
Completeness of Decreasing Diagrams for the Least
Uncountable Cardinality

Ievgen Ivanov

Taras Shevchenko National University of Kyiv

Abstract
In [8] it was formally proved that the decreasing diagrams method

[7] is sound for proving confluence: if a binary relation r has LD prop-
erty defined in [8], then it has CR property defined in [6].

In this formal theory it is proved that if the cardinality of r does
not exceed the first uncountable cardinal, then r has CR property
if and only if r has LD property. As a consequence, the decreasing
diagrams method is complete for proving confluence of relations of the
least uncountable cardinality.

A paper that describes details of this proof has been submitted to
the FSCD 2025 conference. This formalization extends formalizations
[1, 5, 4, 2] and the paper [3].
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2 Main theorem 317

1 Preliminaries
1.1 Formal definition of finite levels of the DCR hierarchy
theory Finite-DCR-Hierarchy

imports Main
begin

1.1.1 Auxiliary definitions
definition confl-rel

where confl-rel r ≡ (∀ a b c. (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→ (∃ d. (b,d) ∈ r^∗ ∧
(c,d) ∈ r^∗) )

definition jn00 :: ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn00 r0 b c ≡ (∃ d. (b,d) ∈ r0^= ∧ (c,d) ∈ r0^=)

definition jn01 :: ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn01 r0 r1 b c ≡ (∃ b ′ d. (b,b ′) ∈ r1^= ∧ (b ′,d) ∈ r0^∗ ∧ (c,d) ∈ r0^∗)

definition jn10 :: ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn10 r0 r1 b c ≡ (∃ c ′ d. (b,d) ∈ r0^∗ ∧ (c,c ′) ∈ r1^= ∧ (c ′,d) ∈ r0^∗)

definition jn11 :: ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn11 r0 r1 b c ≡ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈
r0^∗

∧ (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗)

definition jn02 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn02 r0 r1 r2 b c ≡ (∃ b ′ d. (b,b ′) ∈ r2^= ∧ (b ′,d) ∈ (r0 ∪ r1 )^∗ ∧ (c,d) ∈ (r0
∪ r1 )^∗ )

definition jn12 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn12 r0 r1 r2 b c ≡ (∃ b ′ b ′′ d. (b,b ′) ∈ (r0 )^∗ ∧ (b ′,b ′′) ∈ r2^= ∧ (b ′′,d) ∈ (r0
∪ r1 )^∗

∧ (c,d) ∈ (r0 ∪ r1 )^∗)

definition jn22 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a ⇒ ′a ⇒ bool
where

jn22 r0 r1 r2 b c ≡ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′) ∈ (r0 ∪ r1 )^∗ ∧ (b ′,b ′′) ∈ r2^= ∧
(b ′′,d) ∈ (r0 ∪ r1 )^∗
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∧ (c,c ′) ∈ (r0 ∪ r1 )^∗ ∧ (c ′,c ′′) ∈ r2^= ∧ (c ′′,d)
∈ (r0 ∪ r1 )^∗)

definition LD2 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ bool
where

LD2 r r0 r1 ≡ ( r = r0 ∪ r1
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ jn00 r0 b c)
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1 −→ jn01 r0 r1 b c)
∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1 −→ jn11 r0 r1 b c) )

definition LD3 :: ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ ′a rel ⇒ bool
where

LD3 r r0 r1 r2 ≡ ( r = r0 ∪ r1 ∪ r2
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ jn00 r0 b c)
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1 −→ jn01 r0 r1 b c)
∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1 −→ jn11 r0 r1 b c)
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r2 −→ jn02 r0 r1 r2 b c)
∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r2 −→ jn12 r0 r1 r2 b c)
∧ (∀ a b c. (a,b) ∈ r2 ∧ (a,c) ∈ r2 −→ jn22 r0 r1 r2 b c))

definition DCR2 :: ′a rel ⇒ bool
where

DCR2 r ≡ ( ∃ r0 r1 . LD2 r r0 r1 )

definition DCR3 :: ′a rel ⇒ bool
where

DCR3 r ≡ ( ∃ r0 r1 r2 . LD3 r r0 r1 r2 )

definition L1 :: (nat ⇒ ′U rel) ⇒ nat ⇒ ′U rel
where
L1 g α ≡

⋃
{A. ∃ α ′. (α ′ < α) ∧ A = g α ′}

definition Lv :: (nat ⇒ ′U rel) ⇒ nat ⇒ nat ⇒ ′U rel
where
Lv g α β ≡

⋃
{A. ∃ α ′. (α ′ < α ∨ α ′ < β) ∧ A = g α ′}

definition D :: (nat ⇒ ′U rel) ⇒ nat ⇒ nat ⇒ ( ′U × ′U × ′U × ′U ) set
where
D g α β = {(b,b ′,b ′′,d). (b,b ′) ∈ (L1 g α)^∗ ∧ (b ′,b ′′) ∈ (g β)^= ∧ (b ′′,d) ∈ (Lv

g α β)^∗}

definition DCR-generating :: (nat ⇒ ′U rel) ⇒ bool
where

DCR-generating g ≡ (∀ α β a b c. (a,b) ∈ (g α) ∧ (a,c) ∈ (g β)
−→ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ (D g α β) ∧ (c,c ′,c ′′,d) ∈ (D g β

α) ))
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1.1.2 Result

The next definition formalizes the condition “an ARS with a reduction re-
lation r belongs to the class DCRn”, where n is a natural number.
definition DCR :: nat ⇒ ′U rel ⇒ bool
where

DCR n r ≡ (∃ g::(nat ⇒ ′U rel). DCR-generating g ∧ r =
⋃
{ r ′. ∃ α ′. α ′ <

n ∧ r ′ = g α ′ } )

end

1.2 Completeness of the DCR3 method for proving conflu-
ence of relations of the least uncountable cardinality

theory DCR3-Method
imports

HOL−Cardinals.Cardinals
Abstract−Rewriting.Abstract-Rewriting
Finite-DCR-Hierarchy

begin

1.2.1 Auxiliary definitions
abbreviation ω-ord where ω-ord ≡ natLeq

definition sc-ord:: ′U rel ⇒ ′U rel ⇒ bool
where sc-ord α α ′ ≡ (α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′ ≤o β))

definition lm-ord:: ′U rel ⇒ bool
where lm-ord α ≡ Well-order α ∧ ¬ (α = {} ∨ isSuccOrd α)

definition nord :: ′U rel ⇒ ′U rel where nord α = (SOME α ′:: ′U rel. α ′ =o α)

definition O:: ′U rel set where O ≡ nord ‘ {α. Well-order α}

definition oord:: ′U rel rel where oord ≡ (Restr ordLeq O)

definition CCR :: ′U rel ⇒ bool
where

CCR r = (∀ a ∈ Field r . ∀ b ∈ Field r . ∃ c ∈ Field r . (a,c) ∈ r^∗ ∧ (b,c) ∈ r^∗)

definition Conelike :: ′U rel ⇒ bool
where

Conelike r = (r = {} ∨ (∃ m ∈ Field r . ∀ a ∈ Field r . (a,m) ∈ r^∗))

definition dncl :: ′U rel ⇒ ′U set ⇒ ′U set
where

dncl r A = ((r^∗)^−1 )‘‘A
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definition Inv :: ′U rel ⇒ ′U set set
where

Inv r = { A :: ′U set . r ‘‘ A ⊆ A }

definition SF :: ′U rel ⇒ ′U set set
where

SF r = { A :: ′U set. Field (Restr r A) = A }

definition SCF :: ′U rel ⇒ ( ′U set) set where
SCF r ≡ { B::( ′U set) . B ⊆ Field r ∧ (∀ a ∈ Field r . ∃ b ∈ B. (a,b) ∈ r^∗) }

definition cfseq :: ′U rel ⇒ (nat ⇒ ′U ) ⇒ bool
where

cfseq r xi ≡ ((∀ a ∈ Field r . ∃ i. (a, xi i) ∈ r^∗) ∧ (∀ i. (xi i, xi (Suc i)) ∈ r))

definition rpth :: ′U rel ⇒ ′U ⇒ ′U ⇒ nat ⇒ (nat ⇒ ′U ) set
where

rpth r a b n ≡ { f ::(nat ⇒ ′U ). f 0 = a ∧ f n = b ∧ (∀ i<n. (f i, f (Suc i)) ∈ r)
}

definition F :: ′U rel ⇒ ′U ⇒ ′U ⇒ ′U set set
where
F r a b ≡ { F :: ′U set. ∃ n::nat. ∃ f ∈ rpth r a b n. F = f‘{i. i≤n} }

definition f :: ′U rel ⇒ ′U ⇒ ′U ⇒ ′U set
where
f r a b ≡ (if (F r a b 6= {}) then (SOME F . F ∈ F r a b) else {})

definition dnEsc :: ′U rel ⇒ ′U set ⇒ ′U ⇒ ′U set set
where

dnEsc r A a ≡ { F . ∃ b. ((b /∈ dncl r A) ∧ (F ∈ F r a b) ∧ (F ∩ A = {})) }

definition dnesc :: ′U rel ⇒ ′U set ⇒ ′U ⇒ ′U set
where

dnesc r A a = (if (dnEsc r A a 6= {}) then (SOME F . F ∈ dnEsc r A a) else {
a })

definition escl :: ′U rel ⇒ ′U set ⇒ ′U set ⇒ ′U set
where

escl r A B =
⋃

((dnesc r A) ‘ B)

definition clterm where clterm s ′ r ≡ (Conelike s ′ −→ Conelike r)

definition spthlen:: ′U rel ⇒ ′U ⇒ ′U ⇒ nat
where

spthlen r a b ≡ (LEAST n::nat. (a,b) ∈ r^^n)

definition spth :: ′U rel ⇒ ′U ⇒ ′U ⇒ (nat ⇒ ′U ) set
where
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spth r a b = rpth r a b (spthlen r a b)

definition U:: ′U rel ⇒ ( ′U rel) set where
U r ≡ { s::( ′U rel) . CCR s ∧ s ⊆ r ∧ (∀ a ∈ Field r . ∃ b ∈ Field s. (a,b) ∈

r^∗) }

definition RCC-rel :: ′U rel ⇒ ′U rel ⇒ bool where
RCC-rel r α ≡ (U r = {} ∧ α = {}) ∨ (∃ s ∈ U r . |s| =o α ∧ ( ∀ s ′ ∈ U r . |s|
≤o |s ′| ))

definition RCC :: ′U rel ⇒ ′U rel (‖-‖)
where ‖r‖ ≡ (SOME α. RCC-rel r α)

definition Den:: ′U rel ⇒ ( ′U set) set where
Den r ≡ { B::( ′U set) . B ⊆ Field r ∧ (∀ a ∈ Field r . ∃ b ∈ B. (a,b) ∈ r^=) }

definition Span:: ′U rel ⇒ ( ′U rel) set where
Span r ≡ { s. s ⊆ r ∧ Field s = Field r }

definition scf-rel :: ′U rel ⇒ ′U rel ⇒ bool where
scf-rel r α ≡ (∃ B ∈ SCF r . |B| =o α ∧ ( ∀ B ′ ∈ SCF r . |B| ≤o |B ′| ))

definition scf :: ′U rel ⇒ ′U rel
where scf r ≡ (SOME α. scf-rel r α)

definition w-dncl :: ′U rel ⇒ ′U set ⇒ ′U set
where

w-dncl r A = { a ∈ dncl r A. ∀ b. ∀ F ∈ F r a b. ( b /∈ dncl r A −→ F ∩ A 6=
{} ) }

definition L :: ( ′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U set
where
L f α ≡

⋃
{A. ∃ α ′. α ′ <o α ∧ A = f α ′}

definition Dbk :: ( ′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U set ( ∇ - - )
where
∇ f α ≡ f α − (L f α)

definition Q :: ′U rel ⇒ ( ′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U set
where
Q r f α ≡ (f α − (dncl r (L f α)))

definition W :: ′U rel ⇒ ( ′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U set
where
W r f α ≡ (f α − (w-dncl r (L f α)))

definition N1 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N1 r α0 ≡ { f . ∀α α ′. ( α ≤o α0 ∧ α ′ ≤o α ) −→ (f α ′) ⊆ (f α) }
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definition N2 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N2 r α0 ≡ { f . ∀α. ( α ≤o α0 ∧ ¬ (α = {} ∨ isSuccOrd α) ) −→ (∇ f α) =
{} }

definition N3 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N3 r α0 ≡ { f . ∀α. ( α ≤o α0 ∧ (α = {} ∨ isSuccOrd α) ) −→

( ω-ord ≤o |L f α| −→ ((escl r (L f α) (f α) ⊆ (f α)) ∧ (clterm (Restr r (f
α)) r)) ) }

definition N4 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N4 r α0 ≡ { f . ∀α. ( α ≤o α0 ∧ (α = {} ∨ isSuccOrd α) ) −→

( ∀ a ∈ (L f α). ( r‘‘{a} ⊆ w-dncl r (L f α) ) ∨ ( r‘‘{a} ∩ (W r f α)6={} )
) }

definition N5 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N5 r α0 ≡ { f . ∀α. α ≤o α0 −→ (f α) ∈ SF r }

definition N6 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N6 r α0 ≡ { f . ∀α. α ≤o α0 −→ CCR (Restr r (f α)) }

definition N7 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N7 r α0 ≡ { f . ∀α. α ≤o α0 −→ ( α <o ω-ord −→ |f α| <o ω-ord ) ∧ (ω-ord
≤o α −→ |f α| ≤o α) }

definition N8 :: ′U rel ⇒ ′U set set ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N8 r Ps α0 ≡ { f . ∀α. α ≤o α0 ∧ (α = {} ∨ isSuccOrd α) ∧ ( (∃ P. Ps =
{P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α| )) −→

(∀ P ∈ Ps. ((f α) ∩ P) ∈ SCF (Restr r (f α))) }

definition N9 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N9 r α0 ≡ { f . ω-ord ≤o α0 −→ Field r ⊆ (f α0 ) }

definition N10 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N10 r α0 ≡ { f . ∀α. α ≤o α0 −→ ((∃ y:: ′U . Q r f α = {y}) −→ (Field r ⊆

dncl r (f α))) }

definition N11 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N11 r α0 ≡ { f . ∀α. ( α ≤o α0 ∧ isSuccOrd α) −→ Q r f α = {} −→ (Field
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r ⊆ dncl r (f α)) }

definition N12 :: ′U rel ⇒ ′U rel ⇒ ( ′U rel ⇒ ′U set) set
where
N12 r α0 ≡ { f . ∀α. α ≤o α0 −→ ω-ord ≤o α −→ ω-ord ≤o |L f α| }

definition N :: ′U rel ⇒ ′U set set ⇒ ( ′U rel ⇒ ′U set) set
where
N r Ps ≡ { f ∈ (N1 r |Field r | ) ∩ (N2 r |Field r | ) ∩ (N3 r |Field r | ) ∩ (N4

r |Field r | )
∩ (N5 r |Field r | ) ∩ (N6 r |Field r | ) ∩ (N7 r |Field r | ) ∩ (N8 r Ps

|Field r | )
∩ (N9 r |Field r | ∩ N10 r |Field r | ∩ N11 r |Field r | ∩ N12 r |Field r | ).
(∀ α β. α =o β −→ f α = f β) }

definition T :: ( ′U rel ⇒ ′U set ⇒ ′U set) ⇒ ( ′U rel ⇒ ′U set) set
where
T F ≡ { f :: ′U rel ⇒ ′U set .

f {} = {}
∧ (∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 )))
∧ (∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β }))

∧ (∀α β. α =o β −→ f α = f β) }

definition Ep where Ep r Ps A A ′ ≡
(((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A| ))

−→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′) ))

definition E :: ′U rel ⇒ ′U ⇒ ′U set ⇒ ′U set set ⇒ ′U set set
where
E r a A Ps ≡ { A ′.

