(2) unfolding largest-antichain-on-def
by blast

then have max-min-asm: (lac = ?max) ∨ (lac = ?min) by simp
then have caseAsm:

28

∀ ac. (antichain-on P ac ∧ ac 6= ?min ∧ ac 6= ?max) −→ card ac ≤ card lac
using asm1 largest-antichain-on-def less.prems(1) by presburger

then have case2 : ∀ ac. (antichain-on P ac ∧ ac 6= ?min ∧ ac 6= ?max) −→
card ac < card lac

using False by force
obtain x where x: x ∈ ?min

using is-minimal-in-set-iff non-empty-minset partial-P assms(2 ,3)
by (metis empty-Collect-eq less.prems(2) less.prems(3) mem-Collect-eq)

then have x ∈ P using is-minimal-in-set-iff by simp
then obtain y where y: y ∈ ?max x ≤ y using partial-P max-elem-for-P

using less.prems(2) by blast
define PD where PD-def : PD = P − {x,y}
then have finite-PD: finite PD using asm3 finite-def

by (simp add: less.prems(2))
then have partial-PD: partial-order-on PD (relation-of (≤) PD)

using partial-P partial-order-on-def
by (simp add: partial-order-on-relation-ofI)

then have max-min-nPD: ¬ (?max ⊆ PD) ∧ ¬ (?min ⊆ PD)
using PD-def x y(1) by blast

have a1 : ∀ a ∈ P. (a 6= x) ∧ (a 6= y) −→ a ∈ PD
using PD-def by blast

then have ∀ a ∈ ?max. (a 6= x) ∧ (a 6= y) −→ a ∈ PD
using is-maximal-in-set-iff by blast

then have (?max − {x, y}) ⊆ PD (is ?maxPD ⊆ PD) by blast
have card-maxPD: card (?max − {x,y}) = (card ?max − 1) using x y

proof cases
assume x = y
then show ?thesis using y(1) by force

next
assume ¬ (x = y)
then have x < y using y(2) by simp
then have ¬ (is-maximal-in-set P x) using x y(1)

using ‹x 6= y› is-maximal-in-set-iff by fastforce
then have x /∈ ?max by simp
then show ?thesis using y(1) by auto

qed
have ∀ a ∈ ?min. (a 6= x) ∧ (a 6= y) −→ a ∈ PD

using is-minimal-in-set-iff a1
by (simp add: a1 local.is-minimal-in-set-iff)

then have (?min − {x, y}) ⊆ PD (is ?minPD ⊆ PD) by blast
have card-minPD: card (?min − {x,y}) = (card ?min − 1) using x y
proof cases

assume x = y
then show ?thesis using x by auto

next
assume ¬ (x = y)
then have x < y using y(2) by simp
then have ¬ (is-minimal-in-set P y) using is-minimal-in-set-iff x y(1)

by force

29

then have y /∈ ?min by simp
then show ?thesis using x

by (metis Diff-insert Diff-insert0 card-Diff-singleton-if)
qed
then show ?thesis
proof cases

assume asm:lac = ?max — case where the largest antichain is the maximal
set

then have card-maxPD: card ?maxPD = (card lac − 1) using card-maxPD
by auto

then have ac-less: ∀ ac. (antichain-on P ac ∧ ac 6= ?max ∧ ac 6= ?min)
−→ card ac ≤ (card lac − 1)

using case2 by auto
have PD-sub: PD ⊂ P using PD-def

by (simp add: ‹x ∈ P› subset-Diff-insert subset-not-subset-eq)
then have PD-less: card PD < card P using asm3 card-def

by (simp add: less.prems(2) psubset-card-mono)
have maxPD-sub: ?maxPD ⊆ PD

using PD-def ‹{x. is-maximal-in-set P x} − {x, y} ⊆ PD› by blast
have ?maxPD ⊆ ?max by blast
then have antichain ?maxPD using maxset-ac unfolding antichain-def by

blast
then have ac-maxPD: antichain-on PD ?maxPD

using maxPD-sub antichain-on-def partial-PD by simp
have acPD-nMax-nMin: ∀ ac . (antichain-on PD ac) −→ (ac 6= ?max ∧ ac

