Cofinality and the Delta System Lemma

Pedro Sánchez Terraf* ${ }^{* \dagger}$

May 26, 2024

Abstract

We formalize the basic results on cofinality of linearly ordered sets and ordinals and Šanin's Lemma for uncountable families of finite sets. We work in the set theory framework of Isabelle/ZF, using the Axiom of Choice as needed.

Contents

1 Introduction

2 Library of basic $Z F$ results 2
2.1 Some minimal arithmetic/ordinal stuff 3
2.2 Manipulation of function spaces 5
2.3 Finite sets 8
2.4 Basic results on equipollence, cardinality and related concepts 11
2.5 Morphisms of binary relations 16
2.6 Alephs are infinite cardinals 22
2.7 Transfinite recursive constructions 24
3 Cofinality 24
3.1 Basic results and definitions 24
3.2 The factorization lemma 32
3.3 Classical results on cofinalities 41
4 Cardinal Arithmetic under Choice 49
4.1 Results on cardinal exponentiation 49
4.2 Miscellaneous 50
4.3 Countable and uncountable sets 54

[^0]4.4 Results on Alephs 55
4.5 Applications of transfinite recursive constructions 58
4.6 König's Theorem 64
5 The Delta System Lemma 66
5.1 Application to Cohen posets 71

1 Introduction

The session we present gathers very basic results built on the set theory formalization of Isabelle/ZF [7]. In a sense, some of the material formalized here corresponds to a natural continuation of that work. This is even clearer after perusing Section 2, where notions like cardinal exponentiation are first defined, together with various lemmas that do not depend on the Axiom of Choice $(A C)$; the same holds for the basic theory of cofinality of ordinals, which is developed in Section 3. In Section 4, (un)countability is defined and several results proved, now using $A C$ freely; the latter is also needed to prove König's Theorem on cofinality of cardinal exponentiation. The simplest infinitary version of the Delta System Lemma (DSL, also known as the "Sunflower Lemma") due to Šanin is proved in Section 5, and it is applied to prove that Cohen posets satisfy the countable chain condition.
A greater part of this development was motivated by a joint project on the formalization of the ctm approach to forcing [1] by Gunther, Pagano, Steinberg, and the author. Indeed, most of the results presented here are required for the development of forcing. As it turns out, the material as formalized presently is not imported as a whole by the forcing formalization $[3,2]$, since the latter requires relativized versions of both the concepts and the proofs.

2 Library of basic $Z F$ results

theory $Z F _$Library
 imports ZF-Constructible.Normal

begin
This theory gathers basic "combinatorial" results that can be proved in $Z F$ (that is, without using the Axiom of Choice $A C$).

We begin by setting up math-friendly notation.

```
no__notation oadd (infixl <++> 65)
no_notation sum (infixr <+> 65)
notation oadd (infixl <+>65)
```

```
notation nat (<\omega>)
notation csucc (<<->> [90])
no__notation Aleph (\\aleph_` [90] 90)
notation Aleph (\langle\boldsymbol{N_\rangle)}
syntax__ge :: [i,i]=>o (infixl\\geq> 50)
translations }x\geqy\rightharpoonupy\leq
```


2.1 Some minimal arithmetic/ordinal stuff

lemma Un_leD1 : $i \cup j \leq k \Longrightarrow \operatorname{Ord}(i) \Longrightarrow \operatorname{Ord}(j) \Longrightarrow \operatorname{Ord}(k) \Longrightarrow i \leq k$ by (rule Un_least_lt_iff[THEN iffD1[THEN conjunct1]],simp_all)
lemma Un_leD2 : $i \cup j \leq k \Longrightarrow \operatorname{Ord}(i) \Longrightarrow \operatorname{Ord}(j) \Longrightarrow \operatorname{Ord}(k) \Longrightarrow j \leq k$ by (rule Un_least_lt_iff[THEN iffD1[THEN conjunct2]],simp_all)
lemma Un_memD1: $i \cup j \in k \Longrightarrow \operatorname{Ord}(i) \Longrightarrow \operatorname{Ord}(j) \Longrightarrow \operatorname{Ord}(k) \Longrightarrow i \leq k$ by (drule ltI, assumption, drule leI, rule Un_least_lt_iff[THEN iffD1[THEN conjunct1]],simp_all)
lemma Un_memD2 : $i \cup j \in k \Longrightarrow \operatorname{Ord}(i) \Longrightarrow \operatorname{Ord}(j) \Longrightarrow \operatorname{Ord}(k) \Longrightarrow j \leq k$ by (drule ltI, assumption, drule leI, rule Un_least_lt_iff[THEN iffD1[THEN conjunct2]],simp_all)

This lemma allows to apply arithmetic simprocs to ordinal addition

```
lemma nat_oadd_add[simp]:
    assumes \(m \in \omega n \in \omega\) shows \(n+m=n \#+m\)
    using assms
    by induct simp_all
lemma Ord_has_max_imp_succ:
    assumes \(\operatorname{Ord}(\gamma) \beta \in \gamma \forall \alpha \in \gamma . \alpha \leq \beta\)
    shows \(\gamma=\operatorname{succ}(\beta)\)
    using assms Ord_trans[of _ \(\beta \gamma]\)
    unfolding lt_def
    by (intro equalityI subsetI) auto
lemma Least_antitone:
    assumes
        \(\operatorname{Ord}(j) P(j) \bigwedge i . P(i) \Longrightarrow Q(i)\)
    shows
        \((\mu i . Q(i)) \leq(\mu\) i. \(P(i))\)
    using assms LeastI2[of P \(j Q\) ] Least_le by simp
lemma Least_set_antitone:
    \(\operatorname{Ord}(j) \Longrightarrow j \in A \Longrightarrow A \subseteq B \Longrightarrow(\mu i . i \in B) \leq(\mu i . i \in A)\)
    using subset_iff by (auto intro:Least_antitone)
lemma le_neq_imp_lt:
    \(x \leq y \Longrightarrow x \neq y \Longrightarrow x<y\)
```

```
using ltD ltI[of x y] le_Ord2
unfolding succ_def by auto
```

Strict upper bound of a set of ordinals.

definition

```
str_bound :: \(i \Rightarrow i\) where
\(\operatorname{str} \_\)bound \((A) \equiv \bigcup a \in A\). succ \((a)\)
```

lemma str_bound_type $[T C]: \forall a \in A . \operatorname{Ord}(a) \Longrightarrow \operatorname{Ord}\left(\operatorname{str} _b o u n d(A)\right)$
unfolding str_bound_def by auto
lemma str_bound_lt: $\forall a \in A . \operatorname{Ord}(a) \Longrightarrow \forall a \in A . a<\operatorname{str} _b o u n d(A)$
unfolding str_bound_def using str_bound_type
by (blast intro:ltI)
lemma naturals_lt_nat $[$ intro $]: n \in \omega \Longrightarrow n<\omega$
unfolding $l t$ _def by simp

The next two lemmas are handy when one is constructing some object recursively. The first handles injectivity (of recursively constructed sequences of sets), while the second is helpful for establishing a symmetry argument.

```
lemma Int_eq_zero_imp__not_eq:
    assumes
        \(\wedge x y . x \in D \Longrightarrow y \in D \Longrightarrow x \neq y \Longrightarrow A(x) \cap A(y)=0\)
        \(\wedge x . x \in D \Longrightarrow A(x) \neq 0 a \in D \quad b \in D a \neq b\)
    shows
        \(A(a) \neq A(b)\)
    using assms by fastforce
lemma lt_neq_symmetry:
    assumes
        \(\Lambda \alpha \beta . \alpha \in \gamma \Longrightarrow \beta \in \gamma \Longrightarrow \alpha<\beta \Longrightarrow Q(\alpha, \beta)\)
        \(\wedge \alpha \beta . Q(\alpha, \beta) \Longrightarrow Q(\beta, \alpha)\)
        \(\alpha \in \gamma \beta \in \gamma \alpha \neq \beta\)
        \(\operatorname{Ord}(\gamma)\)
    shows
        \(Q(\alpha, \beta)\)
proof -
    from assms
    consider \(\alpha<\beta \mid \beta<\alpha\)
        using Ord_linear_lt[of \(\alpha \beta\) thesis] Ord_in_Ord[of \(\gamma]\)
        by auto
    then
    show ?thesis by cases (auto simp add:assms)
qed
lemma cardinal_succ_not_0: \(|A|=\operatorname{succ}(n) \Longrightarrow A \neq 0\)
    by auto
```

```
lemma Ord_eq_Collect_lt: i<\alpha\Longrightarrow \Longrightarrowj\in\alpha.j<i}=i
    _ almost the same proof as nat_eq_Collect_lt
    apply (rule equalityI)
    apply (blast dest: ltD)
    apply (auto simp add: Ord_mem_iff_lt)
    apply (rule Ord_trans ltI[OF_lt_Ord]; auto simp add:lt_def dest:ltD)+
    done
```


2.2 Manipulation of function spaces

definition

Finite_to_one :: $[i, i] \Rightarrow i$ where
Finite_to_one $(X, Y) \equiv\left\{f: X \rightarrow Y . \forall y \in Y\right.$. Finite $\left.\left(\left\{x \in X . f^{f} x=y\right\}\right)\right\}$
lemma Finite_to_oneI[intro]:
assumes $f: X \rightarrow Y \bigwedge y . y \in Y \Longrightarrow$ Finite $\left(\left\{x \in X . f^{6} x=y\right\}\right)$
shows $f \in$ Finite_to_one (X, Y)
using assms unfolding Finite_to_one_def by simp
lemma Finite_to_one $D[$ dest $]$:
$f \in$ Finite_to_one $(X, Y) \Longrightarrow f: X \rightarrow Y$
$f \in$ Finite_to_one $(X, Y) \Longrightarrow y \in Y \Longrightarrow \operatorname{Finite}\left(\left\{x \in X . f^{〔} x=y\right\}\right)$
unfolding Finite_to_one_def by simp_all
lemma subset_Diff_Un: $X \subseteq A \Longrightarrow A=(A-X) \cup X$ by auto
lemma Diff_bij:
assumes $\forall A \in F . X \subseteq A$ shows $(\lambda A \in F . A-X) \in \operatorname{bij}(F,\{A-X . A \in F\})$
using assms unfolding bij_def inj_def surj_def
by (auto intro:lam_type, subst subset_Diff_Un[of X]) auto
lemma function_space_nonempty:
assumes $b \in B$
shows $(\lambda x \in A . b): A \rightarrow B$
using assms lam_type by force
lemma vimage_lam: $(\lambda x \in A . f(x))-" B=\{x \in A . f(x) \in B\}$
using lam_funtype[of $A f$, THEN [2] domain_type] lam funtype $[o f$ A f, THEN [2] apply_equality] lamI[of_A]
by auto blast
lemma range_fun_subset_codomain:
assumes $h: B \rightarrow C$
shows range $(h) \subseteq C$
unfolding range_def domain_def converse_def using range_type[OF _assms]
by auto
lemma Pi_rangeD:
assumes $f \in \operatorname{Pi}(A, B) b \in \operatorname{range}(f)$

```
    shows }\existsa\inA.\mp@subsup{f}{}{\prime}a=
    using assms apply_equality[OF __ assms(1),of _ b]
    domain_type[OF _ assms(1)] by auto
lemma Pi_range_eq: f\inPi(A,B)\Longrightarrow range (f) ={f`x.x 隹 (}
    using Pi_rangeD[of f A B] apply_rangeI[off A B]
    by blast
lemma Pi_vimage_subset : f\inPi(A,B)\Longrightarrowf-"}C\subseteq
    unfolding Pi_def by auto
lemma apply_in_codomain_Ord:
    assumes
        Ord(\gamma)}\gamma\not=0f:A->
    shows
    f
proof (cases x\inA)
    case True
    from assms }\langlex\inA
    show ?thesis
        using domain_of_fun apply_rangeI by simp
next
    case False
    from assms <x\not\inA>
    show ?thesis
    using apply_0 Ord_0_lt ltD domain_of_fun by auto
qed
lemma range_eq_image:
    assumes f:A->B
    shows range(f)=f"A
proof
    show f " A\subseteqrange(f)
        unfolding image_def by blast
    {
        fix }
        assume x\in\operatorname{range}(f)
        with assms
        have }x\inf\mp@subsup{f}{}{\prime}
            using domain_of_fun[off A \lambda_. B] by auto
    }
    then
    show range (f)\subseteqf " A ..
qed
lemma Image_sub_codomain: f:A->B\Longrightarrow f"}C\subseteq
    using image_subset fun_is_rel[of _ _ \lambda__ . B] by force
lemma inj_to_Image:
```

```
    assumes
        f:A->Bf\ininj(A,B)
    shows
    f\ininj(A,f"A)
    using assms inj_inj_range range_eq_image by force
lemma inj_imp_surj:
    fixes fb
    notes inj_is_fun[dest]
    defines [simp]: ifx (x) \equiv if x\inrange(f) then converse(f)' }x\mathrm{ else b
    assumes f}\in\operatorname{inj}(B,A)b\in
    shows (\lambdax\inA.ifx(x)) \in \operatorname{surj}(A,B)
proof -
    from assms
    have converse (f) Gurj(range (f),B) range (f)\subseteqA
        converse(f) : range(f) ->B
        using inj_converse_surj range_fun_subset_codomain surj_is_fun by blast+
    with }\langleb\inB
    show ( }\lambdax\inA.ifx(x))\in\operatorname{surj}(A,B
        unfolding surj_def
    proof (intro CollectI lam_type ballI; elim CollectE)
        fix }
        assume }y\inB\forally\inB.\existsx\in\operatorname{range}(f).converse(f)'x=
        with <range (f)\subseteqA`
        show \exists}x\inA.(\lambdax\inA.ifx(x))' x=
            by (drule_tac bspec, auto)
    qed simp
qed
lemma fun_Pi_disjoint_Un:
    assumes f\inPi(A,B)g\inPi(C,D) A\capC=0
    shows }f\cupg\inPi(A\cupC,\lambdax.B(x)\cupD(x)
    using assms
    by (simp add: Pi_iff extension Un_rls) (unfold function_def, blast)
lemma Un_restrict_decomposition:
    assumes f}\inPi(A,B
    shows f}=\operatorname{restrict(f,A\capC)\cup\operatorname{restrict(f,A-C)}
    using assms
proof (rule fun_extension)
    from assms
    have restrict (f,A\capC)\cup\operatorname{restrict}(f,A-C) \inPi(A\capC\cup (A-C),\lambdax.B(x)\cupB(x))
        using restrict_type2[of f A B]
        by (rule_tac fun_Pi_disjoint_Un) force+
    moreover
    have }(A\capC)\cup(A-C)=A by aut
    ultimately
    show restrict (f,A\capC)\cup\operatorname{restrict (f,A-C) \inPi(A,B) by simp}
next
```

```
    fix }
    assume }x\in
    with assms
    show f'x = (restrict(f,A\capC)\cup restrict(f,A - C))`x
    using restrict fun_disjoint_apply1[of __restrict(f,_)]
        fun_disjoint_apply2[of __ restrict(f,_)]
        domain_restrict[of f] apply_0 domain_of_fun
    by (cases x\inC) simp_all
qed
lemma restrict_eq_imp_Un_into_Pi:
    assumes f\inPi(A,B)g\inPi(C,D) restrict (f,A\capC)=restrict(g,A\capC)
    shows}f\cupg\inPi(A\cupC,\lambdax.B(x)\cupD(x)
proof -
    note assms
    moreover from this
    have }x\not\ing\Longrightarrowx\not\in\operatorname{restrict(g,A\capC) for x
        using restrict_subset[of g A\capC] by auto
    moreover from calculation
    have }x\inf\Longrightarrowx\in\operatorname{restrict}(f,A-C)\veex\in\operatorname{restrict}(g,A\capC)\mathrm{ for x
    by (subst (asm) Un_restrict_decomposition[of f A B C]) auto
    ultimately
    have }f\cupg=\operatorname{restrict}(f,A-C)\cup
        using restrict_subset[of g A\capC]
    by (subst Un_restrict_decomposition[of f A B C]) auto
    moreover
    have A-C\cupC=A\cupC by auto
    moreover
    note assms
    ultimately
    show ?thesis
    using fun_Pi_disjoint__Un[OF
            restrict_type2[of f A B A-C], of g C D]
    by auto
qed
lemma restrict_eq_imp_Un_into_Pi':
    assumes f}\inPi(A,B)g\inPi(C,D
    restrict(f,domain}(f)\cap\operatorname{domain}(g))=\operatorname{restrict(g,domain}(f)\cap\operatorname{domain}(g)
    shows }f\cupg\inPi(A\cupC,\lambdax.B(x)\cupD(x)
    using assms domain_of_fun restrict_eq_imp_Un_into_Pi by simp
lemma restrict_subset_Sigma: f\subseteq\operatorname{Sigma}(C,B)\Longrightarrow\operatorname{restrict}(f,A)\subseteq\operatorname{Sigma}(A\capC,
B)
    by (auto simp add: restrict_def)
```


2.3 Finite sets

```
lemma Replace_sing1:
```

```
    \llbracket(\existsa.P(d,a))^(\forally y'.P(d,y)\longrightarrowP(d,\mp@subsup{y}{}{\prime})\longrightarrowy=\mp@subsup{y}{}{\prime})\rrbracket\Longrightarrow\existsa.{y.x\in{d},
P(x,y)}={a}
    by blast
- Not really necessary
lemma Replace_sing2:
    assumes }\foralla.\negP(d,a
    shows {y.x\in{d},P(x,y)}=0
    using assms by auto
lemma Replace_sing3:
    assumes \existsce.c\not=e^P(d,c)\wedgeP(d,e)
    shows {y.x\in{d},P(x,y)}=0
proof -
    {
        fix z
        {
            assume }\forally.P(d,y)\longrightarrowy=
            with assms
            have False by auto
        }
        then
        have z}\not\in{y.x\in{d},P(x,y)
            using Replace_iff by auto
    }
    then
    show ?thesis
        by (intro equalityI subsetI) simp_all
qed
lemma Replace_Un: {b . a \inA\cupB,Q(a,b)}=
        {b.a\inA,Q(a,b)}\cup{b.a\inB,Q(a,b)}
    by (intro equalityI subsetI) (auto simp add:Replace_iff)
lemma Replace_subset_sing: \existsz.{y.x\in{d},P(x,y)}\subseteq{z}
proof -
    consider
    (1) (\existsa.P(d,a))^(\forally y'. P(d,y)\longrightarrowP(d,\mp@subsup{y}{}{\prime})\longrightarrowy=\mp@subsup{y}{}{\prime})|
    (2) }\foralla.\negP(d,a)|(3)\existsce.c\not=e\wedgeP(d,c)\wedgeP(d,e) by aut
    then
    show \existsz.{y.x\in{d},P(x,y)}\subseteq{z}
    proof (cases)
        case 1
        then show ?thesis using Replace_sing1[of P d] by auto
    next
        case 2
        then show ?thesis by auto
    next
    case 3
```

```
        then show ?thesis using Replace_sing3[of P d] by auto
    qed
qed
lemma Finite_Replace: Finite (A)\Longrightarrow Finite(Replace (A,Q))
proof (induct rule:Finite_induct)
    case 0
    then
    show ?case by simp
next
    case (cons x B)
    moreover
    have {b . a \in cons(x,B),Q(a,b)}=
            {b.a\inB,Q(a,b)}\cup{b.a\in{x},Q(a,b)}
    using Replace_Un unfolding cons_def by auto
    moreover
    obtain d where {b.a\in{x},Q(a,b)}\subseteq{d}
    using Replace_subset_sing[of _ Q] by blast
    moreover from this
    have Finite({b.a\in{x},Q(a,b)})
        using subset_Finite by simp
    ultimately
    show ?case using subset_Finite by simp
qed
lemma Finite_domain: Finite(A)\Longrightarrow Finite(domain(A))
    using Finite_Replace unfolding domain_def
    by auto
lemma Finite_converse: Finite (A) \Longrightarrow Finite(converse (A))
    using Finite_Replace unfolding converse_def
    by auto
lemma Finite_range: Finite(A) \Longrightarrow Finite(range(A))
    using Finite_domain Finite_converse unfolding range_def
    by blast
lemma Finite_Sigma: Finite }(A)\Longrightarrow\forallx.Finite (B(x))\LongrightarrowFinite(Sigma(A,B)
    unfolding Sigma_def using Finite_RepFun Finite_Union
    by simp
lemma Finite_Pi:Finite (A) \Longrightarrow \forallx. Finite }(B(x))\Longrightarrow\operatorname{Finite}(\operatorname{Pi}(A,B)
    using Finite_Sigma
    Finite_Pow subset_Finite[of Pi(A,B) Pow(Sigma(A,B))]
    unfolding Pi_def
    by auto
```