(a ∈ Field r −→ a ∈ A ′) ∧ A ⊆ A ′

∧ ( |A| <o ω-ord −→ |A ′| <o ω-ord ) ∧ ( ω-ord ≤o |A| −→ |A ′| ≤o |A| )
∧ (A ∈ SF r −→ (

A ′ ∈ SF r
∧ CCR (Restr r A ′)
∧ ( ∀ a∈A. (r‘‘{a} ⊆ w-dncl r A) ∨ (r‘‘{a} ∩ (A ′−w-dncl r A) 6= {})

)
∧ ((∃ y. A ′ − dncl r A ⊆ {y}) −→ (Field r ⊆ (dncl r A ′)))
∧ Ep r Ps A A ′

∧ ( ω-ord ≤o |A| −→ escl r A A ′ ⊆ A ′ ∧ clterm (Restr r A ′) r)) ) }

definition wbase:: ′U rel ⇒ ′U set ⇒ ( ′U set) set where
wbase r A ≡ { B:: ′U set. A ⊆ w-dncl r B }

definition wrank-rel :: ′U rel ⇒ ′U set ⇒ ′U rel ⇒ bool where
wrank-rel r A α ≡ (∃ B ∈ wbase r A. |B| =o α ∧ ( ∀ B ′ ∈ wbase r A. |B| ≤o
|B ′| ))

definition wrank :: ′U rel ⇒ ′U set ⇒ ′U rel
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where wrank r A ≡ (SOME α. wrank-rel r A α)

definition Mwn :: ′U rel ⇒ ′U rel ⇒ ′U set
where

Mwn r α = { a ∈ Field r . α <o wrank r (r ‘‘{a}) }

definition Mwnm :: ′U rel ⇒ ′U set
where

Mwnm r = { a ∈ Field r . ‖r‖ ≤o wrank r (r ‘‘{a}) }

definition wesc-rel :: ′U rel ⇒ ( ′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U ⇒ ′U ⇒ bool
where

wesc-rel r f α a b ≡ ( b ∈ W r f α ∧ (a,b) ∈ (Restr r (W r f α))^∗
∧ (∀β. α <o β ∧ β <o |Field r | ∧ (β = {} ∨ isSuccOrd β) −→ (r‘‘{b} ∩ (W

r f β) 6= {})) )

definition wesc :: ′U rel ⇒ ( ′U rel ⇒ ′U set) ⇒ ′U rel ⇒ ′U ⇒ ′U
where

wesc r f α a ≡ (SOME b. wesc-rel r f α a b)

definition cardLeN1 :: ′a set ⇒ bool
where

cardLeN1 A ≡ (∀ B ⊆ A.
( ∀ C ⊆ B . ((∃ D f . D ⊂ C ∧ C ⊆ f‘D ) −→ ( ∃ f . B ⊆ f‘C )) )
∨ ( ∃ g . A ⊆ g‘B ) )

1.2.2 Auxiliary lemmas
lemma lem-Ldo-ldogen-ord:
assumes ∀α β a b c. α ≤ β −→ (a, b) ∈ g α ∧ (a, c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)
shows DCR-generating g

using assms unfolding DCR-generating-def by (meson linear)

lemma lem-rtr-field: (x,y) ∈ r^∗ =⇒ (x = y) ∨ (x ∈ Field r ∧ y ∈ Field r)
by (metis Field-def Not-Domain-rtrancl Range.RangeI UnCI rtranclE)

lemma lem-fin-fl-rel: finite (Field r) = finite r
using finite-Field finite-subset trancl-subset-Field2 by fastforce

lemma lem-Relprop-fld-sat:
fixes r s:: ′U rel
assumes a1 : s ⊆ r and a2 : s ′ = Restr r (Field s)
shows s ⊆ s ′ ∧ Field s ′ = Field s
proof −

have s ⊆ (Field s) × (Field s) unfolding Field-def by force
then have s ⊆ s ′ using a1 a2 by blast
moreover then have Field s ⊆ Field s ′ unfolding Field-def by blast
moreover have Field s ′ ⊆ Field s using a2 unfolding Field-def by blast
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ultimately show ?thesis by blast
qed

lemma lem-Relprop-sat-un:
fixes r :: ′U rel and S :: ′U set set and A ′:: ′U set
assumes a1 : ∀A∈S . Field (Restr r A) = A and a2 : A ′ =

⋃
S

shows Field (Restr r A ′) = A ′

proof
show Field (Restr r A ′) ⊆ A ′ unfolding Field-def by blast

next
show A ′ ⊆ Field (Restr r A ′)
proof

fix x
assume x ∈ A ′

then obtain A where A ∈ S ∧ x ∈ A using a2 by blast
then have x ∈ Field (Restr r A) ∧ A ⊆ A ′ using a1 a2 by blast

moreover then have Field (Restr r A) ⊆ Field (Restr r A ′) unfolding
Field-def by blast

ultimately show x ∈ Field (Restr r A ′) by blast
qed

qed

lemma lem-nord-r : Well-order α =⇒ nord α =o α unfolding nord-def by (meson
ordIso-reflexive someI-ex)

lemma lem-nord-l: Well-order α =⇒ α =o nord α unfolding nord-def by (meson
ordIso-reflexive ordIso-symmetric someI-ex)

lemma lem-nord-eq: α =o β =⇒ nord α = nord β unfolding nord-def using
ordIso-symmetric ordIso-transitive by metis

lemma lem-nord-req: Well-order α =⇒ Well-order β =⇒ nord α = nord β =⇒ α
=o β

using lem-nord-l lem-nord-r ordIso-transitive by metis

lemma lem-Onord: α ∈ O =⇒ α = nord α unfolding O-def using lem-nord-r
lem-nord-eq by blast

lemma lem-Oeq: α ∈ O =⇒ β ∈ O =⇒ α =o β =⇒ α = β using lem-Onord
lem-nord-eq by metis

lemma lem-Owo: α ∈ O =⇒ Well-order α unfolding O-def using lem-nord-r
ordIso-Well-order-simp by blast

lemma lem-fld-oord: Field oord = O using lem-Owo ordLeq-reflexive unfolding
oord-def Field-def by blast

lemma lem-nord-less: α <o β =⇒ nord β 6= nord α ∧ (nord α, nord β) ∈ oord
proof −
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assume b1 : α <o β
then have nord α ∈ O ∧ nord β ∈ O ∧ nord α =o α ∧ nord β =o β

using lem-nord-r ordLess-Well-order-simp unfolding O-def by blast
moreover have ∀ r A a b. (a,b) ∈ Restr r A = (a ∈ A ∧ b ∈ A ∧ (a,b) ∈ r)

unfolding Field-def by force
ultimately show nord β 6= nord α ∧(nord α, nord β) ∈ oord using b1 unfold-

ing oord-def
by (metis not-ordLess-ordIso ordIso-iff-ordLeq ordLeq-iff-ordLess-or-ordIso or-

dLeq-transitive)
qed

lemma lem-nord-ls: α <o β =⇒ nord α <o nord β
proof −

assume a1 : α <o β
then have Well-order α ∧ Well-order β unfolding ordLess-def by blast
then have nord α =o α and nord β =o β using lem-nord-r by blast+
then show nord α <o nord β using a1

using ordIso-iff-ordLeq ordIso-ordLess-trans ordLess-ordLeq-trans by blast
qed

lemma lem-nord-le: α ≤o β =⇒ nord α ≤o nord β
proof −

assume a1 : α ≤o β
then have Well-order α ∧ Well-order β unfolding ordLeq-def by blast
then have nord α =o α and nord β =o β using lem-nord-r by blast+
then show nord α ≤o nord β using a1 by (meson ordIso-iff-ordLeq ordLeq-transitive)

qed

lemma lem-nordO-ls-l: α <o β =⇒ nord α ∈ O using O-def ordLess-Well-order-simp
by blast

lemma lem-nordO-ls-r : α <o β =⇒ nord β ∈ O using O-def ordLess-Well-order-simp
by blast

lemma lem-nordO-le-l: α ≤o β =⇒ nord α ∈ O using O-def ordLeq-Well-order-simp
by blast

lemma lem-nordO-le-r : α ≤o β =⇒ nord β ∈ O using O-def ordLeq-Well-order-simp
by blast

lemma lem-nord-ls-r : α <o β =⇒ α <o nord β
using lem-nord-ls[of α β] lem-nord-r [of β] lem-nord-l by (metis ordLess-ordIso-trans

ordLess-Well-order-simp)

lemma lem-nord-ls-l: α <o β =⇒ nord α <o β
using lem-nord-ls[of α β] lem-nord-r [of β] by (metis ordLess-ordIso-trans ord-

Less-Well-order-simp)

lemma lem-nord-le-r : α ≤o β =⇒ α ≤o nord β
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using lem-nord-le[of α β] lem-nord-r [of β] lem-nord-l by (metis ordLeq-ordIso-trans
ordLeq-Well-order-simp)

lemma lem-nord-le-l: α ≤o β =⇒ nord α ≤o β
using lem-nord-le[of α β] lem-nord-r [of β] by (metis ordLeq-ordIso-trans or-

dLeq-Well-order-simp)

lemma lem-oord-wo: Well-order oord
proof −

let ?oleqO = Restr ordLeq O
have Well-order ?oleqO
proof −

have c1 : Field ordLeq = {α:: ′U rel. Well-order α}
using ordLeq-Well-order-simp ordLeq-reflexive unfolding Field-def by blast

then have Refl ordLeq using ordLeq-refl-on by metis
then have Preorder ordLeq using ordLeq-trans unfolding preorder-on-def by

blast
then have Preorder ?oleqO using Preorder-Restr by blast
moreover have ∀α β:: ′U rel. (α, β) ∈ ?oleqO −→ (β, α) ∈ ?oleqO −→ α = β
proof (intro allI impI )

fix α β:: ′U rel
assume d1 : (α, β) ∈ ?oleqO and d2 : (β, α) ∈ ?oleqO
then have α ≤o β ∧ β ≤o α by blast
then have α =o β using ordIso-iff-ordLeq by blast
moreover have α ∈ O ∧ β ∈ O using d1 by blast
ultimately show α = β using lem-Oeq by blast

qed
moreover have ∀ α ∈ Field (?oleqO:: ′U rel rel). ∀ β ∈ Field ?oleqO. α 6= β

−→
(α, β) ∈ ?oleqO ∨ (β, α) ∈ ?oleqO

proof (intro ballI impI )
fix α β:: ′U rel
assume d1 : α ∈ Field ?oleqO and d2 : β ∈ Field ?oleqO and α 6= β
then have Well-order α ∧ Well-order β using c1 unfolding Field-def

by (metis (no-types, lifting) Field-Un Field-def Un-def mem-Collect-eq
sup-inf-absorb)

then have α ≤o β ∨ β ≤o α using ordLess-imp-ordLeq ordLess-or-ordLeq
by blast

moreover have α ∈ O ∧ β ∈ O using d1 d2 unfolding Field-def by blast
ultimately show (α, β) ∈ ?oleqO ∨ (β, α) ∈ ?oleqO by blast

qed
ultimately have Linear-order ?oleqO unfolding linear-order-on-def

partial-order-on-def total-on-def antisym-def preorder-on-def by blast
moreover have wf ((?oleqO:: ′U rel rel) − Id)
proof −

have Restr (ordLess:: ′U rel rel) O ⊆ ?oleqO − Id
using not-ordLeq-ordLess ordLeq-iff-ordLess-or-ordIso by blast

moreover have (?oleqO:: ′U rel rel) − Id ⊆ Restr ordLess O
using lem-Oeq ordLeq-iff-ordLess-or-ordIso by blast
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ultimately have (?oleqO:: ′U rel rel) − Id = Restr ordLess O by blast
moreover have wf (Restr ordLess O)
using wf-ordLess Restr-subset wf-subset[of ordLess Restr ordLess O] by blast

ultimately show ?thesis by simp
qed
ultimately show ?thesis unfolding well-order-on-def by blast

qed
moreover have Well-order |(UNIV − O):: ′U rel set| using card-of-Well-order

by blast
moreover have Field (Restr ordLeq O) ∩ Field ( |(UNIV − O):: ′U rel set| ) =
{}

proof −
have Field (Restr ordLeq O) ⊆ O unfolding Field-def by blast
moreover have Field ( |(UNIV − O):: ′U rel set| ) ⊆ UNIV − O by simp
ultimately show ?thesis by blast

qed
ultimately show ?thesis unfolding oord-def using Osum-Well-order by blast

qed

lemma lem-lmord-inf :
fixes α:: ′U rel
assumes lm-ord α
shows ¬ finite (Field α)
proof −

have finite (Field α) −→ False
proof

assume c1 : finite (Field α)
have c2 : Well-order α using assms unfolding lm-ord-def by blast
have α 6= {} using assms lm-ord-def by blast
then have Field α 6= {} unfolding Field-def by force
then have wo-rel.isMaxim α (Field α) (wo-rel.maxim α (Field α))

using c1 c2 wo-rel.maxim-isMaxim[of α Field α] unfolding wo-rel-def by
blast

then have ∃ j∈Field α. ∀ i∈Field α. (i, j) ∈ α
using c2 wo-rel.isMaxim-def [of α Field α] unfolding wo-rel-def by blast

then have isSuccOrd α using c2 wo-rel.isSuccOrd-def unfolding wo-rel-def
by blast

then show False using assms unfolding lm-ord-def by blast
qed
then show ?thesis by blast

qed

lemma lem-sucord-ex:
fixes α β:: ′U rel
assumes α <o β
shows ∃ α ′:: ′U rel. sc-ord α α ′

proof −
obtain S :: ′U rel set where b1 : S = { γ:: ′U rel. α <o γ } by blast
then have S 6= {} ∧ (∀ α ∈ S . Well-order α) using assms ordLess-Well-order-simp
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by blast
then obtain α ′ where α ′ ∈ S ∧ (∀α ∈ S . α ′ ≤o α)

using BNF-Wellorder-Constructions.exists-minim-Well-order [of S ] by blast
then show ?thesis unfolding b1 sc-ord-def by blast

qed

lemma lem-osucc-eq: isSuccOrd α =⇒ α =o β =⇒ isSuccOrd β
proof −

assume a1 : isSuccOrd α and a2 : α =o β
moreover then have a3 : wo-rel α and a4 : wo-rel β unfolding ordIso-def

wo-rel-def by blast+
obtain j where a5 : j ∈ Field α and a6 : ∀ i∈Field α. (i, j) ∈ α using a1 a3

wo-rel.isSuccOrd-def by blast
obtain f where a7 : iso α β f using a2 unfolding ordIso-def by blast
have (f j) ∈ Field β using a5 a7 unfolding iso-def bij-betw-def by blast
moreover have ∀ i ′ ∈ Field β. (i ′, f j) ∈ β
proof

fix i ′
assume b1 : i ′ ∈ Field β
then obtain i where b2 : i ∈ Field α ∧ i ′ = f i using a7 unfolding iso-def

bij-betw-def by blast
then have (i, j) ∈ α using a6 by blast

then have (f i, f j) ∈ β using a2 a7 by (meson iso-oproj oproj-in or-
dIso-Well-order-simp)

then show (i ′, f j) ∈ β using b2 by blast
qed
ultimately have ∃ j∈Field β. ∀ i∈Field β. (i, j) ∈ β by blast
then show isSuccOrd β using a4 wo-rel.isSuccOrd-def by blast

qed

lemma lem-ord-subemp: (α:: ′a rel) ≤o ({}:: ′b rel) =⇒ α = {}
proof −

assume α ≤o ({}:: ′b rel)
then obtain f where embed α ({}:: ′b rel) f unfolding ordLeq-def by blast
then show α = {} unfolding embed-def bij-betw-def Field-def under-def by

force
qed

lemma lem-ordint-sucord:
fixes α0 :: ′a rel and α:: ′b rel
assumes α0 <o α ∧ (∀ γ:: ′b rel. α0 <o γ −→ α ≤o γ)
shows isSuccOrd α
proof −

have c1 : Well-order α using assms unfolding ordLess-def by blast
obtain f where e3 : Well-order α0 ∧ Well-order α ∧ embedS α0 α f using

assms unfolding ordLess-def by blast
moreover have e4 : f ‘ Field α0 ⊆ Field α using e3 embed-in-Field[of α0 α f ]

unfolding embedS-def by blast
have f ‘ Field α0 6= Field α using e3 embed-inj-on unfolding bij-betw-def
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embedS-def by blast
then obtain j0 where e5 : j0 ∈ Field α ∧ j0 /∈ f ‘ Field α0 using e4 by blast
moreover have ∀ i ∈ Field α. (i, j0 ) ∈ α
proof

fix i
assume i ∈ Field α
moreover then have (i, i) ∈ α using e3 unfolding well-order-on-def

linear-order-on-def partial-order-on-def preorder-on-def refl-on-def by blast
moreover have (j0 , i) ∈ α −→ (i, j0 ) ∈ α
proof

assume g1 : (j0 , i) ∈ α
obtain γ where g2 : γ = Restr α (under α j0 ) by blast
then have g3 : Well-order γ using e3 Well-order-Restr by blast
have α0 <o γ
proof −

have h1 : ∀ a ∈ Field α0 . f a ∈ under α j0
proof

fix a
assume i1 : a ∈ Field α0

then have i2 : bij-betw f (under α0 a) (under α (f a)) using e3 unfolding
embedS-def embed-def by blast

have (j0 , f a) ∈ α −→ False
proof

assume (j0 , f a) ∈ α
then obtain b where j0 = f b ∧ b ∈ under α0 a using i2 unfolding

under-def bij-betw-def by (simp, blast)
moreover then have b ∈ Field α0 unfolding under-def Field-def by

blast
ultimately show False using e5 by blast

qed
moreover have i3 : j0 ∈ Field α using g1 unfolding Field-def by blast

moreover have f a ∈ Field α using i1 e3 embed-Field unfolding
embedS-def by blast

ultimately have i4 : (f a, j0 ) ∈ α
using e3 unfolding well-order-on-def linear-order-on-def total-on-def

partial-order-on-def preorder-on-def refl-on-def by metis
then show f a ∈ under α j0 unfolding under-def by blast

qed
then have compat α0 γ f
using e3 g2 embed-compat unfolding Field-def embedS-def compat-def by

blast
moreover have ofilter γ (f ‘ Field α0 )
proof −
have ofilter α (under α j0 ) using e3 wo-rel.under-ofilter [of α] unfolding

wo-rel-def by blast
moreover have ofilter α (f ‘ Field α0 )
using e3 embed-iff-compat-inj-on-ofilter [of α0 α f ] unfolding embedS-def

by blast
moreover have f ‘ Field α0 ⊆ under α j0 using h1 by blast
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ultimately show ofilter γ (f ‘ Field α0 )
using g2 e3 ofilter-Restr-subset[of α f ‘ Field α0 under α j0 ] by blast

qed
moreover have inj-on f (Field α0 )
using e3 embed-iff-compat-inj-on-ofilter [of α0 α f ] unfolding embedS-def

by blast
ultimately have embed α0 γ f using g3 e3 embed-iff-compat-inj-on-ofilter [of

