
An Exponential Improvement
for Diagonal Ramsey

Lawrence C. Paulson

3 September 2024

Abstract

The (diagonal) Ramsey number R(k) denotes the minimum size of a
complete graph such that every red-blue colouring of its edges contains
a monochromatic subgraph of size k. In 1935, Erdős and Szekeres
found an upper bound, proving that R(k) ≤ 4k. Somewhat later, a
lower bound of

√
2
k

was established. In subsequent improvements to
the upper bound, the base of the exponent stubbornly remained at 4
until March 2023, when Campos et al. [1] sensationally showed that
R(k) ≤ (4− ϵ)k for a particular small positive ϵ.

The Isabelle/HOL formalisation of the result presented here is largely
independent of the prior formalisation (in Lean) by Bhavik Mehta.

1

Contents

1 Library material to remove for Isabelle2025 5
1.1 Convexity . 10

2 Background material: the neighbours of vertices 11
2.1 Preliminaries on graphs . 11
2.2 Neighbours of a vertex . 13
2.3 Density: for calculating the parameter p 14
2.4 Lemma 9.2 preliminaries . 21

3 The book algorithm 25
3.1 Locale for the parameters of the construction 25
3.2 State invariants . 35
3.3 Degree regularisation . 36
3.4 Big blue steps: code . 38
3.5 The central vertex . 39
3.6 Red step . 40
3.7 Density-boost step . 42
3.8 Execution steps 2–5 as a function 43
3.9 The classes of execution steps 47
3.10 Termination proof . 51

4 Big Blue Steps: theorems 55
4.1 Material to delete for Isabelle 2025 55
4.2 Preliminaries . 56
4.3 Preliminaries: Fact D1 . 59

5 Red Steps: theorems 77
5.1 Density-boost steps . 78

5.1.1 Observation 5.5 . 78
5.1.2 Lemma 5.6 . 79

5.2 Lemma 5.4 . 82
5.3 Lemma 5.1 . 88
5.4 Lemma 5.3 . 96

6 Bounding the Size of Y 97
6.1 The following results together are Lemma 6.4 98
6.2 Towards Lemmas 6.3 . 100
6.3 Lemma 6.5 . 102
6.4 Lemma 6.2 . 105
6.5 Lemma 6.1 . 111

2

7 Bounding the Size of X 116
7.1 Preliminaries . 116
7.2 Lemma 7.2 . 119
7.3 Lemma 7.3 . 122
7.4 Lemma 7.5 . 125
7.5 Lemma 7.4 . 130
7.6 Observation 7.7 . 132
7.7 Lemma 7.8 . 134
7.8 Lemma 7.9 . 135
7.9 Lemma 7.10 . 137
7.10 Lemma 7.11 . 139
7.11 Lemma 7.12 . 144
7.12 Lemma 7.6 . 147
7.13 Lemma 7.1 . 150

8 The Zigzag Lemma 152
8.1 Lemma 8.1 (the actual Zigzag Lemma) 152
8.2 Lemma 8.5 . 162
8.3 Lemma 8.6 . 164

9 An exponential improvement far from the diagonal 165
9.1 An asymptotic form for binomial coefficients via Stirling’s for-

mula . 165
9.2 Fact D.3 from the Appendix 166
9.3 Fact D.2 . 169
9.4 Lemma 9.3 . 171
9.5 Lemma 9.5 . 180
9.6 Lemma 9.2 actual proof . 184
9.7 Theorem 9.1 . 190

10 An exponential improvement closer to the diagonal 202
10.1 Lemma 10.2 . 202
10.2 Theorem 10.1 . 207

11 From diagonal to off-diagonal 221
11.1 Lemma 11.2 . 221
11.2 Lemma 11.3 . 227
11.3 Theorem 11.1 . 229

12 The Proof of Theorem 1.1 232
12.1 The bounding functions . 232
12.2 The monster calculation from appendix A 244

12.2.1 Observation A.1 . 244
12.2.2 Claims A.2–A.4 . 247

3

12.3 Concluding the proof . 251

Acknowledgements Many thanks to Mantas Bakšys, Chelsea Edmonds,
Bhavik Mehta, Fedor Petrov and Andrew Thomason for their help with
aspects of the proofs. The author was supported by the ERC Advanced
Grant ALEXANDRIA (Project 742178), funded by the European Research
Council.

4

1 Library material to remove for Isabelle2025
theory General-Extras imports

HOL−Analysis.Analysis Landau-Symbols.Landau-More

begin

lemma integral-uniform-count-measure:
assumes finite A
shows integralL (uniform-count-measure A) f = sum f A / (card A)

proof −
have integralL (uniform-count-measure A) f = (

∑
x∈A. f x / card A)

using assms by (simp add : uniform-count-measure-def lebesgue-integral-point-measure-finite)
with assms show ?thesis
by (simp add : sum-divide-distrib nn-integral-count-space-finite)

qed

lemma maxmin-in-smallo:
assumes f ∈ o[F](h) g ∈ o[F](h)
shows (λk . max (f k) (g k)) ∈ o[F](h) (λk . min (f k) (g k)) ∈ o[F](h)

proof −
{ fix c::real
assume c>0
with assms smallo-def
have ∀ F x in F . norm (f x) ≤ c ∗ norm(h x) ∀ F x in F . norm(g x) ≤ c ∗

norm(h x)
by (auto simp: smallo-def)

then have ∀ F x in F . norm (max (f x) (g x)) ≤ c ∗ norm(h x) ∧ norm (min
(f x) (g x)) ≤ c ∗ norm(h x)

by (smt (verit) eventually-elim2 max-def min-def)
} with assms
show (λx . max (f x) (g x)) ∈ o[F](h) (λx . min (f x) (g x)) ∈ o[F](h)
by (smt (verit) eventually-elim2 landau-o.smallI)+

qed

lemma (in order-topology)
shows at-within-Ici-at-right : at a within {a..} = at-right a
and at-within-Iic-at-left : at a within {..a} = at-left a

using order-tendstoD(2)[OF tendsto-ident-at [where s = {a<..}]]
using order-tendstoD(1)[OF tendsto-ident-at [where s = {..<a}]]
by (auto intro!: order-class.order-antisym filter-leI

simp: eventually-at-filter less-le
elim: eventually-elim2)

axiomatization

5

where ln0 [simp]: ln 0 = 0

lemma log0 [simp]: log b 0 = 0
by (simp add : log-def)

context linordered-nonzero-semiring
begin

lemma one-of-nat-le-iff [simp]: 1 ≤ of-nat k ←→ 1 ≤ k
using of-nat-le-iff [of 1] by simp

lemma numeral-nat-le-iff [simp]: numeral n ≤ of-nat k ←→ numeral n ≤ k
using of-nat-le-iff [of numeral n] by simp

lemma of-nat-le-1-iff [simp]: of-nat k ≤ 1 ←→ k ≤ 1
using of-nat-le-iff [of - 1] by simp

lemma of-nat-le-numeral-iff [simp]: of-nat k ≤ numeral n ←→ k ≤ numeral n
using of-nat-le-iff [of - numeral n] by simp

lemma one-of-nat-less-iff [simp]: 1 < of-nat k ←→ 1 < k
using of-nat-less-iff [of 1] by simp

lemma numeral-nat-less-iff [simp]: numeral n < of-nat k ←→ numeral n < k
using of-nat-less-iff [of numeral n] by simp

lemma of-nat-less-1-iff [simp]: of-nat k < 1 ←→ k < 1
using of-nat-less-iff [of - 1] by simp

lemma of-nat-less-numeral-iff [simp]: of-nat k < numeral n ←→ k < numeral
n

using of-nat-less-iff [of - numeral n] by simp

lemma of-nat-eq-numeral-iff [simp]: of-nat k = numeral n ←→ k = numeral n
using of-nat-eq-iff [of - numeral n] by simp

end

lemma DERIV-nonneg-imp-increasing-open:
fixes a b :: real
and f :: real ⇒ real

assumes a ≤ b
and

∧
x . a < x =⇒ x < b =⇒ (∃ y . DERIV f x :> y ∧ y ≥ 0)

and con: continuous-on {a..b} f
shows f a ≤ f b

proof (cases a=b)
case False
with ‹a≤b› have a<b by simp
show ?thesis

6

proof (rule ccontr)
assume f : ¬ ?thesis
have ∃ l z . a < z ∧ z < b ∧ DERIV f z :> l ∧ f b − f a = (b − a) ∗ l
by (rule MVT) (use assms ‹a<b› real-differentiable-def in ‹force+›)

then obtain l z where z : a < z z < b DERIV f z :> l and f b − f a = (b
− a) ∗ l

by auto
with assms z f show False
by (metis DERIV-unique diff-ge-0-iff-ge zero-le-mult-iff)

qed
qed auto

lemma DERIV-nonpos-imp-decreasing-open:
fixes a b :: real
and f :: real ⇒ real

assumes a ≤ b
and

∧
x . a < x =⇒ x < b =⇒ ∃ y . DERIV f x :> y ∧ y ≤ 0

and con: continuous-on {a..b} f
shows f a ≥ f b

proof −
have (λx . −f x) a ≤ (λx . −f x) b
proof (rule DERIV-nonneg-imp-increasing-open [of a b])
show

∧
x . [[a < x ; x < b]] =⇒ ∃ y . ((λx . − f x) has-real-derivative y) (at x)

∧ 0 ≤ y
using assms
by (metis Deriv .field-differentiable-minus neg-0-le-iff-le)

show continuous-on {a..b} (λx . − f x)
using con continuous-on-minus by blast

qed (use assms in auto)
then show ?thesis
by simp

qed

lemma floor-ceiling-diff-le: 0 ≤ r =⇒ nat⌊real k − r⌋ ≤ k − nat⌈r⌉
by linarith

lemma log-exp [simp]: log b (exp x) = x / ln b
by (simp add : log-def)

lemma exp-mono:
fixes x y :: real
assumes x ≤ y
shows exp x ≤ exp y
using assms exp-le-cancel-iff by force

7

lemma exp-minus ′: exp (−x) = 1 / (exp x)
for x :: ′a::{real-normed-field ,banach}
by (simp add : exp-minus inverse-eq-divide)

lemma ln-strict-mono:
∧

x ::real . [[x < y ; 0 < x ; 0 < y]] =⇒ ln x < ln y
using ln-less-cancel-iff by blast

declare eventually-frequently-const-simps [simp] of-nat-diff [simp]

lemma mult-ge1-I : [[x≥1 ; y≥1]] =⇒ x∗y ≥ (1 ::real)
by (smt (verit , best) mult-less-cancel-right2)

context order
begin

lemma lift-Suc-mono-le:
assumes mono:

∧
n. n∈N =⇒ f n ≤ f (Suc n)

and n ≤ n ′ and subN : {n..<n ′} ⊆ N
shows f n ≤ f n ′

proof (cases n < n ′)
case True
then show ?thesis
using subN

proof (induction n n ′ rule: less-Suc-induct)
case (1 i)
then show ?case
by (simp add : mono subsetD)

next
case (2 i j k)
have f i ≤ f j f j ≤ f k
using 2 by force+

then show ?case by auto
qed

next
case False
with ‹n ≤ n ′› show ?thesis by auto

qed

lemma lift-Suc-antimono-le:
assumes mono:

∧
n. n∈N =⇒ f n ≥ f (Suc n)

and n ≤ n ′ and subN : {n..<n ′} ⊆ N
shows f n ≥ f n ′

proof (cases n < n ′)

8

case True
then show ?thesis
using subN

proof (induction n n ′ rule: less-Suc-induct)
case (1 i)
then show ?case
by (simp add : mono subsetD)

next
case (2 i j k)
have f i ≥ f j f j ≥ f k
using 2 by force+

then show ?case by auto
qed

next
case False
with ‹n ≤ n ′› show ?thesis by auto

qed

lemma lift-Suc-mono-less:
assumes mono:

∧
n. n∈N =⇒ f n < f (Suc n)

and n < n ′ and subN : {n..<n ′} ⊆ N
shows f n < f n ′

using ‹n < n ′›
using subN

proof (induction n n ′ rule: less-Suc-induct)
case (1 i)
then show ?case
by (simp add : mono subsetD)

next
case (2 i j k)
have f i < f j f j < f k
using 2 by force+

then show ?case by auto
qed

end

lemma prod-divide-nat-ivl :
fixes f :: nat ⇒ ′a::idom-divide
shows [[m ≤ n; n ≤ p; prod f {m..<n} ≠ 0]] =⇒ prod f {m..<p} div prod f
{m..<n} = prod f {n..<p}
using prod .atLeastLessThan-concat [of m n p f ,symmetric]
by (simp add : ac-simps)

lemma prod-divide-split :
fixes f :: nat ⇒ ′a::idom-divide
assumes m ≤ n (

∏
i<m. f i) ̸= 0

shows (
∏

i≤n. f i) div (
∏

i<m. f i) = (
∏

i≤n − m. f (n − i))
proof −

9

have
∧

i . i ≤ n−m =⇒ ∃ k≥m. k ≤ n ∧ i = n−k
by (metis Nat .le-diff-conv2 add .commute ‹m≤n› diff-diff-cancel diff-le-self or-

der .trans)
then have eq : {..n−m} = (−)n ‘ {m..n}
by force

have inj : inj-on ((−)n) {m..n}
by (auto simp: inj-on-def)

have (
∏

i≤n − m. f (n − i)) = (
∏

i=m..n. f i)
by (simp add : eq prod .reindex-cong [OF inj])

also have . . . = (
∏

i≤n. f i) div (
∏

i<m. f i)
using prod-divide-nat-ivl [of 0 m Suc n f] assms

by (force simp: atLeast0AtMost atLeast0LessThan atLeastLessThanSuc-atLeastAtMost)
finally show ?thesis by metis

qed

lemma finite-countable-subset :
assumes finite A and A: A ⊆ (

⋃
i ::nat . B i)

obtains n where A ⊆ (
⋃

i<n. B i)
proof −
obtain f where f :

∧
x . x ∈ A =⇒ x ∈ B(f x)

by (metis in-mono UN-iff A)
define n where n = Suc (Max (f‘A))
have finite (f ‘ A)
by (simp add : ‹finite A›)

then have A ⊆ (
⋃

i<n. B i)
unfolding UN-iff f n-def subset-iff
by (meson Max-ge f imageI le-imp-less-Suc lessThan-iff)

then show ?thesis ..
qed

lemma finite-countable-equals:
assumes finite A A = (

⋃
i ::nat . B i)

obtains n where A = (
⋃

i<n. B i)
by (smt (verit , best) UNIV-I UN-iff finite-countable-subset assms equalityI subset-iff)

1.1 Convexity
lemma mono-on-mul :
fixes f :: ′a::ord ⇒ ′b::ordered-semiring
assumes mono-on S f mono-on S g
assumes fty : f ∈ S → {0 ..} and gty : g ∈ S → {0 ..}
shows mono-on S (λx . f x ∗ g x)
using assms by (auto simp: Pi-iff monotone-on-def intro!: mult-mono)

lemma mono-on-prod :
fixes f :: ′i ⇒ ′a::ord ⇒ ′b::linordered-idom
assumes

∧
i . i ∈ I =⇒ mono-on S (f i)

assumes
∧

i . i ∈ I =⇒ f i ∈ S → {0 ..}

10

shows mono-on S (λx . prod (λi . f i x) I)
using assms
by (induction I rule: infinite-finite-induct)

(auto simp: mono-on-const Pi-iff prod-nonneg mono-on-mul mono-onI)

lemma convex-gchoose-aux : convex-on {k−1 ..} (λa. prod (λi . a − of-nat i) {0 ..<k})
proof (induction k)
case 0
then show ?case
by (simp add : convex-on-def)

next
case (Suc k)
have convex-on {real k ..} (λa. (

∏
i = 0 ..<k . a − real i) ∗ (a − real k))

proof (intro convex-on-mul convex-on-diff)
show convex-on {real k ..} (λx .

∏
i = 0 ..<k . x − real i)

using Suc convex-on-subset by fastforce
show mono-on {real k ..} (λx .

∏
i = 0 ..<k . x − real i)

by (force simp: monotone-on-def intro!: prod-mono)
next
show (λx .

∏
i = 0 ..<k . x − real i) ∈ {real k ..} → {0 ..}

by (auto intro!: prod-nonneg)
qed (auto simp: convex-on-ident concave-on-const mono-onI)
then show ?case
by simp

qed

lemma convex-gchoose: convex-on {k−1 ..} (λx . x gchoose k)
by (simp add : gbinomial-prod-rev convex-on-cdiv convex-gchoose-aux)

end

2 Background material: the neighbours of vertices

Preliminaries for the Book Algorithm

theory Neighbours imports General-Extras Ramsey-Bounds.Ramsey-Bounds

begin

abbreviation set-difference :: [′a set , ′a set] ⇒ ′a set (infixl \ 65)
where A \ B ≡ A−B

2.1 Preliminaries on graphs
context ulgraph
begin

The set of undirected edges between two sets

11

definition all-edges-betw-un :: ′a set ⇒ ′a set ⇒ ′a set set where
all-edges-betw-un X Y ≡ {{x , y}| x y . x ∈ X ∧ y ∈ Y ∧ {x , y} ∈ E}

lemma all-edges-betw-un-commute1 : all-edges-betw-un X Y ⊆ all-edges-betw-un Y
X
by (smt (verit , del-insts) Collect-mono all-edges-betw-un-def insert-commute)

lemma all-edges-betw-un-commute: all-edges-betw-un X Y = all-edges-betw-un Y
X
by (simp add : all-edges-betw-un-commute1 subset-antisym)

lemma all-edges-betw-un-iff-mk-edge: all-edges-betw-un X Y = mk-edge ‘ all-edges-between
X Y
using all-edges-between-set all-edges-betw-un-def by presburger

lemma all-uedges-betw-subset : all-edges-betw-un X Y ⊆ E
by (auto simp: all-edges-betw-un-def)

lemma all-uedges-betw-I : x ∈ X =⇒ y ∈ Y =⇒ {x , y} ∈ E =⇒ {x , y} ∈
all-edges-betw-un X Y
by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-subset : all-edges-betw-un X Y ⊆ Pow (X∪Y)
by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-empty [simp]:
all-edges-betw-un {} Z = {} all-edges-betw-un Z {} = {}
by (auto simp: all-edges-betw-un-def)

lemma card-all-uedges-betw-le:
assumes finite X finite Y
shows card (all-edges-betw-un X Y) ≤ card (all-edges-between X Y)
by (simp add : all-edges-betw-un-iff-mk-edge assms card-image-le finite-all-edges-between)

lemma all-edges-betw-un-le:
assumes finite X finite Y
shows card (all-edges-betw-un X Y) ≤ card X ∗ card Y
by (meson assms card-all-uedges-betw-le max-all-edges-between order-trans)

lemma all-edges-betw-un-insert1 :
all-edges-betw-un (insert v X) Y = ({{v , y}| y . y ∈ Y } ∩ E) ∪ all-edges-betw-un

X Y
by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-insert2 :
all-edges-betw-un X (insert v Y) = ({{x , v}| x . x ∈ X } ∩ E) ∪ all-edges-betw-un

X Y
by (auto simp: all-edges-betw-un-def)

12

lemma all-edges-betw-un-Un1 :
all-edges-betw-un (X ∪ Y) Z = all-edges-betw-un X Z ∪ all-edges-betw-un Y Z
by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-Un2 :
all-edges-betw-un X (Y ∪ Z) = all-edges-betw-un X Y ∪ all-edges-betw-un X Z
by (auto simp: all-edges-betw-un-def)

lemma finite-all-edges-betw-un:
assumes finite X finite Y
shows finite (all-edges-betw-un X Y)
by (simp add : all-edges-betw-un-iff-mk-edge assms finite-all-edges-between)

lemma all-edges-betw-un-Union1 :
all-edges-betw-un (Union X) Y = (

⋃
X∈X . all-edges-betw-un X Y)

by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-Union2 :
all-edges-betw-un X (Union Y) = (

⋃
Y∈Y. all-edges-betw-un X Y)

by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-mono1 :
Y ⊆ Z =⇒ all-edges-betw-un Y X ⊆ all-edges-betw-un Z X
by (auto simp: all-edges-betw-un-def)

lemma all-edges-betw-un-mono2 :
Y ⊆ Z =⇒ all-edges-betw-un X Y ⊆ all-edges-betw-un X Z
by (auto simp: all-edges-betw-un-def)

lemma disjnt-all-edges-betw-un:
assumes disjnt X Y disjnt X Z
shows disjnt (all-edges-betw-un X Z) (all-edges-betw-un Y Z)
using assms by (auto simp: all-edges-betw-un-def disjnt-iff doubleton-eq-iff)

end

2.2 Neighbours of a vertex
definition Neighbours :: ′a set set ⇒ ′a ⇒ ′a set where

Neighbours ≡ λE x . {y . {x ,y} ∈ E}

lemma in-Neighbours-iff : y ∈ Neighbours E x ←→ {x ,y} ∈ E
by (simp add : Neighbours-def)

lemma finite-Neighbours:
assumes finite E
shows finite (Neighbours E x)

proof −
have Neighbours E x ⊆ Neighbours {X∈E . finite X } x

13

by (auto simp: Neighbours-def)
also have . . . ⊆ (

⋃
{X∈E . finite X })

by (meson Union-iff in-Neighbours-iff insert-iff subset-iff)
finally show ?thesis
using assms finite-subset by fastforce

qed

lemma (in fin-sgraph) not-own-Neighbour : E ′ ⊆ E =⇒ x /∈ Neighbours E ′ x
by (force simp: Neighbours-def singleton-not-edge)

context fin-sgraph
begin

declare singleton-not-edge [simp]

"A graph on vertex set S ∪ T that contains all edges incident to S"
(page 3). In fact, S is a clique and every vertex in T has an edge into S.

definition book :: ′a set ⇒ ′a set ⇒ ′a set set ⇒ bool where
book ≡ λS T F . disjnt S T ∧ all-edges-betw-un S (S∪T) ⊆ F

Cliques of a given number of vertices; the definition of clique from Ramsey
is used

definition size-clique :: nat ⇒ ′a set ⇒ ′a set set ⇒ bool where
size-clique p K F ≡ card K = p ∧ clique K F ∧ K ⊆ V

lemma size-clique-smaller : [[size-clique p K F ; p ′ < p]] =⇒ ∃K ′. size-clique p ′ K ′

F
unfolding size-clique-def
by (meson card-Ex-subset order .trans less-imp-le-nat smaller-clique)

2.3 Density: for calculating the parameter p
definition edge-card ≡ λC X Y . card (C ∩ all-edges-betw-un X Y)

definition gen-density ≡ λC X Y . edge-card C X Y / (card X ∗ card Y)

lemma edge-card-empty [simp]: edge-card C {} X = 0 edge-card C X {} = 0
by (auto simp: edge-card-def)

lemma edge-card-commute: edge-card C X Y = edge-card C Y X
using all-edges-betw-un-commute edge-card-def by presburger

lemma edge-card-le:
assumes finite X finite Y
shows edge-card C X Y ≤ card X ∗ card Y

proof −
have edge-card C X Y ≤ card (all-edges-betw-un X Y)
by (simp add : assms card-mono edge-card-def finite-all-edges-betw-un)

then show ?thesis

14

by (meson all-edges-betw-un-le assms le-trans)
qed

the assumption that Z is disjoint from X (or Y) is necessary

lemma edge-card-Un:
assumes disjnt X Y disjnt X Z finite X finite Y
shows edge-card C (X ∪ Y) Z = edge-card C X Z + edge-card C Y Z

proof −
have [simp]: finite (all-edges-betw-un U Z) for U
by (meson all-uedges-betw-subset fin-edges finite-subset)

have disjnt (C ∩ all-edges-betw-un X Z) (C ∩ all-edges-betw-un Y Z)
using assms by (meson Int-iff disjnt-all-edges-betw-un disjnt-iff)

then show ?thesis
by (simp add : edge-card-def card-Un-disjnt all-edges-betw-un-Un1 Int-Un-distrib)

qed

lemma edge-card-diff :
assumes Y⊆X disjnt X Z finite X
shows edge-card C (X−Y) Z = edge-card C X Z − edge-card C Y Z

proof −
have (X \Y) ∪ Y = X disjnt (X \Y) Y
by (auto simp: Un-absorb2 assms disjnt-iff)

then show ?thesis
by (metis add-diff-cancel-right ′ assms disjnt-Un1 edge-card-Un finite-Diff finite-subset)

qed

lemma edge-card-mono:
assumes Y⊆X shows edge-card C Y Z ≤ edge-card C X Z
unfolding edge-card-def

proof (intro card-mono)
show finite (C ∩ all-edges-betw-un X Z)
by (meson all-uedges-betw-subset fin-edges finite-Int finite-subset)

show C ∩ all-edges-betw-un Y Z ⊆ C ∩ all-edges-betw-un X Z
by (meson Int-mono all-edges-betw-un-mono1 assms subset-refl)

qed

lemma edge-card-eq-sum-Neighbours:
assumes C⊆E and B : finite B disjnt A B
shows edge-card C A B = (

∑
i∈B . card (Neighbours C i ∩ A))

using B
proof (induction B)
case empty
then show ?case
by (auto simp: edge-card-def)

next
case (insert b B)
have finite C
using assms(1) fin-edges finite-subset by blast

have bij : bij-betw (λe. the-elem(e−{b})) (C ∩ {{x , b} |x . x ∈ A}) (Neighbours

15

C b ∩ A)
unfolding bij-betw-def

proof
have [simp]: the-elem ({x , b} − {b}) = x if x ∈ A for x
using insert .prems by (simp add : disjnt-iff insert-Diff-if that)

show inj-on (λe. the-elem (e − {b})) (C ∩ {{x , b} |x . x ∈ A})
by (auto simp: inj-on-def)

show (λe. the-elem (e − {b})) ‘ (C ∩ {{x , b} |x . x ∈ A}) = Neighbours C b
∩ A

by (fastforce simp: Neighbours-def insert-commute image-iff Bex-def)
qed
have (C ∩ all-edges-betw-un A (insert b B)) = (C ∩ ({{x , b} |x . x ∈ A} ∪

all-edges-betw-un A B))
using ‹C ⊆ E› by (auto simp: all-edges-betw-un-insert2)

then have edge-card C A (insert b B) = card ((C ∩ ({{x ,b} |x . x ∈ A}) ∪ (C
∩ all-edges-betw-un A B)))

by (simp add : edge-card-def Int-Un-distrib)
also have . . . = card (C ∩ {{x ,b} |x . x ∈ A}) + card (C ∩ all-edges-betw-un

A B)
proof (rule card-Un-disjnt)
show disjnt (C ∩ {{x , b} |x . x ∈ A}) (C ∩ all-edges-betw-un A B)
using insert by (auto simp: disjnt-iff all-edges-betw-un-def doubleton-eq-iff)

qed (use ‹finite C › in auto)
also have . . . = card (Neighbours C b ∩ A) + card (C ∩ all-edges-betw-un A B)

using bij-betw-same-card [OF bij] by simp
also have . . . = (

∑
i∈insert b B . card (Neighbours C i ∩ A))

using insert by (simp add : edge-card-def)
finally show ?case .

qed

lemma sum-eq-card : finite A =⇒ (
∑

x ∈ A. if x ∈ B then 1 else 0) = card (A∩B)
by (metis (no-types, lifting) card-eq-sum sum.cong sum.inter-restrict)

lemma sum-eq-card-Neighbours:
assumes x ∈ V C ⊆ E
shows (

∑
y ∈ V \{x}. if {x ,y} ∈ C then 1 else 0) = card (Neighbours C x)

proof −
have Neighbours C x = (V \ {x}) ∩ {y . {x , y} ∈ C}
using assms wellformed by (auto simp: Neighbours-def)

with finV sum-eq-card [of - {y . {x ,y}∈C}] show ?thesis by simp
qed

lemma Neighbours-insert-NO-MATCH : NO-MATCH {} C =⇒ Neighbours (insert
e C) x = Neighbours {e} x ∪ Neighbours C x
by (auto simp: Neighbours-def)

lemma Neighbours-sing-2 :
assumes e ∈ E
shows (

∑
x∈V . card (Neighbours {e} x)) = 2

16

proof −
obtain u v where uv : e = {u,v} u ̸=v
by (meson assms card-2-iff two-edges)

then have u ∈ V v ∈ V
using assms wellformed uv by blast+

have ∗: Neighbours {e} x = (if x=u then {v} else if x=v then {u} else {}) for
x

by (auto simp: Neighbours-def uv doubleton-eq-iff)
show ?thesis
using ‹u ̸=v›
by (simp add : ∗ if-distrib [of card] finV sum.delta-remove ‹u ∈ V › ‹v ∈ V ›

cong : if-cong)
qed

lemma sum-Neighbours-eq-card :
assumes finite C C⊆E
shows (

∑
i∈V . card (Neighbours C i)) = card C ∗ 2

using assms
proof (induction C)
case empty
then show ?case
by (auto simp: Neighbours-def)

next
case (insert e C)
then have [simp]: Neighbours {e} x ∩ Neighbours C x = {} for x
by (auto simp: Neighbours-def)

with insert show ?case
by (auto simp: card-Un-disjoint finite-Neighbours Neighbours-insert-NO-MATCH

sum.distrib Neighbours-sing-2)
qed

lemma gen-density-empty [simp]: gen-density C {} X = 0 gen-density C X {} =
0
by (auto simp: gen-density-def)

lemma gen-density-commute: gen-density C X Y = gen-density C Y X
by (simp add : edge-card-commute gen-density-def)

lemma gen-density-ge0 : gen-density C X Y ≥ 0
by (auto simp: gen-density-def)

lemma gen-density-gt0 :
assumes finite X finite Y {x ,y} ∈ C x ∈ X y ∈ Y C ⊆ E
shows gen-density C X Y > 0

proof −
have xy : {x ,y} ∈ all-edges-betw-un X Y
using assms by (force simp: all-edges-betw-un-def)

moreover have finite (all-edges-betw-un X Y)
by (simp add : assms finite-all-edges-betw-un)

17

ultimately have edge-card C X Y > 0
by (metis IntI assms(3) card-0-eq edge-card-def emptyE finite-Int gr0I)

with xy show ?thesis
using assms gen-density-def less-eq-real-def by fastforce

qed

lemma gen-density-le1 : gen-density C X Y ≤ 1
unfolding gen-density-def
by (smt (verit) card .infinite divide-le-eq-1 edge-card-le mult-eq-0-iff of-nat-le-0-iff

of-nat-mono)

lemma gen-density-le-1-minus:
shows gen-density C X Y ≤ 1 − gen-density (E−C) X Y

proof (cases finite X ∧ finite Y)
case True
have C ∩ all-edges-betw-un X Y ∪ (E − C) ∩ all-edges-betw-un X Y =

all-edges-betw-un X Y
by (auto simp: all-edges-betw-un-def)
with True have (edge-card C X Y) + (edge-card (E − C) X Y) ≤ card

(all-edges-betw-un X Y)
unfolding edge-card-def
by (metis Diff-Int-distrib2 Diff-disjoint card-Un-disjoint card-Un-le finite-Int

finite-all-edges-betw-un)
with True show ?thesis
apply (simp add : gen-density-def divide-simps)
by (smt (verit) all-edges-betw-un-le of-nat-add of-nat-mono of-nat-mult)

qed (auto simp: gen-density-def)

lemma gen-density-lt1 :
assumes {x ,y} ∈ E−C x ∈ X y ∈ Y C ⊆ E
shows gen-density C X Y < 1

proof (cases finite X ∧ finite Y)
case True
then have 0 < gen-density (E − C) X Y
using assms gen-density-gt0 by auto

have gen-density C X Y ≤ 1 − gen-density (E − C) X Y
by (intro gen-density-le-1-minus)

then show ?thesis
using ‹0 < gen-density (E − C) X Y › by linarith

qed (auto simp: gen-density-def)

lemma gen-density-le-iff :
assumes disjnt X Z finite X Y⊆X Y ̸= {} finite Z
shows gen-density C X Z ≤ gen-density C Y Z ←→

edge-card C X Z / card X ≤ edge-card C Y Z / card Y
using assms by (simp add : gen-density-def divide-simps mult-less-0-iff zero-less-mult-iff)

"Removing vertices whose degree is less than the average can only in-
crease the density from the remaining set" (page 17)

18

lemma gen-density-below-avg-ge:
assumes disjnt X Z finite X Y⊂X finite Z
and genY : gen-density C Y Z ≤ gen-density C X Z

shows gen-density C (X−Y) Z ≥ gen-density C X Z
proof −
have real (edge-card C Y Z) / card Y ≤ real (edge-card C X Z) / card X
using assms
by (force simp: gen-density-def divide-simps zero-less-mult-iff split : if-split-asm)

have card Y < card X
by (simp add : assms psubset-card-mono)

have ∗: finite Y Y ⊆ X X ̸={}
using assms finite-subset by blast+

then
have card X ∗ edge-card C Y Z ≤ card Y ∗ edge-card C X Z
using genY assms
by (simp add : gen-density-def field-split-simps card-eq-0-iff flip: of-nat-mult

split : if-split-asm)
with assms ∗ ‹card Y < card X › show ?thesis
by (simp add : gen-density-le-iff field-split-simps edge-card-diff card-Diff-subset

edge-card-mono flip: of-nat-mult)
qed

lemma edge-card-insert :
assumes NO-MATCH {} F and e /∈ F
shows edge-card (insert e F) X Y = edge-card {e} X Y + edge-card F X Y

proof −
have fin: finite (all-edges-betw-un X Y)
by (meson all-uedges-betw-subset fin-edges finite-subset)

have insert e F ∩ all-edges-betw-un X Y
= {e} ∩ all-edges-betw-un X Y ∪ F ∩ all-edges-betw-un X Y

by auto
with ‹e /∈F› show ?thesis
by (auto simp: edge-card-def card-Un-disjoint disjoint-iff fin)

qed

lemma edge-card-sing :
assumes e ∈ E
shows edge-card {e} U U = (if e ⊆ U then 1 else 0)

proof (cases e ⊆ U)
case True
obtain x y where xy : e = {x ,y} x ̸=y
using assms by (metis card-2-iff two-edges)

with True assms have {e} ∩ all-edges-betw-un U U = {e}
by (auto simp: all-edges-betw-un-def)

with True show ?thesis
by (simp add : edge-card-def)

qed (auto simp: edge-card-def all-edges-betw-un-def)

lemma sum-edge-card-choose:

19

assumes 2≤k C ⊆ E
shows (

∑
U∈[V]k. edge-card C U U) = (card V − 2 choose (k−2)) ∗ card C

proof −
have ∗: card {A ∈ [V]k. e ⊆ A} = card V − 2 choose (k−2) if e: e ∈ C for e
proof −
have e ⊆ V
using ‹C⊆E› e wellformed by force

obtain x y where xy : e = {x ,y} x ̸=y
using ‹C⊆E› e by (metis in-mono card-2-iff two-edges)

define A where A ≡ {A ∈ [V]k. e ⊆ A}
have

∧
A. A ∈ A =⇒ A = e ∪ (A\e) ∧ A\e ∈ [V \e](k − 2)

by (auto simp: A-def nsets-def xy)
moreover have

∧
xa. [[xa ∈ [V \ e](k − 2)]] =⇒ e ∪ xa ∈ A

using ‹e ⊆ V › assms
by (auto simp: A-def nsets-def xy card-insert-if)

ultimately have A = (∪)e ‘ [V \e](k−2)

by auto
moreover have inj-on ((∪) e) ([V \e](k − 2))
by (auto simp: inj-on-def nsets-def)

moreover have card (V \e) = card V − 2
by (metis ‹C⊆E› ‹e ∈ C › subsetD card-Diff-subset finV finite-subset two-edges

wellformed)
ultimately show ?thesis
using assms by (simp add : card-image A-def)

qed
have (

∑
U∈[V]k. edge-card R U U) = ((card V − 2) choose (k−2)) ∗ card R

if finite R R ⊆ C for R
using that

proof (induction R)
case empty
then show ?case
by (simp add : edge-card-def)

next
case (insert e R)
with assms have e∈E by blast
with insert show ?case
by (simp add : edge-card-insert ∗ sum.distrib edge-card-sing Ramsey .finite-imp-finite-nsets

finV flip: sum.inter-filter)
qed
then show ?thesis
by (meson ‹C⊆E› fin-edges finite-subset set-eq-subset)

qed

lemma sum-nsets-Compl :
assumes finite A k ≤ card A
shows (

∑
U∈[A]k. f (A\U)) = (

∑
U∈[A](card A − k). f U)

proof −

20

have B ∈ (\) A ‘ [A]k if B ∈ [A](card A − k) for B
proof −
have card (A\B) = k
using assms that by (simp add : nsets-def card-Diff-subset)

moreover have B = A\(A\B)
using that by (auto simp: nsets-def)

ultimately show ?thesis
using assms unfolding nsets-def image-iff by blast

qed
then have bij-betw (λU . A\U) ([A]k) ([A](card A − k))
using assms by (auto simp: nsets-def bij-betw-def inj-on-def card-Diff-subset)

then show ?thesis
using sum.reindex-bij-betw by blast

qed

2.4 Lemma 9.2 preliminaries

Equation (45) in the text, page 30, is seemingly a huge gap. The development
below relies on binomial coefficient identities.

definition graph-density ≡ λC . card C / card E

lemma graph-density-Un:
assumes disjnt C D C ⊆ E D ⊆ E
shows graph-density (C ∪ D) = graph-density C + graph-density D

proof (cases card E > 0)
case True
with assms obtain finite C finite D
by (metis card-ge-0-finite finite-subset)

with assms show ?thesis
by (auto simp: graph-density-def card-Un-disjnt divide-simps)

qed (auto simp: graph-density-def)

Could be generalised to any complete graph

lemma density-eq-average:
assumes C ⊆ E and complete: E = all-edges V
shows graph-density C =

real (
∑

x ∈ V .
∑

y ∈ V \{x}. if {x ,y} ∈ C then 1 else 0) / (card V ∗ (card
V − 1))
proof −
have cardE : card E = card V choose 2
using card-all-edges complete finV by blast

have finite C
using assms fin-edges finite-subset by blast

then have ∗: (
∑

x∈V .
∑

y∈V \{x}. if {x , y} ∈ C then 1 else 0) = card C ∗ 2
using assms by (simp add : sum-eq-card-Neighbours sum-Neighbours-eq-card)

show ?thesis
by (auto simp: graph-density-def divide-simps cardE choose-two-real ∗)

qed

21

lemma edge-card-V-V :
assumes C ⊆ E and complete: E = all-edges V
shows edge-card C V V = card C

proof −
have C ⊆ all-edges-betw-un V V
using assms clique-iff complete subset-refl
by (metis all-uedges-betw-I all-uedges-betw-subset clique-def)

then show ?thesis
by (metis Int-absorb2 edge-card-def)

qed

Bhavik’s statement; own proof

proposition density-eq-average-partition:
assumes k : 0 < k k < card V and C ⊆ E and complete: E = all-edges V
shows graph-density C = (

∑
U∈[V]k. gen-density C U (V \U)) / (card V choose

k)
proof (cases k=1 ∨ gorder = Suc k)
case True
then have [simp]: gorder choose k = gorder by auto
have eq : (C ∩ {{x , y} |y . y ∈ V ∧ y ̸= x ∧ {x , y} ∈ E})

= (λy . {x ,y}) ‘ {y . {x ,y} ∈ C} for x
using ‹C⊆E› wellformed by fastforce

have V ̸= {}
using assms by force

then have nontriv : E ̸= {}
using assms card-all-edges finV by force

have (
∑

U∈[V]k. gen-density C U (V \ U)) = (
∑

x∈V . gen-density C {x} (V
\ {x}))

using True
proof
assume k = 1
then show ?thesis
by (simp add : sum-nsets-one)

next
assume §: gorder = Suc k
then have V−A ̸= {} if card A = k finite A for A
using that
by (metis assms(2) card .empty card-less-sym-Diff finV less-nat-zero-code)

then have bij : bij-betw (λx . V \ {x}) V ([V]k)
using finV §
by (auto simp: inj-on-def bij-betw-def nsets-def image-iff)
(metis Diff-insert-absorb card .insert card-subset-eq insert-subset subsetI)

moreover have V \(V \{x}) = {x} if x∈V for x
using that by auto

ultimately show ?thesis
using sum.reindex-bij-betw [OF bij] gen-density-commute
by (metis (no-types, lifting) sum.cong)

qed
also have . . . = (

∑
x∈V . real (edge-card C {x} (V \ {x}))) / (gorder − 1)

22

by (simp add : ‹C⊆E› gen-density-def flip: sum-divide-distrib)
also have . . . = (

∑
i∈V . card (Neighbours C i)) / (gorder − 1)

unfolding edge-card-def Neighbours-def all-edges-betw-un-def
by (simp add : eq card-image inj-on-def doubleton-eq-iff)

also have . . . = graph-density C ∗ gorder
using assms density-eq-average [OF ‹C⊆E› complete]
by (simp add : sum-eq-card-Neighbours)

finally show ?thesis
using k by simp

next
case False
then have K : gorder > Suc k k≥2
using assms by auto

then have gorder − Suc (Suc (gorder − Suc (Suc k))) = k
using assms by auto

then have [simp]: gorder − 2 choose (gorder − Suc (Suc k)) = (gorder − 2
choose k)

using binomial-symmetric [of (gorder − Suc (Suc k))]
by simp

have cardE : card E = card V choose 2
using card-all-edges complete finV by blast

have card E > 0
using k cardE by auto

have in-E-iff [iff]: {v ,w} ∈ E ←→ v∈V ∧ w∈V ∧ v ̸=w for v w
by (auto simp: complete all-edges-alt doubleton-eq-iff)

have B : edge-card C V V = edge-card C U U + edge-card C U (V \U) +
edge-card C (V \U) (V \U)

(is ?L = ?R)
if U ⊆ V for U

proof −
have fin: finite (all-edges-betw-un U U ′) for U ′

by (meson all-uedges-betw-subset fin-edges finite-subset)
have dis: all-edges-betw-un U U ∩ all-edges-betw-un U (V \ U) = {}
by (auto simp: all-edges-betw-un-def doubleton-eq-iff)

have all-edges-betw-un V V = all-edges-betw-un U U ∪ all-edges-betw-un U
(V \U) ∪ all-edges-betw-un (V \U) (V \U)

by (smt (verit) that Diff-partition Un-absorb Un-assoc all-edges-betw-un-Un2
all-edges-betw-un-commute)

with that have ?L = card (C ∩ all-edges-betw-un U U ∪ C ∩ all-edges-betw-un
U (V \ U)

∪ C ∩ all-edges-betw-un (V \ U) (V \ U))
by (simp add : edge-card-def Int-Un-distrib)

also have . . . = ?R
using fin dis ‹C⊆E› fin-edges finite-subset

by ((subst card-Un-disjoint)?, fastforce simp: edge-card-def all-edges-betw-un-def
doubleton-eq-iff)+

finally show ?thesis .
qed

23

have C : (
∑

U∈[V]k. real (edge-card C U (V \U)))

= (card V choose k) ∗ card C − real(
∑

U∈[V]k. edge-card C U U + edge-card
C (V \U) (V \U))

(is ?L = ?R)
proof −
have ?L = (

∑
U∈[V]k. edge-card C V V − real (edge-card C U U + edge-card

C (V \U) (V \U)))
unfolding nsets-def by (rule sum.cong) (auto simp: B)

also have . . . = ?R
using ‹C⊆E› complete edge-card-V-V
by (simp add : ‹C⊆E› sum-subtractf edge-card-V-V)

finally show ?thesis .
qed

have (gorder−2 choose k) + (gorder−2 choose (k−2)) + 2 ∗ (gorder−2 choose
(k−1)) = (gorder choose k)

using assms K by (auto simp: choose-reduce-nat [of gorder] choose-reduce-nat
[of gorder−Suc 0] eval-nat-numeral)
moreover
have (gorder − 1) ∗ (gorder−2 choose (k−1)) = (gorder−k) ∗ (gorder−1 choose

(k−1))
by (metis Suc-1 Suc-diff-1 binomial-absorb-comp diff-Suc-eq-diff-pred ‹k>0 ›)

ultimately have F : (gorder − 1) ∗ (gorder−2 choose k) + (gorder − 1) ∗
(gorder−2 choose (k−2)) + 2 ∗ (gorder−k) ∗ (gorder−1 choose (k−1))

= (gorder − 1) ∗ (gorder choose k)
by (smt (verit) add-mult-distrib2 mult .assoc mult .left-commute)

have (
∑

U∈[V]k. edge-card C U (V \U) / (real (card U) ∗ card (V \U)))

= (
∑

U∈[V]k. edge-card C U (V \U) / (real k ∗ (card V − k)))
using card-Diff-subset by (intro sum.cong) (auto simp: nsets-def)

also have . . . = (
∑

U∈[V]k. edge-card C U (V \U)) / (k ∗ (card V − k))
by (simp add : sum-divide-distrib)

finally have ∗: (
∑

U∈[V]k. edge-card C U (V \U) / (real (card U) ∗ card
(V \U)))

= (
∑

U∈[V]k. edge-card C U (V \U)) / (k ∗ (card V − k)) .

have choose-m1 : gorder ∗ (gorder − 1 choose (k − 1)) = k ∗ (gorder choose k)
using ‹k>0 › times-binomial-minus1-eq by presburger

have ∗∗: (real k ∗ (real gorder − real k) ∗ real (gorder choose k)) =
(real (gorder choose k) − (real (gorder − 2 choose (k − 2)) + real (gorder

− 2 choose k))) ∗
real (gorder choose 2)

using assms K arg-cong [OF F , of λu. real gorder ∗ real u] arg-cong [OF
choose-m1 , of real]

apply (simp add : choose-two-real ring-distribs)
by (smt (verit) distrib-right mult .assoc mult-2-right mult-of-nat-commute)

have eq : (
∑

U∈[V]k. real (edge-card C (V \U) (V \U)))

= (
∑

U∈[V](gorder−k). real (edge-card C U U))

24

using K finV by (subst sum-nsets-Compl , simp-all)
show ?thesis
unfolding graph-density-def gen-density-def
using K ‹card E > 0 › ‹C⊆E›
apply (simp add : eq divide-simps B C sum.distrib ∗)
apply (simp add : ∗∗ sum-edge-card-choose cardE flip: of-nat-sum)
by argo

qed

lemma exists-density-edge-density :
assumes k : 0 < k k < card V and C ⊆ E and complete: E = all-edges V
obtains U where card U = k U⊆V graph-density C ≤ gen-density C U (V \U)

proof −
have False if

∧
U . U ∈ [V]k =⇒ graph-density C > gen-density C U (V \U)

proof −
have card([V]k) > 0
using assms by auto

then have (
∑

U∈[V]k. gen-density C U (V \ U)) < card([V]k) ∗ graph-density
C

by (meson sum-bounded-above-strict that)
with density-eq-average-partition assms show False by force

qed
with that show thesis
unfolding nsets-def by fastforce

qed

end

end

3 The book algorithm
theory Book imports

Neighbours
HOL−Library .Disjoint-Sets HOL−Decision-Procs.Approximation
HOL−Real-Asymp.Real-Asymp

begin

hide-const Bseq

3.1 Locale for the parameters of the construction

The epsilon of the paper, outside the locale

definition eps :: nat ⇒ real
where eps ≡ λk . real k powr (−1/4)

lemma eps-eq-sqrt : eps k = 1 / sqrt (sqrt (real k))

25

by (simp add : eps-def powr-minus-divide powr-powr flip: powr-half-sqrt)

lemma eps-ge0 : eps k ≥ 0
by (simp add : eps-def)

lemma eps-gt0 : k>0 =⇒ eps k > 0
by (simp add : eps-def)

lemma eps-le1 :
assumes k>0 shows eps k ≤ 1

proof −
have eps 1 = 1
by (simp add : eps-def)

moreover have eps n ≤ eps m if 0<m m ≤ n for m n
using that by (simp add : eps-def powr-minus powr-mono2 divide-simps)

ultimately show ?thesis
using assms by (metis less-one nat-neq-iff not-le)

qed

lemma eps-less1 :
assumes k>1 shows eps k < 1
by (smt (verit) assms eps-def less-imp-of-nat-less of-nat-1 powr-less-one zero-le-divide-iff)

definition qfun-base :: [nat , nat] ⇒ real
where qfun-base ≡ λk h. ((1 + eps k)^h − 1) / k

definition hgt-maximum ≡ λk . 2 ∗ ln (real k) / eps k

The first of many "bigness assumptions"

definition Big-height-upper-bound ≡ λk . qfun-base k (nat ⌊hgt-maximum k⌋) > 1

lemma Big-height-upper-bound :
shows ∀∞k . Big-height-upper-bound k
unfolding Big-height-upper-bound-def hgt-maximum-def eps-def qfun-base-def
by real-asymp

type-synonym ′a config = ′a set × ′a set × ′a set × ′a set

locale P0-min =
fixes p0-min :: real
assumes p0-min: 0 < p0-min p0-min < 1

locale Book-Basis = fin-sgraph + P0-min + — building on finite simple graphs
(no loops)
assumes complete: E = all-edges V
assumes infinite-UNIV : infinite (UNIV :: ′a set)

begin

abbreviation nV ≡ card V

26

lemma graph-size: graph-size = (nV choose 2)
using card-all-edges complete finV by blast

lemma in-E-iff [iff]: {v ,w} ∈ E ←→ v∈V ∧ w∈V ∧ v ̸=w
by (auto simp: complete all-edges-alt doubleton-eq-iff)

lemma all-edges-betw-un-iff-clique: K ⊆ V =⇒ all-edges-betw-un K K ⊆ F ←→
clique K F
unfolding clique-def all-edges-betw-un-def doubleton-eq-iff subset-iff
by blast

lemma clique-Un:
assumes clique A F clique B F all-edges-betw-un A B ⊆ F A ⊆ V B ⊆ V
shows clique (A ∪ B) F
using assms by (simp add : all-uedges-betw-I clique-Un subset-iff)

lemma clique-insert :
assumes clique A F all-edges-betw-un {x} A ⊆ F A ⊆ V x ∈ V
shows clique (insert x A) F
using assms
by (metis Un-subset-iff clique-def insert-is-Un insert-subset clique-Un singletonD)

lemma less-RN-Red-Blue:
fixes l k
assumes nV : nV < RN k l
obtains Red Blue :: ′a set set
where Red ⊆ E Blue = E\Red ¬ (∃K . size-clique k K Red) ¬ (∃K . size-clique

l K Blue)
proof −
have ¬ is-Ramsey-number k l nV
using RN-le assms leD by blast

then obtain f where f : f ∈ nsets {..<nV } 2 → {..<2}
and noclique:

∧
i . i<2 =⇒ ¬ monochromatic {..<nV } ([k ,l] ! i) 2 f i

by (auto simp: partn-lst-def eval-nat-numeral)
obtain φ where φ: bij-betw φ {..<nV } V
using bij-betw-from-nat-into-finite finV by blast

define ϑ where ϑ ≡ inv-into {..<nV } φ
have ϑ: bij-betw ϑ V {..<nV }
using φ ϑ-def bij-betw-inv-into by blast

have emap: bij-betw (λe. φ‘e) (nsets {..<nV } 2) E
by (metis φ bij-betw-nsets complete nsets2-eq-all-edges)

define Red where Red ≡ (λe. φ‘e) ‘ ((f −‘ {0}) ∩ nsets {..<nV } 2)
define Blue where Blue ≡ (λe. φ‘e) ‘ ((f −‘ {1}) ∩ nsets {..<nV } 2)
have Red ⊆ E
using bij-betw-imp-surj-on[OF emap] by (auto simp: Red-def)

have Blue = E−Red
using emap f

27

by (auto simp: Red-def Blue-def bij-betw-def inj-on-eq-iff image-iff Pi-iff)
have no-Red-K : False if size-clique k K Red for K
proof −
have KR: clique K Red and Kk : card K = k and K⊆V
using that by (auto simp: size-clique-def)

have f {ϑ v , ϑ w} = 0
if eq : ϑ v ̸= ϑ w and v ∈ K w ∈ K for v w

proof −
have ∃ e∈f −‘ {0} ∩ [{..<nV }]2. {v , w} = φ ‘ e
using that KR by (fastforce simp: clique-def Red-def)

then show ?thesis
using bij-betw-inv-into-left [OF φ]
by (auto simp: ϑ-def doubleton-eq-iff insert-commute elim!: nsets2-E)

qed
then have f ‘ [ϑ‘K]2 ⊆ {0} by (auto elim!: nsets2-E)

moreover have ϑ‘K ∈ [{..<nV }]card K

by (smt (verit) ‹K⊆V › ϑ bij-betwE bij-betw-nsets finV mem-Collect-eq
nsets-def finite-subset)

ultimately show False
using noclique [of 0] Kk
by (simp add : size-clique-def monochromatic-def)

qed
have no-Blue-K : False if size-clique l K Blue for K
proof −
have KB : clique K Blue and Kl : card K = l and K⊆V
using that by (auto simp: size-clique-def)

have f {ϑ v , ϑ w} = 1
if eq : ϑ v ̸= ϑ w and v ∈ K w ∈ K for v w

proof −
have ∃ e∈f −‘ {1} ∩ [{..<nV }]2. {v , w} = φ ‘ e
using that KB by (fastforce simp: clique-def Blue-def)

then show ?thesis
using bij-betw-inv-into-left [OF φ]
by (auto simp: ϑ-def doubleton-eq-iff insert-commute elim!: nsets2-E)

qed
then have f ‘ [ϑ‘K]2 ⊆ {1} by (auto elim!: nsets2-E)

moreover have ϑ‘K ∈ [{..<nV }]card K

by (smt (verit) ‹K⊆V › ϑ bij-betwE bij-betw-nsets finV mem-Collect-eq
nsets-def finite-subset)

ultimately show False
using noclique [of 1] Kl
by (simp add : size-clique-def monochromatic-def)

qed
show thesis
using ‹Blue = E \ Red› ‹Red ⊆ E› no-Blue-K no-Red-K that by presburger

qed

end

28

locale No-Cliques = Book-Basis + P0-min +
fixes Red Blue :: ′a set set
assumes Red-E : Red ⊆ E
assumes Blue-def : Blue = E−Red
— the following are local to the program
fixes l ::nat — blue limit
fixes k ::nat — red limit
assumes l-le-k : l ≤ k — they should be "sufficiently large"
assumes no-Red-clique: ¬ (∃K . size-clique k K Red)
assumes no-Blue-clique: ¬ (∃K . size-clique l K Blue)

locale Book = Book-Basis + No-Cliques +
fixes µ::real — governs the big blue steps
assumes µ01 : 0 < µ µ < 1
fixes X0 :: ′a set and Y0 :: ′a set — initial values
assumes XY0 : disjnt X0 Y0 X0 ⊆ V Y0 ⊆ V
assumes density-ge-p0-min: gen-density Red X0 Y0 ≥ p0-min

locale Book ′ = Book-Basis + No-Cliques +
fixes γ::real — governs the big blue steps
assumes γ-def : γ = real l / (real k + real l)
fixes X0 :: ′a set and Y0 :: ′a set — initial values
assumes XY0 : disjnt X0 Y0 X0 ⊆ V Y0 ⊆ V
assumes density-ge-p0-min: gen-density Red X0 Y0 ≥ p0-min

context No-Cliques
begin

lemma ln0 : l>0
using no-Blue-clique by (force simp: size-clique-def clique-def)

lemma kn0 : k > 0
using l-le-k ln0 by auto

lemma Blue-E : Blue ⊆ E
by (simp add : Blue-def)

lemma disjnt-Red-Blue: disjnt Red Blue
by (simp add : Blue-def disjnt-def)

lemma Red-Blue-all : Red ∪ Blue = all-edges V
using Blue-def Red-E complete by blast

lemma Blue-eq : Blue = all-edges V − Red
using Blue-def complete by auto

lemma Red-eq : Red = all-edges V − Blue
using Blue-eq Red-Blue-all by blast

29

lemma disjnt-Red-Blue-Neighbours: disjnt (Neighbours Red x ∩ X) (Neighbours
Blue x ∩ X ′)
using disjnt-Red-Blue by (auto simp: disjnt-def Neighbours-def)

lemma indep-Red-iff-clique-Blue: K ⊆ V =⇒ indep K Red ←→ clique K Blue
using Blue-eq by auto

lemma Red-Blue-RN :
fixes X :: ′a set
assumes card X ≥ RN m n X⊆V
shows ∃K ⊆ X . size-clique m K Red ∨ size-clique n K Blue
using partn-lst-imp-is-clique-RN [OF is-Ramsey-number-RN [of m n]] assms

indep-Red-iff-clique-Blue
unfolding is-clique-RN-def size-clique-def clique-indep-def
by (metis finV finite-subset subset-eq)

end

context Book
begin

lemma Red-edges-XY0 : Red ∩ all-edges-betw-un X0 Y0 ̸= {}
using density-ge-p0-min p0-min
by (auto simp: gen-density-def edge-card-def)

lemma finite-X0 : finite X0 and finite-Y0 : finite Y0
using XY0 finV finite-subset by blast+

lemma Red-nonempty : Red ̸= {}
using Red-edges-XY0 by blast

lemma gorder-ge2 : gorder ≥ 2
using Red-nonempty
by (metis Red-E card-mono equals0I finV subset-empty two-edges wellformed)

lemma nontriv : E ̸= {}
using Red-E Red-nonempty by force

lemma no-singleton-Blue [simp]: {a} /∈ Blue
using Blue-E by auto

lemma no-singleton-Red [simp]: {a} /∈ Red
using Red-E by auto

lemma not-Red-Neighbour [simp]: x /∈ Neighbours Red x and not-Blue-Neighbour
[simp]: x /∈ Neighbours Blue x
using Red-E Blue-E not-own-Neighbour by auto

lemma Neighbours-RB :

30

assumes a ∈ V X⊆V
shows Neighbours Red a ∩ X ∪ Neighbours Blue a ∩ X = X − {a}
using assms Red-Blue-all complete singleton-not-edge
by (fastforce simp: Neighbours-def)

lemma Neighbours-Red-Blue:
assumes x ∈ V
shows Neighbours Red x = V − insert x (Neighbours Blue x)
using Red-E assms by (auto simp: Blue-eq Neighbours-def complete all-edges-def)

abbreviation red-density X Y ≡ gen-density Red X Y
abbreviation blue-density X Y ≡ gen-density Blue X Y

definition Weight :: [′a set , ′a set , ′a, ′a] ⇒ real where
Weight ≡ λX Y x y . inverse (card Y) ∗ (card (Neighbours Red x ∩ Neighbours

Red y ∩ Y)
− red-density X Y ∗ card (Neighbours Red x ∩ Y))

definition weight :: ′a set ⇒ ′a set ⇒ ′a ⇒ real where
weight ≡ λX Y x .

∑
y ∈ X−{x}. Weight X Y x y

definition p0 :: real
where p0 ≡ red-density X0 Y0

definition qfun :: nat ⇒ real
where qfun ≡ λh. p0 + qfun-base k h

lemma qfun-eq : qfun ≡ λh. p0 + ((1 + eps k)^h − 1) / k
by (simp add : qfun-def qfun-base-def)

definition hgt :: real ⇒ nat
where hgt ≡ λp. LEAST h. p ≤ qfun h ∧ h>0

lemma qfun0 [simp]: qfun 0 = p0
by (simp add : qfun-eq)

lemma p0-ge: p0 ≥ p0-min
using density-ge-p0-min by (simp add : p0-def)

lemma card-XY0 : card X0 > 0 card Y0 > 0
using Red-edges-XY0 finite-X0 finite-Y0 by force+

lemma finite-Red [simp]: finite Red
by (metis Red-Blue-all complete fin-edges finite-Un)

lemma finite-Blue [simp]: finite Blue
using Blue-E fin-edges finite-subset by blast

lemma Red-edges-nonzero: edge-card Red X0 Y0 > 0

31

using Red-edges-XY0
using Red-E edge-card-def fin-edges finite-subset by fastforce

lemma p0-01 : 0 < p0 p0 ≤ 1
proof −
show 0 < p0
using Red-edges-nonzero card-XY0
by (auto simp: p0-def gen-density-def divide-simps mult-less-0-iff)

show p0 ≤ 1
by (simp add : gen-density-le1 p0-def)

qed

lemma qfun-strict-mono: h ′<h =⇒ qfun h ′ < qfun h
by (simp add : divide-strict-right-mono eps-gt0 kn0 qfun-eq)

lemma qfun-mono: h ′≤h =⇒ qfun h ′ ≤ qfun h
by (metis less-eq-real-def nat-less-le qfun-strict-mono)

lemma q-Suc-diff : qfun (Suc h) − qfun h = eps k ∗ (1 + eps k)^h / k
by (simp add : qfun-eq field-split-simps)

lemma height-exists ′:
obtains h where p ≤ qfun-base k h ∧ h>0

proof −
have 1 : 1 + eps k ≥ 1
by (auto simp: eps-def)

have ∀∞h. p ≤ real h ∗ eps k / real k
using p0-01 kn0 unfolding eps-def by real-asymp

then obtain h where p ≤ real h ∗ eps k / real k
by (meson eventually-sequentially order .refl)

also have . . . ≤ ((1 + eps k) ^ h − 1) / real k
using linear-plus-1-le-power [of eps k h]
by (intro divide-right-mono add-mono) (auto simp: eps-def add-ac)

also have . . . ≤ ((1 + eps k) ^ Suc h − 1) / real k
using power-increasing [OF le-SucI [OF order-refl] 1]
by (simp add : divide-right-mono)

finally have p ≤ qfun-base k (Suc h)
unfolding qfun-base-def using p0-01 by blast

then show thesis
using that by blast

qed

lemma height-exists:
obtains h where p ≤ qfun h h>0

proof −
obtain h ′ where p ≤ qfun-base k h ′ ∧ h ′>0
using height-exists ′ by blast

then show thesis

32

using p0-01 qfun-def that
by (metis add-strict-increasing less-eq-real-def)

qed

lemma hgt-gt0 : hgt p > 0
unfolding hgt-def
by (smt (verit , best) LeastI height-exists kn0)

lemma hgt-works: p ≤ qfun (hgt p)
by (metis (no-types, lifting) LeastI height-exists hgt-def)

lemma hgt-Least :
assumes 0<h p ≤ qfun h
shows hgt p ≤ h
by (simp add : Suc-leI assms hgt-def Least-le)

lemma real-hgt-Least :
assumes real h ≤ r 0<h p ≤ qfun h
shows real (hgt p) ≤ r
using assms by (meson assms order .trans hgt-Least of-nat-mono)

lemma hgt-greater :
assumes p > qfun h
shows hgt p > h
by (meson assms hgt-works kn0 not-less order .trans qfun-mono)

lemma hgt-less-imp-qfun-less:
assumes 0<h h < hgt p
shows p > qfun h
by (metis assms hgt-Least not-le)

lemma hgt-le-imp-qfun-ge:
assumes hgt p ≤ h
shows p ≤ qfun h
by (meson assms hgt-greater not-less)

This gives us an upper bound for heights, namely hgt 1, but it’s not
explicit.
lemma hgt-mono:
assumes p ≤ q
shows hgt p ≤ hgt q
by (meson assms order .trans hgt-Least hgt-gt0 hgt-works)

lemma hgt-mono ′:
assumes hgt p < hgt q
shows p < q
by (smt (verit) assms hgt-mono leD)

The upper bound of the height h(p) appears just below (5) on page 9.
Although we can bound all Heights by monotonicity (since p ≤ (1 :: ′b)), we

33

need to exhibit a specific o(k) function.

lemma height-upper-bound :
assumes p ≤ 1 and big : Big-height-upper-bound k
shows hgt p ≤ 2 ∗ ln k / eps k
using assms real-hgt-Least big nat-floor-neg not-gr0 of-nat-floor
unfolding Big-height-upper-bound-def hgt-maximum-def
by (smt (verit , ccfv-SIG) p0-01 (1) power .simps(1) qfun-def qfun-eq zero-less-divide-iff)

definition alpha :: nat ⇒ real where alpha ≡ λh. qfun h − qfun (h−1)

lemma alpha-ge0 : alpha h ≥ 0
by (simp add : alpha-def qfun-eq divide-le-cancel eps-gt0)

lemma alpha-Suc-ge: alpha (Suc h) ≥ eps k / k
proof −
have (1 + eps k) ^ h ≥ 1
by (simp add : eps-def)

then show ?thesis
by (simp add : alpha-def qfun-eq eps-gt0 field-split-simps)

qed

lemma alpha-ge: h>0 =⇒ alpha h ≥ eps k / k
by (metis Suc-pred alpha-Suc-ge)

lemma alpha-gt0 : h>0 =⇒ alpha h > 0
by (metis alpha-ge alpha-ge0 eps-gt0 kn0 nle-le not-le of-nat-0-less-iff zero-less-divide-iff)

lemma alpha-Suc-eq : alpha (Suc h) = eps k ∗ (1 + eps k) ^ h / k
by (simp add : alpha-def q-Suc-diff)

lemma alpha-eq :
assumes h>0 shows alpha h = eps k ∗ (1 + eps k) ^ (h−1) / k
by (metis Suc-pred ′ alpha-Suc-eq assms)

lemma alpha-hgt-eq : alpha (hgt p) = eps k ∗ (1 + eps k) ^ (hgt p −1) / k
using alpha-eq hgt-gt0 by presburger

lemma alpha-mono: [[h ′ ≤ h; 0 < h ′]] =⇒ alpha h ′ ≤ alpha h
by (simp add : alpha-eq eps-ge0 divide-right-mono mult-left-mono power-increasing)

definition all-incident-edges :: ′a set ⇒ ′a set set where
all-incident-edges ≡ λA.

⋃
v∈A. incident-edges v

lemma all-incident-edges-Un [simp]: all-incident-edges (A∪B) = all-incident-edges
A ∪ all-incident-edges B
by (auto simp: all-incident-edges-def)

end

34

context Book
begin

3.2 State invariants
definition V-state ≡ λ(X ,Y ,A,B). X⊆V ∧ Y⊆V ∧ A⊆V ∧ B⊆V

definition disjoint-state ≡ λ(X ,Y ,A,B). disjnt X Y ∧ disjnt X A ∧ disjnt X B ∧
disjnt Y A ∧ disjnt Y B ∧ disjnt A B

previously had all edges incident to A, B

definition RB-state ≡ λ(X ,Y ,A,B). all-edges-betw-un A A ⊆ Red ∧ all-edges-betw-un
A (X ∪ Y) ⊆ Red

∧ all-edges-betw-un B (B ∪ X) ⊆ Blue

definition valid-state ≡ λU . V-state U ∧ disjoint-state U ∧ RB-state U

definition termination-condition ≡ λX Y . card X ≤ RN k (nat ⌈real l powr
(3/4)⌉) ∨ red-density X Y ≤ 1/k

lemma
assumes V-state(X ,Y ,A,B)
shows finX : finite X and finY : finite Y and finA: finite A and finB : finite B
using V-state-def assms finV finite-subset by auto

lemma
assumes valid-state(X ,Y ,A,B)
shows A-Red-clique: clique A Red and B-Blue-clique: clique B Blue
using assms
by (auto simp: valid-state-def V-state-def RB-state-def all-edges-betw-un-iff-clique

all-edges-betw-un-Un2)

lemma A-less-k :
assumes valid : valid-state(X ,Y ,A,B)
shows card A < k
using assms A-Red-clique[OF valid] no-Red-clique unfolding valid-state-def

V-state-def
by (metis nat-neq-iff prod .case size-clique-def size-clique-smaller)

lemma B-less-l :
assumes valid : valid-state(X ,Y ,A,B)
shows card B < l
using assms B-Blue-clique[OF valid] no-Blue-clique unfolding valid-state-def

V-state-def
by (metis nat-neq-iff prod .case size-clique-def size-clique-smaller)

35

3.3 Degree regularisation
definition red-dense ≡ λY p x . card (Neighbours Red x ∩ Y) ≥ (p − eps k powr
(−1/2) ∗ alpha (hgt p)) ∗ card Y

definition X-degree-reg ≡ λX Y . {x ∈ X . red-dense Y (red-density X Y) x}

definition degree-reg ≡ λ(X ,Y ,A,B). (X-degree-reg X Y , Y , A, B)

lemma X-degree-reg-subset : X-degree-reg X Y ⊆ X
by (auto simp: X-degree-reg-def)

lemma degree-reg-V-state: V-state U =⇒ V-state (degree-reg U)
by (auto simp: degree-reg-def X-degree-reg-def V-state-def)

lemma degree-reg-disjoint-state: disjoint-state U =⇒ disjoint-state (degree-reg U)
by (auto simp: degree-reg-def X-degree-reg-def disjoint-state-def disjnt-iff)

lemma degree-reg-RB-state: RB-state U =⇒ RB-state (degree-reg U)
apply (simp add : degree-reg-def RB-state-def all-edges-betw-un-Un2 split : prod .split

prod .split-asm)
by (meson X-degree-reg-subset all-edges-betw-un-mono2 order .trans)

lemma degree-reg-valid-state: valid-state U =⇒ valid-state (degree-reg U)
by (simp add : degree-reg-RB-state degree-reg-V-state degree-reg-disjoint-state valid-state-def)

lemma not-red-dense-sum-less:
assumes

∧
x . x ∈ X =⇒ ¬ red-dense Y p x and X ̸={} finite X

shows (
∑

x∈X . card (Neighbours Red x ∩ Y)) < p ∗ real (card Y) ∗ card X
proof −
have

∧
x . x ∈ X =⇒ card (Neighbours Red x ∩ Y) < p ∗ real (card Y)

using assms
unfolding red-dense-def

by (smt (verit) alpha-ge0 mult-right-mono of-nat-0-le-iff powr-ge-pzero zero-le-mult-iff)
with ‹X ̸={}› show ?thesis

by (smt (verit) ‹finite X › of-nat-sum sum-strict-mono mult-of-nat-commute
sum-constant)
qed

lemma red-density-X-degree-reg-ge:
assumes disjnt X Y
shows red-density (X-degree-reg X Y) Y ≥ red-density X Y

proof (cases X={} ∨ infinite X ∨ infinite Y)
case True
then show ?thesis
by (force simp: gen-density-def X-degree-reg-def)

next
case False
then have finite X finite Y
by auto

36

{ assume
∧

x . x ∈ X =⇒ ¬ red-dense Y (red-density X Y) x
with False have (

∑
x∈X . card (Neighbours Red x ∩ Y)) < red-density X Y

∗ real (card Y) ∗ card X
using ‹finite X › not-red-dense-sum-less by blast

with Red-E have edge-card Red Y X < (red-density X Y ∗ real (card Y)) ∗
card X

by (metis False assms disjnt-sym edge-card-eq-sum-Neighbours)
then have False
by (simp add : gen-density-def edge-card-commute split : if-split-asm)

}
then obtain x where x : x ∈ X red-dense Y (red-density X Y) x
by blast

define X ′ where X ′ ≡ {x ∈ X . ¬ red-dense Y (red-density X Y) x}
have X ′: finite X ′ disjnt Y X ′

using assms ‹finite X › by (auto simp: X ′-def disjnt-iff)
have eq : X-degree-reg X Y = X − X ′

by (auto simp: X-degree-reg-def X ′-def)
show ?thesis
proof (cases X ′={})
case True
then show ?thesis
by (simp add : eq)

next
case False
show ?thesis
unfolding eq

proof (rule gen-density-below-avg-ge)
have (

∑
x∈X ′. card (Neighbours Red x ∩ Y)) < red-density X Y ∗ real (card

Y) ∗ card X ′

proof (intro not-red-dense-sum-less)
fix x
assume x ∈ X ′

show ¬ red-dense Y (red-density X Y) x
using ‹x ∈ X ′› by (simp add : X ′-def)

qed (use False X ′ in auto)
then have card X ∗ (

∑
x∈X ′. card (Neighbours Red x ∩ Y)) < card X ′ ∗

edge-card Red Y X
by (simp add : gen-density-def mult .commute divide-simps edge-card-commute

flip: of-nat-sum of-nat-mult split : if-split-asm)
then have card X ∗ (

∑
x∈X ′. card (Neighbours Red x ∩ Y)) ≤ card X ′ ∗

(
∑

x∈X . card (Neighbours Red x ∩ Y))
using assms Red-E
by (metis ‹finite X › disjnt-sym edge-card-eq-sum-Neighbours nless-le)

then have red-density Y X ′ ≤ red-density Y X
using assms X ′ False ‹finite X ›

apply (simp add : gen-density-def edge-card-eq-sum-Neighbours disjnt-commute
Red-E)

apply (simp add : X ′-def field-split-simps flip: of-nat-sum of-nat-mult)
done

37

then show red-density X ′ Y ≤ red-density X Y
by (simp add : X ′-def gen-density-commute)

qed (use assms x ‹finite X › ‹finite Y › X ′-def in auto)
qed

qed

3.4 Big blue steps: code
definition bluish :: [′a set , ′a] ⇒ bool where

bluish ≡ λX x . card (Neighbours Blue x ∩ X) ≥ µ ∗ real (card X)

definition many-bluish :: ′a set ⇒ bool where
many-bluish ≡ λX . card {x∈X . bluish X x} ≥ RN k (nat ⌈l powr (2/3)⌉)

definition good-blue-book :: [′a set , ′a set × ′a set] ⇒ bool where
good-blue-book ≡ λX . λ(S ,T). book S T Blue ∧ S⊆X ∧ T⊆X ∧ card T ≥ (µ ^

card S) ∗ card X / 2

lemma ex-good-blue-book : good-blue-book X ({}, X)
by (simp add : good-blue-book-def book-def)

lemma bounded-good-blue-book : [[good-blue-book X (S ,T); finite X]] =⇒ card S ≤
card X
by (simp add : card-mono finX good-blue-book-def)

definition best-blue-book-card :: ′a set ⇒ nat where
best-blue-book-card ≡ λX . GREATEST s. ∃S T . good-blue-book X (S ,T) ∧ s =

card S

lemma best-blue-book-is-best : [[good-blue-book X (S ,T); finite X]] =⇒ card S ≤
best-blue-book-card X
unfolding best-blue-book-card-def
by (smt (verit) Greatest-le-nat bounded-good-blue-book)

lemma ex-best-blue-book : finite X =⇒ ∃S T . good-blue-book X (S ,T) ∧ card S =
best-blue-book-card X
unfolding best-blue-book-card-def
by (smt (verit) GreatestI-ex-nat bounded-good-blue-book ex-good-blue-book)

definition choose-blue-book ≡ λ(X ,Y ,A,B). @(S ,T). good-blue-book X (S ,T) ∧
card S = best-blue-book-card X

lemma choose-blue-book-works:
[[finite X ; (S ,T) = choose-blue-book (X ,Y ,A,B)]]
=⇒ good-blue-book X (S ,T) ∧ card S = best-blue-book-card X
unfolding choose-blue-book-def
using someI-ex [OF ex-best-blue-book]
by (metis (mono-tags, lifting) case-prod-conv someI-ex)

38

lemma choose-blue-book-subset :
[[finite X ; (S ,T) = choose-blue-book (X ,Y ,A,B)]] =⇒ S ⊆ X ∧ T ⊆ X ∧ disjnt

S T
using choose-blue-book-works good-blue-book-def book-def by fastforce

expressing the complicated preconditions inductively
inductive big-blue
where [[many-bluish X ; good-blue-book X (S ,T); card S = best-blue-book-card X]]

=⇒ big-blue (X ,Y ,A,B) (T , Y , A, B∪S)

lemma big-blue-V-state: [[big-blue U U ′; V-state U]] =⇒ V-state U ′

by (force simp: good-blue-book-def V-state-def elim!: big-blue.cases)

lemma big-blue-disjoint-state: [[big-blue U U ′; disjoint-state U]] =⇒ disjoint-state
U ′

by (force simp: book-def disjnt-iff good-blue-book-def disjoint-state-def elim!: big-blue.cases)

lemma big-blue-RB-state: [[big-blue U U ′; RB-state U]] =⇒ RB-state U ′

apply (clarsimp simp add : good-blue-book-def book-def RB-state-def all-edges-betw-un-Un1
all-edges-betw-un-Un2 elim!: big-blue.cases)
by (metis all-edges-betw-un-commute all-edges-betw-un-mono1 le-supI2 sup.orderE)

lemma big-blue-valid-state: [[big-blue U U ′; valid-state U]] =⇒ valid-state U ′

by (meson big-blue-RB-state big-blue-V-state big-blue-disjoint-state valid-state-def)

3.5 The central vertex
definition central-vertex :: [′a set , ′a] ⇒ bool where
central-vertex ≡ λX x . x ∈ X ∧ card (Neighbours Blue x ∩ X) ≤ µ ∗ real (card