2.4 Basic results on equipollence, cardinality and related concepts

lemma lepollD[dest]: $A \lesssim B \Longrightarrow \exists f . f \in \operatorname{inj}(A, B)$ unfolding lepoll_def.
lemma lepollI[intro]: $f \in \operatorname{inj}(A, B) \Longrightarrow A \lesssim B$ unfolding lepoll_def by blast
lemma eqpollD[dest]: $A \approx B \Longrightarrow \exists f . f \in \operatorname{bij}(A, B)$ unfolding eqpoll_def.
declare bij_imp_eqpoll[intro]
lemma range_of_subset_eqpoll: assumes $f \in \operatorname{inj}(X, Y) S \subseteq X$ shows $S \approx f$ " S
using assms restrict_bij by blast
I thank Miguel Pagano for this proof.
lemma function_space_eqpoll_cong: assumes
$A \approx A^{\prime} B \approx B^{\prime}$
shows
$A \rightarrow B \approx A^{\prime} \rightarrow B^{\prime}$
proof -
from assms(1)[THEN eqpoll_sym] assms(2)
obtain $f g$ where $f \in \operatorname{bij}\left(A^{\prime}, A\right) g \in \operatorname{bij}\left(B, B^{\prime}\right)$
by blast
then
have converse $(g): B^{\prime} \rightarrow B$ converse $(f): A \rightarrow A^{\prime}$
using bij_converse_bij bij_is_fun by auto
show ?thesis
unfolding eqpoll_def
proof (intro exI fg_imp_bijective, rule_tac [1-2] lam_type)
fix F
assume $F: A \rightarrow B$
with $\left\langle f \in \operatorname{bij}\left(A^{\prime}, A\right)\right\rangle\left\langle g \in \operatorname{bij}\left(B, B^{\prime}\right)\right\rangle$
show $g O$ FOf: $A^{\prime} \rightarrow B^{\prime}$
using bij_is_fun comp_fun by blast
next
fix F
assume $F: A^{\prime} \rightarrow B^{\prime}$
with $\left\langle\right.$ converse $\left.(g): B^{\prime} \rightarrow B\right\rangle\left\langle\operatorname{converse}(f): A \rightarrow A^{\prime}\right\rangle$
show converse $(g) O F O$ converse $(f): A \rightarrow B$
using comp_fun by blast
next
from $\left.\left\langle f \in _\right\rangle\langle g \in]_{-}\right\rangle\left\langle\operatorname{converse}(f) \in __{-}\right\rangle\left\langle\operatorname{converse}(g) \in _\right\rangle$
have $\left(\bigwedge x . x \in \overline{A^{\prime}} \rightarrow B^{\prime} \Longrightarrow\right.$ converse $(g) O x O$ converse $\left.(f) \in A \rightarrow B\right)$
using bij_is_fun comp_fun by blast

```
    then
    have (\lambdax\inA->B.gOxOf)O(\lambdax\in\mp@subsup{A}{}{\prime}->\mp@subsup{B}{}{\prime}.converse(g) Ox O converse(f))
        =(\lambdax\in\mp@subsup{A}{}{\prime}->\mp@subsup{B}{}{\prime}.(gO converse(g))OxO (converse(f)Of))
        using lam_cong comp_assoc comp_lam[of A' }->\mp@subsup{A}{}{\prime}]\mathrm{ by auto
    also
    have ... = (\lambdax\in\mp@subsup{A}{}{\prime}->\mp@subsup{B}{}{\prime}.id(\mp@subsup{B}{}{\prime})OxO(id(\mp@subsup{A}{}{\prime})))
        using left_comp_inverse[OF bij_is_inj[OF<f\in_>]]
        right_comp_inverse[OF bij_is_surj[OF<g\in_\]]
        by auto
    also
    have ... = ( \lambdax\inA' }->\mp@subsup{B}{}{\prime}.x
    using left_comp_id[OF fun_is_rel] right_comp_id[OF fun_is_rel] lam_cong
by auto
    also
    have ... =id( (A'->}\mp@subsup{B}{}{\prime})\mathrm{ unfolding id__def by simp
    finally
    show (\lambdax\inA -> B.g OxOf)O(\lambdax\in\mp@subsup{A}{}{\prime}->\mp@subsup{B}{}{\prime}.\operatorname{converse(g) Ox O converse(f))}
=id( }\mp@subsup{A}{}{\prime}->\mp@subsup{B}{}{\prime})
    next
    from <f\in_>><g\in_>
    have (\bigwedgex. x }\A->B\LongrightarrowgOxOf\in\mp@subsup{A}{}{\prime}->\mp@subsup{B}{}{\prime}
        using bij_is_fun comp_fun by blast
    then
    have (\lambdax\in\mp@subsup{A}{}{\prime}-> B'. converse(g) Ox O converse(f)) O(\lambdax\inA -> B.g Ox O
f)
                =(\lambdax\inA->B.(converse(g) Og) Ox O (fO converse (f)))
        using comp_lam comp_assoc by auto
    also
    have ... = (\lambdax\inA->B.id(B)OxO(id(A)))
        using
        right_comp_inverse[OF bij_is_surj[OF<f\in_\\rangle]]
        left_comp_inverse[OF bij_is_inj[OF<g\in__>]] lam_cong
        by auto
    also
    have ... = ( \lambdax\inA->B.x)
    using left_comp_id[OF fun_is_rel] right_comp_id[OF fun_is_rel] lam_cong
by auto
    also
    have ... =id(A->B) unfolding id_def by simp
    finally
    show (\lambdax\in\mp@subsup{A}{}{\prime}->\mp@subsup{B}{}{\prime}.converse(g) Ox O converse(f)) O(\lambdax\inA -> B.g Ox O
f) =id(A -> B).
    qed
qed
lemma curry_eqpoll:
    fixes d \nu1 \nu2 }
    shows \nu1 }->\nu2->\kappa\approx\nu1\times\nu2->
    unfolding eqpoll_def
```

```
proof (intro exI, rule lam_bijective,
    rule_tac [1-2] lam_type, rule_tac [2] lam_type)
    fix \(f z\)
    assume \(f: \nu 1 \rightarrow \nu 2 \rightarrow \kappa z \in \nu 1 \times \nu 2\)
    then
    show \(f^{\prime} f s t(z)^{\prime} s n d(z) \in \kappa\)
        by \(\operatorname{simp}\)
next
    fix \(f x y\)
    assume \(f: \nu 1 \times \nu 2 \rightarrow \kappa x \in \nu 1 \quad y \in \nu 2\)
    then
    show \(f^{‘}\langle x, y\rangle \in \kappa\) by simp
next - one composition is the identity:
    fix \(f\)
    assume \(f: \nu 1 \times \nu 2 \rightarrow \kappa\)
    then
    show \((\lambda x \in \nu 1 \times \nu\) 2. \((\lambda x \in \nu 1 . \lambda x a \in \nu 2 . f\) ' \(\langle x, x a\rangle)\) ' \(f s t(x)\) ' \(\operatorname{snd}(x))=f\)
        by (auto intro:fun_extension)
qed simp - the other composition follows automatically
lemma Pow_eqpoll_function_space:
    fixes \(d X\)
    notes bool_of_o_def [simp]
    defines \([\) simp \(]: d(A) \equiv(\lambda x \in X\). bool_of_o \((x \in A))\)
        - the witnessing map for the thesis:
    shows \(\operatorname{Pow}(X) \approx X \rightarrow 2\)
    unfolding eqpoll_def
proof (intro exI, rule lam_bijective)
    - We give explicit mutual inverses
    fix \(A\)
    assume \(A \in \operatorname{Pow}(X)\)
    then
    show \(d(A): X \rightarrow 2\)
        using lam_type[of_ \(\lambda x\). bool_of_o \((x \in A) \lambda \_\). 2]
        by force
    from \(\langle A \in \operatorname{Pow}(X)\) 〉
    show \(\left\{y \in X . d(A)^{\prime} y=1\right\}=A\)
        by (auto)
next
    fix \(f\)
    assume \(f: X \rightarrow 2\)
    then
    show \(d\left(\left\{y \in X . f^{\prime} y=1\right\}\right)=f\)
        using apply_type[OF〈f:X \(\boldsymbol{\rightarrow}\), \(\rangle\) ]
        by (force intro:fun_extension)
qed blast
lemma cantor_inj: \(f \notin \operatorname{inj}(\operatorname{Pow}(A), A)\)
    using inj_imp_surj[OF _ Pow_bottom] cantor_surj by blast
```


definition

```
сехр \(::[i, i] \Rightarrow i\left(\_^{\uparrow}-[76,1]\right.\) 75 \()\) where
    \(\kappa^{\uparrow \nu} \equiv|\nu \rightarrow \kappa|\)
lemma Card_cexp: \(\operatorname{Card}\left(\kappa^{\uparrow \nu}\right)\)
    unfolding cexp_def Card_cardinal by simp
lemma eq_csucc_ord:
    \(\operatorname{Ord}(i) \Longrightarrow i^{+}=|i|^{+}\)
    using Card_lt_iff Least_cong unfolding csucc_def by auto
```

I thank Miguel Pagano for this proof.

```
lemma lesspoll_csucc:
    assumes \(\operatorname{Ord}(\kappa)\)
    shows \(d \prec \kappa^{+} \longleftrightarrow d \lesssim \kappa\)
proof
    assume \(d \prec \kappa^{+}\)
    moreover
    note Card_is_Ord \(\langle\operatorname{Ord}(\kappa)\rangle\)
    moreover from calculation
    have \(\kappa<\kappa^{+} \operatorname{Card}\left(\kappa^{+}\right)\)
    using Ord_cardinal_eqpoll csucc_basic by simp_all
moreover from calculation
have \(d \prec|\kappa|^{+} \operatorname{Card}(|\kappa|) d \approx|d|\)
    using eq_csucc_ord[of \(\kappa\) ] lesspoll_imp_eqpoll eqpoll_sym by simp_all
moreover from calculation
have \(|d|<|\kappa|^{+}\)
    using lesspoll_cardinal_lt csucc_basic by simp
    moreover from calculation
    have \(|d| \lesssim|\kappa|\)
    using Card_lt_csucc_iff le_imp_lepoll by simp
    moreover from calculation
    have \(|d| \lesssim \kappa\)
    using lepoll_eq_trans Ord_cardinal_eqpoll by simp
    ultimately
    show \(d \lesssim \kappa\)
    using eq_lepoll_trans by simp
next
    from 〈 \(\operatorname{Ord}(\kappa)\rangle\)
    have \(\kappa<\kappa^{+} \operatorname{Card}\left(\kappa^{+}\right)\)
        using csucc_basic by simp_all
    moreover
    assume \(d \lesssim \kappa\)
    ultimately
    have \(d \lesssim \kappa^{+}\)
        using le_imp_lepoll leI lepoll_trans by simp
    moreover
    from \(\langle d \lesssim \kappa\rangle\langle\operatorname{Ord}(\kappa)\rangle\)
```

```
    have }\mp@subsup{\kappa}{}{+}\lesssim\kappa\mathrm{ if }d\approx\mp@subsup{\kappa}{}{+
    using eqpoll_sym[OF that] eq_lepoll_trans[OF _ <d\lesssim\kappa\rangle] by simp
    moreover from calculation 〈Card(__)\rangle
    have }\negd\approx\mp@subsup{\kappa}{}{+
        using lesspoll_irreft lesspoll_trans1 lt_Card_imp_lesspoll[OF__ <\kappa<<_>]
        by auto
    ultimately
    show d}\prec\mp@subsup{\kappa}{}{+
    unfolding lesspoll_def by simp
qed
abbreviation
    Infinite :: i=>o where
    Infinite(X) \equiv\negFinite(X)
lemma Infinite_not_empty: Infinite( }X)\LongrightarrowX\not=
    using empty_lepollI by auto
lemma Infinite_imp_nats_lepoll:
    assumes Infinite(X) n \in\omega
    shows n\lesssimX
    using {n\in\omega\rangle
proof (induct)
    case 0
    then
    show ?case using empty_lepollI by simp
next
    case (succ x)
    show ?case
    proof -
    from <Infinite(X)\rangle and \langlex\in\omega\rangle
    have }\neg(x\approxX
        using eqpoll_sym unfolding Finite_def by auto
    with <x \lesssimX>
    obtain f where f}\in\operatorname{inj}(x,X)f\not\in\operatorname{surj}(x,X
        unfolding bij_def eqpoll__def by auto
    moreover from this
    obtain b where b\inX \foralla\inx. f`a\not=b
        using inj_is_fun unfolding surj_def by auto
    ultimately
    have }f\in\operatorname{inj}(x,X-{b}
        unfolding inj_def by (auto intro:Pi_type)
    then
    have cons(\langlex,b\rangle,f)\ininj(\operatorname{succ}(x),\operatorname{cons}(b,X-{b}))
        using inj_extend[of fx X-{b} x b] unfolding succ_def
        by (auto dest:mem_irrefl)
    moreover from {b\inX>
    have cons(b, X-{b}) = X by auto
    ultimately
```

```
        show succ(x) \lesssimX by auto
    qed
qed
lemma zero_lesspoll: assumes 0<\kappa shows 0 \prec\kappa
    using assms eqpoll_0_iff[THEN iffD1, of \kappa] eqpoll_sym
    unfolding lesspoll_def lepoll_def
    by (auto simp add:inj_def)
lemma lepoll_nat_imp_Infinite: }\omega\lesssimX\Longrightarrow\mathrm{ Infinite( }X
proof (rule ccontr, simp)
    assume \omega}\lesssimX Finite(X
    moreover from this
    obtain n where }X\approxnn\in
    unfolding Finite_def by auto
    moreover from calculation
    have }\omega\lesssim
    using lepoll_eq_trans by simp
    ultimately
    show False
    using lepoll_nat_imp_Finite nat_not_Finite by simp
qed
lemma InfCard_imp_Infinite: InfCard ( }\kappa)\Longrightarrow\mathrm{ Infinite( }\kappa
    using le_imp_lepoll[THEN lepoll_nat_imp_Infinite, of \kappa]
    unfolding InfCard_def by simp
lemma lt_surj_empty_imp_Card:
    assumes}\operatorname{Ord}(\kappa)\bigwedge\alpha.\alpha<\kappa< surj(\alpha,\kappa)=
    shows Card(\kappa)
proof -
    {
        assume |\kappa| < \kappa
        with assms
    have False
            using LeastI[of \lambdai. i\approx к\kappa, OF eqpoll_refl]
                Least_le[of \lambdai. i\approx\kappa |\kappa|,OF Ord_cardinal_eqpoll]
            unfolding Card__def cardinal__def eqpoll_def bij_def
            by simp
    }
    with assms
    show ?thesis
        using Ord_cardinal_le[of \kappa] not_lt_imp_le[of |\kappa| \kappa] le_anti_sym
        unfolding Card__def by auto
qed
```


2.5 Morphisms of binary relations

The main case of interest is in the case of partial orders.

```
lemma mono_map_mono:
    assumes
        \(f \in\) mono_map \((A, r, B, s) B \subseteq C\)
    shows
        \(f \in\) mono_map \((A, r, C, s)\)
    unfolding mono_map_def
proof (intro CollectI ballI impI)
    from \(\left\langle f \in\right.\) mono_ \(\left.\operatorname{map}\left(A, \_, B, \_\right)\right\rangle\)
    have \(f: A \rightarrow B\)
        using mono_map_is_fun by simp
    with \(\langle B \subseteq C\rangle\)
    show \(f: A \rightarrow C\)
        using fun_weaken_type by simp
    fix \(x y\)
    assume \(x \in A \quad y \in A\langle x, y\rangle \in r\)
    moreover from this and \(\langle f: A \rightarrow B\rangle\)
    have \(f^{\prime} x \in B f^{\prime} y \in B\)
        using apply_type by simp_all
    moreover
    note \(\langle f \in\) mono_map (_, \(r, \ldots, s)\rangle\)
    ultimately
    show \(\left\langle f^{\prime} x, f^{\prime} y\right\rangle \in s\)
        unfolding mono_map_def by blast
qed
lemma ordertype_zero_imp_zero: \(\operatorname{ordertype}(A, r)=0 \Longrightarrow A=0\)
    using ordermap_type[of Ar]
    by (cases \(A=0\) ) auto
lemma mono_map_increasing:
    \(j \in\) mono_map \((A, r, B, s) \Longrightarrow a \in A \Longrightarrow c \in A \Longrightarrow\langle a, c\rangle \in r \Longrightarrow\left\langle j^{‘} a, j^{6} c\right\rangle \in s\)
    unfolding mono_map_def by simp
lemma linear_mono_map_reflects:
    assumes
        linear \((\alpha, r)\) trans \([\beta](s)\) irrefl \((\beta, s) f \in\) mono_map \((\alpha, r, \beta, s)\)
        \(x \in \alpha \quad y \in \alpha\left\langle f^{\prime} x, f^{‘} y\right\rangle \in s\)
    shows
        \(\langle x, y\rangle \in r\)
proof -
    from \(\langle f \in\) mono_map (_,_,_,_) 〉
    have preserves \(: x \in \alpha \Longrightarrow y \in \alpha \Longrightarrow\langle x, y\rangle \in r \Longrightarrow\left\langle f^{f} x, f^{f} y\right\rangle \in s\) for \(x y\)
        unfolding mono_map_def by blast
    \{
        assume \(\langle x, y\rangle \notin r x \in \alpha \quad y \in \alpha\)
        moreover
        note \(\left\langle\left\langle f^{f} x, f^{f} y\right\rangle \in s\right\rangle\) and \(\langle\operatorname{linear}(\alpha, r)\rangle\)
        moreover from calculation
        have \(y=x \vee\langle y, x\rangle \in r\)
```

```
    unfolding linear_def by blast
    moreover
    note preserves [of y x]
    ultimately
    have }y=x\vee\langle\mp@subsup{f}{}{\prime}y,\mp@subsup{f}{}{\prime}x\rangle\ins\mathrm{ by blast
    moreover from <f\inmono_map(_,_, \beta,_)\rangle\langlex\in\alpha\rangle\langley\in\alpha\rangle
    have f}\mp@subsup{f}{}{`}x\in\beta\mp@subsup{f}{}{`}y\in
        using apply_type[OF mono_map_is_fun] by simp_all
    moreover
    note <\langleffx,\mp@subsup{f}{}{\prime}y\rangle\ins\rangle <trans[\beta](s)\rangle\langleirrefl (\beta,s)\rangle
    ultimately
    have False
    using trans_onD[of \betas\mp@subsup{f}{}{\prime}x\mp@subsup{f}{}{\prime}y\mp@subsup{f}{}{\prime}x] irreflE by blast
    }
    with assms
    show }\langlex,y\rangle\inr\mathrm{ by blast
qed
lemma irrefl_Memrel: irrefl(x,Memrel(x))
    unfolding irrefl_def using mem_irrefl by auto
lemmas Memrel_mono_map_reflects = linear_mono_map_reflects
    [OF well_ord_is_linear[OF well_ord_Memrel] well_ord_is_trans_on[OF well_ord_Memrel]
    irrefl_Memrel]
_ Same proof as Paulson's mono_map_is_inj
lemma mono_map_is_inj':
    \llbracketlinear (A,r); irrefl(B,s); f\inmono_map(A,r,B,s)\rrbracket\Longrightarrowf\ininj(A,B)
    unfolding irrefl_def mono_map_def inj_def using linearE
    by (clarify, rename_tac x w)
    (erule_tac }x=w\mathrm{ and }y=x\mathrm{ in linearE, assumption+,(force intro: apply_type)+)
lemma mono_map_imp_ord_iso_image:
    assumes
    linear (\alpha,r) trans[\beta](s) irrefl(\beta,s) f\inmono_map (\alpha,r,\beta,s)
    shows
    f\in ord_iso(\alpha,r,f"}\alpha,s
    unfolding ord_iso_def
proof (intro CollectI ballI iffI)
    - Enough to show it's bijective and preserves both ways
    from assms
    have f\ininj(\alpha,\beta)
    using mono_map_is_inj' by blast
    moreover from <f \in mono_map(_,_,_,_)\rangle
    have f}\in\operatorname{surj}(\alpha,\mp@subsup{f}{}{\prime\prime}\alpha
    unfolding mono_map_def using surj_image by auto
    ultimately
    show f\inbij(\alpha, f"\alpha)
    unfolding bij_def using inj_is_fun inj_to_Image by simp
```

```
from \(\langle f \in\) mono_map (_,_,_,_) \(\rangle\)
show \(x \in \alpha \Longrightarrow y \in \alpha \Longrightarrow\langle x, y\rangle \in r \Longrightarrow\left\langle f^{\prime} x, f^{\prime} y\right\rangle \in s\) for \(x y\)
    unfolding mono_map_def by blast
with assms
show \(\left\langle f^{f} x, f^{f} y\right\rangle \in s \Longrightarrow x \in \alpha \Longrightarrow y \in \alpha \Longrightarrow\langle x, y\rangle \in r\) for \(x y\)
    using linear_mono_map_reflects
    by blast
qed
```

We introduce the following notation for strictly increasing maps between ordinals.

abbreviation

 mono_map_Memrel \(::[i, i] \Rightarrow i(\) infixr \(\langle\rightarrow<\rangle 60)\) where
 \(\alpha \rightarrow<\beta \equiv\) mono_map \((\alpha, \operatorname{Memrel}(\alpha), \beta, \operatorname{Memrel}(\beta))\)
 lemma mono_map_imp_ord_iso_Memrel:
assumes
$\operatorname{Ord}(\alpha) \operatorname{Ord}(\beta) f: \alpha \rightarrow<\beta$
shows
$f \in$ ord__iso($\alpha, \operatorname{Memrel}(\alpha), f " \alpha, \operatorname{Memrel}(\beta))$
using assms mono_map_imp_ord_iso_image[OF well_ord_is_linear[OF well_ord_Memrel]
well_ord_is_trans_on[OF well_ord_Memrel] irrefl_Memrel] by blast
lemma mono_map_ordertype_image':
assumes
$X \subseteq \alpha \operatorname{Ord}(\alpha) \operatorname{Ord}(\beta) f \in \operatorname{mono_ map}(X, \operatorname{Memrel}(\alpha), \beta, \operatorname{Memrel}(\beta))$
shows
$\operatorname{ordertype}\left(f^{\prime ‘} X, \operatorname{Memrel}(\beta)\right)=\operatorname{ordertype}(X, \operatorname{Memrel}(\alpha))$
using assms mono_map_is_fun $\left[\right.$ of $\left.f X_{_} \beta\right]$ ordertype_eq
mono_map_imp_ord_iso_image[OF well_ord_is_linear[OF well_ord_Memrel,
THEN linear_subset]
well_ord_is_trans_on $[$ OF well_ord_Memrel] irrefl_Memrel, of $\alpha X \beta f]$
well_ord_subset[OF well_ord_Memrel] Image_sub_codomain $[$ of $f X \beta X]$ by
auto
lemma mono_map_ordertype_image:
assumes
$\operatorname{Ord}(\alpha) \operatorname{Ord}(\beta) f: \alpha \rightarrow_{<} \beta$
shows
$\operatorname{ordertype}(f$ ' $\alpha, \operatorname{Memrel}(\beta))=\alpha$
using assms mono_map_is_fun ordertype_Memrel ordertype_eq[of f α Mem-
$\operatorname{rel}(\alpha)]$
mono_map_imp_ord_iso_Memrel well_ord_subset[OF well_ord_Memrel] Im-
age_sub_codomain $\left[o f ~ _~ \alpha\right]$
by auto
lemma apply_in_image: $f: A \rightarrow B \Longrightarrow a \in A \Longrightarrow f^{\prime} a \in f^{\prime} A$
using range_eq_image apply_rangeI $[$ of $f]$ by simp

```
lemma Image_subset_Ord_imp_lt:
    assumes
        Ord(\alpha)h"A\subseteq\alpha x\indomain(h) x\inA function(h)
    shows
        h'x}<
    using assms
    unfolding domain_def using imageI ltI function_apply_equality by auto
lemma ordermap_le_arg:
    assumes
        X\subseteq\beta x\inX Ord (\beta)
    shows
        x\inX\Longrightarrow ordermap}(X,Memrel (\beta))'x\leqx
proof (induct rule:Ord_induct[OF subsetD,OF assms])
    case (1 x)
    have wf[X](Memrel(\beta))
        using wf_imp_wf_on[OF wf_Memrel].
    with 1
    have ordermap}(X,Memrel (\beta))'x = {ordermap (X,Memrel(\beta))'y. y\in{y\inX. y\in
\wedge y\in\beta}}
    using ordermap_unfold Ord_trans[of __ x \beta] by auto
    also from assms
    have ... ={ordermap(X,Memrel(\beta))'y. y\in{y\inX . y\inx}}
        using Ord_trans[of __ x \beta] Ord_in_Ord by blast
    finally
    have ordm:ordermap}(X,Memrel(\beta))'x={\operatorname{ordermap}(X,Memrel(\beta))'y.y\in{y\in
y\inx}} .
    from 1
    have }y\inx\Longrightarrowy\inX\Longrightarrow\operatorname{ordermap}(X,Memrel (\beta))'y\leqy for y by simp
    with }\langlex\in\beta\rangle\mathrm{ and }\langle\operatorname{Ord}(\beta)\mathrm{ >
    have}y\inx\Longrightarrowy\inX\Longrightarrow\operatorname{ordermap}(X,Memrel(\beta))' y\inx for y
        using ltI[OF_Ord__in_Ord[of \beta x]] lt_trans1 ltD by blast
    with ordm
    have ordermap(X,Memrel(\beta))'}x\subseteqx\mathrm{ by auto
    with \langlex\inX\rangle assms
    show ?case
    using subset_imp_le Ord_in_Ord[of \beta x] Ord_ordermap
        well_ord_subset[OF well_ord_Memrel, of \beta] by force
qed
lemma subset_imp_ordertype_le:
    assumes
        X\subseteq\beta Ord (\beta)
    shows
        ordertype(X,Memrel( }\beta))\leq
proof -
    {
        fix }
        assume }x\in
```

```
    with assms
    have ordermap}(X,Memrel(\beta))'x\leq
        using ordermap_le_arg by simp
    with }\langlex\inX\rangle and assm
    have ordermap}(X,Memrel(\beta))'x\in\beta (is ?y \in__
        using ltD[of ?y succ(x)] Ord_trans[of ?y x \beta] by auto
    }
    then
    have ordertype(X,Memrel}(\beta))\subseteq
    using ordertype_unfold [of X] by auto
    with assms
    show ?thesis
    using subset_imp_le Ord_ordertype[OF well_ord__subset, OF well_ord__Memrel]
by simp
qed
lemma mono_map_imp_le:
    assumes
    f\inmono_map(\alpha,Memrel (\alpha),\beta,Memrel ( }\beta\mathrm{ ) ) Ord ( }\alpha)\operatorname{Ord}(\beta
    shows
    \alpha\leq\beta
proof -
    from assms
    have }f\in\langle\alpha,Memrel(\alpha)\rangle\cong\langlef``\alpha,Memrel(\beta)
    using mono_map_imp_ord_iso_Memrel by simp
    then
    have converse (f)\in\langlef"\alpha, Memrel}(\beta)\rangle\cong\langle\alpha,\operatorname{Memrel}(\alpha)
        using ord_iso_sym by simp
    with <Ord(\alpha)`
    have }\alpha=\operatorname{ordertype(f``}\alpha,\operatorname{Memrel}(\beta)
    using ordertype_eq well_ord_MMemrel ordertype_Memrel by auto
    also from assms
    have ordertype(f"}\alpha,\operatorname{Memrel}(\beta))\leq
    using subset_imp_ordertype_le mono_map_is_fun[of f] Image_sub_codomain[of
f] by force
    finally
    show ?thesis.
qed
-\llbracketOrd(A); f\inmono_map(A,Memrel (A),B,Memrel (Aa))\rrbracket\Longrightarrowf\ininj(A,B)
lemmas Memrel_mono_map_is_inj = mono__map_is_inj
    [OF well_ord_is_linear[OF well_ord_MMemrel]
    wf_imp_wf_on[OF wf_Memrel]]
lemma mono_mapI:
    assumes f:A->B\bigwedgex y. x\inA\Longrightarrowy\inA\Longrightarrow\langlex,y\rangle\inr\Longrightarrow\langle\mp@subsup{f}{}{\prime}x,\mp@subsup{f}{}{\prime}y\rangle\ins
    shows f\in mono_map(A,r,B,s)
    unfolding mono_map_def using assms by simp
```

```
lemmas mono_map \(D=\) mono_map_is_fun mono_map_increasing
bundle mono_map_rules \(=\) mono_mapI \([\) intro! \(]\) mono_map_is_fun \([d e s t]\) mono_map \(D[d e s t]\)
lemma nats_le_InfCard:
    assumes \(n \in \omega \operatorname{InfCard}(\kappa)\)
    shows \(n \leq \kappa\)
    using assms Ord_is_Transset
        le_trans[of \(n \omega \kappa\), OF le_subset_iff[THEN iffD2]]
    unfolding InfCard_def Transset_def by simp
lemma nat_into_InfCard:
    assumes \(n \in \omega \operatorname{InfCard}(\kappa)\)
    shows \(n \in \kappa\)
    using assms le_imp_subset[of \(\omega \kappa\) ]
    unfolding InfCard_def by auto
```