α0 γ f ] by blast
moreover have bij-betw f (Field α0 ) (Field γ) −→ False
proof

assume i1 : bij-betw f (Field α0 ) (Field γ)
have (j0 , j0 ) ∈ α using e3 e5 unfolding well-order-on-def

linear-order-on-def partial-order-on-def preorder-on-def refl-on-def by
blast

then have j0 ∈ Field γ using g2 unfolding under-def Field-def by blast
then show False using i1 e5 unfolding bij-betw-def by blast

qed
ultimately have embedS α0 γ f unfolding embedS-def by blast
then show ?thesis using g3 e3 unfolding ordLess-def by blast

qed
then have α =o γ using assms g2 e3 under-Restr-ordLeq[of α j0 ] or-

dIso-iff-ordLeq by blast
then obtain f1 where iso α γ f1 unfolding ordIso-def by blast
then have g4 : embed α γ f1 ∧ bij-betw f1 (Field α) (Field γ) unfolding

iso-def by blast
then have f1 ‘ under α i = under γ (f1 i) using g1 unfolding bij-betw-def

embed-def Field-def by blast
then have (f1 i, j0 ) ∈ α using g1 unfolding g2 under-def by blast
moreover have f1 i = i
proof −

have Restr α (Field α) = α unfolding Field-def by force
moreover have ofilter α (under α j0 ) using e3 wo-rel.under-ofilter [of α]

unfolding wo-rel-def by blast
moreover have ofilter α (Field α) unfolding ofilter-def under-def Field-def

by blast
moreover have under α j0 ⊆ Field α unfolding under-def Field-def by

blast
ultimately have embed γ α id using g2 e3 ofilter-subset-embed by metis
then have embed α α (id ◦ f1 ) using g4 e3 comp-embed by blast
then have embed α α f1 by simp

moreover have embed α α id unfolding embed-def id-def bij-betw-def
inj-on-def by blast

ultimately have ∀ k ∈ Field α. f1 k = k using e3 embed-unique[of α α
f1 id] unfolding id-def by blast

moreover have i ∈ Field α using g1 unfolding Field-def by blast
ultimately show ?thesis by blast

qed
ultimately show (i, j0 ) ∈ α by metis

qed
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ultimately show (i, j0 ) ∈ α
using e3 e5 unfolding well-order-on-def linear-order-on-def total-on-def by

metis
qed
ultimately show isSuccOrd α using c1 wo-rel.isSuccOrd-def [of α] unfolding

wo-rel-def by blast
qed

lemma lem-sucord-ordint:
fixes α:: ′U rel
assumes Well-order α ∧ isSuccOrd α
shows ∃ α0 :: ′U rel. α0 <o α ∧ (∀ γ:: ′U rel. α0 <o γ −→ α ≤o γ)
proof −

obtain j where b1 : j ∈ Field α ∧ (∀ i ∈ Field α. (i, j) ∈ α)
using assms wo-rel.isSuccOrd-def unfolding wo-rel-def by blast

moreover obtain α0 where b2 : α0 = Restr α (UNIV − {j}) by blast
moreover have ∀ i. (j, i) ∈ α −→ i = j using assms b1 unfolding Field-def

well-order-on-def
linear-order-on-def partial-order-on-def antisym-def by blast

ultimately have b3 : embedS α0 α id
unfolding Field-def embedS-def embed-def id-def bij-betw-def under-def inj-on-def

apply simp
by blast

moreover have b4 : Well-order α0 using assms b2 Well-order-Restr by blast
ultimately have α0 <o α using assms unfolding ordLess-def by blast
moreover have ∀ γ:: ′U rel. α0 <o γ −→ α ≤o γ
proof (intro allI impI )

fix γ:: ′U rel
assume c1 : α0 <o γ
then have c2 : Well-order γ unfolding ordLess-def by blast
obtain f where embedS α0 γ f using c1 unfolding ordLess-def by blast
then have c3 : embed α0 γ f ∧ ¬ bij-betw f (Field α0 ) (Field γ) unfolding

embedS-def by blast
have γ <o α −→ False
proof

assume d1 : γ <o α
obtain g where embedS γ α g using d1 unfolding ordLess-def by blast
then have d3 : embed γ α g ∧ ¬ bij-betw g (Field γ) (Field α) unfolding

embedS-def by blast
have d4 : j ∈ g ‘ Field γ −→ False
proof

assume j ∈ g ‘ Field γ
then obtain a where a ∈ Field γ ∧ g a = j by blast

then have bij-betw g (under γ a) (under α j) using d3 unfolding embed-def
by blast

moreover have under α j = Field α using b1 unfolding under-def
Field-def by blast

ultimately have bij-betw g (under γ a) (Field α) by simp
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then have g ‘ Field γ 6= Field α ∧ g ‘ Field γ ⊆ Field α ∧ g ‘ under γ a
= Field α

using c2 d3 embed-inj-on[of γ α g] embed-Field[of γ α g] unfolding
bij-betw-def by blast

moreover have under γ a ⊆ Field γ unfolding under-def Field-def by
blast

ultimately show False by blast
qed
have Field γ ⊆ f ‘ Field α0
proof

fix a
assume e1 : a ∈ Field γ
then have bij-betw g (under γ a) (under α (g a)) using d3 unfolding

embed-def by blast
have g a ∈ Field α − {j} using e1 c2 d3 d4 embed-Field by blast

moreover then have (g a, g a) ∈ α using assms unfolding Field-def
well-order-on-def

linear-order-on-def partial-order-on-def preorder-on-def refl-on-def by blast
ultimately have e2 : g a ∈ Field α0 using b2 unfolding Field-def by

blast
have embed α0 α (g ◦ f ) using b4 c3 d3 comp-embed[of α0 γ f α g] by

blast
then have ∀ x ∈ Field α0 . g (f x) = x using assms b3 b4 embed-unique[of

α0 α g ◦ f id]
unfolding embedS-def comp-def id-def by blast

then have g (f (g a)) = g a using e2 by blast
moreover have inj-on g (Field γ) using c2 d3 embed-inj-on[of γ α g] by

blast
moreover have f (g a) ∈ Field γ using e2 b4 c3 embed-Field[of α0 γ f ]

by blast
ultimately have f (g a) = a using e1 unfolding inj-on-def by blast
then show a ∈ f ‘ Field α0 using e2 by force

qed
then have bij-betw f (Field α0 ) (Field γ)

using b4 c3 embed-inj-on[of α0 γ f ] embed-Field[of α0 γ f ] unfolding
bij-betw-def by blast

then show False using c3 by blast
qed
then show α ≤o γ using assms c2 by simp

qed
ultimately show ?thesis by blast

qed

lemma lem-sclm-ordind:
fixes P:: ′U rel ⇒ bool
assumes a1 : P {}

and a2 : ∀ α0 α:: ′U rel. (sc-ord α0 α ∧ P α0 −→ P α)
and a3 : ∀ α. ((lm-ord α ∧ (∀ β. β <o α −→ P β)) −→ P α)

shows ∀ α. Well-order α −→ P α
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proof −
obtain Q where b1 : Q = (λ α. Well-order α −→ P α) by blast
have ∀ α. (∀ β. β <o α −→ Q β) −→ Q α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : ∀ β. β <o α −→ Q β
then have c2 : ∀ β. β <o α −→ P β unfolding b1 ordLess-def by blast
show Q α
proof (cases ∃ α0 . sc-ord α0 α)

assume ∃ α0 . sc-ord α0 α
then obtain α0 where sc-ord α0 α by blast
then show Q α using c2 b1 a2 unfolding sc-ord-def by blast

next
assume ¬ (∃ α0 . sc-ord α0 α)
then have (¬ Well-order α) ∨ α = {} ∨ lm-ord α

using lem-sucord-ordint unfolding sc-ord-def lm-ord-def by blast
moreover have lm-ord α −→ P α using c2 a3 by blast
ultimately show Q α using a1 b1 by blast

qed
qed
then show ?thesis using b1 wf-induct[of ordLess Q] wf-ordLess by blast

qed

lemma lem-ordseq-rec-sets:
fixes E :: ′U set and F :: ′U rel ⇒ ′U set ⇒ ′U set
assumes ∀ α β. α =o β −→ F α = F β
shows ∃ f ::( ′U rel ⇒ ′U set).

f {} = E
∧ (∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 )))
∧ (∀ α. lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

∧ (∀ α β. α =o β −→ f α = f β)
proof −

obtain cmp:: ′U rel rel where b1 : cmp = oord by blast
then interpret cmp: wo-rel cmp unfolding wo-rel-def using lem-oord-wo by

blast
obtain L where b2 : L = (λ g:: ′U rel ⇒ ′U set. λ α:: ′U rel.

⋃
(g ‘ (underS cmp

α))) by blast
then have b3 : adm-woL cmp L unfolding cmp.adm-woL-def by blast
obtain fo where b4 : fo = (worecZSL cmp E F L) by blast
obtain f where b5 : f = (λ α:: ′U rel. fo (nord α)) by blast
have b6 : fo (zero cmp) = E using b3 b4 cmp.worecZSL-zero by simp
have b7 : ∀ α. aboveS cmp α 6= {} −→ fo (succ cmp α) = F α (fo α)

using b3 b4 cmp.worecZSL-succ by metis
have b8 : ∀ α. isLim cmp α ∧ α 6= zero cmp −→ fo α =

⋃
(fo ‘ (underS cmp

α))
using b2 b3 b4 cmp.worecZSL-isLim by metis

have b9 : zero cmp = {} ∧ nord ({}:: ′U rel) = {}
proof −

obtain isz where c1 : isz = (λ α. α ∈ Field cmp ∧ (∀β∈Field cmp. (α, β) ∈
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cmp)) by blast
have c2 : {} ∈ (O:: ′U rel set)
proof −

have Well-order ({}:: ′U rel) by simp
moreover then have nord ({}:: ′U rel) = {} using lem-nord-r lem-ord-subemp

ordIso-iff-ordLeq by blast
ultimately show ?thesis unfolding O-def by blast

qed
moreover have ∀ β ∈ O::( ′U rel set). ({}, β) ∈ oord
proof

fix β:: ′U rel
assume d1 : β ∈ O
then have Well-order β using lem-Owo by blast
then have {} ≤o β using ozero-ordLeq unfolding ozero-def by blast
then show ({}, β) ∈ oord using d1 c2 unfolding oord-def by blast

qed
ultimately have isz {} using c1 b1 lem-fld-oord by blast
moreover have ∀ α. isz α −→ α = {}
proof (intro allI impI )

fix α
assume d1 : isz α
then have d2 : α ∈ O ∧ (∀ β ∈ O. (α, β) ∈ oord) using c1 b1 lem-fld-oord

by blast
have Well-order ({}:: ′U rel) by simp
then have α ≤o nord ({}:: ′U rel) ∧ nord ({}:: ′U rel) =o ({}:: ′U rel)

using d2 lem-nord-r unfolding oord-def O-def by blast
then have α ≤o ({}:: ′U rel) using ordLeq-ordIso-trans by blast
then show α = {} using lem-ord-subemp by blast

qed
ultimately have (THE α. isz α) = {} by (simp only: the-equality)

then have zero cmp = {} unfolding c1 cmp.zero-def cmp.minim-def cmp.isMinim-def
by blast

moreover have nord ({}:: ′U rel) = {} using c2 lem-Onord by blast
ultimately show ?thesis by blast

qed
have b10 : ∀ α α ′:: ′U rel. aboveS cmp α 6= {} ∧ α ′ = succ cmp α −→ (α ∈ O ∧

α ′ ∈ O ∧ α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′ ≤o β))
proof (intro allI impI )

fix α α ′

assume aboveS cmp α 6= {} ∧ α ′ = succ cmp α
moreover then have AboveS cmp {α} ⊆ Field cmp ∧ AboveS cmp {α} 6= {}

unfolding AboveS-def aboveS-def Field-def by blast
ultimately have c4 : isMinim cmp (AboveS cmp {α}) α ′

using cmp.minim-isMinim unfolding cmp.succ-def cmp.suc-def by blast
have c5 : (α, α ′) ∈ cmp ∧ α 6= α ′ using c4 lem-fld-oord unfolding cmp.isMinim-def

AboveS-def by blast
then have α ≤o α ′ ∧ ¬ (α =o α ′) using b1 lem-Oeq unfolding oord-def by

blast
then have α <o α ′ using ordLeq-iff-ordLess-or-ordIso by blast
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moreover have ∀ β:: ′U rel. α <o β −→ α ′ ≤o β
proof (intro allI impI )

fix β:: ′U rel
assume d1 : α <o β
have nord β 6= nord α ∧ (nord α, nord β) ∈ cmp using d1 b1 lem-nord-less

by blast
moreover then have nord β ∈ Field cmp unfolding Field-def by blast
ultimately have nord β ∈ AboveS cmp {nord α} unfolding AboveS-def by

blast
moreover have α = nord α using c5 b1 lem-Onord unfolding oord-def by

blast
ultimately have (α ′, nord β) ∈ cmp using c4 unfolding cmp.isMinim-def

by metis
then have α ′ ≤o nord β unfolding b1 oord-def by blast
moreover have nord β =o β using d1 lem-nord-r ordLess-Well-order-simp

by blast
ultimately show α ′ ≤o β using ordLeq-ordIso-trans by blast

qed
moreover have α ∈ O ∧ α ′ ∈ O using c5 b1 unfolding oord-def by blast
ultimately show α ∈ O ∧ α ′ ∈ O ∧ α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′

≤o β) by blast
qed
then have b11 : ∀ α:: ′U rel. Well-order α ∧ ¬ (α = {} ∨ isSuccOrd α) −→

isLim cmp α
using lem-ordint-sucord unfolding cmp.isLim-def cmp.isSucc-def by metis

have f {} = E using b5 b6 b9 by simp
moreover have (∀ α α ′:: ′U rel. (α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′ ≤o β)
−→ f α ′ = F α (f α)))

proof (intro allI impI )
fix α α ′:: ′U rel
assume c1 : α <o α ′ ∧ (∀ β:: ′U rel. α <o β −→ α ′ ≤o β)
then have c2 : (aboveS cmp (nord α)) 6= {} using lem-nord-less unfolding b1

aboveS-def by fast
obtain γ where c3 : γ = succ cmp (nord α) by blast
have c4 : γ ∈ O ∧ (nord α) <o γ ∧ (∀β:: ′U rel. (nord α) <o β −→ γ ≤o β)

using c2 c3 b10 by blast
moreover have nord α =o α using c1 lem-nord-r ordLess-Well-order-simp by

blast
ultimately have α <o γ ∧ (∀β:: ′U rel. α <o β −→ γ ≤o β) using or-

dIso-iff-ordLeq ordLeq-ordLess-trans by blast
then have α ′ =o γ using c1 ordIso-iff-ordLeq by blast
then have f α ′ = f γ using b5 lem-nord-eq by metis
moreover have γ = nord γ using c4 lem-Onord by blast
moreover have fo γ = F (nord α) (f α) using c2 c3 b5 b7 by blast
moreover have F (nord α) (f α) = F α (f α) using assms c1 lem-nord-r

ordLess-Well-order-simp by metis
ultimately show f α ′ = F α (f α) using b5 by metis

qed
moreover have ∀ α. (Well-order α ∧ ¬ (α = {} ∨ isSuccOrd α)) −→ f α =
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⋃
{ D. ∃ β. β <o α ∧ D = f β }

proof (intro allI impI )
fix α:: ′U rel
assume c1 : Well-order α ∧ ¬ (α = {} ∨ isSuccOrd α)
then have Well-order (nord α) using lem-nord-l unfolding ordIso-def by

blast
moreover have nord α 6= {} ∧ ¬ isSuccOrd (nord α)
using c1 lem-ord-subemp ordIso-iff-ordLeq lem-osucc-eq[of nord α α] lem-nord-r [of