6= ?min)
using max-min-nPD antichain-on-def
by auto

have ∀ ac. (antichain-on PD ac) −→ (antichain-on P ac)
using antichain-on-def antichain-def
by (meson PD-sub partial-P psubset-imp-subset subset-trans)

then have ∀ ac. (antichain-on PD ac) −→ card ac ≤ (card lac − 1)
using ac-less PD-sub max-min-nPD acPD-nMax-nMin by blast

then have maxPD-lac: largest-antichain-on PD ?maxPD
using largest-antichain-on-def ac-maxPD card-maxPD by simp

then have ∃ cv. chain-cover-on PD cv ∧ card cv = card ?maxPD
proof cases

assume PD 6= {}
then show ?thesis using less PD-less maxPD-lac finite-PD by blast

next
assume ¬ (PD 6= {})
then have PD-empty: PD = {} by simp
then have ?maxPD = {} using maxPD-sub by auto
then show ?thesis

using maxPD-lac PD-empty largest-antichain-card-eq-empty by simp
qed
then obtain cvPD where cvPD-def : chain-cover-on PD cvPD

card cvPD = card ?maxPD by blast
then have

⋃
cvPD = PD unfolding chain-cover-on-def by simp

30

then have union-cvPD:
⋃

(cvPD ∪ {{x,y}}) = P using PD-def
using ‹x ∈ P› y(1) is-maximal-in-set-iff by force

have chains-cvPD: ∀ x ∈ cvPD. chain-on x P
using chain-on-def cvPD-def (1) PD-sub unfolding chain-cover-on-def
by (meson subset-not-subset-eq subset-trans)

have {x,y} ⊆ P using x y
using union-cvPD by blast

then have xy-chain-on: chain-on {x,y} P
using partial-P y(2) chain-on-def chain-def
by fast

define cvf where cvf-def : cvf = cvPD ∪ {{x,y}}
have cv-cvf : chain-cover-on P cvf

using chains-cvPD union-cvPD xy-chain-on unfolding chain-cover-on-def
cvf-def

by simp
have ¬ ({x,y} ⊆ PD) using PD-def by simp
then have {x,y} /∈ cvPD using cvPD-def (1)

unfolding chain-cover-on-def chain-on-def by auto
then have card (cvPD ∪ {{x,y}}) = (card ?maxPD) + 1 using cvPD-def (2)

card-def
by (simp add: ‹

⋃
cvPD = PD› finite-PD finite-UnionD)

then have card cvf = (card ?maxPD) + 1 using cvf-def by auto
then have card cvf = card lac using card-maxPD asm

by (metis Diff-infinite-finite Suc-eq-plus1 ‹{x, y} ⊆ P› card-Diff-singleton
card-Suc-Diff1 finite-PD finite-subset less.prems(2) maxPD-sub y(1))

then show ?thesis using cv-cvf by blast
next

assume ¬ (lac = ?max)
— complementary case where the largest antichain is the minimal set
then have lac = ?min using max-min-asm by simp
then have card-minPD: card ?minPD = (card lac − 1) using card-minPD

by simp
then have ac-less: ∀ ac. (antichain-on P ac ∧ ac 6= ?max ∧ ac 6= ?min)

−→ card ac ≤ (card lac − 1)
using case2 by auto

have PD-sub: PD ⊆ P using PD-def by simp
then have PD-less: card PD < card P using asm3

using less.prems(2) max-min-nPD is-minimal-in-set-iff psubset-card-mono
by (metis DiffE PD-def ‹x ∈ P› insertCI psubsetI)

have minPD-sub: ?minPD ⊆ PD using PD-def unfolding
is-minimal-in-set-iff by blast

have ?minPD ⊆ ?min by blast
then have antichain ?minPD using minset-ac is-minimal-in-set-iff

unfolding antichain-def
by (metis DiffD1)

then have ac-minPD: antichain-on PD ?minPD
using minPD-sub antichain-on-def partial-PD by simp

have acPD-nMax-nMin: ∀ ac . (antichain-on PD ac) −→ (ac 6= ?max ∧ ac
6= ?min)