2.6 Alephs are infinite cardinals

```
lemma Aleph_zero_eq_nat: }\mp@subsup{\boldsymbol{\aleph}}{0}{}=
    unfolding Aleph_def by simp
lemma InfCard_Aleph:
    notes Aleph_zero_eq_nat[simp]
    assumes Ord(\alpha)
    shows InfCard(\boldsymbol{\aleph}}\mp@subsup{\boldsymbol{\alpha}}{~}{\prime
proof -
    have }\neg(\mp@subsup{\boldsymbol{\aleph}}{\alpha}{}\in\omega
    proof (cases \alpha=0)
        case True
        then show ?thesis using mem_irrefl by auto
    next
        case False
        with <Ord ( \alpha)\rangle
        have }\omega\in\mp@subsup{\boldsymbol{N}}{\alpha}{}\mathrm{ using Ord__0_lt[of a] ltD by (auto dest:Aleph_increasing)
        then show ?thesis using foundation by blast
    qed
    with \Ord(\alpha)}
    have}\neg(|\mp@subsup{\boldsymbol{\aleph}}{\alpha}{}|\in\omega
        using Card_cardinal_eq by auto
    then
    have }\neg\operatorname{Finite}(\mp@subsup{\boldsymbol{\aleph}}{\alpha}{})\mathrm{ by auto
    with <Ord (\alpha)`
    show ?thesis
        using Inf_Card_is_InfCard by simp
qed
```

Most properties of cardinals depend on $A C$, even for the countable. Here we just state the definition of this concept, and most proofs will appear after assuming Choice.

definition

countable $:: i \Rightarrow o$ where
countable $(X) \equiv X \lesssim \omega$
lemma countableI[intro]: $X \lesssim \omega \Longrightarrow$ countable (X)
unfolding countable_def by simp
lemma countable $D[$ dest $]$: countable $(X) \Longrightarrow X \lesssim \omega$ unfolding countable_def by simp

A delta system is family of sets with a common pairwise intersection. We will work with this notion in Section 5, but we state the definition here in order to have it available in a choiceless context.

definition

$$
\begin{aligned}
& \text { delta_system }:: i \Rightarrow o \text { where } \\
& \text { delta_system }(D) \equiv \exists r . \forall A \in D . \forall B \in D . A \neq B \longrightarrow A \cap B=r
\end{aligned}
$$

lemma delta_systemI[intro]:
assumes $\forall A \in D . \forall B \in D . A \neq B \longrightarrow A \cap B=r$
shows delta_system (D)
using assms unfolding delta_system_def by simp
lemma delta_system $D[$ dest $]$:
delta_system $(D) \Longrightarrow \exists r . \forall A \in D . \forall B \in D . A \neq B \longrightarrow A \cap B=r$
unfolding delta_system_def by simp
Hence, pairwise intersections equal the intersection of the whole family.

```
lemma delta_system_root_eq_Inter:
    assumes delta_system(D)
    shows }\forallA\inD.\forallB\inD.A\not=B\longrightarrowA\capB=\bigcap
proof (clarify, intro equalityI, auto)
    fix }\mp@subsup{A}{}{\prime}\mp@subsup{B}{}{\prime}x
    assume hyp:A'\inD B}\mp@subsup{B}{}{\prime}\inD\mp@subsup{A}{}{\prime}\not=\mp@subsup{B}{}{\prime}x\in\mp@subsup{A}{}{\prime}x\in\mp@subsup{B}{}{\prime}C\in
    with assms
    obtain r where delta:\forallA\inD.}\forallB\inD.A\not=B\longrightarrowA\capB=
        by auto
    show }x\in
    proof (cases C=A')
        case True
        with hyp and assms
        show ?thesis by simp
    next
        case False
        moreover
        note hyp
    moreover from calculation and delta
    have }r=C\cap\mp@subsup{A}{}{\prime}\mp@subsup{A}{}{\prime}\cap\mp@subsup{B}{}{\prime}=rx\inr\mathrm{ by auto
    ultimately
    show ?thesis by simp
```

```
    qed
qed
lemmas Limit__Aleph = InfCard__Aleph[THEN InfCard_is_Limit]
lemmas Aleph_cont = Normal_imp_cont[OF Normal_Aleph]
lemmas Aleph_sup = Normal_Union[OF _ _ Normal_Aleph]
bundle Ord__dests = Limit_is_Ord[dest] Card_is_Ord[dest]
bundle Aleph_dests = Aleph_cont[dest] Aleph_sup[dest]
bundle Aleph_intros = Aleph_increasing[intro!]
bundle Aleph_mem_dests = Aleph_increasing[OF ltI,THEN ltD,dest]
```


2.7 Transfinite recursive constructions

definition

```
rec_constr \(::[i, i] \Rightarrow i\) where
rec_constr \((f, \alpha) \equiv \operatorname{transrec}\left(\alpha, \lambda a g . f^{\prime}\left(g{ }^{\prime \prime} a\right)\right)\)
```

The function rec_constr allows to perform recursive constructions: given a choice function on the powerset of some set, a transfinite sequence is created by successively choosing some new element.
The next result explains its use.

```
lemma rec_constr_unfold: rec_constr (f,\alpha) = f'({rec_constr (f,\beta). \beta\in\alpha})
    using def_transrec[OF rec_constr_def, of f \alpha] image_lam by simp
lemma rec_constr_type: assumes f:Pow (G)->G Ord (\alpha)
    shows rec_constr (f,\alpha) \inG
    using assms(2,1)
    by (induct rule:trans_induct)
    (subst rec_constr_unfold, rule apply_type[of f Pow(G) \lambda_..G],auto)
```

end

3 Cofinality

theory Cofinality
imports ZF_Library
begin

3.1 Basic results and definitions

A set X is cofinal in A (with respect to the relation r) if every element of A is "bounded above" by some element of X. Note that X does not need to be a subset of A.

definition

cofinal $::[i, i, i] \Rightarrow o$ where
$\operatorname{cofinal}(X, A, r) \equiv \forall a \in A . \exists x \in X .\langle a, x\rangle \in r \vee a=x$
A function is cofinal if it range is.

definition

```
    cofinal_fun \(::[i, i, i] \Rightarrow o\) where
    cofinal_fun \((f, A, r) \equiv \forall a \in A . \exists x \in \operatorname{domain}(f) .\left\langle a, f^{〔} x\right\rangle \in r \vee a=f^{\iota} x\)
```

lemma cofinal funI:
assumes $\bigwedge a . a \in A \Longrightarrow \exists x \in \operatorname{domain}(f) .\left\langle a, f^{\iota} x\right\rangle \in r \vee a=f^{\iota} x$
shows cofinal_fun (f, A, r)
using assms unfolding cofinal_fun_def by simp
lemma cofinal_funD:
assumes cofinal_fun $(f, A, r) a \in A$
shows $\exists x \in \operatorname{domain}(f) .\left\langle a, f^{\iota} x\right\rangle \in r \vee a=f^{\iota} x$
using assms unfolding cofinal_fun_def by simp
lemma cofinal_in_cofinal:
assumes
$\operatorname{trans}(r) \operatorname{cofinal}(Y, X, r) \operatorname{cofinal}(X, A, r)$
shows
cofinal (Y, A, r)
unfolding cofinal_def
proof
fix a
assume $a \in A$
moreover from <cofinal $(X, A, r)\rangle$
have $b \in A \Longrightarrow \exists x \in X .\langle b, x\rangle \in r \vee b=x$ for b
unfolding cofinal_def by simp
ultimately
obtain y where $y \in X\langle a, y\rangle \in r \vee a=y$ by auto
moreover from $\langle\operatorname{cofinal}(Y, X, r)\rangle$
have $c \in X \Longrightarrow \exists y \in Y$. $\langle c, y\rangle \in r \vee c=y$ for c
unfolding cofinal_def by simp
ultimately
obtain x where $x \in Y\langle y, x\rangle \in r \vee y=x$ by auto
with $\langle a \in A\rangle\langle y \in X\rangle\langle\langle a, y\rangle \in r \vee a=y\rangle\langle\operatorname{trans}(r)\rangle$
show $\exists x \in Y .\langle a, x\rangle \in r \vee a=x$ unfolding trans_def by auto
qed
lemma codomain_is_cofinal:
assumes cofinal_fun $(f, A, r) f: C \rightarrow D$
shows $\operatorname{cofinal}(D, A, r)$
unfolding cofinal_def
proof
fix b
assume $b \in A$

```
    moreover from assms
    have \(a \in A \Longrightarrow \exists x \in \operatorname{domain}(f) .\left\langle a, f^{\prime} x\right\rangle \in r \vee a=f^{‘} x\) for \(a\)
    unfolding cofinal_fun_def by simp
    ultimately
    obtain \(x\) where \(x \in \operatorname{domain}(f)\left\langle b, f^{\prime} x\right\rangle \in r \vee b=f^{\prime} x\)
    by blast
    moreover from \(\langle f: C \rightarrow D\rangle\langle x \in \operatorname{domain}(f)\rangle\)
    have \(f^{\prime} x \in D\)
    using domain_of_fun apply_rangeI by simp
    ultimately
    show \(\exists y \in D .\langle b, y\rangle \in r \vee b=y\) by auto
qed
lemma cofinal_range_iff_cofinal_fun:
    assumes function ( \(f\) )
    shows cofinal \((\operatorname{range}(f), A, r) \longleftrightarrow\) cofinal_fun \((f, A, r)\)
    unfolding cofinal_fun_def
proof (intro iffI ballI)
    fix \(a\)
    assume \(a \in A\) <cofinal \((\operatorname{range}(f), A, r)\rangle\)
    then
    obtain \(y\) where \(y \in \operatorname{range}(f)\langle a, y\rangle \in r \vee a=y\)
        unfolding cofinal_def by blast
    moreover from this
    obtain \(x\) where \(\langle x, y\rangle \in f\)
        unfolding range_def domain_def converse_def by blast
    moreover
    note 〈function \((f)\rangle\)
    ultimately
    have \(\langle a, f\) ' \(x\rangle \in r \vee a=f^{\prime} x\)
        using function_apply_equality by blast
    with \(\langle\langle x, y\rangle \in f\rangle\)
    show \(\exists x \in \operatorname{domain}(f) .\left\langle a, f^{\prime} x\right\rangle \in r \vee a=f^{\prime} x\) by blast
next
    assume \(\forall a \in A . \exists x \in \operatorname{domain}(f) .\left\langle a, f^{\prime} x\right\rangle \in r \vee a=f{ }^{\prime} x\)
    with assms
    show cofinal(range (f), A,r)
        using function_apply_Pair \([o f f]\) unfolding cofinal_def by fast
qed
lemma cofinal_comp:
    assumes
        \(f \in\) mono_map \((C, s, D, r)\) cofinal_fun \((f, D, r) h: B \rightarrow C\) cofinal_fun \((h, C, s)\)
        trans( \(r\) )
    shows cofinal_fun(f \(O h, D, r\) )
    unfolding cofinal_fun_def
proof
    fix \(a\)
    from \(\langle f \in\) mono_map \((C, s, D, r)\rangle\)
```

```
have \(f: C \rightarrow D\)
    using mono_map_is_fun by simp
with \(\langle h: B \rightarrow C\) 〉
have \(\operatorname{domain}(f)=C \operatorname{domain}(h)=B\)
    using domain_of_fun by simp_all
moreover
assume \(a \in D\)
moreover
note \(\left\langle c o f i n a l \_f u n(f, D, r)\right\rangle\)
ultimately
obtain \(c\) where \(c \in C\left\langle a, f^{\prime} c\right\rangle \in r \vee a=f^{\prime} c\)
unfolding cofinal_fun_def by blast
with \(\langle\) cofinal fun \((h, C, s)\rangle\langle\operatorname{domain}(h)=B\rangle\)
obtain \(b\) where \(b \in B\left\langle c, h^{\prime} b\right\rangle \in s \vee c=h^{\prime} b\)
    unfolding cofinal_fun_def by blast
moreover from this and \(\langle h: B \rightarrow C\rangle\)
have \(h^{`} b \in C\) by simp
moreover
note \(\langle f \in\) mono_map \((C, s, D, r)\rangle\langle c \in C\rangle\)
ultimately
have \(\left\langle f^{\iota} c, f^{\star}\left(h^{‘} b\right)\right\rangle \in r \vee f^{\bullet} c=f^{\iota}\left(h^{‘} b\right)\)
    unfolding mono_map_def by blast
with \(\left\langle\left\langle a, f^{\prime} c\right\rangle \in r \vee a=f^{\prime} c\right\rangle\langle\operatorname{trans}(r)\rangle\langle h: B \rightarrow C\rangle\langle b \in B\rangle\)
have \(\langle a,(f O h) \cdot b\rangle \in r \vee a=(f O h)^{\prime} b\)
    using transD by auto
moreover from \(\langle h: B \rightarrow C\rangle\langle\operatorname{domain}(f)=C\rangle\langle\operatorname{domain}(h)=B\rangle\)
have \(\operatorname{domain}(f O h)=B\)
    using range_fun_subset_codomain by blast
moreover
note \(\langle b \in B\rangle\)
ultimately
show \(\exists x \in \operatorname{domain}(f O h) .\left\langle a,(f O h)^{\prime} x\right\rangle \in r \vee a=(f O h)^{\prime} x\) by blast
qed
```

```
definition
    cf_fun \(::[i, i] \Rightarrow o\) where
    \(c f \_f u n(f, \alpha) \equiv \operatorname{cofinal\_ fun}(f, \alpha, \operatorname{Memrel}(\alpha))\)
lemma \(c f\) _funI[intro!]: cofinal_fun \((f, \alpha, \operatorname{Memrel}(\alpha)) \Longrightarrow c f\) _fun \((f, \alpha)\)
    unfolding \(c f\) fun_def by simp
lemma \(c f\) _fun \(D[d e s t!]: c f \_f u n(f, \alpha) \Longrightarrow \operatorname{cofinal\_ fun}(f, \alpha, \operatorname{Memrel}(\alpha))\)
    unfolding \(c f\) fun_def by simp
lemma cf_fun_comp:
    assumes
        \(\operatorname{Ord}(\alpha) f \in \operatorname{mono\_ map}(C, s, \alpha, \operatorname{Memrel}(\alpha)) c f \_f u n(f, \alpha)\)
        \(h: B \rightarrow C\) cofinal_fun \((h, C, s)\)
    shows \(c f\) fun \((f O h, \alpha)\)
```

using assms cofinal_comp[OF \qquad trans_Memrel] by auto

definition

$$
c f:: i \Rightarrow i \text { where }
$$

$c f(\gamma) \equiv \mu \beta . \exists A . A \subseteq \gamma \wedge \operatorname{cofinal}(A, \gamma, \operatorname{Memrel}(\gamma)) \wedge \beta=\operatorname{ordertype}(A, \operatorname{Memrel}(\gamma))$
lemma Ord_cf [TC]: $\operatorname{Ord}(c f(\beta))$ unfolding $c f$ _def using Ord_Least by simp
lemma gamma_cofinal_gamma:
assumes $\operatorname{Ord}(\gamma)$
shows $\operatorname{cofinal}(\gamma, \gamma, \operatorname{Memrel}(\gamma))$
unfolding cofinal_def by auto
lemma $c f _i s _o r d e r t y p e:$
assumes $\operatorname{Ord}(\gamma)$
shows $\exists A . A \subseteq \gamma \wedge \operatorname{cofinal}(A, \gamma, \operatorname{Memrel}(\gamma)) \wedge c f(\gamma)=\operatorname{ordertype}(A, \operatorname{Memrel}(\gamma))$ (is ? $P(c f(\gamma)))$
using gamma_cofinal_gamma LeastI[of ?P $\gamma]$ ordertype_Memrel[symmetric]
assms
unfolding $c f _$def by blast
lemma $c f$ fun_succ ${ }^{\prime}$:
assumes $\operatorname{Ord}(\beta) \operatorname{Ord}(\alpha) f: \alpha \rightarrow \operatorname{succ}(\beta)$
shows $\left(\exists x \in \alpha . f^{f} x=\beta\right) \longleftrightarrow c f \quad$ fun $(f, \operatorname{succ}(\beta))$
proof (intro iffI)
assume ($\exists x \in \alpha . f^{\prime} x=\beta$)
with assms
show cf_fun $(f, \operatorname{succ}(\beta))$ using domain_of_fun $[O F\langle f: \alpha \rightarrow \operatorname{succ}(\beta)\rangle]$ unfolding $c f$ _fun_def cofinal_fun_def by auto
next
assume cf_fun $(f, \operatorname{succ}(\beta))$
with assms
obtain x where $x \in \alpha\left\langle\beta, f^{\prime} x\right\rangle \in \operatorname{Memrel}(\operatorname{succ}(\beta)) \vee \beta=f$ ' x using domain_of_fun $[O F\langle f: \alpha \rightarrow \operatorname{succ}(\beta)\rangle]$ unfolding $c f$ _fun_def cofinal_fun_def by auto
moreover from $\langle\operatorname{Ord}(\beta)\rangle$
have $\langle\beta, y\rangle \notin \operatorname{Memrel}(\operatorname{succ}(\beta))$ for y
using foundation unfolding Memrel_def by blast
ultimately
show $\exists x \in \alpha$. $f^{\prime} x=\beta$ by blast
qed
lemma $c f$ fun_succ:
$\operatorname{Ord}(\beta) \Longrightarrow \overline{f: 1} \rightarrow \operatorname{succ}(\beta) \Longrightarrow f^{`} 0=\beta \Longrightarrow c f \quad \operatorname{fun}(f, \operatorname{succ}(\beta))$
using $c f$ fun_succ ${ }^{\prime}$ by blast
lemma ordertype_0_not_cofinal_succ:

```
    assumes ordertype(A,Memrel(succ(i))) = 0 A\subseteqsucc(i) Ord(i)
    shows }\neg\operatorname{cofinal}(A,\operatorname{succ}(i),Memrel(\operatorname{succ}(i))
proof
    have 1:ordertype(A,Memrel(succ(i))) = ordertype(0,Memrel(0))
        using <ordertype (A,Memrel(succ}(i)))=0\rangle ordertype_0 by simp
    from <A\subseteqsucc(i)\rangle\langleOrd(i)\rangle
    have }\existsf.f\in\langleA,Memrel(\operatorname{succ}(i))\rangle\cong\langle0,Memrel(0)
        using well_ord_Memrel well_ord_subset
            ordertype_eq_imp_ord_iso[OF 1] Ord_0 by blast
    then
    have }A=
        using ord_iso_is_bij bij_imp_eqpoll eqpoll_0_is_0 by blast
    moreover
    assume cofinal(A, succ(i), Memrel(succ(i)))
    moreover
    note <Ord(i)\rangle
    ultimately
    show False
    using not_mem_empty unfolding cofinal_def by auto
qed
```

I thank Edwin Pacheco Rodríguez for the following lemma．

```
lemma cf_succ:
    assumes \(\operatorname{Ord}(\alpha)\)
    shows \(c f(\operatorname{succ}(\alpha))=1\)
proof -
    define \(f\) where \(f \equiv\{\langle 0, \alpha\rangle\}\)
    then
    have \(f: 1 \rightarrow \operatorname{succ}(\alpha) f^{\bullet} 0=\alpha\)
        using fun_extend3[of \(00 \operatorname{succ}(\alpha) 0 \alpha]\) singleton_0 by auto
    with assms
    have \(c f\) fun \((f, \operatorname{succ}(\alpha))\)
        using cf fun_succ unfolding cofinal_fun_def by simp
    from 〈f:1 \(\rightarrow \operatorname{succ}(\alpha)\rangle\)
    have \(0 \in \operatorname{domain}(f)\) using domain_of_fun by simp
    define \(A\) where \(A=\left\{f^{\bullet} 0\right\}\)
    with \(\left\langle c f \_f u n(f, \operatorname{succ}(\alpha))\right\rangle\langle 0 \in \operatorname{domain}(f)\rangle\left\langle f^{`} 0=\alpha\right\rangle\)
    have \(\operatorname{cofinal}(A, \operatorname{succ}(\alpha), \operatorname{Memrel}(\operatorname{succ}(\alpha)))\)
        unfolding cofinal_def cofinal_fun_def by simp
    moreover from 〈 \(\left.f^{‘} 0=\alpha\right\rangle\left\langle A=\left\{f^{‘} 0\right\}\right\rangle\)
    have \(A \subseteq \operatorname{succ}(\alpha)\) unfolding succ_def by auto
    moreover from \(\langle\operatorname{Ord}(\alpha)\rangle\langle A \subseteq \operatorname{succ}(\alpha)\rangle\)
    have well_ord \((A, \operatorname{Memrel}(\operatorname{succ}(\alpha)))\)
        using Ord_succ well_ord_Memrel well_ord_subset relation_Memrel by blast
    moreover from \(\langle\operatorname{Ord}(\alpha)\) 〉
    have \(\neg(\exists A . A \subseteq \operatorname{succ}(\alpha) \wedge \operatorname{cofinal}(A, \operatorname{succ}(\alpha), \operatorname{Memrel}(\operatorname{succ}(\alpha))) \wedge 0=\operatorname{order}-\)
type \((A, \operatorname{Memrel}(\operatorname{succ}(\alpha))))\)
    (is \(\neg\) ? \(P(0)\) )
    using ordertype_0_not_cofinal_succ unfolding cf_def by auto
```

```
moreover
    have 1 = ordertype(A,Memrel(succ(\alpha)))
    proof -
    from <A={f`0}>
    have A\approx1 using singleton_eqpoll_1 by simp
    with 〈well_ord (A,Memrel (succ}(\alpha)))
    show ?thesis using nat_1I ordertype_eq_n by simp
qed
ultimately
show }cf(\operatorname{succ}(\alpha))=1\mathrm{ using Ord__1 Least__equality[of ?P 1]
    unfolding cf_def by blast
qed
lemma cf_zero [simp]:
    cf(0) =0
    unfolding cf_def cofinal_def using
        ordertype_0 subset_empty_iff Least_le[of _ 0] by auto
lemma surj_is_cofinal: f\in\operatorname{surj}(\delta,\gamma)\Longrightarrowcf_fun(f,\gamma)
    unfolding surj_def cofinal_fun_def cf_fun_def
    using domain_of_fun by force
lemma cf_zero_iff: Ord (\alpha)\Longrightarrowcf(\alpha)=0\longleftrightarrow\alpha=0
proof (intro iffI)
    assume \alpha=0 Ord(\alpha)
    then
    show }cf(\alpha)=0\mathrm{ using cf_zero by simp
next
    assume cf(\alpha)=0 Ord(\alpha)
    moreover from this
    obtain }A\mathrm{ where }A\subseteq\alphacf(\alpha)=\operatorname{ordertype}(A,Memrel(\alpha)
        cofinal(A, },\mathrm{ ,Memrel( }\alpha)
        using cf_is_ordertype by blast
    ultimately
    have cofinal(0, \alpha,Memrel( }\alpha)\mathrm{ )
    using ordertype_zero_imp_zero[of A Memrel(\alpha)] by simp
    then
    show }\alpha=
        unfolding cofinal_def by blast
qed
- TODO: define Succ (predicate for successor ordinals)
lemma cf_eq_one_iff:
    assumes Ord(\gamma)
    shows cf(\gamma)=1\longleftrightarrow(\exists\alpha.Ord(\alpha)\wedge\gamma=\operatorname{succ}(\alpha))
proof (intro iffI)
    assume \exists\alpha. Ord (\alpha)^\gamma=\operatorname{succ}(\alpha)
    then
    show cf(\gamma)=1 using cf_succ by auto
```

```
next
    assume cf(\gamma)=1
    moreover from assms
    obtain A where A\subseteq\gammacf(\gamma)=ordertype(A,Memrel}(\gamma)
        cofinal(A,\gamma,Memrel(})\mathrm{ ))
        using cf_is_ordertype by blast
    ultimately
    have }\operatorname{ordertype}(A,Memrel (\gamma))=1 by \operatorname{simp
    moreover
    define f}\mathrm{ where f三converse(ordermap(A,Memrel(}\gamma))
    moreover from this <ordertype(A,Memrel (\gamma))=1\rangle\langleA\subseteq\gamma\rangle assms
    have }f\in\operatorname{surj}(1,A
        using well_ord_subset[OF well_ord_Memrel, THEN ordermap_bij,
                THEN bij_converse_bij, of \gamma A] bij_is_surj
    by simp
    with <cofinal(A,\gamma,Memrel}(\gamma))\mathrm{ `
    have }\foralla\in\gamma.\langlea,\mp@subsup{f}{}{`}0\rangle\in\operatorname{Memrel}(\gamma)\veea=\mp@subsup{f}{}{`}
        unfolding cofinal_def surj_def
        by auto
    with assms <A\subseteq\gamma\rangle\langlef\in\operatorname{surj}(1,A)\rangle
    show \exists\alpha.Ord(\alpha)^\gamma=\operatorname{succ}(\alpha)
    using Ord_has_max_imp_succ[of \gamma f`0]
        surj_is_fun[off 1 A] apply_type[off 1 \lambda_.A 0]
    unfolding lt_def
    by (auto intro:Ord_in_Ord)
qed
lemma ordertype_in_cf_imp__not_cofinal:
    assumes
        ordertype(A,Memrel(})))\incf(\gamma
        A\subseteq\gamma
    shows
    \negcofinal(A,\gamma,Memrel (}\gamma)
proof
    note <A\subseteq\gamma>
    moreover
    assume cofinal(A,\gamma,Memrel}(\gamma)
    ultimately
    have \existsB.B\subseteq\gamma^\operatorname{cofinal( }B,\gamma,\operatorname{Memrel}(\gamma))\wedge\operatorname{ordertype}(A,Memrel}(\gamma))
ordertype(B, Memrel(}\gamma)
            (is ?P(ordertype(A,_)))
            by blast
    moreover from assms
    have ordertype(A,Memrel}(\gamma))<cf(\gamma
            using Ord_cf ltI by blast
    ultimately
    show False
        unfolding cf_def using less_LeastE[of ?P ordertype(A,Memrel(\gamma))]
            by auto
```

```
qed
lemma cofinal_mono_map_cf:
    assumes }\operatorname{Ord}(\gamma
    shows }\existsj\in\mathrm{ mono_map (cf( }\gamma),\operatorname{Memrel (cf(\gamma)),\gamma,Memrel (\gamma)).cf_fun(j,\gamma)
proof -
    note assms
    moreover from this
    obtain A where A\subseteq\gammacf(\gamma)=\operatorname{ordertype(A,Memrel}(\gamma))
        cofinal(A,\gamma,Memrel(})\mathrm{ ))
        using cf_is_ordertype by blast
    moreover
    define j where j\equivconverse(ordermap(A,Memrel(\gamma)))
    moreover from calculation
    have j:cf(\gamma) }\mp@subsup{->}{<}{}
        using ordertype_ord_iso[THEN ord_iso_sym,
            THEN ord_iso_is_mono_map, THEN mono_map_mono,
            of A Memrel(\gamma) \gamma] well_ord_Memrel[THEN well_ord_subset]
        by simp
    moreover from calculation
    have }j\in\operatorname{surj}(cf(\gamma),A
        using well_ord_Memrel[THEN well_ord_subset, THEN ordertype_ord_iso,
            THEN ord_iso_sym, of \gamma A, THEN ord_iso_is_bij,
            THEN bij_is_surj]
        by simp
    with <cofinal(A,\gamma,Memrel(}\gamma))\mathrm{ \
    have cf_fun(j,\gamma)
        using cofinal_range_iff_cofinal_fun[of j \gamma Memrel(\gamma)]
            surj_range[of j cf(\gamma) A] surj_is_fun fun_is_function
        by fastforce
    with «j \in mono_map(_,_,_,_)
    show ?thesis by auto
qed
```