α] by metis
ultimately have c2 : fo (nord α) =

⋃
(fo ‘ (underS cmp (nord α))) using b8

b9 b11 by metis
obtain A where c3 : A =

⋃
{ D. ∃ β:: ′U rel. β <o α ∧ D = f β } by blast

have ∀ γ ∈ underS cmp (nord α). ∃ β:: ′U rel. β <o α ∧ fo γ = f β
proof

fix γ:: ′U rel
assume γ ∈ underS cmp (nord α)
then have γ 6= nord α ∧ (γ, nord α) ∈ oord unfolding b1 underS-def by

blast
then have γ ≤o nord α ∧ γ ∈ O ∧ ¬ (γ =o nord α) using lem-Oeq unfolding

oord-def by blast
then have γ <o nord α ∧ γ = nord γ using lem-Onord ordLeq-iff-ordLess-or-ordIso

by blast
moreover have nord α =o α using c1 lem-nord-r by blast

ultimately have γ <o α ∧ fo γ = f γ unfolding b5 using ordIso-imp-ordLeq
ordLess-ordLeq-trans by metis

then show ∃ β:: ′U rel. β <o α ∧ fo γ = f β by blast
qed
then have c4 : f α ⊆ A unfolding c2 c3 b5 by blast
have ∀ β:: ′U rel. β <o α −→ (∃ γ ∈ underS cmp (nord α). f β = fo γ)
proof (intro allI impI )

fix β:: ′U rel
assume β <o α

then have (nord β, nord α) ∈ cmp ∧ nord β 6= nord α using b1 lem-nord-less
by blast

then have nord β ∈ underS cmp (nord α) unfolding underS-def by blast
then show ∃ γ ∈ underS cmp (nord α). f β = fo γ unfolding b5 by blast

qed
then have A ⊆ f α unfolding c2 c3 b5 by force
then show f α =

⋃
{ D. ∃ β:: ′U rel. β <o α ∧ D = f β } using c3 c4 by

blast
qed
moreover have ∀ α β. α =o β −→ f α = f β using b5 lem-nord-eq by metis
ultimately show ?thesis unfolding sc-ord-def lm-ord-def by blast

qed

lemma lem-lmord-prec:
fixes α:: ′a rel and α ′:: ′b rel
assumes a1 : α ′ <o α and a2 : isLimOrd α
shows ∃ β::( ′a rel). α ′ <o β ∧ β <o α
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proof −
have ¬ isSuccOrd α using a1 a2 wo-rel.isLimOrd-def unfolding ordLess-def

wo-rel-def by blast
then obtain β:: ′a rel where α ′<o β ∧ ¬ (α ≤o β) using a1 lem-ordint-sucord[of

α ′ α] by blast
then have α ′<o β ∧ β <o α using a1 ordIso-imp-ordLeq ordLess-Well-order-simp

ordLess-imp-ordLeq ordLess-or-ordIso by metis
then show ?thesis by blast

qed

lemma lem-inford-ge-w:
fixes α:: ′U rel
assumes Well-order α and ¬ finite (Field α)
shows ω-ord ≤o α

using assms card-of-least infinite-iff-natLeq-ordLeq ordLeq-transitive by blast

lemma lem-ge-w-inford:
fixes α:: ′U rel
assumes ω-ord ≤o α
shows ¬ finite (Field α)

using assms cinfinite-def cinfinite-mono natLeq-cinfinite by blast

lemma lem-fin-card: finite |A| = finite A
proof

assume finite |A|
then show finite A using finite-Field by fastforce

next
assume finite A
then show finite |A| using lem-fin-fl-rel by fastforce

qed

lemma lem-cardord-emp: Card-order ({}:: ′U rel)
by (metis Well-order-empty card-order-on-def ozero-def ozero-ordLeq well-order-on-Well-order)

lemma lem-card-emprel: |{}:: ′U rel| =o ({}:: ′U rel)
proof −
have ({}:: ′U rel) =o |{}:: ′U set| using lem-cardord-emp BNF-Cardinal-Order-Relation.card-of-unique

by simp
then show ?thesis using card-of-empty-ordIso ordIso-symmetric ordIso-transitive

by blast
qed

lemma lem-cord-lin: Card-order α =⇒ Card-order β =⇒ ( α ≤o β) = ( ¬ ( β <o
α ) ) by simp

lemma lem-co-one-ne-min:
fixes α:: ′U rel and a:: ′a
assumes Well-order α and α 6= {}
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shows |{a}| ≤o α
proof −

have Field α 6= {} using assms unfolding Field-def by force
then have |{a}| ≤o |Field α| using assms by simp
moreover have |Field α| ≤o α using assms card-of-least by blast
ultimately show ?thesis using ordLeq-transitive by blast

qed

lemma lem-rel-inf-fld-card:
fixes r :: ′U rel
assumes ¬ finite r
shows |Field r | =o |r |
proof −

obtain f1 :: ′U × ′U ⇒ ′U where b1 : f1 = (λ (x,y). x) by blast
obtain f2 :: ′U × ′U ⇒ ′U where b2 : f2 = (λ (x,y). y) by blast
then have f1 ‘ r = Domain r ∧ f2 ‘ r = Range r using b1 b2 by force
then have b3 : |Domain r | ≤o |r | ∧ |Range r | ≤o |r |

using card-of-image[of f1 r ] card-of-image[of f2 r ] by simp
have |Domain r | ≤o |Range r | ∨ |Range r | ≤o |Domain r | by (simp add: or-

dLeq-total)
moreover have |Domain r | ≤o |Range r | −→ |Field r | ≤o |r |
proof

assume c1 : |Domain r | ≤o |Range r |
moreover have finite (Domain r) ∧ finite (Range r) −→ finite (Field r)

unfolding Field-def by blast
ultimately have ¬ finite (Range r)

using assms lem-fin-fl-rel card-of-ordLeq-finite by blast
then have |Field r | =o |Range r | using c1 card-of-Un-infinite unfolding

Field-def by blast
then show |Field r | ≤o |r | using b3 ordIso-ordLeq-trans by blast

qed
moreover have |Range r | ≤o |Domain r | −→ |Field r | ≤o |r |
proof

assume c1 : |Range r | ≤o |Domain r |
moreover have finite (Domain r) ∧ finite (Range r) −→ finite (Field r)

unfolding Field-def by blast
ultimately have ¬ finite (Domain r)

using assms lem-fin-fl-rel card-of-ordLeq-finite by blast
then have |Field r | =o |Domain r | using c1 card-of-Un-infinite unfolding

Field-def by blast
then show |Field r | ≤o |r | using b3 ordIso-ordLeq-trans by blast

qed
ultimately have |Field r | ≤o |r | by blast
moreover have |r | ≤o |Field r |
proof −

have r ⊆ (Field r) × (Field r) unfolding Field-def by force
then have c1 : |r | ≤o |Field r × Field r | by simp
have ¬ finite (Field r) using assms lem-fin-fl-rel by blast
then have c2 : |Field r × Field r | =o |Field r | by simp
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show ?thesis using c1 c2 using ordLeq-ordIso-trans by blast
qed
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed

lemma lem-cardreleq-cardfldeq-inf :
fixes r1 r2 :: ′U rel
assumes a1 : |r1 | =o |r2 | and a2 : ¬ finite r1 ∨ ¬ finite r2
shows |Field r1 | =o |Field r2 |
proof −

have ¬ finite r1 ∧ ¬ finite r2 using a1 a2 by simp
then have |Field r1 | =o |r1 | ∧ |Field r2 | =o |r2 | using lem-rel-inf-fld-card by

blast
then show |Field r1 | =o |Field r2 | using a1 by (meson ordIso-symmetric

ordIso-transitive)
qed

lemma lem-card-un-bnd:
fixes S :: ′a set set and α:: ′U rel
assumes a3 : ∀A∈S . |A| ≤o α and a4 : |S | ≤o α and a5 : ω-ord ≤o α
shows |

⋃
S | ≤o α

proof −
obtain α ′ where b0 : α ′ = |Field α| by blast
have a3 ′: ∀A∈S . |A| ≤o α ′

proof
fix A
assume A ∈ S
then have |A| ≤o α using a3 by blast
moreover have Card-order |A| by simp

ultimately show |A| ≤o α ′ using b0 card-of-unique card-of-mono2 ordIso-ordLeq-trans
by blast

qed
have Card-order |S | by simp
then have a4 ′: |S | ≤o α ′ using b0 a4 card-of-unique card-of-mono2 ordIso-ordLeq-trans

by blast
have a5 ′: ¬ finite (Field α ′)
proof −

have Card-order α ′ using b0 by simp
then have |Field α| =o |Field α ′| using b0 card-of-unique by blast
moreover have ¬ finite (Field α) using a5 lem-ge-w-inford by blast
ultimately show ¬ finite (Field α ′) by simp

qed
have a0 ′: α ′ ≤o α using b0 a4 by simp
obtain r where b1 : r =

⋃
S by blast

have ∀ A ∈ S . |A| ≤o α ′ using a3 ′ ordIso-ordLeq-trans by blast
moreover have r = (

⋃
A∈S . A) using b1 by blast

moreover have Card-order α ′ using b0 by simp
ultimately have |r | ≤o α ′ using a4 ′ a5 ′ card-of-UNION-ordLeq-infinite-Field[of

α ′ S λ x. x] by blast

25



then have |
⋃

S | ≤o α ′ unfolding b1 using ordLeq-transitive by blast
then show |

⋃
S | ≤o α using a0 ′ ordLeq-transitive by blast

qed

lemma lem-ord-suc-ge-w:
fixes α0 α:: ′U rel
assumes a1 : ω-ord ≤o α and a2 : sc-ord α0 α
shows ω-ord ≤o α0
proof −

obtain N :: ′U set where b1 : |N | =o ω-ord using a1
by (metis card-of-nat Field-natLeq card-of-mono2 internalize-card-of-ordLeq

ordIso-symmetric ordIso-transitive)
have α0 <o |N | −→ False
proof

assume c1 : α0 <o |N |
have Well-order ω-ord ∧ isLimOrd ω-ord
by (metis natLeq-Well-order Field-natLeq card-of-nat card-order-infinite-isLimOrd

infinite-iff-natLeq-ordLeq natLeq-Card-order ordIso-iff-ordLeq)
then have ¬ isSuccOrd ω-ord using wo-rel.isLimOrd-def unfolding wo-rel-def

by blast
then have ¬ isSuccOrd |N | using b1 lem-osucc-eq by blast
then have ¬ (∀ γ:: ′U rel. α0 <o γ −→ |N | ≤o γ)

using c1 unfolding sc-ord-def using lem-ordint-sucord[of α0 |N |] by blast
then obtain β:: ′U rel where α0 <o β ∧ β <o |N |

using card-of-Well-order not-ordLeq-iff-ordLess ordLess-Well-order-simp by
blast

moreover then have α ≤o β using a2 unfolding sc-ord-def by blast
ultimately have α <o |N | using ordLeq-ordLess-trans by blast
then show False using a1 b1 using not-ordLess-ordLeq ordIso-iff-ordLeq or-

dLeq-transitive by blast
qed
moreover have Well-order α0 using a2 unfolding sc-ord-def ordLess-def by

blast
moreover have Well-order |N | by simp
ultimately show ?thesis using b1 not-ordLess-iff-ordLeq ordIso-iff-ordLeq or-

dLeq-transitive by blast
qed

lemma lem-restr-ordbnd:
fixes r :: ′U rel and A:: ′U set and α:: ′U rel
assumes a1 : ω-ord ≤o α and a2 : |A| ≤o α
shows |Restr r A| ≤o α
proof (cases finite A)

assume finite A
then have finite (Restr r A) by blast
then have |Restr r A| <o ω-ord using finite-iff-ordLess-natLeq by blast
then show |Restr r A| ≤o α using a1 ordLeq-transitive ordLess-imp-ordLeq by

blast
next
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assume ¬ finite A
then have |A × A| =o |A| by simp
moreover have |Restr r A| ≤o |A × A| by simp
ultimately show |Restr r A| ≤o α using a2 ordLeq-ordIso-trans ordLeq-transitive

by blast
qed

lemma lem-card-inf-lim:
fixes r :: ′U rel
assumes a1 : Card-order α and a2 : ω-ord ≤o α
shows ¬( α = {} ∨ isSuccOrd α )
proof −

obtain s where s = Field α by blast
then have |s| =o α using a1 card-of-Field-ordIso by blast
moreover then have ¬ ( |s| <o |UNIV :: nat set| ) using a2
by (metis card-of-nat ordLess-ordIso-trans not-ordLess-ordIso ordLeq-iff-ordLess-or-ordIso

ordLeq-ordLess-trans)
ultimately have ¬ finite (Field α) using lem-fin-card lem-fin-fl-rel by (metis

finite-iff-cardOf-nat ordIso-finite-Field)
moreover then have α 6= {} by force
moreover have wo-rel α using a1 unfolding wo-rel-def card-order-on-def by

blast
ultimately show ?thesis using a1 card-order-infinite-isLimOrd wo-rel.isLimOrd-def

by blast
qed

lemma lem-card-nreg-inf-osetlm:
fixes α:: ′U rel
assumes a1 : Card-order α and a2 : ¬ regularCard α and a3 : ¬ finite (Field α)
shows ∃ S :: ′U rel set. |S | <o α ∧ (∀ α ′∈S . α ′ <o α) ∧ (∀ α ′:: ′U rel. α ′ <o α
−→ (∃ β ∈ S . α ′ ≤o β))
proof −

obtain K :: ′U set where b1 : K ⊆ Field α ∧ cofinal K α and b2 : ¬ |K | =o α
using a2 unfolding regularCard-def by blast

have b3 : |K | <o α
proof −

have |K | ≤o |Field α| using b1 by simp
moreover have |Field α| =o α using a1 card-of-Field-ordIso by blast
ultimately show |K | <o α using a1 b2
by (metis card-of-Well-order card-order-on-def not-ordLeq-ordLess ordIso-or-ordLess

ordIso-ordLess-trans)
qed
have b4 : isLimOrd α using a1 a3 card-order-infinite-isLimOrd by blast
obtain f :: ′U ⇒ ′U rel where b5 : f = (λ a. Restr α (under α a)) by blast
obtain S :: ′U rel set where b6 : S = f ‘ K by blast
then have |S | <o α using b3 card-of-image ordLeq-ordLess-trans by blast
moreover have ∀ α ′∈S . α ′ <o α
proof

fix α ′:: ′U rel
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assume c1 : α ′ ∈ S
then obtain a where c2 : a ∈ K ∧ α ′ = Restr α (under α a) using b5 b6 by

blast
then have c3 : Well-order α ′ ∧ Well-order α using a1 Well-order-Restr un-

folding card-order-on-def by blast
moreover have embed α ′ α id
proof −

have ofilter α (under α a) using c3 wo-rel.under-ofilter [of α] unfolding
wo-rel-def by blast

moreover then have under α a ⊆ Field α unfolding ofilter-def by blast
ultimately show ?thesis using c2 c3 ofilter-embed[of α under α a] by blast

qed
moreover have bij-betw id (Field α ′) (Field α) −→ False
proof

assume bij-betw id (Field α ′) (Field α)
then have d1 : Field α ′ = Field α unfolding bij-betw-def by simp
have a ∈ Field α using c2 b1 by blast
then obtain b where d2 : b ∈ aboveS α a

using b4 c3 wo-rel.isLimOrd-aboveS [of α a] unfolding wo-rel-def by blast
then have b ∈ Field α ′ using d1 unfolding aboveS-def Field-def by blast
then have b ∈ under α a using c2 unfolding Field-def by blast
then show False using a1 d2 unfolding under-def aboveS-def

card-order-on-def well-order-on-def linear-order-on-def partial-order-on-def
antisym-def by blast

qed
ultimately show α ′ <o α using embedS-def unfolding ordLess-def by blast

qed
moreover have ∀ α ′:: ′U rel. α ′ <o α −→ (∃ β ∈ S . α ′ ≤o β)
proof (intro allI impI )

fix α ′:: ′U rel
assume c1 : α ′ <o α
then obtain g where c2 : embed α ′ α g ∧ ¬ bij-betw g (Field α ′) (Field α)

using embedS-def unfolding ordLess-def by blast
then have g ‘ Field α ′ 6= Field α

using c1 embed-inj-on unfolding ordLess-def bij-betw-def by blast
moreover have g ‘ Field α ′ ⊆ Field α

using c1 c2 embed-in-Field[of α ′ α g] unfolding ordLess-def by fast
ultimately obtain a where c3 : a ∈ Field α − (g ‘ Field α ′) by blast
then obtain b β where c4 : b ∈ K ∧ (a, b) ∈ α ∧ β = f b using b1 unfolding

cofinal-def by blast
then have β ∈ S using b6 by blast
moreover have α ′ ≤o β
proof −
have d1 : Well-order β using c4 b5 a1 Well-order-Restr unfolding card-order-on-def

by blast
moreover have embed α ′ β g
proof −

have e1 : ∀ x y. (x, y) ∈ α ′ −→ (g x, g y) ∈ β
proof (intro allI impI )
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fix x y
assume f1 : (x, y) ∈ α ′

then have f2 : (g x, g y) ∈ α using c2 embed-compat unfolding compat-def
by blast