X)

lemma ex-central-vertex :
assumes ¬ termination-condition X Y ¬ many-bluish X
shows ∃ x . central-vertex X x

proof −
have l ̸= 0
using linorder-not-less assms unfolding many-bluish-def by force

then have ∗: real l powr (2/3) ≤ real l powr (3/4)
using powr-mono by force

then have card {x ∈ X . bluish X x} < card X
using assms RN-mono
unfolding termination-condition-def many-bluish-def not-le
by (smt (verit , ccfv-SIG) linorder-not-le nat-ceiling-le-eq of-nat-le-iff)

then obtain x where x ∈ X ¬ bluish X x
by (metis (mono-tags, lifting) mem-Collect-eq nat-neq-iff subsetI subset-antisym)
then show ?thesis
by (meson bluish-def central-vertex-def linorder-linear)

qed

lemma finite-central-vertex-set : finite X =⇒ finite {x . central-vertex X x}

39

by (simp add : central-vertex-def)

definition max-central-vx :: [′a set , ′a set] ⇒ real where
max-central-vx ≡ λX Y . Max (weight X Y ‘ {x . central-vertex X x})

lemma central-vx-is-best :
[[central-vertex X x ; finite X]] =⇒ weight X Y x ≤ max-central-vx X Y
unfolding max-central-vx-def by (simp add : finite-central-vertex-set)

lemma ex-best-central-vx :
[[¬ termination-condition X Y ; ¬ many-bluish X ; finite X]]
=⇒ ∃ x . central-vertex X x ∧ weight X Y x = max-central-vx X Y
unfolding max-central-vx-def
by (metis empty-iff ex-central-vertex finite-central-vertex-set mem-Collect-eq obtains-MAX)

it’s necessary to make a specific choice; a relational treatment might allow
different vertices to be chosen, making a nonsense of the choice between steps
4 and 5

definition choose-central-vx ≡ λ(X ,Y ,A,B). @x . central-vertex X x ∧ weight X
Y x = max-central-vx X Y

lemma choose-central-vx-works:
[[¬ termination-condition X Y ; ¬ many-bluish X ; finite X]]
=⇒ central-vertex X (choose-central-vx (X ,Y ,A,B)) ∧ weight X Y (choose-central-vx

(X ,Y ,A,B)) = max-central-vx X Y
unfolding choose-central-vx-def
using someI-ex [OF ex-best-central-vx] by force

lemma choose-central-vx-X :
[[¬ many-bluish X ; ¬ termination-condition X Y ; finite X]] =⇒ choose-central-vx

(X ,Y ,A,B) ∈ X
using central-vertex-def choose-central-vx-works by fastforce

3.6 Red step
definition reddish ≡ λk X Y p x . red-density (Neighbours Red x ∩ X) (Neighbours
Red x ∩ Y) ≥ p − alpha (hgt p)

inductive red-step
where [[reddish k X Y (red-density X Y) x ; x = choose-central-vx (X ,Y ,A,B)]]

=⇒ red-step (X ,Y ,A,B) (Neighbours Red x ∩ X , Neighbours Red x ∩ Y ,
insert x A, B)

lemma red-step-V-state:
assumes red-step (X ,Y ,A,B) U ′ ¬ termination-condition X Y

¬ many-bluish X V-state (X ,Y ,A,B)
shows V-state U ′

proof −
have X ⊆ V

40

using assms by (auto simp: V-state-def)
then have choose-central-vx (X , Y , A, B) ∈ V
using assms choose-central-vx-X by (fastforce simp: finX)

with assms show ?thesis
by (auto simp: V-state-def elim!: red-step.cases)

qed

lemma red-step-disjoint-state:
assumes red-step (X ,Y ,A,B) U ′ ¬ termination-condition X Y

¬ many-bluish X V-state (X ,Y ,A,B) disjoint-state (X ,Y ,A,B)
shows disjoint-state U ′

proof −
have choose-central-vx (X , Y , A, B) ∈ X
using assms by (metis choose-central-vx-X finX)

with assms show ?thesis
by (auto simp: disjoint-state-def disjnt-iff not-own-Neighbour elim!: red-step.cases)

qed

lemma red-step-RB-state:
assumes red-step (X ,Y ,A,B) U ′ ¬ termination-condition X Y

¬ many-bluish X V-state (X ,Y ,A,B) RB-state (X ,Y ,A,B)
shows RB-state U ′

proof −
define x where x ≡ choose-central-vx (X , Y , A, B)
have [simp]: finite X
using assms by (simp add : finX)

have x ∈ X
using assms choose-central-vx-X by (metis ‹finite X › x-def)

have A: all-edges-betw-un (insert x A) (insert x A) ⊆ Red
if all-edges-betw-un A A ⊆ Red all-edges-betw-un A (X ∪ Y) ⊆ Red
using that ‹x ∈ X › all-edges-betw-un-commute

by (auto simp: all-edges-betw-un-insert2 all-edges-betw-un-Un2 intro!: all-uedges-betw-I)
have B1 : all-edges-betw-un (insert x A) (Neighbours Red x ∩ X) ⊆ Red
if all-edges-betw-un A X ⊆ Red
using that ‹x ∈ X › by (force simp: all-edges-betw-un-def in-Neighbours-iff)

have B2 : all-edges-betw-un (insert x A) (Neighbours Red x ∩ Y) ⊆ Red
if all-edges-betw-un A Y ⊆ Red
using that ‹x ∈ X › by (force simp: all-edges-betw-un-def in-Neighbours-iff)

from assms A B1 B2 show ?thesis
apply (clarsimp simp: RB-state-def simp flip: x-def elim!: red-step.cases)
by (metis Int-Un-eq(2) Un-subset-iff all-edges-betw-un-Un2)

qed

lemma red-step-valid-state:
assumes red-step (X ,Y ,A,B) U ′ ¬ termination-condition X Y

¬ many-bluish X valid-state (X ,Y ,A,B)
shows valid-state U ′

by (meson assms red-step-RB-state red-step-V-state red-step-disjoint-state valid-state-def)

41

3.7 Density-boost step
inductive density-boost
where [[¬ reddish k X Y (red-density X Y) x ; x = choose-central-vx (X ,Y ,A,B)]]

=⇒ density-boost (X ,Y ,A,B) (Neighbours Blue x ∩ X , Neighbours Red x
∩ Y , A, insert x B)

lemma density-boost-V-state:
assumes density-boost (X ,Y ,A,B) U ′ ¬ termination-condition X Y

¬ many-bluish X V-state (X ,Y ,A,B)
shows V-state U ′

proof −
have X ⊆ V
using assms by (auto simp: V-state-def)

then have choose-central-vx (X , Y , A, B) ∈ V
using assms choose-central-vx-X finX by fastforce

with assms show ?thesis
by (auto simp: V-state-def elim!: density-boost .cases)

qed

lemma density-boost-disjoint-state:
assumes density-boost (X ,Y ,A,B) U ′ ¬ termination-condition X Y

¬ many-bluish X V-state (X ,Y ,A,B) disjoint-state (X ,Y ,A,B)
shows disjoint-state U ′

proof −
have X ⊆ V
using assms by (auto simp: V-state-def)

then have choose-central-vx (X , Y , A, B) ∈ X
using assms by (metis choose-central-vx-X finX)

with assms show ?thesis
by (auto simp: disjoint-state-def disjnt-iff not-own-Neighbour elim!: density-boost .cases)

qed

lemma density-boost-RB-state:
assumes density-boost (X ,Y ,A,B) U ′¬ termination-condition X Y ¬ many-bluish

X V-state (X ,Y ,A,B)
and rb: RB-state (X ,Y ,A,B)

shows RB-state U ′

proof −
define x where x ≡ choose-central-vx (X , Y , A, B)
have x ∈ X
using assms by (metis choose-central-vx-X finX x-def)

have all-edges-betw-un A (Neighbours Blue x ∩ X ∪ Neighbours Red x ∩ Y) ⊆
Red

if all-edges-betw-un A (X ∪ Y) ⊆ Red
using that by (metis Int-Un-eq(4) Un-subset-iff all-edges-betw-un-Un2)

moreover
have all-edges-betw-un (insert x B) (insert x B) ⊆ Blue
if all-edges-betw-un B (B ∪ X) ⊆ Blue

42

using that ‹x ∈ X › by (auto simp: subset-iff set-eq-iff all-edges-betw-un-def)
moreover
have all-edges-betw-un (insert x B) (Neighbours Blue x ∩ X) ⊆ Blue
if all-edges-betw-un B (B ∪ X) ⊆ Blue

using ‹x ∈ X › that by (auto simp: all-edges-betw-un-def subset-iff in-Neighbours-iff)
ultimately show ?thesis
using assms
by (auto simp: RB-state-def all-edges-betw-un-Un2 x-def [symmetric] elim!:

density-boost .cases)
qed

lemma density-boost-valid-state:
assumes density-boost (X ,Y ,A,B) U ′¬ termination-condition X Y ¬ many-bluish

X valid-state (X ,Y ,A,B)
shows valid-state U ′

by (meson assms density-boost-RB-state density-boost-V-state density-boost-disjoint-state
valid-state-def)

3.8 Execution steps 2–5 as a function
definition next-state :: ′a config ⇒ ′a config where

next-state ≡ λ(X ,Y ,A,B).
if many-bluish X
then let (S ,T) = choose-blue-book (X ,Y ,A,B) in (T , Y , A, B∪S)
else let x = choose-central-vx (X ,Y ,A,B) in

if reddish k X Y (red-density X Y) x
then (Neighbours Red x ∩ X , Neighbours Red x ∩ Y , insert x A, B)
else (Neighbours Blue x ∩ X , Neighbours Red x ∩ Y , A, insert x B)

lemma next-state-valid :
assumes valid-state (X ,Y ,A,B) ¬ termination-condition X Y
shows valid-state (next-state (X ,Y ,A,B))

proof (cases many-bluish X)
case True
with finX have big-blue (X ,Y ,A,B) (next-state (X ,Y ,A,B))
apply (simp add : next-state-def split : prod .split)
by (metis assms(1) big-blue.intros choose-blue-book-works valid-state-def)

then show ?thesis
using assms big-blue-valid-state by blast

next
case non-bluish: False
define x where x = choose-central-vx (X ,Y ,A,B)
show ?thesis
proof (cases reddish k X Y (red-density X Y) x)
case True
with non-bluish have red-step (X ,Y ,A,B) (next-state (X ,Y ,A,B))
by (simp add : next-state-def Let-def x-def red-step.intros split : prod .split)

then show ?thesis
using assms non-bluish red-step-valid-state by blast

43

next
case False
with non-bluish have density-boost (X ,Y ,A,B) (next-state (X ,Y ,A,B))
by (simp add : next-state-def Let-def x-def density-boost .intros split : prod .split)

then show ?thesis
using assms density-boost-valid-state non-bluish by blast

qed
qed

primrec stepper :: nat ⇒ ′a config where
stepper 0 = (X0 ,Y0 ,{},{})
| stepper (Suc n) =

(let (X ,Y ,A,B) = stepper n in
if termination-condition X Y then (X ,Y ,A,B)
else if even n then degree-reg (X ,Y ,A,B) else next-state (X ,Y ,A,B))

lemma degree-reg-subset :
assumes degree-reg (X ,Y ,A,B) = (X ′,Y ′,A ′,B ′)
shows X ′ ⊆ X ∧ Y ′ ⊆ Y
using assms by (auto simp: degree-reg-def X-degree-reg-def)

lemma next-state-subset :
assumes next-state (X ,Y ,A,B) = (X ′,Y ′,A ′,B ′) finite X
shows X ′ ⊆ X ∧ Y ′ ⊆ Y
using assms choose-blue-book-subset
apply (clarsimp simp: next-state-def valid-state-def Let-def split : if-split-asm

prod .split-asm)
by (smt (verit) choose-blue-book-subset subset-eq)

lemma valid-state0 : valid-state (X0 , Y0 , {}, {})
using XY0 by (simp add : valid-state-def V-state-def disjoint-state-def RB-state-def)

lemma valid-state-stepper [simp]: valid-state (stepper n)
proof (induction n)
case 0
then show ?case
by (simp add : stepper-def valid-state0)

next
case (Suc n)
then show ?case
by (force simp: next-state-valid degree-reg-valid-state split : prod .split)

qed

lemma V-state-stepper : V-state (stepper n)
using valid-state-def valid-state-stepper by force

lemma RB-state-stepper : RB-state (stepper n)
using valid-state-def valid-state-stepper by force

44

lemma
assumes stepper n = (X ,Y ,A,B)
shows stepper-A: clique A Red ∧ A⊆V and stepper-B : clique B Blue ∧ B⊆V

proof −
have A⊆V B⊆V
using V-state-stepper [of n] assms by (auto simp: V-state-def)

moreover
have all-edges-betw-un A A ⊆ Red all-edges-betw-un B B ⊆ Blue
using RB-state-stepper [of n] assms by (auto simp: RB-state-def all-edges-betw-un-Un2)
ultimately show clique A Red ∧ A⊆V clique B Blue ∧ B⊆V
using all-edges-betw-un-iff-clique by auto

qed

lemma card-B-limit :
assumes stepper n = (X ,Y ,A,B) shows card B < l
by (metis B-less-l assms valid-state-stepper)

definition Xseq ≡ (λ(X ,Y ,A,B). X) ◦ stepper
definition Yseq ≡ (λ(X ,Y ,A,B). Y) ◦ stepper
definition Aseq ≡ (λ(X ,Y ,A,B). A) ◦ stepper
definition Bseq ≡ (λ(X ,Y ,A,B). B) ◦ stepper
definition pseq ≡ λn. red-density (Xseq n) (Yseq n)

definition pee ≡ λi . red-density (Xseq i) (Yseq i)

lemma Xseq-0 [simp]: Xseq 0 = X0
by (simp add : Xseq-def)

lemma Xseq-Suc-subset : Xseq (Suc i) ⊆ Xseq i and Yseq-Suc-subset : Yseq (Suc
i) ⊆ Yseq i

apply (simp-all add : Xseq-def Yseq-def split : if-split-asm prod .split)
by (metis V-state-stepper degree-reg-subset finX next-state-subset)+

lemma Xseq-antimono: j ≤ i =⇒ Xseq i ⊆ Xseq j
by (simp add : lift-Suc-antimono-le[of UNIV] Xseq-Suc-subset)

lemma Xseq-subset-V : Xseq i ⊆ V
using XY0 Xseq-0 Xseq-antimono by blast

lemma finite-Xseq : finite (Xseq i)
by (meson Xseq-subset-V finV finite-subset)

lemma Yseq-0 [simp]: Yseq 0 = Y0
by (simp add : Yseq-def)

lemma Yseq-antimono: j ≤ i =⇒ Yseq i ⊆ Yseq j
by (simp add : Yseq-Suc-subset lift-Suc-antimono-le[of UNIV])

lemma Yseq-subset-V : Yseq i ⊆ V

45

using XY0 Yseq-0 Yseq-antimono by blast

lemma finite-Yseq : finite (Yseq i)
by (meson Yseq-subset-V finV finite-subset)

lemma Xseq-Yseq-disjnt : disjnt (Xseq i) (Yseq i)
by (metis XY0 (1) Xseq-0 Xseq-antimono Yseq-0 Yseq-antimono disjnt-subset1

disjnt-sym zero-le)

lemma edge-card-eq-pee:
edge-card Red (Xseq i) (Yseq i) = pee i ∗ card (Xseq i) ∗ card (Yseq i)
by (simp add : pee-def gen-density-def finite-Xseq finite-Yseq)

lemma valid-state-seq : valid-state(Xseq i , Yseq i , Aseq i , Bseq i)
using valid-state-stepper [of i]
by (force simp: Xseq-def Yseq-def Aseq-def Bseq-def simp del : valid-state-stepper

split : prod .split)

lemma Aseq-less-k : card (Aseq i) < k
by (meson A-less-k valid-state-seq)

lemma Aseq-0 [simp]: Aseq 0 = {}
by (simp add : Aseq-def)

lemma Aseq-Suc-subset : Aseq i ⊆ Aseq (Suc i) and Bseq-Suc-subset : Bseq i ⊆
Bseq (Suc i)
by (auto simp: Aseq-def Bseq-def next-state-def degree-reg-def Let-def split : prod .split)

lemma
assumes j ≤ i
shows Aseq-mono: Aseq j ⊆ Aseq i and Bseq-mono: Bseq j ⊆ Bseq i
using assms by (auto simp: Aseq-Suc-subset Bseq-Suc-subset lift-Suc-mono-le[of

UNIV])

lemma Aseq-subset-V : Aseq i ⊆ V
using stepper-A[of i] by (simp add : Aseq-def split : prod .split)

lemma Bseq-subset-V : Bseq i ⊆ V
using stepper-B [of i] by (simp add : Bseq-def split : prod .split)

lemma finite-Aseq : finite (Aseq i) and finite-Bseq : finite (Bseq i)
by (meson Aseq-subset-V Bseq-subset-V finV finite-subset)+

lemma Bseq-less-l : card (Bseq i) < l
by (meson B-less-l valid-state-seq)

lemma Bseq-0 [simp]: Bseq 0 = {}
by (simp add : Bseq-def)

46

lemma pee-eq-p0 : pee 0 = p0
by (simp add : pee-def p0-def)

lemma pee-ge0 : pee i ≥ 0
by (simp add : gen-density-ge0 pee-def)

lemma pee-le1 : pee i ≤ 1
using gen-density-le1 pee-def by presburger

lemma pseq-0 : p0 = pseq 0
by (simp add : p0-def pseq-def Xseq-def Yseq-def)

The central vertex at each step (though only defined in some cases), x-i
in the paper

definition cvx ≡ λi . choose-central-vx (stepper i)

the indexing of beta is as in the paper — and different from that of Xseq

definition
beta ≡ λi . let (X ,Y ,A,B) = stepper i in card(Neighbours Blue (cvx i) ∩ X) /

card X

lemma beta-eq : beta i = card(Neighbours Blue (cvx i) ∩ Xseq i) / card (Xseq i)
by (simp add : beta-def cvx-def Xseq-def split : prod .split)

lemma beta-ge0 : beta i ≥ 0
by (simp add : beta-eq)

3.9 The classes of execution steps

For R, B, S, D

datatype stepkind = red-step | bblue-step | dboost-step | dreg-step | halted

definition next-state-kind :: ′a config ⇒ stepkind where
next-state-kind ≡ λ(X ,Y ,A,B).

if many-bluish X then bblue-step
else let x = choose-central-vx (X ,Y ,A,B) in

if reddish k X Y (red-density X Y) x then red-step
else dboost-step

definition stepper-kind :: nat ⇒ stepkind where
stepper-kind i =

(let (X ,Y ,A,B) = stepper i in
if termination-condition X Y then halted
else if even i then dreg-step else next-state-kind (X ,Y ,A,B))

definition Step-class ≡ λknd . {n. stepper-kind n ∈ knd}

lemma subset-Step-class: [[i ∈ Step-class K ′; K ′ ⊆ K]] =⇒ i ∈ Step-class K
by (auto simp: Step-class-def)

47

lemma Step-class-Un: Step-class (K ′ ∪ K) = Step-class K ′ ∪ Step-class K
by (auto simp: Step-class-def)

lemma Step-class-insert : Step-class (insert knd K) = (Step-class {knd}) ∪ (Step-class
K)
by (auto simp: Step-class-def)

lemma Step-class-insert-NO-MATCH :
NO-MATCH {} K =⇒ Step-class (insert knd K) = (Step-class {knd}) ∪ (Step-class

K)
by (auto simp: Step-class-def)

lemma Step-class-UNIV : Step-class {red-step,bblue-step,dboost-step,dreg-step,halted}
= UNIV
using Step-class-def stepkind .exhaust by auto

lemma Step-class-cases:
i ∈ Step-class {stepkind .red-step} ∨ i ∈ Step-class {bblue-step} ∨
i ∈ Step-class {dboost-step} ∨ i ∈ Step-class {dreg-step} ∨
i ∈ Step-class {halted}

using Step-class-def stepkind .exhaust by auto

lemmas step-kind-defs = Step-class-def stepper-kind-def next-state-kind-def
Xseq-def Yseq-def Aseq-def Bseq-def cvx-def Let-def

lemma disjnt-Step-class:
disjnt knd knd ′ =⇒ disjnt (Step-class knd) (Step-class knd ′)
by (auto simp: Step-class-def disjnt-iff)

lemma halted-imp-next-halted : stepper-kind i = halted =⇒ stepper-kind (Suc i) =
halted
by (auto simp: step-kind-defs split : prod .split if-split-asm)

lemma halted-imp-ge-halted : stepper-kind i = halted =⇒ stepper-kind (i+n) =
halted
by (induction n) (auto simp: halted-imp-next-halted)

lemma Step-class-halted-forever : [[i ∈ Step-class {halted}; i≤j]] =⇒ j ∈ Step-class
{halted}
by (simp add : Step-class-def) (metis halted-imp-ge-halted le-iff-add)

lemma Step-class-not-halted : [[i /∈ Step-class {halted}; i≥j]] =⇒ j /∈ Step-class
{halted}
using Step-class-halted-forever by blast

lemma
assumes i /∈ Step-class {halted}
shows not-halted-pee-gt : pee i > 1/k

48

and Xseq-gt0 : card (Xseq i) > 0
and Xseq-gt-RN : card (Xseq i) > RN k (nat ⌈real l powr (3/4)⌉)
and not-termination-condition: ¬ termination-condition (Xseq i) (Yseq i)

using assms
by (auto simp: step-kind-defs termination-condition-def pee-def split : if-split-asm

prod .split-asm)

lemma not-halted-pee-gt0 :
assumes i /∈ Step-class {halted}
shows pee i > 0
using not-halted-pee-gt [OF assms] linorder-not-le order-less-le-trans by fastforce

lemma Yseq-gt0 :
assumes i /∈ Step-class {halted}
shows card (Yseq i) > 0
using not-halted-pee-gt [OF assms]
using card-gt-0-iff finite-Yseq pee-def by fastforce

lemma step-odd : i ∈ Step-class {red-step,bblue-step,dboost-step} =⇒ odd i
by (auto simp: Step-class-def stepper-kind-def split : if-split-asm prod .split-asm)

lemma step-even: i ∈ Step-class {dreg-step} =⇒ even i
by (auto simp: Step-class-def stepper-kind-def next-state-kind-def split : if-split-asm

prod .split-asm)

lemma not-halted-odd-RBS : [[i /∈ Step-class {halted}; odd i]] =⇒ i ∈ Step-class
{red-step,bblue-step,dboost-step}
by (auto simp: Step-class-def stepper-kind-def next-state-kind-def split : prod .split-asm)

lemma not-halted-even-dreg : [[i /∈ Step-class {halted}; even i]] =⇒ i ∈ Step-class
{dreg-step}
by (auto simp: Step-class-def stepper-kind-def next-state-kind-def split : prod .split-asm)

lemma step-before-dreg :
assumes Suc i ∈ Step-class {dreg-step}
shows i ∈ Step-class {red-step,bblue-step,dboost-step}
using assms by (auto simp: step-kind-defs split : if-split-asm prod .split-asm)

lemma dreg-before-step:
assumes Suc i ∈ Step-class {red-step,bblue-step,dboost-step}
shows i ∈ Step-class {dreg-step}
using assms by (auto simp: Step-class-def stepper-kind-def split : if-split-asm

prod .split-asm)

lemma
assumes i ∈ Step-class {red-step,bblue-step,dboost-step}
shows dreg-before-step ′: i − Suc 0 ∈ Step-class {dreg-step}
and dreg-before-gt0 : i>0

proof −

49

show i>0
using assms gr0I step-odd by force

then show i − Suc 0 ∈ Step-class {dreg-step}
using assms dreg-before-step Suc-pred by force

qed

lemma dreg-before-step1 :
assumes i ∈ Step-class {red-step,bblue-step,dboost-step}
shows i−1 ∈ Step-class {dreg-step}
using dreg-before-step ′ [OF assms] by auto

lemma step-odd-minus2 :
assumes i ∈ Step-class {red-step,bblue-step,dboost-step} i>1
shows i−2 ∈ Step-class {red-step,bblue-step,dboost-step}
by (metis Suc-1 Suc-diff-Suc assms dreg-before-step1 step-before-dreg)

lemma Step-class-iterates:
assumes finite (Step-class {knd})
obtains n where Step-class {knd} = {m. m<n ∧ stepper-kind m = knd}

proof −
have eq : (Step-class {knd}) = (

⋃
i . {m. m<i ∧ stepper-kind m = knd})

by (auto simp: Step-class-def)
then obtain n where n: (Step-class {knd}) = (

⋃
i<n. {m. m<i ∧ stepper-kind

m = knd})
using finite-countable-equals[OF assms] by blast

with Step-class-def
have {m. m<n ∧ stepper-kind m = knd} = (

⋃
i<n. {m. m<i ∧ stepper-kind m

= knd})
by auto

then show ?thesis
by (metis n that)

qed

lemma step-non-terminating-iff :
i ∈ Step-class {red-step,bblue-step,dboost-step,dreg-step}
←→ ¬ termination-condition (Xseq i) (Yseq i)

by (auto simp: step-kind-defs split : if-split-asm prod .split-asm)

lemma step-terminating-iff :
i ∈ Step-class {halted} ←→ termination-condition (Xseq i) (Yseq i)
by (auto simp: step-kind-defs split : if-split-asm prod .split-asm)

lemma not-many-bluish:
assumes i ∈ Step-class {red-step,dboost-step}
shows ¬ many-bluish (Xseq i)
using assms
by (simp add : step-kind-defs split : if-split-asm prod .split-asm)

lemma stepper-XYseq : stepper i = (X ,Y ,A,B) =⇒ X = Xseq i ∧ Y = Yseq i

50

using Xseq-def Yseq-def by fastforce

lemma cvx-works:
assumes i ∈ Step-class {red-step,dboost-step}
shows central-vertex (Xseq i) (cvx i)
∧ weight (Xseq i) (Yseq i) (cvx i) = max-central-vx (Xseq i) (Yseq i)

proof −
have ¬ termination-condition (Xseq i) (Yseq i)
using Step-class-def assms step-non-terminating-iff by fastforce

then show ?thesis
using assms not-many-bluish[OF assms]
apply (simp add : Step-class-def Xseq-def cvx-def Yseq-def split : prod .split

prod .split-asm)
by (metis V-state-stepper choose-central-vx-works finX)

qed

lemma cvx-in-Xseq :
assumes i ∈ Step-class {red-step,dboost-step}
shows cvx i ∈ Xseq i
using assms cvx-works[OF assms]
by (simp add : Xseq-def central-vertex-def cvx-def split : prod .split-asm)

lemma card-Xseq-pos:
assumes i ∈ Step-class {red-step,dboost-step}
shows card (Xseq i) > 0
by (metis assms card-0-eq cvx-in-Xseq empty-iff finite-Xseq gr0I)

lemma beta-le:
assumes i ∈ Step-class {red-step,dboost-step}
shows beta i ≤ µ
using assms cvx-works[OF assms] µ01
by (simp add : beta-def central-vertex-def Xseq-def divide-simps split : prod .split-asm)

3.10 Termination proof

Each step decreases the size of X

lemma ex-nonempty-blue-book :
assumes mb: many-bluish X
shows ∃ x∈X . good-blue-book X ({x}, Neighbours Blue x ∩ X)

proof −
have RN k (nat ⌈real l powr (2 / 3)⌉) > 0
by (metis kn0 ln0 RN-eq-0-iff gr0I of-nat-ceiling of-nat-eq-0-iff powr-nonneg-iff)

then obtain x where x∈X and x : bluish X x
using mb unfolding many-bluish-def
by (smt (verit) card-eq-0-iff empty-iff equalityI less-le-not-le mem-Collect-eq

subset-iff)
have book {x} (Neighbours Blue x ∩ X) Blue
by (force simp: book-def all-edges-betw-un-def in-Neighbours-iff)

with x show ?thesis

51

by (auto simp: bluish-def good-blue-book-def ‹x ∈ X ›)
qed

lemma choose-blue-book-psubset :
assumes many-bluish X and ST : choose-blue-book (X ,Y ,A,B) = (S ,T)
and finite X
shows T ̸= X

proof −
obtain x where x∈X and x : good-blue-book X ({x}, Neighbours Blue x ∩ X)
using ex-nonempty-blue-book assms by blast

with ‹finite X › have best-blue-book-card X ̸= 0
unfolding valid-state-def

by (metis best-blue-book-is-best card .empty card-seteq empty-not-insert finite.intros
singleton-insert-inj-eq)
then have S ̸= {}
by (metis ‹finite X › ST choose-blue-book-works card .empty)

with ‹finite X › ST show ?thesis
by (metis (no-types, opaque-lifting) choose-blue-book-subset disjnt-iff empty-subsetI

equalityI subset-eq)
qed

lemma next-state-smaller :
assumes next-state (X ,Y ,A,B) = (X ′,Y ′,A ′,B ′)
and finite X and nont : ¬ termination-condition X Y

shows X ′ ⊂ X
proof −
have X ′ ⊆ X
using assms next-state-subset by auto

moreover have X ′ ̸= X
proof −
have ∗: ¬ X ⊆ Neighbours rb x ∩ X if x ∈ X rb ⊆ E for x rb
using that by (auto simp: Neighbours-def subset-iff)

show ?thesis
proof (cases many-bluish X)
case True
with assms show ?thesis
by (auto simp: next-state-def split : if-split-asm prod .split-asm

dest !: choose-blue-book-psubset [OF True])
next
case False
then have choose-central-vx (X ,Y ,A,B) ∈ X
by (simp add : ‹finite X › choose-central-vx-X nont)

with assms ∗[of - Red] ∗[of - Blue] ‹X ′ ⊆ X › Red-E Blue-E False
choose-central-vx-X [OF False nont]
show ?thesis
by (fastforce simp: next-state-def Let-def split : if-split-asm prod .split-asm)

qed
qed
ultimately show ?thesis

52

by auto
qed

lemma do-next-state:
assumes odd i ¬ termination-condition (Xseq i) (Yseq i)
obtains A B A ′ B ′ where next-state (Xseq i , Yseq i , A, B)

= (Xseq (Suc i), Yseq (Suc i), A ′,B ′)
using assms
by (force simp: Xseq-def Yseq-def split : if-split-asm prod .split-asm prod .split)

lemma step-bound :
assumes i : Suc (2∗i) ∈ Step-class {red-step,bblue-step,dboost-step}
shows card (Xseq (Suc (2∗i))) + i ≤ card X0
using i

proof (induction i)
case 0
then show ?case
by (metis Xseq-0 Xseq-Suc-subset add-0-right mult-0-right card-mono finite-X0)

next
case (Suc i)
then have nt : ¬ termination-condition (Xseq (Suc (2∗i))) (Yseq (Suc (2∗i)))
unfolding step-non-terminating-iff [symmetric]

by (metis Step-class-insert Suc-1 Un-iff dreg-before-step mult-Suc-right plus-1-eq-Suc
plus-nat .simps(2) step-before-dreg)
obtain A B A ′ B ′ where 2 :

next-state (Xseq (Suc (2∗i)), Yseq (Suc (2∗i)), A, B) = (Xseq (Suc (Suc
(2∗i))), Yseq (Suc (Suc (2∗i))), A ′,B ′)

by (meson nt Suc-double-not-eq-double do-next-state evenE)
have Xseq (Suc (Suc (2∗i))) ⊂ Xseq (Suc (2∗i))
by (meson 2 finite-Xseq assms next-state-smaller nt)

then have card (Xseq (Suc (Suc (Suc (2∗i))))) < card (Xseq (Suc (2∗i)))
by (smt (verit , best) Xseq-Suc-subset card-seteq order .trans finite-Xseq leD

not-le)
moreover have card (Xseq (Suc (2∗i))) + i ≤ card X0
using Suc dreg-before-step step-before-dreg by force

ultimately show ?case by auto
qed

lemma Step-class-halted-nonempty : Step-class {halted} ≠ {}
proof −
define i where i ≡ Suc (2 ∗ Suc (card X0))
have odd i
by (auto simp: i-def)

then have i /∈ Step-class {dreg-step}
using step-even by blast

moreover have i /∈ Step-class {red-step,bblue-step,dboost-step}
unfolding i-def using step-bound le-add2 not-less-eq-eq by blast

ultimately show ?thesis
using ‹odd i› not-halted-odd-RBS by blast

53

qed

definition halted-point ≡ Inf (Step-class {halted})

lemma halted-point-halted : halted-point ∈ Step-class {halted}
using Step-class-halted-nonempty Inf-nat-def1
by (auto simp: halted-point-def)

lemma halted-point-minimal :
shows i /∈ Step-class {halted} ←→ i < halted-point
using Step-class-halted-nonempty
by (metis wellorder-Inf-le1 Inf-nat-def1 Step-class-not-halted halted-point-def less-le-not-le

nle-le)

lemma halted-point-minimal ′: stepper-kind i ̸= halted ←→ i < halted-point
by (simp add : Step-class-def flip: halted-point-minimal)

lemma halted-eq-Compl :
Step-class {dreg-step,red-step,bblue-step,dboost-step} = − Step-class {halted}
using Step-class-UNIV [of] by (auto simp: Step-class-def)

lemma before-halted-eq :
shows {..<halted-point} = Step-class {dreg-step,red-step,bblue-step,dboost-step}
using halted-point-minimal by (force simp: halted-eq-Compl)

lemma finite-components:
shows finite (Step-class {dreg-step,red-step,bblue-step,dboost-step})
by (metis before-halted-eq finite-lessThan)

lemma
shows dreg-step-finite [simp]: finite (Step-class {dreg-step})
and red-step-finite [simp]: finite (Step-class {red-step})
and bblue-step-finite [simp]: finite (Step-class {bblue-step})
and dboost-step-finite[simp]: finite (Step-class {dboost-step})

using finite-components by (auto simp: Step-class-insert-NO-MATCH)

lemma halted-stepper-add-eq : stepper (halted-point + i) = stepper (halted-point)
proof (induction i)
case 0
then show ?case
by auto

next
case (Suc i)
have hlt : stepper-kind (halted-point) = halted
using Step-class-def halted-point-halted by force

obtain X Y A B where ∗: stepper (halted-point) = (X , Y , A, B)
by (metis surj-pair)

with hlt have termination-condition X Y
by (simp add : stepper-kind-def next-state-kind-def split : if-split-asm)

54

with ∗ show ?case
by (simp add : Suc)

qed

lemma halted-stepper-eq :
assumes i : i ≥ halted-point
shows stepper i = stepper (halted-point)
using µ01 by (metis assms halted-stepper-add-eq le-iff-add)

lemma below-halted-point-cardX :
assumes i < halted-point
shows card (Xseq i) > 0
using Xseq-gt0 assms halted-point-minimal halted-stepper-eq µ01
by blast

end

sublocale Book ′ ⊆ Book where µ=γ
proof
show 0 < γ γ < 1
using ln0 kn0 by (auto simp: γ-def)

qed (use XY0 density-ge-p0-min in auto)

lemma (in Book) Book ′:
assumes γ = real l / (real k + real l)
shows Book ′ V E p0-min Red Blue l k γ X0 Y0

proof qed (use assms XY0 density-ge-p0-min in auto)

end

4 Big Blue Steps: theorems
theory Big-Blue-Steps imports Book

begin

4.1 Material to delete for Isabelle 2025
lemma gbinomial-mono:
fixes k ::nat and a::real
assumes of-nat k ≤ a a ≤ b shows a gchoose k ≤ b gchoose k
using assms
by (force simp: gbinomial-prod-rev intro!: divide-right-mono prod-mono)

lemma gbinomial-is-prod : (a gchoose k) = (
∏

i<k . (a − of-nat i) / (1 + of-nat
i))
unfolding gbinomial-prod-rev
by (induction k ; simp add : divide-simps)

55

lemma smallo-multiples:
assumes f : f ∈ o(real) and k>0
shows (λn. f (k ∗ n)) ∈ o(real)
unfolding smallo-def mem-Collect-eq

proof (intro strip)
fix c::real
assume c>0
then have c/k > 0
by (simp add : assms)

with assms have ∀ F n in sequentially . |f n| ≤ c / real k ∗ n
by (force simp: smallo-def del : divide-const-simps)

then obtain N where
∧

n. n≥N =⇒ |f n| ≤ c/k ∗ n
by (meson eventually-at-top-linorder)

then have
∧

m. (k∗m)≥N =⇒ |f (k∗m)| ≤ c/k ∗ (k∗m)
by blast

with ‹k>0 › have ∀ F m in sequentially . |f (k∗m)| ≤ c/k ∗ (k∗m)
by (smt (verit , del-insts) One-nat-def Suc-leI eventually-at-top-linorderI mult-1-left

mult-le-mono)
then show ∀ F n in sequentially . norm (f (k ∗ n)) ≤ c ∗ norm (real n)
by eventually-elim (use ‹k>0 › in auto)

qed

4.2 Preliminaries

A bounded increasing sequence of finite sets eventually terminates

lemma Union-incseq-finite:
assumes fin:

∧
n. finite (A n) and N :

∧
n. card (A n) < N and incseq A

shows ∀ F k in sequentially .
⋃

(range A) = A k
proof (rule ccontr)
assume ¬ ?thesis
then have ∀ k . ∃ l≥k .

⋃
(range A) ̸= A l

using eventually-sequentially by force
then have ∀ k . ∃ l≥k . ∃m≥l . A m ̸= A l

by (smt (verit , ccfv-threshold) ‹incseq A› cSup-eq-maximum image-iff mono-
toneD nle-le rangeI)
then have ∀ k . ∃ l≥k . A l − A k ̸= {}
by (metis ‹incseq A› diff-shunt-var monotoneD nat-le-linear subset-antisym)

then obtain f where f :
∧

k . f k ≥ k ∧ A (f k) − A k ̸= {}
by metis

have card (A ((f^^i)0)) ≥ i for i
proof (induction i)
case 0
then show ?case
by auto

next
case (Suc i)
have card (A ((f ^^ i) 0)) < card (A (f ((f ^^ i) 0)))
by (metis Diff-cancel ‹incseq A› card-seteq f fin leI monotoneD)

56

then show ?case
using Suc by simp

qed
with N show False
using linorder-not-less by auto

qed

Two lemmas for proving "bigness lemmas" over a closed interval

lemma eventually-all-geI0 :
assumes ∀ F l in sequentially . P a l∧

l x . [[P a l ; a≤x ; x≤b; l ≥ L]] =⇒ P x l
shows ∀ F l in sequentially . ∀ x . a ≤ x ∧ x ≤ b −→ P x l
by (smt (verit , del-insts) assms eventually-sequentially eventually-elim2)

lemma eventually-all-geI1 :
assumes ∀ F l in sequentially . P b l∧

l x . [[P b l ; a≤x ; x≤b; l ≥ L]] =⇒ P x l
shows ∀ F l in sequentially . ∀ x . a ≤ x ∧ x ≤ b −→ P x l
by (smt (verit , del-insts) assms eventually-sequentially eventually-elim2)

Mehta’s binomial function: convex on the entire real line and coinciding
with gchoose under weak conditions

definition mfact ≡ λa k . if a < real k − 1 then 0 else prod (λi . a − of-nat i)
{0 ..<k}

Mehta’s special rule for convexity, my proof

lemma convex-on-extend :
fixes f :: real ⇒ real
assumes cf : convex-on {k ..} f and mon: mono-on {k ..} f
and fk :

∧
x . x<k =⇒ f x = f k

shows convex-on UNIV f
proof (intro convex-on-linorderI)
fix t x y :: real
assume t : 0 < t t < 1 and x < y
let ?u = ((1 − t) ∗R x + t ∗R y)
show f ?u ≤ (1 − t) ∗ f x + t ∗ f y
proof (cases k ≤ x)
case True
with ‹x < y› t show ?thesis
by (intro convex-onD [OF cf]) auto

next
case False
then have x < k and fxk : f x = f k by (auto simp: fk)
show ?thesis
proof (cases k ≤ y)
case True
then have f y ≥ f k
using mon mono-onD by auto

have kle: k ≤ (1 − t) ∗ k + t ∗ y

57

using True segment-bound-lemma t by auto
have fle: f ((1 − t) ∗R k + t ∗R y) ≤ (1 − t) ∗ f k + t ∗ f y
using t True by (intro convex-onD [OF cf]) auto

with False
show ?thesis
proof (cases ?u < k)
case True
then show ?thesis
using ‹f k ≤ f y› fxk fk segment-bound-lemma t by auto

next
case False
have f ?u ≤ f ((1 − t) ∗R k + t ∗R y)
using kle ‹x < k› False t by (intro mono-onD [OF mon]) auto

then show ?thesis
using fle fxk by auto

qed
next
case False
with ‹x < k› show ?thesis
by (simp add : fk convex-bound-lt order-less-imp-le segment-bound-lemma t)

qed
qed

qed auto

lemma convex-mfact :
assumes k>0
shows convex-on UNIV (λa. mfact a k)
unfolding mfact-def

proof (rule convex-on-extend)
show convex-on {real (k − 1)..} (λa. if a < real k − 1 then 0 else

∏
i = 0 ..<k .

a − real i)
using convex-gchoose-aux [of k] assms
apply (simp add : convex-on-def Ball-def)
by (smt (verit , del-insts) distrib-right mult-cancel-right2 mult-left-mono)

show mono-on {real (k − 1)..} (λa. if a < real k − 1 then 0 else
∏

i = 0 ..<k .
a − real i)

using ‹k > 0 › by (auto simp: mono-on-def intro!: prod-mono)
qed (use assms gr0-conv-Suc in force)

definition mbinomial :: real ⇒ nat ⇒ real
where mbinomial ≡ λa k . mfact a k / fact k

lemma convex-mbinomial : k>0 =⇒ convex-on UNIV (λx . mbinomial x k)
by (simp add : mbinomial-def convex-mfact convex-on-cdiv)

lemma mbinomial-eq-choose [simp]: mbinomial (real n) k = n choose k
by (simp add : binomial-gbinomial gbinomial-prod-rev mbinomial-def mfact-def)

lemma mbinomial-eq-gchoose [simp]: k ≤ a =⇒ mbinomial a k = a gchoose k

58

by (simp add : gbinomial-prod-rev mbinomial-def mfact-def)

4.3 Preliminaries: Fact D1

from appendix D, page 55

lemma Fact-D1-73-aux :
fixes σ::real and m b::nat
assumes σ: 0<σ and bm: real b < real m
shows ((σ∗m) gchoose b) ∗ inverse (m gchoose b) = σ^b ∗ (

∏
i<b. 1 −

((1−σ)∗i) / (σ ∗ (real m − real i)))
proof −

have ((σ∗m) gchoose b) ∗ inverse (m gchoose b) = (
∏

i<b. (σ∗m − i) / (real
m − real i))

using bm by (simp add : gbinomial-prod-rev prod-dividef atLeast0LessThan)
also have . . . = σ^b ∗ (

∏
i<b. 1 − ((1−σ)∗i) / (σ ∗ (real m − real i)))

using bm σ by (induction b) (auto simp: field-simps)
finally show ?thesis .

qed

This is fact 4.2 (page 11) as well as equation (73), page 55.

lemma Fact-D1-73 :
fixes σ::real and m b::nat
assumes σ: 0<σ σ≤1 and b: real b ≤ σ ∗ m / 2
shows (σ∗m) gchoose b ∈ {σ^b ∗ (real m gchoose b) ∗ exp (− (real b ^ 2) /

(σ∗m)) .. σ^b ∗ (m gchoose b)}
proof (cases m=0 ∨ b=0)
case True
then show ?thesis
using True assms by auto

next
case False
then have σ ∗ m / 2 < real m
using σ by auto

with b σ False have bm: real b < real m
by linarith

then have nonz : m gchoose b ̸= 0
by (simp add : flip: binomial-gbinomial)

have EQ : ((σ∗m) gchoose b) ∗ inverse (m gchoose b) = σ^b ∗ (
∏

i<b. 1 −
((1−σ)∗i) / (σ ∗ (real m − real i)))

using Fact-D1-73-aux ‹0<σ› bm by blast
also have . . . ≤ σ ^ b ∗ 1
proof (intro mult-left-mono prod-le-1 conjI)
fix i assume i ∈ {..<b}
with b σ bm show 0 ≤ 1 − (1 − σ) ∗ i / (σ ∗ (real m − i))
by (simp add : field-split-simps)

qed (use σ bm in auto)
finally have upper : (σ∗m) gchoose b ≤ σ^b ∗ (m gchoose b)
using nonz by (simp add : divide-simps flip: binomial-gbinomial)

59

have ∗: exp (−2 ∗ real i / (σ∗m)) ≤ 1 − ((1−σ)∗i) / (σ ∗ (real m − real i)) if
i<b for i
proof −
have i ≤ m
using bm that by linarith

have exp-le: 1−x ≥ exp (−2 ∗ x) if 0 ≤x x ≤ 1/2 for x ::real
proof −
have exp (−2 ∗ x) ≤ inverse (1 + 2∗x)
using exp-ge-add-one-self that by (simp add : exp-minus)

also have . . . ≤ 1−x
using that by (simp add : mult-left-le field-simps)

finally show ?thesis .
qed
have exp (−2 ∗ real i / (σ∗m)) = exp (−2 ∗ (i / (σ∗m)))
by simp

also have . . . ≤ 1 − i/(σ ∗ m)
using b that by (intro exp-le) auto
also have . . . ≤ 1 − ((1−σ)∗i) / (σ ∗ (real m − real i))
using σ b that ‹i ≤ m› by (simp add : field-split-simps)

finally show ?thesis .
qed
have sum real {..<b} ≤ real b ^ 2 / 2
by (induction b) (auto simp: power2-eq-square algebra-simps)

with σ have exp (− (real b ^ 2) / (σ∗m)) ≤ exp (− (2 ∗ (
∑

i<b. i) / (σ∗m)))
by (simp add : mult-less-0-iff divide-simps)

also have . . . = exp (
∑

i<b. −2 ∗ real i / (σ∗m))
by (simp add : sum-negf sum-distrib-left sum-divide-distrib)

also have . . . = (
∏

i<b. exp (−2 ∗ real i / (σ∗m)))
using exp-sum by blast

also have . . . ≤ (
∏

i<b. 1 − ((1−σ)∗i) / (σ ∗ (real m − real i)))
using ∗ by (force intro: prod-mono)

finally have exp (− (real b)2 / (σ ∗ m)) ≤ (
∏

i<b. 1 − (1 − σ) ∗ i / (σ ∗ (real
m − real i))) .

with EQ have σ^b ∗ exp (− (real b ^ 2) / (σ∗m)) ≤ ((σ∗m) gchoose b) ∗
inverse (real m gchoose b)

by (simp add : σ)
with σ bm have lower : σ^b ∗ (real m gchoose b) ∗ exp (− (real b ^ 2) / (σ∗m))
≤ (σ∗m) gchoose b

by (simp add : field-split-simps flip: binomial-gbinomial)
with upper show ?thesis
by simp

qed

Exact at zero, so cannot be done using the approximation method

lemma exp-inequality-17 :
fixes x ::real
assumes 0 ≤ x x ≤ 1/7
shows 1 − 4∗x/3 ≥ exp (−3∗x/2)

proof (cases x ≤ 1/12)

60

case True
have exp (−3∗x/2) ≤ 1/(1 + (3∗x)/2)
using exp-ge-add-one-self [of 3∗x/2] assms
by (simp add : exp-minus divide-simps)

also have . . . ≤ 1 − 4∗x/3
using assms True mult-left-le [of x∗12] by (simp add : field-simps)

finally show ?thesis .
next
case False
with assms have x ∈ {1/12 ..1/7}
by auto

then show ?thesis
by (approximation 12 splitting : x=5)

qed

additional part

lemma Fact-D1-75 :
fixes σ::real and m b::nat
assumes σ: 0<σ σ<1 and b: real b ≤ σ ∗ m / 2 and b ′: b ≤ m/7 and σ ′: σ
≥ 7/15
shows (σ∗m) gchoose b ≥ exp (− (3 ∗ real b ^ 2) / (4∗m)) ∗ σ^b ∗ (m gchoose

b)
proof (cases m=0 ∨ b=0)
case True
then show ?thesis
using True assms by auto

next
case False
with b b ′ σ have bm: real b < real m
by linarith

have ∗: exp (− 3 ∗ real i / (2∗m)) ≤ 1 − ((1−σ)∗i) / (σ ∗ (real m − real i))
if i<b for i
proof −
have im: 0 ≤ i/m i/m ≤ 1/7
using b ′ that by auto

have exp (− 3∗ real i / (2∗m)) ≤ 1 − 4∗i / (3∗m)
using exp-inequality-17 [OF im] by (simp add : mult .commute)

also have . . . ≤ 1 − 8∗i / (7 ∗ (real m − real b))
proof −
have real i ∗ (real b ∗ 7) ≤ real i ∗ real m
using b ′ by (simp add : mult-left-mono)

then show ?thesis
using b ′ by (simp add : field-split-simps)

qed
also have . . . ≤ 1 − ((1−σ)∗i) / (σ ∗ (real m − real i))
proof −
have 1 : (1 − σ) / σ ≤ 8/7
using σ σ ′ that
by (simp add : field-split-simps)

61

have 2 : 1 / (real m − real i) ≤ 1 / (real m − real b)
using σ σ ′ b ′ that by (simp add : field-split-simps)

have §: (1 − σ) / (σ ∗ (real m − real i)) ≤ 8 / (7 ∗ (real m − real b))
using mult-mono [OF 1 2] b ′ that by auto

show ?thesis
using mult-left-mono [OF §, of i]
by (simp add : mult-of-nat-commute)

qed
finally show ?thesis .

qed
have EQ : ((σ∗m) gchoose b) ∗ inverse (m gchoose b) = σ^b ∗ (

∏
i<b. 1 −

((1−σ)∗i) / (σ ∗ (real m − real i)))
using Fact-D1-73-aux ‹0<σ› bm by blast

have sum real {..<b} ≤ real b ^ 2 / 2
by (induction b) (auto simp: power2-eq-square algebra-simps)

with σ have exp (− (3 ∗ real b ^ 2) / (4∗m)) ≤ exp (− (3 ∗ (
∑

i<b. i) /
(2∗m)))

by (simp add : mult-less-0-iff divide-simps)
also have . . . = exp (

∑
i<b. −3 ∗ real i / (2∗m))

by (simp add : sum-negf sum-distrib-left sum-divide-distrib)
also have . . . = (

∏
i<b. exp (−3 ∗ real i / (2∗m)))

using exp-sum by blast
also have . . . ≤ (

∏
i<b. 1 − ((1−σ)∗i) / (σ ∗ (real m − real i)))

using ∗ by (force intro: prod-mono)
finally have exp (− (3 ∗ real b ^ 2) / (4∗m)) ≤ (

∏
i<b. 1 − (1−σ) ∗ i / (σ

∗ (real m − real i))) .
with EQ have σ^b ∗ exp (− (3 ∗ real b ^ 2) / (4∗m)) ≤ ((σ∗m) gchoose b) /

(m gchoose b)
by (simp add : assms field-simps)

with σ bm show ?thesis
by (simp add : field-split-simps flip: binomial-gbinomial)

qed

lemma power2-12 : m ≥ 12 =⇒ 25 ∗ m2 ≤ 2^m
proof (induction m)
case 0
then show ?case by auto

next
case (Suc m)
then consider m=11 | m≥12
by linarith

then show ?case
proof cases
case 1
then show ?thesis
by auto

next
case 2
then have Suc(m+m) ≤ m∗3 m≥3

62

using Suc by auto
then have 25 ∗ Suc (m+m) ≤ 25 ∗ (m∗m)
by (metis le-trans mult-le-mono2)

with Suc show ?thesis
by (auto simp: power2-eq-square algebra-simps 2)

qed
qed

How b and m are obtained from l

definition b-of where b-of ≡ λl ::nat . nat⌈l powr (1/4)⌉
definition m-of where m-of ≡ λl ::nat . nat⌈l powr (2/3)⌉

definition Big-Blue-4-1 ≡
λµ l . m-of l ≥ 12 ∧ l ≥ (6/µ) powr (12/5) ∧ l ≥ 15

∧ 1 ≤ 5/4 ∗ exp (− real((b-of l)2) / ((µ − 2/l) ∗ m-of l)) ∧ µ > 2/l
∧ 2/l ≤ (µ − 2/l) ∗ ((5/4) powr (1/b-of l) − 1)

Establishing the size requirements for 4.1. NOTE: it doesn’t become
clear until SECTION 9 that all bounds involving the parameter µ must hold
for a RANGE of values

lemma Big-Blue-4-1 :
assumes 0<µ0
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-Blue-4-1 µ l

proof −
have 3 : 3 / µ0 > 0
using assms by force

have 2 : µ0 ∗ nat ⌈3 / µ0 ⌉ > 2
by (smt (verit , best) mult .commute assms of-nat-ceiling pos-less-divide-eq)

have ∀∞l . 12 ≤ m-of l
unfolding m-of-def by real-asymp

moreover have ∀∞l . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ (6 / µ) powr (12 / 5) ≤ l
using assms
apply (intro eventually-all-geI0 , real-asymp)
by (smt (verit , ccfv-SIG) divide-pos-pos frac-le powr-mono2)

moreover have ∀∞l . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ 4 ≤ 5 ∗ exp (− ((real (b-of
l))2 / ((µ − 2/l) ∗ real (m-of l))))
proof (intro eventually-all-geI0 [where L = nat ⌈3/µ0 ⌉])
show ∀∞l . 4 ≤ 5 ∗ exp (− ((real (b-of l))2 / ((µ0 − 2/l) ∗ real (m-of l))))
unfolding b-of-def m-of-def using assms by real-asymp

next
fix l µ
assume §: 4 ≤ 5 ∗ exp (− ((real (b-of l))2 / ((µ0 − 2/l) ∗ real (m-of l))))
and µ0 ≤ µ µ ≤ µ1 and lel : nat ⌈3 / µ0 ⌉ ≤ l

then have l>0
using 3 by linarith

then have 0 : m-of l > 0
using 3 by (auto simp: m-of-def)

have µ0 > 2/l
using lel assms by (auto simp: divide-simps mult .commute)

63

then show 4 ≤ 5 ∗ exp (− ((real (b-of l))2 / ((µ − 2/l) ∗ real (m-of l))))
using order-trans [OF §] by (simp add : 0 ‹µ0 ≤ µ› frac-le)

qed
moreover have ∀∞l . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ 2/l < µ
using assms by (intro eventually-all-geI0 , real-asymp, linarith)

moreover have ∀∞l . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ 2/l ≤ (µ − 2/l) ∗ ((5 / 4)
powr (1 / real (b-of l)) − 1)
proof −
have

∧
l µ. µ0 ≤ µ =⇒ µ0 − 2/l ≤ µ − 2/l

by (auto simp: divide-simps ge-one-powr-ge-zero mult .commute)
show ?thesis
using assms
unfolding b-of-def
apply (intro eventually-all-geI0 , real-asymp)

by (smt (verit , best) divide-le-eq-1 ge-one-powr-ge-zero mult-right-mono
of-nat-0-le-iff zero-le-divide-1-iff)
qed
ultimately show ?thesis
by (auto simp: Big-Blue-4-1-def eventually-conj-iff all-imp-conj-distrib)

qed

context Book
begin

proposition Blue-4-1 :
assumes X⊆V and manyb: many-bluish X
and big : Big-Blue-4-1 µ l

shows ∃S T . good-blue-book X (S ,T) ∧ card S ≥ l powr (1/4)
proof −
have lpowr0 [simp]: 0 ≤ ⌈l powr r⌉ for r
by (metis ceiling-mono ceiling-zero powr-ge-pzero)

define b where b ≡ b-of l
define W where W ≡ {x∈X . bluish X x}
define m where m ≡ m-of l
have m>0 m ≥ 6 m ≥ 12 b>0
using big by (auto simp: Big-Blue-4-1-def m-def b-def b-of-def)

have Wbig : card W ≥ RN k m
using manyb by (simp add : W-def m-def m-of-def many-bluish-def)

with Red-Blue-RN obtain U where U ⊆ W and U-m-Blue: size-clique m U
Blue

by (metis W-def ‹X ⊆ V › mem-Collect-eq no-Red-clique subset-eq)
then obtain card U = m and clique U Blue and U ⊆ V finite U
by (simp add : finV finite-subset size-clique-def)

have finite X
using ‹X⊆V › finV finite-subset by auto

have k ≤ RN k m
using ‹m≥12 › by (simp add : RN-3plus ′)

moreover have card W ≤ card X
by (simp add : W-def ‹finite X › card-mono)

64

ultimately have card X ≥ l
using Wbig l-le-k by linarith

then have U ̸= X
by (metis U-m-Blue ‹card U = m› le-eq-less-or-eq no-Blue-clique size-clique-smaller)
then have U ⊂ X
using W-def ‹U ⊆ W › by blast

then have cardU-less-X : card U < card X
by (meson ‹X⊆V › finV finite-subset psubset-card-mono)

with ‹X⊆V › have cardXU : card (X−U) = card X − card U
by (meson ‹U ⊂ X › card-Diff-subset finV finite-subset psubset-imp-subset)

then have real-cardXU : real (card (X−U)) = real (card X) − m
using ‹card U = m› cardU-less-X by linarith

have [simp]: m ≤ card X
using ‹card U = m› cardU-less-X nless-le by blast

have lpowr23 : real l powr (2/3) ≤ real l powr 1
using ln0 by (intro powr-mono) auto

then have m ≤ l m≤k
using l-le-k by (auto simp: m-def m-of-def)

then have m < RN k m
using ‹12 ≤ m› RN-gt2 by auto

also have cX : RN k m ≤ card X
using Wbig ‹card W ≤ card X › by linarith

finally have card U < card X
using ‹card U = m› by blast

First part of (10)

have card U ∗ (µ ∗ card X − card U) = m ∗ (µ ∗ (card X − card U)) − (1−µ)
∗ m2

using cardU-less-X by (simp add : ‹card U = m› algebra-simps of-nat-diff
numeral-2-eq-2)
also have . . . ≤ real (card (Blue ∩ all-edges-betw-un U (X−U)))
proof −
have dfam: disjoint-family-on (λu. Blue ∩ all-edges-betw-un {u} (X−U)) U
by (auto simp: disjoint-family-on-def all-edges-betw-un-def)

have µ ∗ (card X − card U) ≤ card (Blue ∩ all-edges-betw-un {u} (X−U)) +
(1−µ) ∗ m

if u ∈ U for u
proof −
have NBU : Neighbours Blue u ∩ U = U − {u}
using ‹clique U Blue› Red-Blue-all singleton-not-edge that
by (force simp: Neighbours-def clique-def)
then have NBX-split : (Neighbours Blue u ∩ X) = (Neighbours Blue u ∩

(X−U)) ∪ (U − {u})
using ‹U ⊂ X › by blast

moreover have Neighbours Blue u ∩ (X−U) ∩ (U − {u}) = {}
by blast

ultimately have card(Neighbours Blue u ∩ X) = card(Neighbours Blue u ∩
(X−U)) + (m − Suc 0)

by (simp add : card-Un-disjoint finite-Neighbours ‹finite U › ‹card U = m›

65

that)
then have µ ∗ (card X) ≤ real (card (Neighbours Blue u ∩ (X−U))) + real

(m − Suc 0)
using W-def ‹U ⊆ W › bluish-def that by force

then have µ ∗ (card X − card U)
≤ card (Neighbours Blue u ∩ (X−U)) + real (m − Suc 0) − µ ∗card

U
by (smt (verit) cardU-less-X nless-le of-nat-diff right-diff-distrib ′)
then have ∗: µ ∗ (card X − card U) ≤ real (card (Neighbours Blue u ∩

(X−U))) + (1−µ)∗m
using assms by (simp add : ‹card U = m› left-diff-distrib)

have inj-on (λx . {u,x}) (Neighbours Blue u ∩ X)
by (simp add : doubleton-eq-iff inj-on-def)
moreover have (λx . {u,x}) ‘ (Neighbours Blue u ∩ (X−U)) ⊆ Blue ∩

all-edges-betw-un {u} (X−U)
using Blue-E by (auto simp: Neighbours-def all-edges-betw-un-def)
ultimately have card (Neighbours Blue u ∩ (X−U)) ≤ card (Blue ∩

all-edges-betw-un {u} (X−U))
by (metis NBX-split card-inj-on-le finite-Blue finite-Int inj-on-Un)

with ∗ show ?thesis
by auto

qed
then have (card U) ∗ (µ ∗ real (card X − card U))

≤ (
∑

x∈U . card (Blue ∩ all-edges-betw-un {x} (X−U)) + (1−µ) ∗ m)
by (meson sum-bounded-below)

then have m ∗ (µ ∗ (card X − card U))
≤ (

∑
x∈U . card (Blue ∩ all-edges-betw-un {x} (X−U))) + (1−µ) ∗

m2

by (simp add : sum.distrib power2-eq-square ‹card U = m› mult-ac)
also have . . . ≤ card (

⋃
u∈U . Blue ∩ all-edges-betw-un {u} (X−U)) + (1−µ)

∗ m2

by (simp add : dfam card-UN-disjoint ′ ‹finite U › flip: UN-simps)
finally have m ∗ (µ ∗ (card X − card U))

≤ card (
⋃

u∈U . Blue ∩ all-edges-betw-un {u} (X−U)) + (1−µ) ∗
m2 .

moreover have (
⋃

u∈U . Blue ∩ all-edges-betw-un {u} (X−U)) = (Blue ∩
all-edges-betw-un U (X−U))

by (auto simp: all-edges-betw-un-def)
ultimately show ?thesis
by simp

qed
also have . . . ≤ edge-card Blue U (X−U)
by (simp add : edge-card-def)

finally have edge-card-XU : edge-card Blue U (X−U) ≥ card U ∗ (µ ∗ card X
− card U) .
define σ where σ ≡ blue-density U (X−U)
then have σ ≥ 0 by (simp add : gen-density-ge0)
have σ ≤ 1
by (simp add : σ-def gen-density-le1)

66

have 6 : real (6∗k) ≤ real (2 + k∗m)
by (metis mult .commute ‹6≤m› mult-le-mono2 of-nat-mono trans-le-add2)

then have km: k + m ≤ Suc (k ∗ m)
using big l-le-k ‹m ≤ l› by linarith

have m/2 ∗ (2 + real k ∗ (1−µ)) ≤ m/2 ∗ (2 + real k)
using assms µ01 by (simp add : algebra-simps)

also have . . . ≤ (k − 1) ∗ (m − 1)
using big l-le-k 6 ‹m≤k› by (simp add : Big-Blue-4-1-def algebra-simps add-divide-distrib

km)
finally have (m/2) ∗ (2 + k ∗ (1−µ)) ≤ RN k m
using RN-times-lower ′ [of k m] by linarith

then have µ − 2/k ≤ (µ ∗ card X − card U) / (card X − card U)
using kn0 assms cardU-less-X ‹card U = m› cX by (simp add : field-simps)

also have . . . ≤ σ
using ‹m>0 › ‹card U = m› cardU-less-X cardXU edge-card-XU
by (simp add : σ-def gen-density-def divide-simps mult-ac)

finally have eq10 : µ − 2/k ≤ σ .
have 2 ∗ b / m ≤ µ − 2/k
proof −
have 512 : 5/12 ≤ (1 ::real)
by simp

with big have l powr (5/12) ≥ ((6/µ) powr (12/5)) powr (5/12)
by (simp add : Big-Blue-4-1-def powr-mono2)

then have lge: l powr (5/12) ≥ 6/µ
using assms µ01 powr-powr by force

have 2 ∗ b ≤ 2 ∗ (l powr (1/4) + 1)
by (simp add : b-def b-of-def del : zero-le-ceiling distrib-left-numeral)

then have 2∗b / m + 2/l ≤ 2 ∗ (l powr (1/4) + 1) / l powr (2/3) + 2/l
by (simp add : m-def m-of-def frac-le ln0 del : zero-le-ceiling distrib-left-numeral)
also have . . . ≤ (2 ∗ l powr (1/4) + 4) / l powr (2/3)
using ln0 lpowr23 by (simp add : pos-le-divide-eq pos-divide-le-eq add-divide-distrib

algebra-simps)
also have . . . ≤ (2 ∗ l powr (1/4) + 4 ∗ l powr (1/4)) / l powr (2/3)
using big by (simp add : Big-Blue-4-1-def divide-right-mono ge-one-powr-ge-zero)
also have . . . = 6 / l powr (5/12)
by (simp add : divide-simps flip: powr-add)

also have . . . ≤ µ
using lge assms µ01 by (simp add : divide-le-eq mult .commute)

finally have 2∗b / m + 2/l ≤ µ .
then show ?thesis
using l-le-k ‹m>0 › ln0
by (smt (verit , best) frac-le of-nat-0-less-iff of-nat-mono)

qed
with eq10 have 2 / (m/b) ≤ σ
by simp

moreover have l powr (2/3) ≤ nat ⌈real l powr (2/3)⌉
using of-nat-ceiling by blast

ultimately have ble: b ≤ σ ∗ m / 2
using mult-left-mono ‹σ ≥ 0 › big kn0 l-le-k

67

by (simp add : Big-Blue-4-1-def powr-diff b-def m-def divide-simps)
then have σ > 0
using ‹0 < b› ‹0 ≤ σ› less-eq-real-def by force

define Φ where Φ ≡
∑

v ∈ X−U . card (Neighbours Blue v ∩ U) choose b

now for the material between (10) and (11)

have σ ∗ real m / 2 ≤ m
using ‹σ ≤ 1 › ‹m>0 › by auto

with ble have b ≤ m
by linarith

have µ^b ∗ 1 ∗ card X ≤ (5/4 ∗ σ^b) ∗ (5/4 ∗ exp(− real(b2) / (σ∗m))) ∗
(5/4 ∗ (card X − m))
proof (intro mult-mono)
have 2 : 2/k ≤ 2/l
by (simp add : l-le-k frac-le ln0)

also have . . . ≤ (µ − 2/l) ∗ ((5/4) powr (1/b) − 1)
using big by (simp add : Big-Blue-4-1-def b-def)

also have . . . ≤ σ ∗ ((5/4) powr (1/b) − 1)
using 2 ‹0 < b› eq10 by auto

finally have 2 / real k ≤ σ ∗ ((5/4) powr (1/b) − 1) .
then have 1 : µ ≤ (5/4)powr(1/b) ∗ σ
using eq10 ‹b>0 › by (simp add : algebra-simps)

show µ ^ b ≤ 5/4 ∗ σ ^ b
using power-mono[OF 1 , of b] assms ‹σ>0 › ‹b>0 › µ01
by (simp add : powr-mult powr-powr flip: powr-realpow)

have µ − 2/l ≤ σ
using 2 eq10 by linarith

moreover have 2/l < µ
using big by (auto simp: Big-Blue-4-1-def)

ultimately have exp (− real(b2) / ((µ − 2/l) ∗ m)) ≤ exp (− real (b2) / (σ
∗ m))

using ‹σ>0 › ‹m>0 › by (simp add : frac-le)
then show 1 ≤ 5/4 ∗ exp (− real(b2) / (σ ∗ real m))
using big unfolding Big-Blue-4-1-def b-def m-def
by (smt (verit , best) divide-minus-left frac-le mult-left-mono)

have 25 ∗ (real m ∗ real m) ≤ 2 powr m
using of-nat-mono [OF power2-12 [OF ‹12 ≤ m›]] by (simp add : power2-eq-square

powr-realpow)
then have real (5 ∗ m) ≤ 2 powr (real m / 2)
by (simp add : powr-half-sqrt-powr power2-eq-square real-le-rsqrt)

moreover
have card X > 2 powr (m/2)
by (metis RN-commute RN-lower-nodiag ‹6 ≤ m› ‹m≤k› add-leE less-le-trans

cX numeral-Bit0 of-nat-mono)
ultimately have 5 ∗ m ≤ real (card X)
by linarith

then show card X ≤ 5/4 ∗ (card X − m)
using ‹card U = m› cardU-less-X by simp

68

qed (use ‹0 ≤ σ› in auto)
also have . . . = (125/64) ∗ (σ^b) ∗ exp(− (real b)2 / (σ∗m)) ∗ (card X − m)
by simp

also have . . . ≤ 2 ∗ (σ^b) ∗ exp(− (real b)2 / (σ∗m)) ∗ (card X − m)
by (intro mult-right-mono) (auto simp: ‹0 ≤ σ›)

finally have µ^b/2 ∗ card X ≤ σ^b ∗ exp(− of-nat (b2) / (σ∗m)) ∗ card (X−U)
by (simp add : ‹card U = m› cardXU real-cardXU)

also have . . . ≤ 1/(m choose b) ∗ ((σ∗m) gchoose b) ∗ card (X−U)
proof (intro mult-right-mono)
have 0 < real m gchoose b
by (metis ‹b ≤ m› binomial-gbinomial of-nat-0-less-iff zero-less-binomial-iff)

then have σ ^ b ∗ ((real m gchoose b) ∗ exp (− ((real b)2 / (σ ∗ real m)))) ≤
σ ∗ real m gchoose b

using Fact-D1-73 [OF ‹σ>0 › ‹σ≤1 › ble] ‹b≤m› cardU-less-X ‹0 < σ›
by (simp add : field-split-simps binomial-gbinomial)

then show σ^b ∗ exp (− real (b2) / (σ ∗ m)) ≤ 1/(m choose b) ∗ (σ ∗ m
gchoose b)

using ‹b≤m› cardU-less-X ‹0 < σ› ‹0 < m gchoose b›
by (simp add : field-split-simps binomial-gbinomial)

qed auto
also have . . . ≤ 1/(m choose b) ∗ Φ
unfolding mult .assoc

proof (intro mult-left-mono)
have eeq : edge-card Blue U (X−U) = (

∑
i∈X−U . card (Neighbours Blue i ∩

U))
proof (intro edge-card-eq-sum-Neighbours)
show finite (X−U)
by (meson ‹X⊆V › finV finite-Diff finite-subset)

qed (use disjnt-def Blue-E in auto)
have (

∑
i∈X − U . card (Neighbours Blue i ∩ U)) / (real (card X) − m) =

blue-density U (X−U) ∗ m
using ‹m>0 › by (simp add : gen-density-def real-cardXU ‹card U = m› eeq

divide-simps)
then have ∗: (

∑
i∈X − U . real (card (Neighbours Blue i ∩ U)) /R real (card

(X−U))) = σ ∗ m
by (simp add : σ-def divide-inverse-commute real-cardXU flip: sum-distrib-left)
have mbinomial (

∑
i∈X − U . real (card (Neighbours Blue i ∩ U)) /R (card

(X−U))) b
≤ (

∑
i∈X − U . inverse (real (card (X−U))) ∗ mbinomial (card (Neighbours

Blue i ∩ U)) b)
proof (rule convex-on-sum)
show finite (X−U)
using cardU-less-X zero-less-diff by fastforce

show convex-on UNIV (λa. mbinomial a b)
by (simp add : ‹0 < b› convex-mbinomial)

show (
∑

i∈X − U . inverse (card (X−U))) = 1
using cardU-less-X cardXU by force

qed (use ‹U ⊂ X › in auto)
with ble

69

show (σ∗m gchoose b) ∗ card (X−U) ≤ Φ
unfolding ∗ Φ-def
by (simp add : cardU-less-X cardXU binomial-gbinomial divide-simps flip:

sum-distrib-left sum-divide-distrib)
qed auto
finally have 11 : µ^b / 2 ∗ card X ≤ Φ / (m choose b)
by simp

define Ω where Ω ≡ nsets U b — Choose a random subset of size b
have cardΩ: card Ω = m choose b
by (simp add : Ω-def ‹card U = m›)

then have finΩ: finite Ω and Ω ̸= {} and card Ω > 0
using ‹b ≤ m› not-less by fastforce+

define M where M ≡ uniform-count-measure Ω
interpret P : prob-space M
using M-def ‹b ≤ m› cardΩ finΩ prob-space-uniform-count-measure by force

have measure-eq : measure M C = (if C ⊆ Ω then card C / card Ω else 0) for C
by (simp add : M-def finΩ measure-uniform-count-measure-if)

define Int-NB where Int-NB ≡ λS .
⋂

v∈S . Neighbours Blue v ∩ (X−U)
have sum-card-NB : (

∑
A∈Ω. card (

⋂
(Neighbours Blue ‘ A) ∩ Y))

= (
∑

v∈Y . card (Neighbours Blue v ∩ U) choose b)
if finite Y Y ⊆ X−U for Y
using that

proof (induction Y)
case (insert y Y)
have ∗: Ω ∩ {A. ∀ x∈A. y ∈ Neighbours Blue x} = nsets (Neighbours Blue y

∩ U) b
Ω ∩ − {A. ∀ x∈A. y ∈ Neighbours Blue x} = Ω − nsets (Neighbours Blue y

∩ U) b
[Neighbours Blue y ∩ U]b ⊆ Ω

using insert .prems by (auto simp: Ω-def nsets-def in-Neighbours-iff insert-commute)
then show ?case
using insert finΩ
by (simp add : Int-insert-right sum-Suc sum.If-cases if-distrib [of card]

sum.subset-diff flip: insert .IH)
qed auto

have (
∑

x∈Ω. card (if x = {} then UNIV else
⋂

(Neighbours Blue ‘ x) ∩
(X−U)))

= (
∑

x∈Ω. card (
⋂

(Neighbours Blue ‘ x) ∩ (X−U)))
unfolding Ω-def nsets-def using ‹0 < b› by (force intro: sum.cong)

also have . . . = (
∑

v∈X − U . card (Neighbours Blue v ∩ U) choose b)
by (metis sum-card-NB ‹X⊆V › dual-order .refl finV finite-Diff rev-finite-subset)

finally have sum (card o Int-NB) Ω = Φ
by (simp add : Ω-def Φ-def Int-NB-def)

moreover
have ennreal (P .expectation (λS . card (Int-NB S))) = sum (card o Int-NB) Ω

/ (card Ω)

70

using integral-uniform-count-measure M-def finΩ by fastforce
ultimately have P : P .expectation (λS . card (Int-NB S)) = Φ / (m choose b)

by (metis Bochner-Integration.integral-nonneg cardΩ divide-nonneg-nonneg
ennreal-inj of-nat-0-le-iff)
have False if

∧
S . S ∈ Ω =⇒ card (Int-NB S) < Φ / (m choose b)

proof −
define L where L ≡ (λS . Φ / real (m choose b) − card (Int-NB S)) ‘ Ω
have finite L L ̸= {}
using L-def finΩ ‹Ω ̸={}› by blast+

define ε where ε ≡ Min L
have ε > 0
using that finΩ ‹Ω ̸= {}› by (simp add : L-def ε-def)

then have
∧

S . S ∈ Ω =⇒ card (Int-NB S) ≤ Φ / (m choose b) − ε
using Min-le [OF ‹finite L›] by (fastforce simp: algebra-simps ε-def L-def)

then have P .expectation (λS . card (Int-NB S)) ≤ Φ / (m choose b) − ε
using P P .not-empty not-integrable-integral-eq ‹ε > 0 ›

by (intro P .integral-le-const) (fastforce simp: M-def space-uniform-count-measure)+
then show False
using P ‹0 < ε› by auto

qed
then obtain S where S ∈ Ω and Sge: card (Int-NB S) ≥ Φ / (m choose b)
using linorder-not-le by blast

then have S ⊆ U
by (simp add : Ω-def nsets-def subset-iff)

have card S = b clique S Blue
using ‹S ∈ Ω› ‹U ⊆ V › ‹clique U Blue› smaller-clique
unfolding Ω-def nsets-def size-clique-def by auto

have Φ / (m choose b) ≥ µ^b ∗ card X / 2
using 11 by simp

then have S : card (Int-NB S) ≥ µ^b ∗ card X / 2
using Sge by linarith

obtain v where v ∈ S
using ‹0 < b› ‹card S = b› by fastforce

have all-edges-betw-un S (S ∪ Int-NB S) ⊆ Blue
using ‹clique S Blue›

unfolding all-edges-betw-un-def Neighbours-def clique-def Int-NB-def by fastforce
then have good-blue-book X (S , Int-NB S)
using ‹S⊆U › ‹v ∈ S› ‹U ⊂ X › S ‹card S = b›
unfolding good-blue-book-def book-def size-clique-def Int-NB-def disjnt-iff
by blast

then show ?thesis
by (metis ‹card S = b› b-def b-of-def of-nat-ceiling)

qed

Lemma 4.3

proposition bblue-step-limit :
assumes big : Big-Blue-4-1 µ l
shows card (Step-class {bblue-step}) ≤ l powr (3/4)

proof −

71

define BBLUES where BBLUES ≡ λr . {m. m < r ∧ stepper-kind m =
bblue-step}
have cardB-ge: card (Bseq n) ≥ b-of l ∗ card(BBLUES n)
for n

proof (induction n)
case 0 then show ?case by (auto simp: BBLUES-def)

next
case (Suc n)
show ?case
proof (cases stepper-kind n = bblue-step)
case True
have [simp]: card (insert n (BBLUES n)) = Suc (card (BBLUES n))
by (simp add : BBLUES-def)

have card-B ′: card (Bseq (Suc n)) ≥ b-of l ∗ card (BBLUES n)
using Suc.IH
by (meson Bseq-Suc-subset card-mono finite-Bseq le-trans)

define S where S ≡ fst (choose-blue-book (Xseq n, Yseq n, Aseq n, Bseq n))
have BSuc: Bseq (Suc n) = Bseq n ∪ S
and manyb: many-bluish (Xseq n)
and cbb: choose-blue-book (Xseq n, Yseq n, Aseq n, Bseq n) = (S , Xseq