3.2 The factorization lemma

In this subsection we prove a factorization lemma for cofinal functions into ordinals, which shows that any cofinal function between ordinals can be "decomposed" in such a way that a commutative triangle of strictly increasing maps arises.
The factorization lemma has a kind of fundamental character, in that the rest of the basic results on cofinality (for, instance, idempotence) follow easily from it, in a more algebraic way.
This is a consequence that the proof encapsulates uses of transfinite recursion in the basic theory of cofinality; indeed, only one use is needed. In the setting of Isabelle/ZF, this is convenient since the machinery of recursion is pretty clumsy. On the downside, this way of presenting things results in a longer
proof of the factorization lemma. This approach was taken by the author in the notes [8] for an introductory course in Set Theory.
To organize the use of the hypotheses of the factorization lemma, we set up a locale containing all the relevant ingredients.

```
locale cofinal factor \(=\)
    fixes \(j \delta \xi \gamma f\)
    assumes j_mono: \(j: \xi \rightarrow<\gamma\)
        and ords: \(\operatorname{Ord}(\delta) \operatorname{Ord}(\xi) \operatorname{Limit}(\gamma)\)
        and \(f\) type: \(f: \delta \rightarrow \gamma\)
begin
```

Here, f is cofinal function from δ to γ, and the ordinal ξ is meant to be the cofinality of γ. Hence, there exists an increasing map j from ξ to γ by the last lemma.
The main goal is to construct an increasing function $g \in \xi \rightarrow \delta$ such that the composition $f O g$ is still cofinal but also increasing.

definition

```
factor_body \(::[i, i, i] \Rightarrow o\) where
factor_body \((\beta, h, x) \equiv\left(x \in \delta \wedge j^{〔} \beta \leq f^{\prime} x \wedge\left(\forall \alpha<\beta . f^{\iota}\left(h^{‘} \alpha\right)<f^{〔} x\right)\right) \vee x=\delta\)
```


definition

```
factor_rec :: [i,i]=>i where
factor_rec}(\beta,h)\equiv\mux.factor_body(\beta,h,x
```

factor_rec is the inductive step for the definition by transfinite recursion of the factor function (called g above), which in turn is obtained by minimizing the predicate factor_body. Next we show that this predicate is monotonous.

```
lemma factor_body_mono:
    assumes
        \beta\in\xi \alpha<\beta
        factor_body(\beta,\lambdax\in\beta.G(x),x)
    shows
        factor_body(\alpha,\lambdax\in\alpha. G(x),x)
proof -
    from <\alpha<\beta\rangle
    have }\alpha\in\beta\mathrm{ using ltD by simp
    moreover
    note < \beta\in\xi\rangle
    moreover from calculation
    have }\alpha\in\xi\mathrm{ using ords ltD Ord_cf Ord_trans by blast
    ultimately
    have j}\mp@subsup{j}{}{`}\alpha\in\mp@subsup{j}{}{`}\beta\mathrm{ using j_mono mono_map_increasing by blast
    moreover from < }\beta\in\xi
    have j`\beta\in\gamma
        using j_mono domain_of_fun apply_rangeI mono__map_is_fun by force
    moreover from this
    have }\operatorname{Ord}(\mp@subsup{j}{}{`}\beta
```

```
    using Ord_in_Ord ords Limit_is_Ord by auto
    ultimately
    have j'\alpha}<<\mp@subsup{j}{}{`}\beta\mathrm{ unfolding lt_def by blast
    then
    have j}\mp@subsup{j}{}{`}\beta\leq\mp@subsup{f}{}{`}\vartheta\Longrightarrow\mp@subsup{j}{}{`}\alpha\leq\mp@subsup{f}{}{`}\vartheta\mathrm{ for }\vartheta\mathrm{ using le_trans by blast
    moreover
    have f}\mp@subsup{f}{}{\prime}((\lambdaw\in\alpha.G(w))\mp@subsup{)}{}{`}y)<\mp@subsup{f}{}{`}z\mathrm{ if }z\in\delta\forallx<\beta.\mp@subsup{f}{}{\prime}((\lambdaw\in\beta.G(w))\mp@subsup{)}{}{`}x)<\mp@subsup{f}{}{`}zy<\alpha\mathrm{ for
yz
    proof
        note < }y<\alpha
        also
        note <\alpha<\beta>
        finally
        have }y<\beta\mathrm{ by simp
        with <\forallx<\beta. f`}\mp@subsup{|}{}{\prime}((\lambdaw\in\beta.G(w))\mp@subsup{)}{}{6}x)<\mp@subsup{f}{}{\prime}z
        have f' ((\lambdaw\in\beta.G(w))' y)< f'z by simp
        moreover from \langley<\alpha\rangle\langley<\beta\rangle
        have (\lambdaw\in\beta.G(w))'y = (\lambdaw\in\alpha.G(w))' y
            using beta_if by (auto dest:ltD)
        ultimately show ?thesis by simp
    qed
    moreover
    note <factor_body( }\beta,\lambdax\in\beta.G(x),x)
    ultimately
    show ?thesis
    unfolding factor_body_def by blast
qed
lemma factor_body_simp[simp]: factor_body(\alpha,g,\delta)
    unfolding factor_body_def by simp
lemma factor_rec_mono:
    assumes
        \beta\in\xi \alpha<\beta
    shows
    factor_rec( }\alpha,\lambdax\in\alpha.G(x))\leqfactor_rec(\beta,\lambdax\in\beta.G(x)
    unfolding factor_rec_def
    using assms ords factor_body_mono Least_antitone by simp
```

We now define the factor as higher-order function. Later it will be restricted to a set to obtain a bona fide function of type i.

definition

factor :: $i \Rightarrow i$ where
factor $(\beta) \equiv$ transrec $(\beta$, factor_rec $)$
lemma factor_unfold:
factor $(\alpha)=$ factor_rec $(\alpha, \lambda x \in \alpha$. factor $(x))$
using def_transrec [OF factor_def].

```
lemma factor_mono:
    assumes }\beta\in\xi\alpha<\beta\mathrm{ factor ( }\alpha)\not=\delta\mathrm{ factor }(\beta)\not=
    shows factor ( }\alpha)\leq\mathrm{ factor ( }\beta\mathrm{ )
proof -
    have factor ( }\alpha)=\mathrm{ factor_rec( }\alpha,\lambdax\in\alpha. factor (x)
        using factor_unfold .
    also from assms and factor_rec_mono
    have ... \leq factor_rec( }\beta,\lambdax\in\beta.\mathrm{ factor (x))
        by simp
    also
    have factor_rec ( }\beta,\lambdax\in\beta.\operatorname{factor (x)) = factor ( }\beta\mathrm{ )
        using def_transrec[OF factor_def, symmetric].
    finally show ?thesis .
qed
```

The factor satisfies the predicate body of the minimization.

```
lemma factor_body_factor:
    factor__body(\alpha,\lambdax\in\alpha. factor(x),factor( }\alpha)
    using ords factor_unfold[of \alpha]
        LeastI[of factor__body(_,_) \delta]
    unfolding factor_rec_def by simp
lemma factor_type [TC]: Ord(factor(\alpha))
    using ords factor_unfold[of \alpha]
    unfolding factor_rec_def by simp
```

The value δ in factor_body (and therefore, in factor) is meant to be a "default value". Whenever it is not attained, the factor function behaves as expected: It is increasing and its composition with f also is.

```
lemma f_factor_increasing:
    assumes }\beta\in\xi\alpha<\beta\mathrm{ factor ( }\beta)\not=
    shows f`factor (\alpha)< f'factor (\beta)
proof -
    from assms
    have f'((\lambdax\in\beta. factor (x))' \alpha)< f' factor }(\beta
        using factor_unfold[of \beta] ords LeastI[of factor_body (\beta,\lambdax\in\beta. factor (x))]
        unfolding factor_rec_def factor_body_def
        by (auto simp del:beta_if)
    with {\alpha<\beta>
    show ?thesis using ltD by auto
qed
lemma factor_increasing:
    assumes }\beta\in\xi\alpha<\beta\mathrm{ factor ( }\alpha)\not=\delta\mathrm{ factor }(\beta)\not=
    shows factor ( }\alpha)<\mathrm{ factor ( }\beta\mathrm{ )
    using assms f_factor_increasing factor_mono by (force intro:le_neq_imp_lt)
lemma factor_in_delta:
    assumes factor (\beta)}\not=
```

```
shows factor }(\beta)\in
using assms factor_body_factor ords
unfolding factor_body_def by auto
```

Finally, we define the (set) factor function as the restriction of factor to the ordinal ξ.

definition

```
    fun_factor :: i where
    fun_factor }\equiv\lambda\beta\in\xi. factor ( \beta
```

lemma fun_factor_is_mono_map:
assumes $\wedge \beta . \beta \in \xi \Longrightarrow \operatorname{factor}(\beta) \neq \delta$
shows fun factor \in mono_map $(\xi, \operatorname{Memrel}(\xi), \delta, \operatorname{Memrel}(\delta))$
unfolding mono_map_def
proof (intro CollectI ballI impI)

Proof that fun_factor respects membership:

```
fix }\alpha
assume }\alpha\in\xi\beta\in
moreover
note assms
moreover from calculation
have factor ( }\alpha)\not=\delta\mathrm{ factor }(\beta)\not=\delta\operatorname{Ord}(\beta
    using factor_in_delta Ord_in_Ord ords by auto
moreover
assume }\langle\alpha,\beta\rangle\in\operatorname{Memrel}(\xi
ultimately
show \langlefun_factor ' }\alpha\mathrm{ , fun_factor ' }\beta\rangle\in\operatorname{Memrel(}\delta
    unfolding fun_factor_def
    using ltI factor_increasing[THEN ltD] factor_in_delta
    by simp
next
```

Proof that it has the appropriate type:

```
    from assms
    show fun_factor : \(\xi \rightarrow \delta\)
    unfolding fun_factor_def
    using ltI lam_type factor_in_delta by simp
qed
lemma \(f\) fun_factor_is_mono_map:
    assumes \(\Lambda \beta . \beta \in \bar{\xi} \Longrightarrow \operatorname{factor}(\beta) \neq \delta\)
    shows \(f O\) fun_factor \(\in\) mono_ \(\operatorname{map}(\xi, \operatorname{Memrel}(\xi), \gamma, \operatorname{Memrel}(\gamma))\)
    unfolding mono_map_def
    using \(f\) _type
proof (intro CollectI ballI impI comp_fun[of__ \(\delta]\) )
    from assms
    show fun factor : \(\xi \rightarrow \delta\)
    using fun_factor_is_mono_map mono_map_is_fun by simp
```

Proof that $f O$ fun_factor respects membership
fix $\alpha \beta$
assume $\langle\alpha, \beta\rangle \in \operatorname{Memrel}(\xi)$
then
have $\alpha<\beta$
using Ord_in_Ord[of $\xi]$ ltI ords by blast
assume $\alpha \in \xi \beta \in \xi$
moreover from this and assms
have $\operatorname{factor}(\alpha) \neq \delta \operatorname{factor}(\beta) \neq \delta$ by auto
moreover
have $\operatorname{Ord}(\gamma) \gamma \neq 0$ using ords Limit_is_Ord by auto
moreover
note $\langle\alpha<\beta\rangle\langle$ fun_factor : $\xi \rightarrow \delta\rangle$
ultimately
show $\langle(f O$ fun_factor $)$ ' α, (f O fun_factor $)$ ' $\beta\rangle \in \operatorname{Memrel}(\gamma)$
using $l t D[$ of f ' factor $(\alpha) f$ ' factor $(\beta)]$
f_factor_increasing apply_in_codomain_Ord f_type
unfolding fun_factor_def by auto
qed
end - cofinal_factor
We state next the factorization lemma.
lemma cofinal_fun_factorization:
notes le_imp_subset [dest] lt_trans2 [trans]
assumes
$\operatorname{Ord}(\delta) \operatorname{Limit}(\gamma) f: \delta \rightarrow \gamma c f f u n(f, \gamma)$
shows
$\exists g \in c f(\gamma) \rightarrow_{<} \delta . f O g: c f(\gamma) \rightarrow_{<} \gamma \wedge$ cofinal_fun(f $O g, \gamma, \operatorname{Memrel}(\gamma))$
proof -
from 〈Limit $(\gamma)\rangle$
have $\operatorname{Ord}(\gamma)$ using Limit_is_Ord by simp
then
obtain j where $j: c f(\gamma) \rightarrow<\gamma c f$ fun (j, γ)
using cofinal_mono_map_cf by blast
then
have $\operatorname{domain}(j)=c f(\gamma)$
using domain_of_fun mono_map_is_fun by force
from $\left\langle j \in _\right.$_assms
interpret cofinal_factor $j \delta c f(\gamma)$
by (unfold_locales) (simp_all)
The core of the argument is to show that the factor function indeed maps into δ, therefore its values satisfy the first disjunct of factor_body. This holds in turn because no restriction of the factor composed with f to a proper initial segment of $c f(\gamma)$ can be cofinal in γ by definition of cofinality. Hence there must be a witness that satisfies the first disjunct.
have factor_not_delta: $\operatorname{factor}(\beta) \neq \delta$ if $\beta \in c f(\gamma)$ for β
For this, we induct on β ranging over $c f(\gamma)$.
proof (induct β rule: Ord_induct[OF_Ord_cf[of $\gamma]]$)
case 1 with that show ?case.
next
case (2 β)
then
have $I H: z \in \beta \Longrightarrow \operatorname{factor}(z) \neq \delta$ for z by simp
define h where $h \equiv \lambda x \in \beta$. f^{\prime} factor (x)
from $I H$
have $z \in \beta \Longrightarrow \operatorname{factor}(z) \in \delta$ for z using factor_in_delta by blast
with $\langle f: \delta \rightarrow \gamma\rangle$
have $h: \beta \rightarrow \gamma$ unfolding $h _$def using apply_funtype lam_type by auto
then
have $h: \beta \rightarrow<\gamma$
unfolding mono_map_def
proof (intro CollectI ballI impI)
fix $x y$
assume $x \in \beta \quad y \in \beta$
moreover from this and $I H$
have $\operatorname{factor}(y) \neq \delta$ by simp
moreover from calculation and $\langle h \in \beta \rightarrow \gamma\rangle$
have $h^{\prime} x \in \gamma h^{\prime} y \in \gamma$ by simp_all
moreover from $\langle\beta \in c f(\gamma)\rangle$ and $\langle y \in \beta\rangle$
have $y \in c f(\gamma)$
using Ord_trans Ord_cf by blast
moreover from this
have $\operatorname{Ord}(y)$
using Ord_cf Ord_in_Ord by blast
moreover
assume $\langle x, y\rangle \in \operatorname{Memrel}(\beta)$
moreover from calculation
have $x<y$ by (blast intro:ltI)
ultimately
show $\left\langle h\right.$ ' $\left.x, h^{\prime} y\right\rangle \in \operatorname{Memrel}(\gamma)$
unfolding $h _d e f$ using f factor_increasing ltD by (auto)
qed
with $\langle\beta \in c f(\gamma)\rangle\langle\operatorname{Ord}(\gamma)\rangle$
have $\operatorname{ordertype}(h " \beta, \operatorname{Memrel}(\gamma))=\beta$
using mono_map_ordertype_image $[o f ~ \beta]$ Ord_cf Ord_in_Ord by blast
also
note $\langle\beta \in c f(\gamma)\rangle$
finally
have $\operatorname{ordertype}(h " \beta, \operatorname{Memrel}(\gamma)) \in c f(\gamma)$ by simp
moreover from $\langle h \in \beta \rightarrow \gamma\rangle$
have $h^{"} \beta \subseteq \gamma$
using mono_map_is_fun Image_sub_codomain by blast

```
    ultimately
    have }\neg\operatorname{cofinal( }h"\beta,\gamma,\operatorname{Memrel}(\gamma)
    using ordertype_in_cf_imp_not_cofinal by simp
    then
    obtain }\alpha\_0\mathrm{ where }\alpha\_0\in\gamma\forallx\inh" \beta.\neg\langle\alpha_0, x\rangle\in\operatorname{Memrel}(\gamma)\wedge\alpha_0\not=
    unfolding cofinal_def by auto
    with <Ord(\gamma)\rangle\langleh" }\beta\subseteq\gamma
    have }\forallx\inh" " \beta. x\in\alpha_
        using well_ord_Memrel[of \gamma] well_ord_is_linear[of \gamma Memrel(\gamma)]
    unfolding linear_def by blast
    from {\alpha_0 0 f \gamma <j \in mono_map(_,_,\gamma,_)\rangle\langle\operatorname{Ord}(\gamma)\rangle
    have j}\mp@subsup{j}{}{`}\beta\in
    using mono_map_is_fun apply_in_codomain_Ord by force
    with {\alpha_0 < \gamma < < Ord (\gamma)>
    have }\alpha_0\cupj`\beta\in
        using Un_least_mem_iff Ord_in_Ord by auto
    with <cf_fun(f,\gamma)>
    obtain \vartheta where \vartheta\in\operatorname{domain}(f)\langle\alpha\_0\cup\mp@subsup{j}{}{`}\beta,f\mp@subsup{f}{}{`}\vartheta\rangle\in\operatorname{Memrel}(\gamma)\vee\alpha_0\cup\mp@subsup{j}{}{`}\beta
=f'\vartheta
    by (auto simp add:cofinal_fun_def) blast
    moreover from this and \langlef:\delta->\gamma\rangle
    have \vartheta}\in\delta\mathrm{ using domain_of_fun by auto
    moreover
    note <Ord (\gamma)\rangle
    moreover from this and \langlef:\delta->\gamma\rangle\langle\alpha_0\in \gamma\rangle
    have Ord(f`\vartheta)
    using apply_in_codomain_Ord Ord_in_Ord by blast
    moreover from calculation and }\langle\alpha\_0\in\gamma\rangle\mathrm{ and }\langle\operatorname{Ord}(\delta)\rangle\mathrm{ and }\langlej`\beta\in\gamma
    have }\operatorname{Ord}(\alpha\_0)\operatorname{Ord}(\mp@subsup{j}{}{`}\beta)\operatorname{Ord}(\vartheta
    using Ord_in_Ord by auto
    moreover from \\forallx\inh " }\beta.x\in\alpha_0\rangle\langleOrd(\alpha_0)\rangle\langleh:\beta->\gamma
    have }x\in\beta\Longrightarrow\mp@subsup{h}{}{`}x<\alpha_0 for 
    using fun_is_function[of h \beta \lambda_. \gamma]
        Image_subset_Ord_imp_lt domain_of_fun[of h \beta \lambda_.\gamma]
    by blast
moreover
have }x\in\beta\Longrightarrow\mp@subsup{h}{}{6}x<\mp@subsup{f}{}{6}\vartheta\mathrm{ for }
proof -
    fix }
    assume }x\in
    with \langle\forallx\inh " }\beta.x\in\alpha_0\rangle\langle\operatorname{Ord}(\alpha_0)\rangle\langleh:\beta->\gamma
    have }\mp@subsup{h}{}{\prime}x<\alpha_
        using fun_is_function[of h \beta \lambda__\gamma]
        Image_subset_Ord_imp_lt domain_of_fun[of h \beta \lambda_.\gamma]
        by blast
    also from }\langle\langle\alpha_0\cup_,f`\vartheta\rangle\in\operatorname{Memrel}(\gamma)\vee\alpha_0\cup_=f`\vartheta
        <Ord (f`\vartheta)><Ord (\alpha_0)>< Ord (j`}\beta)
    have }\alpha_0\leq\mp@subsup{f}{}{\prime}
        using Un_leD1[OF leI [OF ltI]] Un_leD1[OF le_eqI] by blast
```

```
        finally
        show h'x< f'v.
    qed
    ultimately
    have factor_body( }\beta,\lambdax\in\beta.\operatorname{factor ( }x\mathrm{ ), }\vartheta
        unfolding h_def factor_body_def using ltD
        by (auto dest:Un_memD2 Un_leD2[OF le_eqI])
    with <Ord(\vartheta)>
    have factor (\beta)\leq\vartheta
        using factor_unfold[of \beta] Least_le unfolding factor_rec_def by auto
    with <\vartheta\in\delta\rangle\langleOrd(\delta)\rangle
    have factor ( }\beta)\in
        using leI[of v] ltI[lof \vartheta] by (auto dest:ltD)
    then
    show ?case by (auto elim:mem_irrefl)
qed
moreover
have cofinal_fun(f O fun_factor, }\gamma,\operatorname{Memrel}(\gamma)
proof (intro cofinal funI)
    fix a
    assume }a\in
    with <cf_fun(j,\gamma)\rangle\langledomain(j) = cf(\gamma)\rangle
    obtain x where }x\incf(\gamma)a\in\mp@subsup{j}{}{`}x\veea=\mp@subsup{j}{}{\prime}
        by (auto simp add:cofinal_fun_def) blast
    with factor_not_delta
    have }x\in\operatorname{domain(f O fun_factor)
        using f_fun_factor_is_mono_map mono_map_is_fun domain_of_fun by
force
    moreover
    have }a\in(fO\mathrm{ fun_factor) ' }x\veea=(fO\mathrm{ fun_factor) ' }
    proof -
        from <x\incf(\gamma)> factor_not_delta
        have j' }x\leqf\mathrm{ ' factor( }x\mathrm{ )
            using mem_not_refl factor_body_factor factor_in__delta
            unfolding factor_body_def by auto
        with }\langlea\in\mp@subsup{j}{}{\prime}x\veea=\mp@subsup{j}{}{`}x
        have }a\inf`\mathrm{ 'factor (x) V a=f`factor(x)
            using ltD by blast
        with <x\incf(\gamma)\rangle
        show ?thesis using lam_funtype[of cf(\gamma) factor]
            unfolding fun_factor_def by auto
    qed
    moreover
    note \langlea \in\gamma\rangle
    moreover from calculation and }\langleOrd(\gamma)\rangle\mathrm{ and factor__not_delta
    have (f O fun_factor) ' }x\in
        using Limit_nonzero apply_in_codomain_Ord mono__map_is_fun[of f O
fun_factor]
        f_fun_factor_is_mono_map by blast
```

```
    ultimately
    show \existsx\in domain(f O fun_factor). }\langlea,(fO\mathrm{ fun_factor)' ' }
                            \vee a = (f O fun_factor) ' }
    by blast
qed
ultimately
show ?thesis
    using fun_factor__is_mono_map f_fun_factor_is_mono_map by blast
qed
```