moreover have g y ∈ under α b
proof −

have (b, g y) ∈ α −→ False
proof

assume (b, g y) ∈ α
moreover have (a, b) ∈ α using c4 by blast

ultimately have (a, g y) ∈ α using a1 unfolding under-def
card-order-on-def

well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def
trans-def by blast

then have a ∈ under α (g y) unfolding under-def by blast
moreover have bij-betw g (under α ′ y) (under α (g y))

using f1 c2 unfolding embed-def Field-def by blast
ultimately obtain y ′ where y ′ ∈ under α ′ y ∧ a = g y ′ unfolding

bij-betw-def by blast
moreover then have y ′ ∈ Field α ′ unfolding under-def Field-def by

blast
ultimately have a ∈ g ‘ Field α ′ by blast
then show False using c3 by blast

qed
moreover have g y ∈ Field α ∧ b ∈ Field α using f2 c4 unfolding

Field-def by blast
ultimately have (g y, b) ∈ α using a1 unfolding card-order-on-def

well-order-on-def
linear-order-on-def partial-order-on-def preorder-on-def refl-on-def

total-on-def by metis
then show ?thesis unfolding under-def by blast

qed
moreover then have g x ∈ under α b using a1 f2 unfolding under-def

card-order-on-def
well-order-on-def linear-order-on-def partial-order-on-def preorder-on-def

trans-def by blast
ultimately have (g x, g y) ∈ Restr α (under α b) by blast
then show (g x, g y) ∈ β using c4 b5 by blast

qed
have e2 : ∀ x ∈ g ‘ Field α ′. under β x ⊆ g ‘ Field α ′

proof
fix x
assume x ∈ g ‘ Field α ′

then obtain c where f1 : c ∈ Field α ′ ∧ x = g c by blast
have ∀ x ′. (x ′, x) ∈ β −→ x ′ ∈ g ‘ Field α ′

proof (intro allI impI )
fix x ′

assume (x ′, x) ∈ β
then have (x ′, g c) ∈ Restr α (under α b) using b5 f1 c4 by blast
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then have x ′ ∈ under α (g c) unfolding under-def by blast
moreover have bij-betw g (under α ′ c) (under α (g c)) using f1 c2

unfolding embed-def by blast
ultimately obtain c ′ where x ′ = g c ′ ∧ c ′ ∈ under α ′ c unfolding

bij-betw-def by blast
moreover then have c ′ ∈ Field α ′ unfolding under-def Field-def by

blast
ultimately show x ′ ∈ g ‘ Field α ′ by blast

qed
then show under β x ⊆ g ‘ Field α ′ unfolding under-def by blast

qed
have compat α ′ β g using e1 unfolding compat-def by blast

moreover then have ofilter β (g ‘ Field α ′) using e2 unfolding ofilter-def
compat-def Field-def by blast

moreover have inj-on g (Field α ′) using c1 c2 embed-inj-on unfolding
ordLess-def by blast

ultimately show ?thesis using d1 c1 embed-iff-compat-inj-on-ofilter [of α ′

β g]
unfolding ordLess-def by blast

qed
ultimately show ?thesis using c1 unfolding ordLess-def ordLeq-def by

blast
qed
ultimately show ∃ β ∈ S . α ′ ≤o β by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-card-un-bnd-stab:
fixes S :: ′a set set and α:: ′U rel
assumes stable α and ∀A∈S . |A| <o α and |S | <o α
shows |

⋃
S | <o α

using assms stable-UNION [of α S λ x. x] by simp

lemma lem-finwo-cardord: finite α =⇒ Well-order α =⇒ Card-order α
proof −

assume a1 : finite α and a2 : Well-order α
have ∀ r . well-order-on (Field α) r −→ α ≤o r
proof (intro allI impI )

fix r
assume well-order-on (Field α) r
moreover have well-order-on (Field α) α using a2 by blast
moreover have finite (Field α) using a1 finite-Field by fastforce
ultimately have α =o r using finite-well-order-on-ordIso by blast
then show α ≤o r using ordIso-iff-ordLeq by blast

qed
then show ?thesis using a2 unfolding card-order-on-def by blast

qed

30



lemma lem-finwo-le-w: finite α =⇒ Well-order α =⇒ α <o natLeq
proof −

assume a1 : finite α and a2 : Well-order α
then have |Field α| =o α using lem-finwo-cardord by (metis card-of-Field-ordIso)
moreover have finite (Field α) using a1 finite-Field by fastforce
moreover then have |Field α| <o natLeq using finite-iff-ordLess-natLeq by

blast
ultimately show α <o natLeq using ordIso-iff-ordLeq ordLeq-ordLess-trans by

blast
qed

lemma lem-wolew-fin: α <o natLeq =⇒ finite α
proof −

assume a1 : α <o natLeq
then have Well-order α using a1 unfolding ordLess-def by blast
then have |Field α| ≤o α using card-of-least[of Field α α] by blast
then have ¬ (natLeq ≤o |Field α| ) using a1 by (metis BNF-Cardinal-Order-Relation.ordLess-Field

not-ordLeq-ordLess)
then have finite (Field α) using infinite-iff-natLeq-ordLeq by blast
then show finite α using finite-subset trancl-subset-Field2 by fastforce

qed

lemma lem-wolew-nat:
assumes a1 : α <o natLeq and a2 : n = card (Field α)
shows α =o (natLeq-on n)
proof −

have b1 : Well-order α using a1 unfolding ordLess-def by blast
have b2 : finite α using a1 lem-wolew-fin by blast
then have finite (Field α) using a1 finite-Field by fastforce
then have |Field α| =o natLeq-on n using a2 finite-imp-card-of-natLeq-on[of

Field α] by blast
moreover have |Field α| =o α using b1 b2 lem-finwo-cardord by (metis card-of-Field-ordIso)
ultimately show ?thesis using ordIso-symmetric ordIso-transitive by blast

qed

lemma lem-cntset-enum: |A| =o natLeq =⇒ (∃ f . A = f ‘ (UNIV ::nat set))
proof −

assume |A| =o natLeq
moreover have |UNIV ::nat set| =o natLeq using card-of-nat by blast
ultimately have |UNIV ::nat set| =o |A| by (meson ordIso-iff-ordLeq ordIso-ordLeq-trans)
then obtain f where bij-betw f (UNIV ::nat set) A using card-of-ordIso by

blast
then have A = f ‘ (UNIV ::nat set) unfolding bij-betw-def by blast
then show ?thesis by blast

qed

lemma lem-oord-int-card-le-inf :
fixes α:: ′U rel
assumes ω-ord ≤o α
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shows |{ γ ∈ O:: ′U rel set. γ <o α }| ≤o α
proof −

obtain f :: ′U ⇒ ′U rel where b1 : f = (λ a. nord (Restr α (underS α a))) by
blast

have ∀ γ ∈ O:: ′U rel set. γ <o α −→ γ ∈ f ‘ (Field α)
proof (intro ballI impI )

fix γ:: ′U rel
assume c1 : γ ∈ O and c2 : γ <o α
have ∃ a ∈ Field α. γ =o Restr α (underS α a)

using c2 ordLess-iff-ordIso-Restr [of α γ] unfolding ordLess-def by blast
then obtain a where a ∈ Field α ∧ γ =o Restr α (underS α a) by blast
moreover then have γ = f a using c1 b1 lem-nord-eq lem-Onord by blast
ultimately show γ ∈ f ‘ (Field α) by blast

qed
then have { γ ∈ O:: ′U rel set. γ<o α } ⊆ f ‘ (Field α) by blast
then have |{ γ ∈ O:: ′U rel set. γ <o α }| ≤o |f ‘ (Field α)| by simp
moreover have |f ‘ (Field α)| ≤o |Field α| by simp
ultimately have |{ γ ∈ O:: ′U rel set. γ <o α }| ≤o |Field α| using or-

dLeq-transitive by blast
moreover have |Field α| ≤o α using assms by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed

lemma lem-oord-card-le-int-inf :
fixes α:: ′U rel
assumes a1 : Card-order α and a2 : ω-ord ≤o α
shows α ≤o |{ γ ∈ O:: ′U rel set. γ <o α }|
proof −

obtain α ′ where b0 : α ′ = |Field α| by blast
then have b0 ′: Card-order α ′ ∧ α =o α ′ using a1 card-of-unique by simp
then have b0 ′′: ω-ord ≤o α ′ using a2 ordLeq-ordIso-trans by blast
obtain f :: ′U ⇒ ′U rel where b1 : f = (λ a. Restr α ′ (under α ′ a)) by blast
have b2 : Well-order α ′ using b0 by simp
have b3 : ∀ a ∈ Field α ′. ∀ b ∈ Field α ′. f a =o f b −→ a = b
proof (intro ballI impI )

fix a b
assume d1 : a ∈ Field α ′ and d2 : b ∈ Field α ′ and f a =o f b
then have d3 : f a ≤o f b ∧ f b ≤o f a using ordIso-iff-ordLeq by blast
obtain A B where d4 : A = under α ′ a ∧ B = under α ′ b by blast
have d5 : Well-order α ′ using b0 by simp
moreover then have wo-rel.ofilter α ′ A ∧ wo-rel.ofilter α ′ B

using d4 wo-rel-def wo-rel.under-ofilter [of α ′] by blast
moreover have Restr α ′ A ≤o Restr α ′ B and Restr α ′ B ≤o Restr α ′ A

using d3 d4 b1 by blast+
ultimately have A = B using ofilter-subset-ordLeq[of α ′] by blast
then have under α ′ a = under α ′ b using d4 by blast
moreover have (a,a) ∈ α ′ ∧ (b,b) ∈ α ′ using d1 d2 d5

by (metis preorder-on-def partial-order-on-def linear-order-on-def
well-order-on-def refl-on-def )
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ultimately have (a,b) ∈ α ′ ∧ (b,a) ∈ α ′ unfolding under-def by blast
then show a = b using d5

by (metis partial-order-on-def linear-order-on-def well-order-on-def anti-
sym-def )

qed
have b4 : ∀ a ∈ Field α ′. f a <o α ′

proof
fix a
assume c1 : a ∈ Field α ′

have under α ′ a ⊂ Field α ′

proof −
have ¬ finite α ′ using b0 ′′ Field-natLeq finite-Field infinite-UNIV-nat or-

dLeq-finite-Field by metis
then have ¬ finite (Field α ′) using lem-fin-fl-rel by blast
then obtain a ′ where a ′ ∈ Field α ′ ∧ a 6= a ′ ∧ (a, a ′) ∈ α ′

using c1 b0 ′ infinite-Card-order-limit[of α ′ a] by blast
moreover then have (a ′, a) /∈ α ′ using b2 unfolding well-order-on-def

linear-order-on-def partial-order-on-def antisym-def by blast
ultimately show ?thesis unfolding under-def Field-def by blast

qed
moreover have ofilter α ′ (under α ′ a)

using b2 wo-rel.under-ofilter [of α ′] unfolding wo-rel-def by blast
ultimately show f a <o α ′ unfolding b1 using b2 ofilter-ordLess by blast

qed
obtain g where b5 : g = nord ◦ f by blast
have ∀ x∈Field α ′. ∀ y∈Field α ′. g x = g y −→ x = y
proof (intro ballI impI )

fix x y
assume c1 : x ∈ Field α ′ and c2 : y ∈ Field α ′ and g x = g y
then have Well-order (f x) ∧ Well-order (f y) ∧ nord (f x) = nord (f y)

using b4 b5 unfolding ordLess-def by simp
then have f x =o f y using lem-nord-req by blast
then show x = y using c1 c2 b3 by blast

qed
then have inj-on g (Field α ′) unfolding inj-on-def by blast
moreover have ∀ a ∈ Field α ′. g a ∈ O ∧ g a <o α ′

proof
fix a
assume a ∈ Field α ′

then have f a <o α ′ using b4 by blast
then have nord (f a) <o α ′ ∧ nord (f a) ∈ O using lem-nord-ls-l lem-nordO-ls-l

by blast
then show g a ∈ O ∧ g a <o α ′ using b5 by simp

qed
ultimately have |Field α ′| ≤o |{γ ∈ O:: ′U rel set. γ <o α ′}|

using card-of-ordLeq[of Field α ′ {γ ∈ O:: ′U rel set. γ <o α ′}] by blast
moreover have α =o |Field α ′| using b0 a1 by simp
moreover have {γ ∈ O:: ′U rel set. γ <o α ′} = {γ ∈ O:: ′U rel set. γ <o α}

using b0 ′ using ordIso-iff-ordLeq ordLess-ordLeq-trans by blast
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ultimately show ?thesis using ordIso-ordLeq-trans by simp
qed

lemma lem-ord-int-card-le-inf :
fixes α:: ′U rel and f :: ′U rel ⇒ ′a
assumes ∀ α β. α =o β −→ f α = f β and ω-ord ≤o α
shows |f ‘ { γ:: ′U rel. γ <o α }| ≤o α
proof −

obtain I where b1 : I = { γ ∈ O:: ′U rel set. γ <o α } by blast
have f‘{ γ:: ′U rel. γ <o α } ⊆ f‘I
proof

fix a
assume a ∈ f‘{ γ:: ′U rel. γ <o α }
then obtain γ where a = f γ ∧ γ <o α by blast
moreover then have nord γ =o γ ∧ nord γ ∈ I

using b1 lem-nord-r lem-nord-ls-l lem-nordO-ls-l ordLess-def by blast
ultimately have a = f (nord γ) ∧ nord γ ∈ I using assms by metis
then show a ∈ f‘I by blast

qed
then have |f‘{ γ:: ′U rel. γ <o α }| ≤o |f‘I | by simp
moreover have |f‘I | ≤o |I | by simp
moreover have |I | ≤o α using b1 assms lem-oord-int-card-le-inf by blast
ultimately show ?thesis using ordLeq-transitive by metis

qed

lemma lem-card-setcv-inf-stab:
fixes α:: ′U rel and A:: ′U set
assumes a1 : Card-order α and a2 : ω-ord ≤o α and a3 : |A| ≤o α
shows ∃ f ::( ′U rel ⇒ ′U ). A ⊆ f ‘{ γ:: ′U rel. γ <o α } ∧ (∀ γ1 γ2 . γ1 =o γ2
−→ f γ1 = f γ2 )
proof −

obtain B where b1 : B = { γ ∈ O:: ′U rel set. γ <o α } by blast
then have |A| ≤o |B|

using a1 a2 a3 lem-oord-card-le-int-inf [of α] ordLeq-transitive by blast
then obtain g where b2 : A ⊆ g ‘B by (metis card-of-ordLeq2 empty-subsetI

order-refl)
obtain f where b3 : f = g ◦ nord by blast
have A ⊆ f ‘{ γ:: ′U rel. γ <o α }
proof

fix a
assume a ∈ A
then obtain γ:: ′U rel where γ ∈ O ∧ γ <o α ∧ a = g γ using b1 b2 by blast
moreover then have f γ = g γ using b3 lem-Onord by force
ultimately show a ∈ f ‘{ γ:: ′U rel. γ <o α } by force

qed
moreover have ∀ γ1 γ2 . γ1 =o γ2 −→ f γ1 = f γ2 using b3 lem-nord-eq by

force
ultimately show ?thesis by blast

qed
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lemma lem-jnfix-gen:
fixes I :: ′i set and leI :: ′i rel and L:: ′l set

and t:: ′i× ′l ⇒ ′i ⇒ ′n and jnN :: ′n ⇒ ′n ⇒ ′n
assumes a1 :¬ finite L

and a2 : |L| <o |I |
and a3 : ∀α∈I . (α,α) ∈ leI
and a4 : ∀α∈I . ∀β∈I . ∀ γ∈I . (α,β)∈leI ∧ (β,γ)∈leI −→ (α,γ)∈leI
and a5 : ∀α∈I . ∀β∈I . (α,β) ∈ leI ∨ (β,α) ∈ leI
and a6 : ∀β∈I . |{α∈I . (α,β) ∈ leI}| ≤o |L|
and a7 : ∀α∈I . ∃α ′∈I . (α,α ′) ∈ leI ∧ (α ′,α) /∈ leI

shows ∃ h. ∀α∈I . ∀β∈I . ∀ i∈L. ∀ j∈L. ∃ γ∈I . (α,γ)∈leI ∧ (β,γ)∈leI ∧ (γ,α)/∈leI
∧ (γ,β)/∈leI