31

using max-min-nPD antichain-on-def
by metis

have ∀ ac. (antichain-on PD ac) −→ (antichain-on P ac)
using antichain-on-def antichain-def
by (meson PD-sub partial-P subset-trans)

then have ∀ ac. (antichain-on PD ac) −→ card ac ≤ (card lac − 1)
using ac-less PD-sub max-min-nPD acPD-nMax-nMin by blast

then have minPD-lac: largest-antichain-on PD ?minPD
using largest-antichain-on-def ac-minPD card-minPD by simp

then have ∃ cv. chain-cover-on PD cv ∧ card cv = card ?minPD
proof cases

assume PD 6= {}
then show ?thesis using less PD-less minPD-lac finite-PD by blast

next
assume ¬ (PD 6= {})
then have PD-empty: PD = {} by simp
then have ?minPD = {} using minPD-sub by auto
then show ?thesis

using minPD-lac PD-empty largest-antichain-card-eq-empty by simp
qed
then obtain cvPD where cvPD-def : chain-cover-on PD cvPD

card cvPD = card ?minPD by blast
then have

⋃
cvPD = PD unfolding chain-cover-on-def by simp

then have union-cvPD:
⋃

(cvPD ∪ {{x,y}}) = P using PD-def
using ‹x ∈ P› y(1)
using is-maximal-in-set-iff by force

have chains-cvPD: ∀ x ∈ cvPD. chain-on x P
using chain-on-def cvPD-def (1) PD-sub unfolding chain-cover-on-def
by (meson Sup-le-iff partial-P)

have {x,y} ⊆ P using x y using union-cvPD by blast
then have xy-chain-on: chain-on {x,y} P

using partial-P y(2) chain-on-def chain-def by fast
define cvf where cvf-def : cvf = cvPD ∪ {{x,y}}
then have cv-cvf : chain-cover-on P cvf

using chains-cvPD union-cvPD xy-chain-on unfolding chain-cover-on-def
by simp

have ¬ ({x,y} ⊆ PD) using PD-def by simp
then have {x,y} /∈ cvPD using cvPD-def (1)

unfolding chain-cover-on-def chain-on-def by auto
then have card (cvPD ∪ {{x,y}}) = (card ?minPD) + 1 using cvPD-def (2)

card-def
by (simp add: ‹

⋃
cvPD = PD› finite-PD finite-UnionD)

then have card cvf = (card ?minPD) + 1 using cvf-def by auto
then have card cvf = card lac using card-minPD

by (metis Diff-infinite-finite Suc-eq-plus1
‹lac = {x. is-minimal-in-set P x}› ‹{x, y} ⊆ P›
card-Diff-singleton card-Suc-Diff1 finite-PD finite-subset
less.prems(2) minPD-sub x)

then show ?thesis using cv-cvf by blast

32

qed
qed

qed

5 Dilworth’s Theorem for Chain Covers: State-
ment and Proof

We show that in any partially ordered set, the cardinality of a largest an-
tichain is equal to the cardinality of a smallest chain cover.
theorem Dilworth:

assumes largest-antichain-on P lac
and finite P

shows ∃ cv. (smallest-chain-cover-on P cv) ∧ (card cv = card lac)
proof−

show ?thesis
using antichain-card-leq largest-antichard-card-eq assms largest-antichain-on-def
by (smt (verit, ccfv-SIG) card.empty chain-cover-null le-antisym le-zero-eq

smallest-chain-cover-on-def)
qed

6 Dilworth’s Decomposition Theorem
6.1 Preliminaries

Now we will strengthen the result above to prove that the cardinality of
a smallest chain decomposition is equal to the cardinality of a largest an-
tichain. In order to prove that, we construct a preliminary result which
states that cardinality of smallest chain decomposition is equal to the car-
dinality of smallest chain cover.

We begin by constructing the function make_disjoint which takes a list of
sets and returns a list of sets which are mutually disjoint, and leaves the
union of the sets in the list invariant. This function when acting on a chain
cover returns a chain decomposition.
fun make-disjoint::- set list ⇒ -

where
make-disjoint [] = ([])
|make-disjoint (s#ls) = (s − (

⋃
(set ls)))#(make-disjoint ls)

lemma finite-dist-card-list:
assumes finite S
shows ∃ ls. set ls = S ∧ length ls = card S ∧ distinct ls
using assms distinct-card finite-distinct-list
by metis

33

lemma len-make-disjoint:length xs = length (make-disjoint xs)
by (induction xs, simp+)