As a final observation in this part, we note that if the original cofinal map was increasing, then the factor function is also cofinal.

```
lemma factor_is_cofinal:
    assumes
        \(\operatorname{Ord}(\delta) \operatorname{Ord}(\gamma)\)
        \(f: \delta \rightarrow_{<} \gamma\) fOg \(\operatorname{mono\_ map}(\alpha, r, \gamma, \operatorname{Memrel}(\gamma))\)
        cofinal_fun \((f O g, \gamma, \operatorname{Memrel}(\gamma)) g: \alpha \rightarrow \delta\)
    shows
        cf_fun \((g, \delta)\)
    unfolding \(c f\) _fun_def cofinal_fun_def
proof
    fix \(a\)
    assume \(a \in \delta\)
    with \(\left\langle f \in\right.\) mono_map \(\left.\left(\delta, \ldots, \gamma, \_\right)\right\rangle\)
    have \(f^{\prime} a \in \gamma\)
        using mono_map_is_fun by force
    with «cofinal_fun(f \(O g, \gamma, \ldots)\) 〉
    obtain \(y\) where \(y \in \alpha\left\langle f^{\prime} a,(f O g)^{\prime} y\right\rangle \in \operatorname{Memrel}(\gamma) \vee f^{‘} a=(f O g)^{\prime} y\)
        unfolding cofinal_fun_def using domain_of_fun[OF \(\langle g: \alpha \rightarrow \delta\rangle]\) by blast
    with \(\langle g: \alpha \rightarrow \delta\rangle\)
    have \(\left\langle f^{\prime} a, f^{\prime}\left(g g^{\prime} y\right)\right\rangle \in \operatorname{Memrel}(\gamma) \vee f^{\prime} a=f^{\prime}\left(g^{\prime} y\right) g^{\prime} y \in \delta\)
        using comp_fun_apply[of \(g \alpha \delta y f]\) by auto
    with \(\operatorname{assms}(1-3)\) and \(\langle a \in \delta\rangle\)
    have \(\langle a, g ‘ y\rangle \in \operatorname{Memrel}(\delta) \vee a=g^{\prime} y\)
        using Memrel_mono_map_reflects Memrel_mono_map_is_inj[of \(\delta f \gamma \gamma]\)
            inj_apply_equality \([o f f \delta \gamma]\) by blast
    with \(\langle y \in \alpha\rangle\)
    show \(\exists x \in \operatorname{domain}(g) .\left\langle a, g^{\prime} x\right\rangle \in \operatorname{Memrel}(\delta) \vee a=g^{\prime} x\)
        using domain_of_fun[OF \(\langle g: \alpha \rightarrow \delta\rangle]\) by blast
qed
```


3.3 Classical results on cofinalities

Now the rest of the results follow in a more algebraic way. The next proof one invokes a case analysis on whether the argument is zero, a successor ordinal or a limit one; the last case being the most relevant one and is immediate from the factorization lemma.
lemma $c f _l e _d o m a i n _c o f i n a l _f u n:$

```
    assumes
    Ord(\gamma) Ord(\delta) f:\delta -> \gamma cf_fun(f,\gamma)
    shows
    cf(\gamma)\leq\delta
    using assms
proof (cases rule:Ord_cases)
    case 0
    with <Ord (\delta)>
    show ?thesis using Ord_0_le by simp
next
    case (succ \gamma)
    with assms
    obtain }x\mathrm{ where }x\in\delta\mp@subsup{f}{}{\prime}x=\gamma\mathrm{ using cf_fun_succ' by blast
    then
    have }\delta\not=0\mathrm{ by blast
    let ?f}={\langle0,\mp@subsup{f}{}{\prime}x\rangle
    from <f`}x=\gamma
    have ?f: }1->\operatorname{succ}(\gamma
        using singleton_0 singleton_fun[of 0 \gamma] singleton_subsetI fun_weaken_type
by simp
    with \Ord (\gamma)\rangle <f`}x=\gamma
    have cf(succ}(\gamma))=1\mathrm{ using cf_succ by simp
    with {\delta\not=0\rangle succ
    show ?thesis using Ord_0_lt_iff succ_leI <Ord(\delta)\rangle by simp
next
    case (limit)
    with assms
    obtain g where g:cf(\gamma) }\mp@subsup{->}{<}{}
        using cofinal_fun_factorization by blast
    with assms
    show ?thesis using mono_map_imp_le by simp
qed
lemma cf_ordertype_cofinal:
    assumes
        Limit(\gamma) A\subseteq\gamma cofinal(A,\gamma,Memrel(\gamma))
    shows
        cf(\gamma) =cf(ordertype (A,Memrel (\gamma)))
proof (intro le_anti_sym)
```

We show the result by proving the two inequalities.

```
from 〈Limit \((\gamma)\rangle\)
have \(\operatorname{Ord}(\gamma)\)
    using Limit_is_Ord by simp
with \(\langle A \subseteq \gamma\rangle\)
have well_ord \((A, \operatorname{Memrel}(\gamma))\)
    using well_ord_Memrel well_ord_subset by blast
then
    obtain \(f \alpha\) where \(f:\langle\alpha, \operatorname{Memrel}(\alpha)\rangle \cong\langle A, \operatorname{Memrel}(\gamma)\rangle \operatorname{Ord}(\alpha) \alpha=\operatorname{order}\) -
```

```
type(A,Memrel(\gamma))
    using ordertype_ord_iso Ord_ordertype ord_iso_sym by blast
    moreover from this
    have f:\alpha->A
    using ord_iso_is_mono_map mono_map_is_fun[of f__ Memrel(\alpha)] by blast
    moreover from this
    have function(f)
    using fun_is_function by simp
    moreover from <f:{\alpha,Memrel (\alpha)\rangle\cong\langleA,Memrel (\gamma)\rangle\rangle
    have range(f)=A
    using ord_iso_is_bij bij_is_surj surj_range by blast
moreover note <cofinal( }A,\gamma,_)
ultimately
have cf_fun(f,\gamma)
    using cofinal_range_iff_cofinal_fun by blast
moreover from < Ord ( \alpha)\rangle
obtain h where h:cf(\alpha) -><< \alpha cf_fun(h,\alpha)
    using cofinal_mono_map_cf by blast
moreover from < Ord ( }\gamma)\mathrm{ \
have trans(Memrel(}\gamma)
    using trans_Memrel by simp
moreover
note <A\subseteq\gamma>
ultimately
have cofinal_fun(f O h,\gamma,Memrel(\gamma))
    using cofinal_compord_iso_is_mono_map[OF <f:\\alpha,_\rangle\cong\langleA,_\rangle\rangle] mono_map_is_fun
        mono_map_mono by blast
moreover from <f:\alpha->A\rangle\langleA\subseteq\gamma\rangle\langleh\inmono_map(cf(\alpha),_,\alpha,_)\rangle
have fO h:cf(\alpha)->\gamma
    using Pi_mono[of A \gamma] comp_fun mono_map_is_fun by blast
moreover
note <Ord (\gamma)\rangle\langleOrd (\alpha)\rangle\langle\alpha = ordertype (A,Memrel (\gamma))\rangle
ultimately
show cf(\gamma) \leqcf(ordertype (A,Memrel ( }\gamma))
    using cf_le_domain_cofinal_fun[of ___fO h]
    by (auto simp add:cf_fun_def)
```

That finishes the first inequality. Now we go the other side.

```
from \(\left\langle f:\langle\alpha, \ldots\rangle \cong\left\langle A, \_\right\rangle\langle A \subseteq \gamma\rangle\right.\)
```

have $f: \alpha \rightarrow<\gamma$
using mono_map_mono[OF ord_iso_is_mono_map] by simp
then
have $f: \alpha \rightarrow \gamma$
using mono_map_is_fun by simp
with 〈cffun $(f, \gamma)\rangle\langle\operatorname{Limit}(\gamma)\rangle\langle\operatorname{Ord}(\alpha)\rangle$
obtain g where $g: c f(\gamma) \rightarrow<\alpha$
$f O g: c f(\gamma) \rightarrow<\gamma$
cofinal_fun $(f O g, \gamma, \operatorname{Memrel}(\gamma))$
using cofinal_fun_factorization by blast

```
    moreover from this
    have g:cf(\gamma)->\alpha
    using mono_map_is_fun by simp
    moreover
    note <Ord (\alpha)`
    moreover from calculation and \langlef :\alpha -> < \gamma\rangle\langleOrd (\gamma)\rangle
    have cf_fun(g,\alpha)
    using factor_is_cofinal by blast
    moreover
    note <\alpha = ordertype(A,Memrel(\gamma))>
    ultimately
    show cf(ordertype (A,Memrel}(\gamma)))\leqcf(\gamma
    using cf_le_domain_cofinal_fun[OF __Ord_cf mono__map_is_fun] by simp
qed
lemma cf_idemp:
    assumes Limit(\gamma)
    shows cf(\gamma) = cf(cf(\gamma))
proof -
    from assms
    obtain A where }A\subseteq\gamma\operatorname{cofinal}(A,\gamma,Memrel (\gamma)) cf(\gamma) = ordertype (A,Memrel ( \gamma)
    using Limit_is_Ord cf_is_ordertype by blast
    with assms
    have cf(\gamma) =cf(ordertype(A,Memrel(\gamma))) using cf_ordertype_cofinal by simp
    also
    have ... = cf(cf(\gamma))
    using <cf(\gamma) = ordertype(A,Memrel (\gamma))> by simp
    finally
    show }cf(\gamma)=cf(cf(\gamma))
qed
lemma cf_le_cardinal:
    assumes Limit(\gamma)
    shows }cf(\gamma)\leq|\gamma
proof -
    from assms
    have 〈Ord(\gamma)\rangle using Limit_is_Ord by simp
    then
    obtain f}\mathrm{ where }f\in\operatorname{surj}(|\gamma|,\gamma
    using Ord_cardinal_eqpoll unfolding eqpoll_def bij_def by blast
    with <Ord (\gamma)\rangle
    show ?thesis
    using Card_is_Ord[OF Card_cardinal] surj_is_cofinal
        cf_le_domain_cofinal_fun[of \gamma] surj_is_fun by blast
qed
lemma regular_is_Card:
    notes le_imp_subset [dest]
    assumes Limit(\gamma) \gamma =cf(\gamma)
```

```
    shows Card(\gamma)
proof -
    from assms
    have }|\gamma|\subseteq
        using Limit_is_Ord Ord_cardinal_le by blast
    also from \langle\gamma=cf(\gamma)\rangle
    have }\gamma\subseteqcf(\gamma)\mathrm{ by simp
    finally
    have |\gamma|\subseteqcf(\gamma).
    with assms
    show ?thesis unfolding Card_def using cf_le_cardinal by force
qed
lemma Limit_cf: assumes Limit(\kappa) shows Limit(cf(\kappa))
    using Ord_cf[of \kappa, THEN Ord_cases]
        - cf(\kappa) being 0 or successor leads to contradiction
proof (cases)
    case 1
    with <Limit(\kappa)>
    show ?thesis using cf_zero_iff Limit_is_Ord by simp
next
    case (2 \alpha)
    moreover
    note <Limit(\kappa)>
    moreover from calculation
    have cf(\kappa)=1
        using cf_idemp cf_succ by fastforce
    ultimately
    show ?thesis
    using succ_LimitE cf_eq_one_iff Limit_is_Ord
    by auto
qed
lemma InfCard_cf: Limit(\kappa) \Longrightarrow InfCard(cf(\kappa))
    using regular_is_Card cf_idemp Limit_cf nat_le_Limit Limit_cf
    unfolding InfCard_def by simp
lemma cf_le_cf_fun:
    notes [dest] = Limit_is_Ord
    assumes cf(\kappa)\leq\nu\operatorname{Limit}(\kappa)
    shows }\existsf.f:\nu->\kappa\wedgecf_fun(f,\kappa
proof -
    note assms
    moreover from this
    obtain }h\mathrm{ where h_cofinal_mono:cf_fun( }h,\kappa
        h:cf(\kappa)}-><
        h:cf(\kappa)}->
        using cofinal_mono_map_cf mono_map_is_fun by force
    moreover from calculation
```

obtain g where $g \in \operatorname{inj}(c f(\kappa), \nu)$
using le＿imp＿lepoll by blast
from this and calculation（2，3，5）
obtain f where $f \in \operatorname{surj}(\nu, c f(\kappa)) f: \nu \rightarrow c f(\kappa)$
using inj＿imp＿surj［OF＿Limit＿has＿O［THEN ltD］］ surj＿is＿fun Limit＿cf by blast
moreover from this
have $c f$ fun $(f, c f(\kappa))$
using surj＿is＿cofinal by simp
moreover
note h＿cofinal＿mono 〈Limit (κ) 〉
moreover from calculation
have $c f$ fun（ $h O f, \kappa$ ）
using cf＿fun＿comp by blast
moreover from calculation
have $h O f \in \nu->\kappa$
using comp＿fun by simp
ultimately
show ？thesis by blast
qed
lemma Limit＿cofinal＿fun＿lt：
notes $[$ dest $]=$ Limit＿is＿Ord
assumes $\operatorname{Limit}(\kappa) f: \nu \rightarrow \kappa c f-f u n(f, \kappa) n \in \kappa$
shows $\exists \alpha \in \nu . n<f^{\iota} \alpha$
proof
from 〈Limit $(\kappa)\rangle\langle n \in \kappa\rangle$
have $\operatorname{succ}(n) \in \kappa$
using Limit＿has＿succ $\left[O F ~ _l t I, T H E N ~ l t D\right]$ by auto
moreover
note $\langle f: \nu \rightarrow$＿$\rangle$
moreover from this
have $\operatorname{domain}(f)=\nu$
using domain＿of＿fun by simp
moreover
note $\langle c f$ fun $(f, \kappa)\rangle$
ultimately
obtain α where $\alpha \in \nu \operatorname{succ}(n) \in f^{\prime} \alpha \vee \operatorname{succ}(n)=f^{\prime} \alpha$
using cf＿funD［THEN cofinal＿funD］by blast
moreover from this
consider（1） $\operatorname{succ}(n) \in f^{\prime} \alpha \mid$（2） $\operatorname{succ}(n)=f^{\prime} \alpha$
by blast
then
have $n<f^{\prime} \alpha$
proof（cases）
case 1
moreover
have $n \in \operatorname{succ}(n)$ by simp
moreover

```
    note <Limit(\kappa)\rangle\langlef:\nu -> _><\alpha \in \nu>
    moreover from this
    have }\operatorname{Ord}(f'\alpha
    using apply_type[off \nu \_. к,THEN [2] Ord_in_Ord]
    by blast
    ultimately
    show ?thesis
        using Ord_trans[of n \operatorname{succ}(n)f`\alpha] ltI by blast
    next
    case 2
    have n\inf' }\alpha\mathrm{ by (simp add:Q[symmetric])
    with <Limit (\kappa)\rangle\langlef:\nu -> _>\langle\alpha\in \nu>
    show ?thesis
        using ltI
            apply_type[of f \nu \lambda_. к,THEN [2] Ord_in_Ord]
        by blast
    qed
    ultimately
    show ?thesis by blast
qed
context
    includes Ord_dests Aleph_dests Aleph_intros Aleph_mem_dests mono_map_rules
begin
```

We end this section by calculating the cofinality of Alephs，for the zero and limit case．The successor case depends on $A C$ ．

```
lemma \(c f \_n a t: c f(\omega)=\omega\)
    using Limit_nat[THEN InfCard_cf] cf_le_cardinal[of \(\omega]\)
        Card_nat[THEN Card_cardinal_eq] le_anti_sym
    unfolding InfCard_def by auto
lemma \(c f\) _Aleph_zero: \(c f\left(\boldsymbol{\aleph}_{0}\right)=\boldsymbol{\aleph}_{0}\)
    using \(c f \_\)nat unfolding Aleph_def by simp
lemma cf_Aleph_Limit:
    assumes Limit ( \(\gamma\) )
    shows \(c f\left(\boldsymbol{\aleph}_{\gamma}\right)=c f(\gamma)\)
proof -
    note 〈Limit \((\gamma)\) 〉
    moreover from this
    have \(\left(\lambda x \in \gamma . \boldsymbol{\aleph}_{x}\right): \gamma \rightarrow \boldsymbol{\aleph}_{\gamma}\) (is ?f \(\left.: \_\rightarrow \_\right)\)
        using lam_funtype[of_Aleph] fun_weaken_type[of _ _ _ \(\boldsymbol{N}_{\gamma}\) ] by blast
    moreover from 〈Limit \((\gamma)\) 〉
    have \(x \in y \Longrightarrow \boldsymbol{\aleph}_{x} \in \boldsymbol{\aleph}_{y}\) if \(x \in \gamma y \in \gamma\) for \(x y\)
    using that Ord_in_Ord[of \(\gamma]\) Ord_trans[of _ _ \(\gamma\) ] by blast
    ultimately
    have ?f \(\in\) mono_map \(\left(\gamma, \operatorname{Memrel}(\gamma), \boldsymbol{\aleph}_{\gamma}, \operatorname{Memrel}\left(\boldsymbol{\aleph}_{\gamma}\right)\right)\)
        by auto
```

```
with <Limit(\gamma)\
have ?f }\in\langle\gamma,\operatorname{Memrel}(\gamma)\rangle\cong\langle?f"\gamma,\operatorname{Memrel}(\mp@subsup{\boldsymbol{\aleph}}{\gamma}{})
    using mono_map_imp_ord_iso_Memrel[of \gamma}\mp@subsup{\boldsymbol{N}}{\gamma}{}?f
        Card_Aleph
    by blast
then
have converse(?f) \in\langle?f"
    using ord_iso_sym by simp
with \Limit(\gamma)\
have ordertype(?f" }\gamma,\operatorname{Memrel}(\mp@subsup{\boldsymbol{\aleph}}{\gamma}{}))=
    using ordertype_eq[OF _ well_ord_Memrel]
    ordertype_Memrel by auto
moreover from <Limit(\gamma)>
have cofinal(?f"}\gamma,\mp@subsup{\boldsymbol{\aleph}}{\gamma}{},\operatorname{Memrel}(\mp@subsup{\boldsymbol{\aleph}}{\gamma}{})
    unfolding cofinal_def
proof (standard, intro ballI)
    fix a
    assume a\in\mp@subsup{\boldsymbol{N}}{\gamma}{}\mp@subsup{\mathbf{\aleph}}{\gamma}{}=(\bigcup\i<\gamma.\boldsymbol{\aleph}
    moreover from this
    obtain i where i<\gamma a\in\mp@subsup{\mathfrak{N}}{i}{}
        by auto
    moreover from this and \Limit(\gamma)>
    have Ord(i) using ltD Ord_in_Ord by blast
    moreover from <Limit(\gamma)\rangle and calculation
    have succ(i)\in\gamma using ltD by auto
    moreover from this and \Ord(i)`
    have \mp@subsup{\boldsymbol{N}}{i}{}<\mp@subsup{\boldsymbol{N}}{\mathrm{ succ( (i)}}{}
        by (auto)
    ultimately
    have }\langlea,\mp@subsup{\mathbf{N}}{i}{}\rangle\in\operatorname{Memrel}(\mp@subsup{\boldsymbol{N}}{\gamma}{}
        using ltD by (auto dest:Aleph_increasing)
    moreover from <i<\gamma\rangle
    have }\mp@subsup{\boldsymbol{\aleph}}{i}{}\in\mathrm{ ?f" }
        using ltD apply_in_image[OF \?f :_ }->\mathrm{ _`] by auto
    ultimately
    show \existsx\in?f " }\gamma.\langlea,x\rangle\in\operatorname{Memrel}(\mp@subsup{\boldsymbol{\aleph}}{\gamma}{})\veea=x\mathrm{ by blast
qed
moreover
note 〈?f: \gamma }->\mp@subsup{\boldsymbol{\aleph}}{\gamma}{}\rangle\langle\operatorname{Limit}(\gamma)
ultimately
show cf(\mp@subsup{\boldsymbol{\aleph}}{\gamma}{})=cf(\gamma)
    using cf_ordertype_cofinal[OF Limit_Aleph Image_sub_codomain, of \gamma ?f }
\gamma ]
    Limit_is_Ord by simp
qed
end - includes
end
```