∧ h γ = jnN (t (α,i) γ) (t (β,j) γ)
proof −

obtain inc where p1 : inc = (λ α. SOME α ′. α ′ ∈ I ∧ (α,α ′) ∈ leI ∧ (α ′,α) /∈
leI ) by blast

have p2 :
∧

α. α ∈ I =⇒ (inc α) ∈ I ∧ (α, inc α) ∈ leI ∧ (inc α, α) /∈ leI
proof −

fix α
assume α ∈ I
moreover obtain P where c1 : P = (λ α ′. α ′ ∈ I ∧ (α,α ′) ∈ leI ∧ (α ′,α) /∈

leI ) by blast
ultimately have ∃ α ′. P α ′ using a7 by blast
then have P (SOME x. P x) using someI-ex by metis
moreover have inc α = (SOME x. P x) using c1 p1 by blast
ultimately show (inc α) ∈ I ∧ (α,inc α) ∈ leI ∧ (inc α, α) /∈ leI using c1

by simp
qed
obtain mxI where m0 : mxI = (λ α β. (if ((α,β) ∈ leI ) then β else α)) by blast
then have m1 : ∀α∈I . ∀β∈I . mxI α β ∈ I by simp
obtain maxI where b0 : maxI = (λ α β. inc (mxI α β)) by blast
have q1 : ∀α∈I . ∀β∈I . maxI α β ∈ I using p2 b0 m0 by simp
have q2 : ∀α∈I . ∀β∈I . (α, maxI α β) ∈ leI ∧ (β, maxI α β) ∈ leI
proof (intro ballI )

fix α β
assume c1 : α ∈ I and c2 : β ∈ I
moreover then have c3 : (α, mxI α β) ∈ leI ∧ (β, mxI α β) ∈ leI ∧ mxI α

β ∈ I
using m0 m1 a5 by force+

ultimately have (mxI α β, maxI α β) ∈ leI ∧ maxI α β ∈ I using b0 p2 by
blast

then show (α, maxI α β) ∈ leI ∧ (β, maxI α β) ∈ leI using c1 c2 c3 a4 by
blast

qed
have q3 : ∀ α∈I . ∀β∈I . ∀ γ∈I . (maxI α β, γ) ∈ leI −→ (α,γ)∈leI ∧ (β,γ)∈leI
∧ (γ,α)/∈leI ∧ (γ,β)/∈leI

proof (intro ballI impI )
fix α β γ
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assume c1 : α∈I and c2 : β∈I and c3 : γ∈I and c4 : (maxI α β, γ) ∈ leI
moreover then have c5 : (mxI α β, maxI α β) ∈ leI ∧ maxI α β ∈ I

∧ (maxI α β, mxI α β) /∈ leI ∧ mxI α β ∈ I using b0 p2 m1 by blast
ultimately have c6 : (mxI α β, γ) ∈ leI using a4 by blast
have (α,γ)∈leI ∧ (β,γ)∈leI
proof (cases (α,β) ∈ leI )

assume (α,β) ∈ leI
moreover then have (β,γ) ∈ leI using m0 c6 by simp
ultimately show (α,γ)∈leI ∧ (β,γ)∈leI using c1 c2 c3 a4 by blast

next
assume (α,β) /∈ leI
then have (β,α) ∈ leI ∧ (α,γ) ∈ leI using m0 c1 c2 c6 a5 by force
then show (α,γ)∈leI ∧ (β,γ)∈leI using c1 c2 c3 a4 by blast

qed
moreover have (γ,α) ∈ leI −→ False
proof

assume (γ,α) ∈ leI
moreover have (α, mxI α β) ∈ leI ∧ mxI α β ∈ I using c1 c2 m0 a5 by

force
ultimately have (γ, mxI α β) ∈ leI using c1 c3 a4 by blast
then show False using c3 c4 c5 a4 by blast

qed
moreover have (γ,β) ∈ leI −→ False
proof

assume (γ,β) ∈ leI
moreover have (β, mxI α β) ∈ leI ∧ mxI α β ∈ I using c1 c2 m0 a5 by

force
ultimately have (γ, mxI α β) ∈ leI using c2 c3 a4 by blast
then show False using c3 c4 c5 a4 by blast

qed
ultimately show (α,γ)∈leI ∧ (β,γ)∈leI ∧ (γ,α)/∈leI ∧ (γ,β)/∈leI by blast

qed
have ∃ d. d‘I = I×L×I
proof −
have c1 : ¬ finite I using a1 a2 by (metis card-of-ordLeq-infinite ordLess-imp-ordLeq)
then have I 6= {} ∧ L 6= {} using a1 by blast
moreover then have |I | ≤o |L×I | ∧ |L×I | =o |I | ∧ L 6= {}

using c1 a1 a2 by (metis card-of-Times-infinite[of I L] ordLess-imp-ordLeq
ordIso-iff-ordLeq)

moreover then have ¬ finite (L×I ) using c1 a1 by (metis finite-cartesian-productD2 )
ultimately have |I×(L×I )| ≤o |I |

by (metis card-of-Times-infinite[of L×I I ] ordIso-transitive ordIso-iff-ordLeq)
moreover have I×L×I 6= {} using c1 a1 by force
ultimately show ?thesis using card-of-ordLeq2 [of I×(L×I ) I ] by blast

qed
then obtain d where b1 : d‘I = I×(L×I ) by blast
obtain µ where b2 : µ = (λ γ. SOME m. m‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I .

(α,γ)∈leI}×L) ) by blast
have b3 :

∧
γ. γ ∈ I =⇒ (µ γ)‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I . (α,γ)∈leI}×L)
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proof −
fix γ
assume c1 : γ ∈ I
obtain A where c2 : A = {α∈I . (α,γ)∈leI} by blast
have c3 : A 6= {} using c1 c2 a3 unfolding refl-on-def by blast
moreover have L 6= {} using a1 by blast
ultimately have (A×L)×(A×L) 6= {} using a1 by simp
moreover have |(A×L)×(A×L)| ≤o |L|
proof −

have |A| ≤o |L| using c1 c2 a6 by blast
then have |A×L| ≤o |L| using c3 a1 by (metis card-of-Times-infinite[of L

A] ordIso-iff-ordLeq)
moreover have ¬ finite (A×L) using c3 a1 by (metis finite-cartesian-productD2 )

ultimately show ?thesis
by (metis card-of-Times-same-infinite[of A×L] ordIso-iff-ordLeq ordLeq-transitive)

qed
ultimately have ∃m. m‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I . (α,γ)∈leI}×L)

using c2 card-of-ordLeq2 [of (A×L)×(A×L) L] by blast
then show (µ γ)‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I . (α,γ)∈leI}×L)
using b2 someI-ex[of λ m. m‘L = ({α∈I . (α,γ)∈leI}×L)×({α∈I . (α,γ)∈leI}×L)

] by blast
qed
obtain ϕ where b4 : ϕ = (λ x. µ (fst (d x)) (fst (snd (d x)))) by blast
obtain h where b5 : h = (λ x. jnN (t (fst (ϕ x)) x) (t (snd (ϕ x)) x)) by blast
have ∀α∈I . ∀β∈I . ∀ i∈L. ∀ j∈L. ∃ γ∈I .

(maxI α β, γ) ∈ leI ∧ h γ = jnN (t (α,i) γ) (t (β,j) γ)
proof (intro ballI )

fix α β i j
assume c1 : α ∈ I and c2 : β ∈ I and c3 : i ∈ L and c4 : j ∈ L
obtain D where c5 : D = ({α ′ ∈ I . (α ′, maxI α β) ∈ leI} × L) × {α ′ ∈ I .

(α ′, maxI α β) ∈ leI} × L by blast
have c6 : maxI α β ∈ I using c1 c2 q1 by blast
have α ∈ {α ′ ∈ I . (α ′, maxI α β) ∈ leI} using c1 c2 q2 by blast
moreover have β ∈ {α ′ ∈ I . (α ′, maxI α β) ∈ leI} using c1 c2 q2 by blast
ultimately have ((α,i),(β,j)) ∈ D using c3 c4 c5 by blast
moreover have µ (maxI α β) ‘ L = D using c5 c6 b3 [of maxI α β] by blast
ultimately obtain v where c7 : v ∈ L ∧ (µ (maxI α β)) v = ((α,i),(β,j)) by

force
obtain A where c8 : A = {maxI α β} × ({v} × I ) by blast
then have A ⊆ I × L × I using c6 c7 by blast
then have ∀ a∈A. ∃ x∈I . d x = a using b1 by (metis imageE set-rev-mp)
moreover obtain X where c9 : X = { x∈I . d x ∈ A } by blast
ultimately have A = d ‘ X by force
then have |A| ≤o |X | by simp
moreover have |I | =o |A|
proof −

obtain f where f = (λ x:: ′i. (maxI α β, v, x)) by blast
then have bij-betw f I A using c8 unfolding bij-betw-def inj-on-def by force
then show |I | =o |A| using card-of-ordIsoI [of f I A] by blast
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qed
ultimately have c10 : |L| <o |X | using a2 by (metis ordLess-ordIso-trans

ordLess-ordLeq-trans)
have ∀ y∈I . X ⊆ {x∈I . (x,y) ∈ leI} −→ False
proof (intro ballI impI )

fix y
assume y ∈ I and X ⊆ {x∈I . (x,y) ∈ leI}
then have y ∈ I ∧ X ⊆ {x∈I . (x,y) ∈ leI} by blast
moreover then have |{x∈I . (x,y) ∈ leI}| ≤o |L| using a6 by blast
ultimately have |X | ≤o |L| using card-of-mono1 ordLeq-transitive by blast
then show False using c10 by (metis not-ordLeq-ordLess)

qed
then obtain γ where c11 : γ ∈ X ∧ (γ, maxI α β) /∈ leI using c6 c9 by blast
then obtain w where c12 : γ ∈ I ∧ d γ = (maxI α β, v, w) using c8 c9 by

blast
moreover have (maxI α β, γ) ∈ leI using c11 c12 c6 a5 by blast
moreover have h γ = jnN (t (α,i) γ) (t (β,j) γ)
proof −

have ϕ γ = µ (fst (d γ)) (fst (snd (d γ))) using b4 by blast
then have ϕ γ = µ (maxI α β) v using c12 by simp
then have ϕ γ = ((α,i),(β,j)) using c7 by simp
moreover have h γ = jnN (t (fst (ϕ γ)) γ) (t (snd (ϕ γ)) γ) using b5 by

blast
ultimately show h γ = jnN (t (α,i) γ) (t (β,j) γ) by simp

qed
ultimately show ∃ γ∈I . (maxI α β, γ) ∈ leI ∧ h γ = jnN (t (α,i) γ) (t (β,j)

γ) by blast
qed
then show ?thesis using q3 by blast

qed

lemma lem-jnfix-card:
fixes κ:: ′U rel and L:: ′l set and t::( ′U rel)× ′l ⇒ ′U rel ⇒ ′n and jnN :: ′n ⇒ ′n
⇒ ′n

and S :: ′U rel set
assumes a1 : Card-order κ and a2 : ¬ finite L and a3 : |L| <o κ

and a4 : ∀ α ∈ S . |Field α| ≤o |L|
and a5 : S ⊆ O and a6 : |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S |
and a7 : ∀ α ∈ S . ∃ β ∈ S . α <o β

shows ∃ h. ∀ α ∈ S . ∀ β ∈ S . ∀ i∈L. ∀ j∈L.
(∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (t (α,i) γ) (t (β,j) γ) )

proof −
obtain I ::( ′U rel) set where c1 : I = S by blast
obtain leI :: ′U rel rel where c2 : leI = oord by blast
have ¬ finite L using a2 by blast
moreover have |L| <o |I |
proof −

have ω-ord ≤o |L| using a2 by (metis infinite-iff-natLeq-ordLeq)
then have ω-ord ≤o κ using a3 by (metis ordLeq-ordLess-trans ordLess-imp-ordLeq)
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then obtain f :: ′U rel ⇒ ′U where
d1 : Field κ ⊆ f ‘ {γ. γ <o κ} and d2 : ∀ γ1 γ2 . γ1 =o γ2 −→ f γ1 = f γ2
using a1 lem-card-setcv-inf-stab[of κ Field κ] by (metis card-of-Field-ordIso

ordIso-imp-ordLeq)
then have |Field κ| ≤o |f ‘ {γ. γ <o κ}| by simp
then have κ ≤o |f ‘ {γ. γ <o κ}| using a1
by (metis card-of-Field-ordIso ordIso-imp-ordLeq ordLeq-transitive ordIso-symmetric)
moreover have |f ‘ {γ. γ <o κ}| ≤o |{α ∈ O:: ′U rel set. α <o κ}|
proof −

have κ 6= {} using a2 a3
using lem-cardord-emp by (metis Field-empty card-of-Field-ordIso card-of-empty

not-ordLess-ordIso ordLeq-ordLess-trans)
then have ({}:: ′U rel) <o κ using a1
by (metis ozero-def iso-ozero-empty card-order-on-well-order-on ordIso-symmetric

ordLeq-iff-ordLess-or-ordIso ozero-ordLeq)
then have e1 : f ‘ {γ. γ <o κ} 6= {} by blast
moreover have f ‘ {γ. γ <o κ} ⊆ f ‘ {α ∈ O. α <o κ}
proof

fix y
assume y ∈ f ‘ {γ. γ <o κ}
then obtain γ α where f1 : γ <o κ ∧ y = f γ ∧ α = nord γ by blast
moreover then have f2 : α ∈ O ∧ α =o γ using lem-nord-r unfolding

O-def ordLess-def by blast
ultimately have α <o κ using d2 ordIso-ordLess-trans by blast
moreover have y = f α using d2 f1 f2 by fastforce
ultimately show y ∈ f ‘ {α ∈ O. α <o κ} using f2 by blast

qed
ultimately have f ‘ {α ∈ O. α <o κ} = f ‘ {γ. γ <o κ} by blast
then show ?thesis using e1 card-of-ordLeq2 [of f ‘ {γ. γ <o κ} {α ∈ O:: ′U

rel set. α <o κ}] by blast
qed
ultimately have κ ≤o |{α ∈ O:: ′U rel set. α <o κ}| using ordLeq-transitive

by blast
moreover have I = S using c1 by blast
moreover then have |{α ∈ O:: ′U rel set. α <o κ}| ≤o |I | using a6 by blast
ultimately have κ ≤o |I | using c1 using ordLeq-transitive by blast
then show ?thesis using a3 by (metis ordLess-ordLeq-trans)

qed
moreover have ∀α∈I . (α,α) ∈ leI

using c1 c2 a5 lem-fld-oord lem-oord-wo unfolding well-order-on-def lin-
ear-order-on-def

partial-order-on-def preorder-on-def refl-on-def by blast
moreover have ∀α∈I . ∀β∈I . ∀ γ∈I . (α,β)∈leI ∧ (β,γ)∈leI −→ (α,γ)∈leI

using c2 lem-oord-wo unfolding well-order-on-def linear-order-on-def
partial-order-on-def preorder-on-def trans-def by blast

moreover have ∀α∈O. ∀β∈O. (α,β) ∈ leI ∨ (β,α) ∈ leI
using c1 c2 lem-fld-oord lem-oord-wo unfolding well-order-on-def linear-order-on-def

total-on-def
partial-order-on-def preorder-on-def refl-on-def by metis
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moreover then have ∀α∈I . ∀β∈I . (α,β) ∈ leI ∨ (β,α) ∈ leI using c1 a5 by
blast

moreover have ∀β∈I . |{α∈I . (α,β) ∈ leI}| ≤o |L|
proof

fix β
assume d1 : β ∈ I
show |{α∈I . (α,β) ∈ leI}| ≤o |L|
proof (cases ω-ord ≤o β)

assume e1 : ω-ord ≤o β
obtain C where e2 : C = nord ‘ {α:: ′U rel. α <o β} by blast
have {α∈I . (α,β) ∈ leI} ⊆ C ∪ {β}
proof

fix γ
assume γ ∈ {α∈I . (α,β) ∈ leI}
then have γ ∈ O ∧ (γ <o β ∨ γ = β)

using c2 lem-Oeq unfolding oord-def using ordLeq-iff-ordLess-or-ordIso
by blast

moreover then have γ = nord γ using lem-Onord by blast
ultimately show γ ∈ C ∪ {β} using e2 by blast

qed
moreover have |C ∪ {β}| ≤o β
proof (cases finite C )

assume finite C
then have finite (C ∪ {β}) by blast
then have |C ∪ {β}| <o ω-ord using finite-iff-ordLess-natLeq by blast
then show ?thesis using e1 ordLess-ordLeq-trans ordLess-imp-ordLeq by

blast
next

assume ¬ finite C
then have |C ∪ {β}| =o |C | by (metis card-of-singl-ordLeq finite.simps

card-of-Un-infinite)
then show ?thesis using e1 e2 lem-nord-eq lem-ord-int-card-le-inf [of nord