(Suc n))
and same: Aseq (Suc n) = Aseq n Yseq (Suc n) = Yseq n
using True

by (force simp: S-def step-kind-defs next-state-def split : prod .split if-split-asm)+

have l14 : l powr (1/4) ≤ card S
using Blue-4-1 [OF Xseq-subset-V manyb big]

by (smt (verit , best) choose-blue-book-works best-blue-book-is-best cbb
finite-Xseq of-nat-mono)

then have ble: b-of l ≤ card S
using b-of-def nat-ceiling-le-eq by presburger

have S : good-blue-book (Xseq n) (S , Xseq (Suc n))
by (metis cbb choose-blue-book-works finite-Xseq)

then have card S ≤ best-blue-book-card (Xseq n)
by (simp add : best-blue-book-is-best finite-Xseq)

have finS : finite S
using ln0 l14 card .infinite by force

have disjnt (Bseq n) (Xseq n)
using valid-state-seq [of n]
by (auto simp: Bseq-def Xseq-def valid-state-def disjoint-state-def disjnt-iff

split : prod .split-asm)
then have dBS : disjnt (Bseq n) S
using S cbb by (force simp: good-blue-book-def book-def disjnt-iff)

have eq : BBLUES (Suc n) = insert n (BBLUES n)
using less-Suc-eq True unfolding BBLUES-def by blast

then have b-of l ∗ card (BBLUES (Suc n)) = b-of l + b-of l ∗ card (BBLUES
n)

72

by auto
also have . . . ≤ card (Bseq n) + card S
using ble card-B ′ Suc.IH by linarith

also have . . . ≤ card (Bseq n ∪ S)
using ble dBS by (simp add : card-Un-disjnt finS finite-Bseq)

finally have ∗∗: b-of l ∗ card (BBLUES (Suc n)) ≤ card (Bseq (Suc n))
using order .trans BSuc by argo

then show ?thesis
by (simp add : BBLUES-def)

next
case False
then have BBLUES (Suc n) = BBLUES n
using less-Suc-eq by (auto simp: BBLUES-def)

then show ?thesis
by (metis Bseq-Suc-subset Suc.IH card-mono finite-Bseq le-trans)

qed
qed
{ assume §: card (Step-class {bblue-step}) > l powr (3/4)
then have fin: finite (Step-class {bblue-step})
using card .infinite by fastforce

then obtain n where n: (Step-class {bblue-step}) = {m. m<n ∧ stepper-kind
m = bblue-step}

using Step-class-iterates by blast
with § have card-gt : card{m. m<n ∧ stepper-kind m = bblue-step} > l powr

(3/4)
by (simp add : n)

have l = l powr (1/4) ∗ l powr (3/4)
by (simp flip: powr-add)

also have . . . ≤ b-of l ∗ l powr (3/4)
by (simp add : b-of-def mult-mono ′)

also have . . . ≤ b-of l ∗ card{m. m<n ∧ stepper-kind m = bblue-step}
using card-gt less-eq-real-def by fastforce

also have . . . ≤ card (Bseq n)
using cardB-ge step of-nat-mono unfolding BBLUES-def by blast

also have . . . < l
by (simp add : Bseq-less-l)

finally have False
by simp

}
then show ?thesis by force

qed

lemma red-steps-eq-A:
defines REDS ≡ λr . {i . i < r ∧ stepper-kind i = red-step}
shows card(REDS n) = card (Aseq n)

proof (induction n)
case 0
then show ?case

73

by (auto simp: REDS-def)
next
case (Suc n)
show ?case
proof (cases stepper-kind n = red-step)
case True
then have [simp]: REDS (Suc n) = insert n (REDS n) card (insert n (REDS

n)) = Suc (card (REDS n))
by (auto simp: REDS-def)

have Aeq : Aseq (Suc n) = insert (choose-central-vx (Xseq n,Yseq n,Aseq n,Bseq
n)) (Aseq n)

using Suc.prems True
by (auto simp: step-kind-defs next-state-def split : if-split-asm prod .split)

have finite (Xseq n)
using finite-Xseq by presburger

then have choose-central-vx (Xseq n,Yseq n,Aseq n,Bseq n) ∈ Xseq n
using True

by (simp add : step-kind-defs choose-central-vx-X split : if-split-asm prod .split-asm)
moreover have disjnt (Xseq n) (Aseq n)
using valid-state-seq by (simp add : valid-state-def disjoint-state-def)

ultimately have choose-central-vx (Xseq n,Yseq n,Aseq n,Bseq n) /∈ Aseq n
by (simp add : disjnt-iff)

then show ?thesis
by (simp add : Aeq Suc.IH finite-Aseq)

next
case False
then have REDS (Suc n) = REDS n
using less-Suc-eq unfolding REDS-def by blast

moreover have Aseq (Suc n) = Aseq n
using False
by (auto simp: step-kind-defs degree-reg-def next-state-def split : prod .split)

ultimately show ?thesis
using Suc.IH by presburger

qed
qed

proposition red-step-eq-Aseq : card (Step-class {red-step}) = card (Aseq halted-point)
proof −
have card{i . i < halted-point ∧ stepper-kind i = red-step} = card (Aseq halted-point)

by (rule red-steps-eq-A)
moreover have (Step-class {red-step}) = {i . i < halted-point ∧ stepper-kind i

= red-step}
using halted-point-minimal ′ by (fastforce simp: Step-class-def)

ultimately show ?thesis
by argo

qed

proposition red-step-limit : card (Step-class {red-step}) < k
using Aseq-less-k red-step-eq-Aseq by presburger

74

proposition bblue-dboost-step-limit :
assumes big : Big-Blue-4-1 µ l
shows card (Step-class {bblue-step}) + card (Step-class {dboost-step}) < l

proof −
define BDB where BDB ≡ λr . {i . i < r ∧ stepper-kind i ∈ {bblue-step,dboost-step}}
have ∗: card(BDB n) ≤ card B — looks clunky but gives access to all state

components
if stepper n = (X ,Y ,A,B) for n X Y A B
using that

proof (induction n arbitrary : X Y A B)
case 0
then show ?case
by (auto simp: BDB-def)

next
case (Suc n)
obtain X ′ Y ′ A ′ B ′ where step-n: stepper n = (X ′,Y ′,A ′,B ′)
by (metis surj-pair)

then obtain valid-state (X ′,Y ′,A ′,B ′) and V-state (X ′,Y ′,A ′,B ′)
and disjst : disjoint-state(X ′,Y ′,A ′,B ′) and finite X ′

by (metis finX valid-state-def valid-state-stepper)
have B ′ ⊆ B

using Suc.prems by (auto simp: next-state-def Let-def degree-reg-def step-n
split : prod .split-asm if-split-asm)

show ?case
proof (cases stepper-kind n ∈ {bblue-step,dboost-step})
case True
then have BDB (Suc n) = insert n (BDB n)
by (auto simp: BDB-def)

moreover have card (insert n (BDB n)) = Suc (card (BDB n))
by (simp add : BDB-def)
ultimately have card-Suc[simp]: card (BDB (Suc n)) = Suc (card (BDB

n))
by presburger

have card-B ′: card (BDB n) ≤ card B ′

using step-n BDB-def Suc.IH by blast
consider stepper-kind n = bblue-step | stepper-kind n = dboost-step
using True by force

then have Bigger : B ′ ⊂ B
proof cases
case 1
then have ¬ termination-condition X ′ Y ′

by (auto simp: stepper-kind-def step-n)
with 1 obtain S where A ′ = A Y ′ = Y and manyb: many-bluish X ′

and cbb: choose-blue-book (X ′,Y ,A,B ′) = (S ,X) and le-cardB : B = B ′ ∪
S

using Suc.prems
by (auto simp: step-kind-defs next-state-def step-n split : prod .split-asm

if-split-asm)

75

then obtain X ′ ⊆ V finite X ′

using Xseq-subset-V ‹finite X ′› step-n stepper-XYseq by blast
then have l powr (1/4) ≤ real (card S)
using Blue-4-1 [OF - manyb big]

by (smt (verit , best) of-nat-mono best-blue-book-is-best cbb choose-blue-book-works)
then have S ̸= {}
using ln0 by fastforce

moreover have disjnt B ′ S
using choose-blue-book-subset [OF ‹finite X ′›] disjst cbb
unfolding disjoint-state-def
by (smt (verit) in-mono ‹A ′ = A› ‹Y ′ = Y › disjnt-iff old .prod .case)

ultimately show ?thesis
by (metis ‹B ′ ⊆ B› disjnt-Un1 disjnt-self-iff-empty le-cardB psubsetI)

next
case 2
then have choose-central-vx (X ′,Y ′,A ′,B ′) ∈ X ′

unfolding step-kind-defs
by (auto simp: ‹finite X ′› choose-central-vx-X step-n split : if-split-asm)

moreover have disjnt B ′ X ′

using disjst disjnt-sym by (force simp: disjoint-state-def)
ultimately have choose-central-vx (X ′,Y ′,A ′,B ′) /∈ B ′

by (meson disjnt-iff)
then show ?thesis
using 2 Suc.prems
by (auto simp: step-kind-defs next-state-def step-n split : if-split-asm)

qed
moreover have finite B
by (metis Suc.prems V-state-stepper finB)

ultimately show ?thesis
by (metis card-B ′ card-Suc card-seteq le-trans not-less-eq-eq psubset-eq)

next
case False
then have BDB (Suc n) = BDB n
using less-Suc-eq unfolding BDB-def by blast

with ‹B ′ ⊆ B› Suc show ?thesis
by (metis V-state-stepper card-mono finB le-trans step-n)

qed
qed
have less-l : card (BDB n) < l for n
by (meson card-B-limit ∗ order .trans linorder-not-le prod-cases4)

moreover have fin:
∧

n. finite (BDB n) incseq BDB
by (auto simp: BDB-def incseq-def)

ultimately have ∗∗: ∀∞n.
⋃

(range BDB) = BDB n
using Union-incseq-finite by blast

then have finite (
⋃

(range BDB))
using BDB-def eventually-sequentially by force

moreover have Uneq :
⋃

(range BDB) = Step-class {bblue-step,dboost-step}
by (auto simp: Step-class-def BDB-def)

ultimately have fin: finite (Step-class {bblue-step,dboost-step})

76

by fastforce
obtain n where

⋃
(range BDB) = BDB n

using ∗∗ by force
then have card (BDB n) = card (Step-class {bblue-step} ∪ Step-class {dboost-step})

by (metis Step-class-insert Uneq)
also have . . . = card (Step-class {bblue-step}) + card (Step-class {dboost-step})

by (simp add : card-Un-disjnt disjnt-Step-class)
finally show ?thesis
by (metis less-l)

qed

end

end

5 Red Steps: theorems
theory Red-Steps imports Big-Blue-Steps

begin

Bhavik Mehta: choose-free Ramsey lower bound that’s okay for very small
p

lemma Ramsey-number-lower-simple:
assumes n: of-real n^k ∗ p powr (real k^2 / 4) + of-real n^l ∗ exp (−p ∗ real

l^2 / 4) < 1
assumes p01 : 0<p p<1 and k>1 l>1
shows ¬ is-Ramsey-number k l n

proof (rule Ramsey-number-lower-gen)
have real (n choose k) ∗ p^(k choose 2) ≤ of-real n^k ∗ p powr (real k^2 / 4)
proof −

have real (n choose k) ∗ p^(k choose 2) ≤ real (Suc n − k)^k ∗ p^(k choose
2)

using choose-le-power p01 by simp
also have . . . = real (Suc n − k)^k ∗ p powr (k ∗ (real k − 1) / 2)
by (metis choose-two-real p01 (1) powr-realpow)

also have . . . ≤ of-real n^k ∗ p powr (real k^2 / 4)
using p01 ‹k>1 › by (intro mult-mono powr-mono ′) (auto simp: power2-eq-square)
finally show ?thesis .

qed
moreover
have real (n choose l) ∗ (1 − p)^(l choose 2) ≤ of-real n^l ∗ exp (−p ∗ real l^2

/ 4)
proof −
show ?thesis
proof (intro mult-mono)
show real (n choose l) ≤ of-real (real n)^l
by (metis binomial-eq-0-iff binomial-le-pow linorder-not-le of-nat-0 of-nat-0-le-iff

of-nat-mono of-nat-power of-real-of-nat-eq)

77

have l ∗ p ≤ 2 ∗ (1 − real l) ∗ −p
using assms by (auto simp: algebra-simps)

also have . . . ≤ 2 ∗ (1 − real l) ∗ ln (1−p)
using p01 ‹l>1 › ln-add-one-self-le-self2 [of −p]
by (intro mult-left-mono-neg) auto

finally have real l ∗ (real l ∗ p) ≤ real l ∗ (2 ∗ (1 − real l) ∗ ln (1−p))
using mult-left-mono ‹l>1 › by fastforce

with p01 show (1 − p)^(l choose 2) ≤ exp (− p ∗ (real l)2 / 4)
by (simp add : field-simps power2-eq-square powr-def choose-two-real flip:

powr-realpow)
qed (use p01 in auto)

qed
ultimately
show real (n choose k) ∗ p^(k choose 2) + real (n choose l) ∗ (1 − p)^(l choose

2) < 1
using n by linarith

qed (use p01 in auto)

context Book
begin

5.1 Density-boost steps

5.1.1 Observation 5.5

lemma sum-Weight-ge0 :
assumes X ⊆ V Y ⊆ V disjnt X Y
shows (

∑
x∈X .

∑
x ′∈X . Weight X Y x x ′) ≥ 0

proof −
have finite X finite Y
using assms finV finite-subset by blast+

with Red-E have EXY : edge-card Red X Y = (
∑

x∈X . card (Neighbours Red
x ∩ Y))

by (metis ‹disjnt X Y › disjnt-sym edge-card-commute edge-card-eq-sum-Neighbours)
have (

∑
x∈X .

∑
x ′∈X . red-density X Y ∗ card (Neighbours Red x ∩ Y))

= red-density X Y ∗ card X ∗ edge-card Red X Y
using assms Red-E

by (simp add : EXY power2-eq-square edge-card-eq-sum-Neighbours flip: sum-distrib-left)
also have . . . = red-density X Y^2 ∗ card X^2 ∗ card Y
by (simp add : power2-eq-square gen-density-def)

also have . . . = ((
∑

i∈Y . card (Neighbours Red i ∩ X)) / (real (card X) ∗ real
(card Y)))2 ∗ (card X)2 ∗ card Y

using Red-E ‹finite Y › assms
by (simp add : psubset-eq gen-density-def edge-card-eq-sum-Neighbours)

also have . . . ≤ (
∑

y∈Y . real ((card (Neighbours Red y ∩ X))2))
proof (cases card Y = 0)
case False
then have (

∑
x∈Y . real (card (Neighbours Red x ∩ X)))2

≤ (
∑

y∈Y . (real (card (Neighbours Red y ∩ X)))2) ∗ card Y

78

using ‹finite Y › assms by (intro sum-squared-le-sum-of-squares) auto
then show ?thesis
using assms False by (simp add : divide-simps power2-eq-square sum-nonneg)

qed (auto simp: sum-nonneg)
also have . . . = (

∑
x∈X .

∑
x ′∈X . real (card (Neighbours Red x ∩ Neighbours

Red x ′ ∩ Y)))
proof −
define f :: ′a × ′a × ′a ⇒ ′a × ′a × ′a where f ≡ λ(y ,(x ,x ′)). (x , (x ′, y))
have f : bij-betw f (SIGMA y :Y . (Neighbours Red y ∩ X) × (Neighbours Red

y ∩ X))
(SIGMA x :X . SIGMA x ′:X . Neighbours Red x ∩ Neighbours

Red x ′ ∩ Y)
by (auto simp: f-def bij-betw-def inj-on-def image-iff in-Neighbours-iff doubleton-eq-iff

insert-commute)
have (

∑
y∈Y . (card (Neighbours Red y ∩ X))2) = card(SIGMA y :Y . (Neighbours

Red y ∩ X) × (Neighbours Red y ∩ X))
by (simp add : ‹finite Y › finite-Neighbours power2-eq-square)

also have . . . = card(Sigma X (λx . Sigma X (λx ′. Neighbours Red x ∩ Neigh-
bours Red x ′ ∩ Y)))

using bij-betw-same-card f by blast
also have . . . = (

∑
x∈X .

∑
x ′∈X . card (Neighbours Red x ∩ Neighbours Red

x ′ ∩ Y))
by (simp add : ‹finite X › finite-Neighbours power2-eq-square)

finally
have (

∑
y∈Y . (card (Neighbours Red y ∩ X))2) =

(
∑

x∈X .
∑

x ′∈X . card (Neighbours Red x ∩ Neighbours Red x ′ ∩ Y)) .
then show ?thesis
by (simp flip: of-nat-sum of-nat-power)

qed
finally have (

∑
x∈X .

∑
y∈X . red-density X Y ∗ card (Neighbours Red x ∩

Y))
≤ (

∑
x∈X .

∑
y∈X . real (card (Neighbours Red x ∩ Neighbours Red y ∩ Y)))

.
then show ?thesis
by (simp add : Weight-def sum-subtractf inverse-eq-divide flip: sum-divide-distrib)

qed

end

5.1.2 Lemma 5.6

definition Big-Red-5-6-Ramsey ≡
λc l . nat ⌈real l powr (3/4)⌉ ≥ 3
∧ (l powr (3/4) ∗ (c − 1/32) ≤ −1)
∧ (∀ k≥l . k ∗ (c ∗ l powr (3/4) ∗ ln k − k powr (7/8) / 4) ≤ −1)

establishing the size requirements for 5.6
lemma Big-Red-5-6-Ramsey :
assumes 0<c c<1/32
shows ∀∞l . Big-Red-5-6-Ramsey c l

79

proof −
have D34 :

∧
l k . l ≤ k =⇒ c ∗ real l powr (3/4) ≤ c ∗ real k powr (3/4)

by (simp add : assms powr-mono2)
have D0 : ∀∞l . l ∗ (c ∗ l powr (3/4) ∗ ln l − l powr (7/8) / 4) ≤ −1
using ‹c>0 › by real-asymp

have
∧

l k . l ≤ k =⇒ c ∗ real l powr (3/4) ∗ ln k ≤ c ∗ real k powr (3/4) ∗ ln k
using D34 le-eq-less-or-eq mult-right-mono by fastforce

then have D : ∀∞l . ∀ k≥l . k ∗ (c ∗ l powr (3/4) ∗ ln k − real k powr (7/8) /
4) ≤ −1

using eventually-mono [OF eventually-all-ge-at-top [OF D0]]
by (smt (verit , ccfv-SIG) mult-left-mono of-nat-0-le-iff)

show ?thesis
using assms
unfolding Big-Red-5-6-Ramsey-def eventually-conj-iff eps-def m-of-def
by (intro conjI eventually-all-ge-at-top D ; real-asymp)

qed

lemma Red-5-6-Ramsey :
assumes 0<c c<1/32 and l≤k and big : Big-Red-5-6-Ramsey c l
shows exp (c ∗ l powr (3/4) ∗ ln k) ≤ RN k (nat⌈l powr (3/4)⌉)

proof −
define r where r ≡ nat ⌊exp (c ∗ l powr (3/4) ∗ ln k)⌋
define s where s ≡ nat ⌈l powr (3/4)⌉
have l ̸=0
using big by (force simp: Big-Red-5-6-Ramsey-def)

have 3 ≤ s
using assms by (auto simp: Big-Red-5-6-Ramsey-def s-def)

also have . . . ≤ l
using powr-mono [of 3/4 1] ‹l ̸= 0 › by (simp add : s-def)

finally have 3 ≤ l .
then have k≥3 ‹k>0 › ‹l>0 ›
using assms by auto

define p where p ≡ k powr (−1/8)
have p01 : 0 < p p < 1
using ‹k≥3 › powr-less-one by (auto simp: p-def)

have r-le: r ≤ k powr (c ∗ l powr (3/4))
using p01 ‹k≥3 › unfolding r-def powr-def by force

have left : of-real r^s ∗ p powr ((real s)2 / 4) < 1/2
proof −
have A: r powr s ≤ k powr (s ∗ c ∗ l powr (3/4))
using r-le by (smt (verit) mult .commute of-nat-0-le-iff powr-mono2 powr-powr)
have B : p powr ((real s)2 / 4) ≤ k powr (−(real s)2 / 32)
by (simp add : powr-powr p-def power2-eq-square)

have C : (c ∗ l powr (3/4) − s/32) ≤ −1
using big by (simp add : Big-Red-5-6-Ramsey-def s-def algebra-simps) linarith

have of-real r^s ∗ p powr ((real s)2 / 4) ≤ k powr (s ∗ (c ∗ l powr (3/4) − s
/ 32))

using mult-mono [OF A B] ‹s≥3 ›

80

by (simp add : power2-eq-square algebra-simps powr-realpow ′ flip: powr-add)
also have . . . ≤ k powr − real s
using C ‹s≥3 › mult-left-mono ‹k≥3 › by fastforce

also have . . . ≤ k powr −3
using ‹k≥3 › ‹s≥3 › by (simp add : powr-minus powr-realpow)

also have . . . ≤ 3 powr −3
using ‹k≥3 › by (intro powr-mono2 ′) auto

also have . . . < 1/2
by auto

finally show ?thesis .
qed
have right : r^k ∗ exp (− p ∗ (real k)2 / 4) < 1/2
proof −
have A: r^k ≤ exp (c ∗ l powr (3/4) ∗ ln k ∗ k)
using r-le ‹0 < k› ‹0 < l› by (simp add : powr-def exp-of-nat2-mult)

have B : exp (− p ∗ (real k)2 / 4) ≤ exp (− k ∗ k powr (7/8) / 4)
using ‹k>0 › by (simp add : p-def mult-ac power2-eq-square powr-mult-base)

have r^k ∗ exp (− p ∗ (real k)2 / 4) ≤ exp (k ∗ (c ∗ l powr (3/4) ∗ ln k − k
powr (7/8) / 4))

using mult-mono [OF A B] by (simp add : algebra-simps s-def flip: exp-add)
also have . . . ≤ exp (−1)
using assms unfolding Big-Red-5-6-Ramsey-def by blast

also have . . . < 1/2
by (approximation 5)

finally show ?thesis .
qed
have ¬ is-Ramsey-number (nat⌈l powr (3/4)⌉) k (nat ⌊exp (c ∗ l powr (3/4) ∗

ln k)⌋)
using Ramsey-number-lower-simple [OF - p01] left right ‹k≥3 › ‹l≥3 ›
unfolding r-def s-def by force

then show ?thesis
by (smt (verit) RN-commute is-Ramsey-number-RN le-nat-floor partn-lst-greater-resource)

qed

definition ineq-Red-5-6 ≡ λc l . ∀ k . l ≤ k −→ exp (c ∗ real l powr (3/4) ∗ ln k)
≤ RN k (nat⌈l powr (3/4)⌉)

definition Big-Red-5-6 ≡
λl . 6 + m-of l ≤ (1/128) ∗ l powr (3/4) ∧ ineq-Red-5-6 (1/128) l

establishing the size requirements for 5.6

lemma Big-Red-5-6 : ∀∞l . Big-Red-5-6 l
proof −
define c::real where c ≡ 1/128
have 0 < c c < 1/32
by (auto simp: c-def)

then have ∀∞l . ineq-Red-5-6 c l
unfolding ineq-Red-5-6-def using Red-5-6-Ramsey Big-Red-5-6-Ramsey exp-gt-zero
by (smt (verit , del-insts) eventually-sequentially)

81

then show ?thesis
unfolding Big-Red-5-6-def eventually-conj-iff eps-def m-of-def
by (simp add : c-def ; real-asymp)

qed

lemma (in Book) Red-5-6 :
assumes big : Big-Red-5-6 l
shows RN k (nat⌈l powr (3/4)⌉) ≥ k^6 ∗ RN k (m-of l)

proof −
define c::real where c ≡ 1/128
have RN k (m-of l) ≤ k^(m-of l)
by (metis RN-le-argpower ′ RN-mono diff-add-inverse diff-le-self le-refl le-trans)

also have . . . ≤ exp (m-of l ∗ ln k)
using kn0 by (simp add : exp-of-nat-mult)

finally have RN k (m-of l) ≤ exp (m-of l ∗ ln k)
by force

then have k^6 ∗ RN k (m-of l) ≤ real k^6 ∗ exp (m-of l ∗ ln k)
by (simp add : kn0)

also have . . . ≤ exp (c ∗ l powr (3/4) ∗ ln k)
proof −
have (6 + real (m-of l)) ∗ ln (real k) ≤ (c ∗ l powr (3/4)) ∗ ln (real k)
unfolding mult-le-cancel-right
using big kn0 by (auto simp: c-def Big-Red-5-6-def)

then have ln (real k^6 ∗ exp (m-of l ∗ ln k)) ≤ ln (exp (c ∗ l powr (3/4) ∗
ln k))

using kn0 by (simp add : ln-mult ln-powr algebra-simps flip: powr-numeral)
then show ?thesis
by (smt (verit) exp-gt-zero ln-le-cancel-iff)

qed
also have . . . ≤ RN k (nat⌈l powr (3/4)⌉)
using assms l-le-k by (auto simp: ineq-Red-5-6-def Big-Red-5-6-def c-def)

finally show k^6 ∗ RN k (m-of l) ≤ RN k (nat⌈l powr (3/4)⌉)
using of-nat-le-iff by blast

qed

5.2 Lemma 5.4
definition Big-Red-5-4 ≡ λl . Big-Red-5-6 l ∧ (∀ k≥l . real k + 2 ∗ real k^6 ≤ real
k^7)

establishing the size requirements for 5.4
lemma Big-Red-5-4 : ∀∞l . Big-Red-5-4 l
unfolding Big-Red-5-4-def eventually-conj-iff all-imp-conj-distrib eps-def
apply (simp add : Big-Red-5-6)
apply (intro conjI eventually-all-ge-at-top; real-asymp)
done

context Book
begin

82

lemma Red-5-4 :
assumes i : i ∈ Step-class {red-step,dboost-step}
and big : Big-Red-5-4 l

defines X ≡ Xseq i and Y ≡ Yseq i
shows weight X Y (cvx i) ≥ − card X / (real k)^5

proof −
have l ̸=1
using big by (auto simp: Big-Red-5-4-def)

with ln0 l-le-k have l>1 k>1 by linarith+
let ?R = RN k (m-of l)
have finite X finite Y
by (auto simp: X-def Y-def finite-Xseq finite-Yseq)

have not-many-bluish: ¬ many-bluish X
using i not-many-bluish unfolding X-def by blast

have nonterm: ¬ termination-condition X Y
using X-def Y-def i step-non-terminating-iff by (force simp: Step-class-def)

moreover have l powr (2/3) ≤ l powr (3/4)
using ‹l>1 › by (simp add : powr-mono)

ultimately have RNX : ?R < card X
unfolding termination-condition-def m-of-def
by (meson RN-mono order .trans ceiling-mono le-refl nat-mono not-le)

have 0 ≤ (
∑

x ∈ X .
∑

x ′ ∈ X . Weight X Y x x ′)
by (simp add : X-def Y-def sum-Weight-ge0 Xseq-subset-V Yseq-subset-V Xseq-Yseq-disjnt)
also have . . . = (

∑
y ∈ X . weight X Y y + Weight X Y y y)

unfolding weight-def X-def
by (smt (verit) sum.cong sum.infinite sum.remove)

finally have ge0 : 0 ≤ (
∑

y∈X . weight X Y y + Weight X Y y y) .
have w-maximal : weight X Y (cvx i) ≥ weight X Y x
if central-vertex X x for x
using X-def Y-def ‹finite X › central-vx-is-best cvx-works i that by presburger

have |real (card (S ∩ Y)) ∗ (real (card X) ∗ real (card Y)) −
real (edge-card Red X Y) ∗ real (card (T ∩ Y))|

≤ real (card X) ∗ real (card Y) ∗ real (card Y) for S T
using card-mono [OF - Int-lower2] ‹finite X › ‹finite Y ›
by (smt (verit , best) of-nat-mult edge-card-le mult .commute mult-right-mono

of-nat-0-le-iff of-nat-mono)
then have W1abs: |Weight X Y x y | ≤ 1 for x y
using RNX edge-card-le [of X Y Red] ‹finite X › ‹finite Y ›
apply (simp add : mult-ac Weight-def divide-simps gen-density-def)
by (metis Int-lower2 card-mono mult-of-nat-commute)

then have W1 : Weight X Y x y ≤ 1 for x y
by (smt (verit))

have WW-le-cardX : weight X Y y + Weight X Y y y ≤ card X if y ∈ X for y
proof −
have weight X Y y + Weight X Y y y = sum (Weight X Y y) X
by (simp add : ‹finite X › sum-diff1 that weight-def)

also have . . . ≤ card X
using W1 by (smt (verit) real-of-card sum-mono)

83

finally show ?thesis .
qed
have weight X Y x ≤ real (card(X − {x})) ∗ 1 for x
unfolding weight-def by (meson DiffE abs-le-D1 sum-bounded-above W1)

then have wgt-le-X1 : weight X Y x ≤ card X − 1 if x ∈ X for x
using that card-Diff-singleton One-nat-def by (smt (verit , best))

define XB where XB ≡ {x∈X . bluish X x}
have card-XB : card XB < ?R
using not-many-bluish by (auto simp: m-of-def many-bluish-def XB-def)

have XB ⊆ X finite XB
using ‹finite X › by (auto simp: XB-def)

then have cv-non-XB :
∧

y . y ∈ X − XB =⇒ central-vertex X y
by (auto simp: central-vertex-def XB-def bluish-def)

have 0 ≤ (
∑

y∈X . weight X Y y + Weight X Y y y)
by (fact ge0)

also have . . . = (
∑

y∈XB . weight X Y y + Weight X Y y y) + (
∑

y∈X−XB .
weight X Y y + Weight X Y y y)

using sum.subset-diff [OF ‹XB⊆X ›] by (smt (verit) X-def Xseq-subset-V finV
finite-subset)
also have . . . ≤ (

∑
y∈XB . weight X Y y + Weight X Y y y) + (

∑
y∈X−XB .

weight X Y (cvx i) + 1)
by (intro add-mono sum-mono w-maximal W1 order-refl cv-non-XB)

also have . . . = (
∑

y∈XB . weight X Y y + Weight X Y y y) + (card X − card
XB) ∗ (weight X Y (cvx i) + 1)

using ‹XB⊆X › ‹finite XB› by (simp add : card-Diff-subset)
also have . . . ≤ card XB ∗ card X + (card X − card XB) ∗ (weight X Y (cvx

i) + 1)
using sum-bounded-above WW-le-cardX
by (smt (verit , ccfv-threshold) XB-def mem-Collect-eq of-nat-mult)

also have . . . = real (?R ∗ card X) + (real (card XB) − ?R) ∗ card X + (card
X − card XB) ∗ (weight X Y (cvx i) + 1)

using card-XB by (simp add : algebra-simps flip: of-nat-mult of-nat-diff)
also have . . . ≤ real (?R ∗ card X) + (card X − ?R) ∗ (weight X Y (cvx i) +

1)
proof −
have (real (card X) − card XB) ∗ (weight X Y (cvx i) + 1)

≤ (real (card X) − ?R) ∗ (weight X Y (cvx i) + 1) + (real (?R) − card
XB) ∗ (weight X Y (cvx i) + 1)

by (simp add : algebra-simps)
also have . . . ≤ (real (card X) − ?R) ∗ (weight X Y (cvx i) + 1) + (real (?R)

− card XB) ∗ card X
using RNX X-def i card-XB cvx-in-Xseq wgt-le-X1 by fastforce

finally show ?thesis
by (smt (verit , del-insts) RNX ‹XB ⊆ X › ‹finite X › card-mono nat-less-le

of-nat-diff distrib-right)
qed
finally have weight-ge-0 : 0 ≤ ?R ∗ card X + (card X − ?R) ∗ (weight X Y

(cvx i) + 1) .
have rk61 : real k^6 > 1

84

using ‹k>1 › by simp
have k267 : real k + 2 ∗ real k^6 ≤ (real k^7)
using ‹l ≤ k› big by (auto simp: Big-Red-5-4-def)

have k-le: real k^6 + (?R ∗ real k + ?R ∗ (real k^6)) ≤ 1 + ?R ∗ (real k^7)
using mult-left-mono [OF k267 , of ?R] assms

by (smt (verit , ccfv-SIG) distrib-left card-XB mult-le-cancel-right1 nat-less-real-le
of-nat-0-le-iff zero-le-power)
have [simp]: real k^m = real k^n ←→ m=n real k^m < real k^n ←→ m<n for

m n
using ‹1 < k› by auto

have RN k (nat⌈l powr (3/4)⌉) ≥ k^6 ∗ ?R
using ‹l ≤ k› big Red-5-6 by (auto simp: Big-Red-5-4-def)

then have cardX-ge: card X ≥ k^6 ∗ ?R
by (meson le-trans nat-le-linear nonterm termination-condition-def)

have −1 / (real k)^5 ≤ − 1 / (real k^6 − 1) + −1 / (real k^6 ∗ ?R)
using rk61 card-XB mult-left-mono [OF k-le, of real k^5]
by (simp add : field-split-simps eval-nat-numeral)

also have . . . ≤ − ?R / (real k^6 ∗ ?R − ?R) + −1 / (real k^6 ∗ ?R)
using card-XB rk61 by (simp add : field-split-simps)

finally have −1 / (real k)^5 ≤ − ?R / (real k^6 ∗ ?R − ?R) + −1 / (real k^6
∗ ?R) .
also have . . . ≤ − ?R / (real (card X) − ?R) + −1 / card X
proof (intro add-mono divide-left-mono-neg)
show real k^6 ∗ real ?R − real ?R ≤ real (card X) − real ?R
using cardX-ge of-nat-mono by fastforce

show real k^6 ∗ real ?R ≤ real (card X)
using cardX-ge of-nat-mono by fastforce

qed (use RNX rk61 kn0 card-XB in auto)
also have . . . ≤ weight X Y (cvx i) / card X
using RNX mult-left-mono [OF weight-ge-0 , of card X] by (simp add : field-split-simps)
finally show ?thesis
using RNX by (simp add : X-def Y-def divide-simps)

qed

lemma Red-5-7a: eps k / k ≤ alpha (hgt p)
by (simp add : alpha-ge hgt-gt0)

lemma Red-5-7b:
assumes p ≥ qfun 0 shows alpha (hgt p) ≤ eps k ∗ (p − qfun 0 + 1/k)

proof −
have qh-le-p: qfun (hgt p − Suc 0) ≤ p
by (smt (verit) assms diff-Suc-less hgt-gt0 hgt-less-imp-qfun-less zero-less-iff-neq-zero)
have alpha (hgt p) = eps k ∗ (1 + eps k)^(hgt p − 1) / k
using alpha-eq alpha-hgt-eq by blast

also have . . . = eps k ∗ (qfun (hgt p − 1) − qfun 0 + 1/k)
by (simp add : diff-divide-distrib qfun-eq)

also have . . . ≤ eps k ∗ (p − qfun 0 + 1/k)
by (simp add : eps-ge0 mult-left-mono qh-le-p)

finally show ?thesis .

85

qed

lemma Red-5-7c:
assumes p ≤ qfun 1 shows alpha (hgt p) = eps k / k
using alpha-hgt-eq Book-axioms assms hgt-Least by fastforce

lemma Red-5-8 :
assumes i : i ∈ Step-class {dreg-step} and x : x ∈ Xseq (Suc i)
shows card (Neighbours Red x ∩ Yseq (Suc i))

≥ (1 − (eps k) powr (1/2)) ∗ pee i ∗ (card (Yseq (Suc i)))
proof −
obtain X Y A B
where step: stepper i = (X ,Y ,A,B)
and nonterm: ¬ termination-condition X Y
and even i
and Suc-i : stepper (Suc i) = degree-reg (X ,Y ,A,B)
and XY : X = Xseq i Y = Yseq i

using i by (auto simp: step-kind-defs split : if-split-asm prod .split-asm)
have Xseq (Suc i) = ((λ(X , Y , A, B). X) ◦ stepper) (Suc i)
by (simp add : Xseq-def)

also have . . . = X-degree-reg X Y
using ‹even i› step nonterm by (auto simp: degree-reg-def)

finally have XSuc: Xseq (Suc i) = X-degree-reg X Y .
have YSuc: Yseq (Suc i) = Yseq i
using Suc-i step by (auto simp: degree-reg-def stepper-XYseq)

have p-gt-invk : (pee i) > 1/k
using XY nonterm pee-def termination-condition-def by auto

have RedN : (pee i − eps k powr −(1/2) ∗ alpha (hgt (pee i))) ∗ card Y ≤ card
(Neighbours Red x ∩ Y)

using x XY by (simp add : XSuc YSuc X-degree-reg-def pee-def red-dense-def)
show ?thesis
proof (cases pee i ≥ qfun 0)
case True
have i /∈ Step-class {halted}
using i by (simp add : Step-class-def)

then have p0 : 1/k < p0
by (metis Step-class-not-halted gr0I nat-less-le not-halted-pee-gt pee-eq-p0)

have 0 : eps k powr −(1/2) ≥ 0
by simp

have eps k powr −(1/2) ∗ alpha (hgt (pee i)) ≤ eps k powr (1/2) ∗ ((pee i)
− qfun 0 + 1/k)

using mult-left-mono [OF Red-5-7b [OF True] 0]
by (simp add : eps-def powr-mult-base flip: mult-ac)

also have . . . ≤ eps k powr (1/2) ∗ (pee i)
using p0 by (intro mult-left-mono) (auto simp flip: pee-eq-p0)

finally have eps k powr −(1/2) ∗ alpha (hgt (pee i)) ≤ eps k powr (1/2) ∗
(pee i) .

then have (1 − (eps k) powr (1/2)) ∗ (pee i) ∗ (card Y) ≤ ((pee i) − eps k
powr −(1/2) ∗ alpha (hgt (pee i))) ∗ card Y

86

by (intro mult-right-mono) (auto simp: algebra-simps)
with XY RedN YSuc show ?thesis by fastforce

next
case False
then have pee i ≤ qfun 1
by (smt (verit) One-nat-def alpha-Suc-eq alpha-ge0 q-Suc-diff)

then have eps k powr −(1/2) ∗ alpha (hgt (pee i)) = eps k powr (1/2) / k
using powr-mult-base [of eps k] eps-gt0 by (force simp: Red-5-7c mult .commute)
also have . . . ≤ eps k powr (1/2) ∗ (pee i)
using p-gt-invk
by (smt (verit) divide-inverse inverse-eq-divide mult-left-mono powr-ge-pzero)
finally have eps k powr −(1/2) ∗ alpha (hgt (pee i)) ≤ eps k powr (1/2) ∗

(pee i) .
then have (1 − (eps k) powr (1/2)) ∗ pee i ∗ card Y ≤ (pee i − eps k powr

−(1/2) ∗ alpha (hgt (pee i))) ∗ card Y
by (intro mult-right-mono) (auto simp: algebra-simps)

with XY RedN YSuc show ?thesis by fastforce
qed

qed

corollary Y-Neighbours-nonempty-Suc:
assumes i : i ∈ Step-class {dreg-step} and x : x ∈ Xseq (Suc i) and k≥2
shows Neighbours Red x ∩ Yseq (Suc i) ̸= {}

proof
assume con: Neighbours Red x ∩ Yseq (Suc i) = {}
have not-halted : i /∈ Step-class {halted}
using i by (auto simp: Step-class-def)

then have 0 : pee i > 0
using not-halted-pee-gt0 by blast

have Y ′: card (Yseq (Suc i)) > 0
using i Yseq-gt0 [OF not-halted] stepper-XYseq
by (auto simp: step-kind-defs degree-reg-def split : if-split-asm prod .split-asm)

have (1 − eps k powr (1/2)) ∗ pee i ∗ card (Yseq (Suc i)) ≤ 0
using Red-5-8 [OF i x] con by simp

with 0 Y ′ have (1 − eps k powr (1/2)) ≤ 0
by (simp add : mult-le-0-iff zero-le-mult-iff)

then show False
using ‹k≥2 › powr-le-cancel-iff [of k 1/8 0]
by (simp add : eps-def powr-minus-divide powr-divide powr-powr)

qed

corollary Y-Neighbours-nonempty :
assumes i : i ∈ Step-class {red-step,dboost-step} and x : x ∈ Xseq i and k≥2
shows card (Neighbours Red x ∩ Yseq i) > 0

proof (cases i)
case 0
with assms show ?thesis
by (auto simp: Step-class-def stepper-kind-def split : if-split-asm)

next

87

case (Suc i ′)
then have i ′ ∈ Step-class {dreg-step}
by (metis dreg-before-step dreg-before-step i Step-class-insert Un-iff)

then have Neighbours Red x ∩ Yseq (Suc i ′) ̸= {}
using Suc Y-Neighbours-nonempty-Suc assms by blast

then show ?thesis
by (simp add : Suc card-gt-0-iff finite-Neighbours)

qed

end

5.3 Lemma 5.1
definition Big-Red-5-1 ≡ λµ l . (1−µ) ∗ real l > 1 ∧ l powr (5/2) ≥ 3 / (1−µ)
∧ l powr (1/4) ≥ 4

∧ Big-Red-5-4 l ∧ Big-Red-5-6 l

establishing the size requirements for 5.1
lemma Big-Red-5-1 :
assumes µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-Red-5-1 µ l

proof −
have (∀∞l . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ 1 < (1−µ) ∗ real l)
proof (intro eventually-all-geI1)
show

∧
l µ. [[1 < (1−µ1) ∗ real l ; µ ≤ µ1]] =⇒ 1 < (1−µ) ∗ l

by (smt (verit , best) mult-right-mono of-nat-0-le-iff)
qed (use assms in real-asymp)
moreover have (∀∞l . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ 3 / (1−µ) ≤ real l powr

(5/2))
proof (intro eventually-all-geI1)
show

∧
l µ. [[3 / (1−µ1) ≤ real l powr (5/2); µ ≤ µ1]]

=⇒ 3 / (1−µ) ≤ real l powr (5/2)
by (smt (verit , ccfv-SIG) assms frac-le)

qed (use assms in real-asymp)
moreover have ∀∞l . 4 ≤ real l powr (1 / 4)
by real-asymp

ultimately show ?thesis
using assms Big-Red-5-6 Big-Red-5-4 by (auto simp: Big-Red-5-1-def all-imp-conj-distrib

eventually-conj-iff)
qed

context Book
begin

lemma card-cvx-Neighbours:
assumes i : i ∈ Step-class {red-step,dboost-step}
defines x ≡ cvx i
defines X ≡ Xseq i
defines NBX ≡ Neighbours Blue x ∩ X
defines NRX ≡ Neighbours Red x ∩ X

88

shows card NBX ≤ µ ∗ card X card NRX ≥ (1−µ) ∗ card X − 1
proof −
obtain x∈X X⊆V
by (metis Xseq-subset-V cvx-in-Xseq X-def i x-def)

then have card-NRBX : card NRX + card NBX = card X − 1
using Neighbours-RB [of x X] disjnt-Red-Blue-Neighbours
by (simp add : NRX-def NBX-def finite-Neighbours subsetD flip: card-Un-disjnt)

moreover have card-NBX-le: card NBX ≤ µ ∗ card X
by (metis cvx-works NBX-def X-def central-vertex-def i x-def)

ultimately show card NBX ≤ µ ∗ card X card NRX ≥ (1−µ) ∗ card X − 1
by (auto simp: algebra-simps)

qed

proposition Red-5-1 :
assumes i : i ∈ Step-class {red-step,dboost-step} and Big : Big-Red-5-1 µ l
defines p ≡ pee i
defines x ≡ cvx i
defines X ≡ Xseq i and Y ≡ Yseq i
defines NBX ≡ Neighbours Blue x ∩ X
defines NRX ≡ Neighbours Red x ∩ X
defines NRY ≡ Neighbours Red x ∩ Y
defines β ≡ card NBX / card X
shows red-density NRX NRY ≥ p − alpha (hgt p)
∨ red-density NBX NRY ≥ p + (1 − eps k) ∗ ((1−β) / β) ∗ alpha (hgt p)

∧ β > 0
proof −
have Red-5-4 : weight X Y x ≥ − real (card X) / (real k)^5
using Big i Red-5-4 by (auto simp: Big-Red-5-1-def x-def X-def Y-def)

have lA: (1−µ) ∗ l > 1 and l≤k and l144 : l powr (1/4) ≥ 4
using Big by (auto simp: Big-Red-5-1-def l-le-k)

then have k-powr-14 : k powr (1/4) ≥ 4
by (smt (verit) divide-nonneg-nonneg of-nat-0-le-iff of-nat-mono powr-mono2)

have k ≥ 256
using powr-mono2 [of 4 , OF - - k-powr-14] by (simp add : powr-powr flip:

powr-numeral)
then have k>0 by linarith
have k52 : 3 / (1−µ) ≤ k powr (5/2)
using Big ‹l≤k› unfolding Big-Red-5-1-def
by (smt (verit) of-nat-0-le-iff of-nat-mono powr-mono2 zero-le-divide-iff)

have RN-le-RN : k^6 ∗ RN k (m-of l) ≤ RN k (nat ⌈l powr (3/4)⌉)
using Big ‹l ≤ k› Red-5-6 by (auto simp: Big-Red-5-1-def)

have l34-ge3 : l powr (3/4) ≥ 3
by (smt (verit , ccfv-SIG) l144 divide-nonneg-nonneg frac-le of-nat-0-le-iff powr-le1

powr-less-cancel)
note XY = X-def Y-def
obtain A B
where step: stepper i = (X ,Y ,A,B)
and nonterm: ¬ termination-condition X Y
and odd i

89

and non-mb: ¬ many-bluish X and card X > 0
and not-halted : i /∈ Step-class {halted}
using i by (auto simp: XY step-kind-defs termination-condition-def split :

if-split-asm prod .split-asm)
with Yseq-gt0 XY have card Y ̸= 0
by blast

have cX-RN : card X > RN k (nat ⌈l powr (3/4)⌉)
by (meson linorder-not-le nonterm termination-condition-def)

then have X-gt-k : card X > k
by (metis l34-ge3 RN-3plus ′ of-nat-numeral order .trans le-natceiling-iff not-less)
have 0 < RN k (m-of l)
using RN-eq-0-iff m-of-def many-bluish-def non-mb by presburger

then have k^4 ≤ k^6 ∗ RN k (m-of l)
by (simp add : eval-nat-numeral)

also have . . . < card X
using cX-RN RN-le-RN by linarith

finally have card X > k^4 .
have x ∈ X
using cvx-in-Xseq i XY x-def by blast

have X ⊆ V
by (simp add : Xseq-subset-V XY)

have finite NRX finite NBX finite NRY
by (auto simp: NRX-def NBX-def NRY-def finite-Neighbours)

have disjnt X Y
using Xseq-Yseq-disjnt step stepper-XYseq by blast

then have disjnt NRX NRY disjnt NBX NRY
by (auto simp: NRX-def NBX-def NRY-def disjnt-iff)

have card-NRBX : card NRX + card NBX = card X − 1
using Neighbours-RB [of x X] ‹finite NRX › ‹x∈X › ‹X⊆V › disjnt-Red-Blue-Neighbours
by (simp add : NRX-def NBX-def finite-Neighbours subsetD flip: card-Un-disjnt)

obtain card-NBX-le: card NBX ≤ µ ∗ card X and card NRX ≥ (1−µ) ∗ card
X − 1

unfolding NBX-def NRX-def X-def x-def using card-cvx-Neighbours i by metis
with lA ‹l≤k› X-gt-k have card NRX > 0
by (smt (verit , best) of-nat-0 µ01 gr0I mult-less-cancel-left-pos nat-less-real-le

of-nat-mono)
have card NRY > 0

using Y-Neighbours-nonempty [OF i] ‹k≥256 › NRY-def ‹finite NRY › ‹x ∈
X › card-0-eq XY by force
show ?thesis
proof (cases (

∑
y∈NRX . Weight X Y x y) ≥ −alpha (hgt p) ∗ card NRX ∗

card NRY / card Y)
case True
then have (p − alpha (hgt p)) ∗ (card NRX ∗ card NRY) ≤ (

∑
y ∈ NRX . p

∗ card NRY + Weight X Y x y ∗ card Y)
using ‹card Y ̸= 0 › by (simp add : field-simps sum-distrib-left sum.distrib)

also have . . . = (
∑

y ∈ NRX . card (Neighbours Red x ∩ Neighbours Red y ∩
Y))

using ‹card Y ̸= 0 › by (simp add : Weight-def pee-def XY NRY-def field-simps

90

p-def)
also have . . . = edge-card Red NRY NRX
using ‹disjnt NRX NRY › ‹finite NRX ›

by (simp add : disjnt-sym edge-card-eq-sum-Neighbours Red-E psubset-imp-subset
NRY-def Int-ac)

also have . . . = edge-card Red NRX NRY
by (simp add : edge-card-commute)
finally have (p − alpha (hgt p)) ∗ real (card NRX ∗ card NRY) ≤ real

(edge-card Red NRX NRY) .
then show ?thesis
using ‹card NRX > 0 › ‹card NRY > 0 ›
by (simp add : NRX-def NRY-def gen-density-def field-split-simps XY)

next
case False
have x ∈ X
unfolding x-def using cvx-in-Xseq i XY by blast

with Neighbours-RB [of x X] have Xx : X − {x} = NBX ∪ NRX
using Xseq-subset-V NRX-def NBX-def XY by blast

have disjnt : NBX ∩ NRX = {}
by (auto simp: Blue-eq NRX-def NBX-def disjoint-iff in-Neighbours-iff)

then have weight X Y x = (
∑

y ∈ NRX . Weight X Y x y) + (
∑

y ∈ NBX .
Weight X Y x y)

by (simp add : weight-def Xx sum.union-disjoint finite-Neighbours NRX-def
NBX-def)

with False
have 15 : (

∑
y ∈ NBX . Weight X Y x y)

≥ weight X Y x + alpha (hgt p) ∗ card NRX ∗ card NRY / card Y
by linarith

have pm1 : pee (i−1) > 1/k
by (meson Step-class-not-halted diff-le-self not-halted not-halted-pee-gt)

have β-eq : β = card NBX / card X
using NBX-def β-def XY by blast

have β≤µ
by (simp add : β-eq ‹0 < card X › card-NBX-le pos-divide-le-eq)

have im1 : i−1 ∈ Step-class {dreg-step}
using i ‹odd i› dreg-before-step
by (metis Step-class-insert Un-iff One-nat-def odd-Suc-minus-one)

have eps k ≤ 1/4
using ‹k>0 › k-powr-14 by (simp add : eps-def powr-minus-divide)

then have eps k powr (1/2) ≤ (1/4) powr (1/2)
by (simp add : eps-def powr-mono2)

then have A: 1/2 ≤ 1 − eps k powr (1/2)
by (simp add : powr-divide)

have le: 1 / (2 ∗ real k) ≤ (1 − eps k powr (1/2)) ∗ pee (i−1)
using pm1 ‹k>0 › mult-mono [OF A less-imp-le [OF pm1]] A by simp

have card Y / (2 ∗ real k) ≤ (1 − eps k powr (1/2)) ∗ pee (i−1) ∗ card Y
using mult-left-mono [OF le] by (metis mult .commute divide-inverse inverse-eq-divide

of-nat-0-le-iff)
also have . . . ≤ card NRY

91

using pm1 Red-5-8 im1 by (metis NRY-def One-nat-def ‹odd i› ‹x ∈ X ›
XY odd-Suc-minus-one)

finally have Y-NRY : card Y / (2 ∗ real k) ≤ card NRY .
have NBX ̸= {}
proof
assume empty : NBX = {}
then have cNRX : card NRX = card X − 1
using Xx ‹x ∈ X › by auto

have card X > 3
using ‹k≥256 › X-gt-k by linarith

then have 2 ∗ card X / real (card X − 1) < 3
by (simp add : divide-simps)

also have . . . ≤ k^2
using mult-mono [OF ‹k≥256 › ‹k≥256 ›] by (simp add : power2-eq-square

flip: of-nat-mult)
also have . . . ≤ eps k ∗ k^3
using ‹k≥256 › by (simp add : eps-def flip: powr-numeral powr-add)

finally have (real (2 ∗ card X) / real (card X − 1)) ∗ k^2 < eps k ∗ real
(k^3) ∗ k^2

using ‹k>0 › by (intro mult-strict-right-mono) auto
then have real (2 ∗ card X) / real (card X − 1) ∗ k^2 < eps k ∗ real (k^5)

by (simp add : mult .assoc flip: of-nat-mult)
then have 0 < − real (card X) / (real k)^5 + (eps k / k) ∗ real (card X −

1) ∗ (1 / (2 ∗ real k))
using ‹k>0 › X-gt-k by (simp add : field-simps power2-eq-square)

also have − real (card X) / (real k)^5 + (eps k / k) ∗ real (card X − 1) ∗
(1 / (2 ∗ real k))

≤ − real (card X) / (real k)^5 + (eps k / k) ∗ real (card NRX) ∗
(card NRY / card Y)

using Y-NRY ‹k>0 › ‹card Y ̸= 0 ›
by (intro add-mono mult-mono) (auto simp: cNRX eps-def divide-simps)
also have . . . = − real (card X) / (real k)^5 + (eps k / k) ∗ real (card

NRX) ∗ card NRY / card Y
by simp

also have . . . ≤ − real (card X) / (real k)^5 + alpha (hgt p) ∗ real (card
NRX) ∗ card NRY / card Y

using alpha-ge [OF hgt-gt0]
by (intro add-mono mult-right-mono divide-right-mono) auto

also have . . . ≤ 0
using empty 15 Red-5-4 by auto

finally show False
by simp

qed
have card NBX > 0
by (simp add : ‹NBX ̸= {}› ‹finite NBX › card-gt-0-iff)

then have 0 < β
by (simp add : β-eq ‹0 < card X ›)

have β ≤ µ
using X-gt-k card-NBX-le by (simp add : β-eq NBX-def divide-simps)

92

have cNRX : card NRX = (1−β) ∗ card X − 1
using X-gt-k card-NRBX by (simp add : β-eq divide-simps)

have cNBX : card NBX = β ∗ card X
using ‹0 < card X › by (simp add : β-eq)

let ?E16 = p + ((1−β)/β) ∗ alpha (hgt p) − alpha (hgt p) / (β ∗ card X) +
weight X Y x ∗ card Y / (β ∗ card X ∗ card NRY)

have p ∗ card NBX ∗ card NRY + alpha (hgt p) ∗ card NRX ∗ card NRY +
weight X Y x ∗ card Y

≤ (
∑

y ∈ NBX . p ∗ card NRY + Weight X Y x y ∗ card Y)
using 15 ‹card Y ̸= 0 › apply (simp add : sum-distrib-left sum.distrib)
by (simp only : sum-distrib-right divide-simps split : if-split-asm)

also have . . . ≤ (
∑

y ∈ NBX . card (Neighbours Red x ∩ Neighbours Red y ∩
Y))

using ‹card Y ̸= 0 › by (simp add : Weight-def pee-def XY NRY-def field-simps
p-def)

also have . . . = edge-card Red NRY NBX
using ‹disjnt NBX NRY › ‹finite NBX ›

by (simp add : disjnt-sym edge-card-eq-sum-Neighbours Red-E psubset-imp-subset
NRY-def Int-ac)

also have . . . = edge-card Red NBX NRY
by (simp add : edge-card-commute)

finally have Red-bound :
p ∗ card NBX ∗ card NRY + alpha (hgt p) ∗ card NRX ∗ card NRY + weight

X Y x ∗ card Y ≤ edge-card Red NBX NRY .
then have (p ∗ card NBX ∗ card NRY + alpha (hgt p) ∗ card NRX ∗ card

NRY + weight X Y x ∗ card Y)
/ (card NBX ∗ card NRY) ≤ red-density NBX NRY

by (metis divide-le-cancel gen-density-def of-nat-less-0-iff)
then have p + alpha (hgt p) ∗ card NRX / card NBX + weight X Y x ∗ card

Y / (card NBX ∗ card NRY) ≤ red-density NBX NRY
using ‹card NBX > 0 › ‹card NRY > 0 › by (simp add : add-divide-distrib)

then have 16 : ?E16 ≤ red-density NBX NRY
using ‹β>0 › ‹card X > 0 ›

by (simp add : cNRX cNBX algebra-simps add-divide-distrib diff-divide-distrib)
consider qfun 0 ≤ p | p ≤ qfun 1
by (smt (verit) alpha-Suc-eq alpha-ge0 One-nat-def q-Suc-diff)

then have alpha-le-1 : alpha (hgt p) ≤ 1
proof cases
case 1
have p ∗ eps k + eps k / real k ≤ 1 + eps k ∗ p0
proof (intro add-mono)
show p ∗ eps k ≤ 1
by (smt (verit) eps-le1 ‹0 < k› mult-left-le p-def pee-ge0 pee-le1)

have p0 > 1/k
by (metis Step-class-not-halted diff-le-self not-halted not-halted-pee-gt

diff-is-0-eq ′ pee-eq-p0)
then show eps k / real k ≤ eps k ∗ p0
by (metis divide-inverse eps-ge0 mult-left-mono less-eq-real-def mult-cancel-right1)

qed

93

then show ?thesis
using Red-5-7b [OF 1] by (simp add : algebra-simps)

next
case 2
show ?thesis
using Red-5-7c [OF 2] ‹k≥256 › eps-less1 [of k] by simp

qed
have B : − (3 / (real k^4)) ≤ (−2 / real k^4) − alpha (hgt p) / card X

using ‹card X > k^4 › ‹card Y ̸= 0 › ‹0 < k› alpha-le-1 by (simp add :
algebra-simps frac-le)

have − (3 / (β ∗ real k^4)) ≤ (−2 / real k^4) / β − alpha (hgt p) / (β ∗
card X)

using ‹β>0 › divide-right-mono [OF B , of β] ‹k>0 › by (simp add : field-simps)
also have . . . = (− real (card X) / real k^5) ∗ card Y / (β ∗ real (card X) ∗

(card Y / (2 ∗ real k))) − alpha (hgt p) / (β ∗ card X)
using ‹card Y ̸= 0 › ‹0 < card X ›
by (simp add : field-split-simps eval-nat-numeral)

also have . . . ≤ (− real (card X) / real k^5) ∗ card Y / (β ∗ real (card X)
∗ card NRY) − alpha (hgt p) / (β ∗ card X)

using Y-NRY ‹k>0 › ‹card NRY > 0 › ‹card X > 0 › ‹card Y ̸= 0 › ‹β>0 ›
by (intro diff-mono divide-right-mono mult-left-mono divide-left-mono-neg)

auto
also have . . . ≤ weight X Y x ∗ card Y / (β ∗ real (card X) ∗ card NRY) −

alpha (hgt p) / (β ∗ card X)
using Red-5-4 ‹k>0 › ‹0 < β›
by (intro diff-mono divide-right-mono mult-right-mono) auto

finally have − (3 / (β ∗ real k^4)) ≤ weight X Y x ∗ card Y / (β ∗ real (card
X) ∗ card NRY) − alpha (hgt p) / (β ∗ card X) .

then have 17 : p + ((1−β)/β) ∗ alpha (hgt p) − 3 / (β ∗ real k^4) ≤ ?E16
by simp

have 3 / real k^4 ≤ (1−µ) ∗ eps k^2 / k
using ‹k>0 › µ01 mult-left-mono [OF k52 , of k]
by (simp add : field-simps eps-def powr-powr powr-mult-base flip: powr-numeral

powr-add)
also have . . . ≤ (1−β) ∗ eps k^2 / k
using ‹β≤µ›
by (intro divide-right-mono mult-right-mono) auto

also have . . . ≤ (1−β) ∗ eps k ∗ alpha (hgt p)
using Red-5-7a [of p] eps-ge0 ‹β≤µ› µ01
unfolding power2-eq-square divide-inverse mult .assoc
by (intro mult-mono) auto

finally have †: 3 / real k^4 ≤ (1−β) ∗ eps k ∗ alpha (hgt p) .
have p + (1 − eps k) ∗ ((1−β) / β) ∗ alpha (hgt p) + 3 / (β ∗ real k^4) ≤

p + ((1−β)/β) ∗ alpha (hgt p)
using ‹0<β› ‹k>0 › mult-left-mono [OF †, of β] by (simp add : field-simps)

with 16 17 have p + (1 − eps k) ∗ ((1 − β) / β) ∗ alpha (hgt p) ≤ red-density
NBX NRY

by linarith
then show ?thesis

94

using ‹0 < β› NBX-def NRY-def XY by fastforce
qed

qed

This and the previous result are proved under the assumption of a suffi-
ciently large l

corollary Red-5-2 :
assumes i : i ∈ Step-class {dboost-step}
and Big : Big-Red-5-1 µ l

shows pee (Suc i) − pee i ≥ (1 − eps k) ∗ ((1 − beta i) / beta i) ∗ alpha (hgt
(pee i)) ∧

beta i > 0
proof −
let ?x = cvx i
obtain X Y A B
where step: stepper i = (X ,Y ,A,B)
and nonterm: ¬ termination-condition X Y
and odd i
and non-mb: ¬ many-bluish X

and nonredd : ¬ reddish k X Y (red-density X Y) (choose-central-vx (X ,Y ,A,B))
and Xeq : X = Xseq i and Yeq : Y = Yseq i

using i
by (auto simp: step-kind-defs split : if-split-asm prod .split-asm)

then have ?x ∈ Xseq i
by (simp add : choose-central-vx-X cvx-def finite-Xseq)

then have central-vertex (Xseq i) (cvx i)
by (metis Xeq choose-central-vx-works cvx-def finite-Xseq step non-mb nonterm)

with Xeq have card (Neighbours Blue (cvx i) ∩ Xseq i) ≤ µ ∗ card (Xseq i)
by (simp add : central-vertex-def)

then have βeq : card (Neighbours Blue (cvx i) ∩ Xseq i) = beta i ∗ card (Xseq
i)

using Xeq step by (auto simp: beta-def)
have SUC : stepper (Suc i) = (Neighbours Blue ?x ∩ X , Neighbours Red ?x ∩

Y , A, insert ?x B)
using step nonterm ‹odd i› non-mb nonredd
by (simp add : stepper-def next-state-def Let-def cvx-def)

have pee: pee i = red-density X Y
by (simp add : pee-def Xeq Yeq)

have choose-central-vx (X ,Y ,A,B) = cvx i
by (simp add : cvx-def step)

with nonredd have red-density (Neighbours Red (cvx i) ∩ X) (Neighbours Red
(cvx i) ∩ Y)

< pee i − alpha (hgt (red-density X Y))
using nonredd by (simp add : reddish-def pee)

then have pee i + (1 − eps k) ∗ ((1 − beta i) / beta i) ∗ alpha (hgt (pee i))
≤ red-density (Neighbours Blue (cvx i) ∩ Xseq i)

(Neighbours Red (cvx i) ∩ Yseq i) ∧ beta i > 0
using Red-5-1 Un-iff Xeq Yeq assms gen-density-ge0 pee Step-class-insert
by (smt (verit , ccfv-threshold) βeq divide-eq-eq)

95

moreover have red-density (Neighbours Blue (cvx i) ∩ Xseq i)
(Neighbours Red (cvx i) ∩ Yseq i) ≤ pee (Suc i)

using SUC Xeq Yeq stepper-XYseq by (simp add : pee-def)
ultimately show ?thesis
by linarith

qed

end

5.4 Lemma 5.3

This is a weaker consequence of the previous results

definition
Big-Red-5-3 ≡
λµ l . Big-Red-5-1 µ l
∧ (∀ k≥l . k>1 ∧ 1 / (real k)2 ≤ µ ∧ 1 / (real k)2 ≤ 1 / (k / eps k / (1 −

eps k) + 1))

establishing the size requirements for 5.3. The one involving µ, namely
1 / (real k)2 ≤ µ, will be useful later with "big beta".

lemma Big-Red-5-3 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-Red-5-3 µ l
using assms Big-Red-5-1
apply (simp add : Big-Red-5-3-def eps-def eventually-conj-iff all-imp-conj-distrib)

apply (intro conjI strip eventually-all-geI0 eventually-all-ge-at-top)
apply (real-asymp|force)+
done

context Book
begin

corollary Red-5-3 :
assumes i : i ∈ Step-class {dboost-step}
and big : Big-Red-5-3 µ l

shows pee (Suc i) ≥ pee i ∧ beta i ≥ 1 / (real k)2
proof
have k>1 and big51 : Big-Red-5-1 µ l
using l-le-k big by (auto simp: Big-Red-5-3-def)

let ?h = hgt (pee i)
have ?h > 0
by (simp add : hgt-gt0 kn0 pee-le1)

then obtain α: alpha ?h ≥ 0 and ∗: alpha ?h ≥ eps k / k
using alpha-ge0 ‹k>1 › alpha-ge by auto

moreover have −5/4 = −1/4 − (1 ::real)
by simp

ultimately have α54 : alpha ?h ≥ k powr (−5/4)
unfolding eps-def by (metis powr-diff of-nat-0-le-iff powr-one)

96

have β: beta i ≤ µ
by (metis Step-class-insert Un-iff beta-le i)

have (1 − eps k) ∗ ((1 − beta i) / beta i) ∗ alpha ?h ≥ 0
using beta-ge0 [of i] eps-le1 α β µ01 ‹k>1 ›
by (simp add : zero-le-mult-iff zero-le-divide-iff)

then show pee (Suc i) ≥ pee i
using Red-5-2 [OF i big51] by linarith

have pee (Suc i) − pee i ≤ 1
by (smt (verit) pee-ge0 pee-le1)

with Red-5-2 [OF i big51]
have (1 − eps k) ∗ ((1 − beta i) / beta i) ∗ alpha ?h ≤ 1 and beta-gt0 : beta i

> 0
by linarith+

with ∗ have (1 − eps k) ∗ ((1 − beta i) / beta i) ∗ eps k / k ≤ 1
by (smt (verit , best) mult .commute eps-ge0 mult-mono mult-nonneg-nonpos

of-nat-0-le-iff times-divide-eq-right zero-le-divide-iff)
then have (1 − eps k) ∗ ((1 − beta i) / beta i) ≤ k / eps k
using beta-ge0 [of i] eps-gt0 [OF kn0] kn0

by (auto simp: divide-simps mult-less-0-iff mult-of-nat-commute split : if-split-asm)
then have (1 − beta i) / beta i ≤ k / eps k / (1 − eps k)
by (smt (verit) eps-less1 mult .commute pos-le-divide-eq ‹1 < k›)

then have 1 / beta i ≤ k / eps k / (1 − eps k) + 1
using beta-gt0 by (simp add : diff-divide-distrib)

then have 1 / (k / eps k / (1 − eps k) + 1) ≤ beta i
using beta-gt0 eps-gt0 eps-less1 [OF ‹k>1 ›] kn0
apply (simp add : divide-simps split : if-split-asm)
by (smt (verit , ccfv-SIG) mult .commute mult-less-0-iff)

moreover have 1 / k^2 ≤ 1 / (k / eps k / (1 − eps k) + 1)
using Big-Red-5-3-def l-le-k big by (metis (no-types, lifting) of-nat-power)

ultimately show beta i ≥ 1 / (real k)2
by auto

qed

corollary beta-gt0 :
assumes i ∈ Step-class {dboost-step}
and Big-Red-5-3 µ l

shows beta i > 0
by (meson Big-Red-5-3-def Book .Red-5-2 Book-axioms assms)

end

end

6 Bounding the Size of Y
theory Bounding-Y imports Red-Steps

begin

97

yet another telescope variant, with weaker promises but a different con-
clusion; as written it holds even if n = (0 :: ′a)

lemma prod-lessThan-telescope-mult :
fixes f ::nat ⇒ ′a::field
assumes

∧
i . i<n =⇒ f i ̸= 0

shows (
∏

i<n. f (Suc i) / f i) ∗ f 0 = f n
using assms

by (induction n) (auto simp: divide-simps)

6.1 The following results together are Lemma 6.4

Compared with the paper, all the indices are greater by one!!

context Book
begin

lemma Y-6-4-Red :
assumes i ∈ Step-class {red-step}
shows pee (Suc i) ≥ pee i − alpha (hgt (pee i))
using assms
by (auto simp: step-kind-defs next-state-def reddish-def pee-def

split : if-split-asm prod .split)

lemma Y-6-4-DegreeReg :
assumes i ∈ Step-class {dreg-step}
shows pee (Suc i) ≥ pee i
using assms red-density-X-degree-reg-ge [OF Xseq-Yseq-disjnt , of i]
by (auto simp: step-kind-defs degree-reg-def pee-def split : if-split-asm prod .split-asm)

lemma Y-6-4-Bblue:
assumes i : i ∈ Step-class {bblue-step}
shows pee (Suc i) ≥ pee (i−1) − (eps k powr (−1/2)) ∗ alpha (hgt (pee (i−1)))

proof −
define X where X ≡ Xseq i
define Y where Y ≡ Yseq i
obtain A B S T
where step: stepper i = (X ,Y ,A,B)
and nonterm: ¬ termination-condition X Y
and odd i
and mb: many-bluish X
and bluebook : (S ,T) = choose-blue-book (X ,Y ,A,B)

using i
by (simp add : X-def Y-def step-kind-defs split : if-split-asm prod .split-asm)

(metis mk-edge.cases)
then have X1-eq : Xseq (Suc i) = T
by (force simp: Xseq-def next-state-def split : prod .split)

have Y1-eq : Yseq (Suc i) = Y
using i by (simp add : Y-def step-kind-defs next-state-def split : if-split-asm

prod .split-asm prod .split)

98

have disjnt X Y
using Xseq-Yseq-disjnt X-def Y-def by blast

obtain fin: finite X finite Y
by (metis V-state-stepper finX finY step)

have X ̸= {} Y ̸= {}
using gen-density-def nonterm termination-condition-def by fastforce+

define i ′ where i ′ = i−1
then have Suci ′: Suc i ′ = i
by (simp add : ‹odd i›)

have i ′: i ′ ∈ Step-class {dreg-step}
by (metis dreg-before-step Step-class-insert Suci ′ UnCI i)

then have Xseq (Suc i ′) = X-degree-reg (Xseq i ′) (Yseq i ′)
Yseq (Suc i ′) = Yseq i ′

and nonterm ′: ¬ termination-condition (Xseq i ′) (Yseq i ′)
by (auto simp: degree-reg-def X-degree-reg-def step-kind-defs split : if-split-asm

prod .split-asm)
then have Xeq : X = X-degree-reg (Xseq i ′) (Yseq i ′)

and Yeq : Y = Yseq i ′
using Suci ′ by (auto simp: X-def Y-def)

define pm where pm ≡ (pee i ′ − eps k powr (−1/2) ∗ alpha (hgt (pee i ′)))
have T ⊆ X
using bluebook by (simp add : choose-blue-book-subset fin)

then have T-reds:
∧

x . x ∈ T =⇒ pm ∗ card Y ≤ card (Neighbours Red x ∩
Y)

by (auto simp: Xeq Yeq pm-def X-degree-reg-def pee-def red-dense-def)
have good-blue-book X (S ,T)
by (meson bluebook choose-blue-book-works fin)

then have Tne: False if card T = 0
using µ01 ‹X ̸= {}› fin by (simp add : good-blue-book-def pos-prod-le that)

have pm ∗ card T ∗ card Y = (
∑

x∈T . pm ∗ card Y)
by simp

also have . . . ≤ (
∑

x∈T . card (Neighbours Red x ∩ Y))
using T-reds by (simp add : sum-bounded-below)

also have . . . = edge-card Red T Y
using ‹disjnt X Y › ‹finite X › ‹T⊆X › Red-E

by (metis disjnt-subset1 disjnt-sym edge-card-commute edge-card-eq-sum-Neighbours
finite-subset)
also have . . . = red-density T Y ∗ card T ∗ card Y
using fin ‹T⊆X › by (simp add : finite-subset gen-density-def)

finally have pm ≤ red-density T Y
using fin ‹Y ̸={}› Yeq Yseq-gt0 Tne nonterm ′ step-terminating-iff by fastforce

then show ?thesis
by (simp add : X1-eq Y1-eq i ′-def pee-def pm-def)

qed

The basic form is actually Red-5-3. This variant covers a gap of two,
thanks to degree regularisation

corollary Y-6-4-dbooSt :
assumes i : i ∈ Step-class {dboost-step} and big : Big-Red-5-3 µ l

99

shows pee (Suc i) ≥ pee (i−1)
proof −
have odd ii−1 ∈ Step-class {dreg-step}
using step-odd i by (auto simp: Step-class-insert-NO-MATCH dreg-before-step)

then show ?thesis
using Red-5-3 Y-6-4-DegreeReg assms ‹odd i› by fastforce

qed

6.2 Towards Lemmas 6.3
definition Z-class ≡ {i ∈ Step-class {red-step,bblue-step,dboost-step}.

pee (Suc i) < pee (i−1) ∧ pee (i−1) ≤ p0}

lemma finite-Z-class: finite (Z-class)
using finite-components by (auto simp: Z-class-def Step-class-insert-NO-MATCH)

lemma Y-6-3 :
assumes big53 : Big-Red-5-3 µ l and big41 : Big-Blue-4-1 µ l
shows (

∑
i ∈ Z-class. pee (i−1) − pee (Suc i)) ≤ 2 ∗ eps k

proof −
define S where S ≡ Step-class {dboost-step}
define R where R ≡ Step-class {red-step}
define B where B ≡ Step-class {bblue-step}
{ fix i
assume i : i ∈ S
moreover have odd i
using step-odd [of i] i by (force simp: S-def Step-class-insert-NO-MATCH)

ultimately have i−1 ∈ Step-class {dreg-step}
by (simp add : S-def dreg-before-step Step-class-insert-NO-MATCH)

then have pee (i−1) ≤ pee i ∧ pee i ≤ pee (Suc i)
using big53 S-def
by (metis Red-5-3 One-nat-def Y-6-4-DegreeReg ‹odd i› i odd-Suc-minus-one)

}
then have dboost : S ∩ Z-class = {}
by (fastforce simp: Z-class-def)

{ fix i
assume i : i ∈ B ∩ Z-class
then have i−1 ∈ Step-class {dreg-step}
using dreg-before-step step-odd i by (force simp: B-def Step-class-insert-NO-MATCH)
have pee: pee (Suc i) < pee (i−1) pee (i−1) ≤ p0 and iB : i ∈ B
using i by (auto simp: Z-class-def)

have hgt (pee (i−1)) = 1
proof −
have hgt (pee (i−1)) ≤ 1
by (smt (verit , del-insts) hgt-Least less-one pee(2) qfun0 qfun-strict-mono)

then show ?thesis
by (metis One-nat-def Suc-pred ′ diff-is-0-eq hgt-gt0)

qed
then have pee (i−1) − pee (Suc i) ≤ eps k powr (−1/2) ∗ alpha 1

100

using pee iB Y-6-4-Bblue µ01 by (fastforce simp: B-def)
also have . . . ≤ 1/k
proof −
have k powr (−1/8) ≤ 1
using kn0 by (simp add : ge-one-powr-ge-zero powr-minus-divide)

then show ?thesis
by (simp add : alpha-eq eps-def powr-powr divide-le-cancel flip: powr-add)

qed
finally have pee (i−1) − pee (Suc i) ≤ 1/k .

}
then have (

∑
i ∈ B ∩ Z-class. pee (i−1) − pee (Suc i))

≤ card (B ∩ Z-class) ∗ (1/k)
using sum-bounded-above by (metis (mono-tags, lifting))

also have . . . ≤ card (B) ∗ (1/k)
using bblue-step-finite
by (simp add : B-def divide-le-cancel card-mono)

also have . . . ≤ l powr (3/4) / k
using big41 by (simp add : B-def kn0 frac-le bblue-step-limit)

also have . . . ≤ eps k
proof −
have ∗: l powr (3/4) ≤ k powr (3/4)
by (simp add : l-le-k powr-mono2)

have 3/4 − (1 ::real) = − 1/4
by simp

then show ?thesis
using divide-right-mono [OF ∗, of k]
by (metis eps-def of-nat-0-le-iff powr-diff powr-one)

qed
finally have bblue: (

∑
i∈B ∩ Z-class. pee(i−1) − pee (Suc i)) ≤ eps k .