4 Cardinal Arithmetic under Choice

theory Cardinal_Library
imports ZF_Library ZF.Cardinal_AC

begin
This theory includes results on cardinalities that depend on $A C$

4.1 Results on cardinal exponentiation

Non trivial instances of cardinal exponentiation require that the relevant function spaces are well-ordered, hence this implies a strong use of choice.

```
lemma cexp_eqpoll_cong:
    assumes
        \(A \approx A^{\prime} B \approx B^{\prime}\)
    shows
        \(A^{\uparrow B}=A^{\uparrow B^{\prime}}\)
    unfolding cexp_def using cardinal_eqpoll_iff
        function_space_eqpoll_cong assms
    by \(\operatorname{simp}\)
lemma cexp_cexp_cmult: \(\left(\kappa^{\uparrow \nu 1}\right)^{\uparrow \nu 2}=\kappa^{\uparrow \nu 2 \otimes \nu 1}\)
proof -
    have \(\left(\kappa^{\uparrow \nu 1}\right)^{\uparrow \nu 2}=(\nu 1 \rightarrow \kappa)^{\uparrow \nu 2}\)
        using cardinal_eqpoll
        by (intro cexp_eqpoll_cong) (simp_all add:cexp_def)
    also
    have \(\ldots=\kappa^{\uparrow \nu 2 \times \nu 1}\)
        unfolding cexp_def using curry_eqpoll cardinal_cong by blast
    also
    have \(\ldots=\kappa^{\uparrow \nu 2 \otimes \nu 1}\)
        using cardinal_eqpoll[THEN eqpoll_sym]
        unfolding cmult_def by (intro cexp_eqpoll_cong) (simp)
    finally
    show ?thesis .
qed
lemma cardinal_Pow: \(|\operatorname{Pow}(X)|=2^{\uparrow X}\) — Perhaps it's better with \(|\mathrm{X}|\)
    using cardinal_eqpoll_iff[THEN iffD2, OF Pow_eqpoll_function_space]
    unfolding cexp_def by simp
lemma cantor_cexp:
    assumes \(\operatorname{Card}(\nu)\)
    shows \(\nu<2^{\uparrow \nu}\)
    using assms Card_is_Ord Card_cexp
proof (intro not_le_iff_lt[THEN iffD1] notI)
```

```
assume \(2^{\uparrow \nu} \leq \nu\)
then
have \(|\operatorname{Pow}(\nu)| \leq \nu\)
    using cardinal_Pow by simp
with assms
have \(\operatorname{Pow}(\nu) \lesssim \nu\)
    using cardinal_eqpoll_iff Card_le_imp_lepoll Card_cardinal_eq
    by auto
then
obtain \(g\) where \(g \in \operatorname{inj}(\operatorname{Pow}(\nu), \nu)\)
    by blast
then
show False
    using cantor_inj by simp
qed \(\operatorname{simp}\)
lemma cexp_left_mono:
    assumes \(\kappa 1 \leq \kappa 2\)
    shows \(\kappa 1^{\uparrow \nu} \leq \kappa 2^{\uparrow \nu}\)
proof -
    from assms
    have \(\kappa 1 \subseteq \kappa 2\)
        using le_subset_iff by simp
    then
    have \(\nu \rightarrow \kappa 1 \subseteq \nu \rightarrow \kappa 2\)
        using Pi_weaken_type by auto
    then
    show ?thesis unfolding cexp_def
    using lepoll_imp_cardinal_le subset_imp_lepoll by simp
qed
lemma cantor_cexp':
    assumes \(2 \leq \kappa \operatorname{Card}(\nu)\)
    shows \(\nu<\kappa^{\uparrow \nu}\)
    using cexp_left_mono assms cantor_cexp lt_trans2 by blast
lemma InfCard_cexp:
    assumes \(2 \leq \kappa \operatorname{InfCard}(\nu)\)
    shows \(\operatorname{InfCard}\left(\kappa^{\uparrow \nu}\right)\)
    using assms cantor_cexp \({ }^{\prime}[\) THEN leI \(]\) le_trans Card_cexp
    unfolding InfCard_def by auto
lemmas InfCard_cexp \({ }^{\prime}=\) InfCard_cexp[OF nats_le_InfCard, simplified \(]\)
    \(-\llbracket \operatorname{InfCard}(\kappa) ; \operatorname{InfCard}(\nu) \rrbracket \Longrightarrow \operatorname{InfCard}\left(\kappa^{\uparrow \nu}\right)\)
```


4.2 Miscellaneous

lemma cardinal_RepFun_le: $|\{f(a) . a \in A\}| \leq|A|$

```
proof -
    have ( }\lambdax\inA.f(x))\in\operatorname{surj}(A,{f(a).a\inA}
        unfolding surj_def using lam_funtype by auto
    then
    show ?thesis
        using surj_implies_cardinal_le by blast
qed
lemma subset_imp_le_cardinal: }A\subseteqB\Longrightarrow|A|\leq|B
    using subset_imp_lepoll[THEN lepoll_imp_cardinal_le].
lemma lt_cardinal_imp__not_subset: }|A|<|B|\Longrightarrow\negB\subseteq
    using subset_imp_le_cardinal le_imp_not_lt by blast
lemma cardinal_lt_csucc_iff: Card}(K)\Longrightarrow|\mp@subsup{K}{}{\prime}|<\mp@subsup{K}{}{+}\longleftrightarrow|\mp@subsup{K}{}{\prime}|\leq
    by (simp add: Card_lt_csucc_iff)
lemma cardinal_UN_le_nat:
    (\bigwedgei. i\in\omega\Longrightarrow \LongrightarrowX(i)| \leq\omega)\Longrightarrow|\i\in\omega. X(i)| \leq\omega
    by (simp add: cardinal_UN_le InfCard_nat)
lemma lepoll_imp_cardinal_UN_le
    notes [dest] = InfCard_is_Card Card_is_Ord
    assumes InfCard(K)J\lesssimK \i. i\inJ\Longrightarrow \LongrightarrowX(i)|\leqK
    shows |\bigcupi\inJ. X(i)|\leqK
proof -
    from <J \lesssimK>
    obtain f}\mathrm{ where f}\in\operatorname{inj}(J,K) by blas
    define Y where Y(k)\equiv if k\inrange(f) then X(converse(f)`}k)\mathrm{ else 0 for k
    have}i\inJ\Longrightarrow\mp@subsup{f}{}{`}i\inK for i
    using inj_is_fun[OF<f}\in\operatorname{inj}(J,K)\rangle] by aut
    have (\bigcupi\inJ. X(i))\subseteq(\bigcupi\inK.Y(i))
    proof (standard, elim UN_E)
        fix }x
        assume i\inJ x\inX(i)
        with }\langlef\in\operatorname{inj}(J,K)\rangle\langlei\inJ\Longrightarrow\mp@subsup{f}{}{`}i\inK
        have }x\inY(\mp@subsup{f}{}{\prime}i)\mp@subsup{f}{}{\prime}i\in
            unfolding Y_def
            using inj_is_fun[OF<f \ininj(J,K)>]
                right_inverse apply_rangeI by auto
    then
    show }x\in(\bigcupi\inK.Y(i)) by aut
    qed
    then
    have |\bigcupi\inJ. X(i)|\leq|\i\inK.Y(i)|
    unfolding Y_def using subset_imp_le_cardinal by simp
    with assms <\i. i\inJ\Longrightarrow "
    show |\bigcupi\inJ. X(i)| \leqK
        using inj_converse_fun[OF< }\\in\operatorname{inj}(J,K)\rangle]\mathrm{ unfolding Y_def
```

```
    by (rule_tac le_trans[OF _ cardinal_UN_le]) (auto intro:Ord_0_le)+
qed
- For backwards compatibility
lemmas leqpoll_imp_cardinal_UN_le = lepoll_imp_cardinal_UN_le
lemma cardinal_lt_csucc_iff':
    includes Ord_dests
    assumes Card(\kappa)
    shows }\kappa<|X|\longleftrightarrow\mp@subsup{\kappa}{}{+}\leq|X
    using assms cardinal_lt_csucc_iff[of \kappa X] Card_csucc[of \kappa]
        not_le_iff_lt[of }\mp@subsup{\kappa}{}{+}|X|] not_le_iff_lt[of |X| \kappa
    by blast
lemma lepoll_imp_subset_bij: X\lesssimY\longleftrightarrow(\existsZ.Z\subseteqY\wedgeZ\approxX)
proof
    assume }X\lesssim
    then
    obtain j where j i inj(X,Y)
        by blast
    then
    have range (j)\subseteqYj\inbij(X,range(j))
        using inj_bij_range inj_is_fun range_fun_subset_codomain
        by blast+
    then
    show }\existsZ.Z\subseteqY\wedgeZ\approx
        using eqpoll_sym unfolding eqpoll_def
        by force
next
    assume }\existsZ.Z\subseteqY\wedgeZ\approx
    then
    obtain Zf}\mathrm{ where }f\in\operatorname{bij}(Z,X)Z\subseteq
        unfolding eqpoll_def by force
    then
    have converse (f) \ininj(X,Y)
        using bij_is_inj inj_weaken_type bij_converse_bij by blast
    then
    show }X\lesssimY\mathrm{ by blast
qed
```

The following result proves to be very useful when combining cardinal and (\approx) in a calculation.
lemma cardinal_Card_eqpoll_iff: $\operatorname{Card}(\kappa) \Longrightarrow|X|=\kappa \longleftrightarrow X \approx \kappa$ using Card_cardinal_eq[of κ] cardinal_eqpoll_iff $[o f ~ X ~ \kappa]$ by auto - Compare le_Card_iff
lemma lepoll_imp_lepoll_cardinal: assumes $X \lesssim Y$ shows $X \lesssim|Y|$ using assms cardinal_Card_eqpoll_iff $[o f|Y| Y]$
lepoll_eq_trans[of _ _ |Y|] by simp

```
lemma lepoll_Un:
    assumes InfCard( }\kappa)A\lesssim\kappaB\lesssim
    shows }A\cupB\lesssim
proof -
    have }A\cupB\lesssim\operatorname{sum}(A,B
        using Un_lepoll_sum .
    moreover
    note assms
    moreover from this
    have }|\operatorname{sum}(A,B)|\leq\kappa\oplus
        using sum_lepoll_mono[of A \kappa B к] lepoll_imp_cardinal_le
        unfolding cadd__def by auto
    ultimately
    show ?thesis
        using InfCard_ccdouble_eq Card_cardinal_eq
            InfCard_is_Card Card_le_imp_lepoll[of sum(A,B)\kappa]
            lepoll_trans[of }A\cupB
        by auto
qed
lemma cardinal_Un_le:
    assumes InfCard( }\kappa)|A|\leq\kappa|B|\leq
    shows }|A\cupB|\leq
    using assms lepoll_Un le_Card_iff InfCard_is_Card by auto
This is the unconditional version under choice of Cardinal.Finite_cardinal_iff.
lemma Finite_cardinal_iff': Finite(|i|) \longleftrightarrow Finite(i)
    using cardinal_eqpoll_iff eqpoll_imp_Finite_iff by fastforce
lemma cardinal_subset_of_Card:
    assumes Card(\gamma) a\subseteq\gamma
    shows }|a|<\gamma\vee|a|=
proof -
    from assms
    have |a|< |\gamma| \vee |a|=| ||
    using subset_imp_le_cardinal le_iff by simp
    with assms
    show ?thesis
        using Card_cardinal_eq by simp
qed
lemma cardinal cases:
    includes Ord_dests
    shows }\operatorname{Card}(\gamma)\Longrightarrow|X|<\gamma\longleftrightarrow\neg|X|\geq
    using not_le_iff_lt
    by auto
```


4.3 Countable and uncountable sets

```
lemma countable_iff_cardinal_le_nat: countable \((X) \longleftrightarrow|X| \leq \omega\)
    using le_Card_iff \([o f \omega X]\) Card_nat
    unfolding countable_def by simp
lemma lepoll_countable: \(X \lesssim Y \Longrightarrow\) countable \((Y) \Longrightarrow \operatorname{countable}(X)\)
    using lepoll_trans \([\) of \(X Y\) by blast
- Next lemma can be proved without using AC
lemma surj_countable: countable \((X) \Longrightarrow f \in \operatorname{surj}(X, Y) \Longrightarrow \operatorname{countable}(Y)\)
    using surj_implies_cardinal_le[of f X Y, THEN le_trans]
    countable_iff_cardinal_le_nat by simp
lemma Finite_imp_countable: Finite \((X) \Longrightarrow\) countable \((X)\)
    unfolding Finite_def
    by (auto intro:InfCard_nat nats_le_InfCard \([o f\) _ \(\omega\),
        THEN le_imp_lepoll] dest!:eq_lepoll_trans[of X_ \(\omega])\)
lemma countable_imp_countable_UN:
    assumes countable \((J) \bigwedge i . i \in J \Longrightarrow\) countable \((X(i))\)
    shows countable \((\bigcup i \in J . X(i))\)
    using assms lepoll_imp_cardinal_UN_le[of \(\omega\) J X] InfCard_nat
    countable_iff_cardinal_le_nat
    by auto
lemma countable_union_countable:
    assumes \(\bigwedge x . x \in C \Longrightarrow \operatorname{countable}(x)\) countable \((C)\)
    shows countable \((\bigcup C)\)
    using assms countable_imp_countable_UN[of \(C \lambda x . x]\) by simp
abbreviation
    uncountable :: \(i \Rightarrow 0\) where
    uncountable \((X) \equiv \neg \operatorname{countable}(X)\)
lemma uncountable_iff_nat_lt_cardinal:
    uncountable \((X) \longleftrightarrow \omega<|X|\)
    using countable_iff_cardinal_le_nat not_le_iff_lt by simp
lemma uncountable_not_empty: uncountable \((X) \Longrightarrow X \neq 0\)
    using empty_lepollI by auto
lemma uncountable_imp_Infinite: uncountable \((X) \Longrightarrow\) Infinite \((X)\)
    using uncountable_iff_nat_lt_cardinal[of X] lepoll_nat_imp_Infinite[of X]
        cardinal_le_imp_lepoll[of \(\omega\) X] leI
    by \(\operatorname{simp}\)
lemma uncountable_not_subset_countable:
    assumes countable \((X)\) uncountable \((Y)\)
    shows \(\neg(Y \subseteq X)\)
```

using assms lepoll_trans subset_imp_lepoll $[$ of Y X]
by blast

4.4 Results on Alephs

lemma nat_lt_Aleph1: $\omega<\boldsymbol{N}_{1}$ by (simp add: Aleph_def lt_csucc)
lemma zero_lt_Aleph1: $0<\boldsymbol{\aleph}_{1}$ by (rule lt_trans[of_ ω], auto simp add: ltI nat_lt_Aleph1)
lemma le_aleph1_nat: $\operatorname{Card}(k) \Longrightarrow k<\boldsymbol{\aleph}_{1} \Longrightarrow k \leq \omega$ by (simp add: Aleph_def Card_lt_csucc_iff Card_nat)
lemma Aleph_succ: $\boldsymbol{\aleph}_{\operatorname{succ}(\alpha)}=\boldsymbol{\aleph}_{\alpha}{ }^{+}$
unfolding Aleph_def by simp
lemma lesspoll_aleph_plus_one:
assumes $\operatorname{Ord}(\alpha)$
shows $d \prec \boldsymbol{N}_{\operatorname{succ}(\alpha)} \longleftrightarrow d \lesssim \boldsymbol{\aleph}_{\alpha}$
using assms lesspoll_csucc Aleph_succ Card_is_Ord by simp
lemma cardinal_Aleph $[\operatorname{simp}]: \operatorname{Ord}(\alpha) \Longrightarrow\left|\boldsymbol{\aleph}_{\alpha}\right|=\boldsymbol{\aleph}_{\alpha}$
using Card_cardinal_eq by simp

- Could be proved without using AC
lemma Aleph_lesspoll_increasing:
includes Aleph_intros
shows $a<b \Longrightarrow \boldsymbol{\aleph}_{a} \prec \boldsymbol{\aleph}_{b}$
using cardinal_lt_iff_lesspoll $\left[o f \boldsymbol{\aleph}_{a} \boldsymbol{\aleph}_{b}\right]$ Card_cardinal_eq[of $\left.\boldsymbol{\aleph}_{b}\right]$ lt_Ord lt_Ord2 Card_Aleph[THEN Card_is_Ord] by auto
lemma uncountable_iff_subset_eqpoll_Aleph1:
includes Ord_dests
notes Aleph_zero_eq_nat[simp] Card_nat[simp] Aleph_succ[simp]
shows uncountable $(X) \longleftrightarrow\left(\exists S . S \subseteq X \wedge S \approx \aleph_{1}\right)$
proof
assume uncountable (X)
then
have $\boldsymbol{\aleph}_{1} \lesssim X$
using uncountable_iff_nat_lt_cardinal cardinal_lt_csucc_iff' cardinal_le_imp_lepoll by force
then
obtain S where $S \subseteq X S \approx \boldsymbol{\aleph}_{1}$ using lepoll_imp_subset_bij by auto
then
show $\exists S . S \subseteq X \wedge S \approx \aleph_{1}$
using cardinal_cong Card_csucc[of ω] Card_cardinal_eq by auto next

```
    assume \(\exists S . S \subseteq X \wedge S \approx \aleph_{1}\)
    then
    have \(\boldsymbol{\aleph}_{1} \lesssim X\)
    using subset_imp_lepoll[THEN [2] eq_lepoll_trans, of \(\mathbf{\aleph}_{1} \_X\),
        OF eqpoll_sym] by auto
    then
    show uncountable \((X)\)
    using Aleph_lesspoll_increasing[of 0 1, THEN [2] lesspoll_trans1,
        of \(\boldsymbol{\aleph}_{1}\) ] lepoll_trans \(\left[\right.\) of \(\left.\boldsymbol{\aleph}_{1} X \omega\right]\)
    by auto
qed
lemma \(l t \_A l e p h \_i m p \_c a r d i n a l \_U N \_l e \_n a t: f u n c t i o n ~(G) \Longrightarrow \operatorname{domain}(G) \lesssim \omega\)
\(\Longrightarrow\)
    \(\forall n \in \operatorname{domain}(G) .\left|G^{`} n\right|<\boldsymbol{\aleph}_{1} \Longrightarrow\left|\bigcup n \in \operatorname{domain}(G) . G^{`} n\right| \leq \omega\)
proof -
    assume function \((G)\)
    let ? \(N=\operatorname{domain}(G)\) and ? \(R=\bigcup n \in \operatorname{domain}(G) . G^{\prime} n\)
    assume ? \(N \lesssim \omega\)
    assume Eq1: \(\forall n \in ? N .\left|G^{\prime} n\right|<\boldsymbol{\aleph}_{1}\)
    \{
    fix \(n\)
    assume \(n \in ? N\)
    with Eq1 have \(\left|G^{‘} n\right| \leq \omega\)
        using le_aleph1_nat by simp
    \}
    then
    have \(n \in ? N \Longrightarrow\left|G^{‘} n\right| \leq \omega\) for \(n\).
    with 〈? \(N \lesssim \omega\) 〉
    show ?thesis
    using InfCard_nat lepoll_imp_cardinal_UN_le by simp
qed
lemma Aleph1_eq_cardinal_vimage: \(f: \boldsymbol{\aleph}_{1} \rightarrow \omega \Longrightarrow \exists n \in \omega\). \(\left.\mid f-" ‘ n\right\} \mid=\boldsymbol{\aleph}_{1}\)
proof -
    assume \(f: \boldsymbol{\aleph}_{1} \rightarrow \omega\)
    then
    have \(\operatorname{function}(f) \operatorname{domain}(f)=\mathbf{\aleph}_{1} \operatorname{range}(f) \subseteq \omega\)
    by (simp_all add: domain_of_fun fun_is_function range_fun_subset_codomain)
    let ? \(G=\lambda n \in \operatorname{range}(f)\). \(f\)-" \(\{n\}\)
    from \(\left\langle f: \boldsymbol{\aleph}_{1} \rightarrow \omega\right\rangle\)
    have \(\operatorname{range}(f) \subseteq \omega\) by (simp add: range_fun_subset_codomain)
    then
    have \(\operatorname{domain}(? G) \lesssim \omega\)
    using subset_imp_lepoll by simp
    have function(?G) by (simp add:function_lam)
    from \(\left\langle f: \aleph_{1} \rightarrow \omega\right\rangle\)
    have \(n \in \omega \Longrightarrow f_{-} "\{n\} \subseteq \boldsymbol{\aleph}_{1}\) for \(n\)
    using Pi_vimage_subset by simp
```

```
with \(\langle\operatorname{range}(f) \subseteq \omega\rangle\)
have \(\boldsymbol{\aleph}_{1}=\left(\bigcup n \in \operatorname{range}(f) . f_{-}\right.\)" \(\left.\{n\}\right)\)
proof (intro equalityI, intro subsetI)
    fix \(x\)
    assume \(x \in \boldsymbol{\aleph}_{1}\)
    with \(\left\langle f: \boldsymbol{\aleph}_{1} \rightarrow \omega\right\rangle\langle f u n c t i o n(f)\rangle\left\langle\operatorname{domain}(f)=\boldsymbol{\aleph}_{1}\right\rangle\)
    have \(x \in f_{-} "\left\{f^{‘} x\right\} f^{\prime} x \in \operatorname{range}(f)\)
        using function_apply_Pair vimage_iff apply_rangeI by simp_all
    then
    show \(x \in(\bigcup n \in \operatorname{range}(f)\). \(f-\) " \(\{n\})\) by auto
qed auto
\{
    assume \(\forall n \in \operatorname{range}(f) .|f-‘\{n\}|<\boldsymbol{\aleph}_{1}\)
    then
    have \(\forall n \in \operatorname{domain}(? G) .\left|? G^{\prime} n\right|<\boldsymbol{\aleph}_{1}\)
        using zero_lt_Aleph1 by (auto)
    with \(\langle\) function \((? G)\rangle\langle\operatorname{domain}(? G) \lesssim \omega\rangle\)
    have \(\mid \bigcup n \in \operatorname{domain}(? G)\). ? \(G^{`} n \mid \leq \omega\)
        using \(l t \_A l e p h \_i m p \_c a r d i n a l \_U N \_l e \_n a t\) by blast
    then
    have \(\mid \bigcup n \in \operatorname{range}(f)\). \(f\)-" \(\{n\} \mid \leq \omega\) by simp
    with \(\left\langle\boldsymbol{\aleph}_{1}=\ldots\right\rangle\)
    have \(\left|\boldsymbol{\aleph}_{1}\right| \leq \omega\) by \(\operatorname{simp}\)
    then
    have \(\boldsymbol{\aleph}_{1} \leq \omega\)
        using Card_Aleph Card_cardinal_eq
        by simp
    then
    have False
    using nat_lt_Aleph1 by (blast dest:lt_trans2)
\}
with \(\langle\operatorname{range}(f) \subseteq \omega\rangle\)
obtain \(n\) where \(n \in \omega \neg\left(|f-"\{n\}|<\boldsymbol{\aleph}_{1}\right)\)
    by blast
moreover from this
have \(\boldsymbol{N}_{1} \leq \mid f_{-}\)' \(\{n\} \mid\)
    using not_lt_iff_le Card_is_Ord by auto
moreover
note \(\left\langle n \in \omega \Longrightarrow f_{-}{ }^{"}\{n\} \subseteq \boldsymbol{\aleph}_{1}\right\rangle\)
ultimately
show ?thesis
    using subset_imp_le_cardinal[THEN le_anti_sym, of _ \(\left.\boldsymbol{\aleph}_{1}\right]\)
        Card_Aleph Card_cardinal_eq by auto
qed
```

- There is some asymmetry between assumptions and conclusion $((\approx)$ versus car-
dinal)
lemma eqpoll_Aleph1_cardinal_vimage:
assumes $X \approx \boldsymbol{\aleph}_{1} f: X \rightarrow \omega$

```
    shows \(\exists n \in \omega\). \(\left|f-{ }^{-} "\{n\}\right|=\boldsymbol{\aleph}_{1}\)
proof
    from assms
    obtain \(g\) where \(g \in \operatorname{bij}\left(\boldsymbol{\aleph}_{1}, X\right)\)
        using eqpoll_sym by blast
    with \(\langle f: X \rightarrow \omega\rangle\)
    have \(f O g: \boldsymbol{\aleph}_{1} \rightarrow \omega\) converse \((g) \in \operatorname{bij}\left(X, \boldsymbol{\aleph}_{1}\right)\)
        using bij_is_fun comp_fun bij_converse_bij by blast+
    then
    obtain \(n\) where \(n \in \omega \mid(f O g)-" ‘ n\} \mid=\boldsymbol{\aleph}_{1}\)
        using Aleph1_eq_cardinal_vimage by auto
    then
    have \(\mathbf{\aleph}_{1}=\mid \operatorname{converse}(g)\) " \((f-"\{n\}) \mid\)
        using image_comp converse_comp
        unfolding vimage_def by simp
    also from \(\left\langle\operatorname{converse}(g) \in \operatorname{bij}\left(X, \boldsymbol{\aleph}_{1}\right)\right\rangle\langle f: X \rightarrow \omega\rangle\)
    have \(\ldots=|f-"\{n\}|\)
        using range_of_subset_eqpoll[of converse \((g) X \_f\)-" \(\left.\{n\}\right]\)
            bij_is_inj cardinal_cong bij_is_fun eqpoll_sym Pi_vimage_subset
    by fastforce
    finally
    show ?thesis using \(\langle n \in \omega\rangle\) by auto
qed
```