β] ordIso-ordLeq-trans by blast
qed

ultimately have |{α∈I . (α,β) ∈ leI}| ≤o β by (meson card-of-mono1
ordLeq-transitive)

moreover have
∧

A:: ′U rel set. |A| ≤o β =⇒ |A| ≤o |Field β|
by (metis Field-card-of card-of-mono1 internalize-card-of-ordLeq)

ultimately have |{α∈I . (α,β) ∈ leI}| ≤o |Field β| by blast
moreover have |Field β| ≤o |L| using d1 c1 a4 by blast
ultimately show |{α∈I . (α,β) ∈ leI}| ≤o |L| using ordLeq-transitive by

blast
next

assume ¬ ω-ord ≤o β
then have e1 : β <o ω-ord using d1 c1 a5 using lem-Owo Field-natLeq

natLeq-well-order-on by force
then have e2 : β =o natLeq-on (card (Field β)) using lem-wolew-nat by blast
obtain A where e3 : A = { n. n ≤ card (Field β) } by blast
obtain f where e4 : f = (λn::nat. SOME α. α ∈ I ∧ α <o ω-ord ∧ card
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(Field α) = n) by blast
have {α∈I . (α,β) ∈ leI} ⊆ f ‘ A
proof

fix γ
assume f1 : γ ∈ {α∈I . (α,β) ∈ leI}
then have f2 : γ ≤o β using c2 oord-def by blast
then have f3 : γ <o ω-ord using e1 ordLeq-ordLess-trans by blast
then have f4 : γ =o natLeq-on (card (Field γ)) using lem-wolew-nat by

blast
then have natLeq-on (card (Field γ)) ≤o natLeq-on (card (Field β))

using f2 e2 by (meson ordIso-iff-ordLeq ordLeq-transitive)
then have f5 : γ ∈ I ∧ card (Field γ) ∈ A using f1 e3 natLeq-on-ordLeq-less-eq

by blast
moreover obtain γ ′ where f6 : γ ′ = f (card (Field γ)) by blast
ultimately have γ ′ ∈ I ∧ γ ′ <o ω-ord ∧ card (Field γ ′) = card (Field γ)
using f3 e4 someI-ex[of λ α. α ∈ I ∧ α <o ω-ord ∧ card (Field α) = card

(Field γ)] by blast
moreover then have γ ′ =o natLeq-on (card (Field γ)) using lem-wolew-nat

by force
ultimately have γ ∈ O ∧ γ ′ ∈ O ∧ γ ′ =o γ using f1 f4 c1 a5 or-

dIso-symmetric ordIso-transitive by blast
then have γ ′ = γ using lem-Oeq by blast
moreover have γ ′ ∈ f ‘ A using f5 f6 by blast
ultimately show γ ∈ f ‘ A by blast

qed
then have finite {α∈I . (α,β) ∈ leI} using e3 finite-subset by blast

then show |{α∈I . (α,β) ∈ leI}| ≤o |L| using a2 ordLess-imp-ordLeq by force
qed

qed
moreover have ∀α∈I . ∃α ′∈I . (α,α ′) ∈ leI ∧ (α ′,α) /∈ leI
proof

fix α
assume α ∈ I
then obtain α ′ where d1 : α ∈ S ∧ α ′ ∈ S ∧ α <o α ′ using c1 a7 by blast
then have d2 : α ≤o α ′ ∧ α ∈ O ∧ α ′ ∈ O using a5 ordLess-imp-ordLeq by

blast
then have α ′ ∈ I ∧ (α,α ′) ∈ leI using d1 c1 c2 unfolding oord-def by blast
moreover have (α ′,α) ∈ leI −→ False
proof

assume e1 : (α ′,α) ∈ leI
then have α ′ ≤o α using c2 unfolding oord-def by blast
then have α ′ = α using d2 lem-Oeq ordIso-iff-ordLeq by blast
then show False using d1 ordLess-irreflexive by blast

qed
ultimately show ∃α ′∈I . (α,α ′) ∈ leI ∧ (α ′,α) /∈ leI by blast

qed
ultimately obtain h where

c3 : ∀α∈I . ∀β∈I . ∀ i∈L. ∀ j∈L. ∃ γ∈I .
(α,γ)∈leI ∧ (β,γ) ∈ leI ∧ (γ,α)/∈leI ∧ (γ,β)/∈leI ∧ h γ = jnN (t (α,i) γ)
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(t (β,j) γ)
using lem-jnfix-gen[of L I leI jnN t] by blast

have ∀ α ∈ S . ∀ β ∈ S . ∀ i∈L. ∀ j∈L.
(∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (t (α,i) γ) (t (β,j) γ))

proof (intro allI ballI impI )
fix α:: ′U rel and i:: ′l and β:: ′U rel and j:: ′l
assume d2 : i ∈ L and d3 : j ∈ L and α ∈ S and β ∈ S
then have d4 : α ∈ I ∧ β ∈ I using c1 a5 by blast
then obtain γ where γ ∈ I and (α,γ) ∈ leI ∧ (β,γ) ∈ leI and (γ,α)/∈leI ∧

(γ,β)/∈leI
and d6 : h γ = jnN (t (α,i) γ) (t (β,j) γ) using d2 d3 c3 by blast

then have γ ∈ O ∩ S ∧ α <o γ ∧ β <o γ
using d4 c1 c2 a5 lem-Oeq unfolding oord-def

by (smt ordLeq-iff-ordLess-or-ordIso subsetCE Int-iff )
moreover have h γ = jnN (t (α,i) γ) (t (β,j) γ) using d2 d3 d6 by blast
ultimately show ∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (t (α,i) γ) (t (β,j)

γ) by blast
qed
then show ?thesis by blast

qed

lemma lem-cardsuc-ls-fldcard:
fixes κ:: ′a rel and α:: ′b rel
assumes a1 : Card-order κ and a2 : α <o cardSuc κ
shows |Field α| ≤o κ
proof −

have κ <o |Field α| −→ False
proof

assume κ <o |Field α|
moreover have Card-order |Field α| by simp
ultimately have cardSuc κ ≤o |Field α| using a1 cardSuc-least by blast
moreover have |Field α| ≤o α using a2 by simp
ultimately have cardSuc κ ≤o α using ordLeq-transitive by blast
then show False using a2 not-ordLeq-ordLess by blast

qed
then show |Field α| ≤o κ using a1 by simp

qed

lemma lem-jnfix-cardsuc:
fixes L:: ′l set and κ:: ′U rel and t::( ′U rel)× ′l ⇒ ′U rel ⇒ ′n and jnN :: ′n ⇒ ′n
⇒ ′n

and S :: ′U rel set
assumes a1 : ¬ finite L and a2 : κ =o cardSuc |L|

and a3 : S ⊆ {α ∈ O:: ′U rel set. α <o κ} and a4 : |{α ∈ O:: ′U rel set. α <o
κ}| ≤o |S |

and a5 : ∀ α ∈ S . ∃ β ∈ S . α <o β
shows ∃ h. ∀ α ∈ S . ∀ β ∈ S . ∀ i∈L. ∀ j∈L.

(∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (t (α,i) γ) (t (β,j) γ) )
proof −

42



have Card-order κ using a2 by (metis Card-order-ordIso cardSuc-Card-order
card-of-Card-order)

moreover have |L| <o κ using a2 cardSuc-greater [of |L|]
by (metis Field-card-of card-of-card-order-on ordIso-iff-ordLeq ordLess-ordLeq-trans)

moreover have ∀α:: ′U rel. α <o κ −→ |Field α| ≤o |L|
using a2 using lem-cardsuc-ls-fldcard ordLess-ordIso-trans by force

ultimately show ?thesis using a1 a3 a4 a5 lem-jnfix-card[of κ L S jnN t] by
blast
qed

lemma lem-Relprop-cl-ccr :
fixes r :: ′U rel
shows Conelike r =⇒ CCR r

unfolding CCR-def Conelike-def by fastforce

lemma lem-Relprop-ccr-confl:
fixes r :: ′U rel
shows CCR r =⇒ confl-rel r

using lem-rtr-field[of - - r ] unfolding CCR-def confl-rel-def by blast

lemma lem-Relprop-fin-ccr :
fixes r :: ′U rel
shows finite r =⇒ CCR r = Conelike r
proof −

assume a1 : finite r
have r 6= {} ∧ CCR r −→ Conelike r
proof

assume b1 : r 6= {} ∧ CCR r
have b2 : finite (Field r) using a1 finite-Field by fastforce
have ∃ xm ∈ Field r . ∀ x ∈ Field r . (x, xm) ∈ r^∗
proof −

have {} ⊆ Field r −→ (∃ xm ∈ Field r . ∀ x ∈ {}. (x, xm) ∈ r^∗) using b1
Field-def by fastforce

moreover have
∧

x F . finite F =⇒ x /∈ F =⇒
F ⊆ Field r −→ (∃ xm ∈ Field r . ∀ x ∈ F . (x, xm) ∈ r^∗) =⇒
insert x F ⊆ Field r −→ (∃ xm ∈ Field r . ∀ x ∈ insert x F . (x, xm) ∈ r^∗)

proof
fix x F
assume c1 : finite F and c2 : x /∈ F and c3 : F ⊆ Field r −→ (∃ xm∈Field

r . ∀ x∈F . (x, xm) ∈ r^∗)
and c4 : insert x F ⊆ Field r

then obtain xm where c5 : xm ∈ Field r ∧ (∀ y∈F . (y, xm) ∈ r^∗) by
blast

then obtain xm ′ where xm ′ ∈ Field r ∧ (x, xm ′) ∈ r^∗ ∧ (xm, xm ′) ∈
r^∗

using b1 c4 unfolding CCR-def by blast
moreover then have ∀ y∈insert x F . (y, xm ′) ∈ r^∗ using c5 by force
ultimately show ∃ xm∈Field r . ∀ x∈insert x F . (x, xm) ∈ r^∗ by blast

qed
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ultimately have (∃ xm ∈ Field r . ∀ x ∈ Field r . (x, xm) ∈ r^∗)
using b2 finite-induct[of Field r λ A ′. A ′ ⊆ Field r −→ (∃ xm ∈ Field r .

∀ x ∈ A ′. (x, xm) ∈ r^∗)] by simp
then show ∃ xm ∈ Field r . ∀ x ∈ Field r . (x, xm) ∈ r^∗ by blast

qed
then show Conelike r using a1 b1 unfolding Conelike-def by blast

qed
then show CCR r = Conelike r using lem-Relprop-cl-ccr unfolding Cone-

like-def by blast
qed

lemma lem-Relprop-ccr-ch-un:
fixes S :: ′U rel set
assumes a1 : ∀ s∈S . CCR s and a2 : ∀ s1∈S . ∀ s2∈S . s1 ⊆ s2 ∨ s2 ⊆ s1
shows CCR (

⋃
S)

proof −
have ∀ a∈Field (

⋃
S). ∀ b∈Field (

⋃
S). ∃ c∈Field (

⋃
S). (a, c) ∈ (

⋃
S)^∗ ∧ (b,

c) ∈ (
⋃

S)^∗
proof (intro ballI )

fix a b
assume c1 : a ∈ Field (

⋃
S) and c2 : b ∈ Field (

⋃
S)

then obtain s1 s2 where c3 : s1 ∈ S ∧ a ∈ Field s1 and c4 : s2 ∈ S ∧ b ∈
Field s2

unfolding Field-def by blast
show ∃ c∈Field (

⋃
S). (a,c) ∈ (

⋃
S)^∗ ∧ (b,c) ∈ (

⋃
S)^∗

proof (cases s1 ⊆ s2 )
assume s1 ⊆ s2
then have a ∈ Field s2 using c3 unfolding Field-def by blast
then obtain c where c ∈ Field s2 ∧ (a,c) ∈ s2^∗ ∧ (b,c) ∈ s2^∗

using a1 c4 unfolding CCR-def by force
moreover then have c ∈ Field (

⋃
S) using c4 unfolding Field-def by

blast
moreover have s2^∗ ⊆ (

⋃
S)^∗ using c4 Transitive-Closure.rtrancl-mono[of

s2
⋃

S ] by blast
ultimately show ∃ c∈Field (

⋃
S). (a,c) ∈ (

⋃
S)^∗ ∧ (b,c) ∈ (

⋃
S)^∗ by

blast
next

assume ¬ s1 ⊆ s2
then have s2 ⊆ s1 using a2 c3 c4 by blast
then have b ∈ Field s1 using c4 unfolding Field-def by blast
then obtain c where c ∈ Field s1 ∧ (a,c) ∈ s1^∗ ∧ (b,c) ∈ s1^∗

using a1 c3 unfolding CCR-def by force
moreover then have c ∈ Field (

⋃
S) using c3 unfolding Field-def by

blast
moreover have s1^∗ ⊆ (

⋃
S)^∗ using c3 Transitive-Closure.rtrancl-mono[of

s1
⋃

S ] by blast
ultimately show ∃ c∈Field (

⋃
S). (a,c) ∈ (

⋃
S)^∗ ∧ (b,c) ∈ (

⋃
S)^∗ by

blast
qed
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qed
then show ?thesis unfolding CCR-def by blast

qed

lemma lem-Relprop-restr-ch-un:
fixes C :: ′U set set and r :: ′U rel
assumes ∀A1∈C . ∀A2∈C . A1 ⊆ A2 ∨ A2 ⊆ A1
shows Restr r (

⋃
C ) =

⋃
{ s. ∃ A ∈ C . s = Restr r A }

proof
show Restr r (

⋃
C ) ⊆

⋃
{ s. ∃ A ∈ C . s = Restr r A }

proof
fix p
assume p ∈ Restr r (

⋃
C )

then obtain a b A1 A2 where p = (a,b) ∧ a ∈ A1 ∧ b ∈ A2 ∧ p ∈ r ∧ A1
∈ C ∧ A2 ∈ C by blast

moreover then have A1 ⊆ A2 ∨ A2 ⊆ A1 using assms by blast
ultimately show p ∈

⋃
{ s. ∃ A ∈ C . s = Restr r A } by blast

qed
next

show
⋃
{ s. ∃ A ∈ C . s = Restr r A } ⊆ Restr r (

⋃
C ) by blast

qed

lemma lem-Inv-restr-rtr :
fixes r :: ′U rel and A:: ′U set
assumes A ∈ Inv r
shows r^∗ ∩ (A×(UNIV :: ′U set)) ⊆ (Restr r A)^∗
proof −

have ∀ n. ∀ a b. (a,b) ∈ r^^n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗
proof

fix n
show ∀ a b. (a,b) ∈ r^^n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗
proof (induct n)

show ∀ a b. (a,b) ∈ r ^^ 0 ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ by simp
next

fix n
assume d1 : ∀ a b. (a,b) ∈ r ^^ n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗
show ∀ a b. (a,b) ∈ r ^^ (Suc n) ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗
proof (intro allI impI )

fix a b
assume e1 : (a,b) ∈ r ^^ (Suc n) ∧ a ∈ A
moreover then obtain c where e2 : (a,c) ∈ r^^n ∧ (c,b) ∈ r by force
ultimately have e3 : (a,c) ∈ (Restr r A)^∗ using d1 by blast
moreover then have c ∈ A using e1 using rtranclE by force
then have (c,b) ∈ Restr r A using assms e2 unfolding Inv-def by blast

then show (a,b) ∈ (Restr r A)^∗ using e3 by (meson rtrancl.rtrancl-into-rtrancl)
qed

qed
qed
then show ?thesis using rtrancl-power by blast
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qed

lemma lem-Inv-restr-rtr2 :
fixes r :: ′U rel and A:: ′U set
assumes A ∈ Inv r
shows r^∗ ∩ (A×(UNIV :: ′U set)) ⊆ (Restr r A)^∗ ∩ ((UNIV :: ′U set)×A)
proof −

have ∀ n. ∀ a b. (a,b) ∈ r^^n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩ ((UNIV :: ′U
set)×A)

proof
fix n
show ∀ a b. (a,b) ∈ r^^n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩ ((UNIV :: ′U

set)×A)
proof (induct n)

show ∀ a b. (a,b) ∈ r ^^ 0 ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩ ((UNIV :: ′U
set)×A) by simp

next
fix n
assume d1 : ∀ a b. (a,b) ∈ r ^^ n ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩

((UNIV :: ′U set)×A)
show ∀ a b. (a,b) ∈ r ^^ (Suc n) ∧ a ∈ A −→ (a,b) ∈ (Restr r A)^∗ ∩