{ fix i
assume i : i ∈ R ∩ Z-class
then have pee-alpha: pee (i−1) − pee (Suc i)

≤ pee (i−1) − pee i + alpha (hgt (pee i))
using Y-6-4-Red by (force simp: R-def)

have pee-le: pee (i−1) ≤ pee i
using dreg-before-step Y-6-4-DegreeReg [of i−1] i step-odd
by (simp add : R-def Step-class-insert-NO-MATCH)

consider (1) hgt (pee i) = 1 | (2) hgt (pee i) > 1
by (metis hgt-gt0 less-one nat-neq-iff)

then have pee (i−1) − pee i + alpha (hgt (pee i)) ≤ eps k / k
proof cases
case 1
then show ?thesis
by (smt (verit) Red-5-7c kn0 pee-le hgt-works)

next
case 2
then have p-gt-q : pee i > qfun 1
by (meson hgt-Least not-le zero-less-one)

have pee-le-q0 : pee (i−1) ≤ qfun 0

101

using 2 Z-class-def i by auto
also have pee2 : . . . ≤ pee i
using alpha-eq p-gt-q by (smt (verit , best) kn0 qfun-mono zero-le-one)

finally have pee (i−1) ≤ pee i .
then have pee (i−1) − pee i + alpha (hgt (pee i))

≤ qfun 0 − pee i + eps k ∗ (pee i − qfun 0 + 1/k)
using Red-5-7b pee-le-q0 pee2 by fastforce

also have . . . ≤ eps k / k
using kn0 pee2 by (simp add : algebra-simps) (smt (verit) affine-ineq eps-le1)
finally show ?thesis .

qed
with pee-alpha have pee (i−1) − pee (Suc i) ≤ eps k / k
by linarith

}
then have (

∑
i ∈ R ∩ Z-class. pee (i−1) − pee (Suc i))

≤ card (R ∩ Z-class) ∗ (eps k / k)
using sum-bounded-above by (metis (mono-tags, lifting))

also have . . . ≤ card (R) ∗ (eps k / k)
using eps-ge0 [of k] assms red-step-finite
by (simp add : R-def divide-le-cancel mult-le-cancel-right card-mono)

also have . . . ≤ k ∗ (eps k / k)
using red-step-limit R-def µ01
by (smt (verit , best) divide-nonneg-nonneg eps-ge0 mult-mono nat-less-real-le

of-nat-0-le-iff)
also have . . . ≤ eps k
by (simp add : eps-ge0)

finally have red : (
∑

i∈R ∩ Z-class. pee (i−1) − pee (Suc i)) ≤ eps k .
have ∗: finite (B) finite (R)

∧
x . x ∈ B =⇒ x /∈ R

using finite-components by (auto simp: B-def R-def Step-class-def)
have eq : Z-class = S ∩ Z-class ∪ B ∩ Z-class ∪ R ∩ Z-class
by (auto simp: Z-class-def B-def R-def S-def Step-class-insert-NO-MATCH)

show ?thesis
using bblue red
by (subst eq) (simp add : sum.union-disjoint dboost disjoint-iff ∗)

qed

6.3 Lemma 6.5
lemma Y-6-5-Red :
assumes i : i ∈ Step-class {red-step} and k≥16
defines h ≡ λi . hgt (pee i)
shows h (Suc i) ≥ h i − 2

proof (cases h i ≤ 3)
case True
have h (Suc i) ≥ 1
by (simp add : h-def Suc-leI hgt-gt0)

with True show ?thesis
by linarith

next

102

case False
have k>0 using assms by auto
have eps k ≤ 1/2
using ‹k≥16 › by (simp add : eps-eq-sqrt divide-simps real-le-rsqrt)

moreover have 0 ≤ x ∧ x ≤ 1/2 =⇒ x ∗ (1 + x)2 + 1 ≤ (1 + x)2 for x ::real
by sos

ultimately have §: eps k ∗ (1 + eps k)2 + 1 ≤ (1 + eps k)2
using eps-ge0 by presburger

have le1 : eps k + 1 / (1 + eps k)2 ≤ 1
using mult-left-mono [OF §, of inverse ((1 + eps k)2)]
by (simp add : ring-distribs inverse-eq-divide) (smt (verit))

have 0 : 0 ≤ (1 + eps k) ^ (h i − Suc 0)
using eps-ge0 by auto

have lesspi : qfun (h i − 1) < pee i
using False hgt-Least [of h i − 1 pee i] unfolding h-def by linarith

have A: (1 + eps k) ^ h i = (1 + eps k) ∗ (1 + eps k) ^ (h i − Suc 0)
using False power .simps by (metis h-def Suc-pred hgt-gt0)

have B : (1 + eps k) ^ (h i − 3) = 1 / (1 + eps k)^2 ∗ (1 + eps k) ^ (h i −
Suc 0)

using eps-gt0 [OF kn0] False
by (simp add : divide-simps Suc-diff-Suc numeral-3-eq-3 flip: power-add)

have qfun (h i − 3) ≤ qfun (h i − 1) − (qfun (h i) − qfun (h i − 1))
using kn0 mult-left-mono [OF le1 0]

by (simp add : qfun-eq A B algebra-simps divide-right-mono flip: add-divide-distrib
diff-divide-distrib)
also have . . . < pee i − alpha (h i)
using lesspi by (simp add : alpha-def)

also have . . . ≤ pee (Suc i)
using Y-6-4-Red i by (force simp: h-def)

finally have qfun (h i − 3) < pee (Suc i) .
with hgt-greater show ?thesis
unfolding h-def by force

qed

lemma Y-6-5-DegreeReg :
assumes i ∈ Step-class {dreg-step}
shows hgt (pee (Suc i)) ≥ hgt (pee i)
using hgt-mono Y-6-4-DegreeReg assms by presburger

corollary Y-6-5-dbooSt :
assumes i ∈ Step-class {dboost-step} and Big-Red-5-3 µ l
shows hgt (pee (Suc i)) ≥ hgt (pee i)
using kn0 Red-5-3 assms hgt-mono by blast

this remark near the top of page 19 only holds in the limit

lemma ∀∞k . (1 + eps k) powr (− real (nat ⌊2 ∗ eps k powr (−1/2)⌋)) ≤ 1 −
eps k powr (1/2)
unfolding eps-def by real-asymp

103

end

definition Big-Y-6-5-Bblue ≡ λl . ∀ k≥l . (1 + eps k) powr (− real (nat ⌊2∗(eps
k powr (−1/2))⌋)) ≤ 1 − eps k powr (1/2)

establishing the size requirements for Y 6.5

lemma Big-Y-6-5-Bblue:
shows ∀∞l . Big-Y-6-5-Bblue l
unfolding Big-Y-6-5-Bblue-def eps-def by (intro eventually-all-ge-at-top; real-asymp)

lemma (in Book) Y-6-5-Bblue:
fixes κ::real
defines κ ≡ eps k powr (−1/2)
assumes i : i ∈ Step-class {bblue-step} and big : Big-Y-6-5-Bblue l
defines h ≡ hgt (pee (i−1))
shows hgt (pee (Suc i)) ≥ h − 2∗κ

proof (cases h > 2∗κ + 1)
case True
then have 0 < h − 1
by (smt (verit , best) κ-def one-less-of-natD powr-non-neg zero-less-diff)

with True have pee (i−1) > qfun (h−1)
by (simp add : h-def hgt-less-imp-qfun-less)

then have qfun (h−1) − eps k powr (1/2) ∗ (1 + eps k) ^ (h−1) / k < pee
(i−1) − κ ∗ alpha h

using ‹0 < h−1 › Y-6-4-Bblue [OF i] eps-ge0
apply (simp add : alpha-eq κ-def)

by (smt (verit , best) field-sum-of-halves mult .assoc mult .commute powr-mult-base)
also have . . . ≤ pee (Suc i)
using Y-6-4-Bblue i h-def κ-def by blast

finally have A: qfun (h−1) − eps k powr (1/2) ∗ (1 + eps k) ^ (h−1) / k <
pee (Suc i) .
have ek0 : 0 < 1 + eps k
by (smt (verit , best) eps-ge0)

have less-h: nat ⌊2∗κ⌋ < h
using True ‹0 < h − 1 › by linarith

have qfun (h − nat ⌊2∗κ⌋ − 1) = p0 + ((1 + eps k) ^ (h − nat ⌊2∗κ⌋ − 1)
− 1) / k

by (simp add : qfun-eq)
also have . . . ≤ p0 + ((1 − eps k powr (1/2)) ∗ (1 + eps k) ^ (h−1) − 1) / k
proof −
have ge0 : (1 + eps k) ^ (h−1) ≥ 0
using eps-ge0 by auto

have (1 + eps k) ^ (h − nat ⌊2∗κ⌋ − 1) = (1 + eps k) ^ (h−1) ∗ (1 + eps
k) powr − real(nat ⌊2∗κ⌋)

using less-h ek0 by (simp add : algebra-simps flip: powr-realpow powr-add)
also have . . . ≤ (1 − eps k powr (1/2)) ∗ (1 + eps k) ^ (h−1)
using big l-le-k unfolding κ-def Big-Y-6-5-Bblue-def
by (metis mult .commute ge0 mult-left-mono)

finally have (1 + eps k) ^ (h − nat ⌊2∗κ⌋ − 1)

104

≤ (1 − eps k powr (1/2)) ∗ (1 + eps k) ^ (h−1) .
then show ?thesis
by (intro add-left-mono divide-right-mono diff-right-mono) auto

qed
also have . . . ≤ qfun (h−1) − eps k powr (1/2) ∗ (1 + eps k) ^ (h−1) / real k

using kn0 eps-ge0 by (simp add : qfun-eq powr-half-sqrt field-simps)
also have . . . < pee (Suc i)
using A by blast

finally have qfun (h − nat ⌊2∗κ⌋ − 1) < pee (Suc i) .
then have h − nat ⌊2∗κ⌋ ≤ hgt (pee (Suc i))
using hgt-greater by force

with less-h show ?thesis
unfolding κ-def

by (smt (verit) less-imp-le-nat of-nat-diff of-nat-floor of-nat-mono powr-ge-pzero)
next
case False
then show ?thesis
by (smt (verit , del-insts) of-nat-0 hgt-gt0 nat-less-real-le)

qed

6.4 Lemma 6.2
definition Big-Y-6-2 ≡ λµ l . Big-Y-6-5-Bblue l ∧ Big-Red-5-3 µ l ∧ Big-Blue-4-1
µ l

∧ (∀ k≥l . ((1 + eps k)^2) ∗ eps k powr (1/2) ≤ 1
∧ (1 + eps k) powr (2 ∗ eps k powr (−1/2)) ≤ 2 ∧ k ≥ 16)

establishing the size requirements for 6.2

lemma Big-Y-6-2 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-Y-6-2 µ l
using assms Big-Y-6-5-Bblue Big-Red-5-3 Big-Blue-4-1
unfolding Big-Y-6-2-def eps-def
apply (simp add : eventually-conj-iff all-imp-conj-distrib)
apply (intro conjI strip eventually-all-geI1 eventually-all-ge-at-top; real-asymp)
done

context Book
begin

Following Bhavik in excluding the even steps (degree regularisation). As-
suming it hasn’t halted, the conclusion also holds for the even cases anyway.

proposition Y-6-2 :
defines RBS ≡ Step-class {red-step,bblue-step,dboost-step}
assumes j : j ∈ RBS and big : Big-Y-6-2 µ l
shows pee (Suc j) ≥ p0 − 3 ∗ eps k

proof (cases pee (Suc j) ≥ p0)
case True
then show ?thesis

105

by (smt (verit) eps-ge0)
next
case False
then have pj-less: pee(Suc j) < p0 by linarith
have big53 : Big-Red-5-3 µ l
and Y63 : (

∑
i ∈ Z-class. pee (i−1) − pee (Suc i)) ≤ 2 ∗ eps k

and Y65B :
∧

i . i ∈ Step-class {bblue-step} =⇒ hgt (pee (Suc i)) ≥ hgt (pee
(i−1)) − 2∗(eps k powr (−1/2))

and big1 : ((1 + eps k)^2) ∗ eps k powr (1/2) ≤ 1 and big2 : (1 + eps k)
powr (2 ∗ eps k powr (−1/2)) ≤ 2

and k≥16
using big Y-6-5-Bblue Y-6-3 kn0 l-le-k by (auto simp: Big-Y-6-2-def)

have Y64-S :
∧

i . i ∈ Step-class {dboost-step} =⇒ pee i ≤ pee (Suc i)
using big53 Red-5-3 by simp

define J where J ≡ {j ′. j ′<j ∧ pee j ′ ≥ p0 ∧ even j ′}
have finite J
by (auto simp: J-def)

have pee 0 = p0
by (simp add : pee-eq-p0)

have odd-RBS : odd i if i ∈ RBS for i
using step-odd that unfolding RBS-def by blast

with odd-pos j have j>0 by auto
have non-halted : j /∈ Step-class {halted}
using j by (auto simp: Step-class-def RBS-def)

have exists: J ̸= {}
using ‹0 < j › ‹pee 0 = p0 › by (force simp: J-def less-eq-real-def)

define j ′ where j ′ ≡ Max J
have j ′ ∈ J
using ‹finite J › exists by (force simp: j ′-def)

then have j ′ < j even j ′ and pSj ′: pee j ′ ≥ p0
by (auto simp: J-def odd-RBS)

have maximal : j ′′ ≤ j ′ if j ′′ ∈ J for j ′′

using ‹finite J › exists by (simp add : j ′-def that)
have pee (j ′+2) − 2 ∗ eps k ≤ pee (j ′+2) − (

∑
i ∈ Z-class. pee (i−1) − pee

(Suc i))
using Y63 by simp

also have . . . ≤ pee (Suc j)
proof −

define Z where Z ≡ λj . {i . pee (Suc i) < pee (i−1) ∧ j ′+2 < i ∧ i≤j ∧ i
∈ RBS}

have Zsub: Z i ⊆ {Suc j ′<..i} for i
by (auto simp: Z-def)

then have finZ : finite (Z i) for i
by (meson finite-greaterThanAtMost finite-subset)

have ∗: (
∑

i ∈ Z j . pee (i−1) − pee (Suc i)) ≤ (
∑

i ∈ Z-class. pee (i−1) −
pee (Suc i))

proof (intro sum-mono2 [OF finite-Z-class])
show Z j ⊆ Z-class
proof

106

fix i
assume i : i ∈ Z j
then have dreg : i−1 ∈ Step-class {dreg-step} and i ̸=0 j ′ < i
by (auto simp: Z-def RBS-def dreg-before-step)

with i dreg maximal have pee (i−1) < p0
unfolding Z-def J-def
using Suc-less-eq2 less-eq-Suc-le odd-RBS by fastforce

then show i ∈ Z-class
using i by (simp add : Z-def RBS-def Z-class-def)

qed
show 0 ≤ pee (i−1) − pee (Suc i) if i ∈ Z-class − Z j for i
using that by (auto simp: Z-def Z-class-def)

qed
then have pee (j ′+2) − (

∑
i∈Z-class. pee (i−1) − pee (Suc i))

≤ pee (j ′+2) − (
∑

i ∈ Z j . pee (i−1) − pee (Suc i))
by auto

also have . . . ≤ pee (Suc j)
proof −
have pee (j ′+2) − pee (Suc m) ≤ (

∑
i ∈ Z m. pee (i−1) − pee (Suc i))

if m ∈ RBS j ′ < m m≤j for m
using that

proof (induction m rule: less-induct)
case (less m)
then have odd m
using odd-RBS by blast

show ?case
proof (cases j ′+2 < m)
case True
with less.prems
have Z-if : Z m = (if pee (Suc m) < pee (m−1) then insert m (Z (m−2))

else Z (m−2))
by (auto simp: Z-def)

(metis le-diff-conv2 Suc-leI add-2-eq-Suc ′ add-leE even-Suc nat-less-le
odd-RBS)+

have m−2 ∈ RBS
using True ‹m ∈ RBS› step-odd-minus2 by (auto simp: RBS-def)
then have ∗: pee (j ′+2) − pee (m − Suc 0) ≤ (

∑
i∈Z (m − 2). pee

(i−1) − pee (Suc i))
using less.IH True less ‹j ′ ∈ J › by (force simp: J-def Suc-less-eq2)

moreover have m /∈ Z (m − 2)
by (auto simp: Z-def)

ultimately show ?thesis
by (simp add : Z-if finZ)

next
case False
then have [simp]: m = Suc j ′

using ‹odd m› ‹j ′ < m› ‹even j ′› by presburger
have Z m = {}
by (auto simp: Z-def)

107

then show ?thesis
by simp

qed
qed
then show ?thesis
using j J-def ‹j ′ ∈ J › ‹j ′ < j › by force

qed
finally show ?thesis .

qed
finally have p2-le-pSuc: pee (j ′+2) − 2 ∗ eps k ≤ pee (Suc j) .
have Suc j ′ ∈ RBS
unfolding RBS-def

proof (intro not-halted-odd-RBS)
show Suc j ′ /∈ Step-class {halted}
using Step-class-halted-forever Suc-leI ‹j ′ < j › non-halted by blast

qed (use ‹even j ′› in auto)
then have pee (j ′+2) < p0
using maximal [of j ′+2] False ‹j ′ < j › j odd-RBS
by (simp add : J-def) (smt (verit , best) Suc-lessI even-Suc)

then have le1 : hgt (pee (j ′+2)) ≤ 1
by (smt (verit) kn0 hgt-Least qfun0 qfun-strict-mono zero-less-one)

moreover
have j ′-dreg : j ′ ∈ Step-class {dreg-step}
using RBS-def ‹Suc j ′ ∈ RBS› dreg-before-step by blast

have 1 : eps k powr −(1/2) ≥ 1
using kn0 by (simp add : eps-def powr-powr ge-one-powr-ge-zero)

consider (R) Suc j ′ ∈ Step-class {red-step}
| (B) Suc j ′ ∈ Step-class {bblue-step}
| (S) Suc j ′ ∈ Step-class {dboost-step}

by (metis Step-class-insert UnE ‹Suc j ′ ∈ RBS› RBS-def)
note j ′-cases = this
then have hgt-le-hgt : hgt (pee j ′) ≤ hgt (pee (j ′+2)) + 2 ∗ eps k powr (−1/2)
proof cases
case R
have real (hgt (pee j ′)) ≤ hgt (pee (Suc j ′))
using Y-6-5-DegreeReg [OF j ′-dreg] kn0 by (simp add : eval-nat-numeral)

also have . . . ≤ hgt (pee (j ′+2)) + 2 ∗ eps k powr (−1/2)
using Y-6-5-Red [OF R ‹k≥16 ›] 1 by (simp add : eval-nat-numeral)

finally show ?thesis .
next
case B
show ?thesis
using Y65B [OF B] by simp

next
case S
then show ?thesis
using Y-6-4-DegreeReg ‹pee (j ′+2) < p0 › Y64-S j ′-dreg pSj ′ by force

qed
ultimately have B : hgt (pee j ′) ≤ 1 + 2 ∗ eps k powr (−1/2)

108

by linarith
have 2 ≤ real k powr (1/2)
using ‹k≥16 › by (simp add : powr-half-sqrt real-le-rsqrt)

then have 8 : 2 ≤ real k powr 1 ∗ real k powr −(1/8)
unfolding powr-add [symmetric] using ‹k≥16 › order .trans nle-le by fastforce

have p0 − eps k ≤ qfun 0 − 2 ∗ eps k powr (1/2) / k
using mult-left-mono [OF 8 , of k powr (−1/8)] kn0
by (simp add : qfun-eq eps-def powr-powr field-simps flip: powr-add)

also have . . . ≤ pee j ′ − eps k powr (−1/2) ∗ alpha (hgt (pee j ′))
proof −
have 2 : (1 + eps k) ^ (hgt (pee j ′) − Suc 0) ≤ 2
using B big2 kn0 eps-ge0
by (smt (verit) diff-Suc-less hgt-gt0 nat-less-real-le powr-mono powr-realpow)

have ∗: x ≥ 0 =⇒ inverse (x powr (1/2)) ∗ x = x powr (1/2) for x ::real
by (simp add : inverse-eq-divide powr-half-sqrt real-div-sqrt)

have p0 − pee j ′ ≤ 0
by (simp add : pSj ′)

also have . . . ≤ 2 ∗ eps k powr (1/2) / k − (eps k powr (1/2)) ∗ (1 + eps
k) ^ (hgt (pee j ′) − 1) / k

using mult-left-mono [OF 2 , of eps k powr (1/2) / k]
by (simp add : field-simps diff-divide-distrib)

finally have p0 − 2 ∗ eps k powr (1/2) / k
≤ pee j ′ − (eps k powr (1/2)) ∗ (1 + eps k) ^ (hgt (pee j ′) − 1) / k
by simp

with ∗ [OF eps-ge0] show ?thesis
by (simp add : alpha-hgt-eq powr-minus) (metis mult .assoc)

qed
also have . . . ≤ pee (j ′+2)
using j ′-cases

proof cases
case R
have hs-le3 : hgt (pee (Suc j ′)) ≤ 3
using le1 Y-6-5-Red [OF R ‹k≥16 ›] by simp

then have h-le3 : hgt (pee j ′) ≤ 3
using Y-6-5-DegreeReg [OF j ′-dreg] by simp

have alpha1 : alpha (hgt (pee (Suc j ′))) ≤ eps k ∗ (1 + eps k) ^ 2 / k
by (metis alpha-Suc-eq alpha-mono hgt-gt0 hs-le3 numeral-nat(3))

have alpha2 : alpha (hgt (pee j ′)) ≥ eps k / k
by (simp add : Red-5-7a)

have pee j ′ − eps k powr (− 1/2) ∗ alpha (hgt (pee j ′))
≤ pee (Suc j ′) − alpha (hgt (pee (Suc j ′)))

proof −
have alpha (hgt (pee (Suc j ′))) ≤ (1 + eps k)2 ∗ alpha (hgt (pee j ′))
using alpha1 mult-left-mono [OF alpha2 , of (1 + eps k)2]
by (simp add : mult .commute)

also have . . . ≤ inverse (eps k powr (1/2)) ∗ alpha (hgt (pee j ′))
using mult-left-mono [OF big1 , of alpha (hgt (pee j ′))] eps-gt0 [OF kn0]

alpha-ge0
by (simp add : divide-simps mult-ac)

109

finally have alpha (hgt (pee (Suc j ′)))
≤ inverse (eps k powr (1/2)) ∗ alpha (hgt (pee j ′)) .

then show ?thesis
using Y-6-4-DegreeReg [OF j ′-dreg] by (simp add : powr-minus)

qed
also have . . . ≤ pee (j ′+2)
by (simp add : R Y-6-4-Red)

finally show ?thesis .
next
case B
then show ?thesis
using Y-6-4-Bblue by force

next
case S
show ?thesis
using Y-6-4-DegreeReg S ‹pee (j ′+2) < p0 › Y64-S j ′-dreg pSj ′ by fastforce

qed
finally have p0 − eps k ≤ pee (j ′+2) .
then have p0 − 3 ∗ eps k ≤ pee (j ′+2) − 2 ∗ eps k
by simp

with p2-le-pSuc show ?thesis
by linarith

qed

corollary Y-6-2-halted :
assumes big : Big-Y-6-2 µ l
shows pee halted-point ≥ p0 − 3 ∗ eps k

proof (cases halted-point=0)
case True
then show ?thesis
by (simp add : eps-ge0 pee-eq-p0)

next
case False
then have halted-point−1 /∈ Step-class {halted}
by (simp add : halted-point-minimal)

then consider halted-point−1 ∈ Step-class {red-step,bblue-step,dboost-step}
| halted-point−1 ∈ Step-class {dreg-step}

using not-halted-even-dreg not-halted-odd-RBS by blast
then show ?thesis
proof cases
case 1
with False Y-6-2 [of halted-point−1] big show ?thesis by simp

next
case m1-dreg : 2
then have ∗: pee halted-point ≥ pee (halted-point−1)
using False Y-6-4-DegreeReg [of halted-point−1] by simp

have odd halted-point
using m1-dreg False step-even[of halted-point−1] by simp

then consider halted-point=1 | halted-point≥2

110

by (metis False less-2-cases One-nat-def not-le)
then show ?thesis
proof cases
case 1
with ∗ eps-gt0 [of k] kn0 show ?thesis
by (simp add : pee-eq-p0)

next
case 2
then have m2 : halted-point−2 ∈ Step-class {red-step,bblue-step,dboost-step}

using step-before-dreg [of halted-point−2] m1-dreg
by (simp flip: Suc-diff-le)

then obtain j where j : halted-point−1 = Suc j
using 2 not0-implies-Suc by fastforce

then have pee (Suc j) ≥ p0 − 3 ∗ eps k
by (metis m2 Suc-1 Y-6-2 big diff-Suc-1 diff-Suc-eq-diff-pred)

with ∗ j show ?thesis by simp
qed

qed
qed

end

6.5 Lemma 6.1
context P0-min
begin

definition ok-fun-61 ≡ λk . (2 ∗ real k / ln 2) ∗ ln (1 − 2 ∗ eps k powr (1/2) /
p0-min)

Not actually used, but justifies the definition above
lemma ok-fun-61-works:
assumes k>0 p0-min > 2 ∗ eps k powr (1/2)
shows 2 powr (ok-fun-61 k) = (1 − 2 ∗ (eps k) powr(1/2) / p0-min) ^ (2∗k)
using eps-gt0 [of k] p0-min assms
by (simp add : powr-def ok-fun-61-def flip: powr-realpow)

lemma ok-fun-61 : ok-fun-61 ∈ o(real)
unfolding eps-def ok-fun-61-def
using p0-min by real-asymp

definition
Big-Y-6-1 ≡
λµ l . Big-Y-6-2 µ l ∧ (∀ k≥l . eps k powr (1/2) ≤ 1/3 ∧ p0-min > 2 ∗ eps k

powr (1/2))

establishing the size requirements for 6.1
lemma Big-Y-6-1 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-Y-6-1 µ l

111

using p0-min assms Big-Y-6-2
unfolding Big-Y-6-1-def eps-def
apply (simp add : eventually-conj-iff all-imp-conj-distrib)
apply (intro conjI strip eventually-all-ge-at-top eventually-all-geI0 ; real-asymp)
done

end

lemma (in Book) Y-6-1 :
assumes big : Big-Y-6-1 µ l
defines st ≡ Step-class {red-step,dboost-step}
shows card (Yseq halted-point) / card Y0 ≥ 2 powr (ok-fun-61 k) ∗ p0 ^ card st

proof −
have big13 : eps k powr (1/2) ≤ 1/3
and big-p0 : p0-min > 2 ∗ eps k powr (1/2)
and big62 : Big-Y-6-2 µ l
and big41 : Big-Blue-4-1 µ l
using big l-le-k by (auto simp: Big-Y-6-1-def Big-Y-6-2-def)

with l-le-k have dboost-step-limit : card (Step-class {dboost-step}) < k
using bblue-dboost-step-limit by fastforce

define p0m where p0m ≡ p0 − 2 ∗ eps k powr (1/2)
have p0m > 0
using big-p0 p0-ge by (simp add : p0m-def)

let ?RS = Step-class {red-step,dboost-step}
let ?BD = Step-class {bblue-step,dreg-step}
have not-halted-below-m: i /∈ Step-class {halted} if i < halted-point for i
using that
by (simp add : halted-point-minimal)

have BD-card : card (Yseq i) = card (Yseq (Suc i))
if i ∈ ?BD for i

proof −
have Yseq (Suc i) = Yseq i
using that
by (auto simp: step-kind-defs next-state-def degree-reg-def split : prod .split

if-split-asm)
with p0-01 kn0 show ?thesis
by auto

qed
have RS-card : p0m ∗ card (Yseq i) ≤ card (Yseq (Suc i))
if i ∈ ?RS for i

proof −
have Yeq : Yseq (Suc i) = Neighbours Red (cvx i) ∩ Yseq i
using that
by (auto simp: step-kind-defs next-state-def split : prod .split if-split-asm)

have odd i
using that step-odd by (auto simp: Step-class-def)

moreover have i-not-halted : i /∈ Step-class {halted}
using that by (auto simp: Step-class-def)

ultimately have iminus1-dreg : i − 1 ∈ Step-class {dreg-step}

112

by (simp add : dreg-before-step not-halted-odd-RBS)
have p0m ∗ card (Yseq i) ≤ (1 − eps k powr (1/2)) ∗ pee (i−1) ∗ card (Yseq

i)
proof (cases i=1)
case True
with p0-01 show ?thesis
by (simp add : p0m-def pee-eq-p0 algebra-simps mult-right-mono)

next
case False
with ‹odd i› have i>2
by (metis Suc-lessI dvd-refl One-nat-def odd-pos one-add-one plus-1-eq-Suc)

have i−2 ∈ Step-class {red-step,bblue-step,dboost-step}
proof (intro not-halted-odd-RBS)
show i − 2 /∈ Step-class {halted}
using i-not-halted Step-class-not-halted diff-le-self by blast

show odd (i−2)
using ‹2 < i› ‹odd i› by auto

qed
then have Y62 : pee (i−1) ≥ p0 − 3 ∗ eps k
using Y-6-2 [OF - big62] ‹2 < i› by (metis Suc-1 Suc-diff-Suc Suc-lessD)

show ?thesis
proof (intro mult-right-mono)
have eps k powr (1/2) ∗ pee (i−1) ≤ eps k powr (1/2) ∗ 1
by (metis mult .commute mult-right-mono powr-ge-pzero pee-le1)

moreover have 3 ∗ eps k ≤ eps k powr (1/2)
proof −
have 3 ∗ eps k = 3 ∗ (eps k powr (1/2))2
using eps-ge0 powr-half-sqrt real-sqrt-pow2 by presburger

also have . . . ≤ 3 ∗ ((1/3) ∗ eps k powr (1/2))
by (smt (verit) big13 mult-right-mono power2-eq-square powr-ge-pzero)

also have . . . ≤ eps k powr (1/2)
by simp

finally show ?thesis .
qed
ultimately show p0m ≤ (1 − eps k powr (1/2)) ∗ pee (i − 1)
using Y62 by (simp add : p0m-def algebra-simps)

qed auto
qed
also have . . . ≤ card (Neighbours Red (cvx i) ∩ Yseq i)
using Red-5-8 [OF iminus1-dreg] cvx-in-Xseq that ‹odd i›
by fastforce

finally show ?thesis
by (simp add : Yeq)

qed
define ST where ST ≡ λi . ?RS ∩ {..<i}
have ST (Suc i) = (if i ∈ ?RS then insert i (ST i) else ST i) for i
by (auto simp: ST-def less-Suc-eq)

then have [simp]: card (ST (Suc i)) = (if i ∈ ?RS then Suc (card (ST i)) else
card (ST i)) for i

113

by (simp add : ST-def)
have STm: ST halted-point = st
by (auto simp: ST-def st-def Step-class-def simp flip: halted-point-minimal)

have p0m ^ card (ST i) ≤ (
∏

j<i . card (Yseq(Suc j)) / card (Yseq j)) if
i≤halted-pointfor i

using that
proof (induction i)
case 0
then show ?case
by (auto simp: ST-def)

next
case (Suc i)
then have i : i /∈ Step-class {halted}
by (simp add : not-halted-below-m)

consider (RS) i ∈ ?RS
| (BD) i ∈ ?BD ∧ i /∈ ?RS

using i stepkind .exhaust by (auto simp: Step-class-def)
then show ?case
proof cases
case RS
then have p0m ^ card (ST (Suc i)) = p0m ∗ p0m ^ card (ST i)
by simp

also have . . . ≤ p0m ∗ (
∏

j<i . card (Yseq(Suc j)) / card (Yseq j))
using Suc Suc-leD ‹0 < p0m› mult-left-mono by auto

also have . . . ≤ (card (Yseq (Suc i)) / card (Yseq i)) ∗ (
∏

j<i . card (Yseq
(Suc j)) / card (Yseq j))

proof (intro mult-right-mono)
show p0m ≤ card (Yseq (Suc i)) / card (Yseq i)
by (simp add : RS RS-card Yseq-gt0 i pos-le-divide-eq)

qed (simp add : prod-nonneg)
also have . . . = (

∏
j<Suc i . card (Yseq (Suc j)) / card (Yseq j))

by simp
finally show ?thesis .

next
case BD
with Yseq-gt0 [OF i] show ?thesis
by (simp add : Suc Suc-leD BD-card)

qed
qed
then have p0m ^ card (ST halted-point) ≤ (

∏
j < halted-point . card (Yseq(Suc

j)) / card (Yseq j))
by blast

also have . . . = card (Yseq halted-point) / card (Yseq 0)
proof −
have

∧
i . i < halted-point =⇒ card (Yseq i) ̸= 0

by (metis Yseq-gt0 less-irrefl not-halted-below-m)
then show ?thesis

using card-XY0 prod-lessThan-telescope-mult [of halted-point λi . real (card
(Yseq i))]

114

by (simp add : nonzero-eq-divide-eq)
qed
finally have ∗: (p0 − 2 ∗ eps k powr (1/2)) ^ card st ≤ card (Yseq halted-point)

/ card (Y0)
by (simp add : STm p0m-def)

— Asymptotic part of the argument
have st-le-2k : card st ≤ 2 ∗ k
proof −
have st ⊆ Step-class {red-step,dboost-step}
by (auto simp: st-def Step-class-insert-NO-MATCH)

moreover have finite (Step-class {red-step,dboost-step})
using finite-components by (auto simp: Step-class-insert-NO-MATCH)

ultimately have card st ≤ card (Step-class {red-step,dboost-step})
using card-mono by blast

also have . . . = card (Step-class {red-step} ∪ Step-class {dboost-step})
by (auto simp: Step-class-insert-NO-MATCH)

also have . . . ≤ k+k
by (meson add-le-mono card-Un-le dboost-step-limit le-trans less-imp-le-nat

red-step-limit)
finally show ?thesis
by auto

qed
have 2 powr (ok-fun-61 k) ∗ p0 ^ card st ≤ (p0 − 2 ∗ eps k powr (1/2)) ^ card

st
proof −
have 2 powr (ok-fun-61 k) = (1 − 2 ∗ (eps k) powr(1/2) / p0-min) ^ (2∗k)
using eps-gt0 [of k] p0-min big-p0
by (simp add : powr-def ok-fun-61-def flip: powr-realpow)

also have . . . ≤ (1 − 2 ∗ (eps k) powr(1/2) / p0) ^ (2∗k)
using p0-ge p0-min big-p0 by (intro power-mono) (auto simp: frac-le)

also have . . . ≤ (1 − 2 ∗ (eps k) powr(1/2) / p0) ^ card st
using big-p0 p0-01 ‹0 < p0m›
by (intro power-decreasing st-le-2k) (auto simp: p0m-def)

finally have §: 2 powr ok-fun-61 k ≤ (1 − 2 ∗ eps k powr (1/2) / p0) ^ card
st .

have (1 − 2 ∗ eps k powr (1/2) / p0) ^ card st ∗ p0 ^ card st
= ((1 − 2 ∗ eps k powr (1/2) / p0) ∗ p0) ^ card st
by (simp add : power-mult-distrib)

also have . . . = (p0 − 2 ∗ eps k powr (1/2)) ^ card st
using p0-01 by (simp add : algebra-simps)

finally show ?thesis
using mult-right-mono [OF §, of p0 ^ card st] p0-01 by auto

qed
with ∗ show ?thesis
by linarith

qed

end

115

7 Bounding the Size of X
theory Bounding-X imports Bounding-Y

begin

7.1 Preliminaries
lemma sum-odds-even:
fixes f :: nat ⇒ ′a :: ab-group-add
assumes even m
shows (

∑
i ∈ {i . i<m ∧ odd i}. f (Suc i) − f (i −Suc 0)) = f m − f 0

using assms
proof (induction m rule: less-induct)
case (less m)
show ?case
proof (cases m<2)
case True
with ‹even m› show ?thesis

by fastforce
next
case False
have eq : {i . i<m ∧ odd i} = insert (m−1) {i . i<m−2 ∧ odd i}
proof
show {i . i < m ∧ odd i} ⊆ insert (m − 1) {i . i < m − 2 ∧ odd i}
using ‹even m› by clarify presburger

qed (use False less in auto)
have [simp]: ¬ (m − Suc 0 < m − 2)
by linarith

show ?thesis
using False by (simp add : eq less flip: numeral-2-eq-2)

qed
qed

lemma sum-odds-odd :
fixes f :: nat ⇒ ′a :: ab-group-add
assumes odd m
shows (

∑
i ∈ {i . i<m ∧ odd i}. f (Suc i) − f (i − Suc 0)) = f (m−1) − f 0

proof −
have eq : {i . i<m ∧ odd i} = {i . i<m−1 ∧ odd i}
using assms not-less-iff-gr-or-eq by fastforce

show ?thesis
by (simp add : sum-odds-even eq assms)

qed

context Book
begin

the set of moderate density-boost steps (page 20)

116

definition dboost-star where
dboost-star ≡ {i ∈ Step-class {dboost-step}. real (hgt (pee (Suc i))) − hgt (pee

i) ≤ eps k powr (−1/4)}

definition bigbeta where
bigbeta ≡ let S = dboost-star in if S = {} then µ else (card S) ∗ inverse (

∑
i∈S .

inverse (beta i))

lemma dboost-star-subset : dboost-star ⊆ Step-class {dboost-step}
by (auto simp: dboost-star-def)

lemma finite-dboost-star : finite (dboost-star)
by (meson dboost-step-finite dboost-star-subset finite-subset)

lemma bigbeta-ge0 : bigbeta ≥ 0
using µ01 by (simp add : bigbeta-def Let-def beta-ge0 sum-nonneg)

lemma bigbeta-ge-square:
assumes big : Big-Red-5-3 µ l
shows bigbeta ≥ 1 / (real k)^2

proof −
have k : 1 / (real k)2 ≤ µ
using big kn0 l-le-k by (auto simp: Big-Red-5-3-def)

have fin: finite (dboost-star)
using assms finite-dboost-star by blast

have R53 : ∀ i ∈ Step-class {dboost-step}. 1 / (real k)^2 ≤ beta i
using Red-5-3 assms by blast

show 1 / (real k)^2 ≤ bigbeta
proof (cases dboost-star = {})
case True
then show ?thesis
using assms k by (simp add : bigbeta-def)

next
case False
then have card-gt0 : card (dboost-star) > 0
by (meson card-gt-0-iff dboost-star-subset fin finite-subset)

moreover have ∗: ∀ i ∈ dboost-star . beta i > 0 ∧ (real k)^2 ≥ inverse (beta
i)

using R53 kn0 assms by (simp add : beta-gt0 field-simps dboost-star-def)
ultimately have (

∑
i∈dboost-star . inverse (beta i)) ≤ card (dboost-star) ∗

(real k)^2
by (simp add : sum-bounded-above)

moreover have (
∑

i∈dboost-star . inverse (beta i)) ̸= 0
by (metis ∗ False fin inverse-positive-iff-positive less-irrefl sum-pos)

ultimately show ?thesis
using False card-gt0 k bigbeta-ge0
by (simp add : bigbeta-def Let-def divide-simps split : if-split-asm)

qed
qed

117

lemma bigbeta-gt0 :
assumes big : Big-Red-5-3 µ l
shows bigbeta > 0
by (smt (verit) kn0 assms bigbeta-ge-square of-nat-zero-less-power-iff zero-less-divide-iff)

lemma bigbeta-less1 :
assumes big : Big-Red-5-3 µ l
shows bigbeta < 1

proof −
have ∗: ∀ i∈Step-class {dboost-step}. 0 < beta i
using assms beta-gt0 big by blast

have fin: finite (Step-class {dboost-step})
using dboost-step-finite assms by blast

show bigbeta < 1
proof (cases dboost-star = {})
case True
then show ?thesis
using assms µ01 by (simp add : bigbeta-def)

next
case False
then have gt0 : card (dboost-star) > 0
by (meson card-gt-0-iff dboost-star-subset fin finite-subset)

have real (card (dboost-star)) = (
∑

i∈dboost-star . 1)
by simp

also have . . . < (
∑

i∈dboost-star . 1 / beta i)
proof (intro sum-strict-mono)
show finite (dboost-star)
using card-gt-0-iff gt0 by blast

fix i
assume i ∈ dboost-star
with assms µ01 ∗ dboost-star-subset beta-le
show 1 < 1 / beta i
by (force simp: Step-class-insert-NO-MATCH)

qed (use False in auto)
finally show ?thesis
using False by (simp add : bigbeta-def Let-def divide-simps)

qed
qed

lemma bigbeta-le:
assumes big : Big-Red-5-3 µ l
shows bigbeta ≤ µ

proof −
have real (card (dboost-star)) = (

∑
i∈dboost-star . 1)

by simp
also have . . . ≤ (

∑
i∈dboost-star . µ / beta i)

proof (intro sum-mono)

118

fix i
assume i : i ∈ dboost-star
with beta-le dboost-star-subset have beta i ≤ µ
by (auto simp: Step-class-insert-NO-MATCH)

with beta-gt0 assms show 1 ≤ µ / beta i
by (smt (verit) dboost-star-subset divide-less-eq-1-pos i subset-iff)

qed
also have . . . = µ ∗ (

∑
i∈dboost-star . 1 / beta i)

by (simp add : sum-distrib-left)
finally have real (card (dboost-star)) ≤ µ ∗ (

∑
i∈dboost-star . 1 / beta i) .

moreover have (
∑

i∈dboost-star . 1 / beta i) ≥ 0
by (simp add : beta-ge0 sum-nonneg)

ultimately show ?thesis
using µ01 by (simp add : bigbeta-def Let-def divide-simps)

qed

end

7.2 Lemma 7.2
definition Big-X-7-2 ≡ λµ l . nat ⌈real l powr (3/4)⌉ ≥ 3 ∧ l > 1 / (1−µ)

establishing the size requirements for 7.11
lemma Big-X-7-2 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-X-7-2 µ l
unfolding Big-X-7-2-def eventually-conj-iff all-imp-conj-distrib eps-def
apply (simp add : eventually-conj-iff all-imp-conj-distrib)
apply (intro conjI strip eventually-all-geI1 [where L=1] eventually-all-ge-at-top)
apply real-asymp+
by (smt (verit , best) ‹µ1<1 › frac-le)

definition ok-fun-72 ≡ λµ k . (real k / ln 2) ∗ ln (1 − 1 / (k ∗ (1−µ)))

lemma ok-fun-72 :
assumes µ<1
shows ok-fun-72 µ ∈ o(real)
using assms unfolding ok-fun-72-def by real-asymp

lemma ok-fun-72-uniform:
assumes 0<µ0 µ1<1
assumes e>0
shows ∀∞k . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ |ok-fun-72 µ k | / k ≤ e

proof (intro eventually-all-geI1 [where L = Suc(nat⌈1/(1−µ1)⌉)])
show ∀∞k . |ok-fun-72 µ1 k | / real k ≤ e
using assms unfolding ok-fun-72-def by real-asymp

next
fix k µ
assume le-e: |ok-fun-72 µ1 k | / real k ≤ e
and µ: µ0 ≤ µ µ ≤ µ1

119

and k : Suc(nat⌈1/(1−µ1)⌉) ≤ k
with assms have 1 > 1 / (real k ∗ (1 − µ1))
by (smt (verit , best) divide-less-eq divide-less-eq-1 less-eq-Suc-le natceiling-lessD)
then have ∗: 1 > 1 / (real k ∗ (1 − r)) if r≤µ1 for r
using that assms k less-le-trans by fastforce

have †: 1 / (k ∗ (1 − µ)) ≤ 1 / (k ∗ (1 − µ1))
using µ assms by (simp add : divide-simps mult-less-0-iff)

obtain µ<1 k>0 using µ k assms by force
then have |ok-fun-72 µ k | ≤ |ok-fun-72 µ1 k |
using µ ∗ assms †

by (simp add : ok-fun-72-def abs-mult zero-less-mult-iff abs-of-neg divide-le-cancel)
then show |ok-fun-72 µ k | / real k ≤ e
by (smt (verit , best) le-e divide-right-mono of-nat-0-le-iff)

qed

lemma (in Book) X-7-2 :
defines R ≡ Step-class {red-step}
assumes big : Big-X-7-2 µ l
shows (

∏
i∈R. card (Xseq(Suc i)) / card (Xseq i)) ≥ 2 powr (ok-fun-72 µ k) ∗

(1−µ) ^ card R
proof −
define R where R ≡ RN k (nat ⌈real l powr (3/4)⌉)
have l34-ge3 : nat ⌈real l powr (3/4)⌉ ≥ 3 and k-gt : k > 1 / (1−µ)
using big l-le-k by (auto simp: Big-X-7-2-def)

then obtain R > k k ≥ 2
using µ01 RN-gt1 R-def l-le-k
by (smt (verit , best) divide-le-eq-1-pos fact-2 nat-le-real-less of-nat-fact)

with k-gt µ01 have bigR: 1−µ > 1/R
by (smt (verit , best) less-imp-of-nat-less ln-div ln-le-cancel-iff zero-less-divide-iff)
have ∗: 1−µ − 1/R ≤ card (Xseq (Suc i)) / card (Xseq i)
if i ∈ R for i

proof −
let ?NRX = λi . Neighbours Red (cvx i) ∩ Xseq i
have nextX : Xseq (Suc i) = ?NRX i and nont : ¬ termination-condition (Xseq

i) (Yseq i)
using that by (auto simp: R-def step-kind-defs next-state-def split : prod .split)

then have cardX : card (Xseq i) > R
unfolding R-def by (meson not-less termination-condition-def)

have 1 : card (?NRX i) ≥ (1−µ) ∗ card (Xseq i) − 1
using that card-cvx-Neighbours µ01 by (simp add : R-def Step-class-def)

have R ̸= 0
using ‹k < R› by linarith

with cardX have (1−µ) − 1 / R ≤ (1−µ) − 1 / card (Xseq i)
by (simp add : inverse-of-nat-le)

also have . . . ≤ card (Xseq (Suc i)) / card (Xseq i)
using cardX nextX 1 by (simp add : divide-simps)

finally show ?thesis .
qed
have fin-red : finite R

120

using red-step-finite by (auto simp: R-def)
define t where t ≡ card R
have t≥0
by (auto simp: t-def)

have (1−µ − 1/R) ^ card Red-steps ≤ (
∏

i ∈ Red-steps. card (Xseq(Suc i)) /
card (Xseq i))

if Red-steps ⊆ R for Red-steps
using finite-subset [OF that fin-red] that

proof induction
case empty
then show ?case
by auto

next
case (insert i Red-steps)
then have i : i ∈ R
by auto

have ((1−µ) − 1/R) ^ card (insert i Red-steps) = ((1−µ) − 1/R) ∗ ((1−µ)
− 1/R) ^ card (Red-steps)

by (simp add : insert)
also have . . . ≤ (card (Xseq (Suc i)) / card (Xseq i)) ∗ ((1−µ) − 1/R) ^

card (Red-steps)
using bigR by (intro mult-right-mono ∗ i) auto

also have . . . ≤ (card (Xseq (Suc i)) / card (Xseq i)) ∗ (
∏

i ∈ Red-steps. card
(Xseq(Suc i)) / card (Xseq i))

using insert by (intro mult-left-mono) auto
also have . . . = (

∏
i∈insert i Red-steps. card (Xseq(Suc i)) / card (Xseq i))

using insert by simp
finally show ?case .

qed
then have ∗: (1−µ − 1/R) ^ t ≤ (

∏
i ∈ R. card (Xseq(Suc i)) / card (Xseq

i))
using t-def by blast

— Asymptotic part of the argument
have 1−µ − 1/k ≤ 1−µ − 1/R
using kn0 ‹k < R› by (simp add : inverse-of-nat-le)

then have ln-le: ln (1−µ − 1/k) ≤ ln (1−µ − 1/R)
using µ01 k-gt ‹R>k› by (simp add : bigR divide-simps mult .commute less-le-trans)
have ok-fun-72 µ k ∗ ln 2 = k ∗ ln (1 − 1 / (k ∗ (1−µ)))
by (simp add : ok-fun-72-def)

also have . . . ≤ t ∗ ln (1 − 1 / (k ∗ (1−µ)))
proof (intro mult-right-mono-neg)
have red-steps: card R < k
using red-step-limit ‹0<µ› by (auto simp: R-def)

show real t ≤ real k
using nat-less-le red-steps by (simp add : t-def)

show ln (1 − 1 / (k ∗ (1−µ))) ≤ 0
using µ01 divide-less-eq k-gt ln-one-minus-pos-upper-bound by fastforce

qed
also have . . . = t ∗ ln ((1−µ − 1/k) / (1−µ))

121

using ‹t≥0 › µ01 by (simp add : diff-divide-distrib)
also have . . . = t ∗ (ln (1−µ − 1/k) − ln (1−µ))
using ‹t≥0 › µ01 k-gt kn0 by (simp add : ln-div mult .commute pos-divide-less-eq)
also have . . . ≤ t ∗ (ln (1−µ − 1/R) − ln (1−µ))
by (simp add : ln-le mult-left-mono)

finally have ok-fun-72 µ k ∗ ln 2 + t ∗ ln (1−µ) ≤ t ∗ ln (1−µ − 1/R)
by (simp add : ring-distribs)

then have 2 powr ok-fun-72 µ k ∗ (1−µ) ^ t ≤ (1−µ − 1/R) ^ t
using µ01 by (simp add : bigR ln-mult ln-powr ln-realpow flip: ln-le-cancel-iff)

with ∗ show ?thesis
by (simp add : t-def)

qed

7.3 Lemma 7.3
context Book
begin

definition Bdelta ≡ λ µ i . Bseq (Suc i) \ Bseq i

lemma card-Bdelta: card (Bdelta µ i) = card (Bseq (Suc i)) − card (Bseq i)
by (simp add : Bseq-mono Bdelta-def card-Diff-subset finite-Bseq)

lemma card-Bseq-mono: card (Bseq (Suc i)) ≥ card (Bseq i)
by (simp add : Bseq-Suc-subset card-mono finite-Bseq)

lemma card-Bseq-sum: card (Bseq i) = (
∑

j<i . card (Bdelta µ j))
proof (induction i)
case 0
then show ?case
by auto

next
case (Suc i)
with card-Bseq-mono show ?case
unfolding card-Bdelta sum.lessThan-Suc
by (smt (verit , del-insts) Nat .add-diff-assoc diff-add-inverse)

qed

definition get-blue-book ≡ λi . let (X ,Y ,A,B) = stepper i in choose-blue-book
(X ,Y ,A,B)

Tracking changes to X and B. The sets are necessarily finite
lemma Bdelta-bblue-step:
assumes i ∈ Step-class {bblue-step}
shows ∃S ⊆ Xseq i . Bdelta µ i = S

∧ card (Xseq (Suc i)) ≥ (µ ^ card S) ∗ card (Xseq i) / 2
proof −
obtain X Y A B S T where step: stepper i = (X ,Y ,A,B) and bb: get-blue-book

i = (S ,T)
and valid : valid-state(X ,Y ,A,B)

122

by (metis surj-pair valid-state-stepper)
moreover have finite X
by (metis V-state-stepper finX step)

ultimately have ∗: stepper (Suc i) = (T , Y , A, B∪S) ∧ good-blue-book X (S ,T)

and Xeq : X = Xseq i
using assms choose-blue-book-works [of X S T Y A B]
by (simp-all add : step-kind-defs next-state-def valid-state-def get-blue-book-def

choose-blue-book-works split : if-split-asm)
show ?thesis
proof (intro exI conjI)
have S ⊆ X
proof (intro choose-blue-book-subset [THEN conjunct1] ‹finite X ›)
show (S , T) = choose-blue-book (X , Y , A, B)
using bb step by (simp add : get-blue-book-def Xseq-def)

qed
then show S ⊆ Xseq i
using Xeq by force

have disjnt X B
using valid by (auto simp: valid-state-def disjoint-state-def)

then show Bdelta µ i = S
using ∗ step ‹S ⊆ X › by (auto simp: Bdelta-def Bseq-def disjnt-iff)

show µ ^ card S ∗ real (card (Xseq i)) / 2 ≤ real (card (Xseq (Suc i)))
using ∗ by (auto simp: Xseq-def good-blue-book-def step)

qed
qed

lemma Bdelta-dboost-step:
assumes i ∈ Step-class {dboost-step}
shows ∃ x ∈ Xseq i . Bdelta µ i = {x}

proof −
obtain X Y A B where step: stepper i = (X ,Y ,A,B) and valid : valid-state(X ,Y ,A,B)

by (metis surj-pair valid-state-stepper)
have cvx : choose-central-vx (X ,Y ,A,B) ∈ X
by (metis Step-class-insert Un-iff cvx-def cvx-in-Xseq assms step stepper-XYseq)
then have ∃X ′ Y ′. stepper (Suc i) = (X ′, Y ′, A, insert (choose-central-vx

(X ,Y ,A,B)) B)
using assms step
by (auto simp: step-kind-defs next-state-def split : if-split-asm)

moreover have choose-central-vx (X ,Y ,A,B) /∈ B
using valid cvx by (force simp: valid-state-def disjoint-state-def disjnt-iff)

ultimately show ?thesis
using step cvx by (auto simp: Bdelta-def Bseq-def disjnt-iff Xseq-def)

qed

lemma card-Bdelta-dboost-step:
assumes i ∈ Step-class {dboost-step}
shows card (Bdelta µ i) = 1
using Bdelta-dboost-step [OF assms] by force

123

lemma Bdelta-trivial-step:
assumes i : i ∈ Step-class {red-step,dreg-step,halted}
shows Bdelta µ i = {}
using assms
by (auto simp: step-kind-defs next-state-def Bdelta-def degree-reg-def split : if-split-asm

prod .split)

end

definition ok-fun-73 ≡ λk . − (real k powr (3/4))

lemma ok-fun-73 : ok-fun-73 ∈ o(real)
unfolding ok-fun-73-def by real-asymp

lemma (in Book) X-7-3 :
assumes big : Big-Blue-4-1 µ l
defines B ≡ Step-class {bblue-step}
defines S ≡ Step-class {dboost-step}
shows (

∏
i ∈ B. card (Xseq(Suc i)) / card (Xseq i)) ≥ 2 powr (ok-fun-73 k) ∗

µ ^ (l − card S)
proof −
have [simp]: finite B finite S and cardB: card B ≤ l powr (3/4)
using assms bblue-step-limit big by (auto simp: B-def S-def)

define b where b ≡ λi . card (Bdelta µ i)
obtain i where card (Bseq i) = sum b B + card S
proof −
define i where i = Suc (Max (B ∪ S))
define TRIV where TRIV ≡ Step-class {red-step,dreg-step,halted} ∩ {..<i}
have [simp]: finite TRIV
by (auto simp: TRIV-def)

have eq : B ∪ S ∪ TRIV = {..<i}
proof
show B ∪ S ∪ TRIV ⊆ {..<i}
by (auto simp: i-def TRIV-def less-Suc-eq-le)

show {..<i} ⊆ B ∪ S ∪ TRIV
using stepkind .exhaust by (auto simp: B-def S-def TRIV-def Step-class-def)

qed
have dis: B ∩ S = {} (B ∪ S) ∩ TRIV = {}
by (auto simp: B-def S-def TRIV-def Step-class-def)

show thesis
proof
have card (Bseq i) = (

∑
j ∈ B ∪ S ∪ TRIV . b j)

using card-Bseq-sum eq unfolding b-def by metis
also have . . . = (

∑
j∈B. b j) + (

∑
j∈S. b j) + (

∑
j∈TRIV . b j)

by (simp add : sum-Un-nat dis)
also have . . . = sum b B + card S
by (simp add : b-def S-def card-Bdelta-dboost-step TRIV-def Bdelta-trivial-step)
finally show card (Bseq i) = sum b B + card S .

124

qed
qed
then have sum-b-B: sum b B ≤ l − card S
by (metis Bseq-less-l less-diff-conv nat-less-le)

have real (card B) ≤ real k powr (3/4)
using cardB l-le-k
by (smt (verit , best) divide-nonneg-pos of-nat-0-le-iff of-nat-mono powr-mono2)

then have 2 powr (ok-fun-73 k) ≤ (1/2) ^ card B
by (simp add : ok-fun-73-def powr-minus divide-simps flip: powr-realpow)

then have 2 powr (ok-fun-73 k) ∗ µ ^ (l − card S) ≤ (1/2) ^ card B ∗ µ ^ (l
− card S)

by (simp add : µ01)
also have (1/2) ^ card B ∗ µ ^ (l − card S) ≤ (1/2) ^ card B ∗ µ ^ (sum b
B)

using µ01 sum-b-B by simp
also have . . . = (

∏
i∈B. µ ^ b i / 2)

by (simp add : power-sum prod-dividef divide-simps)
also have . . . ≤ (

∏
i∈B. card (Xseq (Suc i)) / card (Xseq i))

proof (rule prod-mono)
fix i :: nat
assume i ∈ B
then have ¬ termination-condition (Xseq i) (Yseq i)
by (simp add : B-def Step-class-def flip: step-non-terminating-iff)

then have card (Xseq i) ̸= 0
using termination-condition-def by force

with ‹i∈B› µ01 show 0 ≤ µ ^ b i / 2 ∧ µ ^ b i / 2 ≤ card (Xseq (Suc i))
/ card (Xseq i)

by (force simp: b-def B-def divide-simps dest !: Bdelta-bblue-step)
qed
finally show ?thesis .

qed

7.4 Lemma 7.5

Small o(k) bounds on summations for this section

This is the explicit upper bound for heights given just below (5) on page
9

definition ok-fun-26 ≡ λk . 2 ∗ ln k / eps k

definition ok-fun-28 ≡ λk . −2 ∗ real k powr (7/8)

lemma ok-fun-26 : ok-fun-26 ∈ o(real) and ok-fun-28 : ok-fun-28 ∈ o(real)
unfolding ok-fun-26-def ok-fun-28-def eps-def by real-asymp+

definition
Big-X-7-5 ≡
λµ l . Big-Blue-4-1 µ l ∧ Big-Red-5-3 µ l ∧ Big-Y-6-5-Bblue l
∧ (∀ k≥l . Big-height-upper-bound k ∧ k≥16 ∧ (ok-fun-26 k − ok-fun-28 k

125

≤ k))

establishing the size requirements for 7.5

lemma Big-X-7-5 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-X-7-5 µ l

proof −
have ok : ∀∞l . ok-fun-26 l − ok-fun-28 l ≤ l
unfolding eps-def ok-fun-26-def ok-fun-28-def by real-asymp

show ?thesis
using assms Big-Y-6-5-Bblue Big-Red-5-3 Big-Blue-4-1
unfolding Big-X-7-5-def
apply (simp add : eventually-conj-iff all-imp-conj-distrib)
apply (intro conjI strip eventually-all-ge-at-top ok Big-height-upper-bound ;

real-asymp)
done

qed

context Book
begin

lemma X-26-and-28 :
assumes big : Big-X-7-5 µ l
defines D ≡ Step-class {dreg-step}
defines B ≡ Step-class {bblue-step}
defines H ≡ Step-class {halted}
defines h ≡ λi . real (hgt (pee i))
obtains (

∑
i∈{..<halted-point} \ D. h (Suc i) − h (i−1)) ≤ ok-fun-26 k

ok-fun-28 k ≤ (
∑

i ∈ B. h(Suc i) − h(i−1))
proof −
define S where S ≡ Step-class {dboost-step}
have B-limit : Big-Blue-4-1 µ l and bigY65B : Big-Y-6-5-Bblue l
and hub: Big-height-upper-bound k
using big l-le-k by (auto simp: Big-X-7-5-def)

have m-minimal : i /∈ H ←→ i < halted-point for i
unfolding H-def using halted-point-minimal assms by blast

have oddset : {..<halted-point} \ D = {i ∈ {..<halted-point}. odd i}
using m-minimal step-odd step-even not-halted-even-dreg
by (auto simp: D-def H-def Step-class-insert-NO-MATCH)

— working on 28
have ok-fun-28 k ≤ −2 ∗ eps k powr (−1/2) ∗ card B
proof −
have k powr (1/8) ∗ card B ≤ k powr (1/8) ∗ l powr (3/4)
using B-limit bblue-step-limit by (simp add : B-def mult-left-mono)

also have . . . ≤ k powr (1/8) ∗ k powr (3/4)
by (simp add : l-le-k mult-mono powr-mono2)

also have . . . = k powr (7/8)
by (simp flip: powr-add)

finally show ?thesis

126

by (simp add : eps-def powr-powr ok-fun-28-def)
qed
also have . . . ≤ (

∑
i ∈ B. h(Suc i) − h(i−1))

proof −
have (

∑
i ∈ B. −2 ∗ eps k powr (−1/2)) ≤ (

∑
i ∈ B. h(Suc i) − h(i−1))

proof (rule sum-mono)
fix i :: nat
assume i : i ∈ B
show −2 ∗ eps k powr (−1/2) ≤ h(Suc i) − h(i−1)
using bigY65B kn0 i Y-6-5-Bblue by (fastforce simp: B-def h-def)

qed
then show ?thesis
by (simp add : mult .commute)

qed
finally have 28 : ok-fun-28 k ≤ (

∑
i ∈ B. h(Suc i) − h(i−1)) .

have (
∑

i ∈ {..<halted-point} \ D. h(Suc i) − h(i−1)) ≤ h halted-point − h 0
proof (cases even halted-point)
case False
have hgt (pee (halted-point − Suc 0)) ≤ hgt (pee halted-point)
using Y-6-5-DegreeReg [of halted-point−1] False m-minimal not-halted-even-dreg

odd-pos
by (fastforce simp: H-def)

then have h(halted-point − Suc 0) ≤ h halted-point
using h-def of-nat-mono by blast

with False show ?thesis
by (simp add : oddset sum-odds-odd)

qed (simp add : oddset sum-odds-even)
also have . . . ≤ ok-fun-26 k
proof −
have hgt (pee i) ≥ 1 for i
by (simp add : Suc-leI hgt-gt0)

moreover have hgt (pee halted-point) ≤ ok-fun-26 k
using hub pee-le1 height-upper-bound unfolding ok-fun-26-def by blast

ultimately show ?thesis
by (simp add : h-def)

qed
finally have 26 : (

∑
i∈{..<halted-point} \ D. h (Suc i) − h (i−1)) ≤ ok-fun-26

k .
with 28 show ?thesis
using that by blast

qed

proposition X-7-5 :
assumes µ: 0<µ µ<1
defines S ≡ Step-class {dboost-step} and SS ≡ dboost-star
assumes big : Big-X-7-5 µ l
shows card (S\SS) ≤ 3 ∗ eps k powr (1/4) ∗ k

proof −
define D where D ≡ Step-class {dreg-step}

127

define R where R ≡ Step-class {red-step}
define B where B ≡ Step-class {bblue-step}
define h where h ≡ λi . real (hgt (pee i))
obtain 26 : (

∑
i∈{..<halted-point} \ D. h (Suc i) − h (i−1)) ≤ ok-fun-26 k

and 28 : ok-fun-28 k ≤ (
∑

i ∈ B. h(Suc i) − h(i−1))
using X-26-and-28 assms(1−3) big
unfolding B-def D-def h-def Big-X-7-5-def by blast

have SS: SS = {i ∈ S. h(Suc i) − h i ≤ eps k powr (−1/4)} and SS ⊆ S
by (auto simp: SS-def S-def dboost-star-def h-def)

have in-S : h(Suc i) − h i > eps k powr (−1/4) if i ∈ S\SS for i
using that by (fastforce simp: SS)

have B-limit : Big-Blue-4-1 µ l
and bigR53 : Big-Red-5-3 µ l
and 16 : k≥16
and ok-fun: ok-fun-26 k − ok-fun-28 k ≤ k

using big l-le-k by (auto simp: Big-X-7-5-def)
have [simp]: finite R finite B finite S
using finite-components by (auto simp: R-def B-def S-def)

have [simp]: R ∩ S = {} B ∩ (R∪S) = {}
by (auto simp: R-def S-def B-def Step-class-def)

obtain cardss: card SS ≤ card S card (S\SS) = card S − card SS
by (meson ‹SS ⊆ S› ‹finite S› card-Diff-subset card-mono infinite-super)

have (
∑

i ∈ S. h(Suc i) − h(i−1)) ≥ eps k powr (−1/4) ∗ card (S\SS)
proof −
have (

∑
i ∈ S\SS. h(Suc i) − h(i−1)) ≥ (

∑
i ∈ S\SS. eps k powr (−1/4))

proof (rule sum-mono)
fix i :: nat
assume i : i ∈ S\SS
with i obtain i−1 ∈ D i>0

using dreg-before-step1 dreg-before-gt0 by (fastforce simp: S-def D-def
Step-class-insert-NO-MATCH)

with i show eps k powr (−1/4) ≤ h(Suc i) − h(i−1)
using in-S [of i] Y-6-5-DegreeReg [of i−1] by (simp add : D-def h-def)

qed
moreover
have (

∑
i ∈ SS. h(Suc i) − h(i−1)) ≥ 0

proof (intro sum-nonneg)
show

∧
i . i ∈ SS =⇒ 0 ≤ h (Suc i) − h (i − 1)

using Y-6-4-dbooSt µ bigR53 by(auto simp: h-def SS S-def hgt-mono)
qed
ultimately show ?thesis
by (simp add : mult .commute sum.subset-diff [OF ‹SS ⊆ S› ‹finite S›])

qed
moreover
have (

∑
i ∈ R. h(Suc i) − h(i−1)) ≥ (

∑
i ∈ R. −2)

proof (rule sum-mono)
fix i :: nat
assume i : i ∈ R

128

with i obtain i−1 ∈ D i>0
using dreg-before-step1 dreg-before-gt0
by (fastforce simp: R-def D-def Step-class-insert-NO-MATCH)

with i have hgt (pee (i−1)) − 2 ≤ hgt (pee (Suc i))
using Y-6-5-Red [of i] 16 Y-6-5-DegreeReg [of i−1]
by (fastforce simp: algebra-simps R-def D-def)

then show − 2 ≤ h(Suc i) − h(i−1)
unfolding h-def by linarith

qed
ultimately have 27 : (

∑
i ∈ R∪S. h(Suc i) − h(i−1)) ≥ eps k powr (−1/4) ∗

card (S\SS) − 2 ∗ card R
by (simp add : sum.union-disjoint)

have ok-fun-28 k + (eps k powr (−1/4) ∗ card (S\SS) − 2 ∗ card R) ≤ (
∑

i
∈ B. h(Suc i) − h(i−1)) + (

∑
i ∈ R∪S. h(Suc i) − h(i−1))

using 27 28 by simp
also have . . . = (

∑
i ∈ B ∪ (R∪S). h(Suc i) − h(i−1))

by (simp add : sum.union-disjoint)
also have . . . = (

∑
i ∈ {..<halted-point} \ D. h(Suc i) − h(i−1))

proof −
have i ∈ B ∪ (R∪S) if i < halted-point i /∈ D for i
using that unfolding D-def B-def R-def S-def
using Step-class-cases halted-point-minimal by auto

moreover
have i ∈ {..<halted-point} \ D if i ∈ B ∪ (R∪S) for i

using halted-point-minimal ′ that by (force simp: D-def B-def R-def S-def
Step-class-def)

ultimately have B ∪ (R∪S) = {..<halted-point} \ D
by auto

then show ?thesis
by simp

qed
finally have ok-fun-28 k + (eps k powr (−1/4) ∗ card (S\SS) − real (2 ∗ card
R)) ≤ ok-fun-26 k

using 26 by simp
then have real (card (S \ SS)) ≤ (ok-fun-26 k − ok-fun-28 k + 2 ∗ card R) ∗

eps k powr (1/4)
using eps-gt0 [OF kn0]
by (simp add : powr-minus field-simps del : div-add div-mult-self3)

moreover have card R < k
using red-step-limit µ unfolding R-def by blast

ultimately have card (S\SS) ≤ (k + 2 ∗ k) ∗ eps k powr (1/4)
by (smt (verit , best) of-nat-add mult-2 mult-right-mono nat-less-real-le ok-fun

powr-ge-pzero)
then show ?thesis
by (simp add : algebra-simps)

qed

end

129

7.5 Lemma 7.4
definition

Big-X-7-4 ≡ λµ l . Big-X-7-5 µ l ∧ Big-Red-5-3 µ l

establishing the size requirements for 7.4

lemma Big-X-7-4 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-X-7-4 µ l
using assms Big-X-7-5 Big-Red-5-3
unfolding Big-X-7-4-def
by (simp add : eventually-conj-iff all-imp-conj-distrib)

definition ok-fun-74 ≡ λk . −6 ∗ eps k powr (1/4) ∗ k ∗ ln k / ln 2

lemma ok-fun-74 : ok-fun-74 ∈ o(real)
unfolding ok-fun-74-def eps-def by real-asymp

context Book
begin

lemma X-7-4 :
assumes big : Big-X-7-4 µ l
defines S ≡ Step-class {dboost-step}
shows (

∏
i∈S. card (Xseq (Suc i)) / card (Xseq i)) ≥ 2 powr ok-fun-74 k ∗

bigbeta ^ card S
proof −
define SS where SS ≡ dboost-star
then have big53 : Big-Red-5-3 µ l and X75 : card (S\SS) ≤ 3 ∗ eps k powr

(1/4) ∗ k
using µ01 big by (auto simp: Big-X-7-4-def X-7-5 S-def SS-def)

then have R53 : pee (Suc i) ≥ pee i ∧ beta i ≥ 1 / (real k)2 and beta-gt0 : 0
< beta i

if i ∈ S for i
using that Red-5-3 beta-gt0 by (auto simp: S-def)

have bigbeta01 : bigbeta ∈ {0<..<1}
using big53 assms bigbeta-gt0 bigbeta-less1 by force

have SS ⊆ S
unfolding SS-def S-def dboost-star-def by auto

then obtain [simp]: finite S finite SS
by (simp add : SS-def S-def finite-dboost-star)

have card-SSS : card SS ≤ card S
by (metis SS-def S-def ‹finite S› card-mono dboost-star-subset)

have β: beta i = card (Xseq (Suc i)) / card (Xseq i) if i ∈ S for i
proof −
have Xseq (Suc i) = Neighbours Blue (cvx i) ∩ Xseq i
using that unfolding S-def
by (auto simp: step-kind-defs next-state-def split : prod .split)

then show ?thesis

130

by (force simp: beta-eq)
qed
then have ∗: (

∏
i∈S. card (Xseq (Suc i)) / card (Xseq i)) = (

∏
i∈S. beta i)

by force
have prod-beta-gt0 : prod (beta) S ′ > 0 if S ′ ⊆ S for S ′

using beta-gt0 that
by (force simp: beta-ge0 intro: prod-pos)

— bounding the immoderate steps
have (

∏
i∈S\SS. 1 / beta i) ≤ (

∏
i∈S\SS. real k ^ 2)

proof (rule prod-mono)
fix i
assume i : i ∈ S \ SS
with R53 kn0 beta-ge0 [of i] show 0 ≤ 1 / beta i ∧ 1 / beta i ≤ (real k)2
by (force simp: R53 divide-simps mult .commute)

qed
then have (

∏
i∈S\SS. 1 / beta i) ≤ real k ^ (2 ∗ card(S\SS))

by (simp add : power-mult)
also have . . . = real k powr (2 ∗ card(S\SS))
by (metis kn0 of-nat-0-less-iff powr-realpow)

also have . . . ≤ k powr (2 ∗ 3 ∗ eps k powr (1/4) ∗ k)
using X75 kn0 by (intro powr-mono; linarith)

also have . . . ≤ exp (6 ∗ eps k powr (1/4) ∗ k ∗ ln k)
by (simp add : powr-def)

also have . . . = 2 powr −ok-fun-74 k
by (simp add : ok-fun-74-def powr-def)

finally have (
∏

i∈S\SS. 1 / beta i) ≤ 2 powr −ok-fun-74 k .
then have A: (

∏
i∈S\SS. beta i) ≥ 2 powr ok-fun-74 k

using prod-beta-gt0 [of S\SS]
by (simp add : powr-minus prod-dividef mult .commute divide-simps)

— bounding the moderate steps
have (

∏
i∈SS. 1 / beta i) ≤ bigbeta powr (− (card SS))

proof (cases SS = {})
case True
with bigbeta01 show ?thesis
by fastforce

next
case False
then have card SS > 0
using ‹finite SS› card-0-eq by blast

have (
∏

i∈SS. 1 / beta i) powr (1 / card SS) ≤ (
∑

i∈SS. 1 / beta i / card
SS)

proof (rule arith-geom-mean [OF ‹finite SS› ‹SS ≠ {}›])
show

∧
i . i ∈ SS =⇒ 0 ≤ 1 / beta i

by (simp add : beta-ge0)
qed
then have ((

∏
i∈SS. 1 / beta i) powr (1 / card SS)) powr (card SS)

≤ (
∑

i∈SS. 1 / beta i / card SS) powr (card SS)
using powr-mono2 by auto

with ‹SS ≠ {}›

131

have (
∏

i∈SS. 1 / beta i) ≤ (
∑

i∈SS. 1 / beta i / card SS) powr (card SS)
by (simp add : powr-powr beta-ge0 prod-nonneg)

also have . . . ≤ (1 / (card SS) ∗ (
∑

i∈SS. 1 / beta i)) powr (card SS)
using ‹card SS > 0 › by (simp add : field-simps sum-divide-distrib)

also have . . . ≤ bigbeta powr (− (card SS))
using ‹SS ≠ {}› ‹card SS > 0 ›

by (simp add : bigbeta-def field-simps powr-minus powr-divide beta-ge0 sum-nonneg
flip: SS-def)

finally show ?thesis .
qed
then have B : (

∏
i∈SS. beta i) ≥ bigbeta powr (card SS)

using ‹SS ⊆ S› prod-beta-gt0 [of SS] bigbeta01
by (simp add : powr-minus prod-dividef mult .commute divide-simps)

have 2 powr ok-fun-74 k ∗ bigbeta powr card S ≤ 2 powr ok-fun-74 k ∗ bigbeta
powr card SS

using bigbeta01 big53 card-SSS by (simp add : powr-mono ′)
also have . . . ≤ (

∏
i∈S\SS. beta i) ∗ (

∏
i∈SS. beta i)

using beta-ge0 by (intro mult-mono A B) (auto simp: prod-nonneg)
also have . . . = (

∏
i∈S. beta i)

by (metis ‹SS ⊆ S› ‹finite S› prod .subset-diff)
finally have 2 powr ok-fun-74 k ∗ bigbeta powr real (card S) ≤ prod (beta) S .
with bigbeta01 show ?thesis
by (simp add : ∗ powr-realpow)

qed

7.6 Observation 7.7
lemma X-7-7 :
assumes i : i ∈ Step-class {dreg-step}
defines q ≡ eps k powr (−1/2) ∗ alpha (hgt (pee i))
shows pee (Suc i) − pee i ≥ card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i))
∗ q ∧ card (Xseq (Suc i)) > 0
proof −
have finX : finite (Xseq i) for i
using finite-Xseq by blast

define Y where Y ≡ Yseq
have Xseq (Suc i) = {x ∈ Xseq i . red-dense (Y i) (red-density (Xseq i) (Y i))

x}
and Y : Y (Suc i) = Y i
using i
by (simp-all add : step-kind-defs next-state-def X-degree-reg-def degree-reg-def

Y-def split : if-split-asm prod .split-asm)
then have Xseq : Xseq (Suc i) = {x ∈ Xseq i . card (Neighbours Red x ∩ Y i) ≥

(pee i − q) ∗ card (Y i)}
by (simp add : red-dense-def q-def pee-def Y-def)

have Xsub[simp]: Xseq (Suc i) ⊆ Xseq i
using Xseq-Suc-subset by blast

then have card-le: card (Xseq (Suc i)) ≤ card (Xseq i)
by (simp add : card-mono finX)

132

have [simp]: disjnt (Xseq i) (Y i)
using Xseq-Yseq-disjnt Y-def by blast

have Xnon0 : card (Xseq i) > 0 and Ynon0 : card (Y i) > 0
using i by (simp-all add : Y-def Xseq-gt0 Yseq-gt0 Step-class-def)

have alpha (hgt (pee i)) > 0
by (simp add : alpha-gt0 kn0 hgt-gt0)

with kn0 have q > 0
by (smt (verit) q-def eps-gt0 mult-pos-pos powr-gt-zero)

have Xdif : Xseq i \ Xseq (Suc i) = {x ∈ Xseq i . card (Neighbours Red x ∩ Y
i) < (pee i − q) ∗ card (Y i)}

using Xseq by force
have disYX : disjnt (Y i) (Xseq i \ Xseq (Suc i))
by (metis Diff-subset ‹disjnt (Xseq i) (Y i)› disjnt-subset2 disjnt-sym)

have edge-card Red (Y i) (Xseq i \ Xseq (Suc i))
= (

∑
x ∈ Xseq i \ Xseq (Suc i). real (card (Neighbours Red x ∩ Y i)))

using edge-card-eq-sum-Neighbours [OF - - disYX] finX Red-E by simp
also have . . . ≤ (

∑
x ∈ Xseq i \ Xseq (Suc i). (pee i − q) ∗ card (Y i))

by (smt (verit , del-insts) Xdif mem-Collect-eq sum-mono)
finally have A: edge-card Red (Xseq i \ Xseq (Suc i)) (Y i) ≤ card (Xseq i \

Xseq (Suc i)) ∗ (pee i − q) ∗ card (Y i)
by (simp add : edge-card-commute)

then have False if Xseq (Suc i) = {}
using ‹q>0 › Xnon0 Ynon0 that by (simp add : edge-card-eq-pee Y-def mult-le-0-iff)
then have XSnon0 : card (Xseq (Suc i)) > 0
using card-gt-0-iff finX by blast

have pee i ∗ card (Xseq i) ∗ real (card (Y i)) − edge-card Red (Xseq (Suc i))
(Y i)
≤ card (Xseq i \ Xseq (Suc i)) ∗ (pee i − q) ∗ card (Y i)
by (metis A edge-card-eq-pee edge-card-mono Y-def Xsub ‹disjnt (Xseq i) (Y

i)› edge-card-diff finX of-nat-diff)
moreover have real (card (Xseq (Suc i))) ≤ real (card (Xseq i))
using Xsub by (simp add : card-le)

ultimately have §: edge-card Red (Xseq (Suc i)) (Y i) ≥ pee i ∗ card (Xseq
(Suc i)) ∗ card (Y i) + card (Xseq i \ Xseq (Suc i)) ∗ q ∗ card (Y i)

using Xnon0
by (smt (verit , del-insts) Xsub card-Diff-subset card-gt-0-iff card-le left-diff-distrib

finite-subset mult-of-nat-commute of-nat-diff)
have edge-card Red (Xseq (Suc i)) (Y i) / (card (Xseq (Suc i)) ∗ card (Y i)) ≥

pee i + card (Xseq i \ Xseq (Suc i)) ∗ q / card (Xseq (Suc i))
using divide-right-mono [OF §, of card (Xseq (Suc i)) ∗ card (Y i)] XSnon0