4.5 Applications of transfinite recursive constructions

The next lemma is an application of recursive constructions. It works under the assumption that whenever the already constructed subsequence is small enough, another element can be added.

```
lemma bounded_cardinal_selection:
    includes Ord_dests
    assumes
        \(\bigwedge X .|X|<\gamma \Longrightarrow X \subseteq G \Longrightarrow \exists a \in G . \forall s \in X . Q(s, a) b \in G \operatorname{Card}(\gamma)\)
    shows
        \(\exists S . S: \gamma \rightarrow G \wedge\left(\forall \alpha \in \gamma . \forall \beta \in \gamma . \quad \alpha<\beta \longrightarrow Q\left(S^{\prime} \alpha, S^{\prime} \beta\right)\right)\)
proof -
    let ?cdlt \(\gamma=\{X \in \operatorname{Pow}(G) .|X|<\gamma\}\) - "cardinal less than \(\gamma\) "
        and ? in \(Q=\lambda Y .\{a \in G . \forall s \in Y . Q(s, a)\}\)
    from assms
    have \(\forall Y \in\) ? \(c d l t \gamma . \exists a . a \in\) ? in \(Q(Y)\)
        by blast
    then
    have \(\exists f . f \in P i(? c d l t \gamma\), ? in \(Q)\)
        using AC_ball_Pi[of ?cdltү ?inQ] by simp
    then
    obtain \(f\) where \(f\) type: \(f \in \operatorname{Pi}(? c d l t \gamma, ?\) in \(Q)\)
        by auto
    moreover
    define \(C b\) where \(C b \equiv \lambda \_\in \operatorname{Pow}(G)-? c d l t \gamma . b\)
```

```
moreover from \(\langle b \in G\rangle\)
have \(C b \in \operatorname{Pow}(G)-\) ? cdlt \(\gamma \rightarrow G\)
    unfolding \(C b \_d e f\) by simp
moreover
note \(\langle\operatorname{Card}(\gamma)\rangle\)
ultimately
have \(f \cup C b:\left(\prod x \in \operatorname{Pow}(G)\right.\). ?in \(\left.Q(x) \cup G\right)\) using
    fun_Pi_disjoint_Un[ of \(f\) ?cdlt \(\gamma\) ? in \(\left.Q \operatorname{Cb} \operatorname{Pow}(G)-? c d l t \gamma \quad \lambda \_. G\right]\)
    Diff_partition \([\) of \(\{X \in \operatorname{Pow}(G) .|X|<\gamma\}\) Pow \((G)\), OF Collect_subset]
    by auto
moreover
have ? in \(Q(x) \cup G=G\) for \(x\) by auto
ultimately
have \(f \cup C b: \operatorname{Pow}(G) \rightarrow G\) by simp
define \(S\) where \(S \equiv \lambda \alpha \in \gamma\). rec_constr \((f \cup C b, \alpha)\)
from \(\langle f \cup C b: \operatorname{Pow}(G) \rightarrow G\rangle\langle\operatorname{Card}(\gamma)\rangle\)
have \(S: \gamma \rightarrow G\)
    using Ord_in_Ord unfolding \(S\) __def
    by (intro lam_type rec_constr_type) auto
moreover
have \(\forall \alpha \in \gamma . \forall \beta \in \gamma . \alpha<\beta \longrightarrow Q\left(S^{\prime} \alpha, S^{\prime} \beta\right)\)
proof (intro ballI impI)
    fix \(\alpha \beta\)
assume \(\beta \in \gamma\)
with \(\langle\operatorname{Card}(\gamma)\rangle\)
have \(\left\{\operatorname{rec} \_\right.\)constr \(\left.(f \cup C b, x) . x \in \beta\right\}=\left\{S^{\prime} x . x \in \beta\right\}\)
    using Ord_trans[OF _ _ Card_is_Ord, of _ \(\beta \gamma]\)
    unfolding \(S\) _def
    by auto
moreover from \(\langle\beta \in \gamma\rangle\langle S: \gamma \rightarrow G\rangle\langle\operatorname{Card}(\gamma)\rangle\)
have \(\left\{S^{\prime} x . x \in \beta\right\} \subseteq G\)
    using Ord_trans[OF _ _ Card_is_Ord, of _ \(\beta \gamma]\)
        apply_type[of \(\left.S \gamma \lambda_{\ldots} . G\right]\) by auto
moreover from \(\langle\operatorname{Card}(\gamma)\rangle\langle\beta \in \gamma\rangle\)
have \(\left|\left\{S^{\prime} x . x \in \beta\right\}\right|<\gamma\)
    using cardinal_RepFun_le[of \(\beta\) ] Ord_in_Ord
        lt_trans1 [of \(\left.\left|\left\{S^{\prime} x . x \in \beta\right\}\right||\beta| \gamma\right]\)
        Card_lt_iff[THEN iffD2, of \(\left.\beta \gamma, O F \_\_l t I\right]\)
        by force
moreover
have \(\forall x \in \beta . Q\left(S^{\prime} x, f^{\prime}\left\{S^{\prime} x . x \in \beta\right\}\right)\)
proof
    from calculation and \(f\) _type
    have \(f\) ' \(\left\{S^{\prime} x . x \in \beta\right\} \in\left\{a \in G . \forall x \in \beta . Q\left(S^{\prime} x, a\right)\right\}\)
        using apply_type[of \(f\) ?cdlt \(\gamma\) ? in \(\left.Q\left\{S^{\prime} x . x \in \beta\right\}\right]\)
        by blast
    then
    show ?thesis by simp
qed
```

```
    moreover
    assume }\alpha\in\gamma\alpha<
    moreover
    note <\beta\in\gamma\rangle\langleCb \in Pow(G)-?cdlt\gamma }->\mathrm{ G`
    ultimately
    show }Q(S'\alpha,S'\beta
    using fun_disjoint_apply1[of {S'x.x\in\beta} Cb f]
        domain_of_fun[of Cb] ltD[of \alpha \beta]
    by (subst (2) S_def, auto) (subst rec_constr_unfold, auto)
qed
ultimately
show ?thesis by blast
qed
```

The following basic result can，in turn，be proved by a bounded－cardinal selection．

```
lemma Infinite_iff_lepoll_nat: Infinite \((X) \longleftrightarrow \omega \lesssim X\)
proof
    assume Infinite ( \(X\) )
    then
    obtain \(b\) where \(b \in X\)
    using Infinite_not_empty by auto
    \{
        fix \(Y\)
        assume \(|Y|<\omega\)
        then
        have Finite ( \(Y\) )
            using Finite_cardinal_iff' ltD nat_into_Finite by blast
        with 〈Infinite \((X)\) 〉
        have \(X \neq Y\) by auto
    \}
    with \(\langle b \in X\) 〉
    obtain \(S\) where \(S: \omega \rightarrow X \quad \forall \alpha \in \omega\). \(\forall \beta \in \omega . \alpha<\beta \longrightarrow S^{\star} \alpha \neq S^{`} \beta\)
        using bounded_cardinal_selection[of \(\omega X \lambda x y . x \neq y\) ]
        Card_nat by blast
    moreover from this
    have \(\alpha \in \omega \Longrightarrow \beta \in \omega \Longrightarrow \alpha \neq \beta \Longrightarrow S^{\prime} \alpha \neq S^{\prime} \beta\) for \(\alpha \beta\)
        by (rule_tac lt_neq_symmetry[of \(\omega \lambda \alpha \beta\). \(\left.S^{\prime} \alpha \neq S^{‘} \beta\right]\) )
        auto
    ultimately
    show \(\omega \lesssim X\)
    unfolding lepoll_def inj_def by blast
qed (intro lepoll_nat_imp_Infinite)
lemma Infinite_InfCard_cardinal: Infinite \((X) \Longrightarrow \operatorname{InfCard}(|X|)\)
    using lepoll_eq_trans eqpoll_sym lepoll_nat_imp_Infinite
        Infinite_iff_lepoll_nat Inf_Card_is_InfCard cardinal_eqpoll
    by \(\operatorname{simp}\)
```

```
lemma Finite_to_one_surj_imp_cardinal_eq:
    assumes \(F \in\) Finite_to_one \((X, Y) \cap \operatorname{surj}(X, Y)\) Infinite \((X)\)
    shows \(|Y|=|X|\)
proof -
    from \(\langle F \in\) Finite_to_one \((X, Y) \cap \operatorname{surj}(X, Y)\rangle\)
    have \(X=\left(\bigcup y \in Y .\left\{x \in X . F^{\prime} x=y\right\}\right)\)
    using apply_type by fastforce
    show ?thesis
    proof (cases Finite ( \(Y\) ))
    case True
    with \(\left\langle X=\left(\bigcup y \in Y .\left\{x \in X . F^{‘} x=y\right\}\right)\right\rangle\) and assms
    show ?thesis
            using Finite_RepFun[THEN [2] Finite_Union, of \(\left.Y \lambda y .\left\{x \in X . F^{‘} x=y\right\}\right]\)
        by auto
    next
        case False
        moreover from this
    have \(Y \lesssim|Y|\)
            using cardinal_eqpoll eqpoll_sym eqpoll_imp_lepoll by simp
    moreover
    note assms
    moreover from calculation
    have \(y \in Y \Longrightarrow\left|\left\{x \in X . F^{\prime} x=y\right\}\right| \leq|Y|\) for \(y\)
            using Infinite_imp_nats_lepoll[THEN lepoll_imp_cardinal_le, of \(Y\)
            \(\left.\left|\left\{x \in X . F^{\prime} x=y\right\}\right|\right]\) cardinal_idem by auto
    ultimately
    have \(\left|\bigcup y \in Y .\left\{x \in X . F^{‘} x=y\right\}\right| \leq|Y|\)
            using lepoll_imp_cardinal_UN_le \([o f|Y| Y]\)
                Infinite_InfCard_cardinal[ of \(Y\) ] by simp
    moreover from \(\langle F \in\) Finite_to_one \((X, Y) \cap \operatorname{surj}(X, Y)\rangle\)
    have \(|Y| \leq|X|\)
        using surj_implies_cardinal_le by auto
    moreover
    note \(\left\langle X=\left(\bigcup y \in Y .\left\{x \in X . F^{\prime} x=y\right\}\right)\right\rangle\)
    ultimately
    show ?thesis
        using le_anti_sym by auto
    qed
qed
lemma cardinal_map_Un:
    assumes Infinite ( \(X\) ) Finite (b)
    shows \(|\{a \cup b . a \in X\}|=|X|\)
proof -
    have \((\lambda a \in X . a \cup b) \in\) Finite_to_one \((X,\{a \cup b . a \in X\})\)
        \((\lambda a \in X . a \cup b) \in \operatorname{surj}(X,\{a \cup b . a \in X\})\)
        unfolding surj_def
    proof
    fix \(d\)
```

```
    have Finite({a\inX.a\cupb=d})(is Finite(?Y(b,d)))
        using <Finite(b)>
    proof (induct arbitrary:d)
        case 0
        have {a\inX.a\cup0=d}=(if d\inX then {d} else 0)
            by auto
        then
        show ?case by simp
    next
        case (cons c b)
        from <c & b>
        have ?Y(cons (c,b),d)\subseteq(if c\ind then? Y (b,d)\cup?Y(b,d-{c}) else 0)
        by auto
    with cons
    show ?case
        using subset_Finite
        by simp
    qed
    moreover
    assume d\in{x\cupb.x\inX}
    ultimately
    show Finite ({a\inX.(\lambdax\inX.x\cupb)'a=d})
        by simp
    qed (auto intro:lam_funtype)
    with assms
    show ?thesis
    using Finite_to_one_surj_imp_cardinal_eq by fast
qed
end
theory Konig
    imports
    Cofinality
    Cardinal_Library
```


begin

Now, using the Axiom of choice, we can show that all successor cardinals are regular.

```
lemma cf_csucc:
    assumes InfCard(z)
    shows cf(z+})=\mp@subsup{z}{}{+
proof (rule ccontr)
    assume cf( (z+})\not=\mp@subsup{z}{}{+
    moreover from <InfCard(z)〉
    have }\operatorname{Ord}(\mp@subsup{z}{}{+})\operatorname{Ord}(z)\operatorname{Limit}(z)\operatorname{Limit}(\mp@subsup{z}{}{+})\operatorname{Card}(\mp@subsup{z}{}{+})\operatorname{Card}(z
        using InfCard_csucc Card_is_Ord InfCard_is_Card InfCard_is_Limit
        by fastforce+
    moreover from calculation
```

```
have \(c f\left(z^{+}\right)<z^{+}\)
    using \(c f \_l e \_c a r d i n a l\left[o f z^{+}\right.\),THEN le_iff[THEN iffD1]]
        Card_cardinal_eq
    by \(\operatorname{simp}\)
ultimately
obtain \(G\) where \(G: c f\left(z^{+}\right) \rightarrow z^{+} \forall \beta \in z^{+} . \exists y \in c f\left(z^{+}\right) . \beta<G^{\prime} y\)
    using Limit_cofinal_fun_lt[of \(\left.z^{+} \quad c f\left(z^{+}\right)\right]\)Ord_cf
        \(c f \_l e \_c f\) fun \(\left[o f z^{+} c f\left(z^{+}\right)\right]\)le_refl \(\left[o f c f\left(z^{+}\right)\right]\)
    by auto
with \(\langle\operatorname{Card}(z)\rangle\left\langle\operatorname{Card}\left(z^{+}\right)\right\rangle\left\langle\operatorname{Ord}\left(z^{+}\right)\right\rangle\)
have \(\forall \beta \in c f\left(z^{+}\right) .\left|G^{‘} \beta\right| \leq z\)
    using apply_type[of \(G c f\left(z^{+}\right) \lambda_{1} . z^{+}\), THEN ltI] Card_lt_iff[THEN iffD2]
        Ord_in_Ord[OF Card_is_Ord, of \(\left.z^{+}\right]\)cardinal_lt_csucc_iff[THEN iffD1]
    by auto
from \(\left\langle c f\left(z^{+}\right)<z^{+}\right\rangle\langle\operatorname{InfCard}(z)\rangle\langle\operatorname{Ord}(z)\rangle\)
have \(c f\left(z^{+}\right) \lesssim z\)
    using cardinal_lt_csucc_iff[of zcf( \(\left.\left.z^{+}\right)\right]\)Card_csucc[of \(\left.z\right]\)
        le_Card_iff[of z cf( \(\left.\left.z^{+}\right)\right]\)InfCard_is_Card
        Card_lt_iff \(\left[\right.\) of \(\left.c f\left(z^{+}\right) z^{+}\right] l t \_O r d\left[\operatorname{of~cf}\left(z^{+}\right) z^{+}\right]\)
    by \(\operatorname{simp}\)
with \(\left\langle c f\left(z^{+}\right)<z^{+}\right\rangle\left\langle\forall \beta \in c f\left(z^{+}\right).\right| G^{`} \beta\left|\leq \_\right\rangle\langle\operatorname{InfCard}(z)\rangle\)
have \(\left|\bigcup \beta \in c f\left(z^{+}\right) . G^{‘} \beta\right| \leq z\)
    using InfCard_csucc[of z]
        subset_imp_lepoll[THEN lepoll_imp_cardinal_le, of \(\left.\bigcup \beta \in c f\left(z^{+}\right) . G^{‘} \beta z\right]\)
    by (rule_tac lepoll_imp_cardinal_UN_le) auto
moreover
note 〈Ord \((z)\) 〉
moreover from \(\left\langle\forall \beta \in z^{+} . \exists y \in c f\left(z^{+}\right) . \beta<G^{\prime} y\right\rangle\) and this
have \(z^{+} \subseteq\left(\bigcup \beta \in c f\left(z^{+}\right) . G^{`} \beta\right)\)
    by (blast dest:ltD)
ultimately
have \(z^{+} \leq z\)
    using subset_imp_le_cardinal[of \(\left.z^{+} \bigcup \beta \in c f\left(z^{+}\right) . G^{‘} \beta\right] l e \_t r a n s\)
        InfCard_is_Card Card_csucc[of z] Card_cardinal_eq
    by auto
with \(\langle\operatorname{Ord}(z)\rangle\)
show False
    using \(l t\) _csucc \([\) of \(z]\) not_lt_iff_le[THEN iffD2, of \(\left.z z^{+}\right]\)
        Card_csucc[THEN Card_is_Ord]
    by auto
qed
```

And this finishes the calculation of cofinality of Alephs.
lemma $c f _$Aleph_succ: $\operatorname{Ord}(z) \Longrightarrow c f\left(\boldsymbol{\aleph}_{\operatorname{succ}(z)}\right)=\boldsymbol{\aleph}_{\operatorname{succ}(z)}$
using Aleph_succ cf_csucc InfCard_Aleph by simp

4.6 König's Theorem

We end this section by proving König's Theorem on the cofinality of cardinal exponentiation. This is a strengthening of Cantor's theorem and it is essentially the only basic way to prove strict cardinal inequalities.
It is proved rather straightforwardly with the tools already developed.

```
lemma konigs_theorem:
    notes \([d e s t]=\) InfCard_is_Card Card_is_Ord
        and \([\) trans \(]=l t \_t r a n s 1 ~ l t \_t r a n s 2 ~\)
    assumes
        \(\operatorname{InfCard}(\kappa) \operatorname{InfCard}(\nu) c f(\kappa) \leq \nu\)
    shows
        \(\kappa<\kappa^{\uparrow \nu}\)
    using \(\operatorname{assms}(1,2)\) Card_cexp
proof (intro not_le_iff_lt[THEN iffD1] notI)
    assume \(\kappa^{\uparrow \nu} \leq \kappa\)
    moreover
    note 〈InfCard ( \(\kappa\) ) 〉
    moreover from calculation
    have \(\nu \rightarrow \kappa \lesssim \kappa\)
    using Card_cardinal_eq[OF InfCard_is_Card, symmetric]
        Card_le_imp_lepoll
    unfolding cexp_def by simp
    ultimately
    obtain \(G\) where \(G \in \operatorname{surj}(\kappa, \nu \rightarrow \kappa)\)
    using inj_imp_surj[OF_function_space_nonempty,
        OF_nat_into_InfCard] by blast
    from assms
    obtain \(f\) where \(f: \nu \rightarrow \kappa c f\) fun \((f, \kappa)\)
    using cf_le_cf_fun[OF _ InfCard_is_Limit] by blast
define \(H\) where \(H(\alpha) \equiv \mu x . x \in \kappa \wedge\left(\forall m<f^{\prime} \alpha\right.\). \(\left.G^{\prime} m^{\prime} \alpha \neq x\right)\)
    (is \(\quad \equiv \mu x\). ? \(P(\alpha, x)\) ) for \(\alpha\)
have \(H\) _satisfies: ? \(P(\alpha, H(\alpha))\) if \(\alpha \in \nu\) for \(\alpha\)
proof -
    obtain \(h\) where ? \(P(\alpha, h)\)
    proof -
        from \(\langle\alpha \in \nu\rangle\langle f: \nu \rightarrow \kappa\rangle\langle\operatorname{InfCard}(\kappa)\rangle\)
        have \(f^{\prime} \alpha<\kappa\)
            using apply_type \(\left[\right.\) of _ _ \(\lambda_{\ldots} . \kappa\) ] by (auto intro:ltI)
        have \(\left|\left\{G^{\prime} m^{\prime} \alpha . m \in\left\{x \in \kappa . x<f^{\prime} \alpha\right\}\right\}\right| \leq\left|\left\{x \in \kappa . x<f^{\prime} \alpha\right\}\right|\)
            using cardinal_RepFun_le by simp
        also from \(\left\langle f^{\iota} \alpha<\kappa\right\rangle\langle\operatorname{InfCard}(\kappa)\rangle\)
        have \(\left|\left\{x \in \kappa . x<f^{\prime} \alpha\right\}\right|<|\kappa|\)
                using Card_lt_iff[OF lt_Ord, THEN iffD2, of f \(\left.f^{\star} \alpha \kappa \kappa\right]\)
                    Ord_eq_Collect_lt \(\left[o f f^{\prime} \alpha \kappa\right]\) Card_cardinal_eq
            by force
        finally
        have \(\left|\left\{G^{\prime} m^{\prime} \alpha . m \in\left\{x \in \kappa . x<f^{\prime} \alpha\right\}\right\}\right|<|\kappa|\).
```

```
    moreover from <ff\alpha< < < <InfCard ( }\kappa)
    have m<\mp@subsup{f}{}{\prime}\alpha\Longrightarrowm\in\kappa for m
            using Ord_trans[of m f'\alpha \kappa]
            by (auto dest:ltD)
    ultimately
    have }\exists\textrm{h}.
        using lt_cardinal_imp_not_subset by blast
    with that
    show ?thesis by blast
    qed
    with assms
    show ? P ( }\alpha,H(\alpha)
    using LeastI[of ?P(\alpha)h] lt_Ord Ord_in_Ord
    unfolding H_def by fastforce
qed
then
have (\lambda\alpha\in\nu.H(\alpha)):\nu->\kappa
    using lam_type by auto
with <G \in }\operatorname{surj}(\kappa,\nu->\kappa)
obtain n where n\in\kappa G'n = (\lambda\alpha\in\nu.H(\alpha))
    unfolding surj_def by blast
moreover
note <InfCard (\kappa)\rangle\langlef:\nu->\kappa\rangle\langlecf_fun(f,_)\rangle
ultimately
obtain \alpha where }n<\mp@subsup{f}{}{`}\alpha\alpha\in
    using Limit_cofinal_fun_lt[OF InfCard_is_Limit] by blast
moreover from calculation and <G`n = (\lambda\alpha\in\nu.H(\alpha))\rangle
have G'`}\mp@subsup{n}{}{`}\alpha=H(\alpha
    using ltD by simp
moreover from calculation and H_satisfies
have }\forallm<\mp@subsup{f}{}{\prime}\alpha.\mp@subsup{G}{}{\prime}\mp@subsup{m}{}{\prime}\alpha\not=H(\alpha)\mathrm{ by simp
ultimately
show False by blast
qed blast+
lemma cf_cexp:
    assumes
        Card(\kappa) InfCard(\nu) 2 < < 
    shows
    \nu<cf(\mp@subsup{\kappa}{}{\uparrow\nu})
proof (rule ccontr)
    assume }\neg\nu<cf(\mp@subsup{\kappa}{}{\uparrow\nu}
    with <InfCard( }\nu)\mathrm{ 〉
    have cf( }\mp@subsup{\kappa}{}{\uparrow\nu})\leq
    using not_lt_iff_le Ord_cf InfCard_is_Card Card_is_Ord by simp
moreover
note assms
moreover from calculation
have InfCard( }\mp@subsup{\kappa}{}{\uparrow\nu})\mathrm{ using InfCard_cexp by simp
```

```
moreover from calculation
have }\mp@subsup{\kappa}{}{\uparrow\nu}<(\mp@subsup{\kappa}{}{\uparrow\nu}\mp@subsup{)}{}{\uparrow\nu
    using konigs_theorem by simp
    ultimately
    show False using cexp_cexp_cmult InfCard_csquare_eq by auto
qed
```

Finally, the next two corollaries illustrate the only possible exceptions to the value of the cardinality of the continuum: The limit cardinals of countable cofinality. That these are the only exceptions is a consequence of Easton's Theorem [4, Thm 15.18].
corollary $c f$ _continuum: $\boldsymbol{\aleph}_{0}<c f\left(2^{\uparrow \boldsymbol{\aleph}_{0}}\right)$
using $c f$ _cexp InfCard_Aleph nat_into_Card by simp
corollary continuum_not_eq_Aleph_nat: $2^{\uparrow \boldsymbol{\aleph}_{0}} \neq \boldsymbol{N}_{\omega}$
using $c f$ _continuum $c f$ _Aleph_Limit $[$ OF Limit_nat] cf_nat
Aleph_zero_eq_nat by auto
end

5 The Delta System Lemma

```
theory Delta_System
    imports
        Cardinal_Library
```


begin

The Delta System Lemma (DSL) states that any uncountable family of finite sets includes an uncountable delta system. This is the simplest non trivial version; others, for cardinals greater than $\boldsymbol{\aleph}_{1}$ assume some weak versions of the generalized continuum hypothesis for the cardinals involved.
The proof is essentially the one in [6, III.2.6] for the case $\boldsymbol{\aleph}_{1}$; another similar presentation can be found in [5, Chap. 16].

```
lemma delta_system_Aleph1:
    assumes }\forallA\inF\mathrm{ . Finite (A) F}\approx\mp@subsup{\boldsymbol{\aleph}}{1}{
    shows }\existsD.D\subseteqF\wedge\mathrm{ delta_system }(D)\wedgeD\approx\mp@subsup{\aleph}{1}{
proof -
```

Since all members are finite,

```
from \langle\forallA\inF. Finite (A)\rangle
have ( }\lambdaA\inF.|A|):F->\omega\mathrm{ (is ?cards:__)
    by (rule_tac lam_type) simp
moreover from this
have a:?cards -" {n}={A\inF. |A|=n} for n
    using vimage_lam by auto
moreover
```

```
note }\langleF\approx\mp@subsup{\boldsymbol{\aleph}}{1}{}
moreover from calculation
```

there are uncountably many have the same cardinal:

```
obtain n where n\in\omega |?cards -" {n}| = \boldsymbol{\aleph}
    using eqpoll_Aleph1_cardinal_vimage[of F ?cards] by auto
moreover
define G where G\equiv ?cards -" {n}
moreover from calculation
have }G\subseteqF\mathrm{ by auto
ultimately
```