We use the predicate list-all2 (⊆), which checks if two lists (of sets) have
equal length, and if each element in the first list is a subset of the corre-
sponding element in the second list.
lemma subset-make-disjoint: list-all2 (⊆) (make-disjoint xs) xs

by (induction xs, simp, auto)

lemma subslist-union:
assumes list-all2 (⊆) xs ys
shows

⋃
(set xs) ⊆

⋃
(set ys)

using assms by(induction, simp, auto)

lemma make-disjoint-union:
⋃

(set xs) =
⋃

(set (make-disjoint xs))
proof

show
⋃

(set xs) ⊆
⋃

(set (make-disjoint xs))
by (induction xs, auto)

next
show

⋃
(set (make-disjoint xs)) ⊆

⋃
(set xs)

using subslist-union subset-make-disjoint
by (metis)

qed

lemma make-disjoint-empty-int:
assumes X ∈ set (make-disjoint xs) Y ∈ set (make-disjoint xs)

and X 6= Y
shows X ∩ Y = {}

using assms
proof(induction xs arbitrary: X Y)

case (Cons a xs)
then show ?case
proof(cases X 6= a − (

⋃
(set xs)) ∧ Y 6= (a − (

⋃
(set xs))))

case True
then show ?thesis using Cons(1)[of X Y] Cons(2 ,3)

by (smt (verit, del-insts) Cons.prems(3) Diff-Int-distrib Diff-disjoint
Sup-upper make-disjoint.simps(2) make-disjoint-union inf .idem inf-absorb1

inf-commute set-ConsD)
next

case False
hence fa:X = a − (

⋃
(set xs)) ∨ Y = a − (

⋃
(set xs)) by argo

then show ?thesis
proof(cases X = a − (

⋃
(set xs)))

case True
hence Y 6= a − (

⋃
(set xs)) using Cons(4) by argo

hence Y ∈ set (make-disjoint xs) using Cons(3) by simp
hence Y ⊆

⋃
(set (make-disjoint xs)) by blast

hence Y ⊆
⋃

(set xs) using make-disjoint-union by metis

34

hence X ∩ Y = {} using True by blast
then show ?thesis by blast

next
case False
hence Y :Y = a − (

⋃
(set xs)) using Cons(4) fa by argo

hence X 6= a − (
⋃

(set xs)) using False by argo
hence X ∈ set (make-disjoint xs) using Cons(2) by simp
hence X ⊆

⋃
(set (make-disjoint xs)) by blast

hence X ⊆
⋃

(set xs) using make-disjoint-union by metis
hence X ∩ Y = {} using Y by blast
then show ?thesis by blast

qed
qed

qed (simp)

lemma chain-subslist:
assumes ∀ i < length xs. Complete-Partial-Order .chain (≤) (xs!i)

and list-all2 (⊆) ys xs
shows ∀ i < length ys. Complete-Partial-Order .chain (≤) (ys!i)
using assms(2 ,1)

proof(induction)
case (Cons x xs y ys)
then have list-all2 (⊆) xs ys by auto
then have le: ∀ i<length xs. Complete-Partial-Order .chain (≤) (xs ! i)

using Cons by fastforce
then have x ⊆ y using Cons(1) by auto
then have Complete-Partial-Order .chain (≤) x using Cons

using chain-subset by fastforce
then show ?case using le

by (metis all-nth-imp-all-set insert-iff list.simps(15) nth-mem)
qed(argo)

lemma chain-cover-disjoint:
assumes chain-cover-on P (set C)
shows chain-cover-on P (set (make-disjoint C))

proof−
have

⋃
(set (make-disjoint C)) = P using make-disjoint-union assms(1)

unfolding chain-cover-on-def by metis
moreover have ∀ x∈set (make-disjoint C). x ⊆ P

using subset-make-disjoint assms unfolding chain-cover-on-def
using calculation by blast

moreover have ∀ x∈set (make-disjoint C). Complete-Partial-Order .chain (≤) x

using chain-subslist assms unfolding chain-cover-on-def chain-on-def
by (metis in-set-conv-nth subset-make-disjoint)

ultimately show ?thesis unfolding chain-cover-on-def chain-on-def by auto
qed

lemma make-disjoint-subset-i:

35

assumes i < length as
shows (make-disjoint (as))!i ⊆ (as!i)
using assms

proof(induct as arbitrary: i)
case (Cons a as)
then show ?case
proof(cases i = 0)

case False
have i − 1 < length as using Cons

using False by force
hence (make-disjoint as)! (i − 1) ⊆ as!(i − 1) using Cons(1)[of i − 1]

by argo
then show ?thesis using False by simp

qed (simp)
qed (simp)

Following theorem asserts that the corresponding to the smallest chain cover
on a finite set, there exists a corresponding chain decomposition of the same
cardinality.
lemma chain-cover-decompsn-eq:

assumes finite P
and smallest-chain-cover-on P A

shows ∃ B. chain-decomposition P B ∧ card B = card A
proof−

obtain As where As:set As = A length As = card A distinct As
using assms
by (metis chain-cover-on-def finite-UnionD finite-dist-card-list

smallest-chain-cover-on-def)
hence ccdas:chain-cover-on P (set (make-disjoint As))

using assms(2) chain-cover-disjoint[of P As]
unfolding smallest-chain-cover-on-def by argo

hence 1 :chain-decomposition P (set (make-disjoint As))
using make-disjoint-empty-int
unfolding chain-decomposition-def by meson

moreover have 2 :card (set (make-disjoint As)) = card A
proof(rule ccontr)

assume asm:¬ card (set (make-disjoint As)) = card A
have length (make-disjoint As) = card A

using len-make-disjoint As(2) by metis
then show False

using asm assms(2) card-length ccdas
smallest-chain-cover-on-def

by metis
qed
ultimately show ?thesis by blast

qed

lemma smallest-cv-cd:

36

assumes smallest-chain-decomposition P cd
and smallest-chain-cover-on P cv

shows card cv ≤ card cd
using assms unfolding smallest-chain-decomposition-def chain-decomposition-def

smallest-chain-cover-on-def by auto

lemma smallest-cv-eq-smallest-cd:
assumes finite P

and smallest-chain-decomposition P cd
and smallest-chain-cover-on P cv

shows card cv = card cd
using smallest-cv-cd[OF assms(2 ,3)] chain-cover-decompsn-eq[OF assms(1 ,3)]
by (metis assms(2) smallest-chain-decomposition-def)

6.2 Statement and Proof

We extend the Dilworth’s theorem to chain decomposition. The following
theorem asserts that size of a largest antichain is equal to the size of a
smallest chain decomposition.
theorem Dilworth-Decomposition:

assumes largest-antichain-on P lac
and finite P

shows ∃ cd. (smallest-chain-decomposition P cd) ∧ (card cd = card lac)
using Dilworth[OF assms] smallest-cv-eq-smallest-cd assms
by (metis (mono-tags, lifting) cd-cv chain-cover-decompsn-eq

smallest-chain-cover-on-def smallest-chain-decomposition-def)

end

end

Acknowledgement

We would like thank Divakaran D. for valuable suggestions.

References

[1] M. Desharnais. Minimal, maximal, least, and greatest elements w.r.t.
restricted ordering. Archive of Formal Proofs, October 2024. https://
isa-afp.org/entries/Min_Max_Least_Greatest.html, Formal proof de-
velopment.

[2] R. P. Dilworth. A decomposition theorem for partially ordered sets.
Annals of Mathematics, 51(1):161–166, 1950.

37

https://isa-afp.org/entries/Min_Max_Least_Greatest.html
https://isa-afp.org/entries/Min_Max_Least_Greatest.html

[3] M. A. Perles. A proof of dilworths decomposition theorem for partially
ordered sets. Israel Journal of Mathematics, 1:105–107, 1963.

[4] A. K. Singh. Fully mechanized proofs of dilworths theorem and mirskys
theorem. arXiv preprint arXiv:1703.06133, 2017.

38

	Definitions
	Preliminary Lemmas
	Size of an antichain is less than or equal to the size of a chain cover
	Existence of a chain cover whose cardinality is the cardinality of the largest antichain
	Preliminary lemmas
	Statement and Proof

	Dilworth's Theorem for Chain Covers: Statement and Proof
	Dilworth's Decomposition Theorem
	Preliminaries
	Statement and Proof