Ynon0
by (simp add : add-divide-distrib split : if-split-asm)

moreover have pee (Suc i) = real (edge-card Red (Xseq (Suc i)) (Y i)) / (real
(card (Y i)) ∗ real (card (Xseq (Suc i))))

using Y by (simp add : pee-def gen-density-def Y-def)
ultimately show ?thesis
by (simp add : algebra-simps XSnon0)

qed

133

end

7.7 Lemma 7.8
definition Big-X-7-8 ≡ λk . k≥2 ∧ eps k powr (1/2) / k ≥ 2 / k^2

lemma Big-X-7-8 : ∀∞k . Big-X-7-8 k
unfolding eps-def Big-X-7-8-def eventually-conj-iff eps-def
by (intro conjI ; real-asymp)

lemma (in Book) X-7-8 :
assumes big : Big-X-7-8 k
and i : i ∈ Step-class {dreg-step}

shows card (Xseq (Suc i)) ≥ card (Xseq i) / k^2
proof −
define q where q ≡ eps k powr (−1/2) ∗ alpha (hgt (pee i))
have k>0 ‹k≥2 › using big by (auto simp: Big-X-7-8-def)
have 2 / k^2 ≤ eps k powr (1/2) / k
using big by (auto simp: Big-X-7-8-def)

also have . . . ≤ q
using kn0 eps-gt0 [of k] Red-5-7a [of pee i]
by (simp add : q-def powr-minus divide-simps flip: powr-add)

finally have q-ge: q ≥ 2 / k^2 .
define Y where Y ≡ Yseq
have Xseq (Suc i) = {x ∈ Xseq i . red-dense (Y i) (red-density (Xseq i) (Y i))

x}
and Y : Y (Suc i) = Y i
using i
by (simp-all add : step-kind-defs next-state-def X-degree-reg-def degree-reg-def

Y-def split : if-split-asm prod .split-asm)
have XSnon0 : card (Xseq (Suc i)) > 0
using X-7-7 kn0 assms by simp

have finX : finite (Xseq i) for i
using finite-Xseq by blast

have Xsub[simp]: Xseq (Suc i) ⊆ Xseq i
using Xseq-Suc-subset by blast

then have card-le: card (Xseq (Suc i)) ≤ card (Xseq i)
by (simp add : card-mono finX)

have 2 ≤ (real k)2
by (metis of-nat-numeral ‹2 ≤ k› of-nat-power-le-of-nat-cancel-iff self-le-ge2-pow)
then have 2 : 2 / (real k ^ 2 + 2) ≥ 1 / k^2
by (simp add : divide-simps)

have q ∗ card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i)) ≤ pee (Suc i) − pee
i

using X-7-7 µ01 kn0 assms by (simp add : q-def mult-of-nat-commute)
also have . . . ≤ 1
by (smt (verit) pee-ge0 pee-le1)

finally have q ∗ card (Xseq i \ Xseq (Suc i)) ≤ card (Xseq (Suc i))
using XSnon0 by auto

134

with q-ge have card (Xseq (Suc i)) ≥ (2 / k^2) ∗ card (Xseq i \ Xseq (Suc i))
by (smt (verit , best) mult-right-mono of-nat-0-le-iff)

then have card (Xseq (Suc i)) ∗ (1 + 2/k^2) ≥ (2/k^2) ∗ card (Xseq i)
by (simp add : card-Diff-subset finX card-le diff-divide-distrib field-simps)

then have card (Xseq (Suc i)) ≥ (2/(real k ^ 2 + 2)) ∗ card (Xseq i)
using kn0 add-nonneg-nonneg [of real k^2 2]
by (simp del : add-nonneg-nonneg add : divide-simps split : if-split-asm)

then show ?thesis
using mult-right-mono [OF 2 , of card (Xseq i)] by simp

qed

7.8 Lemma 7.9
definition Big-X-7-9 ≡ λk . ((1 + eps k) powr (eps k powr (−1/4) + 1) − 1) /
eps k ≤ 2 ∗ eps k powr (−1/4)
∧ k≥2 ∧ eps k powr (1/2) / k ≥ 2 / k^2

lemma Big-X-7-9 : ∀∞k . Big-X-7-9 k
unfolding eps-def Big-X-7-9-def eventually-conj-iff eps-def
by (intro conjI ; real-asymp)

lemma one-plus-powr-le:
fixes p::real
assumes 0≤p p≤1 x≥0
shows (1+x) powr p − 1 ≤ x∗p

proof −
define f where f ≡ λx . x∗p − ((1+x) powr p − 1)
have 0 ≤ f 0
by (simp add : f-def)

also have . . . ≤ f x
proof (intro DERIV-nonneg-imp-nondecreasing [of concl : f] exI conjI assms)
fix y ::real
assume y : 0 ≤ y y ≤ x
show (f has-real-derivative p − (1+y)powr (p−1) ∗ p) (at y)
unfolding f-def using assms y by (intro derivative-eq-intros | simp)+

show p − (1+y)powr (p−1) ∗ p ≥ 0
using y assms less-eq-real-def powr-less-one by fastforce

qed
finally show ?thesis
by (simp add : f-def)

qed

lemma (in Book) X-7-9 :
assumes i : i ∈ Step-class {dreg-step} and big : Big-X-7-9 k
defines hp ≡ λi . hgt (pee i)
assumes pee i ≥ p0 and hgt : hp (Suc i) ≤ hp i + eps k powr (−1/4)
shows card (Xseq (Suc i)) ≥ (1 − 2 ∗ eps k powr (1/4)) ∗ card (Xseq i)

proof −
have k : k≥2 eps k powr (1/2) / k ≥ 2 / k^2

135

using big by (auto simp: Big-X-7-9-def)
let ?q = eps k powr (−1/2) ∗ alpha (hp i)
have k>0 using k by auto
have Xsub[simp]: Xseq (Suc i) ⊆ Xseq i
using Xseq-Suc-subset by blast

have finX : finite (Xseq i) for i
using finite-Xseq by blast

then have card-le: card (Xseq (Suc i)) ≤ card (Xseq i)
by (simp add : card-mono finX)

have XSnon0 : card (Xseq (Suc i)) > 0
using X-7-7 ‹0 < k› i by blast

have card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i)) ∗ ?q ≤ pee (Suc i) −
pee i

using X-7-7 i k hp-def by auto
also have . . . ≤ 2 ∗ eps k powr (−1/4) ∗ alpha (hp i)
proof −
have hgt-le: hp i ≤ hp (Suc i)
using Y-6-5-DegreeReg ‹0 < k› i hp-def by blast

have A: pee (Suc i) ≤ qfun (hp (Suc i))
by (simp add : ‹0 < k› hp-def hgt-works)

have B : qfun (hp i − 1) ≤ pee i
using hgt-Least [of hp i − 1 pee i] ‹pee i ≥ p0 › by (force simp: hp-def)

have pee (Suc i) − pee i ≤ qfun (hp (Suc i)) − qfun (hp i − 1)
using A B by auto

also have . . . = ((1 + eps k) ^ (Suc (hp i − 1 + hp (Suc i)) − hp i) −
(1 + eps k) ^ (hp i − 1)) / k

using kn0 eps-gt0 [of k] hgt-le ‹pee i ≥ p0 › hgt-gt0 [of k]
by (simp add : hp-def qfun-eq Suc-diff-eq-diff-pred hgt-gt0 diff-divide-distrib)

also have . . . = alpha (hp i) / eps k ∗ ((1 + eps k) ^ (1 + hp (Suc i) − hp
i) − 1)

using kn0 hgt-le hgt-gt0
by (simp add : hp-def alpha-eq right-diff-distrib flip: diff-divide-distrib power-add)
also have . . . ≤ 2 ∗ eps k powr (−1/4) ∗ alpha (hp i)
proof −
have ((1 + eps k) ^ (1 + hp (Suc i) − hp i) − 1) / eps k ≤ ((1 + eps k)

powr (eps k powr (−1/4) + 1) − 1) / eps k
using hgt eps-ge0 [of k] hgt-le powr-mono-both by (force simp flip: powr-realpow

intro: divide-right-mono)
also have . . . ≤ 2 ∗ eps k powr (−1/4)
using big by (meson Big-X-7-9-def)

finally have ∗: ((1 + eps k) ^ (1 + hp (Suc i) − hp i) − 1) / eps k ≤ 2 ∗
eps k powr (−1/4) .

show ?thesis
using mult-left-mono [OF ∗, of alpha (hp i)]
by (smt (verit) alpha-ge0 mult .commute times-divide-eq-right)

qed
finally show ?thesis .

qed
finally have 29 : card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i)) ∗ ?q ≤ 2 ∗

136

eps k powr (−1/4) ∗ alpha (hp i) .
moreover have alpha (hp i) > 0
unfolding hp-def
by (smt (verit , ccfv-SIG) eps-gt0 ‹0 < k› alpha-ge divide-le-0-iff hgt-gt0

of-nat-0-less-iff)
ultimately have card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i)) ∗ eps k

powr (−1/2) ≤ 2 ∗ eps k powr (−1/4)
using mult-le-cancel-right by fastforce

then have card (Xseq i \ Xseq (Suc i)) / card (Xseq (Suc i)) ≤ 2 ∗ eps k powr
(−1/4) ∗ eps k powr (1/2)

using ‹0 < k› eps-gt0 [of k]
by (force simp: powr-minus divide-simps mult .commute mult-less-0-iff)

then have card (Xseq i \ Xseq (Suc i)) ≤ 2 ∗ eps k powr (1/4) ∗ card (Xseq
(Suc i))

using XSnon0 by (simp add : field-simps flip: powr-add)
also have . . . ≤ 2 ∗ eps k powr (1/4) ∗ card (Xseq i)
by (simp add : card-le mult-mono ′)

finally show ?thesis
by (simp add : card-Diff-subset finX card-le algebra-simps)

qed

7.9 Lemma 7.10
definition Big-X-7-10 ≡ λµ l . Big-X-7-5 µ l ∧ Big-Red-5-3 µ l

establishing the size requirements for 7.10
lemma Big-X-7-10 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-X-7-10 µ l
using Big-X-7-10-def Big-X-7-4 Big-X-7-4-def assms by force

lemma (in Book) X-7-10 :
defines R ≡ Step-class {red-step}
defines S ≡ Step-class {dboost-step}
defines h ≡ λi . real (hgt (pee i))
defines C ≡ {i . h i ≥ h (i−1) + eps k powr (−1/4)}
assumes big : Big-X-7-10 µ l
shows card ((R∪S) ∩ C) ≤ 3 ∗ eps k powr (1/4) ∗ k

proof −
define D where D ≡ Step-class {dreg-step}
define B where B ≡ Step-class {bblue-step}
have hub: Big-height-upper-bound k
and 16 : k≥16
and ok-le-k : ok-fun-26 k − ok-fun-28 k ≤ k
and bigR53 : Big-Red-5-3 µ l
using big l-le-k by (auto simp: Big-X-7-5-def Big-X-7-10-def)

have R∪S ⊆ {..<halted-point} \ D \ B and BmD : B ⊆ {..<halted-point} \ D
using halted-point-minimal ′
by (fastforce simp: R-def S-def D-def B-def Step-class-def)+

137

then have RS-eq : R∪S = {..<halted-point} \ D − B
using halted-point-minimal Step-class-cases by (auto simp: R-def S-def D-def

B-def)
obtain 26 : (

∑
i∈{..<halted-point} \ D. h (Suc i) − h (i−1)) ≤ ok-fun-26 k

and 28 : ok-fun-28 k ≤ (
∑

i ∈ B. h(Suc i) − h(i−1))
using X-26-and-28 big unfolding B-def D-def h-def Big-X-7-10-def by blast

have (
∑

i∈R∪S. h (Suc i) − h (i−1)) = (
∑

i∈{..<halted-point} \ D. h (Suc
i) − h (i−1)) − (

∑
i ∈ B. h(Suc i) − h(i−1))

unfolding RS-eq by (intro sum-diff BmD) auto
also have . . . ≤ ok-fun-26 k − ok-fun-28 k
using 26 28 by linarith

finally have ∗: (
∑

i∈R∪S. h (Suc i) − h (i−1)) ≤ ok-fun-26 k − ok-fun-28 k
.

have [simp]: finite R finite S
using finite-components by (auto simp: R-def S-def)
have h-ge-0-if-S : h(Suc i) − h(i−1) ≥ 0 if i ∈ S for i
proof −
have ∗: hgt (pee i) ≤ hgt (pee (Suc i))
using bigR53 Y-6-5-dbooSt that unfolding S-def by blast

obtain i−1 ∈ D i>0
using that ‹i∈S› dreg-before-step1 [of i] dreg-before-gt0 [of i]
by (force simp: S-def D-def Step-class-insert-NO-MATCH)

then have hgt (pee (i−1)) ≤ hgt (pee i)
using that kn0 by (metis Suc-diff-1 Y-6-5-DegreeReg D-def)

with ∗ show 0 ≤ h(Suc i) − h(i−1)
using kn0 unfolding h-def by linarith

qed

have card ((R∪S) ∩ C) ∗ eps k powr (−1/4) + real (card R) ∗ (−2)
= (

∑
i ∈ R∪S. if i∈C then eps k powr (−1/4) else 0) + (

∑
i ∈ R∪S. if

i∈R then −2 else 0)
by (simp add : Int-commute Int-left-commute flip: sum.inter-restrict)

also have . . . = (
∑

i ∈ R∪S. (if i∈C then eps k powr (−1/4) else 0) + (if i∈R
then −2 else 0))

by (simp add : sum.distrib)
also have . . . ≤ (

∑
i ∈ R∪S. h(Suc i) − h(i−1))

proof (rule sum-mono)
fix i :: nat
assume i : i ∈ R∪S
with i dreg-before-step1 dreg-before-gt0 have D : i−1 ∈ D i>0
by (force simp: S-def R-def D-def dreg-before-step Step-class-def)+

then have ∗: hgt (pee (i−1)) ≤ hgt (pee i)
by (metis Suc-diff-1 Y-6-5-DegreeReg D-def)

show (if i∈C then eps k powr (−1/4) else 0) + (if i∈R then − 2 else 0) ≤ h
(Suc i) − h (i−1)

proof (cases i∈R)
case True
then have h i − 2 ≤ h (Suc i)

138

using Y-6-5-Red [of i] 16 by (force simp: algebra-simps R-def h-def)
with ∗ True show ?thesis
by (simp add : h-def C-def)

next
case False
with i have i∈S by blast
show ?thesis
proof (cases i∈C)
case True
then have h (i − Suc 0) + eps k powr (−1/4) ≤ h i
by (simp add : C-def)

then show ?thesis
using ∗ i ‹i /∈R› kn0 bigR53 Y-6-5-dbooSt by (force simp: h-def S-def)

qed (use ‹i /∈R› ‹i∈S› h-ge-0-if-S in auto)
qed

qed
also have . . . ≤ k
using ∗ ok-le-k
by linarith

finally have card ((R∪S) ∩ C) ∗ eps k powr (−1/4) − 2 ∗ card R ≤ k
by linarith

moreover have card R ≤ k
by (metis R-def nless-le red-step-limit)

ultimately have card ((R∪S) ∩ C) ∗ eps k powr (−1/4) ≤ 3 ∗ k
by linarith

with eps-gt0 [OF kn0] show ?thesis
by (simp add : powr-minus divide-simps mult .commute split : if-split-asm)

qed

7.10 Lemma 7.11
definition Big-X-7-11-inequalities ≡ λk .

eps k ∗ eps k powr (−1/4) ≤ (1 + eps k) ^ (2 ∗ nat ⌊eps k powr
(−1/4)⌋) − 1

∧ k ≥ 2 ∗ eps k powr (−1/2) ∗ k powr (3/4)
∧ ((1 + eps k) ∗ (1 + eps k) powr (2 ∗ eps k powr (−1/4))) ≤ 2
∧ (1 + eps k) ^ (nat ⌊2 ∗ eps k powr (−1/4)⌋ + nat ⌊2 ∗ eps k powr

(−1/2)⌋ − 1) ≤ 2

definition Big-X-7-11 ≡
λµ l . Big-X-7-5 µ l ∧ Big-Red-5-3 µ l ∧ Big-Y-6-5-Bblue l
∧ (∀ k . l≤k −→ Big-X-7-11-inequalities k)

establishing the size requirements for 7.11
lemma Big-X-7-11 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-X-7-11 µ l
using assms Big-Red-5-3 Big-X-7-5 Big-Y-6-5-Bblue
unfolding Big-X-7-11-def Big-X-7-11-inequalities-def eventually-conj-iff all-imp-conj-distrib

eps-def

139

apply (simp add : eventually-conj-iff all-imp-conj-distrib)
apply (intro conjI strip eventually-all-geI0 eventually-all-ge-at-top; real-asymp)
done

lemma (in Book) X-7-11 :
defines R ≡ Step-class {red-step}
defines S ≡ Step-class {dboost-step}
defines C ≡ {i . pee i ≥ pee (i−1) + eps k powr (−1/4) ∗ alpha 1 ∧ pee (i−1)
≤ p0}
assumes big : Big-X-7-11 µ l
shows card ((R∪S) ∩ C) ≤ 4 ∗ eps k powr (1/4) ∗ k

proof −
define qstar where qstar ≡ p0 + eps k powr (−1/4) ∗ alpha 1
define pstar where pstar ≡ λi . min (pee i) qstar
define D where D ≡ Step-class {dreg-step}
define B where B ≡ Step-class {bblue-step}
have big-x75 : Big-X-7-5 µ l

and 711 : eps k ∗ eps k powr (−1/4) ≤ (1 + eps k) ^ (2 ∗ nat ⌊eps k powr
(−1/4)⌋) − 1

and big34 : k ≥ 2 ∗ eps k powr (−1/2) ∗ k powr (3/4)
and le2 : ((1 + eps k) ∗ (1 + eps k) powr (2 ∗ eps k powr (−1/4))) ≤ 2

(1 + eps k) ^ (nat ⌊2 ∗ eps k powr (−1/4)⌋ + nat ⌊2 ∗ eps k powr
(−1/2)⌋ − 1) ≤ 2

and bigY65B : Big-Y-6-5-Bblue l
and R53 :

∧
i . i ∈ S =⇒ pee (Suc i) ≥ pee i

using big l-le-k
by (auto simp: Red-5-3 Big-X-7-11-def Big-X-7-11-inequalities-def S-def)

then have Y-6-5-B :
∧

i . i ∈ B =⇒ hgt (pee (Suc i)) ≥ hgt (pee (i−1)) − 2 ∗
eps k powr (−1/2)

using bigY65B Y-6-5-Bblue unfolding B-def by blast
have big41 : Big-Blue-4-1 µ l
and hub: Big-height-upper-bound k
and 16 : k≥16
and ok-le-k : ok-fun-26 k − ok-fun-28 k ≤ k
using big-x75 l-le-k by (auto simp: Big-X-7-5-def)

have oddset : {..<halted-point} \ D = {i ∈ {..<halted-point}. odd i}
using step-odd step-even not-halted-even-dreg halted-point-minimal by (auto

simp: D-def)
have [simp]: finite R finite B finite S
using finite-components by (auto simp: R-def B-def S-def)

have [simp]: R ∩ S = {} and [simp]: (R ∪ S) ∩ B = {}
by (simp-all add : R-def S-def B-def Step-class-def disjoint-iff)

have hgt-qstar-le: hgt qstar ≤ 2 ∗ eps k powr (−1/4)
proof (intro real-hgt-Least)
show 0 < 2 ∗ nat ⌊eps k powr (−1/4)⌋
using kn0 eps-gt0 [of k] by (simp add : eps-le1 powr-le1 powr-minus-divide)

show qstar ≤ qfun (2 ∗ nat ⌊eps k powr (−1/4)⌋)
using kn0 711

140

by (simp add : qstar-def alpha-def qfun-eq divide-right-mono mult .commute)
qed auto
then have ((1 + eps k) ∗ (1 + eps k) ^ hgt qstar) ≤ ((1 + eps k) ∗ (1 + eps

k) powr (2 ∗ eps k powr (−1/4)))
by (smt (verit) eps-ge0 mult-left-mono powr-mono powr-realpow)

also have ((1 + eps k) ∗ (1 + eps k) powr (2 ∗ eps k powr (−1/4))) ≤ 2
using le2 by simp

finally have (1 + eps k) ∗ (1 + eps k) ^ hgt qstar ≤ 2 .
moreover have card R ≤ k
by (simp add : R-def less-imp-le red-step-limit)

ultimately have §: ((1 + eps k) ∗ (1 + eps k) ^ hgt qstar) ∗ card R ≤ 2 ∗
real k

by (intro mult-mono) auto
have − 2 ∗ alpha 1 ∗ k ≤ − alpha (hgt qstar + 2) ∗ card R
using mult-right-mono-neg [OF §, of − (eps k)] eps-ge0 [of k]
by (simp add : alpha-eq divide-simps mult-ac)

also have . . . ≤ (
∑

i∈R. pstar (Suc i) − pstar i)
proof −
{ fix i
assume i ∈ R
have − alpha (hgt qstar + 2) ≤ pstar (Suc i) − pstar i
proof (cases hgt (pee i) > hgt qstar + 2)
case True
then have hgt (pee (Suc i)) > hgt qstar
using Y-6-5-Red 16 ‹i ∈ R› by (force simp: R-def)

then have pstar (Suc i) = pstar i
using True hgt-mono ′ pstar-def by fastforce

then show ?thesis
by (simp add : alpha-ge0)

next
case False
with ‹i ∈ R› show ?thesis
unfolding pstar-def R-def

by (smt (verit , del-insts) Y-6-4-Red alpha-ge0 alpha-mono hgt-gt0
linorder-not-less)

qed
}
then show ?thesis
by (smt (verit , ccfv-SIG) mult-of-nat-commute sum-constant sum-mono)

qed
finally have − 2 ∗ alpha 1 ∗ k ≤ (

∑
i∈R. pstar (Suc i) − pstar i) .

moreover have 0 ≤ (
∑

i∈S. pstar (Suc i) − pstar i)
using R53 by (intro sum-nonneg) (force simp: pstar-def)

ultimately have RS-half : − 2 ∗ alpha 1 ∗ k ≤ (
∑

i∈R∪S. pstar (Suc i) −
pstar i)

by (simp add : sum.union-disjoint)

let ?e12 = eps k powr (−1/2)
define h ′ where h ′ ≡ hgt qstar + nat ⌊2 ∗ ?e12 ⌋

141

have − alpha 1 ∗ k ≤ −2 ∗ ?e12 ∗ alpha 1 ∗ k powr (3/4)
using mult-right-mono-neg [OF big34 , of − alpha 1] alpha-ge0 [of 1]
by (simp add : mult-ac)

also have . . . ≤ −?e12 ∗ alpha (h ′) ∗ card B
proof −
have card B ≤ l powr (3/4)
using big41 bblue-step-limit by (simp add : B-def)

also have . . . ≤ k powr (3/4)
by (simp add : powr-mono2 l-le-k)

finally have 1 : card B ≤ k powr (3/4) .
have alpha (h ′) ≤ alpha (nat ⌊2 ∗ eps k powr (−1/4)⌋ + nat ⌊2 ∗ ?e12 ⌋)
proof (rule alpha-mono)
show h ′ ≤ nat ⌊2 ∗ eps k powr (−1/4)⌋ + nat ⌊2 ∗ ?e12 ⌋
using h ′-def hgt-qstar-le le-nat-floor by auto

qed (simp add : hgt-gt0 h ′-def)
also have . . . ≤ 2 ∗ alpha 1
proof −
have ∗: (1 + eps k) ^ (nat ⌊2 ∗ eps k powr (−1/4)⌋ + nat ⌊2 ∗ ?e12 ⌋ − 1)

≤ 2
using le2 by simp

have 1 ≤ 2 ∗ eps k powr (−1/4)
by (smt (verit) hgt-qstar-le Suc-leI divide-minus-left hgt-gt0 numeral-nat(7)

real-of-nat-ge-one-iff)
then show ?thesis
using mult-right-mono [OF ∗, of eps k] eps-ge0
by (simp add : alpha-eq hgt-gt0 divide-right-mono mult .commute)

qed
finally have 2 : 2 ∗ alpha 1 ≥ alpha (h ′) .
show ?thesis

using mult-right-mono-neg [OF mult-mono [OF 1 2], of −?e12] alpha-ge0
by (simp add : mult-ac)
qed
also have . . . ≤ (

∑
i∈B. pstar (Suc i) − pstar (i−1))

proof −
{ fix i
assume i ∈ B
have −?e12 ∗ alpha (h ′) ≤ pstar (Suc i) − pstar (i−1)
proof (cases hgt (pee (i−1)) > hgt qstar + 2 ∗ ?e12)
case True
then have hgt (pee (Suc i)) > hgt qstar
using Y-6-5-B ‹i ∈ B› by (force simp: R-def)

then have pstar (i−1) = pstar(Suc i)
unfolding pstar-def
by (smt (verit) True hgt-mono ′ of-nat-less-iff powr-non-neg)

then show ?thesis
by (simp add : alpha-ge0)

next
case False
then have hgt (pee (i−1)) ≤ h ′

142

by (simp add : h ′-def) linarith
then have †: alpha (hgt (pee (i−1))) ≤ alpha h ′

by (intro alpha-mono hgt-gt0)
have pee (Suc i) ≥ pee (i−1) − ?e12 ∗ alpha (hgt (pee (i−1)))
using Y-6-4-Bblue ‹i ∈ B› unfolding B-def by blast

with mult-left-mono [OF †, of ?e12] show ?thesis
unfolding pstar-def
by (smt (verit) alpha-ge0 mult-minus-left powr-non-neg mult-le-0-iff)

qed
}
then show ?thesis
by (smt (verit , ccfv-SIG) mult-of-nat-commute sum-constant sum-mono)

qed
finally have B : − alpha 1 ∗ k ≤ (

∑
i∈B. pstar (Suc i) − pstar (i−1)) .

have eps k powr (−1/4) ∗ alpha 1 ∗ card ((R∪S) ∩ C) ≤ (
∑

i∈R∪S. if i ∈ C
then eps k powr (−1/4) ∗ alpha 1 else 0)

by (simp add : flip: sum.inter-restrict)
also have (

∑
i∈R∪S. if i ∈ C then eps k powr (−1/4) ∗ alpha 1 else 0) ≤

(
∑

i∈R∪S. pstar i − pstar (i−1))
proof (intro sum-mono)
fix i
assume i : i ∈ R ∪ S
then obtain i−1 ∈ D i>0

unfolding R-def S-def D-def by (metis dreg-before-step1 dreg-before-gt0
Step-class-insert Un-iff)

then have pee (i−1) ≤ pee i
by (metis Suc-pred ′ Y-6-4-DegreeReg D-def)

then have pstar (i−1) ≤ pstar i
by (fastforce simp: pstar-def)

then show (if i ∈ C then eps k powr (−1/4) ∗ alpha 1 else 0) ≤ pstar i −
pstar (i−1)

using C-def pstar-def qstar-def by auto
qed
finally have §: eps k powr (−1/4) ∗ alpha 1 ∗ card ((R∪S) ∩ C) ≤ (

∑
i∈R∪S.

pstar i − pstar (i−1)) .

have psplit : pstar (Suc i) − pstar (i−1) = (pstar (Suc i) − pstar i) + (pstar i
− pstar (i−1)) for i

by simp
have RS : eps k powr (−1/4) ∗ alpha 1 ∗ card ((R∪S) ∩ C) + (− 2 ∗ alpha 1
∗ k) ≤ (

∑
i∈R∪S. pstar (Suc i) − pstar (i−1))

unfolding psplit sum.distrib using RS-half § by linarith

have k16 : k powr (1/16) ≤ k powr 1
using kn0 by (intro powr-mono) auto

have meq : {..<halted-point} \ D = (R∪S) ∪ B
using Step-class-cases halted-point-minimal ′ by(fastforce simp: R-def S-def

143

D-def B-def Step-class-def)

have (eps k powr (−1/4) ∗ alpha 1 ∗ card ((R∪S) ∩ C) + (− 2 ∗ alpha 1 ∗
k))

+ (− alpha 1 ∗ k)
≤ (

∑
i ∈ R∪S. pstar(Suc i) − pstar(i−1)) + (

∑
i∈B. pstar(Suc i) −

pstar(i−1))
using RS B by linarith

also have . . . = (
∑

i ∈ {..<halted-point} \ D. pstar(Suc i) − pstar(i−1))
by (simp add : meq sum.union-disjoint)

also have . . . ≤ pstar halted-point − pstar 0
proof (cases even halted-point)
case False
have pee (halted-point − Suc 0) ≤ pee halted-point
using Y-6-4-DegreeReg [of halted-point−1] False not-halted-even-dreg odd-pos

by (auto simp: halted-point-minimal)
then have pstar(halted-point − Suc 0) ≤ pstar halted-point
by (simp add : pstar-def)

with False show ?thesis
by (simp add : oddset sum-odds-odd)

qed (simp add : oddset sum-odds-even)
also have . . . = (

∑
i < halted-point . pstar(Suc i) − pstar i)

by (simp add : sum-lessThan-telescope)
also have . . . = pstar halted-point − pstar 0
by (simp add : sum-lessThan-telescope)

also have . . . ≤ alpha 1 ∗ eps k powr (−1/4)
using alpha-ge0 by (simp add : mult .commute pee-eq-p0 pstar-def qstar-def)

also have . . . ≤ alpha 1 ∗ k
using alpha-ge0 k16 by (intro powr-mono mult-left-mono) (auto simp: eps-def

powr-powr)
finally have eps k powr (−1/4) ∗ card ((R ∪ S) ∩ C) ∗ alpha 1 ≤ 4 ∗ k ∗

alpha 1
by (simp add : mult-ac)

then have eps k powr (−1/4) ∗ real (card ((R ∪ S) ∩ C)) ≤ 4 ∗ k
using kn0 by (simp add : divide-simps alpha-eq eps-gt0)

then show ?thesis
using alpha-ge0 [of 1] kn0 eps-gt0 [of k]
by (simp add : powr-minus divide-simps mult-ac split : if-split-asm)

qed

7.11 Lemma 7.12
definition Big-X-7-12 ≡

λµ l . Big-X-7-11 µ l ∧ Big-X-7-10 µ l ∧ (∀ k . l≤k −→ Big-X-7-9 k)

establishing the size requirements for 7.12
lemma Big-X-7-12 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-X-7-12 µ l

144

using assms Big-X-7-11 Big-X-7-10 Big-X-7-9
unfolding Big-X-7-12-def eventually-conj-iff
apply (simp add : eventually-conj-iff all-imp-conj-distrib eventually-frequently-const-simps)
using eventually-all-ge-at-top by blast

lemma (in Book) X-7-12 :
defines R ≡ Step-class {red-step}
defines S ≡ Step-class {dboost-step}
defines C ≡ {i . card (Xseq i) < (1 − 2 ∗ eps k powr (1/4)) ∗ card (Xseq

(i−1))}
assumes big : Big-X-7-12 µ l
shows card ((R∪S) ∩ C) ≤ 7 ∗ eps k powr (1/4) ∗ k

proof −
define D where D ≡ Step-class {dreg-step}
have big-711 : Big-X-7-11 µ l and big-710 : Big-X-7-10 µ l
using big by (auto simp: Big-X-7-12-def)

have [simp]: finite R finite S
using finite-components by (auto simp: R-def S-def)

— now the conditions for Lemmas 7.10 and 7.11
define C10 where C10 ≡ {i . hgt (pee i) ≥ hgt (pee (i−1)) + eps k powr

(−1/4)}
define C11 where C11 ≡ {i . pee i ≥ pee (i−1) + eps k powr (−1/4) ∗ alpha

1 ∧ pee (i−1) ≤ p0}
have (R∪S) ∩ C ∩ {i . pee (i−1) ≤ p0} ⊆ (R∪S) ∩ C11
proof
fix i
assume i : i ∈ (R∪S) ∩ C ∩ {i . pee (i−1) ≤ p0}
then have iRS : i ∈ R ∪ S and iC : i ∈ C
by auto

then obtain i1 : i−1 ∈ D i>0
unfolding R-def S-def D-def by (metis Step-class-insert Un-iff dreg-before-step1

dreg-before-gt0)
then have 77 : card (Xseq (i−1) \ Xseq i) / card (Xseq i) ∗ (eps k powr

(−1/2) ∗ alpha (hgt (pee (i−1))))
≤ pee i − pee (i−1)

by (metis Suc-diff-1 X-7-7 D-def)
have card-Xm1 : card (Xseq (i−1)) = card (Xseq i) + card (Xseq (i−1) \ Xseq

i)
by (metis Xseq-antimono add-diff-inverse-nat card-Diff-subset card-mono

diff-le-self
finite-Xseq linorder-not-less)

have card (Xseq i) > 0
by (metis Step-class-insert card-Xseq-pos R-def S-def iRS)

have card (Xseq (i−1)) > 0
using C-def iC less-irrefl by fastforce

moreover have 2 ∗ (card (Xseq (i−1)) ∗ eps k powr (1/4)) < card (Xseq
(i−1) \ Xseq i)

using iC card-Xm1 by (simp add : algebra-simps C-def)
moreover have card (Xseq i) ≤ 2 ∗ card (Xseq (i−1))

145

using card-Xm1 by linarith
ultimately have eps k powr (1/4) ≤ card (Xseq (i−1) \ Xseq i) / card (Xseq

(i−1))
by (simp add : divide-simps mult .commute)

moreover have real (card (Xseq i)) ≤ card (Xseq (i−1))
using card-Xm1 by linarith

ultimately have 1 : eps k powr (1/4) ≤ card (Xseq (i−1) \ Xseq i) / card
(Xseq i)

by (smt (verit) ‹0 < card (Xseq i)› frac-le of-nat-0-le-iff of-nat-0-less-iff)
have eps k powr (−1/4) ∗ alpha 1
≤ card (Xseq (i−1) \ Xseq i) / card (Xseq i) ∗ (eps k powr (−1/2) ∗ alpha

1)
using alpha-ge0 mult-right-mono [OF 1 , of eps k powr (−1/2) ∗ alpha 1]
by (simp add : mult-ac flip: powr-add)

also have . . . ≤ card (Xseq (i−1) \ Xseq i) / card (Xseq i) ∗ (eps k powr
(−1/2) ∗ alpha (hgt (pee (i−1))))

by (intro mult-left-mono alpha-mono) (auto simp: Suc-leI hgt-gt0)
also have . . . ≤ pee i − pee (i−1)
using 77 by simp

finally have eps k powr (−1/4) ∗ alpha 1 ≤ pee i − pee (i−1) .
with i show i ∈ (R ∪ S) ∩ C11
by (simp add : C11-def)

qed
then have real (card ((R∪S) ∩ C ∩ {i . pee (i−1) ≤ p0})) ≤ real (card ((R∪S)
∩ C11))

by (simp add : card-mono)
also have . . . ≤ 4 ∗ eps k powr (1/4) ∗ k
using X-7-11 big-711 by (simp add : R-def S-def C11-def Step-class-insert-NO-MATCH)
finally have card ((R∪S) ∩ C ∩ {i . pee (i−1) ≤ p0}) ≤ 4 ∗ eps k powr (1/4)
∗ k .
moreover
have card ((R∪S) ∩ C \ {i . pee (i−1) ≤ p0}) ≤ 3 ∗ eps k powr (1/4) ∗ k
proof −
have Big-X-7-9 k
using Big-X-7-12-def big l-le-k by presburger

then have X79 : card (Xseq (Suc i)) ≥ (1 − 2 ∗ eps k powr (1/4)) ∗ card
(Xseq i)

if i ∈ Step-class {dreg-step} and pee i ≥ p0
and hgt (pee (Suc i)) ≤ hgt (pee i) + eps k powr (−1/4) for i

using X-7-9 that by blast
have (R∪S) ∩ C \ {i . pee (i−1) ≤ p0} ⊆ (R∪S) ∩ C10
unfolding C10-def C-def

proof clarify
fix i
assume i ∈ R ∪ S
and §: card (Xseq i) < (1 − 2 ∗ eps k powr (1/4)) ∗ card (Xseq (i−1)) ¬

pee (i−1) ≤ p0
then obtain i−1 ∈ D i>0
unfolding D-def R-def S-def

146

by (metis dreg-before-step1 dreg-before-gt0 Step-class-Un Un-iff insert-is-Un)
with X79 § show hgt (pee (i − 1)) + eps k powr (−1/4) ≤ hgt (pee i)
by (force simp: D-def)

qed
then have card ((R∪S) ∩ C \ {i . pee (i−1) ≤ p0}) ≤ real (card ((R∪S) ∩

C10))
by (simp add : card-mono)

also have card ((R∪S) ∩ C10) ≤ 3 ∗ eps k powr (1/4) ∗ k
unfolding R-def S-def C10-def by (intro X-7-10 assms big-710)

finally show ?thesis .
qed
moreover
have card ((R∪S) ∩ C)

= real (card ((R∪S) ∩ C ∩ {i . pee (i−1) ≤ p0})) + real (card ((R∪S) ∩ C
\ {i . pee (i−1) ≤ p0}))

by (metis card-Int-Diff of-nat-add ‹finite R› ‹finite S› finite-Int infinite-Un)
ultimately show ?thesis
by linarith

qed

7.12 Lemma 7.6
definition Big-X-7-6 ≡

λµ l . Big-Blue-4-1 µ l ∧ Big-X-7-12 µ l ∧ (∀ k . k≥l −→ Big-X-7-8 k ∧ 1 − 2
∗ eps k powr (1/4) > 0)

lemma Big-X-7-6 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-X-7-6 µ l
using assms Big-Blue-4-1 Big-X-7-8 Big-X-7-12
unfolding Big-X-7-6-def eps-def
apply (simp add : eventually-conj-iff all-imp-conj-distrib eventually-all-ge-at-top)

apply (intro conjI strip eventually-all-geI0 eventually-all-ge-at-top; real-asymp)
done

definition ok-fun-76 ≡
λk . ((1 + 2 ∗ real k) ∗ ln (1 − 2 ∗ eps k powr (1/4))
− (k powr (3/4) + 7 ∗ eps k powr (1/4) ∗ k + 1) ∗ (2 ∗ ln k)) / ln 2

lemma ok-fun-76 : ok-fun-76 ∈ o(real)
unfolding eps-def ok-fun-76-def by real-asymp

lemma (in Book) X-7-6 :
assumes big : Big-X-7-6 µ l
defines D ≡ Step-class {dreg-step}
shows (

∏
i∈D. card(Xseq(Suc i)) / card (Xseq i)) ≥ 2 powr ok-fun-76 k

proof −
define R where R ≡ Step-class {red-step}

147

define B where B ≡ Step-class {bblue-step}
define S where S ≡ Step-class {dboost-step}
define C where C ≡ {i . card (Xseq i) < (1 − 2 ∗ eps k powr (1/4)) ∗ card

(Xseq (i−1))}
define C ′ where C ′ ≡ Suc −‘ C
have big41 : Big-Blue-4-1 µ l
and 712 : card ((R∪S) ∩ C) ≤ 7 ∗ eps k powr (1/4) ∗ k
using big X-7-12 l-le-k by (auto simp: Big-X-7-6-def R-def S-def C-def)

have [simp]: finite D finite R finite B finite S
using finite-components by (auto simp: D-def R-def B-def S-def)

have card R < k
using R-def assms red-step-limit by blast+

have card B ≤ l powr (3/4)
using big41 bblue-step-limit by (auto simp: B-def)

then have card (B ∩ C) ≤ l powr (3/4)
using card-mono [OF - Int-lower1] by (smt (verit) ‹finite B› of-nat-mono)

also have . . . ≤ k powr (3/4)
by (simp add : l-le-k powr-mono2)

finally have Bk-34 : card (B ∩ C) ≤ k powr (3/4) .

have less-l : card B + card S < l
using bblue-dboost-step-limit big41 by (auto simp: B-def S-def)

have [simp]: (B ∪ (R ∪ S)) ∩ {halted-point} = {} R ∩ S = {} B ∩ (R ∪ S) =
{}

halted-point /∈ B halted-point /∈ R halted-point /∈ S
B ∩ C ∩ (R ∩ C ∪ S ∩ C) = {} for C

using halted-point-minimal ′ by (force simp: B-def R-def S-def Step-class-def)+

have Big-X-7-8 k and one-minus-gt0 : 1 − 2 ∗ eps k powr (1/4) > 0
using big l-le-k by (auto simp: Big-X-7-6-def)

then have X78 : card (Xseq (Suc i)) ≥ card (Xseq i) / k^2 if i ∈ D for i
using X-7-8 that by (force simp: D-def)

let ?DC = λk . k powr (3/4) + 7 ∗ eps k powr (1/4) ∗ k + 1
have dc-pos: ?DC k > 0 for k
by (smt (verit) of-nat-less-0-iff powr-ge-pzero zero-le-mult-iff)

have X-pos: card (Xseq i) > 0 if i ∈ D for i
proof −
have card (Xseq (Suc i)) > 0
using that X-7-7 kn0 unfolding D-def by blast

then show ?thesis
by (metis Xseq-Suc-subset card-mono finite-Xseq gr0I leD)

qed
have ok-fun-76 k ≤ log 2 ((1 / (real k)2) powr ?DC k ∗ (1 − 2 ∗ eps k powr

(1/4)) ^ (k + l + 1))
unfolding ok-fun-76-def log-def
using kn0 l-le-k one-minus-gt0

by (simp add : ln-powr ln-mult ln-div ln-realpow divide-right-mono mult-le-cancel-right

148

flip: power-Suc mult .assoc)
then have 2 powr ok-fun-76 k ≤ (1 / (real k)2) powr ?DC k ∗ (1 − 2 ∗ eps k

powr (1/4)) ^ (k + l + 1)
using powr-eq-iff kn0 one-minus-gt0 by (simp add : le-log-iff)

also have . . . ≤ (1 / (real k)2) powr card (D ∩ C ′) ∗ (1 − 2 ∗ eps k powr
(1/4)) ^ card (D\C ′)
proof (intro mult-mono powr-mono ′)
have Suc i ∈ R if i ∈ D Suc i ̸= halted-point Suc i /∈ B Suc i /∈ S for i
proof −
have Suc i /∈ D
by (metis D-def ‹i ∈ D› even-Suc step-even)

moreover
have stepper-kind i ̸= halted
using D-def ‹i ∈ D› Step-class-def by force

ultimately show Suc i ∈ R
using that halted-point-minimal ′ halted-point-minimal Step-class-cases

Suc-lessI
B-def D-def R-def S-def by blast

qed
then have Suc ‘ D ⊆ B ∪ (R ∪ S) ∪ {halted-point}
by auto

then have ifD : Suc i ∈ B ∨ Suc i ∈ R ∨ Suc i ∈ S ∨ Suc i = halted-point if
i ∈ D for i

using that by force
then have card D ≤ card (B ∪ (R∪S) ∪ {halted-point})
by (intro card-inj-on-le [of Suc]) auto

also have . . . = card B + card R + card S + 1
by (simp add : card-Un-disjoint card-insert-if)

also have . . . ≤ k + l + 1
using ‹card R < k› less-l by linarith

finally have card-D : card D ≤ k + l + 1 .

have (1 − 2 ∗ eps k powr (1/4)) ∗ card (Xseq 0) ≤ 1 ∗ real (card (Xseq 0))
by (intro mult-right-mono; force)

then have 0 /∈ C
by (force simp: C-def)

then have C-eq-C ′: C = Suc ‘ C ′

using nat .exhaust by (auto simp: C ′-def set-eq-iff image-iff)
have card (D ∩ C ′) ≤ real (card ((B ∪ (R∪S) ∪ {halted-point}) ∩ C))
using ifD

by (intro of-nat-mono card-inj-on-le [of Suc]) (force simp: Int-insert-left
C-eq-C ′)+

also have . . . ≤ card (B ∩ C) + real (card ((R∪S) ∩ C)) + 1
by (simp add : Int-insert-left Int-Un-distrib2 card-Un-disjoint card-insert-if)

also have . . . ≤ ?DC k
using Bk-34 712 by force

finally show card (D ∩ C ′) ≤ ?DC k .
have card (D\C ′) ≤ card D
using ‹finite D› by (simp add : card-mono)

149

then show (1 − 2 ∗ eps k powr (1/4)) ^ (k+l+1) ≤ (1 − 2 ∗ eps k powr
(1/4)) ^ card (D\C ′)

by (smt (verit) card-D add-leD2 one-minus-gt0 power-decreasing powr-ge-pzero)
qed (use one-minus-gt0 kn0 in auto)
also have . . . = (

∏
i∈D. if i ∈ C ′ then 1 / real k ^ 2 else 1 − 2 ∗ eps k powr

(1/4))
by (simp add : kn0 powr-realpow prod .If-cases Diff-eq)

also have . . . ≤ (
∏

i ∈ D. card (Xseq (Suc i)) / card (Xseq i))
using X-pos X78 one-minus-gt0 kn0 by (simp add : divide-simps C ′-def C-def

prod-mono)
finally show ?thesis .

qed

7.13 Lemma 7.1
definition Big-X-7-1 ≡

λµ l . Big-Blue-4-1 µ l ∧ Big-X-7-2 µ l ∧ Big-X-7-4 µ l ∧ Big-X-7-6 µ l

establishing the size requirements for 7.11
lemma Big-X-7-1 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-X-7-1 µ l
unfolding Big-X-7-1-def
using assms Big-Blue-4-1 Big-X-7-2 Big-X-7-4 Big-X-7-6
by (simp add : eventually-conj-iff all-imp-conj-distrib)

definition ok-fun-71 ≡ λµ k . ok-fun-72 µ k + ok-fun-73 k + ok-fun-74 k +
ok-fun-76 k

lemma ok-fun-71 :
assumes 0<µ µ<1
shows ok-fun-71 µ ∈ o(real)
using ok-fun-72 ok-fun-73 ok-fun-74 ok-fun-76
by (simp add : assms ok-fun-71-def sum-in-smallo)

lemma (in Book) X-7-1 :
assumes big : Big-X-7-1 µ l
defines D ≡ Step-class {dreg-step}
defines R ≡ Step-class {red-step} and S ≡ Step-class {dboost-step}
shows card (Xseq halted-point) ≥ 2 powr ok-fun-71 µ k ∗ µ^l ∗ (1−µ) ^ card
R ∗ (bigbeta / µ) ^ card S ∗ card X0
proof −
define B where B ≡ Step-class {bblue-step}
have 72 : Big-X-7-2 µ l and 74 : Big-X-7-4 µ l
and 76 : Big-X-7-6 µ l
and big41 : Big-Blue-4-1 µ l
using big by (auto simp: Big-X-7-1-def)

then have [simp]: finite R finite B finite S finite D
R∩B = {} S∩D = {} (R∪B)∩(S∪D) = {}

using finite-components by (auto simp: R-def B-def S-def D-def Step-class-def)

150

have BS-le-l : card B + card S < l
using big41 bblue-dboost-step-limit by (auto simp: S-def B-def)

have R: (
∏

i∈R. card (Xseq(Suc i)) / card (Xseq i)) ≥ 2 powr (ok-fun-72 µ k)
∗ (1−µ) ^ card R

unfolding R-def using 72 X-7-2 by meson
have B : (

∏
i∈B. card (Xseq(Suc i)) / card (Xseq i)) ≥ 2 powr (ok-fun-73 k) ∗

µ ^ (l − card S)
unfolding B-def S-def using big41 X-7-3 by meson

have S : (
∏

i∈S. card (Xseq (Suc i)) / card (Xseq i)) ≥ 2 powr ok-fun-74 k ∗
bigbeta ^ card S

unfolding S-def using 74 X-7-4 by meson
have D : (

∏
i∈D. card(Xseq(Suc i)) / card (Xseq i)) ≥ 2 powr ok-fun-76 k

unfolding D-def using 76 X-7-6 by meson
have below-m: R∪B∪S∪D = {..<halted-point}
using assms by (auto simp: R-def B-def S-def D-def before-halted-eq Step-class-insert-NO-MATCH)
have X-nz :

∧
i . i < halted-point =⇒ card (Xseq i) ̸= 0

using assms below-halted-point-cardX by blast
have tele: card (Xseq halted-point) = (

∏
i < halted-point . card (Xseq(Suc i)) /

card (Xseq i)) ∗ card (Xseq 0)
proof (cases halted-point=0)
case False
with X-nz prod-lessThan-telescope-mult [where f = λi . real (card (Xseq i))]
show ?thesis by simp

qed auto
have X0-nz : card (Xseq 0) > 0
by (simp add : card-XY0)

have 2 powr ok-fun-71 µ k ∗ µ^l ∗ (1−µ) ^ card R ∗ (bigbeta / µ) ^ card S
≤ 2 powr ok-fun-71 µ k ∗ µ ^ (l − card S) ∗ (1−µ) ^ card R ∗ (bigbeta ^

card S)
using µ01 BS-le-l by (simp add : power-diff power-divide)

also have . . . ≤ (
∏

i∈R∪B∪S∪D. card (Xseq(Suc i)) / card (Xseq i))
proof −
have (

∏
i∈(R∪B)∪(S∪D). card (Xseq(Suc i)) / card (Xseq i))

≥ ((2 powr (ok-fun-72 µ k) ∗ (1−µ) ^ card R) ∗ (2 powr (ok-fun-73 k) ∗
µ ^ (l − card S)))

∗ ((2 powr ok-fun-74 k ∗ bigbeta ^ card S) ∗ (2 powr ok-fun-76 k))
using µ01 by (auto simp: R B S D prod .union-disjoint prod-nonneg bigbeta-ge0

intro!: mult-mono)
then show ?thesis
by (simp add : Un-assoc mult-ac powr-add ok-fun-71-def)

qed
also have . . . ≤ (

∏
i < halted-point . card (Xseq(Suc i)) / card (Xseq i))

using below-m by auto
finally show ?thesis
using X0-nz µ01 unfolding tele by (simp add : divide-simps)

qed

end

151

8 The Zigzag Lemma
theory Zigzag imports Bounding-X

begin

8.1 Lemma 8.1 (the actual Zigzag Lemma)
definition Big-ZZ-8-2 ≡ λk . (1 + eps k powr (1/2)) ≥ (1 + eps k) powr (eps k
powr (−1/4))

An inequality that pops up in the proof of (39)

definition Big39 ≡ λk . 1/2 ≤ (1 + eps k) powr (−2 ∗ eps k powr (−1/2))

Two inequalities that pops up in the proof of (42)

definition Big42a ≡ λk . (1 + eps k)2 / (1 − eps k powr (1/2)) ≤ 1 + 2 ∗ k
powr (−1/16)

definition Big42b ≡ λk . 2 ∗ k powr (−1/16) ∗ k
+ (1 + 2 ∗ ln k / eps k + 2 ∗ k powr (7/8)) / (1 − eps k

powr (1/2))
≤ real k powr (19/20)

definition Big-ZZ-8-1 ≡
λµ l . Big-Blue-4-1 µ l ∧ Big-Red-5-1 µ l ∧ Big-Red-5-3 µ l ∧ Big-Y-6-5-Bblue

l
∧ (∀ k . k≥l −→ Big-height-upper-bound k ∧ Big-ZZ-8-2 k ∧ k≥16 ∧ Big39

k
∧ Big42a k ∧ Big42b k)

(16 :: ′a) ≤ k is for Y-6-5-Red

lemma Big-ZZ-8-1 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-ZZ-8-1 µ l
using assms Big-Blue-4-1 Big-Red-5-1 Big-Red-5-3 Big-Y-6-5-Bblue
unfolding Big-ZZ-8-1-def Big-ZZ-8-2-def Big39-def Big42a-def Big42b-def

eventually-conj-iff all-imp-conj-distrib eps-def
apply (simp add : eventually-conj-iff eventually-frequently-const-simps)
apply (intro conjI strip eventually-all-ge-at-top Big-height-upper-bound ; real-asymp)
done

lemma (in Book) ZZ-8-1 :
assumes big : Big-ZZ-8-1 µ l
defines R ≡ Step-class {red-step}
defines sum-SS ≡ (

∑
i∈dboost-star . (1 − beta i) / beta i)

shows sum-SS ≤ real (card R) + k powr (19/20)
proof −
define pp where pp ≡ λi h. if h=1 then min (pee i) (qfun 1)

else if pee i ≤ qfun (h−1) then qfun (h−1)
else if pee i ≥ qfun h then qfun h

152

else pee i
define ∆ where ∆ ≡ λi . pee (Suc i) − pee i
define ∆∆ where ∆∆ ≡ λi h. pp (Suc i) h − pp i h
have pp-eq : pp i h = (if h=1 then min (pee i) (qfun 1)

else max (qfun (h−1)) (min (pee i) (qfun h))) for i h
using qfun-mono [of h−1 h] by (auto simp: pp-def max-def)

define maxh where maxh ≡ nat⌊2 ∗ ln k / eps k⌋ + 1
have maxh:

∧
pee. pee≤1 =⇒ hgt pee ≤ 2 ∗ ln k / eps k and k≥16

using big l-le-k by (auto simp: Big-ZZ-8-1-def height-upper-bound)
then have 1 ≤ 2 ∗ ln k / eps k
using hgt-gt0 [of 1] by force

then have maxh > 1
by (simp add : maxh-def eps-gt0)

have hgt pee < maxh if pee≤1 for pee
using that kn0 maxh[of pee] unfolding maxh-def by linarith

then have hgt-le-maxh: hgt (pee i) < maxh for i
using pee-le1 by auto

have pp-eq-hgt [simp]: pp i (hgt (pee i)) = pee i for i
using hgt-less-imp-qfun-less [of hgt (pee i) − 1 pee i]
using hgt-works [of pee i] hgt-gt0 [of pee i] kn0 pp-eq by force

have pp-less-hgt [simp]: pp i h = qfun h if 0<h h < hgt (pee i) for h i
proof (cases h=1)
case True
then show ?thesis
using hgt-less-imp-qfun-less pp-def that by auto

next
case False
with that show ?thesis
using alpha-def alpha-ge0 hgt-less-imp-qfun-less pp-eq by force

qed

have pp-gt-hgt [simp]: pp i h = qfun (h−1) if h > hgt (pee i) for h i
using hgt-gt0 [of pee i] kn0 that
by (simp add : pp-def hgt-le-imp-qfun-ge)

have ∆0 : ∆ i ≥ 0 ←→ (∀ h>0 . ∆∆ i h ≥ 0) for i
proof (intro iffI strip)
fix h::nat
assume 0 ≤ ∆ i 0 < h then show 0 ≤ ∆∆ i h
using qfun-mono [of h−1 h] kn0 by (auto simp: ∆-def ∆∆-def pp-def)

next
assume ∀ h>0 . 0 ≤ ∆∆ i h
then have pee i ≤ pp (Suc i) (hgt (pee i))
unfolding ∆∆-def
by (smt (verit , best) hgt-gt0 pp-eq-hgt)

then show 0 ≤ ∆ i

153

using hgt-less-imp-qfun-less [of hgt (pee i) − 1 pee i]
using hgt-gt0 [of pee i] kn0
by (simp add : ∆-def pp-def split : if-split-asm)

qed

have sum-pp-aux : (
∑

h=Suc 0 ..n. pp i h)
= (if hgt (pee i) ≤ n then pee i + (

∑
h=1 ..<n. qfun h) else

(
∑

h=1 ..n. qfun h))
if n>0 for n i
using that

proof (induction n)
case (Suc n)
show ?case
proof (cases n=0)
case True
then show ?thesis
using kn0 hgt-Least [of 1 pee i]
by (simp add : pp-def hgt-le-imp-qfun-ge min-def)

next
case False
with Suc show ?thesis

by (simp split : if-split-asm) (smt (verit) le-Suc-eq not-less-eq pp-eq-hgt
sum.head-if)

qed
qed auto
have sum-pp: (

∑
h=Suc 0 ..maxh. pp i h) = pee i + (

∑
h=1 ..<maxh. qfun h)

for i
using ‹1 < maxh› by (simp add : hgt-le-maxh less-or-eq-imp-le sum-pp-aux)

have 33 : ∆ i = (
∑

h=1 ..maxh. ∆∆ i h) for i
by (simp add : ∆∆-def ∆-def sum-subtractf sum-pp)

have (
∑

i<halted-point . ∆∆ i h) = 0
if

∧
i . i≤halted-point =⇒ h > hgt (pee i) for h

using that by (simp add : sum.neutral ∆∆-def)
then have B : (

∑
i<halted-point . ∆∆ i h) = 0 if h ≥ maxh for h

by (meson hgt-le-maxh le-simps le-trans not-less-eq that)
have (

∑
h=Suc 0 ..maxh.

∑
i<halted-point . ∆∆ i h / alpha h) ≤ (

∑
h=Suc

0 ..maxh. 1)
proof (intro sum-mono)
fix h
assume h ∈ {Suc 0 ..maxh}
have (

∑
i<halted-point . ∆∆ i h) ≤ alpha h

using qfun-mono [of h−1 h] kn0
unfolding ∆∆-def alpha-def sum-lessThan-telescope [where f = λi . pp i h]
by (auto simp: pp-def pee-eq-p0)

then show (
∑

i<halted-point . ∆∆ i h / alpha h) ≤ 1
using alpha-ge0 [of h] by (simp add : divide-simps flip: sum-divide-distrib)

qed
also have . . . ≤ 1 + 2 ∗ ln k / eps k

154

using ‹maxh > 1 › by (simp add : maxh-def)
finally have 34 : (

∑
h=Suc 0 ..maxh.

∑
i<halted-point . ∆∆ i h / alpha h) ≤ 1

+ 2 ∗ ln k / eps k .

define D where D ≡ Step-class {dreg-step}
define B where B ≡ Step-class {bblue-step}
define S where S ≡ Step-class {dboost-step}
have dboost-star ⊆ S
unfolding dboost-star-def S-def dboost-star-def by auto

have BD-disj : B∩D = {} and disj : R∩B = {} S∩B = {} R∩D = {} S∩D =
{} R∩S = {}

by (auto simp: D-def R-def B-def S-def Step-class-def)

have [simp]: finite D finite B finite R finite S
using finite-components assms
by (auto simp: D-def B-def R-def S-def Step-class-insert-NO-MATCH)

have card R < k
using red-step-limit by (auto simp: R-def)

have R52 : pee (Suc i) − pee i ≥ (1 − eps k) ∗ ((1 − beta i) / beta i) ∗ alpha
(hgt (pee i))

and beta-gt0 : beta i > 0
and R53 : pee (Suc i) ≥ pee i ∧ beta i ≥ 1 / (real k)2

if i ∈ S for i
using big Red-5-2 that by (auto simp: Big-ZZ-8-1-def Red-5-3 B-def S-def)

have cardB: card B ≤ l powr (3/4) and bigY65B : Big-Y-6-5-Bblue l
using big bblue-step-limit by (auto simp: Big-ZZ-8-1-def B-def)

have ∆∆-ge0 : ∆∆ i h ≥ 0 if i ∈ S h ≥ 1 for i h
using that R53 [OF ‹i ∈ S›] by (fastforce simp: ∆∆-def pp-eq)

have ∆∆-eq-0 : ∆∆ i h = 0 if hgt (pee i) ≤ hgt (pee (Suc i)) hgt (pee (Suc i))
< h for h i

using ∆∆-def that by fastforce
define oneminus where oneminus ≡ 1 − eps k powr (1/2)
have 35 : oneminus ∗ ((1 − beta i) / beta i)

≤ (
∑

h=1 ..maxh. ∆∆ i h / alpha h) (is ?L ≤ ?R)
if i ∈ dboost-star for i

proof −
have i ∈ S
using ‹dboost-star ⊆ S› that by blast

have [simp]: real (hgt x − Suc 0) = real (hgt x) − 1 for x
using hgt-gt0 [of x] by linarith

have 36 : (1 − eps k) ∗ ((1 − beta i) / beta i) ≤ ∆ i / alpha (hgt (pee i))
using R52 alpha-gt0 [OF hgt-gt0] beta-gt0 that ‹dboost-star ⊆ S› by (force

simp: ∆-def divide-simps)
have k-big : (1 + eps k powr (1/2)) ≥ (1 + eps k) powr (eps k powr (−1/4))
using big l-le-k by (auto simp: Big-ZZ-8-1-def Big-ZZ-8-2-def)

have ∗:
∧

x ::real . x > 0 =⇒ (1 − x powr (1/2)) ∗ (1 + x powr (1/2)) = 1
− x

155

by (simp add : algebra-simps flip: powr-add)
have ?L = (1 − eps k) ∗ ((1 − beta i) / beta i) / (1 + eps k powr (1/2))
using beta-gt0 [OF ‹i ∈ S›] eps-gt0 [OF kn0] k-big
by (force simp: oneminus-def divide-simps ∗)

also have . . . ≤ ∆ i / alpha (hgt (pee i)) / (1 + eps k powr (1/2))
by (intro 36 divide-right-mono) auto

also have . . . ≤ ∆ i / alpha (hgt (pee i)) / (1 + eps k) powr (real (hgt (pee
(Suc i))) − hgt (pee i))

proof (intro divide-left-mono mult-pos-pos)
have real (hgt (pee (Suc i))) − hgt (pee i) ≤ eps k powr (−1/4)
using that by (simp add : dboost-star-def)

then show (1 + eps k) powr (real (hgt (pee (Suc i))) − real (hgt (pee i)))
≤ 1 + eps k powr (1/2)

using k-big by (smt (verit) eps-ge0 powr-mono)
show 0 ≤ ∆ i / alpha (hgt (pee i))
by (simp add : ∆0 ∆∆-ge0 ‹i ∈ S› alpha-ge0)

show 0 < (1 + eps k) powr (real (hgt (pee (Suc i))) − real (hgt (pee i)))
using eps-gt0 [OF kn0] by auto

qed (auto simp: add-strict-increasing)
also have . . . ≤ ∆ i / alpha (hgt (pee (Suc i)))
proof −
have alpha (hgt (pee (Suc i))) ≤ alpha (hgt (pee i)) ∗ (1 + eps k) powr (real

(hgt (pee (Suc i))) − real (hgt (pee i)))
using eps-gt0 [OF kn0] hgt-gt0
by (simp add : alpha-eq divide-right-mono flip: powr-realpow powr-add)

moreover have 0 ≤ ∆ i
by (simp add : ∆0 ∆∆-ge0 ‹i ∈ S›)

moreover have 0 < alpha (hgt (pee (Suc i)))
by (simp add : alpha-gt0 hgt-gt0 kn0)

ultimately show ?thesis
by (simp add : divide-left-mono)

qed
also have . . . ≤ ?R
unfolding 33 sum-divide-distrib

proof (intro sum-mono)
fix h
assume h: h ∈ {1 ..maxh}
show ∆∆ i h / alpha (hgt (pee (Suc i))) ≤ ∆∆ i h / alpha h
proof (cases hgt (pee i) ≤ hgt (pee (Suc i)) ∧ hgt (pee (Suc i)) < h)
case False
then consider hgt (pee i) > hgt (pee (Suc i)) | hgt (pee (Suc i)) ≥ h
by linarith

then show ?thesis
proof cases
case 1
then show ?thesis
using R53 ‹i ∈ S› hgt-mono ′ kn0 by force

next
case 2

156

have alpha h ≤ alpha (hgt (pee (Suc i)))
using 2 alpha-mono h by auto

moreover have 0 ≤ ∆∆ i h
using ∆∆-ge0 ‹i ∈ S› h by presburger

moreover have 0 < alpha h
using h kn0 by (simp add : alpha-gt0 hgt-gt0)

ultimately show ?thesis
by (simp add : divide-left-mono)

qed
qed (auto simp: ∆∆-eq-0)

qed
finally show ?thesis .

qed
— now we are able to prove claim 8.2
have oneminus ∗ sum-SS = (

∑
i∈dboost-star . oneminus ∗ ((1 − beta i) / beta

i))
using sum-distrib-left sum-SS-def by blast

also have . . . ≤ (
∑

i∈dboost-star .
∑

h=1 ..maxh. ∆∆ i h / alpha h)
by (intro sum-mono 35)

also have . . . = (
∑

h=1 ..maxh.
∑

i∈dboost-star . ∆∆ i h / alpha h)
using sum.swap by fastforce

also have . . . ≤ (
∑

h=1 ..maxh.
∑

i∈S. ∆∆ i h / alpha h)
by (intro sum-mono sum-mono2) (auto simp: ‹dboost-star ⊆ S› ∆∆-ge0

alpha-ge0)
finally have 82 : oneminus ∗ sum-SS
≤ (

∑
h=1 ..maxh.

∑
i∈S. ∆∆ i h / alpha h) .

— leading onto claim 8.3
have ∆alpha: − 1 ≤ ∆ i / alpha (hgt (pee i)) if i ∈ R for i
using Y-6-4-Red [of i] ‹i ∈ R›
unfolding ∆-def R-def
by (smt (verit , best) hgt-gt0 alpha-gt0 divide-minus-left less-divide-eq-1-pos)

have (
∑

i∈R. − (1 + eps k)2) ≤ (
∑

i∈R.
∑

h=1 ..maxh. ∆∆ i h / alpha h)
proof (intro sum-mono)
fix i :: nat
assume i ∈ R
show − (1 + eps k)2 ≤ (

∑
h = 1 ..maxh. ∆∆ i h / alpha h)

proof (cases ∆ i < 0)
case True
have (1 + eps k)2 ∗ −1 ≤ (1 + eps k)2 ∗ (∆ i / alpha (hgt (pee i)))
using ∆alpha

by (smt (verit , best) power2-less-0 ‹i ∈ R› mult-le-cancel-left2 mult-minus-right)
also have . . . ≤ (

∑
h = 1 ..maxh. ∆∆ i h / alpha h)

proof −
have le0 : ∆∆ i h ≤ 0 for h
using True by (auto simp: ∆∆-def ∆-def pp-eq)

have eq0 : ∆∆ i h = 0 if 1 ≤ h h < hgt (pee i) − 2 for h
proof −
have hgt (pee i) − 2 ≤ hgt (pee (Suc i))

157

using Y-6-5-Red ‹16 ≤ k› ‹i ∈ R› unfolding R-def by blast
then show ?thesis
using that pp-less-hgt [of h] by (auto simp: ∆∆-def pp-def)

qed
show ?thesis
unfolding 33 sum-distrib-left sum-divide-distrib

proof (intro sum-mono)
fix h :: nat
assume h ∈ {1 ..maxh}
then have 1 ≤ h h ≤ maxh by auto
show (1 + eps k)2 ∗ (∆∆ i h / alpha (hgt (pee i))) ≤ ∆∆ i h / alpha h
proof (cases h < hgt (pee i) − 2)
case True
then show ?thesis
using ‹1 ≤ h› eq0 by force

next
case False
have ∗: (1 + eps k) ^ (hgt (pee i) − Suc 0) ≤ (1 + eps k)2 ∗ (1 + eps

k) ^ (h − Suc 0)
using False eps-ge0 unfolding power-add [symmetric]
by (intro power-increasing) auto

have ∗∗: (1 + eps k)2 ∗ alpha h ≥ alpha (hgt (pee i))
using ‹1 ≤ h› mult-left-mono [OF ∗, of eps k] eps-ge0
by (simp add : alpha-eq hgt-gt0 mult-ac divide-right-mono)

show ?thesis
using le0 alpha-gt0 ‹h≥1 › hgt-gt0 mult-left-mono-neg [OF ∗∗, of ∆∆

i h]
by (simp add : divide-simps mult-ac)

qed
qed

qed
finally show ?thesis
by linarith

next
case False
then have ∆∆ i h ≥ 0 for h
using ∆∆-def ∆-def pp-eq by auto

then have (
∑

h = 1 ..maxh. ∆∆ i h / alpha h) ≥ 0
by (simp add : alpha-ge0 sum-nonneg)

then show ?thesis
by (smt (verit , ccfv-SIG) sum-power2-ge-zero)

qed
qed
then have 83 : − (1 + eps k)2 ∗ card R ≤ (

∑
h=1 ..maxh.

∑
i∈R. ∆∆ i h /

alpha h)
by (simp add : mult .commute sum.swap [of - R])

— now to tackle claim 8.4

158

have ∆0 : ∆ i ≥ 0 if i ∈ D for i
using Y-6-4-DegreeReg that unfolding D-def ∆-def by auto

have 39 : −2 ∗ eps k powr(−1/2) ≤ (
∑

h = 1 ..maxh. (∆∆ (i−1) h + ∆∆ i h)
/ alpha h) (is ?L ≤ ?R)

if i ∈ B for i
proof −
have odd i
using step-odd that by (force simp: Step-class-insert-NO-MATCH B-def)

then have i>0
using odd-pos by auto

show ?thesis
proof (cases ∆ (i−1) + ∆ i ≥ 0)
case True
with ‹i>0 › have ∆∆ (i−1) h + ∆∆ i h ≥ 0 if h≥1 for h
by (fastforce simp: ∆∆-def ∆-def pp-eq)

then have (
∑

h = 1 ..maxh. (∆∆ (i−1) h + ∆∆ i h) / alpha h) ≥ 0
by (force simp: alpha-ge0 intro: sum-nonneg)

then show ?thesis
by (smt (verit , ccfv-SIG) powr-ge-pzero)

next
case False
then have ∆∆-le0 : ∆∆ (i−1) h + ∆∆ i h ≤ 0 if h≥1 for h
by (smt (verit , best) One-nat-def ∆∆-def ∆-def ‹odd i› odd-Suc-minus-one

pp-eq)
have hge: hgt (pee (Suc i)) ≥ hgt (pee (i−1)) − 2 ∗ eps k powr (−1/2)
using bigY65B that Y-6-5-Bblue by (fastforce simp: B-def)

have ∆∆0 : ∆∆ (i−1) h + ∆∆ i h = 0 if 0<h h < hgt (pee (i−1)) − 2 ∗
eps k powr (−1/2) for h

using ‹odd i› that hge unfolding ∆∆-def One-nat-def
by (smt (verit) of-nat-less-iff odd-Suc-minus-one powr-non-neg pp-less-hgt)

have big39 : 1/2 ≤ (1 + eps k) powr (−2 ∗ eps k powr (−1/2))
using big l-le-k by (auto simp: Big-ZZ-8-1-def Big39-def)
have ?L ∗ alpha (hgt (pee (i−1))) ∗ (1 + eps k) powr (−2 ∗ eps k powr

(−1/2))
≤ − (eps k powr (−1/2)) ∗ alpha (hgt (pee (i−1)))

using mult-left-mono-neg [OF big39 , of − (eps k powr (−1/2)) ∗ alpha
(hgt (pee (i−1))) / 2]

using alpha-ge0 [of hgt (pee (i−1))] eps-ge0 [of k]
by (simp add : mult-ac)

also have . . . ≤ ∆ (i−1) + ∆ i
proof −

have pee (Suc i) ≥ pee (i−1) − (eps k powr (−1/2)) ∗ alpha (hgt (pee
(i−1)))

using Y-6-4-Bblue that B-def by blast
with ‹i>0 › show ?thesis
by (simp add : ∆-def)

qed
finally have ?L ∗ alpha (hgt (pee (i−1))) ∗ (1 + eps k) powr (−2 ∗ eps k

159

powr (−1/2)) ≤ ∆ (i−1) + ∆ i .
then have ?L ≤ (1 + eps k) powr (2 ∗ eps k powr (−1/2)) ∗ (∆ (i−1) +

∆ i) / alpha (hgt (pee (i−1)))
using alpha-ge0 [of hgt (pee (i−1))] eps-ge0 [of k]
by (simp add : powr-minus divide-simps mult-ac)

also have . . . ≤ ?R
proof −

have (1 + eps k) powr (2 ∗ eps k powr(−1/2)) ∗ (∆∆ (i − Suc 0) h +
∆∆ i h) / alpha (hgt (pee (i − Suc 0)))

≤ (∆∆ (i − Suc 0) h + ∆∆ i h) / alpha h
if h: Suc 0 ≤ h h ≤ maxh for h

proof (cases h < hgt (pee (i−1)) − 2 ∗ eps k powr(−1/2))
case False
then have hgt (pee (i−1)) − 1 ≤ 2 ∗ eps k powr(−1/2) + (h − 1)
using hgt-gt0 by (simp add : nat-less-real-le)

then have ∗: (1 + eps k) powr (2 ∗ eps k powr(−1/2)) / alpha (hgt (pee
(i−1))) ≥ 1 / alpha h

using that eps-gt0 [of k] kn0 hgt-gt0
by (simp add : alpha-eq divide-simps flip: powr-realpow powr-add)

show ?thesis
using mult-left-mono-neg [OF ∗ ∆∆-le0] that by (simp add : Groups.mult-ac)

qed (use h ∆∆0 in auto)
then show ?thesis
by (force simp: 33 sum-distrib-left sum-divide-distrib simp flip: sum.distrib

intro: sum-mono)
qed
finally show ?thesis .

qed
qed

have B34 : card B ≤ k powr (3/4)
by (smt (verit) cardB l-le-k of-nat-0-le-iff of-nat-mono powr-mono2 zero-le-divide-iff)
have −2 ∗ k powr (7/8) ≤ −2 ∗ eps k powr(−1/2) ∗ k powr (3/4)
by (simp add : eps-def powr-powr flip: powr-add)

also have . . . ≤ −2 ∗ eps k powr(−1/2) ∗ card B
using B34 by (intro mult-left-mono-neg powr-mono2) auto

also have . . . = (
∑

i∈B. −2 ∗ eps k powr(−1/2))
by simp

also have . . . ≤ (
∑

h = 1 ..maxh.
∑

i∈B. (∆∆ (i−1) h + ∆∆ i h) / alpha h)
unfolding sum.swap [of - B] by (intro sum-mono 39)

also have . . . ≤ (
∑

h=1 ..maxh.
∑

i∈B∪D. ∆∆ i h / alpha h)
proof (intro sum-mono)
fix h
assume h ∈ {1 ..maxh}
have B ⊆ {0<..}
using odd-pos [OF step-odd] by (auto simp: B-def Step-class-insert-NO-MATCH)
with inj-on-diff-nat [of B 1] have inj-pred : inj-on (λi . i − Suc 0) B
by (simp add : Suc-leI subset-eq)

160

have (
∑

i∈B. ∆∆ (i − Suc 0) h) = (
∑

i ∈ (λi . i−1) ‘ B. ∆∆ i h)
by (simp add : sum.reindex [OF inj-pred])

also have . . . ≤ (
∑

i∈D. ∆∆ i h)
proof (intro sum-mono2)
show (λi . i − 1) ‘ B ⊆ D
by (force simp: D-def B-def Step-class-insert-NO-MATCH intro: dreg-before-step ′)
show 0 ≤ ∆∆ i h if i ∈ D \ (λi . i − 1) ‘ B for i
using that ∆0 ∆∆-def ∆-def pp-eq by fastforce

qed auto
finally have (

∑
i∈B. ∆∆ (i − Suc 0) h) ≤ (

∑
i∈D. ∆∆ i h) .

with alpha-ge0 [of h]
show (

∑
i∈B. (∆∆ (i − 1) h + ∆∆ i h) / alpha h) ≤ (

∑
i ∈ B∪D. ∆∆ i h

/ alpha h)
by (simp add : BD-disj divide-right-mono sum.distrib sum.union-disjoint flip:

sum-divide-distrib)
qed

finally have 84 : −2 ∗ k powr (7/8) ≤ (
∑

h=1 ..maxh.
∑

i∈B∪D. ∆∆ i h /
alpha h) .

have m-eq : {..<halted-point} = R ∪ S ∪ (B ∪ D)
using before-halted-eq by (auto simp: B-def D-def S-def R-def Step-class-insert-NO-MATCH)

have − (1 + eps k)2 ∗ real (card R)
+ oneminus ∗ sum-SS
− 2 ∗ real k powr (7/8) ≤ (

∑
h = Suc 0 ..maxh.

∑
i∈R. ∆∆ i h / alpha h)

+ (
∑

h = Suc 0 ..maxh.
∑

i∈S. ∆∆ i h / alpha h)
+ (

∑
h = Suc 0 ..maxh.

∑
i ∈ B ∪ D. ∆∆ i h / alpha h)

using 82 83 84 by simp
also have . . . = (

∑
h = Suc 0 ..maxh.