Therefore, without loss of generality, we can assume that all elements of the family have cardinality $n \in \omega$.

```
have }A\inG\Longrightarrow|A|=n\mathrm{ and }G\approx\mp@subsup{\boldsymbol{\aleph}}{1}{}\mathrm{ for }
    using cardinal_Card_eqpoll_iff by auto
with <n\in\omega`
```

So we prove the result by induction on this n and generalizing G, since the argument requires changing the family in order to apply the inductive hypothesis.

```
have \(\exists D . D \subseteq G \wedge\) delta_system \((D) \wedge D \approx \boldsymbol{\aleph}_{1}\)
proof (induct arbitrary: \(G\) )
    case 0 - This case is impossible
    then
    have \(G \subseteq\{0\}\)
        using cardinal_0_iff_0 by auto
    with \(\left\langle G \approx \mathbf{\aleph}_{1}\right\rangle\)
    show ?case
        using nat_lt_Aleph1 subset_imp_le_cardinal[of \(G\{0\}]\)
        lt_trans2 cardinal_Card_eqpoll_iff by auto
next
    case (succ \(n\) )
    then
    have \(\forall a \in G\). Finite ( \(a\) )
        using Finite_cardinal_iff' nat_into_Finite[of succ(n)]
        by fastforce
    show \(\exists D . D \subseteq G \wedge\) delta_system \((D) \wedge D \approx \boldsymbol{\aleph}_{1}\)
    proof (cases \(\exists p .\{A \in G . p \in A\} \approx \boldsymbol{\aleph}_{1}\) )
    case True - the positive case, uncountably many sets with a common element
    then
    obtain \(p\) where \(\{A \in G . p \in A\} \approx \boldsymbol{\aleph}_{1}\) by blast
    moreover from this
    have \(\{A-\{p\} . A \in\{X \in G . p \in X\}\} \approx \boldsymbol{\aleph}_{1}\left(\right.\) is ? \(\left.F \approx{ }^{F}\right)\)
        using Diff_bij[of \(\{A \in G . p \in A\}\{p\}]\)
            comp_bij[OF bij_converse_bij, where \(\left.C=\boldsymbol{\aleph}_{1}\right]\) by fast
```

Now using the hypothesis of the successor case,

```
moreover from \(\langle\bigwedge A . A \in G \Longrightarrow| A|=\operatorname{succ}(n)\rangle\langle\forall a \in G\). Finite \((a)\rangle\)
    and this
have \(p \in A \Longrightarrow A \in G \Longrightarrow|A-\{p\}|=n\) for \(A\)
    using Finite_imp_succ_cardinal_Diff \(\left[o f ~ \_~ p\right]\) by force
moreover from this and \(\langle n \in \omega\rangle\)
have \(\forall a \in\) ? F. Finite ( \(a\) )
    using Finite_cardinal_iff' nat_into_Finite by auto
moreover
```

we may apply the inductive hypothesis to the new family $\{A-\{p\} . A \in$ $\{X \in G . p \in X\}\}:$
note $\left\langle(\wedge A . A \in ? F \Longrightarrow|A|=n) \Longrightarrow ? F \approx \mathbf{\aleph}_{1} \Longrightarrow\right.$ $\exists D . D \subseteq ? F \wedge$ delta_system $(D) \wedge D \approx \boldsymbol{\aleph}_{1}$ >
ultimately
obtain D where $D \subseteq\{A-\{p\} . A \in\{X \in G . p \in X\}\}$ delta_system $(D) D \approx \aleph_{1}$
by auto
moreover from this
obtain r where $\forall A \in D . \forall B \in D . A \neq B \longrightarrow A \cap B=r$
by fastforce
then
have $\forall A \in D . \forall B \in D . A \cup\{p\} \neq B \cup\{p\} \longrightarrow(A \cup\{p\}) \cap(B \cup\{p\})=r \cup\{p\}$ by blast
ultimately
have delta_system $(\{B \cup\{p\} . B \in D\})$ (is delta_system(?D))
by fastforce
moreover from $\left\langle D \approx \mathfrak{\aleph}_{1}\right\rangle$
have $|D|=\boldsymbol{\aleph}_{1} \operatorname{Infinite}(D)$
using cardinal_eqpoll_iff
by (auto intro!: uncountable_iff_subset_eqpoll_Aleph1[THEN iffD2]
uncountable_imp_Infinite) force
moreover from this
have $? D \approx \mathbf{N}_{1}$
using cardinal_map_Un[of $D\{p\}]$ naturals_lt_nat cardinal_eqpoll_iff[THEN iffD1] by simp
moreover
note $\langle D \subseteq\{A-\{p\} . A \in\{X \in G . p \in X\}\}\rangle$
have ? $D \subseteq G$
proof -
\{
fix A
assume $A \in G p \in A$
moreover from this
have $A=A-\{p\} \cup\{p\}$
by blast
ultimately
have $A-\{p\} \cup\{p\} \in G$
by auto
\}
with $\langle D \subseteq\{A-\{p\} . A \in\{X \in G . p \in X\}\}\rangle$

```
        show ?thesis
        by blast
    qed
    ultimately
    show }\existsD.D\subseteqG\wedge\mathrm{ delta__system }(D)\wedgeD\approx\mp@subsup{\aleph}{1}{}\mathrm{ by auto
next
    case False
    note}\langle\neg(\existsp.{A\inG.p\inA}\approx\mp@subsup{\boldsymbol{\aleph}}{1}{})\rangle\mathrm{ - the other case
    moreover from <G\approx\mp@subsup{\mathbf{N}}{1}{}\rangle
    have {A\inG.p\inA}\lesssim\mp@subsup{\boldsymbol{N}}{1}{}(\mathrm{ is ? }G(p)\lesssim _) for p
        by (blast intro:lepoll_eq_trans[OF subset_imp_lepoll])
    ultimately
    have??
    unfolding lesspoll_def by simp
    then
    have ?}G(p)\lesssim\omega\mathrm{ for }
        using lesspoll_aleph_plus_one[of 0] Aleph_zero_eq_nat by auto
moreover
have {A\inG.S\capA\not=0}=(\bigcupp\inS.?G(p)) for S
    by auto
    ultimately
    have countable (S)\Longrightarrow countable({A\inG.S\capA\not=0}) for S
    using InfCard_nat Card_nat
        le_Card_iff[THEN iffD2, THEN [3] lepoll_imp_cardinal_UN_le,
            THEN [2] le_Card_iff[THEN iffD1], of \omega S]
        unfolding countable_def by simp
```

For every countable subfamily of G there is another some element disjoint from all of them:

```
have \(\exists A \in G . \forall S \in X . S \cap A=0\) if \(|X|<\boldsymbol{\aleph}_{1} X \subseteq G\) for \(X\)
proof -
    from \(\langle n \in \omega\rangle\langle\backslash A . A \in G \Longrightarrow| A|=\operatorname{succ}(n)\rangle\)
    have \(A \in G \Longrightarrow \operatorname{Finite}(A)\) for \(A\)
        using cardinal_Card_eqpoll_iff
        unfolding Finite_def by fastforce
    with \(\langle X \subseteq G\rangle\)
    have \(A \in X \Longrightarrow\) countable \((A)\) for \(A\)
        using Finite_imp_countable by auto
    with \(\langle | X\left|<\boldsymbol{\aleph}_{1}\right\rangle\)
    have countable \((\bigcup X)\)
        using Card_nat[THEN cardinal_lt_csucc_iff, of X]
            countable_union_countable countable_iff_cardinal_le_nat
        unfolding Aleph_def by simp
    with \(\left\langle\operatorname{countable}\left(\_\right) \Longrightarrow\right.\) countable \(\left(\left\{A \in G \cdot \_\cap A \neq 0\right\}\right)\) 〉
    have countable \((\{A \in G .(\bigcup X) \cap A \neq 0\})\).
    with \(\left\langle G \approx \mathbf{\aleph}_{1}\right\rangle\)
    obtain \(B\) where \(B \in G B \notin\{A \in G .(\bigcup X) \cap A \neq 0\}\)
        using nat_lt_Aleph1 cardinal_Card_eqpoll_iff \(\left[o f \mathbf{\aleph}_{1} G\right]\)
        uncountable_not_subset_countable \([\) of \(\{A \in G .(\bigcup X) \cap A \neq 0\} G]\)
```

```
        uncountable_iff_nat_lt_cardinal
        by auto
    then
    show }\existsA\inG.\forallS\inX.S\capA=0 by aut
qed
moreover from <G\approx\mp@code{\aleph }
obtain b}\mathrm{ where b&G
    using uncountable_iff_subset_eqpoll_Aleph1
        uncountable_not_empty by blast
ultimately
```

Hence, the hypotheses to perform a bounded-cardinal selection are satisfied,

```
obtain \(S\) where \(S: \boldsymbol{\aleph}_{1} \rightarrow G \alpha \in \boldsymbol{\aleph}_{1} \Longrightarrow \beta \in \boldsymbol{\aleph}_{1} \Longrightarrow \alpha<\beta \Longrightarrow S^{\star} \alpha \cap S^{‘} \beta=0\)
    for \(\alpha \beta\)
    using bounded_cardinal_selection[of \(\left.\boldsymbol{\aleph}_{1} G \lambda s a . s \cap a=0 b\right]\)
    by force
then
have \(\alpha \in \boldsymbol{\aleph}_{1} \Longrightarrow \beta \in \boldsymbol{\aleph}_{1} \Longrightarrow \alpha \neq \beta \Longrightarrow S^{`} \alpha \cap S^{‘} \beta=0\) for \(\alpha \beta\)
    using lt_neq_symmetry[of \(\boldsymbol{\aleph}_{1} \lambda \alpha \beta\). \(\left.S^{\star} \alpha \cap S^{‘} \beta=0\right]\) Card_is_Ord
    by auto blast
```

and a symmetry argument shows that obtained S is an injective $\boldsymbol{\aleph}_{1}$-sequence of disjoint elements of G.

```
moreover from this and \(\langle\bigwedge A . A \in G \Longrightarrow| A|=\operatorname{succ}(n)\rangle\left\langle S: \boldsymbol{\aleph}_{1} \rightarrow G\right\rangle\)
have \(S \in \operatorname{inj}\left(\boldsymbol{\aleph}_{1}, G\right)\)
    using cardinal_succ_not_0 Int_eq_zero_imp_not_eq[of \(\left.\boldsymbol{\aleph}_{1} \lambda x . S^{\prime} x\right]\)
    unfolding inj_def by fastforce
moreover from calculation
have \(\operatorname{range}(S) \approx \mathbf{\aleph}_{1}\)
    using inj_bij_range eqpoll_sym unfolding eqpoll_def by fast
moreover from calculation
have range \((S) \subseteq G\)
    using inj_is_fun range_fun_subset_codomain by fast
ultimately
show \(\exists D . D \subseteq G \wedge\) delta_system \((D) \wedge D \approx \boldsymbol{\aleph}_{1}\)
    using inj_is_fun range_eq_image \(\left[\right.\) of \(\left.S \boldsymbol{\aleph}_{1} G\right]\)
        image_function[OF fun_is_function, \(O F\) inj_is_fun, of \(\left.S \boldsymbol{\aleph}_{1} G\right]\)
        domain_of_fun[OF inj_is_fun, of \(\left.S \boldsymbol{\aleph}_{1} G\right]\)
    by (rule_tac \(x=S^{\prime} \boldsymbol{\aleph}_{1}\) in exI) auto
```

This finishes the successor case and hence the proof.

```
    qed
    qed
    with <G\subseteqF`
    show ?thesis by blast
qed
```

lemma delta_system_uncountable:
assumes $\forall A \in F$. Finite (A) uncountable (F)

```
    shows }\existsD.D\subseteqF\wedge\mathrm{ delta_system }(D)\wedgeD\approx\mp@subsup{\aleph}{1}{
proof -
    from assms
    obtain S where S\subseteqFS\approx\mp@subsup{\aleph}{1}{}
            using uncountable_iff_subset_eqpoll_Aleph1[of F] by auto
    moreover from \langle\forallA\inF. Finite (A)\rangle and this
    have }\forallA\inS.\operatorname{Finite(A) by auto
    ultimately
    show ?thesis using delta_system_Aleph1[of S]
        by auto
qed
end
```


5.1 Application to Cohen posets

theory Cohen_Posets
imports
Delta_System

begin

We end this session by applying DSL to the combinatorics of finite function posets. We first define some basic concepts; we take a different approach from [1], in that the order relation is presented as a predicate (of type $i \Rightarrow$ $i \Rightarrow o)$.
Two elements of a poset are compatible if they have a common lower bound.
definition compat_in $::[i,[i, i] \Rightarrow o, i, i] \Rightarrow o$ where

$$
\text { compat_in }(A, r, p, q) \equiv \exists d \in A . r(d, p) \wedge r(d, q)
$$

An antichain is a subset of pairwise incompatible members.

definition

```
antichain \(::[i,[i, i] \Rightarrow o, i] \Rightarrow o\) where
\(\operatorname{antichain}(P, l e q, A) \equiv A \subseteq P \wedge(\forall p \in A . \forall q \in A\).
    \(p \neq q \longrightarrow \neg\) compat_in \((P, l e q, p, q))\)
```

A poset has the countable chain condition (ccc) if all of its antichains are countable.

definition

```
\(c c c::[i,[i, i] \Rightarrow o] \Rightarrow o\) where
\(\operatorname{ccc}(P, l e q) \equiv \forall A . \operatorname{antichain}(P, l e q, A) \longrightarrow \operatorname{countable}(A)\)
```

Finally, the Cohen poset is the set of finite partial functions between two sets with the order of reverse inclusion.

```
definition
    Fn :: [i,i]=>i where
    Fn(I,J)\equiv\bigcup{(d->J).d\in{x\in\operatorname{Pow}(I)..Finite(x)}}
```


abbreviation

Supset :: $i \Rightarrow i \Rightarrow o($ infixl 〈ِ〉 50) where
$f \supseteq g \equiv g \subseteq f$
lemma FnI[intro]:
assumes $p: d \rightarrow J d \subseteq I$ Finite (d)
shows $p \in F n(I, J)$
using assms unfolding Fn_def by auto
lemma $F n D[$ dest $]$:
assumes $p \in F n(I, J)$
shows $\exists d . p: d \rightarrow J \wedge d \subseteq I \wedge$ Finite (d)
using assms unfolding Fn_def by auto
lemma Fn_is_function: $p \in F n(I, J) \Longrightarrow$ function (p) unfolding Fn_def using fun_is_function by auto
lemma restrict_eq_imp_compat: assumes $f \in \overline{F n}(I, J) g \in \operatorname{Fn}(I, J)$
$\operatorname{restrict}(f, \operatorname{domain}(f) \cap \operatorname{domain}(g))=\operatorname{restrict}(g, \operatorname{domain}(f) \cap \operatorname{domain}(g))$
shows $f \cup g \in \operatorname{Fn}(I, J)$
proof -
from assms
obtain $11 d 2$ where $f: d 1 \rightarrow J d 1 \in \operatorname{Pow}(I)$ Finite $(d 1)$
$g: d 2 \rightarrow J d 2 \in \operatorname{Pow}(I)$ Finite(d2)
by blast
with assms
show ?thesis
using domain_of fun restrict_eq_imp_Un_into_Pi $\left[\right.$ of $\left.f d 1 \lambda _. J g d 2 \lambda _. J\right]$
by auto
qed
We finally arrive to our application of DSL.
lemma $c c c _F n _2: ~ c c c(F n(I, 2),(\supseteq))$
proof -
\{
fix A
assume $\neg \operatorname{countable}(A)$
assume $A \subseteq F n(I, 2)$
moreover from this
have countable $(\{p \in A$. $\operatorname{domain}(p)=d\})$ for d
proof (cases Finite $(d) \wedge d \subseteq I)$
case True
with $\langle A \subseteq F n(I$, 2) \rangle
have $\{p \in A$. $\operatorname{domain}(p)=d\} \subseteq d \rightarrow 2$
using domain_of_fun by fastforce
moreover from True
have Finite $(d \rightarrow 2)$

```
        using Finite_Pi lesspoll_nat_is_Finite by auto
    ultimately
    show ?thesis using subset_Finite[of __ d->2 ] Finite_imp_countable
        by auto
next
    case False
    with <A\subseteqFn(I, 2)>
    have {p\inA.domain}(p)=d}=
        by (intro equalityI) (auto dest!: domain_of_fun)
    then
    show ?thesis using empty_lepollI by auto
qed
moreover
have uncountable({domain (p). p\inA})
proof
    from <A\subseteqFn(I, 2)>
    have A=(\bigcupd\in{domain(p).p\inA}.{p\inA.domain (p)=d})
        by auto
    moreover
    assume countable({domain(p) . p\inA})
    moreover
    note <\d. countable ({p\inA. domain }(p)=d})\rangle\langle\neg\operatorname{countable}(A)
    ultimately
    show False
        using countable_imp_countable_UN[of {domain}(p).p\inA
            \lambdad. {p\inA. domain (p) =d }]
        by auto
qed
moreover from <A\subseteqFn(I, 2)>
have }p\inA\Longrightarrow\operatorname{Finite(\operatorname{domain}(p)) for p
    using lesspoll_nat_is_Finite[of domain(p)]
        domain_of_fun[of p__ __ 2] by auto
ultimately
obtain D where delta_system (D) D\subseteq{domain (p) . p\inA} D\approx* \aleph
    using delta_system_uncountable[of {domain (p).p\inA}] by auto
then
have delta:\foralld1\inD. }\foralld2\inD.d1\not=d2\longrightarrowd1\capd2=\bigcap
        using delta_system_root_eq_Inter
        by simp
moreover from <D \approx N
have uncountable(D)
    using uncountable_iff_subset_eqpoll_Aleph1 by auto
moreover from this and <D\subseteq{domain (p).p\inA}>
obtain p1 where p1\inA domain(p1) \inD
    using uncountable_not_empty[of D] by blast
moreover from this and }<p1\inA\Longrightarrow\mathrm{ Finite(domain(p1))>
have Finite(domain(p1)) using Finite_domain by simp
moreover
define r where r\equiv\bigcapD
```

```
    ultimately
    have Finite(r) using subset_Finite[of r domain(p1)] by auto
    have countable({restrict( }p,r).p\inA}
    proof -
    have f}\inFn(I, 2)\Longrightarrow\operatorname{restrict}(f,r)\in\operatorname{Pow}(r\times2)\mathrm{ for }
        using restrict_subset_Sigma[of f__ __. 2 r]
        by (force simp: Pi_def)
    with <A\subseteqFn(I, 2)\rangle
    have {restrict(f,r).f\inA}\subseteq\operatorname{Pow}(r\times2)
        by fast
    with <Finite(r)>
    show ?thesis
        using Finite_Sigma[THEN Finite_Pow, of r \lambda_. 2]
        by (intro Finite_imp_countable) (auto intro:subset__Finite)
    qed
    moreover
    have uncountable({p\inA.\operatorname{domain}(p)\inD}) (is uncountable(?X))
    proof
    from\langleD\subseteq{domain(p).p\inA}>
    have (\lambdap\in?X. domain (p)) \in surj(?X,D)
        using lam_type unfolding surj_def by auto
    moreover
    assume countable(?X)
    moreover
    note <uncountable(D)〉
    ultimately
    show False
        using surj_countable by auto
    qed
moreover
    have D=(\bigcupf\in\operatorname{Pow}(r\times2).{domain(p).p\in{x\inA.restrict(x,r)=f\wedgedo-
main}(x)\inD}}
    proof -
    {
        fix z
        assume z }\in
        with <D\subseteq_`
        obtain p where domain(p)=zp\inA
            by auto
        moreover from <A\subseteqFn(I, 2)\rangle and this
        have p:z->2
            using domain_of_fun by force
            moreover from this
            have restrict (p,r)\subseteqr\times2
            using function_restrictI[of pr] fun_is_function[of p z \lambda_. 2]
                restrict_subset_Sigma[of pz \lambda_. 2 r]
            by (auto simp:Pi_def)
            ultimately
            have \existsp\inA. restrict(p,r)\in\operatorname{Pow}(r\times2)}\wedge\operatorname{domain}(p)=z\mathrm{ by auto
```

```
    }
    then
    show ?thesis
        by (intro equalityI) (force)+
    qed
    obtain f where uncountable({domain (p). p\in{x\inA. restrict (x,r) =f^do-
main}(x)\inD}}
    (is uncountable(?Y(f)))
proof -
    {
        from <Finite(r)〉
        have countable(Pow(r\times2))
            using Finite_Sigma[THEN Finite_Pow, THEN Finite_imp_countable]
            by simp
        moreover
        assume countable(?Y(f)) for f
        moreover
        note \langleD=(\bigcupf\in\operatorname{Pow}(r\times2) .?Y(f))>
        moreover
        note <uncountable(D)`
        ultimately
        have False
            using countable_imp_countable_UN[of Pow(r\times2) ?Y] by auto
    }
    with that
    show ?thesis by auto
qed
then
obtain j where j i inj(nat, ? Y(f))
    using uncountable_iff_nat_lt_cardinal[THEN iffD1, THEN leI,
                THEN cardinal_le_imp_lepoll,THEN lepollD]
    by auto
then
have j`0 \not= j`1 j`0 & ?Y(f) j`1 \in?Y(f)
    using inj_is_fun[THEN apply_type, of j nat ?Y(f)]
    unfolding inj_def by auto
then
obtain pq where domain(p)\not=\operatorname{domain}(q) p\inAq\inA
    domain}(p)\inD domain(q) \inD
    restrict ( }p,r)=\operatorname{restrict (q,r) by auto
moreover from this and delta
have domain (p) \cap domain (q) =r unfolding r_def by simp
moreover
note <A\subseteqFn(I, 2)\rangle
moreover from calculation
have }p\cupq\inFn(I, 2
    by (rule_tac restrict_eq_imp_compat) auto
ultimately
have \existsp\inA.\existsq\inA. p\not=q^compat_in(Fn(I, 2),(`),p,q)
```

```
    unfolding compat_in_def
    by (rule_tac bexI[of_p], rule_tac bexI[of_q q]) blast
}
then
show ?thesis unfolding ccc_def antichain_def by auto
qed
```

The fact that a poset P has the ccc has useful consequences for the theory of forcing, since it implies that cardinals from the original model are exactly the cardinals in any generic extension by P [6, Chap. IV].
end

References

[1] E. Gunther, M. Pagano, P. Sánchez Terraf, Formalization of Forcing in Isabelle/ZF, in: N. Peltier, V. Sofronie-Stokkermans (Eds.), Automated Reasoning. 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, Lecture Notes in Artificial Intelligence 12167, Springer International Publishing: 221-235 (2020). doi:10.1007/978-3-030-51054-1.
[2] E. Gunther, M. Pagano, P. Sánchez Terraf, M. Steinberg, The independence of the continuum hypothesis in Isabelle/ZF, Archive of Formal Proofs (2022). https://isa-afp.org/entries/Independence_CH.html, Formal proof development.
[3] E. Gunther, M. Pagano, P. Sánchez Terraf, M. Steinberg, Transitive models of fragments of ZFC, Archive of Formal Proofs (2022). https:// isa-afp.org/entries/Transitive_Models.html, Formal proof development.
[4] T. Jech, "Set Theory. The Millennium Edition", Springer Monographs in Mathematics, Springer-Verlag (2002), third edition. Corrected fourth printing, 2006.
[5] W. Just, M. Weese, "Discovering Modern Set Theory. II", Grad. Studies in Mathematics 18, American Mathematical Society (1997).
[6] K. Kunen, "Set Theory", Studies in Logic, College Publications (2011), second edition. Revised edition, 2013.
[7] L.C. Paulson, K. Grabczewski, Mechanizing set theory, J. Autom. Reasoning 17: 291-323 (1996). doi:10.1007/BF00283132.
[8] P. SÁnchez Terraf, Course notes on set theory, online, (2019). In Spanish, https://cs.famaf.unc.edu.ar/~pedro/home_en.html\#set_theory.

[^0]: *Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación.
 ${ }^{\dagger}$ Centro de Investigación y Estudios de Matemática (CIEM-FaMAF), Conicet. Córdoba. Argentina. Supported by Secyt-UNC project 33620180100465CB. https://cs.famaf.unc.edu.ar/~pedro/