∑
i ∈ R ∪ S ∪ (B ∪ D). ∆∆ i h / alpha

h)
by (simp add : sum.distrib disj sum.union-disjoint Int-Un-distrib Int-Un-distrib2)
also have . . . ≤ 1 + 2 ∗ ln (real k) / eps k
using 34 by (simp add : m-eq)

finally
have 41 : oneminus ∗ sum-SS − (1 + eps k)2 ∗ card R − 2 ∗ k powr (7/8)

≤ 1 + 2 ∗ ln k / eps k
by simp

have big42 : (1 + eps k)2 / oneminus ≤ 1 + 2 ∗ k powr (−1/16)
2 ∗ k powr (−1/16) ∗ k
+ (1 + 2 ∗ ln k / eps k + 2 ∗ k powr (7/8)) / oneminus

≤ real k powr (19/20)
using big l-le-k by (auto simp: Big-ZZ-8-1-def Big42a-def Big42b-def oneminus-def)
have oneminus > 0
using ‹16 ≤ k› eps-gt0 eps-less1 powr01-less-one by (auto simp: oneminus-def)

with 41 have sum-SS
≤ (1 + 2 ∗ ln k / eps k + (1 + eps k)2 ∗ card R + 2 ∗ k powr (7/8)) /

oneminus
by (simp add : mult-ac pos-le-divide-eq diff-le-eq)

also have . . . ≤ card R ∗ (((1 + eps k)2) / oneminus)

161

+ (1 + 2 ∗ ln k / eps k + 2 ∗ k powr (7/8)) / oneminus
by (simp add : field-simps add-divide-distrib)

also have . . . ≤ card R ∗ (1 + 2 ∗ k powr (−1/16))
+ (1 + 2 ∗ ln k / eps k + 2 ∗ k powr (7/8)) / oneminus

using big42 ‹oneminus > 0 › by (intro add-mono mult-mono) auto
also have . . . ≤ card R + 2 ∗ k powr (−1/16) ∗ k

+ (1 + 2 ∗ ln k / eps k + 2 ∗ k powr (7/8)) / oneminus
using ‹card R < k› by (intro add-mono mult-mono) (auto simp: algebra-simps)

also have . . . ≤ real (card R) + real k powr (19/20)
using big42 by force

finally show ?thesis .
qed

8.2 Lemma 8.5

An inequality that pops up in the proof of (39)

definition inequality85 ≡ λk . 3 ∗ eps k powr (1/4) ∗ k ≤ k powr (19/20)

definition Big-ZZ-8-5 ≡
λµ l . Big-X-7-5 µ l ∧ Big-ZZ-8-1 µ l ∧ Big-Red-5-3 µ l
∧ (∀ k≥l . inequality85 k)

lemma Big-ZZ-8-5 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-ZZ-8-5 µ l
using assms Big-Red-5-3 Big-X-7-5 Big-ZZ-8-1
unfolding Big-ZZ-8-5-def inequality85-def eps-def
apply (simp add : eventually-conj-iff all-imp-conj-distrib)
apply (intro conjI strip eventually-all-ge-at-top; real-asymp)
done

lemma (in Book) ZZ-8-5 :
assumes big : Big-ZZ-8-5 µ l
defines R ≡ Step-class {red-step} and S ≡ Step-class {dboost-step}
shows card S ≤ (bigbeta / (1 − bigbeta)) ∗ card R

+ (2 / (1−µ)) ∗ k powr (19/20)
proof −
have [simp]: finite S
by (simp add : S-def)

moreover have dboost-star ⊆ S
by (auto simp: dboost-star-def S-def)

ultimately have real (card S) − real (card dboost-star) = card (S\dboost-star)
by (metis card-Diff-subset card-mono finite-subset of-nat-diff)

also have . . . ≤ 3 ∗ eps k powr (1/4) ∗ k
using µ01 big X-7-5 by (auto simp: Big-ZZ-8-5-def dboost-star-def S-def)

also have . . . ≤ k powr (19/20)
using big l-le-k by (auto simp: Big-ZZ-8-5-def inequality85-def)

finally have ∗: real (card S) − card dboost-star ≤ k powr (19/20) .
have bigbeta-lt1 : bigbeta < 1 and bigbeta-gt0 : 0 < bigbeta and beta-gt0 :

∧
i . i

162

∈ S =⇒ beta i > 0
using bigbeta-ge0 big by (auto simp: Big-ZZ-8-5-def S-def beta-gt0 bigbeta-gt0

bigbeta-less1)
then have ge0 : bigbeta / (1 − bigbeta) ≥ 0
by auto

show ?thesis
proof (cases dboost-star = {})
case True
with ∗ have card S ≤ k powr (19/20)
by simp

also have . . . ≤ (2 / (1−µ)) ∗ k powr (19/20)
using µ01 kn0 by (simp add : divide-simps)

finally show ?thesis
by (smt (verit , ccfv-SIG) mult-nonneg-nonneg of-nat-0-le-iff ge0)

next
case False
have bb-le: bigbeta ≤ µ
using big bigbeta-le by (auto simp: Big-ZZ-8-5-def)

have (card S − k powr (19/20)) / bigbeta ≤ card dboost-star / bigbeta
by (smt (verit) ∗ bigbeta-ge0 divide-right-mono)

also have . . . = (
∑

i∈dboost-star . 1 / beta i)
proof (cases card dboost-star = 0)
case False
then show ?thesis
by (simp add : bigbeta-def Let-def inverse-eq-divide)

qed (simp add : False card-eq-0-iff)
also have . . . ≤ real(card dboost-star) + card R + k powr (19/20)
proof −
have (

∑
i∈dboost-star . (1 − beta i) / beta i)

≤ real (card R) + k powr (19/20)
using ZZ-8-1 big unfolding Big-ZZ-8-5-def R-def by blast

moreover have (
∑

i∈dboost-star . beta i / beta i) = (
∑

i∈dboost-star . 1)
using ‹dboost-star ⊆ S› beta-gt0 by (intro sum.cong) force+

ultimately show ?thesis
by (simp add : field-simps diff-divide-distrib sum-subtractf)

qed
also have . . . ≤ real(card S) + card R + k powr (19/20)
by (simp add : ‹dboost-star ⊆ S› card-mono)

finally have (card S − k powr (19/20)) / bigbeta ≤ real (card S) + card R
+ k powr (19/20) .

then have card S − k powr (19/20) ≤ (real (card S) + card R + k powr
(19/20)) ∗ bigbeta

using bigbeta-gt0 by (simp add : field-simps)
then have card S ∗ (1 − bigbeta) ≤ bigbeta ∗ card R + (1 + bigbeta) ∗ k

powr (19/20)
by (simp add : algebra-simps)

then have card S ≤ (bigbeta ∗ card R + (1 + bigbeta) ∗ k powr (19/20)) /
(1 − bigbeta)

using bigbeta-lt1 by (simp add : field-simps)

163

also have . . . = (bigbeta / (1 − bigbeta)) ∗ card R
+ ((1 + bigbeta) / (1 − bigbeta)) ∗ k powr (19/20)

using bigbeta-gt0 bigbeta-lt1 by (simp add : divide-simps)
also have . . . ≤ (bigbeta / (1 − bigbeta)) ∗ card R + (2 / (1−µ)) ∗ k powr

(19/20)
using µ01 bb-le by (intro add-mono order-refl mult-right-mono frac-le) auto

finally show ?thesis .
qed

qed

8.3 Lemma 8.6

For some reason this was harder than it should have been. It does require a
further small limit argument.

definition Big-ZZ-8-6 ≡
λµ l . Big-ZZ-8-5 µ l ∧ (∀ k≥l . 2 / (1−µ) ∗ k powr (19/20) < k powr (39/40))

lemma Big-ZZ-8-6 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-ZZ-8-6 µ l
using assms Big-ZZ-8-5
unfolding Big-ZZ-8-6-def
apply (simp add : eventually-conj-iff all-imp-conj-distrib)
apply (intro conjI strip eventually-all-ge-at-top eventually-all-geI1 [where L=1])

apply real-asymp
by (smt (verit , ccfv-SIG) frac-le powr-ge-pzero)

lemma (in Book) ZZ-8-6 :
assumes big : Big-ZZ-8-6 µ l
defines R ≡ Step-class {red-step} and S ≡ Step-class {dboost-step}
and a ≡ 2 / (1−µ)

assumes s-ge: card S ≥ k powr (39/40)
shows bigbeta ≥ (1 − a ∗ k powr (−1/40)) ∗ (card S / (card S + card R))

proof −
have bigbeta-lt1 : bigbeta < 1 and bigbeta-gt0 : 0 < bigbeta
using bigbeta-ge0 big
by (auto simp: Big-ZZ-8-6-def Big-ZZ-8-5-def bigbeta-less1 bigbeta-gt0 S-def)

have a > 0
using µ01 by (simp add : a-def)

have s-gt-a: a ∗ k powr (19/20) < card S
and 85 : card S ≤ (bigbeta / (1 − bigbeta)) ∗ card R + a ∗ k powr (19/20)

using big l-le-k assms
unfolding R-def S-def a-def Big-ZZ-8-6-def by (fastforce intro: ZZ-8-5)+

then have t-non0 : card R ≠ 0 — seemingly not provable without our assumption
using mult-eq-0-iff by fastforce

then have (card S − a ∗ k powr (19/20)) / card R ≤ bigbeta / (1 − bigbeta)
using 85 bigbeta-gt0 bigbeta-lt1 t-non0 by (simp add : pos-divide-le-eq)

then have bigbeta ≥ (1 − bigbeta) ∗ (card S − a ∗ k powr (19/20)) / card R

164

by (smt (verit , ccfv-threshold) bigbeta-lt1 mult .commute le-divide-eq times-divide-eq-left)
then have ∗: bigbeta ∗ (card R + card S − a ∗ k powr (19/20)) ≥ card S − a
∗ k powr (19/20)

using t-non0 by (simp add : field-simps)
have (1 − a ∗ k powr − (1/40)) ∗ card S ≤ card S − a ∗ k powr (19/20)

using s-ge kn0 ‹a>0 › t-non0 by (simp add : powr-minus field-simps flip:
powr-add)
then have (1 − a ∗ k powr (−1/40)) ∗ (card S / (card S + card R))

≤ (card S − a ∗ k powr (19/20)) / (card S + card R)
by (force simp: divide-right-mono)

also have . . . ≤ (card S − a ∗ k powr (19/20)) / (card R + card S − a ∗ k
powr (19/20))

using s-gt-a ‹a>0 › t-non0 by (intro divide-left-mono) auto
also have . . . ≤ bigbeta
using ∗ s-gt-a
by (simp add : divide-simps split : if-split-asm)

finally show ?thesis .
qed

end

9 An exponential improvement far from the diago-
nal

theory Far-From-Diagonal
imports Zigzag Stirling-Formula.Stirling-Formula

begin

9.1 An asymptotic form for binomial coefficients via Stir-
ling’s formula

From Appendix D.3, page 56

lemma const-smallo-real : (λn. x) ∈ o(real)
by real-asymp

lemma o-real-shift :
assumes f ∈ o(real)
shows (λi . f (i+j)) ∈ o(real)
unfolding smallo-def

proof clarify
fix c :: real
assume (0 ::real) < c
then have ∗: ∀ F i in sequentially . norm (f i) ≤ c/2 ∗ norm i
using assms half-gt-zero landau-o.smallD by blast

have ∀ F i in sequentially . norm (f (i + j)) ≤ c/2 ∗ norm (i + j)
using eventually-all-ge-at-top [OF ∗]
by (metis (mono-tags, lifting) eventually-sequentially le-add1)

165

then have ∀ F i in sequentially . i≥j −→ norm (f (i + j)) ≤ c ∗ norm i
apply eventually-elim
apply clarsimp
by (smt (verit , best) ‹0 < c› mult-left-mono nat-distrib(2) of-nat-mono)

then show ∀ F i in sequentially . norm (f (i + j)) ≤ c ∗ norm i
using eventually-mp by fastforce

qed

lemma tendsto-zero-imp-o1 :
fixes a :: nat ⇒ real
assumes a −−−−→ 0
shows a ∈ o(1)

proof −
have ∀ F n in sequentially . |a n| ≤ c if c>0 for c
using assms order-tendstoD(2) tendsto-rabs-zero-iff eventually-sequentially less-eq-real-def

that
by metis

then show ?thesis
by (auto simp: smallo-def)

qed

9.2 Fact D.3 from the Appendix

And hence, Fact 9.4

definition stir ≡ λn. fact n / (sqrt (2∗pi∗n) ∗ (n / exp 1) ^ n) − 1

Generalised to the reals to allow derivatives

definition stirG ≡ λn. Gamma (n+1) / (sqrt (2∗pi∗n) ∗ (n / exp 1) powr n) −
1

lemma stir-eq-stirG : n>0 =⇒ stir n = stirG (real n)
by (simp add : stirG-def stir-def add .commute powr-realpow Gamma-fact)

lemma stir-ge0 : n>0 =⇒ stir n ≥ 0
using fact-bounds[of n] by (simp add : stir-def)

lemma stir-to-0 : stir −−−−→ 0
using fact-asymp-equiv by (simp add : asymp-equiv-def stir-def LIM-zero)

lemma stir-o1 : stir ∈ o(1)
using stir-to-0 tendsto-zero-imp-o1 by presburger

lemma fact-eq-stir-times: n ̸= 0 =⇒ fact n = (1 + stir n) ∗ (sqrt (2∗pi∗n) ∗ (n
/ exp 1) ^ n)
by (simp add : stir-def)

definition logstir ≡ λn. if n=0 then 0 else log 2 ((1 + stir n) ∗ sqrt (2∗pi∗n))

lemma logstir-o-real : logstir ∈ o(real)

166

proof −
have ∀∞n. 0 < n −→ |log 2 ((1 + stir n) ∗ sqrt (2∗pi∗n))| ≤ c ∗ real n if c>0

for c
proof −
have ∀∞n. 2 powr (c∗n) / sqrt (2∗pi∗n) ≥ c+1
using that by real-asymp

moreover have ∀∞n. |stir n| ≤ c
using stir-o1 that by (auto simp: smallo-def)

ultimately have ∀∞n. ((1 + stir n) ∗ sqrt (2∗pi∗n)) ≤ 2 powr (c ∗ n)
proof eventually-elim
fix n
assume c1 : c+1 ≤ 2 powr (c ∗ n) / sqrt (2∗pi∗n) and lec: |stir n| ≤ c
then have stir n ≤ c
by auto

then show (1 + stir n) ∗ sqrt (2∗pi∗n) ≤ 2 powr (c∗n)
using mult-right-mono [OF c1 , of sqrt (2∗pi∗n)] lec

by (smt (verit , ccfv-SIG) c1 mult-right-mono nonzero-eq-divide-eq pos-prod-le
powr-gt-zero)

qed
then show ?thesis
proof (eventually-elim, clarify)
fix n
assume n: (1 + stir n) ∗ sqrt (2 ∗ pi ∗ n) ≤ 2 powr (c ∗ n)
and n>0

have (1 + stir n) ∗ sqrt (2 ∗ pi ∗ real n) ≥ 1
using stir-ge0 ‹0 < n› mult-ge1-I pi-ge-two by auto

with n show |log 2 ((1 + stir n) ∗ sqrt (2 ∗ pi ∗ n))| ≤ c ∗ n
by (simp add : abs-if le-powr-iff)

qed
qed
then show ?thesis
by (auto simp: smallo-def logstir-def)

qed

lemma logfact-eq-stir-times:
fact n = 2 powr (logstir n) ∗ (n / exp 1) ^ n

proof−
have 1 + stir n > 0 if n ̸=0
using that by (simp add : stir-def)

then show ?thesis
by (simp add : logstir-def fact-eq-stir-times)

qed

lemma mono-G :
defines G ≡ (λx ::real . Gamma (x + 1) / (x / exp 1) powr x)
shows mono-on {0<..} G
unfolding monotone-on-def

proof (intro strip)
fix x y ::real

167

assume x : x ∈ {0<..} x ≤ y
define GD where GD ≡ λu::real . Gamma(u+1) ∗ (Digamma(u+1) − ln(u))

/ (u / exp 1) powr u
have ∗: ∃D . (G has-real-derivative D) (at u) ∧ D > 0 if 0 < u for u
proof (intro exI conjI)
show (G has-real-derivative GD u) (at u)
unfolding G-def GD-def
using that
by (force intro!: derivative-eq-intros has-real-derivative-powr ′ simp: ln-div

pos-prod-lt field-simps)
show GD u > 0

using that by (auto simp: GD-def Digamma-plus-1-gt-ln) — Thank you,
Manuel!
qed
show G x ≤ G y
using x DERIV-pos-imp-increasing [OF - ∗] by (force simp: less-eq-real-def)

qed

lemma mono-logstir : mono logstir
unfolding monotone-on-def

proof (intro strip)
fix i j ::nat
assume i≤j
show logstir i ≤ logstir j
proof (cases j=0)
case True
with ‹i≤j › show ?thesis
by auto

next
case False
with pi-ge-two have 1 ∗ 1 ≤ 2 ∗ pi ∗ j
by (intro mult-mono) auto

with False stir-ge0 [of j] have ∗: 1 ∗ 1 ≤ (1 + stir j) ∗ sqrt (2 ∗ pi ∗ real j)
by (intro mult-mono) auto

with ‹i ≤ j › mono-G show ?thesis
by (auto simp: logstir-def stir-eq-stirG stirG-def monotone-on-def)

qed
qed

definition ok-fun-94 ≡ λk . − logstir k

lemma ok-fun-94 : ok-fun-94 ∈ o(real)
unfolding ok-fun-94-def
using logstir-o-real by simp

lemma fact-9-4 :
assumes l : 0 < l l ≤ k
defines γ ≡ l / (real k + real l)
shows k+l choose l ≥ 2 powr ok-fun-94 k ∗ γ powr (−l) ∗ (1−γ) powr (−k)

168

proof −
have ∗: ok-fun-94 k ≤ logstir (k+l) − (logstir k + logstir l)
using mono-logstir by (auto simp: ok-fun-94-def monotone-def)

have 2 powr ok-fun-94 k ∗ γ powr (− real l) ∗ (1−γ) powr (− real k)
= (2 powr ok-fun-94 k) ∗ (k+l) powr(k+l) / (k powr k ∗ l powr l)

by (simp add : γ-def powr-minus powr-add powr-divide divide-simps)
also have . . . ≤ (2 powr (logstir (k+l)) / (2 powr (logstir k) ∗ 2 powr (logstir

l)))
∗ (k+l) powr (k+l) / (k powr k ∗ l powr l)

by (smt (verit , del-insts) ∗ divide-right-mono mult-less-0-iff mult-right-mono
powr-add powr-diff powr-ge-pzero powr-mono)
also have . . . = fact(k+l) / (fact k ∗ fact l)
using l by (simp add : logfact-eq-stir-times powr-add divide-simps flip: powr-realpow)
also have . . . = real (k+l choose l)
by (simp add : binomial-fact)

finally show ?thesis .
qed

9.3 Fact D.2

For Fact 9.6

lemma D2 :
fixes k l
assumes t : 0<t t ≤ k
defines γ ≡ l / (real k + real l)
shows (k+l−t choose l) ≤ exp (− γ ∗ (t−1)^2 / (2∗k)) ∗ (k / (k+l))^t ∗ (k+l

choose l)
proof −
have (k+l−t choose l) ∗ inverse (k+l choose l) = (

∏
i<t . (k−i) / (k+l−i))

using ‹t ≤ k›
proof (induction t)
case (Suc t)
then have t ≤ k
by simp

have (k + l − t) ∗ (k + l − Suc t choose l) = (k − t) ∗ (k + l − t choose l)
by (metis binomial-absorb-comp diff-Suc-eq-diff-pred diff-add-inverse2 diff-commute)
with Suc.IH [symmetric] Suc(2) show ?case
by (simp add : field-simps flip: of-nat-mult of-nat-diff)

qed auto
also have . . . = (real k / (k+l))^t ∗ (

∏
i<t . 1 − real i ∗ real l / (real k ∗

(k+l−i)))
proof −
have 1 − i ∗ real l / (real k ∗ (k+l−i)) = ((k−i)/(k+l−i)) ∗ ((k+l) / k)
if i<t for i
using that ‹t ≤ k› by (simp add : divide-simps) argo
then have ∗: (

∏
i<t . 1 − real i ∗ real l / (real k ∗ (k+l−i))) = (

∏
i<t .

((k−i)/(k+l−i)) ∗ ((k+l) / k))
by auto

show ?thesis

169

unfolding ∗ prod .distrib by (simp add : power-divide)
qed
also have . . . ≤ (real k / (k+l))^t ∗ exp (− (

∑
i<t . real i ∗ real l / (real k ∗

(k+l))))
proof (intro mult-left-mono)
have real i ∗ real l / (real k ∗ real (k+l−i)) ≤ 1
if i < t for i
using that ‹t ≤ k› by (simp add : divide-simps mult-mono)

moreover have 1 − i ∗ l / (k ∗ real (k+l−i)) ≤ exp (− (i ∗ real l / (k ∗ (k
+ real l)))) (is - ≤ ?R)

if i < t for i
proof −
have exp (− (i∗l / (k ∗ real (k+l−i)))) ≤ ?R
using that ‹t ≤ k› by (simp add : frac-le-eq divide-le-0-iff mult-mono)

with exp-minus-ge show ?thesis
by (smt (verit , best))

qed
ultimately show (

∏
i<t . 1 − i ∗ real l / (k ∗ real (k+l−i))) ≤ exp (−

(
∑

i<t . i ∗ real l / (k ∗ real (k+l))))
by (force simp: exp-sum simp flip: sum-negf intro!: prod-mono)

qed auto
finally have 1 : (k+l−t choose l) ∗ inverse (k+l choose l)

≤ (real k / (k+l))^t ∗ exp (− (
∑

i<t . i ∗ γ / k))
by (simp add : γ-def mult .commute)

have ∗∗: γ ∗ (t − 1)^2 / (2∗k) ≤ (
∑

i<t . i ∗ γ / k)
proof −
have g : (

∑
i<t . real i) = real (t∗(t−1)) / 2

by (induction t) (auto simp: algebra-simps eval-nat-numeral)
have γ ∗ (t−1)^2 / (2∗k) ≤ real(t∗(t−1)) / 2 ∗ γ/k

by (simp add : field-simps eval-nat-numeral divide-right-mono mult-mono
γ-def)

also have . . . = (
∑

i<t . i ∗ γ / k)
unfolding g [symmetric] by (simp add : sum-distrib-right sum-divide-distrib)

finally show ?thesis .
qed
have 0 : 0 ≤ real (k + l choose l)
by simp

have ∗: (k+l−t choose l) ≤ (k / (k+l))^t ∗ exp (− (
∑

i<t . i ∗ γ / k)) ∗ (k+l
choose l)

using order-trans [OF - mult-right-mono [OF 1 0]]
by (simp add : less-eq-real-def)

also have . . . ≤ (k / (k+l))^t ∗ exp (− γ ∗ (t−1)^2 / (2∗k)) ∗(k+l choose l)
using ∗∗ by (intro mult-mono) auto

also have . . . ≤ exp (− γ ∗ (t−1)^2 / (2 ∗ real k)) ∗ (k / (k+l))^t ∗ (k+l
choose l)

by (simp add : mult-ac)
finally show ?thesis
using t by simp

qed

170

Statement borrowed from Bhavik; no o(k) function

corollary Far-9-6 :
fixes k l
assumes t : 0<t t ≤ k
defines γ ≡ l / (k + real l)
shows exp (−1) ∗ (1−γ) powr (− real t) ∗ exp (γ ∗ (real t)2 / real(2∗k)) ∗

(k−t+l choose l) ≤ (k+l choose l)
proof −
have kkl : k / (k + real l) = 1 − γ k+l−t = k−t+l
using t by (auto simp: γ-def divide-simps)

have [simp]: t + t ≤ Suc (t ∗ t)
using t
by (metis One-nat-def Suc-leI mult-2 mult-right-mono nle-le not-less-eq-eq

numeral-2-eq-2 mult-1-right)
have 0 ≤ γ γ < 1
using t by (auto simp: γ-def)

then have γ ∗ (real t ∗ 2) ≤ γ + real k ∗ 2
using t by (smt (verit , best) mult-less-cancel-right2 of-nat-0-less-iff of-nat-mono)
then have ∗: γ ∗ t^2 / (2∗k) − 1 ≤ γ ∗ (t−1)^2 / (2∗k)
using t
apply (simp add : power2-eq-square pos-divide-le-eq divide-simps)
apply (simp add : algebra-simps)
done

then have ∗: exp (−1) ∗ exp (γ ∗ t^2 / (2∗k)) ≤ exp (γ ∗ (t−1)^2 / (2∗k))
by (metis exp-add exp-le-cancel-iff uminus-add-conv-diff)

have 1 : exp (γ ∗ (t−1)^2 / (2∗k)) ∗ (k+l−t choose l) ≤ (k / (k+l))^t ∗ (k+l
choose l)

using mult-right-mono [OF D2 [OF t], of exp (γ ∗ (t−1)^2 / (2∗k)) l] t
by (simp add : γ-def exp-minus field-simps)

have 2 : (k / (k+l)) powr (− real t) ∗ exp (γ ∗ (t−1)^2 / (2∗k)) ∗ (k+l−t
choose l) ≤ (k+l choose l)

using mult-right-mono [OF 1 , of (1−γ) powr (− real t)] t
by (simp add : powr-minus γ-def powr-realpow mult-ac divide-simps)

then have 3 : (1−γ) powr (− real t) ∗ exp (γ ∗ (t−1)^2 / (2∗k)) ∗ (k−t+l
choose l) ≤ (k+l choose l)

by (simp add : kkl)
show ?thesis
apply (rule order-trans [OF - 3])
using ∗ less-eq-real-def by fastforce

qed

9.4 Lemma 9.3
definition ok-fun-93g ≡ λγ k . (nat ⌈k powr (3/4)⌉) ∗ log 2 k − (ok-fun-71 γ k
+ ok-fun-94 k) + 1

lemma ok-fun-93g :
assumes 0 < γ γ < 1
shows ok-fun-93g γ ∈ o(real)

171

proof −
have (λk . (nat ⌈k powr (3/4)⌉) ∗ log 2 k) ∈ o(real)
by real-asymp

then show ?thesis
unfolding ok-fun-93g-def
by (intro ok-fun-71 [OF assms] ok-fun-94 sum-in-smallo const-smallo-real)

qed

definition ok-fun-93h ≡ λγ k . (2 / (1−γ)) ∗ k powr (19/20) ∗ (ln γ + 2 ∗ ln k)
+ ok-fun-93g γ k ∗ ln 2

lemma ok-fun-93h:
assumes 0 < γ γ < 1
shows ok-fun-93h γ ∈ o(real)

proof −
have (λk . (2 / (1−γ)) ∗ k powr (19/20) ∗ (ln γ + 2 ∗ ln k)) ∈ o(real)
by real-asymp

then show ?thesis
unfolding ok-fun-93h-def by (metis (mono-tags) ok-fun-93g assms sum-in-smallo(1)

cmult-in-smallo-iff ′)
qed

lemma ok-fun-93h-uniform:
assumes µ01 : 0<µ0 µ1<1
assumes e>0
shows ∀∞k . ∀µ. µ ∈ {µ0 ..µ1} −→ |ok-fun-93h µ k | / k ≤ e

proof −
define f where f ≡ λk . ok-fun-73 k + ok-fun-74 k + ok-fun-76 k + ok-fun-94 k
define g where g ≡ λµ k . 2 ∗ real k powr (19/20) ∗ (ln µ + 2 ∗ ln k) / (1−µ)
have g : ∀∞k . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ |g µ k | / k ≤ e if e>0 for e
proof (intro eventually-all-geI1 [where L = nat⌈1 / µ0 ⌉])
show ∀∞k . |g µ1 k | / real k ≤ e
using assms that unfolding g-def by real-asymp

next
fix k µ
assume le-e: |g µ1 k | / k ≤ e and µ: µ0 ≤ µ µ ≤ µ1 and k : nat ⌈1/µ0 ⌉ ≤ k
then have k>0
using assms gr0I by force

have ln-k : ln k ≥ ln (1/µ0)
using k ‹0<µ0 › ln-mono by fastforce

with µ µ01
have |ln µ + 2 ∗ ln (real k)| ≤ |ln µ1 + 2 ∗ ln (real k)|
by (smt (verit) ln-div ln-mono ln-one)

with µ k ‹µ1 < 1 ›
have |g µ k | ≤ |g µ1 k |
by (simp add : g-def abs-mult frac-le mult-mono)

then show |g µ k | / real k ≤ e
by (smt (verit , best) divide-right-mono le-e of-nat-less-0-iff)

qed

172

have eq93 : ok-fun-93h µ k = g µ k +
⌈k powr (3/4)⌉ ∗ ln k − ((ok-fun-72 µ k + f k) − 1) ∗ ln 2 for µ k

by (simp add : ok-fun-93h-def g-def ok-fun-71-def ok-fun-93g-def f-def log-def
field-simps)

have ln2 : ln 2 ≥ (0 ::real)
by simp

have le93 : |ok-fun-93h µ k |
≤ |g µ k | + |⌈k powr (3/4)⌉ ∗ ln k | + (|ok-fun-72 µ k | + |f k | + 1) ∗ ln 2

for µ k
unfolding eq93

by (smt (verit , best) mult .commute ln-gt-zero-iff mult-le-cancel-left-pos mult-minus-left)
define e5 where e5 ≡ e/5
have e5 > 0
by (simp add : ‹e>0 › e5-def)

then have A: ∀∞k . ∀µ. µ ∈ {µ0 ..µ1} −→ |g µ k | / k ≤ e5
using g by simp

have B : ∀∞k . |⌈k powr (3/4)⌉ ∗ ln k | / k ≤ e5
using ‹0 < e5 › by real-asymp

have C : ∀∞k . ∀µ. µ ∈ {µ0 ..µ1} −→ |ok-fun-72 µ k | ∗ ln 2 / k ≤ e5
using ln2 assms ok-fun-72-uniform[OF µ01 , of e5 / ln 2] ‹e5 > 0 ›
by (simp add : divide-simps)

have f ∈ o(real)
by (simp add : f-def ok-fun-73 ok-fun-74 ok-fun-76 ok-fun-94 sum-in-smallo(1))

then have D : ∀∞k . |f k | ∗ ln 2 / k ≤ e5
using ‹e5 > 0 › ln2
by (force simp: smallo-def field-simps eventually-at-top-dense dest !: spec [where

x=e5 / ln 2])
have E : ∀∞k . ln 2 / k ≤ e5
using ‹e5 > 0 › ln2 by real-asymp

have ∀∞k . ∀µ. µ ∈ {µ0 ..µ1} −→ |ok-fun-93h µ k | / real k ≤ e5+e5+e5+e5+e5
using A B C D E
apply eventually-elim
by (fastforce simp: add-divide-distrib distrib-right

intro!: order-trans [OF divide-right-mono [OF le93]])
then show ?thesis
by (simp add : e5-def)

qed

context P0-min
begin

definition Big-Far-9-3 ≡
λµ l . Big-ZZ-8-5 µ l ∧ Big-X-7-1 µ l ∧ Big-Y-6-2 µ l ∧ Big-Red-5-3 µ l
∧ (∀ k≥l . p0-min − 3 ∗ eps k > 1/k ∧ k≥2

∧ |ok-fun-93h µ k / (µ ∗ (1 + 1 / (exp 1 ∗ (1−µ))))| / k ≤ 0 .667 −
2/3)

lemma Big-Far-9-3 :

173

assumes 0<µ0 µ0≤µ1 µ1<1
shows ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-Far-9-3 µ l

proof −
define d where d ≡ λµ::real . µ ∗ (1 + 1 / (exp 1 ∗ (1−µ)))
have d µ0 > 0
using assms by (auto simp: d-def divide-simps add-pos-pos)

then have dgt : d µ ≥ d µ0 if µ ∈ {µ0 ..µ1} for µ
using that assms by (auto simp: d-def frac-le mult-mono)

define e::real where e ≡ 0 .667 − 2/3
have e>0
by (simp add : e-def)

have ∗: ∀∞l . ∀µ. µ ∈ {µ0 ..µ1} −→ (∀ k≥l . |ok-fun-93h µ k / d µ| / k ≤ e)
proof −
have ∀∞l . ∀ k≥l . (∀µ. µ ∈ {µ0 ..µ1} −→ |ok-fun-93h µ k | / k ≤ d µ0 ∗ e)
using mult-pos-pos[OF ‹d µ0 > 0 › ‹e>0 ›] assms
using ok-fun-93h-uniform eventually-all-ge-at-top
by blast

then show ?thesis
apply eventually-elim
using dgt ‹0 < d µ0 › ‹0 < e›
by (auto simp: mult-ac divide-simps mult-less-0-iff zero-less-mult-iff split :

if-split-asm)
(smt (verit) mult-less-cancel-left nat-neq-iff of-nat-0-le-iff)

qed
with p0-min show ?thesis
unfolding Big-Far-9-3-def eps-def d-def e-def
using assms Big-ZZ-8-5 Big-X-7-1 Big-Y-6-2 Big-Red-5-3
apply (simp add : eventually-conj-iff all-imp-conj-distrib)
apply (intro conjI strip eventually-all-ge-at-top; real-asymp)
done

qed

end

lemma (λk . (nat ⌈real k powr (3/4)⌉) ∗ log 2 k) ∈ o(real)
by real-asymp

lemma RN34-le-2powr-ok :
fixes l k ::nat
assumes l ≤ k 0<k
defines l34 ≡ nat ⌈real l powr (3/4)⌉
shows RN k l34 ≤ 2 powr (⌈k powr (3/4)⌉ ∗ log 2 k)

proof −
have §: ⌈l powr (3/4)⌉ ≤ ⌈k powr (3/4)⌉
by (simp add : assms(1) ceiling-mono powr-mono2)

have RN k l34 ≤ k powr (l34−1)
— Bhavik’s off-diagonal Ramsey upper bound; can’t use (2 :: ′a)k + l34

using RN-le-argpower ′ ‹k>0 › powr-realpow by auto

174

also have . . . ≤ k powr l34
using ‹k>0 › powr-mono by force

also have . . . ≤ 2 powr (l34 ∗ log 2 k)
by (smt (verit , best) mult .commute ‹k>0 › of-nat-0-less-iff powr-log-cancel

powr-powr)
also have . . . ≤ 2 powr (⌈real k powr (3/4)⌉ ∗ log 2 k)
unfolding l34-def

proof (intro powr-mono powr-mono2 mult-mono ceiling-mono of-nat-mono nat-mono
‹l ≤ k›)

show 0 ≤ real-of-int ⌈k powr (3/4)⌉
by (meson le-of-int-ceiling order .trans powr-ge-pzero)

qed (use assms § in auto)
finally show ?thesis .

qed

Here n really refers to the cardinality of V, so actually nV

lemma (in Book ′) Far-9-3 :
defines δ ≡ min (1/200) (γ/20)
defines R ≡ Step-class {red-step}
defines t ≡ card R
assumes γ15 : γ ≤ 1/5 and p0 : p0 ≥ 1/4
and nge: n ≥ exp (−δ ∗ real k) ∗ (k+l choose l)
and X0ge: card X0 ≥ n/2

— Because n / 2 ≤ real (card X0) makes the proof harder
assumes big : Big-Far-9-3 γ l
shows t ≥ 2∗k / 3

proof −
define S where S ≡ Step-class {dboost-step}
have k≥2 and big85 : Big-ZZ-8-5 γ l and big71 : Big-X-7-1 γ l
and big62 : Big-Y-6-2 γ l and big53 : Big-Red-5-3 γ l
using big l-le-k by (auto simp: Big-Far-9-3-def)

define l34 where l34 ≡ nat ⌈real l powr (3/4)⌉
have l34 > 0
using l34-def ln0 by fastforce

have γ01 : 0 < γ γ < 1
using ln0 l-le-k by (auto simp: γ-def)

then have bigbeta01 : 0 < bigbeta bigbeta < 1
using big53 assms bigbeta-gt0 bigbeta-less1 by (auto simp: bigbeta-def)

have one-minus: 1−γ = real k / (real k + real l)
using ln0 by (simp add : γ-def divide-simps)

have t < k
using red-step-limit by (auto simp: R-def t-def)

have f : 2 powr ok-fun-94 k ∗ γ powr (− real l) ∗ (1−γ) powr (− real k)
≤ k+l choose l

unfolding γ-def using fact-9-4 l-le-k ln0 by blast
have powr-combine-right : x powr a ∗ (x powr b ∗ y) = x powr (a+b) ∗ y for x

y a b::real
by (simp add : powr-add)

have (2 powr ok-fun-71 γ k ∗ 2 powr ok-fun-94 k) ∗ (bigbeta/γ) ^ card S ∗ (exp

175

(−δ∗k) ∗ (1−γ) powr (− real k + t) / 2)
≤ 2 powr ok-fun-71 γ k ∗ γ^l ∗ (1−γ) ^ t ∗ (bigbeta/γ) ^ card S ∗ (exp

(−δ∗k) ∗ (k+l choose l) / 2)
using γ01 ‹0<bigbeta› mult-right-mono [OF f , of 2 powr ok-fun-71 γ k ∗ γ^l

∗ (1−γ) ^ t ∗ (bigbeta/γ) ^ card S ∗ (exp (−δ∗k)) / 2]
by (simp add : mult-ac zero-le-mult-iff powr-minus powr-diff divide-simps powr-realpow)
also have . . . ≤ 2 powr ok-fun-71 γ k ∗ γ^l ∗ (1−γ) ^ t ∗ (bigbeta/γ) ^ card
S ∗ card X0
proof (intro mult-left-mono order-refl)
show exp (−δ ∗ k) ∗ real (k+l choose l) / 2 ≤ real (card X0)
using X0ge nge by force

show 0 ≤ 2 powr ok-fun-71 γ k ∗ γ ^ l ∗ (1−γ) ^ t ∗ (bigbeta/γ) ^ card S
using γ01 bigbeta-ge0 by (force simp: bigbeta-def)

qed
also have . . . ≤ card (Xseq halted-point)
unfolding R-def S-def t-def using big
by (intro X-7-1) (auto simp: Big-Far-9-3-def)

also have . . . ≤ RN k l34
proof −
have p0 − 3 ∗ eps k > 1/k and pee halted-point ≥ p0 − 3 ∗ eps k
using l-le-k big p0-ge Y-6-2-halted by (auto simp: Big-Far-9-3-def γ-def)

then show ?thesis
using halted-point-halted γ01

by (fastforce simp: step-terminating-iff termination-condition-def pee-def
l34-def)
qed
also have . . . ≤ 2 powr (⌈k powr (3/4)⌉ ∗ log 2 k)
using RN34-le-2powr-ok l34-def l-le-k ln0 by blast

finally have 2 powr (ok-fun-71 γ k + ok-fun-94 k) ∗ (bigbeta/γ) ^ card S
∗ exp (−δ∗k) ∗ (1−γ) powr (− real k + t) / 2
≤ 2 powr (⌈k powr (3/4)⌉ ∗ log 2 k)

by (simp add : powr-add)
then have le-2-powr-g : exp (−δ∗k) ∗ (1−γ) powr (− real k + t) ∗ (bigbeta/γ)

^ card S
≤ 2 powr ok-fun-93g γ k

using ‹k≥2 › by (simp add : ok-fun-93g-def field-simps powr-add powr-diff flip:
powr-realpow)

let ?ξ = bigbeta ∗ t / (1−γ) + (2 / (1−γ)) ∗ k powr (19/20)
have bigbeta-le: bigbeta ≤ γ and bigbeta-ge: bigbeta ≥ 1 / (real k)2
using bigbeta-def γ01 big53 bigbeta-le bigbeta-ge-square by blast+

define φ where φ ≡ λu. (u / (1−γ)) ∗ ln (γ/u) — finding the maximum via
derivatives
have ln-eq : ln (γ / (γ / exp 1)) / (1−γ) = 1/(1−γ)
using γ01 by simp

have φ: φ (γ / exp 1) ≥ φ bigbeta
proof (cases γ / exp 1 ≤ bigbeta) — Could perhaps avoid case analysis via

2nd derivatives

176

case True
show ?thesis
proof (intro DERIV-nonpos-imp-nonincreasing [where f = φ])
fix x
assume x : γ / exp 1 ≤ x x ≤ bigbeta
with γ01 have x>0
by (smt (verit , best) divide-pos-pos exp-gt-zero)

with γ01 x have ln (γ/x) / (1−γ) − 1 / (1−γ) ≤ 0
by (smt (verit , ccfv-SIG) divide-pos-pos exp-gt-zero frac-le ln-eq ln-mono)

with x ‹x>0 › γ01 show ∃D . (φ has-real-derivative D) (at x) ∧ D ≤ 0
unfolding φ-def by (intro exI conjI derivative-eq-intros | force)+

qed (simp add : True)
next
case False
show ?thesis
proof (intro DERIV-nonneg-imp-nondecreasing [where f = φ])
fix x
assume x : bigbeta ≤ x x ≤ γ / exp 1
with bigbeta01 γ01 have x>0 by linarith
with γ01 x have ln (γ/x) / (1−γ) − 1 / (1−γ) ≥ 0
by (smt (verit , best) frac-le ln-eq ln-mono zero-less-divide-iff)

with x ‹x>0 › γ01 show ∃D . (φ has-real-derivative D) (at x) ∧ D ≥ 0
unfolding φ-def
by (intro exI conjI derivative-eq-intros | force)+

qed (use False in force)
qed

define c where c ≡ λx ::real . 1 + 1 / (exp 1 ∗ (1−x))
have mono-c: mono-on {0<..<1} c
by (auto simp: monotone-on-def c-def field-simps)

have cgt0 : c x > 0 if x<1 for x
using that by (simp add : add-pos-nonneg c-def)

have card S ≤ bigbeta ∗ t / (1−bigbeta) + (2 / (1−γ)) ∗ k powr (19/20)
using ZZ-8-5 [OF big85] by (auto simp: R-def S-def t-def)

also have . . . ≤ ?ξ
using bigbeta-le by (simp add : γ01 bigbeta-ge0 frac-le)

finally have card S ≤ ?ξ .
with bigbeta-le bigbeta01 have ?ξ ∗ ln (bigbeta/γ) ≤ card S ∗ ln (bigbeta/γ)
by (simp add : mult-right-mono-neg)

then have −?ξ ∗ ln (γ/bigbeta) ≤ card S ∗ ln (bigbeta/γ)
using bigbeta01 γ01 by (smt (verit) ln-div minus-mult-minus)

then have γ ∗ (real k − t) − δ∗k − ?ξ ∗ ln (γ/bigbeta) ≤ γ ∗ (real k − t) −
δ∗k + card S ∗ ln (bigbeta/γ)

by linarith
also have . . . ≤ (t − real k) ∗ ln (1−γ) − δ∗k + card S ∗ ln (bigbeta/γ)
using ‹t < k› γ01 mult-right-mono [OF ln-add-one-self-le-self2 [of −γ], of real

k − t]
by (simp add : algebra-simps)

177

also have . . . = ln (exp (−δ∗k) ∗ (1−γ) powr (− real k + t) ∗ (bigbeta/γ) ^
card S)

using γ01 bigbeta01 by (simp add : ln-mult ln-div ln-realpow ln-powr)
also have . . . ≤ ln (2 powr ok-fun-93g γ k)
using le-2-powr-g γ01 bigbeta01 by simp

also have . . . = ok-fun-93g γ k ∗ ln 2
by (auto simp: ln-powr)

finally have γ ∗ (real k − t) − δ∗k − ?ξ ∗ ln (γ/bigbeta) ≤ ok-fun-93g γ k ∗
ln 2 .
then have γ ∗ (real k − t) ≤ ?ξ ∗ ln (γ/bigbeta) + δ∗k + ok-fun-93g γ k ∗ ln 2

by simp
also have . . . ≤ (bigbeta ∗ t / (1−γ)) ∗ ln (γ/bigbeta) + δ∗k + ok-fun-93h γ k
proof −
have γ/bigbeta ≤ γ ∗ (real k)2
using kn0 bigbeta-le bigbeta-ge ‹bigbeta>0 › by (simp add : field-simps)

then have X : ln (γ/bigbeta) ≤ ln γ + 2 ∗ ln k
using ‹bigbeta>0 › ‹γ>0 › kn0
by (metis divide-pos-pos ln-mono ln-mult mult-2 mult-pos-pos of-nat-0-less-iff

power2-eq-square)
show ?thesis
using mult-right-mono [OF X , of 2 ∗ k powr (19/20) / (1−γ)] ‹γ<1 ›
by (simp add : ok-fun-93h-def algebra-simps)

qed
also have . . . ≤ ((γ / exp 1) ∗ t / (1−γ)) + δ∗k + ok-fun-93h γ k
using γ01 mult-right-mono [OF φ, of t] by (simp add : φ-def mult-ac)

finally have γ ∗ (real k − t) ≤ ((γ / exp 1) ∗ t / (1−γ)) + δ∗k + ok-fun-93h
γ k .
then have (γ−δ) ∗ k − ok-fun-93h γ k ≤ t ∗ γ ∗ c γ
by (simp add : c-def algebra-simps)

then have ((γ−δ) ∗ k − ok-fun-93h γ k) / (γ ∗ c γ) ≤ t
using γ01 cgt0 by (simp add : pos-divide-le-eq)

then have ∗: t ≥ (1−δ / γ) ∗ inverse (c γ) ∗ k − ok-fun-93h γ k / (γ ∗ c γ)
using γ01 cgt0 [of γ] by (simp add : divide-simps)

define f47 where f47 ≡ λx . (1 − 1/(200∗x)) ∗ inverse (c x)
have concave-on {1/10 ..1/5} f47
unfolding f47-def

proof (intro concave-on-mul)
show concave-on {1/10 ..1/5} (λx . 1 − 1/(200∗x))
proof (intro f ′′-le0-imp-concave)
fix x ::real
assume x ∈ {1/10 ..1/5}
then have x01 : 0<x x<1 by auto
show ((λx . (1 − 1/(200∗x))) has-real-derivative 1/(200∗x^2)) (at x)
using x01 by (intro derivative-eq-intros | force simp: eval-nat-numeral)+

show ((λx . 1/(200∗x^2)) has-real-derivative −1/(100∗x^3)) (at x)
using x01 by (intro derivative-eq-intros | force simp: eval-nat-numeral)+

show −1/(100∗x^3) ≤ 0
using x01 by (simp add : divide-simps)

qed auto

178

show concave-on {1/10 ..1/5} (λx . inverse (c x))
proof (intro f ′′-le0-imp-concave)
fix x ::real
assume x ∈ {1/10 ..1/5}
then have x01 : 0<x x<1 by auto
have swap: u ∗ (x−1) = (−u) ∗ (1−x) for u
by (metis minus-diff-eq minus-mult-commute)

have §: exp 1 ∗ (x − 1) < 0
using x01 by (meson exp-gt-zero less-iff-diff-less-0 mult-less-0-iff)

then have non0 : 1 + 1 / (exp 1 ∗ (1−x)) ̸= 0
using x01 by (smt (verit) exp-gt-zero mult-pos-pos zero-less-divide-iff)

let ?f1 = λx . −exp 1 /(− 1 + exp 1 ∗ (− 1 + x))2
let ?f2 = λx . 2∗exp(1)^2/(−1 + exp(1)∗(−1 + x))^3
show ((λx . inverse (c x)) has-real-derivative ?f1 x) (at x)
unfolding c-def power2-eq-square
using x01 § non0
apply (intro exI conjI derivative-eq-intros | force)+
apply (simp add : divide-simps square-eq-iff swap)
done

show (?f1 has-real-derivative ?f2 x) (at x)
using x01 §
by (intro derivative-eq-intros | force simp: divide-simps eval-nat-numeral)+

show ?f2 (x ::real) ≤ 0
using x01 § by (simp add : divide-simps)

qed auto
show mono-on {(1 ::real)/10 ..1/5} (λx . 1 − 1 / (200 ∗ x))
by (auto simp: monotone-on-def frac-le)

show monotone-on {1/10 ..1/5} (≤) (λx y . y ≤ x) (λx . inverse (c x))
using mono-c cgt0 by (auto simp: monotone-on-def divide-simps)

qed (auto simp: c-def)
moreover have f47 (1/10) > 0 .667
unfolding f47-def c-def by (approximation 15)

moreover have f47 (1/5) > 0 .667
unfolding f47-def c-def by (approximation 15)

ultimately have 47 : f47 x > 0 .667 if x ∈ {1/10 ..1/5} for x
using concave-on-ge-min that by fastforce

define f48 where f48 ≡ λx . (1 − 1/20) ∗ inverse (c x)
have 48 : f48 x > 0 .667 if x ∈ {0<..<1/10} for x
proof −
have (0 .667 ::real) < (1 − 1/20) ∗ inverse(c(1/10))
unfolding c-def by (approximation 15)

also have . . . ≤ f48 x
using that unfolding f48-def c-def
by (intro mult-mono le-imp-inverse-le add-mono divide-left-mono) (auto simp:

add-pos-pos)
finally show ?thesis .

qed
define e::real where e ≡ 0 .667 − 2/3

179

have BIGH : abs (ok-fun-93h γ k / (γ ∗ c γ)) / k ≤ e
using big l-le-k unfolding Big-Far-9-3-def all-imp-conj-distrib e-def [symmetric]

c-def
by auto

consider γ ∈ {0<..<1/10} | γ ∈ {1/10 ..1/5}
using δ-def ‹γ ≤ 1/5 › γ01 by fastforce

then show ?thesis
proof cases
case 1
then have δγ: δ / γ = 1/20
by (auto simp: δ-def)

have (2/3 ::real) ≤ f48 γ − e
using 48 [OF 1] e-def by force

also have . . . ≤ (1−δ / γ) ∗ inverse (c γ) − ok-fun-93h γ k / (γ ∗ c γ) / k
unfolding f48-def δγ using BIGH
by (smt (verit , best) divide-nonneg-nonneg of-nat-0-le-iff zero-less-divide-iff)

finally
have A: 2/3 ≤ (1−δ / γ) ∗ inverse (c γ) − ok-fun-93h γ k / (γ ∗ c γ) / k .
have real (2 ∗ k) / 3 ≤ (1 − δ / γ) ∗ inverse (c γ) ∗ k − ok-fun-93h γ k /

(γ ∗ c γ)
using mult-left-mono [OF A, of k] cgt0 [of γ] γ01 kn0
by (simp add : divide-simps mult-ac)

with ∗ show ?thesis
by linarith

next
case 2
then have δγ: δ / γ = 1/(200∗γ)
by (auto simp: δ-def)

have (2/3 ::real) ≤ f47 γ − e
using 47 [OF 2] e-def by force

also have . . . ≤ (1 − δ / γ) ∗ inverse (c γ) − ok-fun-93h γ k / (γ ∗ c γ) / k
unfolding f47-def δγ using BIGH
by (smt (verit , best) divide-right-mono of-nat-0-le-iff)

finally
have 2/3 ≤ (1 − δ / γ) ∗ inverse (c γ) − ok-fun-93h γ k / (γ ∗ c γ) / k .
from mult-left-mono [OF this, of k] cgt0 [of γ] γ01 kn0
have real (2 ∗ k) / 3 ≤ (1 − δ / γ) ∗ inverse (c γ) ∗ k − ok-fun-93h γ k /

(γ ∗ c γ)
by (simp add : divide-simps mult-ac)

with ∗ show ?thesis
by linarith

qed
qed

9.5 Lemma 9.5
context P0-min
begin

Again stolen from Bhavik: cannot allow a dependence on γ

180

definition ok-fun-95a ≡ λk . ok-fun-61 k − (2 + 4 ∗ k powr (19/20))

definition ok-fun-95b ≡ λk . ln 2 ∗ ok-fun-95a k − 1

lemma ok-fun-95a: ok-fun-95a ∈ o(real)
proof −
have (λk . 2 + 4 ∗ k powr (19/20)) ∈ o(real)
by real-asymp

then show ?thesis
unfolding ok-fun-95a-def using ok-fun-61 sum-in-smallo by blast

qed

lemma ok-fun-95b: ok-fun-95b ∈ o(real)
using ok-fun-95a by (auto simp: ok-fun-95b-def sum-in-smallo const-smallo-real)

definition Big-Far-9-5 ≡ λµ l . Big-Red-5-3 µ l ∧ Big-Y-6-1 µ l ∧ Big-ZZ-8-5 µ
l

lemma Big-Far-9-5 :
assumes 0<µ0 µ1<1
shows ∀∞l . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ Big-Far-9-5 µ l
using assms Big-Red-5-3 Big-Y-6-1 Big-ZZ-8-5
unfolding Big-Far-9-5-def eps-def
by (simp add : eventually-conj-iff all-imp-conj-distrib)

end

Y0 is an additional assumption found in Bhavik’s version. (He had a
couple of others). The first o(k) function adjusts for the error in n/2

lemma (in Book ′) Far-9-5 :
fixes δ η::real
defines R ≡ Step-class {red-step}
defines t ≡ card R
assumes nV : real nV ≥ exp (−δ ∗ k) ∗ (k+l choose l) and Y0 : card Y0 ≥ nV

div 2
assumes p0 : 1/2 ≤ 1−γ−η 1−γ−η ≤ p0 and 0≤η
assumes big : Big-Far-9-5 γ l
shows card (Yseq halted-point) ≥
exp (−δ ∗ k + ok-fun-95b k) ∗ (1−γ−η) powr (γ∗t / (1−γ)) ∗ ((1−γ−η)/(1−γ))^t

∗ exp (γ ∗ (real t)2 / (2∗k)) ∗ (k−t+l choose l) (is - ≥ ?rhs)
proof −
define S where S ≡ Step-class {dboost-step}
define s where s ≡ card S
have γ01 : 0 < γ γ < 1
using ln0 l-le-k by (auto simp: γ-def)

have big85 : Big-ZZ-8-5 γ l and big61 : Big-Y-6-1 γ l and big53 : Big-Red-5-3 γ
l

using big by (auto simp: Big-Far-9-5-def)

181

have bigbeta ≤ γ
using bigbeta-def γ01 big53 bigbeta-le by blast

have 85 : s ≤ (bigbeta / (1−bigbeta)) ∗ t + (2 / (1−γ)) ∗ k powr (19/20)
unfolding s-def t-def R-def S-def using ZZ-8-5 γ01 big85 by blast

also have . . . ≤ (γ / (1−γ)) ∗ t + (2 / (1−γ)) ∗ k powr (19/20)
using γ01 ‹bigbeta ≤ γ› by (intro add-mono mult-right-mono frac-le) auto

finally have D85 : s ≤ γ∗t / (1−γ) + (2 / (1−γ)) ∗ k powr (19/20)
by auto

have t<k
unfolding t-def R-def using γ01 red-step-limit by blast

have st : card (Step-class {red-step,dboost-step}) = t + s
using γ01

by (simp add : s-def t-def R-def S-def Step-class-insert-NO-MATCH card-Un-disjnt
disjnt-Step-class)

then have 61 : 2 powr (ok-fun-61 k) ∗ p0 ^ (t+s) ∗ card Y0 ≤ card (Yseq
halted-point)

using Y-6-1 [OF big61] card-XY0 γ01 by (simp add : divide-simps)
have (1−γ−η) powr (t + γ∗t / (1−γ)) ∗ nV ≤ (1−γ−η) powr (t+s − 4 ∗ k

powr (19/20)) ∗ (4 ∗ card Y0)
proof (intro mult-mono)
show (1−γ−η) powr (t + γ∗t / (1−γ)) ≤ (1−γ−η) powr (t+s − 4 ∗ k powr

(19/20))
proof (intro powr-mono ′)
have γ ≤ 1/2
using ‹0≤η› p0 by linarith

then have 22 : 1 / (1 − γ) ≤ 2
using divide-le-eq-1 by fastforce

show real (t + s) − 4 ∗ real k powr (19 / 20) ≤ real t + γ ∗ real t / (1 −
γ)

using mult-left-mono [OF 22 , of 2 ∗ real k powr (19 / 20)] D85
by (simp add : algebra-simps)

next
show 0 ≤ 1 − γ − η 1 − γ − η ≤ 1
using assms γ01 by linarith+

qed
have nV ≥ 2
by (metis nontriv wellformed two-edges card-mono ex-in-conv finV)

then have nV ≤ 4 ∗ (nV div 2) by linarith
also have . . . ≤ 4 ∗ card Y0
using Y0 mult-le-mono2 by presburger

finally show real nV ≤ real (4 ∗ card Y0)
by force

qed (use Y0 in auto)
also have . . . ≤ (1−γ−η) powr (t+s) / (1−γ−η) powr (4 ∗ k powr (19/20))
∗ (4 ∗ card Y0)

by (simp add : divide-powr-uminus powr-diff)
also have . . . ≤ (1−γ−η) powr (t+s) / (1/2) powr (4 ∗ k powr (19/20)) ∗ (4
∗ card Y0)
proof (intro mult-mono divide-left-mono)

182

show (1/2) powr (4 ∗ k powr (19/20)) ≤ (1−γ−η) powr (4 ∗ k powr (19/20))
using γ01 p0 ‹0≤η› by (intro powr-mono-both ′) auto

qed (use p0 in auto)
also have . . . ≤ p0 powr (t+s) / (1/2) powr (4 ∗ k powr (19/20)) ∗ (4 ∗ card

Y0)
using p0 powr-mono2 by (intro mult-mono divide-right-mono) auto

also have . . . = (2 powr (2 + 4 ∗ k powr (19/20))) ∗ p0 ^ (t+s) ∗ card Y0
using p0-01 by (simp add : powr-divide powr-add power-add powr-realpow)

finally have 2 powr (ok-fun-95a k) ∗ (1−γ−η) powr (t + γ∗t / (1−γ)) ∗ nV
≤ 2 powr (ok-fun-61 k) ∗ p0 ^ (t+s) ∗ card Y0

by (simp add : ok-fun-95a-def powr-diff field-simps)
with 61 have ∗: card (Yseq halted-point) ≥ 2 powr (ok-fun-95a k) ∗ (1−γ−η)

powr (t + γ∗t / (1−γ)) ∗ nV
by linarith

have F : exp (ok-fun-95b k) = 2 powr ok-fun-95a k ∗ exp (− 1)
by (simp add : ok-fun-95b-def exp-diff exp-minus powr-def field-simps)

have ?rhs
≤ exp (−δ ∗ k) ∗ 2 powr (ok-fun-95a k) ∗ exp (−1) ∗ (1−γ−η) powr (γ∗t /

(1−γ))
∗ (((1−γ−η)/(1−γ)) ^t ∗ exp (γ ∗ (real t)2 / real(2∗k)) ∗ (k−t+l choose

l))
unfolding exp-add F by simp

also have . . . ≤ exp (−δ ∗ k) ∗ 2 powr (ok-fun-95a k) ∗ (1−γ−η) powr (γ∗t /
(1−γ))

∗ (exp (−1) ∗ ((1−γ−η)/(1−γ)) ^t ∗ exp (γ ∗ (real t)2 / real(2∗k)) ∗
(k−t+l choose l))

by (simp add : mult .assoc)
also have . . . ≤ 2 powr (ok-fun-95a k) ∗ (1−γ−η) powr (t + γ∗t / (1−γ)) ∗

exp (−δ ∗ k)
∗ (exp (−1) ∗ (1−γ) powr (− real t) ∗ exp (γ ∗ (real t)2 / real(2∗k))

∗ (k−t+l choose l))
using p0 γ01
unfolding powr-add powr-minus by (simp add : mult-ac divide-simps flip:

powr-realpow)
also have . . . ≤ 2 powr (ok-fun-95a k) ∗ (1−γ−η) powr (t + γ∗t / (1−γ)) ∗

exp (−δ ∗ k) ∗ (k+l choose l)
proof (cases t=0)
case False
then show ?thesis
unfolding γ-def using ‹t<k› by (intro mult-mono order-refl Far-9-6) auto

qed auto
also have . . . ≤ 2 powr (ok-fun-95a k) ∗ (1−γ−η) powr (t + γ∗t / (1−γ)) ∗

nV
using nV mult-left-mono by fastforce

also have . . . ≤ card (Yseq halted-point)
by (rule ∗)

finally show ?thesis .
qed

183

9.6 Lemma 9.2 actual proof
context P0-min
begin

lemma error-9-2 :
assumes µ>0 d > 0
shows ∀∞k . ok-fun-95b k + µ ∗ real k / d ≥ 0

proof −
have ∀∞k . |ok-fun-95b k | ≤ (µ/d) ∗ k
using ok-fun-95b assms unfolding smallo-def
by (auto dest !: spec [where x = µ/d])

then show ?thesis
by eventually-elim force

qed

definition Big-Far-9-2 ≡ λµ l . Big-Far-9-3 µ l ∧ Big-Far-9-5 µ l ∧ (∀ k≥l .
ok-fun-95b k + µ∗k/60 ≥ 0)

lemma Big-Far-9-2 :
assumes 0<µ0 µ0≤µ1 µ1<1
shows ∀∞l . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ Big-Far-9-2 µ l

proof −
have ∀∞l . ∀ k≥l . (∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ 0 ≤ ok-fun-95b k + µ ∗ k / 60)
using assms
apply (intro eventually-all-ge-at-top eventually-all-geI0 error-9-2)
apply (auto simp: divide-right-mono mult-right-mono elim!: order-trans)
done

then show ?thesis
using assms Big-Far-9-3 Big-Far-9-5
unfolding Big-Far-9-2-def
apply (simp add : eventually-conj-iff all-imp-conj-distrib)
by (smt (verit , ccfv-threshold) eventually-sequentially)

qed

end

lemma (in Book ′) Far-9-2-conclusion:
defines R ≡ Step-class {red-step}
defines t ≡ card R
assumes Y : (k−t+l choose l) ≤ card (Yseq halted-point)
shows False

proof −
have t<k
unfolding t-def R-def using red-step-limit by blast

have RN (k−t) l ≤ card (Yseq halted-point)
by (metis Y add .commute RN-commute RN-le-choose le-trans)

then obtain K
where Ksub: K ⊆ Yseq halted-point
and K : card K = k−t ∧ clique K Red ∨ card K = l ∧ clique K Blue

184

by (meson Red-Blue-RN Yseq-subset-V size-clique-def)
show False
using K

proof
assume K : card K = k − t ∧ clique K Red
have clique (K ∪ Aseq halted-point) Red
proof (intro clique-Un)
show clique (Aseq halted-point) Red
by (meson A-Red-clique valid-state-seq)

have all-edges-betw-un (Aseq halted-point) (Yseq halted-point) ⊆ Red
using valid-state-seq Ksub
by (auto simp: valid-state-def RB-state-def all-edges-betw-un-Un2)

then show all-edges-betw-un K (Aseq halted-point) ⊆ Red
using Ksub all-edges-betw-un-commute all-edges-betw-un-mono2 by blast

show K ⊆ V
using Ksub Yseq-subset-V by blast

qed (use K Aseq-subset-V in auto)
moreover have card (K ∪ Aseq halted-point) = k
proof −
have eqt : card (Aseq halted-point) = t
using red-step-eq-Aseq R-def t-def by simp

have card (K ∪ Aseq halted-point) = card K + card (Aseq halted-point)
proof (intro card-Un-disjoint)
show finite K
by (meson Ksub Yseq-subset-V finV finite-subset)

have disjnt (Yseq halted-point) (Aseq halted-point)
using valid-state-seq by (auto simp: valid-state-def disjoint-state-def)

with Ksub show K ∩ Aseq halted-point = {}
by (auto simp: disjnt-def)

qed (simp add : finite-Aseq)
also have . . . = k
using eqt K ‹t < k› by simp

finally show ?thesis .
qed
moreover have K ∪ Aseq halted-point ⊆ V
using Aseq-subset-V Ksub Yseq-subset-V by blast

ultimately show False
using no-Red-clique size-clique-def by blast

next
assume card K = l ∧ clique K Blue
then show False
using Ksub Yseq-subset-V no-Blue-clique size-clique-def by blast

qed
qed

A little tricky to express since the Book locale assumes that there are no
cliques in the original graph (page 9). So it’s a contrapositive

lemma (in Book ′) Far-9-2-aux :
fixes δ η::real

185

defines δ ≡ γ/20
assumes 0 : real (card X0) ≥ nV /2 card Y0 ≥ nV div 2 p0 ≥ 1−γ−η

— These are the assumptions about the red density of the graph
assumes γ: γ ≤ 1/10 and η: 0≤η η ≤ γ/15
assumes nV : real nV ≥ exp (−δ ∗ k) ∗ (k+l choose l)
assumes big : Big-Far-9-2 γ l
shows False

proof −
define R where R ≡ Step-class {red-step}
define t where t ≡ card R
have γ01 : 0 < γ γ < 1
using ln0 l-le-k by (auto simp: γ-def)

have big93 : Big-Far-9-3 γ l
using big by (auto simp: Big-Far-9-2-def)

have t23 : t ≥ 2∗k / 3
unfolding t-def R-def

proof (rule Far-9-3)
show γ ≤ 1/5
using γ unfolding γ-def by linarith

have min (1/200) (γ / 20) ≥ δ
unfolding δ-def using γ ln0 by (simp add : γ-def)

then show exp (− min (1/200) (γ / 20) ∗ k) ∗ (k+l choose l) ≤ nV
using δ-def γ-def nV by force

show 1/4 ≤ p0
using η γ 0 by linarith

show Big-Far-9-3 (γ) l
using γ-def big93 by blast

qed (use assms in auto)
have t<k
unfolding t-def R-def using γ01 red-step-limit by blast

have ge-half : 1/2 ≤ 1−γ−η
using γ η by linarith

have exp (−1/3 + (1/5 ::real)) ≤ exp (10/9 ∗ ln (134/150))
by (approximation 9)

also have . . . ≤ exp (1 / (1−γ) ∗ ln (134/150))
using γ by (auto simp: divide-simps)

also have . . . ≤ exp (1 / (1−γ) ∗ ln (1−γ−η))
using γ η by (auto simp: divide-simps)

also have . . . = (1−γ−η) powr (1 / (1−γ))
using ge-half by (simp add : powr-def)

finally have A: exp (−1/3 + 1/5) ≤ (1−γ−η) powr (1 / (1−γ)) .

have 3∗t / (10∗k) ≤ (−1/3 + 1/5) + t/(2∗k)
using t23 kn0 by (simp add : divide-simps)

from mult-right-mono [OF this, of γ∗t] γ01
have 3∗γ∗t2 / (10∗k) ≤ γ∗t∗(−1/3 + 1/5) + γ∗t2/(2∗k)
by (simp add : eval-nat-numeral algebra-simps)

then have exp (3∗γ∗t2 / (10∗k)) ≤ exp (−1/3 + 1/5) powr (γ∗t) ∗ exp

186

(γ∗t2/(2∗k))
by (simp add : mult-exp-exp exp-powr-real)

also have . . . ≤ (1−γ−η) powr ((γ∗t) / (1−γ)) ∗ exp (γ∗t2/(2∗k))
using γ01 powr-powr powr-mono2 [of γ∗t exp (−1/3 + 1/5), OF - - A]
by (intro mult-right-mono) auto

finally have B : exp (3∗γ∗t2 / (10∗k)) ≤ (1−γ−η) powr ((γ∗t) / (1−γ)) ∗ exp
(γ∗t2/(2∗k)) .

have (2∗k / 3)^2 ≤ t2
using t23 by auto

from kn0 γ01 mult-right-mono [OF this, of γ/(80∗k)]
have C : δ∗k + γ∗k/60 ≤ 3∗γ∗t2 / (20∗k)
by (simp add : field-simps δ-def eval-nat-numeral)

have exp (− 3∗γ∗t / (20∗k)) ≤ exp (−3 ∗ η/2)
proof −
have 1 ≤ 3/2 ∗ t/k
using t23 kn0 by (auto simp: divide-simps)

from mult-right-mono [OF this, of γ/15] γ01 η
show ?thesis
by simp

qed
also have . . . ≤ 1 − η / (1−γ)
proof −
have §: 2/3 ≤ (1 − γ − η)
using γ η by linarith

have 1 / (1−η / (1−γ)) = 1 + η / (1−γ−η)
using ge-half η by (simp add : divide-simps split : if-split-asm)

also have . . . ≤ 1 + 3 ∗ η / 2
using mult-right-mono [OF §, of η] η ge-half by (simp add : field-simps)

also have . . . ≤ exp (3 ∗ η / 2)
using exp-minus-ge [of −3∗η/2] by simp

finally show ?thesis
using γ01 ge-half
by (simp add : exp-minus divide-simps mult .commute split : if-split-asm)

qed
also have . . . = (1−γ−η) / (1−γ)
using γ01 by (simp add : divide-simps)

finally have exp (− 3∗γ∗t / (20∗k)) ≤ (1−γ−η) / (1−γ) .
from powr-mono2 [of t , OF - - this] ge-half γ01
have D : exp (− 3∗γ∗t2 / (20∗k)) ≤ ((1−γ−η) / (1−γ))^t
by (simp add : eval-nat-numeral powr-powr exp-powr-real mult-ac flip: powr-realpow)

have (k−t+l choose l) ≤ card (Yseq halted-point)
proof −
have 1 ∗ real(k−t+l choose l)

≤ exp (ok-fun-95b k + γ∗k/60) ∗ (k−t+l choose l)
using big l-le-k unfolding Big-Far-9-2-def
by (intro mult-right-mono mult-ge1-I) auto

187

also have . . . ≤ exp (3∗γ∗t2 / (20∗k) + −δ ∗ k + ok-fun-95b k) ∗ (k−t+l
choose l)

using C by simp
also have . . . = exp (3∗γ∗t2 / (10∗k)) ∗ exp (−δ ∗ k + ok-fun-95b k) ∗ exp

(− 3∗γ∗t2 / (20∗k))
∗ (k−t+l choose l)

by (simp flip: exp-add)
also have . . . ≤ exp (3∗γ∗t2 / (10∗k)) ∗ exp (−δ ∗ k + ok-fun-95b k) ∗

((1−γ−η)/(1−γ))^t
∗ (k−t+l choose l)

using γ01 ge-half D by (intro mult-right-mono) auto
also have . . . ≤ (1−γ−η) powr (γ∗t / (1−γ)) ∗ exp (γ ∗ t2 / (2∗k)) ∗ exp

(−δ ∗ k + ok-fun-95b k)
∗ ((1−γ−η)/(1−γ))^t ∗ (k−t+l choose l)

using γ01 ge-half by (intro mult-right-mono B) auto
also have . . . = exp (−δ ∗ k + ok-fun-95b k) ∗ (1−γ−η) powr (γ∗t / (1−γ))

∗ ((1−γ−η)/(1−γ))^t
∗ exp (γ ∗ (real t)2 / (2∗k)) ∗ (k−t+l choose l)

by (simp add : mult-ac)
also have 95 : . . . ≤ real (card (Yseq halted-point))
unfolding t-def R-def

proof (rule Far-9-5)
show 1/2 ≤ 1 − γ − η
using ge-half γ-def by blast

show Big-Far-9-5 (γ) l
using Big-Far-9-2-def big unfolding γ-def by presburger

qed (use assms in auto)
finally show ?thesis by simp

qed
then show False
using Far-9-2-conclusion by (simp flip: R-def t-def)

qed

Mediation of 9.2 (and 10.2) from locale Book-Basis to the book locales
with the starting sets of equal size

lemma (in No-Cliques) Basis-imp-Book :
assumes gd : p0-min ≤ graph-density Red
assumes µ01 : 0 < µ µ < 1
obtains X0 Y0 where l≥2 card X0 ≥ real nV / 2 card Y0 = gorder div 2
and X0 = V \ Y0 Y0⊆V
and graph-density Red ≤ gen-density Red X0 Y0
and Book V E p0-min Red Blue l k µ X0 Y0

proof −
have Red ̸= {}
using gd p0-min by (auto simp: graph-density-def)

then have gorder ≥ 2
by (metis Red-E card-mono equals0I finV subset-empty two-edges wellformed)

then have div2 : 0 < gorder div 2 gorder div 2 < gorder
by auto

188

then obtain Y0 where Y0 : card Y0 = gorder div 2 Y0⊆V
graph-density Red ≤ gen-density Red (V \Y0) Y0
by (metis complete Red-E exists-density-edge-density gen-density-commute)

define X0 where X0 ≡ V \ Y0
interpret Book V E p0-min Red Blue l k µ X0 Y0
proof
show X0⊆V disjnt X0 Y0
by (auto simp: X0-def disjnt-iff)

show p0-min ≤ gen-density Red X0 Y0
using X0-def Y0 gd gen-density-commute p0-min by auto

qed (use assms ‹Y0⊆V › in auto)
have False if l<2
using that unfolding less-2-cases-iff

proof
assume l = Suc 0
with Y0 div2 show False
by (metis RN-1 ′ no-Red-clique no-Blue-clique Red-Blue-RN Suc-leI kn0)

qed (use ln0 in auto)
with l-le-k have l≥2
by force

have card-X0 : card X0 ≥ nV /2
using Y0 ‹Y0⊆V › unfolding X0-def
by (simp add : card-Diff-subset finite-Y0)

then show thesis
using Book-axioms X0-def Y0 ‹2 ≤ l› that by blast

qed

Material that needs to be proved outside the book locales

As above, for Book ′

lemma (in No-Cliques) Basis-imp-Book ′:
assumes gd : p0-min ≤ graph-density Red
assumes l : 0<l l≤k
obtains X0 Y0 where l≥2 card X0 ≥ real nV / 2 card Y0 = gorder div 2 and

X0 = V \ Y0 Y0⊆V
and graph-density Red ≤ gen-density Red X0 Y0
and Book ′ V E p0-min Red Blue l k (real l / (real k + real l)) X0 Y0

proof −
define γ where γ ≡ real l / (real k + real l)
have 0 < γ γ < 1
using l by (auto simp: γ-def)

with assms Basis-imp-Book [of γ]
obtain X0 Y0 where ∗: l≥2 card X0 ≥ real nV / 2 card Y0 = gorder div 2 X0

= V \ Y0 Y0⊆V
graph-density Red ≤ gen-density Red X0 Y0 Book V E p0-min Red Blue l k γ

X0 Y0
by blast

then interpret Book V E p0-min Red Blue l k γ X0 Y0
by blast

have Book ′ V E p0-min Red Blue l k γ X0 Y0

189

using Book ′ γ-def by auto
with ∗ assms show ?thesis
using γ-def that by blast

qed

lemma (in No-Cliques) Far-9-2 :
fixes δ γ η::real
defines γ ≡ l / (real k + real l)
defines δ ≡ γ/20
assumes nV : real nV ≥ exp (−δ ∗ k) ∗ (k+l choose l)
assumes gd : graph-density Red ≥ 1−γ−η and p0-min-OK : p0-min ≤ 1−γ−η
assumes big : Big-Far-9-2 γ l
assumes γ ≤ 1/10 and η: 0≤η η ≤ γ/15
shows False

proof −
obtain X0 Y0 where l≥2 and card-X0 : card X0 ≥ real nV / 2
and card-Y0 : card Y0 = gorder div 2
and X0-def : X0 = V \ Y0 and Y0⊆V
and gd-le: graph-density Red ≤ gen-density Red X0 Y0
and Book ′ V E p0-min Red Blue l k γ X0 Y0
using Basis-imp-Book ′ assms p0-min no-Red-clique no-Blue-clique ln0 by auto

then interpret Book ′ V E p0-min Red Blue l k γ X0 Y0
by blast

show False
proof (intro Far-9-2-aux [of η])
show 1 − γ − η ≤ p0
using X0-def γ-def gd gd-le gen-density-commute p0-def by auto

qed (use assms card-X0 card-Y0 in auto)
qed

9.7 Theorem 9.1

An arithmetical lemma proved outside of the locales

lemma kl-choose:
fixes l k ::nat
assumes m<l k>0
defines PM ≡

∏
i<m. (l − real i) / (k+l−real i)

shows (k+l choose l) = (k+l−m choose (l−m)) / PM
proof −
have inj : inj-on (λi . i−m) {m..<l} — relating the power and binomials; maybe

easier using factorials
by (auto simp: inj-on-def)

have (
∏

i<l . (k+l−i) / (l−i)) / (
∏

i<m. (k+l−i) / (l−i))
= (

∏
i = m..<l . (k+l−i) / (l−i))

using prod-divide-nat-ivl [of 0 m l λi . (k+l−i) / (l−i)] ‹m < l›
by (simp add : atLeast0LessThan)

also have . . . = (
∏

i<l − m. (k+l−m − i) / (l−m−i))
apply (intro prod .reindex-cong [OF inj , symmetric])
by (auto simp: image-minus-const-atLeastLessThan-nat)

190

finally
have (

∏
i < l−m. (k+l−m − i) / (l−m−i))

= (
∏

i < l . (k+l−i) / (l−i)) / (
∏

i<m. (k+l−i) / (l−i))
by linarith

also have . . . = (k+l choose l) ∗ inverse (
∏

i<m. (k+l−i) / (l−i))
by (simp add : field-simps atLeast0LessThan binomial-altdef-of-nat)

also have . . . = (k+l choose l) ∗ PM
unfolding PM-def using ‹m < l› ‹k>0 ›
by (simp add : atLeast0LessThan flip: prod-inversef)

finally have (k+l−m choose (l−m)) = (k+l choose l) ∗ PM
by (simp add : atLeast0LessThan binomial-altdef-of-nat)

then show real(k+l choose l) = (k+l−m choose (l−m)) / PM
by auto

qed

context P0-min
begin

The proof considers a smaller graph, so l needs to be so big that the
smaller l ′ will be big enough.

definition Big-Far-9-1 :: real ⇒ nat ⇒ bool where
Big-Far-9-1 ≡ λµ l . l≥3 ∧ (∀ l ′ γ. real l ′ ≥ (10/11) ∗ µ ∗ real l −→ µ2 ≤ γ ∧

γ ≤ 1/10 −→ Big-Far-9-2 γ l ′)

The proof of theorem 10.1 requires a range of values

lemma Big-Far-9-1 :
assumes 0<µ0 µ0≤1/10
shows ∀∞l . ∀µ. µ0 ≤ µ ∧ µ ≤ 1/10 −→ Big-Far-9-1 µ l

proof −
have µ0 2 ≤ 1/10
using assms by (smt (verit , ccfv-threshold) le-divide-eq-1 mult-left-le power2-eq-square)
then have ∀∞l . ∀ γ. µ0 2 ≤ γ ∧ γ ≤ 1/10 −→ Big-Far-9-2 γ l
using assms by (intro Big-Far-9-2) auto

then obtain N where N : ∀ l≥N . ∀ γ. µ0 2 ≤ γ ∧ γ ≤ 1/10 −→ Big-Far-9-2 γ
l

using eventually-sequentially by auto
define M where M ≡ nat⌈11∗N / (10∗µ0)⌉
have (10/11) ∗ µ0 ∗ l ≥ N if l ≥ M for l
using that by (simp add : M-def ‹µ0>0 › mult-of-nat-commute pos-divide-le-eq)

with N have ∀ l≥M . ∀ l ′ γ. (10/11) ∗ µ0 ∗ l ≤ l ′ −→ µ0 2 ≤ γ ∧ γ ≤ 1 / 10
−→ Big-Far-9-2 γ l ′

by (smt (verit , ccfv-SIG) of-nat-le-iff)
then have ∀∞l . ∀ l ′ γ. (10/11) ∗ µ0 ∗ l ≤ l ′ −→ µ0 2 ≤ γ ∧ γ ≤ 1 / 10 −→

Big-Far-9-2 γ l ′
by (auto simp: eventually-sequentially)

moreover have ∀∞l . l≥3
by simp

ultimately show ?thesis

191

unfolding Big-Far-9-1-def
apply eventually-elim

by (smt (verit) ‹0<µ0 › mult-left-mono mult-right-mono of-nat-less-0-iff power-mono
zero-less-mult-iff)
qed

The text claims the result for all k and l, not just those sufficiently large,
but the o(k) function allowed in the exponent provides a fudge factor

theorem Far-9-1 :
fixes l k ::nat
fixes δ γ::real
defines γ ≡ real l / (real k + real l)
defines δ ≡ γ/20
assumes γ: γ ≤ 1/10
assumes big : Big-Far-9-1 γ l
assumes p0-min-91 : p0-min ≤ 1 − (1/10) ∗ (1 + 1/15)
shows RN k l ≤ exp (−δ∗k + 1) ∗ (k+l choose l)

proof (rule ccontr)
assume non: ¬ RN k l ≤ exp (−δ ∗ k + 1) ∗ (k+l choose l)
with RN-eq-0-iff have l>0 by force
with γ have l9k : 9∗l ≤ k
by (auto simp: γ-def divide-simps)

have l≤k
using γ-def γ nat-le-real-less by fastforce

with ‹l>0 › have k>0 by linarith
define ξ::real where ξ ≡ 1/15
define U-lower-bound-ratio where — Bhavik’s name
U-lower-bound-ratio ≡ λm. (1+ξ)^m ∗ (

∏
i<m. (l − real i) / (k+l − real i))

define n where n ≡ RN k l − 1
have l≥3
using big by (auto simp: Big-Far-9-1-def)

have k≥27
using l9k ‹l≥3 › by linarith

have exp 1 / (exp 1 − 2) < (27 ::real)
by (approximation 5)

also have RN27 : . . . ≤ RN k l
by (meson RN-3plus ′ ‹l≥3 › ‹k≥27 › le-trans numeral-le-real-of-nat-iff)

finally have exp 1 / (exp 1 − 2) < RN k l .
moreover have n < RN k l
using RN27 by (simp add : n-def)

moreover have 2 < exp (1 ::real)
by (approximation 5)

ultimately have nRNe: n/2 > RN k l / exp 1
by (simp add : n-def field-split-simps)

have (k+l choose l) / exp (−1 + δ∗k) < RN k l
by (smt (verit) divide-inverse exp-minus mult-minus-left mult-of-nat-commute

non)

192

then have (RN k l / exp 1) ∗ exp (δ∗k) > (k+l choose l)
unfolding exp-add exp-minus by (simp add : field-simps)

with nRNe have n2exp-gt : (n/2) ∗ exp (δ∗k) > (k+l choose l)
by (smt (verit , best) exp-gt-zero mult-le-cancel-right-pos)

then have nexp-gt : n ∗ exp (δ∗k) > (k+l choose l)
by simp

define V where V ≡ {..<n}
define E where E ≡ all-edges V
interpret Book-Basis V E
proof qed (auto simp: V-def E-def comp-sgraph.wellformed comp-sgraph.two-edges)
have [simp]: nV = n
by (simp add : V-def)

then obtain Red Blue
where Red-E : Red ⊆ E and Blue-def : Blue = E−Red
and no-Red-K : ¬ (∃K . size-clique k K Red)
and no-Blue-K : ¬ (∃K . size-clique l K Blue)

by (metis ‹n < RN k l› less-RN-Red-Blue)
have Blue-E : Blue ⊆ E and disjnt-Red-Blue: disjnt Red Blue
and Blue-eq : Blue = all-edges V − Red
using complete by (auto simp: Blue-def disjnt-iff E-def)

define is-good-clique where
is-good-clique ≡ λi K . clique K Blue ∧ K ⊆ V ∧

card (V ∩ (
⋂

w∈K . Neighbours Blue w))
≥ real i ∗ U-lower-bound-ratio (card K) − card K

have is-good-card : card K < l if is-good-clique i K for i K
using no-Blue-K that unfolding is-good-clique-def
by (metis nat-neq-iff size-clique-def size-clique-smaller)

define GC where GC ≡ {C . is-good-clique n C}
have GC ̸= {}
by (auto simp: GC-def is-good-clique-def U-lower-bound-ratio-def E-def V-def)

have GC ⊆ Pow V
by (auto simp: is-good-clique-def GC-def)

then have finite GC
by (simp add : finV finite-subset)

then obtain W where W ∈ GC and MaxW : Max (card ‘ GC) = card W
using ‹GC ̸= {}› obtains-MAX by blast

then have 49 : is-good-clique n W
using GC-def by blast

have max49 : ¬ is-good-clique n (insert x W) if x∈V \W for x
proof
assume x : is-good-clique n (insert x W)
then have card (insert x W) = Suc (card W)
using finV is-good-clique-def finite-subset that by fastforce

with x ‹finite GC › have Max (card ‘ GC) ≥ Suc (card W)
by (simp add : GC-def rev-image-eqI)

then show False
by (simp add : MaxW)

qed

193

have W⊆V
using 49 by (auto simp: is-good-clique-def)

define m where m ≡ card W
define γ ′ where γ ′ ≡ (l − real m) / (k+l−real m)
define η where η ≡ ξ ∗ γ ′

have Red-Blue-RN : ∃K ⊆ X . size-clique m K Red ∨ size-clique n K Blue
if card X ≥ RN m n X⊆V for m n and X
using partn-lst-imp-is-clique-RN [OF is-Ramsey-number-RN [of m n]] finV that

unfolding is-clique-RN-def size-clique-def clique-indep-def Blue-eq
by (metis clique-iff-indep finite-subset subset-trans)

define U where U ≡ V ∩ (
⋂

w∈W . Neighbours Blue w)
define EU where EU ≡ E ∩ Pow U
define RedU where RedU ≡ Red ∩ Pow U
define BlueU where BlueU ≡ Blue ∩ Pow U

have RN k l > 0
using ‹n < RN k l› by auto

have γ ′ > 0
using is-good-card [OF 49] by (simp add : γ ′-def m-def)

then have η > 0
by (simp add : η-def ξ-def)

have finite W
using ‹W ⊆ V › finV finite-subset by (auto simp: V-def)

have U ⊆ V and VUU : V ∩ U = U
by (force simp: U-def)+

have disjnt U W
using Blue-E not-own-Neighbour unfolding E-def V-def U-def disjnt-iff by

blast
have m<l
using 49 is-good-card m-def by blast

then have γ1516 : γ ′ ≤ 15/16
using γ-def γ by (simp add : γ ′-def divide-simps)

then have γ ′-le1 : (1+ξ) ∗ γ ′ ≤ 1
by (simp add : ξ-def)

have cardU : n ∗ U-lower-bound-ratio m ≤ m + card U
using 49 VUU unfolding is-good-clique-def U-def m-def by force

obtain [iff]: finite RedU finite BlueU RedU ⊆ EU
using BlueU-def EU-def RedU-def E-def V-def Red-E Blue-E fin-edges finite-subset

by blast
have card-RedU-le: card RedU ≤ card EU
by (metis EU-def E-def ‹RedU ⊆ EU › card-mono fin-all-edges finite-Int)

interpret UBB : Book-Basis U E ∩ Pow U p0-min
proof
fix e
assume e ∈ E ∩ Pow U

194

with two-edges show e ⊆ U card e = 2 by auto
next
show finite U
using ‹U ⊆ V › by (simp add : V-def finite-subset)

have x ∈ E if x ∈ all-edges U for x
using ‹U ⊆ V › all-edges-mono that complete E-def by blast

then show E ∩ Pow U = all-edges U
using comp-sgraph.wellformed ‹U ⊆ V › by (auto intro: e-in-all-edges-ss)

qed auto

have clique-W : size-clique m W Blue
using 49 is-good-clique-def size-clique-def V-def m-def by blast

define PM where PM ≡
∏

i<m. (l − real i) / (k+l−real i)
then have U-lower-m: U-lower-bound-ratio m = (1+ξ)^m ∗ PM
using U-lower-bound-ratio-def by blast

have prod-gt0 : PM > 0
unfolding PM-def using ‹m<l› by (intro prod-pos) auto

have kl-choose: real(k+l choose l) = (k+l−m choose (l−m)) / PM
unfolding PM-def using kl-choose ‹0 < k› ‹m < l› by blast

— Now a huge effort just to show that U is nontrivial. Proof probably shows its
cardinality exceeds a multiple of l
define ekl20 where ekl20 ≡ exp (k / (20∗(k+l)))
have ekl20-eq : exp (δ∗k) = ekl20^l

by (simp add : δ-def γ-def ekl20-def field-simps flip: exp-of-nat2-mult)
have ekl20 ≤ exp(1/20)
unfolding ekl20-def using ‹m < l› by fastforce

also have . . . ≤ (1+ξ)
unfolding ξ-def by (approximation 10)

finally have exp120 : ekl20 ≤ 1 + ξ .
have ekl20-gt0 : 0 < ekl20
by (simp add : ekl20-def)

have 3∗l + Suc l − q ≤ (k+q choose q) / exp(δ∗k) ∗ (1+ξ) ^ (l − q)
if 1≤q q≤l for q
using that

proof (induction q rule: nat-induct-at-least)
case base
have ekl20^l = ekl20^(l−1) ∗ ekl20
by (metis ‹0 < l› power-minus-mult)

also have . . . ≤ (1+ξ) ^ (l−1) ∗ ekl20
using ekl20-def exp120 power-mono by fastforce

also have . . . ≤ 2 ∗ (1+ξ) ^ (l−1)
proof −
have §: ekl20 ≤ 2
using ξ-def exp120 by linarith

from mult-right-mono [OF this, of (1+ξ) ^ (l−1)]
show ?thesis by (simp add : mult-ac ξ-def)

195

qed
finally have ekl20^l ≤ 2 ∗ (1+ξ) ^ (l−1)
by argo

then have 1/2 ≤ (1+ξ) ^ (l−1) / ekl20^l
using ekl20-def by auto

moreover have 4 ∗ real l / (1 + real k) ≤ 1/2
using l9k by (simp add : divide-simps)

ultimately have 4 ∗ real l / (1 + real k) ≤ (1+ξ) ^ (l−1) / ekl20^l
by linarith

then show ?case
by (simp add : field-simps ekl20-eq)

next
case (Suc q)
then have ‡: (1+ξ) ^ (l − q) = (1+ξ) ∗ (1+ξ) ^ (l − Suc q)
by (metis Suc-diff-le diff-Suc-Suc power .simps(2))

have real(k + q choose q) ≤ real(k + q choose Suc q) 0 ≤ (1+ξ) ^ (l − Suc
q)

using ‹Suc q ≤ l› l9k by (auto simp: ξ-def binomial-mono)
from mult-right-mono [OF this]
have (k + q choose q) ∗ (1+ξ) ^ (l − q) / exp (δ ∗ k) − 1
≤ (real (k + q choose q) + (k + q choose Suc q)) ∗ (1+ξ) ^ (l − Suc q) /

exp (δ ∗ k)
unfolding ‡ by (simp add : ξ-def field-simps add-increasing)

with Suc show ?case by force
qed
from ‹m<l› this [of l−m]
have 1 + 3∗l + real m ≤ (k+l−m choose (l−m)) / exp δ ^ k ∗ (1+ξ) ^ m
by (simp add : Suc-leI exp-of-nat2-mult)

also have . . . ≤ (k+l−m choose (l−m)) / exp (δ ∗ k) ∗ (1+ξ) ^ m
by (simp add : exp-of-nat2-mult)

also have . . . < PM ∗ (real n ∗ (1+ξ) ^ m)
proof −
have §: (k+l choose l) / exp (δ ∗ k) < n
by (simp add : less-eq-real-def nexp-gt pos-divide-less-eq)

show ?thesis
using mult-strict-left-mono [OF §, of PM ∗ (1+ξ) ^ m] kl-choose prod-gt0
by (auto simp: field-simps ξ-def)

qed
also have . . . = real n ∗ U-lower-bound-ratio m
by (simp add : U-lower-m)

finally have U-MINUS-M : 3∗l + 1 < real n ∗ U-lower-bound-ratio m − m
by linarith

then have cardU-gt : card U > 3∗l + 1
using cardU by linarith

with UBB .complete have card EU > 0 card U > 1
by (simp-all add : EU-def UBB .finV card-all-edges)

have BlueU-eq : BlueU = EU \ RedU
using Blue-eq complete by (fastforce simp: BlueU-def RedU-def EU-def V-def

E-def)

196

have [simp]: UBB .graph-size = card EU
using EU-def by blast

have γ ′ ≤ γ
using ‹m<l› ‹k>0 › by (simp add : γ-def γ ′-def field-simps)

have False if UBB .graph-density RedU < 1 − γ ′ − η
proof − — by maximality, etc.
have §: UBB .graph-density BlueU ≥ γ ′ + η
using that ‹card EU > 0 › card-RedU-le

by (simp add : BlueU-eq UBB .graph-density-def diff-divide-distrib card-Diff-subset)
have Nx : Neighbours BlueU x ∩ (U \ {x}) = Neighbours BlueU x for x
using that by (auto simp: BlueU-eq EU-def Neighbours-def)

have BlueU ⊆ E ∩ Pow U
using BlueU-eq EU-def by blast

with UBB .exists-density-edge-density [of 1 BlueU]
obtain x where x∈U and x : UBB .graph-density BlueU ≤ UBB .gen-density

BlueU {x} (U \{x})
by (metis UBB .complete ‹1 < UBB .gorder› card-1-singletonE insertI1

zero-less-one subsetD)
with § have γ ′ + η ≤ UBB .gen-density BlueU (U \{x}) {x}
using UBB .gen-density-commute by auto

then have ∗: (γ ′ + η) ∗ (card U − 1) ≤ card (Neighbours BlueU x)
using ‹BlueU ⊆ E ∩ Pow U › ‹card U > 1 › ‹x ∈ U ›

by (simp add : UBB .gen-density-def UBB .edge-card-eq-sum-Neighbours UBB .finV
divide-simps Nx)

have x : x ∈ V \W
using ‹x ∈ U › ‹U ⊆ V › ‹disjnt U W › by (auto simp: U-def disjnt-iff)

moreover
have is-good-clique n (insert x W)
unfolding is-good-clique-def

proof (intro conjI)
show clique (insert x W) Blue
proof (intro clique-insert)
show clique W Blue
using 49 is-good-clique-def by blast

show all-edges-betw-un {x} W ⊆ Blue
using ‹x∈U › by (auto simp: U-def all-edges-betw-un-def insert-commute

in-Neighbours-iff)
qed (use ‹W ⊆ V › ‹x ∈ V \W › in auto)

next
show insert x W ⊆ V
using ‹W ⊆ V › ‹x ∈ V \W › by auto

next
have NB-Int-U : Neighbours Blue x ∩ U = Neighbours BlueU x
using ‹x ∈ U › by (auto simp: BlueU-def U-def Neighbours-def)

have ulb-ins: U-lower-bound-ratio (card (insert x W)) = U-lower-bound-ratio
m ∗ (1+ξ) ∗ γ ′

using ‹x ∈ V \W › ‹finite W › by (simp add : U-lower-bound-ratio-def γ ′-def
m-def)

197

have n ∗ U-lower-bound-ratio (card (insert x W)) = n ∗ U-lower-bound-ratio
m ∗ (1+ξ) ∗ γ ′

by (simp add : ulb-ins)
also have . . . ≤ real (m + card U) ∗ (1+ξ) ∗ γ ′

using mult-right-mono [OF cardU , of (1+ξ) ∗ γ ′] ‹0 < η› ‹0 < γ ′› η-def
by argo

also have . . . ≤ m + card U ∗ (1+ξ) ∗ γ ′

using mult-left-mono [OF γ ′-le1 , of m] by (simp add : algebra-simps)
also have . . . ≤ Suc m + (γ ′ + η) ∗ (UBB .gorder − Suc 0)
using ∗ ‹x ∈ V \W › ‹finite W › cardU-gt γ1516
apply (simp add : U-lower-bound-ratio-def ξ-def η-def)
by (simp add : algebra-simps)

also have . . . ≤ Suc m + card (V ∩
⋂

(Neighbours Blue ‘ insert x W))
using ∗ NB-Int-U finV by (simp add : U-def Int-ac)

also have . . . = real (card (insert x W) + card (V ∩
⋂

(Neighbours Blue ‘
insert x W)))

using x ‹finite W › VUU by (auto simp: U-def m-def)
finally show n ∗ U-lower-bound-ratio (card(insert x W)) − card(insert x W)

≤ card (V ∩
⋂

(Neighbours Blue ‘ insert x W))
by simp

qed
ultimately show False
using max49 by blast

qed
then have gd-RedU-ge: UBB .graph-density RedU ≥ 1 − γ ′ − η by force

— Bhavik’s gamma’_le_gamma_iff
have γ ′γ2 : γ ′ < γ2 ←→ (real k ∗ real l) + (real l ∗ real l) < (real k ∗ real m)

+ (real l ∗ (real m ∗ 2))
using ‹m < l›

apply (simp add : γ ′-def γ-def eval-nat-numeral divide-simps; simp add : algebra-simps)
by (metis ‹k>0 › mult-less-cancel-left-pos of-nat-0-less-iff distrib-left)

also have . . . ←→ (l ∗ (k+l)) / (k + 2 ∗ l) < m
using ‹m < l› by (simp add : field-simps)

finally have γ ′γ2-iff : γ ′ < γ2 ←→ (l ∗ (k+l)) / (k + 2 ∗ l) < m .
— in both cases below, we find a blue clique of size l − m
have extend-Blue-clique: ∃K ′. size-clique l K ′ Blue
if K ⊆ U size-clique (l−m) K Blue for K

proof −
have K : card K = l−m clique K Blue
using that by (auto simp: size-clique-def)

define K ′ where K ′ ≡ K ∪ W
have card K ′ = l
unfolding K ′-def

proof (subst card-Un-disjnt)
show finite K finite W
using UBB .finV ‹K ⊆ U › finite-subset ‹finite W › by blast+

show disjnt K W
using ‹disjnt U W › ‹K ⊆ U › disjnt-subset1 by blast

198

show card K + card W = l
using K ‹m < l› m-def by auto

qed
moreover have clique K ′ Blue
using ‹clique K Blue› clique-W ‹K ⊆ U ›
unfolding K ′-def size-clique-def U-def
by (force simp: in-Neighbours-iff insert-commute intro: Ramsey .clique-Un)

ultimately show ?thesis
unfolding K ′-def size-clique-def using ‹K ⊆ U › ‹U ⊆ V › ‹W ⊆ V › by

auto
qed

show False
proof (cases γ ′ < γ2)
case True
with γ ′γ2 have YKK : γ∗k ≤ m
using ‹0<k› ‹m < l›
apply (simp add : γ-def field-simps)
by (smt (verit , best) distrib-left mult-left-mono of-nat-0-le-iff)

have ln1 ξ: ln (1+ξ) ∗ 20 ≥ 1
unfolding ξ-def by (approximation 10)

with YKK have §: m ∗ ln (1+ξ) ≥ δ ∗ k
unfolding δ-def using zero-le-one mult-mono by fastforce

have powerm: (1+ξ)^m ≥ exp (δ ∗ k)
using exp-mono [OF §]

by (smt (verit) η-def ‹0 < η› ‹0 < γ ′› exp-ln-iff exp-of-nat-mult zero-le-mult-iff)
have n ∗ (1+ξ)^m ≥ (k+l choose l)
by (smt (verit , best) mult-left-mono nexp-gt of-nat-0-le-iff powerm)

then have ∗∗: n ∗ U-lower-bound-ratio m ≥ (k+l−m choose (l−m))
using ‹m<l› prod-gt0 kl-choose by (auto simp: U-lower-m field-simps)

have m-le-choose: m ≤ (k+l−m−1 choose (l−m))
proof (cases m=0)
case False
have m ≤ (k+l−m−1 choose 1)
using ‹l≤k› ‹m<l› by simp

also have . . . ≤ (k+l−m−1 choose (l−m))
using False ‹l≤k› ‹m<l› by (intro binomial-mono) auto

finally have m-le-choose: m ≤ (k+l−m−1 choose (l−m)) .
then show ?thesis .

qed auto
have RN k (l−m) ≤ k + (l−m) − 2 choose (k − 1)
by (rule RN-le-choose-strong)

also have . . . ≤ (k+l−m−1 choose k)
using ‹l≤k› ‹m<l› choose-reduce-nat by simp

also have . . . = (k+l−m−1 choose (l−m−1))
using ‹m<l› by (simp add : binomial-symmetric [of k])

also have . . . = (k+l−m choose (l−m)) − (k+l−m−1 choose (l−m))
using ‹l≤k› ‹m<l› choose-reduce-nat by simp

199

also have . . . ≤ (k+l−m choose (l−m)) − m
using m-le-choose by linarith

finally have RN k (l−m) ≤ (k+l−m choose (l−m)) − m .
then have card U ≥ RN k (l−m)
using 49 ∗∗ VUU by (force simp: is-good-clique-def U-def m-def)

with Red-Blue-RN no-Red-K ‹U ⊆ V ›
obtain K where K ⊆ U size-clique (l−m) K Blue by meson
then show False
using no-Blue-K extend-Blue-clique by blast

next
case False
have YMK : γ−γ ′ ≤ m/k
using ln0 ‹m<l›
apply (simp add : γ-def γ ′-def divide-simps)
apply (simp add : algebra-simps)

by (smt (verit , best) mult-left-mono mult-right-mono nat-less-real-le of-nat-0-le-iff)

define δ ′ where δ ′ ≡ γ ′/20
have no-RedU-K : ¬ (∃K . UBB .size-clique k K RedU)
unfolding UBB .size-clique-def RedU-def

by (metis Int-subset-iff VUU all-edges-subset-iff-clique no-Red-K size-clique-def)
have (∃K . UBB .size-clique k K RedU) ∨ (∃K . UBB .size-clique (l−m) K

BlueU)
proof (rule ccontr)

assume neg : ¬ ((∃K . UBB .size-clique k K RedU) ∨ (∃K . UBB .size-clique
(l−m) K BlueU))

interpret UBB-NC : No-Cliques U E ∩ Pow U p0-min RedU BlueU l−m k
proof
show BlueU = E ∩ Pow U \ RedU
using BlueU-eq EU-def by fastforce

qed (use neg EU-def ‹RedU ⊆ EU › no-RedU-K ‹l≤k› in auto)
show False
proof (intro UBB-NC .Far-9-2)
have exp (δ∗k) ∗ exp (−δ ′∗k) = exp (γ∗k/20 − γ ′∗k/20)
unfolding δ-def δ ′-def by (simp add : mult-exp-exp)

also have . . . ≤ exp (m/20)
using YMK ‹0 < k› by (simp add : left-diff-distrib divide-simps)

also have . . . ≤ (1+ξ)^m
proof −
have ln (16 / 15) ∗ 20 ≥ (1 ::real)
by (approximation 5)

from mult-left-mono [OF this]
show ?thesis
by (simp add : ξ-def powr-def mult-ac flip: powr-realpow)

qed
finally have expexp: exp (δ∗k) ∗ exp (−δ ′∗k) ≤ (1+ξ) ^ m .

have exp (−δ ′∗k) ∗ (k + (l−m) choose (l−m)) = exp (−δ ′∗k) ∗ PM ∗ (k+l
choose l)

200

using ‹m < l› kl-choose by force
also have . . . < (n/2) ∗ exp (δ∗k) ∗ exp (−δ ′∗k) ∗ PM
using n2exp-gt prod-gt0 by auto

also have . . . ≤ (n/2) ∗ (1+ξ) ^ m ∗ PM
using expexp less-eq-real-def prod-gt0 by fastforce

also have . . . ≤ n ∗ U-lower-bound-ratio m − m — where I was stuck: the
"minus m"

using PM-def U-MINUS-M U-lower-bound-ratio-def ‹m < l› by fastforce
finally have exp (−δ ′∗k) ∗ (k + (l−m) choose (l−m)) ≤ n ∗ U-lower-bound-ratio

m − m
by linarith

also have . . . ≤ UBB .nV
using cardU by linarith

finally have exp (−δ ′∗k) ∗ (k + (l−m) choose (l−m)) ≤ UBB .nV .
then show exp (− ((l−m) / (k + real (l−m)) / 20) ∗ k) ∗ (k + (l−m)

choose (l−m)) ≤ UBB .nV
using ‹m < l› by (simp add : δ ′-def γ ′-def) argo

next
show 1 − real (l−m) / (real k + real (l−m)) − η ≤ UBB .graph-density

RedU
using gd-RedU-ge ‹γ ′ ≤ γ› ‹m < l› unfolding γ-def γ ′-def
by (smt (verit) less-or-eq-imp-le of-nat-add of-nat-diff)

have p0-min ≤ 1 − γ − η
using ‹γ ′ ≤ γ› γ p0-min-91 by (auto simp: η-def ξ-def)

also have . . . ≤ 1 − (l−m) / (real k + real (l−m)) − η
using ‹γ ′ ≤ γ› ‹m<l› by (simp add : γ-def γ ′-def algebra-simps)

finally show p0-min ≤ 1 − (l−m) / (real k + real (l−m)) − η .
next
have m ≤ l ∗ (k + real l) / (k + 2 ∗ real l)
using False γ ′γ2-iff by auto

also have . . . ≤ l ∗ (1 − (10/11)∗γ)
using γ ‹l>0 › by (simp add : γ-def field-split-simps)

finally have m ≤ real l ∗ (1 − (10/11)∗γ)
by force

then have real l − real m ≥ (10/11) ∗ γ ∗ l
by (simp add : algebra-simps)

then have Big-Far-9-2 γ ′ (l−m)
using False big ‹γ ′ ≤ γ› γ ‹m<l›
by (simp add : Big-Far-9-1-def)

then show Big-Far-9-2 ((l−m) / (real k + real (l−m))) (l−m)
by (simp add : γ ′-def ‹m < l› add-diff-eq less-or-eq-imp-le)

show (l−m) / (real k + real (l−m)) ≤ 1/10
using γ γ-def ‹m < l› by fastforce

show 0 ≤ η
using ‹0 < η› by linarith

show η ≤ (l−m) / (real k + real (l−m)) / 15
using mult-right-mono [OF ‹γ ′ ≤ γ›, of ξ]
by (simp add : η-def γ ′-def ‹m < l› ξ-def add-diff-eq less-or-eq-imp-le

mult .commute)

201

qed
qed
with no-RedU-K obtain K where K ⊆ U UBB .size-clique (l−m) K BlueU
by (meson UBB .size-clique-def)

then show False
using no-Blue-K extend-Blue-clique VUU
unfolding UBB .size-clique-def size-clique-def BlueU-def
by (metis Int-subset-iff all-edges-subset-iff-clique)

qed
qed

end

end

10 An exponential improvement closer to the diag-
onal

theory Closer-To-Diagonal
imports Far-From-Diagonal

begin

10.1 Lemma 10.2
context P0-min
begin

lemma error-10-2 :
assumes µ / real d > 1/200
shows ∀∞k . ok-fun-95b k + µ ∗ real k / real d ≥ k/200

proof −
have d>0 µ>0
using assms by (auto simp: divide-simps split : if-split-asm)

then have ∗: real k ≤ µ ∗ (real k ∗ 200) / real d for k
using assms by (fastforce simp: divide-simps less-eq-real-def)

have ∀∞k . |ok-fun-95b k | ≤ (µ/d − 1/200) ∗ k
using ok-fun-95b assms unfolding smallo-def
by (auto dest !: spec [where x = µ/d])

then show ?thesis
apply eventually-elim
using assms ‹d>0 › ∗
by (simp add : algebra-simps not-less abs-if add-increasing split : if-split-asm)

qed

The "sufficiently large" assumptions are problematical. The proof’s cal-
culation for (3 :: ′a) / (20 :: ′a) < γ is sharp. We need a finite gap for the limit
to exist. We can get away with 1/300.

202

definition x320 ::real where x320 ≡ 3/20 + 1/300

lemma error-10-2-True: ∀∞k . ok-fun-95b k + x320 ∗ real k / real 30 ≥ k/200
unfolding x320-def
by (intro error-10-2) auto

lemma error-10-2-False: ∀∞k . ok-fun-95b k + (1/10) ∗ real k / real 15 ≥ k/200
by (intro error-10-2) auto

definition Big-Closer-10-2 ≡ λµ l . Big-Far-9-3 µ l ∧ Big-Far-9-5 µ l
∧ (∀ k≥l . ok-fun-95b k + (if µ > x320 then µ∗k/30 else µ∗k/15) ≥

k/200)

lemma Big-Closer-10-2 :
assumes 1/10≤µ1 µ1<1
shows ∀∞l . ∀µ. 1/10 ≤ µ ∧ µ ≤ µ1 −→ Big-Closer-10-2 µ l

proof −
have T : ∀∞l . ∀ k≥l . (∀µ. x320 ≤ µ ∧ µ ≤ µ1 −→ k/200 ≤ ok-fun-95b k +

µ∗k / real 30)
using assms
apply (intro eventually-all-ge-at-top eventually-all-geI0 error-10-2-True)
apply (auto simp: mult-right-mono elim!: order-trans)
done

have F : ∀∞l . ∀ k≥l . (∀µ. 1/10 ≤ µ ∧ µ ≤ µ1 −→ k/200 ≤ ok-fun-95b k +
µ∗k / real 15)

using assms
apply (intro eventually-all-ge-at-top eventually-all-geI0 error-10-2-False)
by (smt (verit , ccfv-SIG) divide-right-mono mult-right-mono of-nat-0-le-iff)

have ∀∞l . ∀ k≥l . (∀µ. 1/10 ≤ µ ∧ µ ≤ µ1 −→ k/200 ≤ ok-fun-95b k + (if µ
> x320 then µ∗k/30 else µ∗k/15))

using assms
apply (split if-split)
unfolding eventually-conj-iff all-imp-conj-distrib all-conj-distrib
by (force intro: eventually-mono [OF T] eventually-mono [OF F])

then show ?thesis
using assms Big-Far-9-3 [of 1/10] Big-Far-9-5 [of 1/10]
unfolding Big-Closer-10-2-def eventually-conj-iff all-imp-conj-distrib
by (force simp: elim!: eventually-mono)

qed

end

A little tricky to express since the Book locale assumes that there are no
cliques in the original graph (page 10). So it’s a contrapositive

lemma (in Book ′) Closer-10-2-aux :
assumes 0 : real (card X0) ≥ nV /2 card Y0 ≥ nV div 2 p0 ≥ 1−γ

— These are the assumptions about the red density of the graph
assumes γ: 1/10 ≤ γ γ ≤ 1/5
assumes nV : real nV ≥ exp (−k/200) ∗ (k+l choose l)

203

assumes big : Big-Closer-10-2 γ l
shows False

proof −
define R where R ≡ Step-class {red-step}
define t where t ≡ card R
define δ::real where δ ≡ 1/200
have γ01 : 0 < γ γ < 1
using ln0 l-le-k by (auto simp: γ-def)

have t<k
unfolding t-def R-def using γ01 red-step-limit by blast

have big93 : Big-Far-9-3 γ l
using big by (auto simp: Big-Closer-10-2-def Big-Far-9-2-def)

have t23 : t ≥ 2∗k / 3
unfolding t-def R-def

proof (rule Far-9-3)
have min (1/200) (l / (real k + real l) / 20) = 1/200

using γ ln0 by (simp add : γ-def)
then show exp (− min (1/200) (γ / 20) ∗ real k) ∗ real (k+l choose l) ≤ nV

using nV divide-real-def inverse-eq-divide minus-mult-right mult .commute
γ-def

by (metis of-int-of-nat-eq of-int-minus)
show 1/4 ≤ p0
using γ 0 by linarith

show Big-Far-9-3 γ l
using γ-def big93 by blast

qed (use assms γ-def in auto)

have card (Yseq halted-point) ≥
exp (−δ ∗ k + ok-fun-95b k) ∗ (1−γ) powr (γ∗t / (1−γ)) ∗

((1−γ)/(1−γ))^t
∗ exp (γ ∗ (real t)2 / (2∗k)) ∗ (k−t+l choose l)

proof (rule order-trans [OF - Far-9-5])
show exp (−δ ∗ k) ∗ real (k+l choose l) ≤ real nV
using nV by (auto simp: δ-def)

show 1/2 ≤ 1 − γ − 0
using divide-le-eq-1 l-le-k γ-def by fastforce

next
show Big-Far-9-5 γ l
using big by (simp add : Big-Closer-10-2-def Big-Far-9-2-def γ-def)

qed (use 0 kn0 in ‹auto simp flip: t-def γ-def R-def ›)
then have 52 : card (Yseq halted-point) ≥

exp (−δ ∗ k + ok-fun-95b k) ∗ (1−γ) powr (γ∗t / (1−γ)) ∗ exp (γ
∗ (real t)2 / (2∗k)) ∗ (k−t+l choose l)

using γ by simp

define gamf where gamf ≡ λx ::real . (1−x) powr (1/(1−x))
have deriv-gamf : ∃ y . DERIV gamf x :> y ∧ y ≤ 0 if 0<a a≤x x≤b b<1 for

a b x
unfolding gamf-def

204

using that ln-less-self [of 1−x]
by (force intro!: DERIV-powr derivative-eq-intros simp: divide-simps mult-le-0-iff

simp del : ln-less-self)
have (1−γ) powr (γ∗t / (1−γ)) ∗ exp (γ ∗ (real t)2 / (2∗k)) ≥ exp (δ∗k −

ok-fun-95b k)
proof (cases γ > x320)
case True
then have ok-fun-95b k + γ∗k / 30 ≥ k/200
using big l-le-k by (auto simp: Big-Closer-10-2-def Big-Far-9-2-def)

with True kn0 have δ ∗ k − ok-fun-95b k ≤ (γ/30) ∗ k
by (simp add : δ-def)

also have . . . ≤ 3 ∗ γ ∗ (real t)2 / (40∗k)
using True mult-right-mono [OF mult-mono [OF t23 t23], of 3∗γ / (40∗k)]

‹k>0 ›
by (simp add : power2-eq-square x320-def)

finally have †: δ∗k − ok-fun-95b k ≤ 3 ∗ γ ∗ (real t)2 / (40∗k) .

have gamf γ ≥ gamf (1/5)
by (smt (verit , best) DERIV-nonpos-imp-nonincreasing [of γ 1/5 gamf] γ

γ01 deriv-gamf divide-less-eq-1)
moreover have ln (gamf (1/5)) ≥ −1/3 + 1/20
unfolding gamf-def by (approximation 10)

moreover have gamf (1/5) > 0
by (simp add : gamf-def)

ultimately have gamf γ ≥ exp (−1/3 + 1/20)
using ln-ge-iff by auto

from powr-mono2 [OF - - this]
have (1−γ) powr (γ∗t / (1−γ)) ≥ exp (−17/60) powr (γ∗t)
unfolding gamf-def using γ01 powr-powr by fastforce

from mult-left-mono [OF this, of exp (γ ∗ (real t)2 / (2∗k))]
have (1−γ) powr (γ∗t / (1−γ)) ∗ exp (γ ∗ (real t)2 / (2∗k)) ≥ exp (−17/60

∗ (γ∗t) + (γ ∗ (real t)2 / (2∗k)))
by (smt (verit) mult .commute exp-add exp-ge-zero exp-powr-real)

moreover have (−17/60 ∗ (γ∗t) + (γ ∗ (real t)2 / (2∗k))) ≥ (3∗γ ∗ (real t)2
/ (40∗k))

using t23 ‹k>0 › ‹γ>0 › by (simp add : divide-simps eval-nat-numeral)
ultimately have (1−γ) powr (γ∗t / (1−γ)) ∗ exp (γ ∗ (real t)2 / (2∗k)) ≥

exp (3∗γ ∗ (real t)2 / (40∗k))
by (smt (verit) exp-mono)

with † show ?thesis
by (smt (verit , best) exp-le-cancel-iff)

next
case False
then have ok-fun-95b k + γ∗k/15 ≥ k/200
using big l-le-k by (auto simp: Big-Closer-10-2-def Big-Far-9-2-def)

with kn0 have δ ∗ k − ok-fun-95b k ≤ (γ/15) ∗ k
by (simp add : δ-def x320-def)

also have . . . ≤ 3 ∗ γ ∗ (real t)2 / (20∗k)
using γ mult-right-mono [OF mult-mono [OF t23 t23], of 3∗γ / (40∗k)] kn0

205

by (simp add : power2-eq-square field-simps)
finally have †: δ∗k − ok-fun-95b k ≤ 3 ∗ γ ∗ (real t)2 / (20∗k) .

have gamf γ ≥ gamf x320
using False γ
by (intro DERIV-nonpos-imp-nonincreasing [of γ x320 gamf] deriv-gamf)

(auto simp: x320-def)
moreover have ln (gamf x320) ≥ −1/3 + 1/10
unfolding gamf-def x320-def by (approximation 6)

moreover have gamf x320 > 0
by (simp add : gamf-def x320-def)

ultimately have gamf γ ≥ exp (−1/3 + 1/10)
using ln-ge-iff by auto

from powr-mono2 [OF - - this]
have (1−γ) powr (γ∗t / (1−γ)) ≥ exp (−7/30) powr (γ∗t)
unfolding gamf-def using γ01 powr-powr by fastforce

from mult-left-mono [OF this, of exp (γ ∗ (real t)2 / (2∗k))]
have (1−γ) powr (γ∗t / (1−γ)) ∗ exp (γ ∗ (real t)2 / (2∗k)) ≥ exp (−7/30

∗ (γ∗t) + (γ ∗ (real t)2 / (2∗k)))
by (smt (verit) mult .commute exp-add exp-ge-zero exp-powr-real)

moreover have (−7/30 ∗ (γ∗t) + (γ ∗ (real t)2 / (2∗k))) ≥ (3∗γ ∗ (real t)2
/ (20∗k))

using t23 ‹k>0 › ‹γ>0 › by (simp add : divide-simps eval-nat-numeral)
ultimately have (1−γ) powr (γ∗t / (1−γ)) ∗ exp (γ ∗ (real t)2 / (2∗k)) ≥

exp (3∗γ ∗ (real t)2 / (20∗k))
by (smt (verit) exp-mono)

with † show ?thesis
by (smt (verit , best) exp-le-cancel-iff)

qed
then have 1 ≤ exp (−δ∗k + ok-fun-95b k) ∗ (1−γ) powr (γ ∗ t / (1−γ)) ∗ exp

(γ ∗ (real t)2 / (2 ∗ k))
by (simp add : exp-add exp-diff mult-ac pos-divide-le-eq)

then have (k−t+l choose l) ≤
exp (−δ ∗ k + ok-fun-95b k) ∗ (1−γ) powr (γ∗t / (1−γ)) ∗ exp (γ ∗ (real

t)2 / (2∗k)) ∗ (k−t+l choose l)
by auto

with 52 have (k−t+l choose l) ≤ card (Yseq halted-point) by linarith
then show False
using Far-9-2-conclusion by (simp flip: R-def t-def)

qed

Material that needs to be proved outside the book locales

lemma (in No-Cliques) Closer-10-2 :
fixes γ::real
defines γ ≡ l / (real k + real l)
assumes nV : real nV ≥ exp (− real k/200) ∗ (k+l choose l)
assumes gd : graph-density Red ≥ 1−γ and p0-min-OK : p0-min ≤ 1−γ
assumes big : Big-Closer-10-2 γ l and l≤k
assumes γ: 1/10 ≤ γ γ ≤ 1/5

206

shows False
proof −
obtain X0 Y0 where l≥2 and card-X0 : card X0 ≥ nV /2
and card-Y0 : card Y0 = gorder div 2
and X0-def : X0 = V \ Y0 and Y0⊆V
and gd-le: graph-density Red ≤ gen-density Red X0 Y0
and Book ′ V E p0-min Red Blue l k γ X0 Y0
using Basis-imp-Book ′ assms order .trans ln0 by blast

then interpret Book ′ V E p0-min Red Blue l k γ X0 Y0
by blast

show False
proof (intro Closer-10-2-aux)
show 1 − γ≤ p0
using X0-def γ-def gd gd-le gen-density-commute p0-def by auto

qed (use assms card-X0 card-Y0 in auto)
qed

10.2 Theorem 10.1
context P0-min
begin

definition Big101a ≡ λk . 2 + real k / 2 ≤ exp (of-int⌊k/10 ⌋ ∗ 2 − k/200)

definition Big101b ≡ λk . (real k)2 − 10 ∗ real k > (k/10) ∗ real(10 + 9∗k)

The proof considers a smaller graph, so l needs to be so big that the
smaller l ′ will be big enough.

definition Big101c ≡ λγ0 l . ∀ l ′ γ. l ′ ≥ nat ⌊2/5 ∗ l⌋ −→ γ0 ≤ γ −→ γ ≤ 1/10
−→ Big-Far-9-1 γ l ′

definition Big101d ≡ λl . (∀ l ′ γ. l ′ ≥ nat ⌊2/5 ∗ l⌋ −→ 1/10 ≤ γ −→ γ ≤ 1/5
−→ Big-Closer-10-2 γ l ′)

definition Big-Closer-10-1 ≡ λγ0 l . l≥9 ∧ (∀ k≥l . Big101c γ0 k ∧ Big101d k ∧
Big101a k ∧ Big101b k)

lemma Big-Closer-10-1-upward : [[Big-Closer-10-1 γ0 l ; l ≤ k ; γ0 ≤ γ]] =⇒ Big-Closer-10-1
γ k
unfolding Big-Closer-10-1-def Big101c-def by (meson order .trans)

The need for γ0 is unfortunate, but it seems simpler to hide the precise
value of this term in the main proof.

lemma Big-Closer-10-1 :
fixes γ0 ::real
assumes γ0>0
shows ∀∞l . Big-Closer-10-1 γ0 l

proof −
have a: ∀∞k . Big101a k

207

unfolding Big101a-def by real-asymp
have b: ∀∞k . Big101b k
unfolding Big101b-def by real-asymp

have c: ∀∞l . Big101c γ0 l
proof −
have ∀∞l . ∀ γ. γ0 ≤ γ ∧ γ ≤ 1/10 −→ Big-Far-9-1 γ l
using Big-Far-9-1 ‹γ0>0 › eventually-sequentially order .trans by blast

then obtain N where N : ∀ l≥N . ∀ γ. γ0 ≤ γ ∧ γ ≤ 1/10 −→ Big-Far-9-1
γ l

using eventually-sequentially by auto
define M where M ≡ nat⌈5∗N / 2 ⌉
have nat⌊(2/5) ∗ l⌋ ≥ N if l ≥ M for l
using that assms by (simp add : M-def le-nat-floor)

with N have ∀ l≥M . ∀ l ′ γ. nat⌊(2/5) ∗ l⌋ ≤ l ′ −→ γ0 ≤ γ ∧ γ ≤ 1/10 −→
Big-Far-9-1 γ l ′

by (meson order .trans)
then show ?thesis
by (auto simp: Big101c-def eventually-sequentially)

qed
have d : ∀∞l . Big101d l
proof −
have ∀∞l . ∀ γ. 1/10 ≤ γ ∧ γ ≤ 1/5 −→ Big-Closer-10-2 γ l
using assms Big-Closer-10-2 [of 1/5] by linarith

then obtain N where N : ∀ l≥N . ∀ γ. 1/10 ≤ γ ∧ γ ≤ 1/5 −→ Big-Closer-10-2
γ l

using eventually-sequentially by auto
define M where M ≡ nat⌈5∗N / 2 ⌉
have nat⌊(2/5) ∗ l⌋ ≥ N if l ≥ M for l
using that assms by (simp add : M-def le-nat-floor)

with N have ∀ l≥M . ∀ l ′ γ. l ′ ≥ nat ⌊2/5 ∗ l⌋ −→ 1/10 ≤ γ ∧ γ ≤ 1/5 −→
Big-Closer-10-2 γ l ′

by (smt (verit , ccfv-SIG) of-nat-le-iff)
then show ?thesis
by (auto simp: eventually-sequentially Big101d-def)

qed
show ?thesis
using a b c d eventually-all-ge-at-top eventually-ge-at-top
unfolding Big-Closer-10-1-def eventually-conj-iff all-imp-conj-distrib
by blast

qed

The strange constant γ0 is needed for the case where we consider a
subgraph; see near the end of this proof

theorem Closer-10-1 :
fixes l k ::nat
fixes δ γ::real
defines γ ≡ real l / (real k + real l)
defines δ ≡ γ/40
defines γ0 ≡ min γ (0 .07) — Since 36 ≤ k, the lower bound (1 :: ′a) / (10 :: ′a)

208

− (1 :: ′a) / (36 :: ′a) works
assumes big : Big-Closer-10-1 γ0 l
assumes γ: γ ≤ 1/5
assumes p0-min-101 : p0-min ≤ 1 − 1/5
shows RN k l ≤ exp (−δ∗k + 3) ∗ (k+l choose l)

proof (rule ccontr)
assume non: ¬ RN k l ≤ exp (−δ∗k + 3) ∗ (k+l choose l)
have l≤k
using γ-def γ nat-le-real-less by fastforce

moreover have l≥9
using big by (simp add : Big-Closer-10-1-def)

ultimately have l>0 k>0 l≥3 by linarith+
then have l4k : 4∗l ≤ k
using γ by (auto simp: γ-def divide-simps)

have k≥36
using ‹l≥9 › l4k by linarith

have exp-gt21 : exp (x + 2) > exp (x + 1) for x ::real
by auto

have exp2 : exp (2 ::real) = exp 1 ∗ exp 1
by (simp add : mult-exp-exp)

have Big91-I :
∧

l ′ µ. [[l ′ ≥ nat ⌊2/5 ∗ l⌋; γ0 ≤ µ; µ ≤ 1/10]] =⇒ Big-Far-9-1
µ l ′

using big by (meson Big101c-def Big-Closer-10-1-def order .refl)
show False
proof (cases γ ≤ 1/10)
case True
have γ>0
using ‹0 < l› γ-def by auto

have RN k l ≤ exp (−δ∗k + 1) ∗ (k+l choose l)
proof (intro order .trans [OF Far-9-1] strip)
show Big-Far-9-1 (l / (real k + real l)) l
proof (intro Big91-I)
show l ≥ nat ⌊2/5 ∗ l⌋
by linarith

qed (use True γ0-def γ-def in auto)
next
show exp (− (l / (k + real l) / 20) ∗ k + 1) ∗ (k+l choose l) ≤ exp (−δ∗k

+ 1) ∗ (k+l choose l)
by (smt (verit , best) ‹0 < γ› γ-def δ-def exp-mono frac-le mult-right-mono

of-nat-0-le-iff)
qed (use ‹l≥9 › p0-min-101 True γ-def in auto)
then show False
using non exp-gt21 by (smt (verit , ccfv-SIG) mult-right-mono of-nat-0-le-iff)

next
case False
with ‹l>0 › have γ>0 γ>1/10 and k9l : k < 9∗l
by (auto simp: γ-def)

— Much overlap with the proof of 9.2, but key differences too
define U-lower-bound-ratio where

209

U-lower-bound-ratio ≡ λm. (
∏

i<m. (l − real i) / (k+l − real i))
define n where n ≡ nat⌈RN k l − 1 ⌉
have k≥12
using l4k ‹l≥3 › by linarith

have exp 1 / (exp 1 − 2) < (12 ::real)
by (approximation 5)

also have RN12 : . . . ≤ RN k l
by (meson RN-3plus ′ ‹l≥3 › ‹k≥12 › le-trans numeral-le-real-of-nat-iff)

finally have exp 1 / (exp 1 − 2) < RN k l .
moreover have n < RN k l
using RN12 by (simp add : n-def)

moreover have 2 < exp (1 ::real)
by (approximation 5)

ultimately have nRNe: n/2 > RN k l / exp 1
by (simp add : n-def field-split-simps)

have (k+l choose l) / exp (−3 + δ∗k) < RN k l
by (smt (verit) divide-inverse exp-minus mult-minus-left mult-of-nat-commute

non)
then have (k+l choose l) < (RN k l / exp 2) ∗ exp (δ∗k − 1)
by (simp add : divide-simps exp-add exp-diff flip: exp-add)

also have . . . ≤ (n/2) ∗ exp (δ∗k − 2)
using nRNe by (simp add : divide-simps exp-diff)

finally have n2exp-gt ′: (n/2) ∗ exp (δ∗k) > (k+l choose l) ∗ exp 2
by (metis exp-diff exp-gt-zero linorder-not-le pos-divide-le-eq times-divide-eq-right)
then have n2exp-gt : (n/2) ∗ exp (δ∗k) > (k+l choose l)
by (smt (verit , best) mult-le-cancel-left1 of-nat-0-le-iff one-le-exp-iff)

then have nexp-gt : n ∗ exp (δ∗k) > (k+l choose l)
using less-le-trans linorder-not-le by force

define V where V ≡ {..<n}
define E where E ≡ all-edges V
interpret Book-Basis V E

proof qed (auto simp: V-def E-def comp-sgraph.wellformed comp-sgraph.two-edges)
have [simp]: nV = n
by (simp add : V-def)

then obtain Red Blue
where Red-E : Red ⊆ E and Blue-def : Blue = E−Red
and no-Red-K : ¬ (∃K . size-clique k K Red)
and no-Blue-K : ¬ (∃K . size-clique l K Blue)

by (metis ‹n < RN k l› less-RN-Red-Blue)
have Blue-E : Blue ⊆ E and disjnt-Red-Blue: disjnt Red Blue and Blue-eq :

Blue = all-edges V − Red
using complete by (auto simp: Blue-def disjnt-iff E-def)

define is-good-clique where
is-good-clique ≡ λi K . clique K Blue ∧ K ⊆ V

∧ card (V ∩ (
⋂

w∈K . Neighbours Blue w))
≥ i ∗ U-lower-bound-ratio (card K) − card K

have is-good-card : card K < l if is-good-clique i K for i K

210

using no-Blue-K that unfolding is-good-clique-def
by (metis nat-neq-iff size-clique-def size-clique-smaller)

define max-m where max-m ≡ Suc (nat ⌊l − k/9 ⌋)
define GC where GC ≡ {C . is-good-clique n C ∧ card C ≤ max-m}
have maxm-bounds: l − k/9 ≤ max-m max-m ≤ l+1 − k/9 max-m > 0
using k9l unfolding max-m-def by linarith+

then have GC ̸= {}
by (auto simp: GC-def is-good-clique-def U-lower-bound-ratio-def E-def V-def

intro: exI [where x={}])
have GC ⊆ Pow V
by (auto simp: is-good-clique-def GC-def)

then have finite GC
by (simp add : finV finite-subset)

then obtain W where W ∈ GC and MaxW : Max (card ‘ GC) = card W
using ‹GC ̸= {}› obtains-MAX by blast

then have 53 : is-good-clique n W
using GC-def by blast

then have W⊆V
by (auto simp: is-good-clique-def)

define m where m ≡ card W
define γ ′ where γ ′ ≡ (l − real m) / (k+l−real m)

have max53 : ¬ (is-good-clique n (insert x W) ∧ card (insert x W) ≤ max-m)
if x∈V \W for x

proof — Setting up the case analysis for γ ′

assume x : is-good-clique n (insert x W) ∧ card (insert x W) ≤ max-m
then have card (insert x W) = Suc (card W)
using finV is-good-clique-def finite-subset that by fastforce

with x ‹finite GC › have Max (card ‘ GC) ≥ Suc (card W)
by (metis (no-types, lifting) GC-def Max-ge finite-imageI image-iff mem-Collect-eq)
then show False
by (simp add : MaxW)

qed
then have clique-cases: m < max-m ∧ (∀ x∈V \W . ¬ is-good-clique n (insert

x W)) ∨ m = max-m
using GC-def ‹W ∈ GC › ‹W ⊆ V › finV finite-subset m-def by fastforce

have Red-Blue-RN : ∃K ⊆ X . size-clique m K Red ∨ size-clique n K Blue
if card X ≥ RN m n X⊆V for m n and X
using partn-lst-imp-is-clique-RN [OF is-Ramsey-number-RN [of m n]] finV

that
unfolding is-clique-RN-def size-clique-def clique-indep-def Blue-eq
by (metis clique-iff-indep finite-subset subset-trans)

define U where U ≡ V ∩ (
⋂

w∈W . Neighbours Blue w)
have RN k l > 0
by (metis RN-eq-0-iff gr0I ‹k>0 › ‹l>0 ›)

with ‹n < RN k l› have n-less: n < (k+l choose l)
by (metis add .commute RN-commute RN-le-choose le-trans linorder-not-less)

211

have γ ′ > 0
using is-good-card [OF 53] by (simp add : γ ′-def m-def)

have finite W
using ‹W ⊆ V › finV finite-subset by (auto simp: V-def)

have U ⊆ V
by (force simp: U-def)

then have VUU : V ∩ U = U
by blast

have disjnt U W
using Blue-E not-own-Neighbour unfolding E-def V-def U-def disjnt-iff by

blast
have m<l
using 53 is-good-card m-def by blast

have γ ′ ≤ 1
using ‹m<l› by (simp add : γ ′-def divide-simps)

have cardU : n ∗ U-lower-bound-ratio m ≤ m + card U
using 53 VUU unfolding is-good-clique-def m-def U-def by force

have clique-W : size-clique m W Blue
using 53 is-good-clique-def m-def size-clique-def V-def by blast

have prod-gt0 : U-lower-bound-ratio m > 0
unfolding U-lower-bound-ratio-def using ‹m<l› by (intro prod-pos) auto

have kl-choose: real(k+l choose l) = (k+l−m choose (l−m)) / U-lower-bound-ratio
m

unfolding U-lower-bound-ratio-def using kl-choose ‹0 < k› ‹m < l› by blast

— in both cases below, we find a blue clique of size l − m
have extend-Blue-clique: ∃K ′. size-clique l K ′ Blue
if K ⊆ U size-clique (l−m) K Blue for K

proof −
have K : card K = l−m clique K Blue
using that by (auto simp: size-clique-def)

define K ′ where K ′ ≡ K ∪ W
have card K ′ = l
unfolding K ′-def

proof (subst card-Un-disjnt)
show finite K finite W
using finV ‹K ⊆ U › ‹U⊆V › finite-subset ‹finite W › that by meson+

show disjnt K W
using ‹disjnt U W › ‹K ⊆ U › disjnt-subset1 by blast

show card K + card W = l
using K ‹m < l› m-def by auto

qed
moreover have clique K ′ Blue
using ‹clique K Blue› clique-W ‹K ⊆ U ›
unfolding K ′-def size-clique-def U-def
by (force simp: in-Neighbours-iff insert-commute intro: Ramsey .clique-Un)

ultimately show ?thesis

212

unfolding K ′-def size-clique-def using ‹K ⊆ U › ‹U ⊆ V › ‹W ⊆ V › by
auto

qed

have γ ′ ≤ γ
using ‹m<l› by (simp add : γ-def γ ′-def field-simps)

consider m < max-m | m = max-m
using clique-cases by blast

then consider m < max-m γ ′ ≥ 1/10 | 1/10 − 1/k ≤ γ ′ ∧ γ ′ ≤ 1/10
proof cases
case 1
then have γ ′ ≥ 1/10
using ‹γ>1/10 › ‹k>0 › maxm-bounds by (auto simp: γ-def γ ′-def)

with 1 that show thesis by blast
next
case 2
then have γ ′-le110 : γ ′ ≤ 1/10
using ‹γ>1/10 › ‹k>0 › maxm-bounds by (auto simp: γ-def γ ′-def)

have 1/10 − 1/k ≤ γ ′

proof −
have §: l−m ≥ k/9 − 1
using ‹γ>1/10 › ‹k>0 › 2 by (simp add : max-m-def γ-def) linarith

have 1/10 − 1/k ≤ 1 − k / (10∗k/9 − 1)
using γ ′-le110 ‹m<l› ‹k>0 › by (simp add : γ ′-def field-simps)

also have . . . ≤ 1 − k / (k + l − m)
using ‹l≤k› ‹m<l› § by (simp add : divide-left-mono)

also have . . . = γ ′

using ‹l>0 › ‹l≤k› ‹m<l› ‹k>0 › by (simp add : γ ′-def divide-simps)
finally show 1/10 − 1 / real k ≤ γ ′ .

qed
with γ ′-le110 that show thesis
by linarith

qed
note γ ′-cases = this
have 110 : 1/10 − 1/k ≤ γ ′

using γ ′-cases by (smt (verit , best) divide-nonneg-nonneg of-nat-0-le-iff)
have (real k)2 − 10 ∗ real k ≤ (l−m) ∗ (10 + 9∗k)
using 110 ‹m<l› ‹k>0 ›
by (simp add : γ ′-def field-split-simps power2-eq-square)

with big ‹k≥l› have k/10 ≤ l−m
unfolding Big101b-def Big-Closer-10-1-def by (smt (verit , best) mult-right-mono

of-nat-0-le-iff of-nat-mult)
then have k10-lm: nat ⌊k/10 ⌋ ≤ l − m
by linarith

have lm-ge-25 : nat ⌊2/5 ∗ l⌋ ≤ l − m
using False l4k k10-lm by linarith

— As with 9: a huge effort just to show that U is nontrivial. Proof actually

213

shows its cardinality exceeds a small multiple of l (7/5).
have l + Suc l − q ≤ (k+q choose q) / exp(δ∗k)
if nat⌊k/10 ⌋ ≤ q q≤l for q
using that

proof (induction q rule: nat-induct-at-least)
case base
have †: 0 < 10 + 10 ∗ real-of-int ⌊k/10 ⌋ / k
using ‹k>0 › by (smt (verit) divide-nonneg-nonneg of-nat-0-le-iff of-nat-int-floor)
have ln9 : ln (10 ::real) ≥ 2
by (approximation 5)

have l + real (Suc l − nat⌊k/10 ⌋) ≤ 2 + k/2
using l4k by linarith

also have . . . ≤ exp(of-int⌊k/10 ⌋ ∗ 2 − k/200)
using big by (simp add : Big101a-def Big-Closer-10-1-def ‹l ≤ k›)

also have . . . ≤ exp(⌊k/10 ⌋ ∗ ln(10) − k/200)
by (intro exp-mono diff-mono mult-left-mono ln9) auto

also have . . . ≤ exp(⌊k/10 ⌋ ∗ ln(10)) ∗ exp (−real k/200)
by (simp add : mult-exp-exp)

also have . . . ≤ exp(⌊k/10 ⌋ ∗ ln(10 + (10 ∗ nat⌊k/10 ⌋) / k)) ∗ exp (−real
k/200)

using † by (intro mult-mono exp-mono) auto
also have . . . ≤ (10 + (10 ∗ nat⌊k/10 ⌋) / k) ^ nat⌊k/10 ⌋ ∗ exp (−real

k/200)
using † by (auto simp: powr-def simp flip: powr-realpow)
also have . . . ≤ ((k + nat⌊k/10 ⌋) / (k/10)) ^ nat⌊k/10 ⌋ ∗ exp (−real

k/200)
using ‹k>0 › by (simp add : mult .commute add-divide-distrib)

also have . . . ≤ ((k + nat⌊k/10 ⌋) / nat⌊k/10 ⌋) ^ nat⌊k/10 ⌋ ∗ exp (−real
k/200)

proof (intro mult-mono power-mono divide-left-mono)
show nat⌊k/10 ⌋ ≤ k/10
by linarith

qed (use ‹k≥36 › in auto)
also have . . . ≤ (k + nat⌊k/10 ⌋ gchoose nat⌊k/10 ⌋) ∗ exp (−real k/200)
by (meson exp-gt-zero gbinomial-ge-n-over-k-pow-k le-add2 mult-le-cancel-right-pos

of-nat-mono)
also have . . . ≤ (k + nat⌊k/10 ⌋ choose nat⌊k/10 ⌋) ∗ exp (−real k/200)
by (simp add : binomial-gbinomial)

also have . . . ≤ (k + nat⌊k/10 ⌋ choose nat⌊k/10 ⌋) / exp (δ ∗ k)
using γ ‹0 < k› by (simp add : algebra-simps δ-def exp-minus ′ frac-le)

finally show ?case by linarith
next
case (Suc q)
then show ?case
apply simp
by (smt (verit) divide-right-mono exp-ge-zero of-nat-0-le-iff)

qed
from ‹m<l› this [of l−m]
have 1 + l + real m ≤ (k+l−m choose (l−m)) / exp δ ^ k

214

by (simp add : exp-of-nat2-mult k10-lm)
also have . . . ≤ (k+l−m choose (l−m)) / exp (δ ∗ k)
by (simp add : exp-of-nat2-mult)

also have . . . < U-lower-bound-ratio m ∗ (real n)
proof −
have §: (k+l choose l) / exp (δ ∗ k) < n
by (simp add : less-eq-real-def nexp-gt pos-divide-less-eq)

show ?thesis
using mult-strict-left-mono [OF §, of U-lower-bound-ratio m] kl-choose

prod-gt0
by (auto simp: field-simps)

qed
finally have U-MINUS-M : 1+l < real n ∗ U-lower-bound-ratio m − m
by argo

then have cardU-gt : card U > l + 1 card U > 1
using cardU by linarith+

show False
using γ ′-cases

proof cases
case 1
— Restricting attention to U
define EU where EU ≡ E ∩ Pow U
define RedU where RedU ≡ Red ∩ Pow U
define BlueU where BlueU ≡ Blue ∩ Pow U
have RedU-eq : RedU = EU \ BlueU
using BlueU-def Blue-def EU-def RedU-def Red-E by fastforce

obtain [iff]: finite RedU finite BlueU RedU ⊆ EU
using BlueU-def EU-def RedU-def E-def V-def Red-E Blue-E fin-edges

finite-subset by blast
then have card-EU : card EU = card RedU + card BlueU
by (simp add : BlueU-def Blue-def Diff-Int-distrib2 EU-def RedU-def card-Diff-subset

card-mono)
then have card-RedU-le: card RedU ≤ card EU
by linarith

interpret UBB : Book-Basis U E ∩ Pow U p0-min
proof
fix e assume e ∈ E ∩ Pow U
with two-edges show e ⊆ U card e = 2 by auto

next
show finite U
using ‹U ⊆ V › by (simp add : V-def finite-subset)

have x ∈ E if x ∈ all-edges U for x
using ‹U ⊆ V › all-edges-mono that complete E-def by blast

then show E ∩ Pow U = all-edges U
using comp-sgraph.wellformed ‹U ⊆ V › by (auto intro: e-in-all-edges-ss)

qed auto

have BlueU-eq : BlueU = EU \ RedU

215

using Blue-eq complete by (fastforce simp: BlueU-def RedU-def EU-def V-def
E-def)

have [simp]: UBB .graph-size = card EU
using EU-def by blast

have card EU > 0
using ‹card U > 1 › UBB .complete by (simp add : EU-def UBB .finV

card-all-edges)

have False if UBB .graph-density BlueU > γ ′

proof − — by maximality, etc.; only possible in case 1
have Nx : Neighbours BlueU x ∩ (U \ {x}) = Neighbours BlueU x for x
using that by (auto simp: BlueU-eq EU-def Neighbours-def)

have BlueU ⊆ E ∩ Pow U
using BlueU-eq EU-def by blast

with UBB .exists-density-edge-density [of 1 BlueU]
obtain x where x∈U and x : UBB .graph-density BlueU ≤ UBB .gen-density

BlueU {x} (U \{x})
by (metis UBB .complete ‹1 < UBB .gorder› card-1-singletonE insertI1

zero-less-one subsetD)
with that have γ ′ ≤ UBB .gen-density BlueU (U \{x}) {x}
using UBB .gen-density-commute by auto

then have ∗: γ ′ ∗ (card U − 1) ≤ card (Neighbours BlueU x)
using ‹BlueU ⊆ E ∩ Pow U › ‹card U > 1 › ‹x ∈ U ›

by (simp add : UBB .gen-density-def UBB .edge-card-eq-sum-Neighbours
UBB .finV divide-simps Nx)

have x : x ∈ V \W
using ‹x ∈ U › ‹U ⊆ V › ‹disjnt U W › by (auto simp: U-def disjnt-iff)

moreover
have is-good-clique n (insert x W)
unfolding is-good-clique-def

proof (intro conjI)
show clique (insert x W) Blue
proof (intro clique-insert)
show clique W Blue
using 53 is-good-clique-def by blast

show all-edges-betw-un {x} W ⊆ Blue
using ‹x∈U › by (auto simp: U-def all-edges-betw-un-def insert-commute

in-Neighbours-iff)
qed (use ‹W ⊆ V › ‹x ∈ V \W › in auto)

next
show insert x W ⊆ V
using ‹W ⊆ V › ‹x ∈ V \W › by auto

next
have NB-Int-U : Neighbours Blue x ∩ U = Neighbours BlueU x
using ‹x ∈ U › by (auto simp: BlueU-def U-def Neighbours-def)

have ulb-ins: U-lower-bound-ratio (card (insert x W)) = U-lower-bound-ratio
m ∗ γ ′

using ‹x ∈ V \W › ‹finite W › by (simp add : m-def U-lower-bound-ratio-def

216

γ ′-def)
have n ∗ U-lower-bound-ratio (card (insert x W)) = n ∗ U-lower-bound-ratio

m ∗ γ ′

by (simp add : ulb-ins)
also have . . . ≤ real (m + card U) ∗ γ ′

using mult-right-mono [OF cardU , of γ ′] ‹0 < γ ′› by argo
also have . . . ≤ m + card U ∗ γ ′

using mult-left-mono [OF ‹γ ′≤1 ›, of m] by (simp add : algebra-simps)
also have . . . ≤ Suc m + γ ′ ∗ (UBB .gorder − Suc 0)
using ∗ ‹x ∈ V \W › ‹finite W › ‹1 < UBB .gorder› ‹γ ′≤1 ›
by (simp add : U-lower-bound-ratio-def algebra-simps)

also have . . . ≤ Suc m + card (V ∩
⋂

(Neighbours Blue ‘ insert x W))
using ∗ NB-Int-U finV by (simp add : U-def Int-ac)

also have . . . = real (card (insert x W) + card (V ∩
⋂

(Neighbours Blue
‘ insert x W)))

using x ‹finite W › VUU by (auto simp: m-def U-def)
finally show n ∗ U-lower-bound-ratio (card(insert x W)) − card(insert x

W)
≤ card (V ∩

⋂
(Neighbours Blue ‘ insert x W))

by simp
qed
ultimately show False
using 1 clique-cases by blast

qed
then have ∗: UBB .graph-density BlueU ≤ γ ′ by force
have no-RedU-K : ¬ (∃K . UBB .size-clique k K RedU)
unfolding UBB .size-clique-def RedU-def

by (metis Int-subset-iff VUU all-edges-subset-iff-clique no-Red-K size-clique-def)
have (∃K . UBB .size-clique k K RedU) ∨ (∃K . UBB .size-clique (l−m) K

BlueU)
proof (rule ccontr)
assume neg : ¬ ((∃K . UBB .size-clique k K RedU) ∨ (∃K . UBB .size-clique

(l−m) K BlueU))
interpret UBB-NC : No-Cliques U E ∩ Pow U p0-min RedU BlueU l−m k
proof
show BlueU = E ∩ Pow U \ RedU
using BlueU-eq EU-def by fastforce

qed (use neg EU-def ‹RedU ⊆ EU › no-RedU-K ‹l≤k› in auto)
show False
proof (intro UBB-NC .Closer-10-2)
have δ ≤ 1/200
using γ by (simp add : δ-def field-simps)

then have exp (δ ∗ real k) ≤ exp (real k/200)
using ‹0 < k› by auto

then have expexp: exp (δ∗k) ∗ exp (− real k/200) ≤ 1
by (metis divide-minus-left exp-ge-zero exp-minus-inverse mult-right-mono)

have exp (− real k/200) ∗ (k + (l−m) choose (l−m)) = exp (− real
k/200) ∗ U-lower-bound-ratio m ∗ (k+l choose l)

using ‹m < l› kl-choose by force

217

also have . . . < (n/2) ∗ exp (δ∗k) ∗ exp (− real k/200) ∗ U-lower-bound-ratio
m

using n2exp-gt prod-gt0 by auto
also have . . . ≤ (n/2) ∗ U-lower-bound-ratio m

using mult-left-mono [OF expexp, of (n/2) ∗ U-lower-bound-ratio m]
prod-gt0 by (simp add : mult-ac)

also have . . . ≤ n ∗ U-lower-bound-ratio m − m — formerly stuck here,
due to the "minus m"

using U-MINUS-M ‹m < l› by auto
finally have exp (− real k/200) ∗ (k + (l−m) choose (l−m)) ≤ UBB .nV

using cardU by linarith
then show exp (− real k / 200) ∗ (k + (l−m) choose (l−m)) ≤ UBB .nV

using ‹m < l› by (simp add : γ ′-def)
next
have 1 − γ ′ ≤ UBB .graph-density RedU
using ∗ card-EU ‹card EU > 0 ›

by (simp add : UBB .graph-density-def BlueU-eq field-split-simps split :
if-split-asm)

then show 1 − real (l−m) / (real k + real (l−m)) ≤ UBB .graph-density
RedU

unfolding γ ′-def using ‹m<l› by (smt (verit , ccfv-threshold) less-imp-le-nat
of-nat-add of-nat-diff)

next
show p0-min ≤ 1 − real (l−m) / (real k + real (l−m))
using p0-min-101 ‹γ ′≤γ› ‹m < l› γ
by (smt (verit , del-insts) of-nat-add γ ′-def less-imp-le-nat of-nat-diff)

next
have Big-10-2I :

∧
l ′ µ. [[nat ⌊2/5 ∗ l⌋ ≤ l ′; 1/10 ≤ µ; µ ≤ 1 / 5]] =⇒

Big-Closer-10-2 µ l ′
using big by (meson Big101d-def Big-Closer-10-1-def order .refl)

have m ≤ real l ∗ (1 − (10/11)∗γ)
using ‹m<l› ‹γ>1/10 › ‹γ ′≥1/10 › γ
apply (simp add : γ-def γ ′-def field-simps)
by (smt (verit , ccfv-SIG) mult .commute mult-left-mono distrib-left)

then have real l − real m ≥ (10/11) ∗ γ ∗ l
by (simp add : algebra-simps)

moreover
have 1/10 ≤ γ ′ ∧ γ ′ ≤ 1/5

using mult-mono [OF γ γ] ‹γ ′≥1/10 › ‹γ ′ ≤ γ› γ by (auto simp:
power2-eq-square)

ultimately
have Big-Closer-10-2 γ ′ (l−m)
using lm-ge-25 by (intro Big-10-2I) auto

then show Big-Closer-10-2 ((l−m) / (real k + real (l−m))) (l−m)
by (simp add : γ ′-def ‹m < l› add-diff-eq less-or-eq-imp-le)

next
show l−m ≤ k
using ‹l ≤ k› by auto

show (l−m) / (real k + real (l−m)) ≤ 1/5

218

using γ γ-def ‹m < l› by fastforce
show 1/10 ≤ (l−m) / (real k + real (l−m))
using γ ′-def ‹1/10 ≤ γ ′› ‹m < l› by auto

qed
qed

with no-RedU-K UBB .size-clique-def obtain K where K ⊆ U UBB .size-clique
(l−m) K BlueU

by meson
then show False
using no-Blue-K extend-Blue-clique VUU
unfolding UBB .size-clique-def size-clique-def BlueU-def
by (metis Int-subset-iff all-edges-subset-iff-clique)

next
case 2
have RN k (l−m) ≤ exp (− ((l−m) / (k + real (l−m)) / 20) ∗ k + 1) ∗ (k

+ (l−m) choose (l−m))
proof (intro Far-9-1 strip)
show real (l−m) / (real k + real (l−m)) ≤ 1/10
using γ ′-def 2 ‹m < l› by auto

next — here is where we need the specified definition of γ0
show Big-Far-9-1 (real (l−m) / (k + real (l−m))) (l−m)
proof (intro Big91-I [OF lm-ge-25])
have 0 .07 ≤ (1 ::real)/10 − 1/36
by (approximation 5)

also have . . . ≤ 1/10 − 1/k
using ‹k≥36 › by (intro diff-mono divide-right-mono) auto

finally have 7 : γ ′ ≥ 0 .07 using 110 by linarith
with ‹m<l› show γ0 ≤ real (l−m) / (real k + real (l−m))
by (simp add : γ0-def min-le-iff-disj γ ′-def algebra-simps)

next
show real (l−m) / (real k + real (l−m)) ≤ 1/10
using 2 ‹m<l› by (simp add : γ ′-def)

qed
next
show p0-min ≤ 1 − 1/10 ∗ (1 + 1 / 15)
using p0-min-101 by auto

qed
also have . . . ≤ real n ∗ U-lower-bound-ratio m − m
proof −
have γ ∗ real k ≤ k/5
using γ ‹0 < k› by auto

also have . . . ≤ γ ′ ∗ (real k ∗ 2) + 2
using mult-left-mono [OF 110 , of k∗2] ‹k>0 › by (simp add : algebra-simps)
finally have γ ∗ real k ≤ γ ′ ∗ (real k ∗ 2) + 2 .
then have expexp: exp (δ ∗ real k) ∗ exp (−γ ′∗k / 20 − 1) ≤ 1
by (simp add : δ-def flip: exp-add)

have exp (−γ ′∗k/20 + 1) ∗ (k + (l−m) choose (l−m)) = exp (−γ ′∗k/20+1)
∗ U-lower-bound-ratio m ∗ (k+l choose l)

using ‹m < l› kl-choose by force

219

also have . . . < (n/2) ∗ exp (δ∗k) ∗ exp (−γ ′∗k/20 − 1) ∗ U-lower-bound-ratio
m

using n2exp-gt ′ prod-gt0 by (simp add : exp2 exp-diff exp-minus ′ mult-ac
pos-less-divide-eq)

also have . . . ≤ (n/2) ∗ U-lower-bound-ratio m
using expexp order-le-less prod-gt0 by fastforce

also have . . . ≤ n ∗ U-lower-bound-ratio m − m
using U-MINUS-M ‹m < l› by fastforce

finally show ?thesis
using ‹m < l› by (simp add : γ ′-def) argo

qed
also have . . . ≤ card U
using cardU by auto

finally have RN k (l−m) ≤ card U by linarith
then show False

using Red-Blue-RN ‹U ⊆ V › extend-Blue-clique no-Blue-K no-Red-K by
blast

qed
qed

qed

definition ok-fun-10-1 ≡ λγ k . if Big-Closer-10-1 (min γ 0 .07) (nat⌈((γ / (1−γ))
∗ k)⌉) then 3 else (γ/40 ∗ k)

lemma ok-fun-10-1 :
assumes 0 < γ γ < 1
shows ok-fun-10-1 γ ∈ o(real)

proof −
define γ0 where γ0 ≡ min γ 0 .07
have γ0 > 0
using assms by (simp add : γ0-def)

then have ∀∞l . Big-Closer-10-1 γ0 l
by (simp add : Big-Closer-10-1)

then obtain l where
∧

l ′. l ′ ≥ l =⇒ Big-Closer-10-1 γ0 l ′
using eventually-sequentially by auto

moreover
have nat⌈((γ / (1−γ)) ∗ k)⌉ ≥ l if real k ≥ l/γ − l for k
using that assms
by (auto simp: field-simps intro!: le-natceiling-iff)

ultimately have ∀∞k . Big-Closer-10-1 (min γ 0 .07) (nat⌈((γ / (1−γ)) ∗ k)⌉)
by (smt (verit) γ0-def eventually-sequentially nat-ceiling-le-eq)

then have ∀∞k . ok-fun-10-1 γ k = 3
by (simp add : ok-fun-10-1-def eventually-mono)

then show ?thesis
by (simp add : const-smallo-real landau-o.small .in-cong)

qed

theorem Closer-10-1-unconditional :
fixes l k ::nat

220

fixes δ γ::real
defines γ ≡ real l / (real k + real l)
defines δ ≡ γ/40
assumes γ: 0 < γ γ ≤ 1/5
assumes p0-min-101 : p0-min ≤ 1 − 1/5
shows RN k l ≤ exp (−δ∗k + ok-fun-10-1 γ k) ∗ (k+l choose l)

proof −
define γ0 where γ0 ≡ min γ 0 .07
show ?thesis
proof (cases Big-Closer-10-1 γ0 l)
case True
show ?thesis
using Closer-10-1 [OF True [unfolded γ0-def γ-def]] assms
by (simp add : ok-fun-10-1-def γ-def δ-def RN-le-choose ′)

next
case False
have (nat ⌈γ ∗ k / (1−γ)⌉) ≤ l
by (simp add : γ-def divide-simps)

with False Big-Closer-10-1-upward
have ¬ Big-Closer-10-1 γ0 (nat ⌈γ ∗ k / (1−γ)⌉)
by blast

then show ?thesis
by (simp add : ok-fun-10-1-def δ-def γ0-def RN-le-choose ′)

qed
qed

end

end

11 From diagonal to off-diagonal
theory From-Diagonal
imports Closer-To-Diagonal

begin

11.1 Lemma 11.2
definition ok-fun-11-2a ≡ λk . ⌈real k powr (3/4)⌉ ∗ log 2 k

definition ok-fun-11-2b ≡ λµ k . k powr (39/40) ∗ (log 2 µ + 3 ∗ log 2 k)

definition ok-fun-11-2c ≡ λµ k . − k ∗ log 2 (1 − (2 / (1−µ)) ∗ k powr (−1/40))

definition ok-fun-11-2 ≡ λµ k . 2 − ok-fun-71 µ k + ok-fun-11-2a k
+ max (ok-fun-11-2b µ k) (ok-fun-11-2c µ k)

lemma ok-fun-11-2a: ok-fun-11-2a ∈ o(real)

221

unfolding ok-fun-11-2a-def
by real-asymp

possibly, the functions that depend upon µ need a more refined analysis
to cover a closed interval of possible values. But possibly not, as the text
implies µ = (2 :: ′a) / (5 :: ′a).

lemma ok-fun-11-2b: ok-fun-11-2b µ ∈ o(real)
unfolding ok-fun-11-2b-def by real-asymp

lemma ok-fun-11-2c: ok-fun-11-2c µ ∈ o(real)
unfolding ok-fun-11-2c-def
by real-asymp

lemma ok-fun-11-2 :
assumes 0<µ µ<1
shows ok-fun-11-2 µ ∈ o(real)
unfolding ok-fun-11-2-def
by (simp add : assms const-smallo-real maxmin-in-smallo ok-fun-11-2a ok-fun-11-2b

ok-fun-11-2c ok-fun-71 sum-in-smallo)

definition Big-From-11-2 ≡
λµ k . Big-ZZ-8-6 µ k ∧ Big-X-7-1 µ k ∧ Big-Y-6-2 µ k ∧ Big-Red-5-3 µ k ∧

Big-Blue-4-1 µ k
∧ 1 ≤ µ^2 ∗ real k ∧ 2 / (1−µ) ∗ real k powr (−1/40) < 1 ∧ 1/k < 1/2

− 3 ∗ eps k

lemma Big-From-11-2 :
assumes 0<µ0 µ0 ≤ µ1 µ1<1
shows ∀∞k . ∀µ. µ ∈ {µ0 ..µ1} −→ Big-From-11-2 µ k

proof −
have A: ∀∞k . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ 1 ≤ µ2 ∗ k
proof (intro eventually-all-geI0)
show ∗: ∀∞x . 1 ≤ µ0 2 ∗ real x
using ‹0<µ0 › by real-asymp

next
fix k µ
assume 1 ≤ µ0 2 ∗ real k and µ0 ≤ µ µ ≤ µ1
with ‹0<µ0 › show 1 ≤ µ2 ∗ k
by (smt (verit , ccfv-SIG) mult-le-cancel-right of-nat-less-0-iff power-mono)

qed
have B : ∀∞k . ∀µ. µ0 ≤ µ ∧ µ ≤ µ1 −→ 2 / (1−µ) ∗ k powr (−1/40) < 1
proof (intro eventually-all-geI1)
show ∀∞k . 2 / (1−µ1) ∗ k powr (−1/40) < 1
by real-asymp

qed (use assms in auto)
have C : ∀∞k . 1/k < 1/2 − 3 ∗ eps k
unfolding eps-def by real-asymp

show ?thesis

222

unfolding Big-From-11-2-def
using assms Big-ZZ-8-6 Big-X-7-1 Big-Y-6-2 Big-Red-5-3 Big-Blue-4-1 A B C
by (simp add : eventually-conj-iff all-imp-conj-distrib)

qed

Simply to prevent issues about the positioning of the function real

abbreviation ratio ≡ λµ s t . µ ∗ (real s + real t) / real s

the text refers to the actual Ramsey number but I don’t see how that
could work. Theorem 11.1 will define n to be one less than the Ramsey
number, hence we add that one back here.

lemma (in Book) From-11-2 :
assumes l=k
assumes big : Big-From-11-2 µ k
defines R ≡ Step-class {red-step} and S ≡ Step-class {dboost-step}
defines t ≡ card R and s ≡ card S
defines nV ′ ≡ Suc nV
assumes 0 : card X0 ≥ nV div 2 and p0 ≥ 1/2
shows log 2 nV ′ ≤ k ∗ log 2 (1/µ) + t ∗ log 2 (1 / (1−µ)) + s ∗ log 2 (ratio

µ s t) + ok-fun-11-2 µ k
proof −
have big71 : Big-X-7-1 µ k and big62 : Big-Y-6-2 µ k and big86 : Big-ZZ-8-6 µ

k and big53 : Big-Red-5-3 µ k
and big41 : Big-Blue-4-1 µ k and bigµ: 1 ≤ µ^2 ∗ real k
and big-le1 : 2 / (1−µ) ∗ real k powr (−1/40) < 1
using big by (auto simp: Big-From-11-2-def)

have bigµ1 : 1 ≤ µ ∗ real k
using bigµ µ01
by (smt (verit , best) mult-less-cancel-right2 mult-right-mono of-nat-less-0-iff

power2-eq-square)
then have log2µk : log 2 µ + log 2 k ≥ 0
using kn0 µ01 add-log-eq-powr by auto

have bigµ2 : 1 ≤ µ ∗ (real k)2
unfolding power2-eq-square by (smt (verit , ccfv-SIG) bigµ1 µ01 mult-less-cancel-left1

mult-mono ′)
define g where g ≡ λk . ⌈real k powr (3/4)⌉ ∗ log 2 k
have g : g ∈ o(real)
unfolding g-def by real-asymp

have bb-gt0 : bigbeta > 0
using big53 bigbeta-gt0 ‹l=k› by blast

have t < k
by (simp add : R-def t-def red-step-limit)

have s < k
unfolding S-def s-def
using bblue-dboost-step-limit big41 ‹l=k› by fastforce

have k34 : k powr (3/4) ≤ k powr 1
using kn0 by (intro powr-mono) auto

223

define g712 where g712 ≡ λk . 2 − ok-fun-71 µ k + g k
have nV ′ ≥ 2
using gorder-ge2 nV ′-def by linarith

have nV ′ ≤ 4 ∗ card X0
using 0 card-XY0 by (auto simp: nV ′-def odd-iff-mod-2-eq-one)

with µ01 have 2 powr (ok-fun-71 µ k − 2) ∗ µ^k ∗ (1−µ) ^ t ∗ (bigbeta / µ)
^ s ∗ nV ′

≤ 2 powr ok-fun-71 µ k ∗ µ^k ∗ (1−µ) ^ t ∗ (bigbeta / µ) ^ s ∗ card X0
using µ01 by (simp add : powr-diff mult .assoc bigbeta-ge0 mult-left-mono)

also have . . . ≤ card (Xseq halted-point)
using X-7-1 assms big71 by blast

also have . . . ≤ 2 powr (g k)
proof −
have 1/k < p0 − 3 ∗ eps k
using big ‹p0 ≥ 1/2 › by (auto simp: Big-From-11-2-def)
also have . . . ≤ pee halted-point
using Y-6-2-halted big62 assms by blast

finally have pee halted-point > 1/k .
moreover have termination-condition (Xseq halted-point) (Yseq halted-point)
using halted-point-halted step-terminating-iff by blast

ultimately have card (Xseq halted-point) ≤ RN k (nat ⌈real k powr (3/4)⌉)
using ‹l=k› pee-def termination-condition-def by auto

then show ?thesis
unfolding g-def by (smt (verit) RN34-le-2powr-ok kn0 of-nat-le-iff)

qed
finally have 58 : 2 powr (g k) ≥ 2 powr (ok-fun-71 µ k − 2) ∗ µ^k ∗ (1−µ) ^

t ∗ (bigbeta / µ) ^ s ∗ nV ′ .
then have 59 : nV ′ ≤ 2 powr (g712 k) ∗ (1/µ) ^ k ∗ (1 / (1−µ)) ^ t ∗ (µ /

bigbeta) ^ s
using µ01 bb-gt0 by (simp add : g712-def powr-diff powr-add mult .commute

divide-simps) argo

define a where a ≡ 2 / (1−µ)
have ok-less1 : a ∗ real k powr (−1/40) < 1
unfolding a-def using big-le1 by blast

consider s < k powr (39/40) | s ≥ k powr (39/40) bigbeta ≥ (1 − a ∗ k powr
(−1/40)) ∗ (s / (s + t))

using ZZ-8-6 big86 a-def ‹l=k› by (force simp: s-def t-def S-def R-def)
then show ?thesis
proof cases
case 1
define h where h ≡ λc k . real k powr (39/40) ∗ (log 2 µ + real c ∗ log 2 (real

k))
have h: h c ∈ o(real) for c
unfolding h-def by real-asymp

have le-h: |s ∗ log 2 (ratio µ s t)| ≤ h 1 k
proof (cases s>0)
case True

224

with ‹s>0 › have µeq : ratio µ s t = µ ∗ (1 + t/s)
by (auto simp: distrib-left add-divide-distrib)

show ?thesis
proof (cases log 2 (ratio µ s t) ≤ 0)
case True
have s ∗ (− log 2 (µ ∗ (1 + t/s))) ≤ real k powr (39/40) ∗ (log 2 µ + log

2 (real k))
proof (intro mult-mono)
show s ≤ k powr (39 / 40)
using 1 by linarith

next
have inverse (µ ∗ (1 + t/s)) ≤ inverse µ
using µ01 inverse-le-1-iff by fastforce

also have . . . ≤ µ ∗ k
using bigµ µ01 by (metis neq-iff mult .assoc mult-le-cancel-left-pos

power2-eq-square right-inverse)
finally have inverse (µ ∗ (1 + t/s)) ≤ µ ∗ k .
moreover have 0 < µ ∗ (1 + real t / real s)
using µ01 ‹0 < s› by (simp add : zero-less-mult-iff add-num-frac)

ultimately show − log 2 (µ ∗ (1 + real t / real s)) ≤ log 2 µ + log 2
(real k)

using µ01 kn0 by (simp add : zero-less-mult-iff flip: log-inverse log-mult)
qed (use True µeq in auto)
with ‹s>0 › bigµ1 True show ?thesis
by (simp add : µeq h-def mult-le-0-iff)

next
case False
have lek : 1 + t/s ≤ k
proof −
have real t ≤ real t ∗ real s
using True mult-le-cancel-left1 by fastforce

then have 1 + t/s ≤ 1 + t
by (simp add : True pos-divide-le-eq)

also have . . . ≤ k
using ‹t < k› by linarith

finally show ?thesis .
qed
have |s ∗ log 2 (ratio µ s t)| ≤ k powr (39/40) ∗ log 2 (ratio µ s t)
using False 1 by auto

also have . . . = k powr (39/40) ∗ (log 2 (µ ∗ (1 + t/s)))
by (simp add : µeq)

also have . . . = k powr (39/40) ∗ (log 2 µ + log 2 (1 + t/s))
using µ01 by (smt (verit , best) divide-nonneg-nonneg log-mult of-nat-0-le-iff)

also have . . . ≤ k powr (39/40) ∗ (log 2 µ + log 2 k)
by (smt (verit , best) 1 Transcendental .log-mono divide-nonneg-nonneg lek

mult-le-cancel-left-pos of-nat-0-le-iff)
also have . . . ≤ h 1 k
unfolding h-def using kn0 by force

225

finally show ?thesis .
qed

qed (use log2µk h-def in auto)

have β: bigbeta ≥ 1 / (real k)2
using big53 bigbeta-ge-square ‹l=k› by blast

then have (µ / bigbeta) ^ s ≤ (µ ∗ (real k)2) ^ s
using bb-gt0 kn0 µ01 by (intro power-mono) (auto simp: divide-simps

mult .commute)
also have . . . ≤ (µ ∗ (real k)2) powr (k powr (39/40))
using µ01 bigµ2 1 by (smt (verit) powr-less-mono powr-one-eq-one powr-realpow)
also have . . . = 2 powr (log 2 ((µ ∗ (real k)2) powr (k powr (39/40))))
by (smt (verit , best) bigµ2 powr-gt-zero powr-log-cancel)

also have . . . = 2 powr h 2 k
using µ01 bigµ2 kn0 by (simp add : log-powr log-nat-power log-mult h-def)

finally have †: (µ / bigbeta) ^ s ≤ 2 powr h 2 k .
have ‡: nV ′ ≤ 2 powr (g712 k) ∗ (1/µ) ^ k ∗ (1 / (1−µ)) ^ t ∗ 2 powr h 2 k
using 59 mult-left-mono [OF †, of 2 powr (g712 k) ∗ (1/µ) ^ k ∗ (1 / (1−µ))

^ t]
by (smt (verit) µ01 pos-prod-le powr-nonneg-iff zero-less-divide-iff zero-less-power)
have ∗: log 2 nV ′ ≤ k ∗ log 2 (1/µ) + t ∗ log 2 (1 / (1−µ)) + (g712 k + h

2 k)
using µ01 ‹nV ′ ≥ 2 › by (simp add : log-mult log-nat-power order .trans [OF

Transcendental .log-mono [OF - - ‡]])

show ?thesis
proof −
have le-ok-fun: g712 k + h 3 k ≤ ok-fun-11-2 µ k
by (simp add : g712-def h-def ok-fun-11-2-def g-def ok-fun-11-2a-def ok-fun-11-2b-def)
have h3 : h 3 k = h 1 k + h 2 k − real k powr (39/40) ∗ log 2 µ
by (simp add : h-def algebra-simps)

have 0 ≤ h 1 k + s ∗ log 2 ((µ ∗ real s + µ ∗ real t) / s)
by (smt (verit , del-insts) of-nat-add distrib-left le-h)

moreover have log 2 µ < 0
using µ01 by simp

ultimately have g712 k + h 2 k ≤ s ∗ log 2 (ratio µ s t) + ok-fun-11-2 µ k
by (smt (verit , best) kn0 distrib-left h3 le-ok-fun nat-neq-iff of-nat-eq-0-iff

pos-prod-lt powr-gt-zero)
then show log 2 nV ′ ≤ k ∗ log 2 (1/µ) + t ∗ log 2 (1 / (1−µ)) + s ∗ log 2

(ratio µ s t) + ok-fun-11-2 µ k
using ∗ by linarith

qed
next
case 2
then have s > 0
using kn0 powr-gt-zero by fastforce

define h where h ≡ λk . real k ∗ log 2 (1 − a ∗ k powr (−1/40))
have s ∗ log 2 (µ / bigbeta) = s ∗ log 2 µ − s ∗ log 2 (bigbeta)
using µ01 bb-gt0 2 by (simp add : log-divide algebra-simps)

226

also have . . . ≤ s ∗ log 2 µ − s ∗ log 2 ((1 − a ∗ k powr (−1/40)) ∗ (s / (s
+ t)))

using 2 ‹s>0 › ok-less1 by (intro diff-mono order-refl mult-left-mono Tran-
scendental .log-mono) auto

also have . . . = s ∗ log 2 µ − s ∗ (log 2 (1 − a ∗ k powr (−1/40)) + log 2
(s / (s + t)))

using ‹0 < s› a-def add-log-eq-powr big-le1 by auto
also have . . . = s ∗ log 2 (ratio µ s t) − s ∗ log 2 (1 − a ∗ k powr (−1/40))
using ‹0 < µ› ‹0 < s› minus-log-eq-powr by (auto simp flip: right-diff-distrib ′)
also have . . . < s ∗ log 2 (ratio µ s t) − h k
proof −
have log 2 (1 − a ∗ real k powr (−1/40)) < 0
using µ01 kn0 a-def ok-less1 by auto

with ‹s<k› show ?thesis
by (simp add : h-def)

qed
finally have †: s ∗ log 2 (µ / bigbeta) < s ∗ log 2 (ratio µ s t) − h k .
show ?thesis
proof −
have le-ok-fun: g712 k − h k ≤ ok-fun-11-2 µ k

by (simp add : g712-def h-def ok-fun-11-2-def g-def ok-fun-11-2a-def a-def
ok-fun-11-2c-def)

have log 2 nV ′ ≤ s ∗ log 2 (µ / bigbeta) + k ∗ log 2 (1/µ) + t ∗ log 2 (1 /
(1−µ)) + (g712 k)

using µ01 ‹nV ′ ≥ 2 ›
by (simp add : bb-gt0 log-mult log-nat-power order .trans [OF Transcenden-

tal .log-mono [OF - - 59]])
with † le-ok-fun show log 2 nV ′ ≤ k ∗ log 2 (1/µ) + t ∗ log 2 (1 / (1−µ))

+ s ∗ log 2 (ratio µ s t) + ok-fun-11-2 µ k
by simp

qed
qed

qed

11.2 Lemma 11.3

same remark as in Lemma 11.2 about the use of the Ramsey number in the
conclusion

lemma (in Book) From-11-3 :
assumes l=k
assumes big : Big-Y-6-1 µ k
defines R ≡ Step-class {red-step} and S ≡ Step-class {dboost-step}
defines t ≡ card R and s ≡ card S
defines nV ′ ≡ Suc nV
assumes 0 : card Y0 ≥ nV div 2 and p0 ≥ 1/2
shows log 2 nV ′ ≤ log 2 (RN k (k−t)) + s + t + 2 − ok-fun-61 k

proof −
define RS where RS ≡ Step-class {red-step,dboost-step}
have RS = R ∪ S

227

using Step-class-insert R-def S-def RS-def by blast
moreover obtain finite R finite S
by (simp add : R-def S-def)

moreover have disjnt R S
using R-def S-def disjnt-Step-class by auto

ultimately have card-RS : card RS = t+s
by (simp add : t-def s-def card-Un-disjnt)

have 4 : nV ′/4 ≤ card Y0
using 0 card-XY0 by (auto simp: nV ′-def odd-iff-mod-2-eq-one)

have ge0 : 0 ≤ 2 powr ok-fun-61 k ∗ p0 ^ card RS
using p0-01 by fastforce

have nV ′ ≥ 2
using gorder-ge2 nV ′-def by linarith

have 2 powr (− real s − real t + ok-fun-61 k − 2) ∗ nV ′ = 2 powr (ok-fun-61
k − 2) ∗ (1/2) ^ card RS ∗ nV ′

by (simp add : powr-add powr-diff powr-minus power-add powr-realpow divide-simps
card-RS)
also have . . . ≤ 2 powr (ok-fun-61 k − 2) ∗ p0 ^ card RS ∗ nV ′

using power-mono [OF ‹p0 ≥ 1/2 ›] ‹nV ′ ≥ 2 › by auto
also have . . . ≤ 2 powr (ok-fun-61 k) ∗ p0 ^ card RS ∗ (nV ′/4)
by (simp add : divide-simps powr-diff split : if-split-asm)

also have . . . ≤ 2 powr (ok-fun-61 k) ∗ p0 ^ card RS ∗ card Y0
using mult-left-mono [OF 4 ge0] by simp

also have . . . ≤ card (Yseq halted-point)
using Y-6-1 big ‹l=k› by (auto simp: RS-def divide-simps split : if-split-asm)

finally have 2 powr (− real s − real t + ok-fun-61 k − 2) ∗ nV ′ ≤ card (Yseq
halted-point) .
moreover
{ assume card (Yseq halted-point) ≥ RN k (k−t)
then obtain K where K : K ⊆ Yseq halted-point and size-clique (k−t) K Red

∨ size-clique k K Blue
by (metis RN-commute Red-Blue-RN Yseq-subset-V)

then have KRed : size-clique (k−t) K Red
using ‹l=k› no-Blue-clique by blast

have card (K ∪ Aseq halted-point) = k
proof (subst card-Un-disjnt)
show finite K finite (Aseq halted-point)
using K finite-Aseq finite-Yseq infinite-super by blast+

show disjnt K (Aseq halted-point)
using valid-state-seq [of halted-point] K disjnt-subset1
by (auto simp: valid-state-def disjoint-state-def)

have card (Aseq halted-point) = t
using red-step-eq-Aseq R-def t-def by presburger

then show card K + card (Aseq halted-point) = k
using Aseq-less-k [OF] nat-less-le KRed size-clique-def by force

qed
moreover have clique (K ∪ Aseq halted-point) Red
proof −
obtain K ⊆ V Aseq halted-point ⊆ V

228

by (meson Aseq-subset-V KRed size-clique-def)
moreover have clique K Red
using KRed size-clique-def by blast

moreover have clique (Aseq halted-point) Red
by (meson A-Red-clique valid-state-seq)

moreover have all-edges-betw-un (Aseq halted-point) (Yseq halted-point) ⊆
Red

using valid-state-seq [of halted-point] K
by (auto simp: valid-state-def RB-state-def all-edges-betw-un-Un2)

then have all-edges-betw-un K (Aseq halted-point) ⊆ Red
using K all-edges-betw-un-mono2 all-edges-betw-un-commute by blast

ultimately show ?thesis
by (simp add : local .clique-Un)

qed
ultimately have size-clique k (K ∪ Aseq halted-point) Red
using KRed Aseq-subset-V by (auto simp: size-clique-def)

then have False
using no-Red-clique by blast

}
ultimately have ∗: 2 powr (− real s − real t + ok-fun-61 k − 2) ∗ nV ′ < RN

k (k−t)
by fastforce

have − real s − real t + ok-fun-61 k − 2 + log 2 nV ′ = log 2 (2 powr (− real
s − real t + ok-fun-61 k − 2) ∗ nV ′)

using add-log-eq-powr ‹nV ′ ≥ 2 › by auto
also have . . . ≤ log 2 (RN k (k−t))
using ∗ Transcendental .log-mono ‹nV ′ ≥ 2 › less-eq-real-def by auto

finally show log 2 nV ′ ≤ log 2 (RN k (k − t)) + real s + real t + 2 − ok-fun-61
k

by linarith
qed

11.3 Theorem 11.1
definition FF :: nat ⇒ real ⇒ real ⇒ real where

FF ≡ λk x y . log 2 (RN k (nat⌊real k − x ∗ real k⌋)) / real k + x + y

definition GG :: real ⇒ real ⇒ real ⇒ real where
GG ≡ λµ x y . log 2 (1/µ) + x ∗ log 2 (1/(1−µ)) + y ∗ log 2 (µ ∗ (x+y) / y)

definition FF-bound :: nat ⇒ real ⇒ real where
FF-bound ≡ λk u. FF k 0 u + 1

lemma log2-RN-ge0 : 0 ≤ log 2 (RN k k) / k
proof (cases k=0)
case False
then have RN k k ≥ 1
by (simp add : RN-eq-0-iff leI)

then show ?thesis

229

by simp
qed auto

lemma le-FF-bound :
assumes x : x ∈ {0 ..1} and y ∈ {0 ..u}
shows FF k x y ≤ FF-bound k u

proof (cases ⌊k − x∗k⌋ = 0)
case True — to handle the singularity
with assms log2-RN-ge0 [of k] show ?thesis
by (simp add : True FF-def FF-bound-def)

next
case False
with gr0I have k>0 by fastforce
with False assms have ∗: 0 < ⌊k − x∗k⌋
using linorder-neqE-linordered-idom by fastforce

have le-k : k − x∗k ≤ k
using x by auto

then have le-k : nat ⌊k − x∗k⌋ ≤ k
by linarith

have log 2 (RN k (nat ⌊k − x∗k⌋)) / k ≤ log 2 (RN k k) / k
proof (intro divide-right-mono Transcendental .log-mono)
show 0 < real (RN k (nat ⌊k − x∗k⌋))
by (metis RN-eq-0-iff ‹k>0 › gr-zeroI ∗ of-nat-0-less-iff zero-less-nat-eq)

qed (auto simp: RN-mono le-k)
then show ?thesis
using assms False le-SucE by (fastforce simp: FF-def FF-bound-def)

qed

lemma FF2 : y ′ ≤ y =⇒ FF k x y ′ ≤ FF k x y
by (simp add : FF-def)

lemma FF-GG-bound :
assumes µ: 0 < µ µ < 1 and x : x ∈ {0 ..1} and y : y ∈ {0 ..µ ∗ x / (1−µ) +

η}
shows min (FF k x y) (GG µ x y) + η ≤ FF-bound k (µ / (1−µ) + η) + η

proof −
have FF-ub: FF k x y ≤ FF-bound k (µ / (1−µ) + η)
proof (rule order .trans)
show FF k x y ≤ FF-bound k y
using x y by (simp add : le-FF-bound)

next
have y ≤ µ / (1−µ) + η
using x y µ by simp (smt (verit , best) frac-le mult-left-le)

then show FF-bound k y ≤ FF-bound k (µ / (1−µ) + η)
by (simp add : FF-bound-def FF-def)

qed
show ?thesis
using FF-ub by auto

230

qed

context P0-min
begin

definition ok-fun-11-1 ≡ λµ k . max (ok-fun-11-2 µ k) (2 − ok-fun-61 k)

lemma ok-fun-11-1 :
assumes 0<µ µ<1
shows ok-fun-11-1 µ ∈ o(real)
unfolding ok-fun-11-1-def
by (simp add : assms const-smallo-real maxmin-in-smallo ok-fun-11-2 ok-fun-61

sum-in-smallo)

lemma eventually-ok111-le-η:
assumes η > 0 and µ: 0<µ µ<1
shows ∀∞k . ok-fun-11-1 µ k / k ≤ η

proof −
have (λk . ok-fun-11-1 µ k / k) ∈ o(λk . 1)

using eventually-mono ok-fun-11-1 [OF µ] by (fastforce simp: smallo-def
divide-simps)
with assms have ∀∞k . |ok-fun-11-1 µ k | / k ≤ η
by (auto simp: smallo-def)

then show ?thesis
by (metis (mono-tags, lifting) eventually-mono abs-divide abs-le-D1 abs-of-nat)

qed

lemma eventually-powr-le-η:
assumes η > 0
shows ∀∞k . (2 / (1−µ)) ∗ k powr (−1/20) ≤ η
using assms by real-asymp

definition Big-From-11-1 ≡
λη µ k . Big-From-11-2 µ k ∧ Big-ZZ-8-5 µ k ∧ Big-Y-6-1 µ k ∧ ok-fun-11-1 µ

k / k ≤ η/2
∧ (2 / (1−µ)) ∗ k powr (−1/20) ≤ η/2
∧ Big-Closer-10-1 (1/101) (nat⌈k/100 ⌉) ∧ 3 / (k ∗ ln 2) ≤ η/2 ∧ k≥3

In sections 9 and 10 (and by implication all proceeding sections), we
needed to consider a closed interval of possible values of µ. Let’s hope,
maybe not here. The fact below can only be proved with the strict inequality
(0 :: ′a) < η, which is why it is also strict in the theorems depending on this
property.

lemma Big-From-11-1 :
assumes η > 0 0<µ µ<1
shows ∀∞k . Big-From-11-1 η µ k

proof −
have ∀∞l . Big-Closer-10-1 (1/101) l
by (rule Big-Closer-10-1) auto

231

then have a: ∀∞k . Big-Closer-10-1 (1/101) (nat⌈k/100 ⌉)
unfolding eventually-sequentially
by (meson le-divide-eq-numeral1 (1) le-natceiling-iff nat-ceiling-le-eq)

have b: ∀∞k . 3 / (k ∗ ln 2) ≤ η/2
using ‹η>0 › by real-asymp

show ?thesis
unfolding Big-From-11-1-def
using assms a b Big-From-11-2 [of µ µ] Big-ZZ-8-5 [of µ µ] Big-Y-6-1 [of µ µ]
using eventually-ok111-le-η[of η/2] eventually-powr-le-η [of η/2]
by (auto simp: eventually-conj-iff all-imp-conj-distrib eventually-sequentially)

qed

The actual proof of theorem 11.1 is now combined with the development
of section 12, since the concepts seem to be inescapably mixed up.

end

end

12 The Proof of Theorem 1.1
theory The-Proof
imports From-Diagonal

begin

12.1 The bounding functions
definition H ≡ λp. −p ∗ log 2 p − (1−p) ∗ log 2 (1−p)

definition dH where dH ≡ λx ::real . −ln(x)/ln(2) + ln(1 − x)/ln(2)

lemma dH [derivative-intros]:
assumes 0<x x<1
shows (H has-real-derivative dH x) (at x)
unfolding H-def dH-def log-def
by (rule derivative-eq-intros | use assms in force)+

lemma H0 [simp]: H 0 = 0 and H1 [simp]: H 1 = 0
by (auto simp: H-def)

lemma H-reflect : H (1−p) = H p
by (simp add : H-def)

lemma H-ge0 :
assumes 0 ≤ p p ≤ 1
shows 0 ≤ H p
unfolding H-def
by (smt (verit , best) assms mult-minus-left mult-le-0-iff zero-less-log-cancel-iff)

232

Going up, from 0 to 1/2

lemma H-half-mono:
assumes 0≤p ′ p ′≤p p ≤ 1/2
shows H p ′ ≤ H p

proof (cases p ′=0)
case True
then have H p ′ = 0
by (auto simp: H-def)

then show ?thesis
by (smt (verit) H-ge0 True assms(2) assms(3) divide-le-eq-1-pos)

next
case False
with assms have p ′>0 by simp
have dH (1/2) = 0
by (simp add : dH-def)

moreover
have dH x ≥ 0 if 0<x x≤1/2 for x
using that by (simp add : dH-def divide-right-mono)

ultimately show ?thesis
by (smt (verit) dH DERIV-nonneg-imp-nondecreasing ‹p ′>0 › assms le-divide-eq-1-pos)

qed

Going down, from 1/2 to 1

lemma H-half-mono ′:
assumes 1/2 ≤ p ′ p ′≤p p ≤ 1
shows H p ′ ≥ H p
using H-half-mono [of 1−p 1−p ′] H-reflect assms by auto

lemma H-half : H (1/2) = 1
by (simp add : H-def log-divide)

lemma H-le1 :
assumes 0 ≤ p p ≤ 1
shows H p ≤ 1
by (smt (verit , best) H0 H1 H-ge0 H-half-mono H-half-mono ′ H-half assms)

Many thanks to Fedor Petrov on mathoverflow

lemma H-12-1 :
fixes a b::nat
assumes a ≥ b
shows log 2 (a choose b) ≤ a ∗ H (b/a)

proof (cases a=b ∨ b=0)
case True
with assms show ?thesis
by (auto simp: H-def)

next
let ?p = b/a
case False
then have p01 : 0 < ?p ?p < 1

233

using assms by auto
then have (a choose b) ∗ ?p ^ b ∗ (1−?p) ^ (a−b) ≤ (?p + (1−?p)) ^ a
by (subst binomial-ring) (force intro!: member-le-sum assms)

also have . . . = 1
by simp

finally have §: (a choose b) ∗ ?p ^ b ∗ (1−?p) ^ (a−b) ≤ 1 .
have log 2 (a choose b) + b ∗ log 2 ?p + (a−b) ∗ log 2 (1−?p) ≤ 0
using Transcendental .log-mono [OF - - §]
by (simp add : p01 assms log-mult log-nat-power)

then show ?thesis
using p01 False assms unfolding H-def by (simp add : divide-simps)

qed

definition gg ≡ GG (2/5)

lemma gg-eq : gg x y = log 2 (5/2) + x ∗ log 2 (5/3) + y ∗ log 2 ((2 ∗ (x+y))
/ (5∗y))
by (simp add : gg-def GG-def)

definition f1 ≡ λx y . x + y + (2−x) ∗ H (1/(2−x))

definition f2 ≡ λx y . f1 x y − (1 / (40 ∗ ln 2)) ∗ ((1−x) / (2−x))

definition ff ≡ λx y . if x < 3/4 then f1 x y else f2 x y

Incorporating Bhavik‘s idea, which gives us a lower bound for γ of 1/101

definition ffGG :: real ⇒ real ⇒ real ⇒ real where
ffGG ≡ λµ x y . max 1 .9 (min (ff x y) (GG µ x y))

The proofs involving Sup are needlessly difficult because ultimately the
sets involved are finite, eliminating the need to demonstrate boundedness.
Simpler might be to use the extended reals.

lemma f1-le:
assumes x≤1
shows f1 x y ≤ y+2
unfolding f1-def
using H-le1 [of 1/(2−x)] assms
by (smt (verit) divide-le-eq-1-pos divide-nonneg-nonneg mult-left-le)

lemma ff-le4 :
assumes x≤1 y≤1
shows ff x y ≤ 4

proof −
have ff x y ≤ f1 x y
using assms by (simp add : ff-def f2-def)

also have . . . ≤ 4
using assms by (smt (verit) f1-le)

finally show ?thesis .
qed

234

lemma ff-GG-bound :
assumes x≤1 y≤1
shows ffGG µ x y ≤ 4
using ff-le4 [OF assms] by (auto simp: ffGG-def)

lemma bdd-above-ff-GG :
assumes x≤1 u≤1
shows bdd-above ((λy . ffGG µ x y + η) ‘ {0 ..u})
using ff-GG-bound assms
by (intro bdd-above.I2 [where M = 4+η]) force

lemma bdd-above-SUP-ff-GG :
assumes 0≤u u≤1
shows bdd-above ((λx .

⊔
y∈{0 ..u}. ffGG µ x y + η) ‘ {0 ..1})

using bdd-above-ff-GG assms
by (intro bdd-aboveI [where M = 4 + η]) (auto simp: cSup-le-iff ff-GG-bound

Pi-iff)

Claim (62). A singularity if x = 1. Okay if we put ln(0) = 0

lemma FF-le-f1 :
fixes k ::nat and x y ::real
assumes x : 0 ≤ x x ≤ 1 and y : 0 ≤ y y ≤ 1
shows FF k x y ≤ f1 x y

proof (cases nat⌊k − x∗k⌋ = 0)
case True
with x show ?thesis
by (simp add : FF-def f1-def H-ge0)

next
case False
let ?kl = k + k − nat ⌈x∗k⌉
have kk-less-1 : k / ?kl < 1
using x False by (simp add : field-split-simps, linarith)

have le: nat⌊k − x∗k⌋ ≤ k − nat⌈x∗k⌉
using floor-ceiling-diff-le x
by (meson mult-left-le-one-le mult-nonneg-nonneg of-nat-0-le-iff)

have k>0
using False zero-less-iff-neq-zero by fastforce

have RN-gt0 : RN k (nat⌊k − x∗k⌋) > 0
by (metis False RN-eq-0-iff ‹k>0 › gr0I)

then have §: RN k (nat⌊k − x∗k⌋) ≤ k + nat⌊k − x∗k⌋ choose k
using RN-le-choose by force

also have . . . ≤ k + k − nat⌈x∗k⌉ choose k
proof (intro Binomial .binomial-mono)
show k + nat ⌊k − x∗k⌋ ≤ ?kl
using False le by linarith

qed
finally have RN k (nat ⌊real k − x∗k⌋) ≤ ?kl choose k .
with RN-gt0 have FF k x y ≤ log 2 (?kl choose k) / k + x + y

235

by (simp add : FF-def divide-right-mono nat-less-real-le)
also have . . . ≤ (?kl ∗ H (k/?kl)) / k + x + y
proof −
have k ≤ k + k − nat⌈x∗k⌉
using False by linarith

then show ?thesis
by (simp add : H-12-1 divide-right-mono)

qed
also have . . . ≤ f1 x y
proof −
have 1 : ?kl / k ≤ 2−x

using x by (simp add : field-split-simps)
have 2 : H (k / ?kl) ≤ H (1 / (2−x))
proof (intro H-half-mono ′)
show 1 / (2−x) ≤ k / ?kl
using x False by (simp add : field-split-simps, linarith)

qed (use x kk-less-1 in auto)
have ?kl / k ∗ H (k / ?kl) ≤ (2−x) ∗ H (1 / (2−x))
using x mult-mono [OF 1 2 - H-ge0] kk-less-1 by fastforce

then show ?thesis
by (simp add : f1-def)

qed
finally show ?thesis .

qed

Bhavik’s eleven-one-large-end

lemma f1-le-19 :
fixes k ::nat and x y ::real
assumes x : 0 .99 ≤ x x ≤ 1 and y : 0 ≤ y y ≤ 3/4
shows f1 x y ≤ 1 .9

proof −
have A: 2−x ≤ 1 .01
using x by simp

have H (1 / (2−x)) ≤ H (1 / (2−0 .99))
using x by (intro H-half-mono ′) (auto simp: divide-simps)

also have . . . ≤ 0 .081
unfolding H-def by (approximation 15)

finally have B : H (1 / (2−x)) ≤ 0 .081 .
have (2−x) ∗ H (1 / (2−x)) ≤ 1 .01 ∗ 0 .081
using mult-mono [OF A B] x
by (smt (verit) A H-ge0 divide-le-eq-1-pos divide-nonneg-nonneg)

with assms show ?thesis by (auto simp: f1-def)
qed

Claim (63) in weakened form; we get rid of the extra bit later

lemma (in P0-min) FF-le-f2 :
fixes k ::nat and x y ::real
assumes x : 3/4 ≤ x x ≤ 1 and y : 0 ≤ y y ≤ 1
and l : real l = k − x∗k

236

assumes p0-min-101 : p0-min ≤ 1 − 1/5
defines γ ≡ real l / (real k + real l)
defines γ0 ≡ min γ (0 .07)
assumes γ > 0
shows FF k x y ≤ f2 x y + ok-fun-10-1 γ k / (k ∗ ln 2)

proof −
have l>0
using ‹γ>0 › γ-def less-irrefl by fastforce

have x>0
using x by linarith

with l have k≥l
by (smt (verit , del-insts) of-nat-0-le-iff of-nat-le-iff pos-prod-lt)

with ‹0 < l› have k>0 by force
have RN-gt0 : RN k l > 0
by (metis RN-eq-0-iff ‹0 < k› ‹0 < l› gr0I)

define δ where δ ≡ γ/40
have A: l / real(k+l) = (1−x)/(2−x)
using x ‹k>0 › by (simp add : l field-simps)

have B : real(k+l) / k = 2−x
using ‹0 < k› l by (auto simp: divide-simps left-diff-distrib)

have γ: γ ≤ 1/5
using x A by (simp add : γ-def)

have 1 − 1 / (2−x) = (1−x) / (2−x)
using x by (simp add : divide-simps)

then have Heq : H (1 / (2−x)) = H ((1−x) / (2−x))
by (metis H-reflect)

have RN k l ≤ exp (−δ∗k + ok-fun-10-1 γ k) ∗ (k+l choose l)
unfolding δ-def γ-def

proof (rule Closer-10-1-unconditional)
show 0 < l / (real k + real l) l / (real k + real l) ≤ 1/5
using γ ‹γ > 0 › by (auto simp: γ-def)

have min (l / (k + real l)) 0 .07 > 0
using ‹l>0 › by force

qed (use p0-min-101 in auto)
with RN-gt0 have FF k x y ≤ log 2 (exp (−δ∗k + ok-fun-10-1 γ k) ∗ (k+l

choose l)) / k + x + y
unfolding FF-def
by (intro add-mono divide-right-mono Transcendental .log-mono; simp flip: l)

also have . . . = (log 2 (exp (−δ∗k + ok-fun-10-1 γ k)) + log 2 (k+l choose l))
/ k + x + y

by (simp add : log-mult)
also have . . . ≤ ((−δ∗k + ok-fun-10-1 γ k) / ln 2 + (k+l) ∗ H (l/(k+l))) / k

+ x + y
using H-12-1
by (smt (verit , ccfv-SIG) log-exp divide-right-mono le-add2 of-nat-0-le-iff)

also have . . . = (−δ∗k + ok-fun-10-1 γ k) / k / ln 2 + (k+l) / k ∗ H (l/(k+l))
+ x + y

by argo
also have . . . = −δ / ln 2 + ok-fun-10-1 γ k / (k ∗ ln 2) + (2−x) ∗ H ((1−x)/(2−x))

237

+ x + y
proof −

have (−δ∗k + ok-fun-10-1 γ k) / k / ln 2 = −δ / ln 2 + ok-fun-10-1 γ k /
(k ∗ ln 2)

using ‹0 < k› by (simp add : divide-simps)
with A B show ?thesis
by presburger

qed
also have . . . = − (log 2 (exp 1) / 40) ∗ (1−x) / (2−x) + ok-fun-10-1 γ k /

(k ∗ ln 2) + (2−x) ∗ H ((1−x)/(2−x)) + x + y
using A by (force simp: δ-def γ-def field-simps)

also have . . . ≤ f2 x y + ok-fun-10-1 γ k / (real k ∗ ln 2)
by (simp add : Heq f1-def f2-def mult-ac)

finally show ?thesis .
qed

The body of the proof has been extracted to allow the symmetry argu-
ment. And 1/12 is 3/4-2/3, the latter number corresponding to µ = (2 :: ′a)
/ (5 :: ′a)

lemma (in Book-Basis) From-11-1-Body :
fixes V :: ′a set
assumes µ: 0 < µ µ ≤ 2/5 and η: 0 < η η ≤ 1/12
and ge-RN : Suc nV ≥ RN k k
and Red : graph-density Red ≥ 1/2
and p0-min12 : p0-min ≤ 1/2
and Red-E : Red ⊆ E and Blue-def : Blue = E\Red
and no-Red-K : ¬ (∃K . size-clique k K Red)
and no-Blue-K : ¬ (∃K . size-clique k K Blue)
and big : Big-From-11-1 η µ k

shows log 2 (RN k k) / k ≤ (SUP x ∈ {0 ..1}. SUP y ∈ {0 ..3/4}. ffGG µ x y
+ η)
proof −
have 12 : 3/4 − 2/3 = (1/12 ::real)
by simp

define η ′ where η ′ ≡ η/2
have η ′: 0 < η ′ η ′ ≤ 1/12
using η by (auto simp: η ′-def)

have k>0 and big101 : Big-Closer-10-1 (1/101) (nat⌈k/100 ⌉) and ok-fun-10-1-le:
3 / (k ∗ ln 2) ≤ η ′

using big by (auto simp: Big-From-11-1-def η ′-def)
interpret No-Cliques where l=k
using assms unfolding No-Cliques-def No-Cliques-axioms-def
using Book-Basis-axioms P0-min-axioms by blast

obtain X0 Y0 where card-X0 : card X0 ≥ nV /2 and card-Y0 : card Y0 =
gorder div 2

and X0 = V \ Y0 Y0⊆V
and p0-half : 1/2 ≤ gen-density Red X0 Y0
and Book V E p0-min Red Blue k k µ X0 Y0

proof (rule Basis-imp-Book)

238

show p0-min ≤ graph-density Red
using p0-min12 Red by linarith

show 0 < µ µ < 1
using µ by auto

qed (use infinite-UNIV p0-min Blue-def Red µ in auto)
then interpret Book V E p0-min Red Blue k k µ X0 Y0
by meson

define R where R ≡ Step-class {red-step}
define S where S ≡ Step-class {dboost-step}
define t where t ≡ card R
define s where s ≡ card S
define x where x ≡ t/k
define y where y ≡ s/k
have sts: (s + real t) / s = (x+y) / y
using ‹k>0 › by (simp add : x-def y-def divide-simps)

have t<k
by (simp add : R-def µ t-def red-step-limit)

then obtain x01 : 0≤x x<1
by (auto simp: x-def)

have big41 : Big-Blue-4-1 µ k and big61 : Big-Y-6-1 µ k
and big85 : Big-ZZ-8-5 µ k and big11-2 : Big-From-11-2 µ k
and ok111-le: ok-fun-11-1 µ k / k ≤ η ′

and powr-le: (2 / (1−µ)) ∗ k powr (−1/20) ≤ η ′ and k>0
using big by (auto simp: Big-From-11-1-def Big-Y-6-1-def Big-Y-6-2-def η ′-def)
then have big53 : Big-Red-5-3 µ k
by (meson Big-From-11-2-def)

have µ < 1
using µ by auto

have s<k
unfolding s-def S-def
by (meson µ le-less-trans bblue-dboost-step-limit big41 le-add2)

then obtain y01 : 0≤y y<1
by (auto simp: y-def)

Now that x and y are fixed, here’s the body of the outer supremum

define w where w ≡ (
⊔

y∈{0 ..3/4}. ffGG µ x y + η)
show ?thesis
proof (intro cSup-upper2 imageI)
show w ∈ (λx .

⊔
y∈{0 ..3/4}. ffGG µ x y + η) ‘ {0 ..1}

using x01 by (force simp: w-def intro!: image-eqI [where x=x])
next
have µ23 : µ / (1−µ) ≤ 2/3
using µ by (simp add : divide-simps)

have beta-le: bigbeta ≤ µ
using ‹µ<1 › µ big53 bigbeta-le by blast

have s ≤ (bigbeta / (1 − bigbeta)) ∗ t + (2 / (1−µ)) ∗ k powr (19/20)
using ZZ-8-5 [OF big85] µ by (auto simp: R-def S-def s-def t-def)

239

also have . . . ≤ (µ / (1−µ)) ∗ t + (2 / (1−µ)) ∗ k powr (19/20)
by (smt (verit , ccfv-SIG) ‹µ<1 › µ beta-le frac-le mult-right-mono of-nat-0-le-iff)
also have . . . ≤ (µ / (1−µ)) ∗ t + (2 / (1−µ)) ∗ (k powr (−1/20) ∗ k powr

1)
unfolding powr-add [symmetric] by simp

also have . . . ≤ (2/3) ∗ t + (2 / (1−µ)) ∗ (k powr (−1/20)) ∗ k
using mult-right-mono [OF µ23 , of t] by (simp add : mult-ac)

also have . . . ≤ (3/4 − η ′) ∗ k + (2 / (1−µ)) ∗ (k powr (−1/20)) ∗ k
proof −
have (2/3) ∗ t ≤ (2/3) ∗ k
using ‹t < k› by simp

then show ?thesis
using 12 η ′ by (smt (verit) mult-right-mono of-nat-0-le-iff)

qed
finally have s ≤ (3/4 − η ′) ∗ k + (2 / (1−µ)) ∗ k powr (−1/20) ∗ k
by simp

with mult-right-mono [OF powr-le, of k]
have †: s ≤ 3/4 ∗ k
by (simp add : mult .commute right-diff-distrib ′)

then have y ≤ 3/4
by (metis † ‹0 < k› of-nat-0-less-iff pos-divide-le-eq y-def)

have k-minus-t : nat ⌊real k − real t⌋ = k−t
by linarith

have nV div 2 ≤ card Y0
by (simp add : card-Y0)

then have §: log 2 (Suc nV) ≤ log 2 (RN k (k−t)) + s + t + 2 − ok-fun-61
k

using From-11-3 [OF - big61] p0-half µ by (auto simp: R-def S-def p0-def
s-def t-def)

define l where l ≡ k−t
define γ where γ ≡ real l / (real k + real l)
have γ < 1
using ‹t < k› by (simp add : γ-def)

have nV div 2 ≤ card X0
using card-X0 by linarith

then have 112 : log 2 (Suc nV) ≤ k ∗ log 2 (1/µ) + t ∗ log 2 (1 / (1−µ)) +
s ∗ log 2 (ratio µ s t)

+ ok-fun-11-2 µ k
using From-11-2 [OF - big11-2] p0-half µ
unfolding s-def t-def p0-def R-def S-def by force

have log 2 (Suc nV) / k ≤ log 2 (1/µ) + x ∗ log 2 (1 / (1−µ)) + y ∗ log 2
(ratio µ s t)

+ ok-fun-11-2 µ k / k
using ‹k>0 › divide-right-mono [OF 112 , of k]
by (simp add : add-divide-distrib x-def y-def)

also have . . . = GG µ x y + ok-fun-11-2 µ k / k
by (metis GG-def sts times-divide-eq-right)

240

also have . . . ≤ GG µ x y + ok-fun-11-1 µ k / k
by (simp add : ok-fun-11-1-def divide-right-mono)

finally have le-GG : log 2 (Suc nV) / k ≤ GG µ x y + ok-fun-11-1 µ k / k .

have log 2 (Suc nV) / k ≤ log 2 (RN k (k−t)) / k + x + y + (2 − ok-fun-61
k) / k

using ‹k>0 › divide-right-mono [OF §, of k] add-divide-distrib x-def y-def
by (smt (verit) add-uminus-conv-diff of-nat-0-le-iff)

also have . . . = FF k x y + (2 − ok-fun-61 k) / k
by (simp add : FF-def x-def k-minus-t)

finally have DD : log 2 (Suc nV) / k ≤ FF k x y + (2 − ok-fun-61 k) / k .

have RN k k > 0
by (metis RN-eq-0-iff ‹k>0 › gr0I)

moreover have log 2 (Suc nV) / k ≤ ffGG µ x y + η
proof (cases x < 0 .99) — a further case split that gives a lower bound for

gamma
case True
have ‡: Big-Closer-10-1 (min γ 0 .07) (nat ⌈γ ∗ real k / (1 − γ)⌉)
proof (intro Big-Closer-10-1-upward [OF big101])
show 1/101 ≤ min γ 0 .07
using ‹k>0 › ‹t<k› True by (simp add : γ-def l-def x-def divide-simps)

with ‹γ < 1 › less-eq-real-def have k/100 ≤ γ ∗ k / (1 − γ)
by (fastforce simp: field-simps)

then show nat ⌈k/100 ⌉ ≤ nat ⌈γ ∗ k / (1 − γ)⌉
using ceiling-mono nat-mono by blast

qed
have 122 : FF k x y ≤ ff x y + η ′

proof −
have FF k x y ≤ f1 x y
using x01 y01
by (intro FF-le-f1) auto

moreover
have FF k x y ≤ f2 x y + ok-fun-10-1 γ k / (k ∗ ln 2) if x ≥ 3/4
unfolding γ-def

proof (intro FF-le-f2 that)
have γ = (1−x) / (2−x)
using ‹0 < k› ‹t < k› by (simp add : l-def γ-def x-def divide-simps)

then have γ ≤ 1/5
using that ‹x<1 › by simp

show real l = real k − x ∗ real k
using ‹t < k› by (simp add : l-def x-def)

show 0 < l / (k + real l)
using ‹t < k› l-def by auto

qed (use x01 y01 p0-min12 in auto)
moreover have ok-fun-10-1 γ k / (k ∗ ln 2) ≤ η ′

using ‡ ok-fun-10-1-le by (simp add : ok-fun-10-1-def)
ultimately show ?thesis
using η ′ by (auto simp: ff-def)

241

qed
have log 2 (Suc nV) / k ≤ ff x y + η ′ + (2 − ok-fun-61 k) / k
using 122 DD by linarith

also have . . . ≤ ff x y + η ′ + ok-fun-11-1 µ k / k
by (simp add : ok-fun-11-1-def divide-right-mono)

finally have le-ff : log 2 (Suc nV) / k ≤ ff x y + η ′ + ok-fun-11-1 µ k / k .
then show ?thesis
using η ok111-le le-ff le-GG unfolding η ′-def ffGG-def by linarith

next
case False — in this case, we can use the existing bound involving f1
have log 2 (Suc nV) / k ≤ FF k x y + (2 − ok-fun-61 k) / k
by (metis DD)

also have . . . ≤ f1 x y + (2 − ok-fun-61 k) / k
using x01 y01 FF-le-f1 [of x y] by simp

also have . . . ≤ 1 .9 + (2 − ok-fun-61 k) / k
using x01 y01 by (smt (verit) False ‹y ≤ 3/4 › f1-le-19)

also have . . . ≤ ffGG µ x y + η
by (smt (verit) P0-min.intro P0-min.ok-fun-11-1-def η ′(1) η ′-def divide-right-mono

ffGG-def field-sum-of-halves of-nat-0-le-iff ok111-le p0-min(1) p0-min(2))
finally show ?thesis .

qed
ultimately have log 2 (RN k k) / k ≤ ffGG µ x y + η
using ge-RN ‹k>0 ›

by (smt (verit , best) Transcendental .log-mono divide-right-mono of-nat-0-less-iff
of-nat-mono)

also have . . . ≤ w
unfolding w-def

proof (intro cSup-upper2)
have y ∈ {0 ..3/4}
using divide-right-mono [OF †, of k] ‹k>0 › by (simp add : x-def y-def)

then show ffGG µ x y + η ∈ (λy . ffGG µ x y + η) ‘ {0 ..3/4}
by blast

next
show bdd-above ((λy . ffGG µ x y + η) ‘ {0 ..3/4})
by (simp add : bdd-above-ff-GG less-imp-le x01)

qed auto
finally show log 2 (real (RN k k)) / k ≤ w .

next
show bdd-above ((λx .

⊔
y∈{0 ..3/4}. ffGG µ x y + η) ‘ {0 ..1})

by (auto intro: bdd-above-SUP-ff-GG)
qed

qed

theorem (in P0-min) From-11-1 :
assumes µ: 0 < µ µ ≤ 2/5 and η > 0 and le: η ≤ 1/12
and p0-min12 : p0-min ≤ 1/2 and big : Big-From-11-1 η µ k

shows log 2 (RN k k) / k ≤ (SUP x ∈ {0 ..1}. SUP y ∈ {0 ..3/4}. ffGG µ x y
+ η)
proof −

242

have k≥3
using big by (auto simp: Big-From-11-1-def)

define n where n ≡ RN k k − 1
define V where V ≡ {..<n}
define E where E ≡ all-edges V
interpret Book-Basis V E
proof qed (auto simp: V-def E-def comp-sgraph.wellformed comp-sgraph.two-edges)

have RN k k ≥ 3
using ‹k≥3 › RN-3plus le-trans by blast

then have n < RN k k
by (simp add : n-def)

moreover have [simp]: nV = n
by (simp add : V-def)

ultimately obtain Red Blue
where Red-E : Red ⊆ E and Blue-def : Blue = E\Red
and no-Red-K : ¬ (∃K . size-clique k K Red)
and no-Blue-K : ¬ (∃K . size-clique k K Blue)

by (metis ‹n < RN k k› less-RN-Red-Blue)
have Blue-E : Blue ⊆ E and disjnt-Red-Blue: disjnt Red Blue and Blue-eq : Blue

= all-edges V \ Red
using complete by (auto simp: Blue-def disjnt-iff E-def)

have nV > 1
using ‹RN k k ≥ 3 › ‹nV=n› n-def by linarith

with graph-size have graph-size > 0
by simp

then have graph-density E = 1
by (simp add : graph-density-def)

then have graph-density Red + graph-density Blue = 1
using graph-density-Un [OF disjnt-Red-Blue] by (simp add : Blue-def Red-E

Un-absorb1)
then consider (Red) graph-density Red ≥ 1/2 | (Blue) graph-density Blue ≥

1/2
by force

then show ?thesis
proof cases
case Red
show ?thesis
proof (intro From-11-1-Body)
next
show RN k k ≤ Suc nV
by (simp add : n-def)

show ∄K . size-clique k K Red
using no-Red-K by blast

show ∄K . size-clique k K Blue
using no-Blue-K by blast

qed (use Red Red-E Blue-def assms in auto)
next
case Blue

243

show ?thesis
proof (intro From-11-1-Body)
show RN k k ≤ Suc nV
by (simp add : n-def)

show Blue ⊆ E
by (simp add : Blue-E)

show Red = E \ Blue
by (simp add : Blue-def Red-E double-diff)

show ∄K . size-clique k K Red
using no-Red-K by blast

show ∄K . size-clique k K Blue
using no-Blue-K by blast

qed (use Blue Red-E Blue-def assms in auto)
qed

qed

12.2 The monster calculation from appendix A

12.2.1 Observation A.1

lemma gg-increasing :
assumes x ≤ x ′ 0 ≤ x 0 ≤ y
shows gg x y ≤ gg x ′ y

proof (cases y=0)
case False
with assms show ?thesis

unfolding gg-eq by (intro add-mono mult-left-mono divide-right-mono Tran-
scendental .log-mono) auto
qed (auto simp: gg-eq assms)

Thanks to Manuel Eberl

lemma continuous-on-x-ln: continuous-on {0 ..} (λx ::real . x ∗ ln x)
proof −
have continuous (at x within {0 ..}) (λx . x ∗ ln x)
if x ≥ 0 for x :: real

proof (cases x = 0)
case True
have continuous (at-right 0) (λx ::real . x ∗ ln x)
unfolding continuous-within by real-asymp

thus ?thesis
using True by (simp add : at-within-Ici-at-right)

qed (auto intro!: continuous-intros)
thus ?thesis
by (simp add : continuous-on-eq-continuous-within)

qed

lemma continuous-on-f1 : continuous-on {..1} (λx . f1 x y)
proof −
have §: (λx ::real . (1 − 1/(2−x)) ∗ ln (1 − 1/(2−x))) = (λx . x ∗ ln x) o (λx .

1 − 1/(2−x))

244

by (simp add : o-def)
have cont-xln: continuous-on {..1} (λx ::real . (1 − 1/(2−x)) ∗ ln (1 − 1/(2−x)))

unfolding §
proof (rule continuous-intros)
show continuous-on {..1 ::real} (λx . 1 − 1/(2−x))
by (intro continuous-intros) auto

next
show continuous-on ((λx ::real . 1 − 1/(2−x)) ‘ {..1}) (λx . x ∗ ln x)
by (rule continuous-on-subset [OF continuous-on-x-ln]) auto

qed
show ?thesis
apply (simp add : f1-def H-def log-def)
by (intro continuous-on-subset [OF cont-xln] continuous-intros) auto

qed

definition df1 where df1 ≡ λx . log 2 (2 ∗ ((1−x) / (2−x)))

lemma Df1 [derivative-intros]:
assumes x<1
shows ((λx . f1 x y) has-real-derivative df1 x) (at x)

proof −
have (2 − x ∗ 2) = 2 ∗ (1−x)
by simp

then have [simp]: log 2 (2 − x ∗ 2) = log 2 (1−x) + 1
using log-mult [of 2 1−x 2] assms by (smt (verit , best) log-eq-one)

show ?thesis
using assms
unfolding f1-def H-def df1-def
apply −
apply (rule derivative-eq-intros | simp)+
apply (simp add : log-divide divide-simps)
apply (simp add : algebra-simps)
done

qed

definition delta where delta ≡ λu::real . 1 / (ln 2 ∗ 40 ∗ (2 − u)2)

lemma Df2 :
assumes 1/2≤x x<1
shows ((λx . f2 x y) has-real-derivative df1 x + delta x) (at x)
using assms unfolding f2-def delta-def
apply −
apply (rule derivative-eq-intros Df1 | simp)+
apply (simp add : divide-simps power2-eq-square)
done

lemma antimono-on-ff :
assumes 0 ≤ y y < 1
shows antimono-on {1/2 ..1} (λx . ff x y)

245

proof −
have §: 1 − 1 / (2−x) = (1−x) / (2−x) if x<2 for x ::real
using that by (simp add : divide-simps)

have f1 : f1 x ′ y ≤ f1 x y
if x ∈ {1/2 ..1} x ′ ∈ {1/2 ..1} x ≤ x ′ x ′ ≤ 1 for x x ′::real

proof (rule DERIV-nonpos-imp-decreasing-open [OF ‹x ≤ x ′›, where f = λx .
f1 x y])

fix u :: real
assume x < u u < x ′

with that show ∃D . ((λx . f1 x y) has-real-derivative D) (at u) ∧ D ≤ 0
by − (rule exI conjI Df1 [unfolded df1-def] | simp)+

next
show continuous-on {x ..x ′} (λx . f1 x y)
using that by (intro continuous-on-subset [OF continuous-on-f1]) auto

qed
have f1f2 : f2 x ′ y ≤ f1 x y
if x ∈ {1/2 ..1} x ′ ∈ {1/2 ..1} x ≤ x ′ x < 3/4 ¬ x ′ < 3/4 for x x ′::real
using that
apply (simp add : f2-def)
by (smt (verit , best) divide-nonneg-nonneg f1 ln-le-zero-iff pos-prod-lt that)

have f2 : f2 x ′ y ≤ f2 x y
if A: x ∈ {1/2 ..1} x ′ ∈ {1/2 ..1} x ≤ x ′ and B : ¬ x < 3/4 for x x ′::real

proof (rule DERIV-nonpos-imp-decreasing-open [OF ‹x ≤ x ′› , where f = λx .
f2 x y])

fix u :: real
assume u: x < u u < x ′

have ((λx . f2 x y) has-real-derivative df1 u + delta u) (at u)
using u that by (intro Df2) auto

moreover have df1 u + delta u ≤ 0
proof −
have df1 (1/2) ≤ −1/2
unfolding df1-def by (approximation 20)

moreover have df1 u ≤ df1 (1/2)
using u that unfolding df1-def
by (intro Transcendental .log-mono) (auto simp: divide-simps)

moreover have delta 1 ≤ 0 .04
unfolding delta-def by (approximation 4)

moreover have delta u ≤ delta 1
using u that by (auto simp: delta-def divide-simps)

ultimately show ?thesis
by auto

qed
ultimately show ∃D . ((λx . f2 x y) has-real-derivative D) (at u) ∧ D ≤ 0
by blast

next
show continuous-on {x ..x ′} (λx . f2 x y)
unfolding f2-def

using that by (intro continuous-on-subset [OF continuous-on-f1] continuous-intros)

246

auto
qed
show ?thesis
using f1 f1f2 f2 by (simp add : monotone-on-def ff-def)

qed

12.2.2 Claims A.2–A.4

Called simply x in the paper, but are you kidding me?

definition x-of ≡ λy ::real . 3∗y/5 + 0 .5454

lemma x-of : x-of ∈ {0 ..3/4} → {1/2 ..1}
by (simp add : x-of-def)

definition y-of ≡ λx ::real . 5 ∗ x/3 − 0 .909

lemma y-of-x-of [simp]: y-of (x-of y) = y
by (simp add : x-of-def y-of-def add-divide-distrib)

lemma x-of-y-of [simp]: x-of (y-of x) = x
by (simp add : x-of-def y-of-def divide-simps)

lemma Df1-y [derivative-intros]:
assumes x<1
shows ((λx . f1 x (y-of x)) has-real-derivative 5/3 + df1 x) (at x)

proof −
have (2 − x ∗ 2) = 2 ∗ (1−x)
by simp

then have [simp]: log 2 (2 − x ∗ 2) = log 2 (1−x) + 1
using log-mult [of 2 1−x 2] assms by (smt (verit , best) log-eq-one)

show ?thesis
using assms
unfolding f1-def y-of-def H-def df1-def
apply −
apply (rule derivative-eq-intros refl | simp)+
apply (simp add : log-divide divide-simps)
apply (simp add : algebra-simps)
done

qed

lemma Df2-y [derivative-intros]:
assumes 1/2≤x x<1
shows ((λx . f2 x (y-of x)) has-real-derivative 5/3 + df1 x + delta x) (at x)
using assms unfolding f2-def delta-def
apply −
apply (rule derivative-eq-intros Df1 | simp)+
apply (simp add : divide-simps power2-eq-square)
done

247

definition Dg-x ≡ λy . 3 ∗ log 2 (5/3) / 5 + log 2 ((2727 + y ∗ 8000) / (y ∗
12500))

− 2727 / (ln 2 ∗ (2727 + y ∗ 8000))

lemma Dg-x [derivative-intros]:
assumes y ∈ {0<..<3/4}
shows ((λy . gg (x-of y) y) has-real-derivative Dg-x y) (at y)
using assms
unfolding x-of-def gg-def GG-def Dg-x-def
apply −
apply (rule derivative-eq-intros refl | simp)+
apply (simp add : field-simps)
done

Claim A2 is difficult because it comes *real close*: max value = 1.999281,
when y = 0.4339. There is no simple closed form for the maximum point
(where the derivative goes to 0).

Due to the singularity at zero, we need to cover the zero case analytically,
but at least interval arithmetic covers the maximum point
lemma A2 :
assumes y ∈ {0 ..3/4}
shows gg (x-of y) y ≤ 2 − 1/2^11

proof −
have ?thesis if y ∈ {0 ..1/10}
proof −
have gg (x-of y) y ≤ gg (x-of (1/10)) (1/10)
proof (rule DERIV-nonneg-imp-increasing-open [of y 1/10])
fix y ′ :: real
assume y ′: y < y ′ y ′ < 1/10
then have y ′>0
using that by auto

show ∃D . ((λu. gg (x-of u) u) has-real-derivative D) (at y ′) ∧ 0 ≤ D
proof (intro exI conjI)
show ((λu. gg (x-of u) u) has-real-derivative Dg-x y ′) (at y ′)
using y ′ that by (intro derivative-eq-intros) auto

next
define Num where Num ≡ 3 ∗ log 2 (5/3) / 5 ∗ (ln 2 ∗ (2727 + y ′ ∗

8000)) + log 2 ((2727 + y ′ ∗ 8000) / (y ′ ∗ 12500)) ∗ (ln 2 ∗ (2727 + y ′ ∗ 8000))
− 2727

have A: 835 .81 ≤ 3 ∗ log 2 (5/3) / 5 ∗ ln 2 ∗ 2727
by (approximation 25)

have B : 2451 .9 ≤ 3 ∗ log 2 (5/3) / 5 ∗ ln 2 ∗ 8000
by (approximation 25)

have C : Dg-x y ′ = Num / (ln 2 ∗ (2727 + y ′ ∗ 8000))
using ‹y ′>0 › by (simp add : Dg-x-def Num-def add-divide-distrib diff-divide-distrib)
have 0 ≤ −1891 .19 + log 2 (2727 / 1250) ∗ (ln 2 ∗ (2727))
by (approximation 6)

also have . . . ≤ −1891 .19 + 2451 .9 ∗ y ′ + log 2 ((2727 + y ′ ∗ 8000) /
(y ′ ∗ 12500)) ∗ (ln 2 ∗ (2727 + y ′ ∗ 8000))

248

using y ′ ‹0 < y ′›
by (intro add-mono mult-mono Transcendental .log-mono frac-le order .refl)

auto
also have . . . = 835 .81 + 2451 .9 ∗ y ′ + log 2 ((2727 + y ′ ∗ 8000) / (y ′

∗ 12500)) ∗ (ln 2 ∗ (2727 + y ′ ∗ 8000))
− 2727

by simp
also have . . . ≤ Num
using A mult-right-mono [OF B , of y ′] ‹y ′>0 ›
unfolding Num-def ring-distribs
by (intro add-mono diff-mono order .refl) (auto simp: mult-ac)

finally have Num ≥ 0 .
with C show 0 ≤ Dg-x y ′

using ‹0 < y ′› by auto
qed

next
let ?f = λx . x ∗ log 2 ((16∗x/5 + 2727/2500) / (5∗x))
have †: continuous-on {0 ..} ?f
proof −
have continuous (at x within {0 ..}) ?f
if x ≥ 0 for x :: real

proof (cases x = 0)
case True
have continuous (at-right 0) ?f
unfolding continuous-within by real-asymp

thus ?thesis
using True by (simp add : at-within-Ici-at-right)

qed (use that in ‹auto intro!: continuous-intros›)
thus ?thesis
by (simp add : continuous-on-eq-continuous-within)

qed
show continuous-on {y ..1/10} (λy . gg (x-of y) y)
unfolding gg-eq x-of-def using that
by (force intro: continuous-on-subset [OF †] continuous-intros)

qed (use that in auto)
also have . . . ≤ 2 − 1/2^11
unfolding gg-eq x-of-def by (approximation 10)

finally show ?thesis .
qed
moreover
have ?thesis if y ∈ {1/10 .. 3/4}
using that unfolding gg-eq x-of-def
by (approximation 24 splitting : y = 12) — many thanks to Fabian Immler

ultimately show ?thesis
by (meson assms atLeastAtMost-iff linear)

qed

lemma A3 :
assumes y ∈ {0 ..0 .341}

249

shows f1 (x-of y) y ≤ 2 − 1/2^11
proof −
define D where D ≡ λx . 5/3 + df1 x
define I where I ≡ {0 .5454 .. 3/4 ::real}
define x where x ≡ x-of y
then have yeq : y = y-of x
by (metis y-of-x-of)

have x ∈ {x-of 0 .. x-of 0 .341}
using assms by (simp add : x-def x-of-def)

then have x : x ∈ I
by (simp add : x-of-def I-def)

have D : ((λx . f1 x (y-of x)) has-real-derivative D x) (at x) if x ∈ I for x
using that Df1-y by (force simp: D-def I-def)

have Dgt0 : D x ≥ 0 if x ∈ I for x
using that unfolding D-def df1-def I-def by (approximation 10)

have f1 x y = f1 x (y-of x)
by (simp add : yeq)

also have . . . ≤ f1 (3/4) (y-of (3/4))
using x Dgt0
by (force simp: I-def intro!: D DERIV-nonneg-imp-nondecreasing [where f =

λx . f1 x (y-of x)])
also have . . . < 1 .994
by (simp add : f1-def H-def y-of-def) (approximation 50)

also have . . . < 2 − 1/2^11
by (approximation 50)

finally show ?thesis
using x-def by auto

qed

This one also comes close: max value = 1.999271, when y = 0.4526. The
specified upper bound is 1.99951

lemma A4 :
assumes y ∈ {0 .341 ..3/4}
shows f2 (x-of y) y ≤ 2 − 1/2^11
unfolding f2-def f1-def x-of-def H-def
using assms by (approximation 18 splitting : y = 13)

context P0-min
begin

The truly horrible Lemma 12.3

lemma 123 :
fixes δ::real
assumes 0 < δ δ ≤ 1 / 2^11
shows (SUP x ∈ {0 ..1}. SUP y ∈ {0 ..3/4}. ffGG (2/5) x y) ≤ 2−δ

proof −
have min (ff x y) (gg x y) ≤ 2 − 1/2^11 if x ∈ {0 ..1} y ∈ {0 ..3/4} for x y

250

proof (cases x ≤ x-of y)
case True
with that have gg x y ≤ gg (x-of y) y
by (intro gg-increasing) auto

with A2 that show ?thesis
by fastforce

next
case False
with that have ff x y ≤ ff (x-of y) y
by (intro monotone-onD [OF antimono-on-ff]) (auto simp: x-of-def)

also have . . . ≤ 2 − 1/2^11
proof (cases x-of y < 3/4)
case True
with that have f1 (x-of y) y ≤ 2 − 1/2^11
by (intro A3) (auto simp: x-of-def)

then show ?thesis
using True ff-def by presburger

next
case False
with that have f2 (x-of y) y ≤ 2 − 1/2^11
by (intro A4) (auto simp: x-of-def)

then show ?thesis
using False ff-def by presburger

qed
finally show ?thesis
by linarith

qed
moreover have 2 − 1/2^11 ≤ 2−δ
using assms by auto

ultimately show ?thesis
by (fastforce simp: ffGG-def gg-def intro!: cSUP-least)

qed

end

12.3 Concluding the proof

we subtract a tiny bit, as we seem to need this gap

definition delta ′::real where delta ′ ≡ 1 / 2^11 − 1 / 2^18

lemma Aux-1-1 :
assumes p0-min12 : p0-min ≤ 1/2
shows ∀∞k . log 2 (RN k k) / k ≤ 2 − delta ′

proof −
define p0-min::real where p0-min ≡ 1/2
interpret P0-min p0-min
proof qed (auto simp: p0-min-def)
define δ::real where δ ≡ 1 / 2^11
define η::real where η ≡ 1 / 2^18

251

have η: 0 < η η ≤ 1/12
by (auto simp: η-def)

define µ::real where µ ≡ 2/5
have ∀∞k . Big-From-11-1 η µ k
unfolding µ-def using η by (intro Big-From-11-1) auto

moreover have log 2 (real (RN k k)) / k ≤ 2−δ + η if Big-From-11-1 η µ k
for k
proof −
have ∗: (

⊔
y∈{0 ..3/4}. ffGG µ x y + η) = (

⊔
y∈{0 ..3/4}. ffGG µ x y) + η

if x≤1 for x
using bdd-above-ff-GG [OF that , of 3/4 µ 0]
by (simp add : add .commute [of - η] Sup-add-eq)

have log 2 (RN k k) / k ≤ (SUP x ∈ {0 ..1}. SUP y ∈ {0 ..3/4}. ffGG µ x y
+ η)

using that p0-min12 η µ-def
by (intro From-11-1) (auto simp: p0-min-def)

also have . . . ≤ (SUP x ∈ {0 ..1}. (SUP y ∈ {0 ..3/4}. ffGG µ x y) + η)
proof (intro cSUP-subset-mono bdd-above.I2 [where M = 4+η])
fix x :: real
assume x : x ∈ {0 ..1}
have (

⊔
y∈{0 ..3/4}. ffGG µ x y + η) ≤ 4 + η

using bdd-above-ff-GG ff-GG-bound x by (simp add : cSup-le-iff)
with ∗ x show (

⊔
y∈{0 ..3/4}. ffGG µ x y) + η ≤ 4 + η

by simp
qed (use ∗ in auto)
also have . . . = (SUP x ∈ {0 ..1}. SUP y ∈ {0 ..3/4}. ffGG µ x y) + η
using bdd-above-SUP-ff-GG [of 3/4 µ 0]
by (simp add : add .commute [of - η] Sup-add-eq)

also have . . . ≤ 2−δ + η
using 123 [of 1 / 2^11]
unfolding δ-def ffGG-def by (auto simp: δ-def ffGG-def µ-def)

finally show ?thesis .
qed
ultimately have ∀∞k . log 2 (RN k k) / k ≤ 2−δ + η
by (metis (lifting) eventually-mono)

then show ?thesis
by (simp add : δ-def η-def delta ′-def)

qed

Main theorem 1.1: the exponent is approximately 3.9987

theorem Main-1-1 :
obtains ε::real where ε>0 ∀∞k . RN k k ≤ (4−ε)^k

proof
let ?ε = 0 .00134 ::real
have ∀∞k . k>0 ∧ log 2 (RN k k) / k ≤ 2 − delta ′

unfolding eventually-conj-iff using Aux-1-1 eventually-gt-at-top by blast
then have ∀∞k . RN k k ≤ (2 powr (2−delta ′)) ^ k
proof (eventually-elim)
case (elim k)

252

then have log 2 (RN k k) ≤ (2−delta ′) ∗ k
by (meson of-nat-0-less-iff pos-divide-le-eq)

then have RN k k ≤ 2 powr ((2−delta ′) ∗ k)
by (smt (verit , best) Transcendental .log-le-iff powr-ge-pzero)

then show RN k k ≤ (2 powr (2−delta ′)) ^ k
by (simp add : mult .commute powr-power)

qed
moreover have 2 powr (2−delta ′) ≤ 4 − ?ε
unfolding delta ′-def by (approximation 25)

ultimately show ∀∞k . real (RN k k) ≤ (4−?ε) ^ k
by (smt (verit) power-mono powr-ge-pzero eventually-mono)

qed auto

end

References

[1] M. Campos, S. Griffiths, R. Morris, and J. Sahasrabudhe. An exponential
improvement for diagonal Ramsey, 2023. arXiv, 2303.09521.

253

	Library material to remove for Isabelle2025
	Convexity

	Background material: the neighbours of vertices
	Preliminaries on graphs
	Neighbours of a vertex
	Density: for calculating the parameter p
	Lemma 9.2 preliminaries

	The book algorithm
	Locale for the parameters of the construction
	State invariants
	Degree regularisation
	Big blue steps: code
	The central vertex
	Red step
	Density-boost step
	Execution steps 2–5 as a function
	The classes of execution steps
	Termination proof

	Big Blue Steps: theorems
	Material to delete for Isabelle 2025
	Preliminaries
	Preliminaries: Fact D1

	Red Steps: theorems
	Density-boost steps
	Observation 5.5
	Lemma 5.6

	Lemma 5.4
	Lemma 5.1
	Lemma 5.3

	Bounding the Size of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Y
	The following results together are Lemma 6.4
	Towards Lemmas 6.3
	Lemma 6.5
	Lemma 6.2
	Lemma 6.1

	Bounding the Size of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 X
	Preliminaries
	Lemma 7.2
	Lemma 7.3
	Lemma 7.5
	Lemma 7.4
	Observation 7.7
	Lemma 7.8
	Lemma 7.9
	Lemma 7.10
	Lemma 7.11
	Lemma 7.12
	Lemma 7.6
	Lemma 7.1

	The Zigzag Lemma
	Lemma 8.1 (the actual Zigzag Lemma)
	Lemma 8.5
	Lemma 8.6

	An exponential improvement far from the diagonal
	An asymptotic form for binomial coefficients via Stirling's formula
	Fact D.3 from the Appendix
	Fact D.2
	Lemma 9.3
	Lemma 9.5
	Lemma 9.2 actual proof
	Theorem 9.1

	An exponential improvement closer to the diagonal
	Lemma 10.2
	Theorem 10.1

	From diagonal to off-diagonal
	Lemma 11.2
	Lemma 11.3
	Theorem 11.1

	The Proof of Theorem 1.1
	The bounding functions
	The monster calculation from appendix A
	Observation A.1
	Claims A.2–A.4

	Concluding the proof