((UNIV :: ′U set)×A)
proof (intro allI impI )

fix a b
assume e1 : (a,b) ∈ r ^^ (Suc n) ∧ a ∈ A
moreover then obtain c where e2 : (a,c) ∈ r^^n ∧ (c,b) ∈ r by force
ultimately have e3 : (a,c) ∈ (Restr r A)^∗ using d1 by blast
moreover then have c ∈ A using e1 using rtranclE by force
then have e4 : (c,b) ∈ Restr r A using assms e2 unfolding Inv-def by

blast
ultimately have (a,b) ∈ (Restr r A)^∗ using e3 by (meson rtrancl.rtrancl-into-rtrancl)

then show (a,b) ∈ (Restr r A)^∗ ∩ ((UNIV :: ′U set)×A) using e4 by blast
qed

qed
qed
then show ?thesis using rtrancl-power by blast

qed

lemma lem-inv-rtr-mem:
fixes r :: ′U rel and A:: ′U set and a b:: ′U
assumes A ∈ Inv r and a ∈ A and (a,b) ∈ r^∗
shows b ∈ A

using assms lem-Inv-restr-rtr [of A r ] rtranclE [of a b] by blast

lemma lem-Inv-ccr-restr :
fixes r :: ′U rel and A:: ′U set
assumes CCR r and A ∈ Inv r
shows CCR (Restr r A)
proof −
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have ∀ a ∈ Field (Restr r A). ∀ b ∈ Field (Restr r A). ∃ c ∈ Field (Restr r A).
(a,c) ∈ (Restr r A)^∗ ∧ (b,c) ∈ (Restr r A)^∗

proof (intro ballI )
fix a b
assume c1 : a ∈ Field (Restr r A) and c2 : b ∈ Field (Restr r A)
moreover then obtain c where c ∈ Field r and (a,c) ∈ r^∗ ∧ (b,c) ∈ r^∗

using assms unfolding CCR-def Field-def by blast
ultimately have (a,c) ∈ r^∗ ∩ (A×(UNIV :: ′U set)) ∧ (b,c) ∈ r^∗ ∩ (A×(UNIV :: ′U

set)) unfolding Field-def by blast
then have (a,c) ∈ (Restr r A)^∗ ∧ (b,c) ∈ (Restr r A)^∗ using assms

lem-Inv-restr-rtr by blast
moreover then have c ∈ Field (Restr r A) using c1 lem-rtr-field[of a c] by

blast
ultimately show ∃ c ∈ Field (Restr r A). (a,c) ∈ (Restr r A)^∗ ∧ (b,c) ∈

(Restr r A)^∗ by blast
qed
then show ?thesis unfolding CCR-def by blast

qed

lemma lem-Inv-cl-restr :
fixes r :: ′U rel and A:: ′U set
assumes Conelike r and A ∈ Inv r
shows Conelike (Restr r A)
proof(cases r = {})

assume r = {}
then show ?thesis unfolding Conelike-def by blast

next
assume r 6= {}
then obtain m where b1 : ∀ a ∈ Field r . (a,m) ∈ r^∗ using assms unfolding

Conelike-def by blast
show Conelike (Restr r A)
proof (cases m ∈ Field (Restr r A))

assume m ∈ Field (Restr r A)
moreover have ∀ a ∈ Field (Restr r A). (a,m) ∈ (Restr r A)^∗

using assms lem-Inv-restr-rtr b1 unfolding Field-def by blast
ultimately show Conelike (Restr r A) unfolding Conelike-def by blast

next
assume c1 : m /∈ Field (Restr r A)
have (Field r) ∩ A ⊆ {m}
proof

fix a0
assume a0 ∈ (Field r) ∩ A
then have (a0 ,m) ∈ r^∗ ∩ (A×(UNIV :: ′U set)) using b1 by blast
then have (a0 ,m) ∈ (Restr r A)^∗ using assms lem-Inv-restr-rtr by blast

then show a0 ∈ {m} using c1 lem-rtr-field by (metis (full-types) mem-Collect-eq
singleton-conv)

qed
then show Conelike (Restr r A) unfolding Conelike-def Field-def by blast

qed
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qed

lemma lem-Inv-ccr-restr-invdiff :
fixes r :: ′U rel and A B:: ′U set
assumes a1 : CCR (Restr r A) and a2 : B ∈ Inv (r^−1 )
shows CCR (Restr r (A − B))
proof −

have (Restr r A) ‘‘ (A−B) ⊆ (A−B)
proof

fix b
assume b ∈ (Restr r A) ‘‘ (A−B)
then obtain a where c2 : a ∈ A−B ∧ (a,b) ∈ (Restr r A) by blast
moreover then have b /∈ B using a2 unfolding Inv-def by blast
ultimately show b ∈ A − B by blast

qed
then have (A−B) ∈ Inv(Restr r A) unfolding Inv-def by blast
then have CCR (Restr (Restr r A) (A − B)) using a1 lem-Inv-ccr-restr by

blast
moreover have Restr (Restr r A) (A − B) = Restr r (A−B) by blast
ultimately show ?thesis by metis

qed

lemma lem-Inv-dncl-invbk: dncl r A ∈ Inv (r^−1 )
unfolding dncl-def Inv-def apply clarify
using converse-rtrancl-into-rtrancl by (metis ImageI rtrancl-converse rtrancl-converseI )

lemma lem-inv-sf-ext:
fixes r :: ′U rel and A:: ′U set
assumes A ⊆ Field r
shows ∃ A ′ ∈ SF r . A ⊆ A ′ ∧ (finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o
|A| )
proof −

obtain rs where b4 : rs = r ∪ (r^−1 ) by blast
obtain S where b1 : S = (λ a. rs‘‘{a} ) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. (f a) ∈ (S ′ a) by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain A ′ where b5 : A ′ = A ∪ (f ‘ A) by blast
have A ∪ (f ‘ A) ⊆ Field (Restr r A ′)
proof

fix x
assume x ∈ A ∪ (f ‘ A)
then obtain a b where c1 : a ∈ A ∧ b = f a ∧ x ∈ {a,b} by blast
moreover then have rs ‘‘ {a} 6= {} −→ (a, b) ∈ rs using assms b1 b3 by

blast
moreover have rs ‘‘ {a} = {} −→ False using assms c1 b4 unfolding
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Field-def by blast
moreover have (a,b) ∈ rs −→ {a,b} ⊆ Field (Restr r A ′) using c1 b4 b5

unfolding Field-def by blast
ultimately show x ∈ Field (Restr r A ′) by blast

qed
then have (A ⊆ A ′) ∧ (A ′ ∈ SF r) using b5 unfolding SF-def Field-def by

blast
moreover have finite A −→ finite A ′ using b5 by blast
moreover have (¬ finite A) −→ |A ′| =o |A| using b5 by simp
ultimately show ?thesis by blast

qed

lemma lem-inv-sf-un:
assumes S ⊆ SF r
shows (

⋃
S) ∈ SF r

using assms unfolding SF-def Field-def by blast

lemma lem-Inv-ccr-sf-inv-diff :
fixes r :: ′U rel and A B:: ′U set
assumes a1 : A ∈ SF r and a2 : CCR (Restr r A) and a3 : B ∈ Inv (r^−1 )
shows (A−B) ∈ SF r ∨ (∃ y:: ′U . (A−B) = {y})
proof −

have ∀ a ∈ A − B. a /∈ Field (Restr r (A−B)) −→ A − B = {a}
proof (intro ballI impI )

fix a
assume b1 : a ∈ A − B and b2 : a /∈ Field (Restr r (A−B))
then have ¬ (∃ b ∈ A−B. (a,b) ∈ r ∨ (b,a) ∈ r) unfolding Field-def by blast
then have b3 : ∀ b ∈ A. (a,b) /∈ r using a3 b1 unfolding Inv-def by blast
have b4 : ∀ x ∈ Field(Restr r A). (x,a) ∈ (Restr r A)^∗
proof

fix x
assume x ∈ Field(Restr r A)
moreover then have a ∈ Field (Restr r A) using b1 a1 unfolding SF-def

by blast
ultimately obtain y where c1 : (a,y) ∈ (Restr r A)^∗ ∧ (x,y) ∈ (Restr r

A)^∗
using a2 unfolding CCR-def by blast

moreover have (a,y) ∈ (Restr r A)^+ −→ False using b3 tranclD by force
ultimately have a = y using rtrancl-eq-or-trancl by metis
then show (x,a) ∈ (Restr r A)^∗ using c1 by blast

qed
have ∀ b ∈ (A−B) − {a}. False
proof

fix b
assume c1 : b ∈ (A−B) − {a}
then have b ∈ Field (Restr r A) using a1 unfolding SF-def by blast
then have (b,a) ∈ (Restr r A)^∗ using b4 by blast
moreover have (b,a) ∈ (Restr r A)^+ −→ False
proof
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assume (b,a) ∈ (Restr r A)^+
then obtain b ′ where d1 : (b,b ′) ∈ (Restr r A)^∗ ∧ (b ′,a) ∈ Restr r A

using tranclD2 by metis
have d2 : ∀ r ′ a b. (a,b) ∈ Restr r ′ B = (a ∈ B ∧ b ∈ B ∧ (a,b) ∈ r ′)

unfolding Field-def by force
have (b,b ′) ∈ r^∗ using d1 rtrancl-mono[of Restr r A] by blast
then have (b ′,b) ∈ (r^−1 )^∗ using rtrancl-converse by blast

then have b ′ ∈ B −→ (b ′,b) ∈ (Restr (r^−1 ) B)^∗ using a3 lem-Inv-restr-rtr
by blast

then have b ′ ∈ B −→ b ∈ B using d2 by (metis rtrancl-eq-or-trancl
tranclD2 )

then have b ′ ∈ A − B using d1 c1 by blast
then have (b ′,a) ∈ Restr r (A−B) using b1 d1 by blast
then have a ∈ Field (Restr r (A−B)) unfolding Field-def by blast
then show False using b2 by blast

qed
ultimately have b = a using rtrancl-eq-or-trancl[of b a] by blast
then show False using c1 by blast

qed
then show A − B = {a} using b1 by blast

qed
then show ?thesis unfolding SF-def Field-def by blast

qed

lemma lem-Inv-ccr-sf-dn-diff :
fixes r :: ′U rel and A D A ′:: ′U set
assumes a1 : A ∈ SF r and a2 : CCR (Restr r A) and a3 : A ′ = (A − (dncl r D))
shows ((A ′ ∈ SF r) ∧ CCR (Restr r A ′)) ∨ (∃ y:: ′U . A ′ = {y})

using assms lem-Inv-ccr-restr-invdiff lem-Inv-ccr-sf-inv-diff lem-Inv-dncl-invbk
by blast

lemma lem-rseq-tr :
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes ∀ i. (xi i, xi (Suc i)) ∈ r
shows ∀ i j. i < j −→ (xi i ∈ Field r ∧ (xi i, xi j) ∈ r^+)
proof −

have
∧

j. ∀ i < j. xi i ∈ Field r ∧ (xi i, xi j) ∈ r^+
proof −

fix j0
show ∀ i < j0 . xi i ∈ Field r ∧ (xi i, xi j0 ) ∈ r^+
proof (induct j0 )

show ∀ i<0 . xi i ∈ Field r ∧ (xi i, xi 0 ) ∈ r^+ by blast
next

fix j
assume d1 : ∀ i<j. xi i ∈ Field r ∧ (xi i, xi j) ∈ r^+
show ∀ i<Suc j. xi i ∈ Field r ∧ (xi i, xi (Suc j)) ∈ r^+
proof (intro allI impI )

fix i
assume e1 : i < Suc j
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have e2 : (xi j, xi (Suc j)) ∈ r using assms by simp
show xi i ∈ Field r ∧ (xi i, xi (Suc j)) ∈ r^+
proof (cases i < j)

assume i < j
then have xi i ∈ Field r ∧ (xi i, xi j) ∈ r^+ using d1 by blast
then show ?thesis using e2 by force

next
assume ¬ i < j
then have i = j using e1 by simp
then show ?thesis using e2 unfolding Field-def by blast

qed
qed

qed
qed
then show ?thesis by blast

qed

lemma lem-rseq-rtr :
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes ∀ i. (xi i, xi (Suc i)) ∈ r
shows ∀ i j. i ≤ j −→ (xi i ∈ Field r ∧ (xi i, xi j) ∈ r^∗)
proof (intro allI impI )

fix i::nat and j::nat
assume b1 : i ≤ j
then have xi i ∈ Field r using assms unfolding Field-def by blast
moreover have (xi i, xi j) ∈ r^∗
proof (cases i = j)

assume i = j
then show ?thesis by blast

next
assume i 6= j
then have i < j using b1 by simp
moreover have r^+ ⊆ r^∗ by force
ultimately show ?thesis using assms lem-rseq-tr [of xi r ] by blast

qed
ultimately show xi i ∈ Field r ∧ (xi i, xi j) ∈ r^∗ by blast

qed

lemma lem-rseq-svacyc-inv-tr :
fixes r :: ′U rel and xi::nat ⇒ ′U and a:: ′U
assumes a1 : single-valued r and a2 : ∀ i. (xi i, xi (Suc i)) ∈ r
shows

∧
i. (xi i, a) ∈ r^+ =⇒ (∃ j. i<j ∧ a = xi j)

proof −
fix i
assume (xi i, a) ∈ r^+
moreover have

∧
n. ∀ i a. (xi i, a) ∈ r^^(Suc n) −→ (∃ j. i<j ∧ a = xi j)

proof −
fix n
show ∀ i a. (xi i, a) ∈ r^^(Suc n) −→ (∃ j. i<j ∧ a = xi j)
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proof (induct n)
show ∀ i a. (xi i, a) ∈ r^^(Suc 0 ) −→ (∃ j>i. a = xi j)
proof (intro allI impI )

fix i a
assume (xi i, a) ∈ r^^(Suc 0 )
then have (xi i, a) ∈ r ∧ (xi i, xi (Suc i)) ∈ r using a2 by simp
then have a = xi (Suc i) using a1 unfolding single-valued-def by blast
then show ∃ j>i. a = xi j by force

qed
next

fix n
assume d1 : ∀ i a. (xi i, a) ∈ r^^(Suc n) −→ (∃ j>i. a = xi j)
show ∀ i a. (xi i, a) ∈ r ^^ Suc (Suc n) −→ (∃ j>i. a = xi j)
proof (intro allI impI )

fix i a
assume (xi i, a) ∈ r^^(Suc (Suc n))
then obtain b where (xi i, b) ∈ r^^(Suc n) ∧ (b, a) ∈ r by force
moreover then obtain j where e1 : j > i ∧ b = xi j using d1 by blast
ultimately have (xi j, a) ∈ r ∧ (xi j, xi (Suc j)) ∈ r using a2 by blast
then have a = xi (Suc j) using a1 unfolding single-valued-def by blast
moreover have Suc j > i using e1 by force
ultimately show ∃ j>i. a = xi j by blast

qed
qed

qed
ultimately show ∃ j. i<j ∧ a = xi j using trancl-power [of - r ] by (metis

Suc-pred ′)
qed

lemma lem-rseq-svacyc-inv-rtr :
fixes r :: ′U rel and xi::nat ⇒ ′U and a:: ′U
assumes a1 : single-valued r and a2 : ∀ i. (xi i, xi (Suc i)) ∈ r
shows

∧
i. (xi i, a) ∈ r^∗ =⇒ (∃ j. i≤j ∧ a = xi j)

proof −
fix i
assume b1 : (xi i, a) ∈ r^∗
show ∃ j. i≤j ∧ a = xi j
proof (cases xi i = a)

assume xi i = a
then show ?thesis by force

next
assume xi i 6= a
then have (xi i, a) ∈ r^+ using b1 by (meson rtranclD)
then obtain j where i<j ∧ a = xi j using assms lem-rseq-svacyc-inv-tr [of r

xi i a] by blast
then have i ≤ j ∧ a = xi j by force
then show ?thesis by blast

qed
qed
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lemma lem-ccrsv-cfseq:
fixes r :: ′U rel
assumes a1 : r 6= {} and a2 : CCR r and a3 : single-valued r and a4 : ∀ x∈Field
r . r‘‘{x} 6= {}
shows ∃ xi. cfseq r xi
proof −

have b1 : Field r 6= {} ∧ (∀ x ∈ Field r . ∃ y. (x,y) ∈ r)
using a1 a4 unfolding Field-def by force

moreover obtain f where f = (λ x. SOME y. (x,y) ∈ r) by blast
ultimately have b2 : ∀ x ∈ Field r . (x, f x) ∈ r by (metis someI-ex)
obtain x0 where b3 : x0 ∈ Field r using b1 unfolding Field-def by blast
obtain xi::nat ⇒ ′U where b4 : xi = (λ n::nat. (f^^n) x0 ) by blast
obtain A where b5 : A = xi ‘ UNIV by blast
have r ‘‘ A ⊆ A
proof

fix a
assume a ∈ r‘‘A
then obtain i where (xi i, a) ∈ r using b5 by blast
moreover then have (xi i, f (xi i)) ∈ r using b2 unfolding Field-def by

blast
moreover have f (xi i) = xi (Suc i) using b4 by simp
ultimately have a = xi (Suc i) using a3 unfolding single-valued-def by

blast
then show a ∈ A using b5 by blast

qed
then have b6 : A ∈ Inv r unfolding Inv-def by blast
have ∀ a ∈ Field r . ∃ i. (a, xi i) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain b where (a,b) ∈ r^∗ ∧ (x0 ,b) ∈ r^∗ using b3 a2 unfolding

CCR-def by blast
moreover have x0 = xi 0 using b4 by simp
ultimately have (a,b) ∈ r^∗ ∧ b ∈ A using b5 b6 lem-inv-rtr-mem[of A r x0

b] by blast
then show ∃ i. (a, xi i) ∈ r^∗ using b5 by blast

qed
moreover have

∧
i. (xi i, xi (Suc i)) ∈ r

proof −
fix i0
show (xi i0 , xi (Suc i0 )) ∈ r
proof (induct i0 )

show (xi 0 , xi (Suc 0 )) ∈ r using b2 b3 b4 by simp
next

fix i
assume (xi i, xi (Suc i)) ∈ r
then have xi (Suc i) ∈ Field r unfolding Field-def by blast
then show (xi (Suc i), xi (Suc (Suc i))) ∈ r using b2 b3 b4 by simp
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qed
qed
ultimately show ?thesis unfolding cfseq-def by blast

qed

lemma lem-cfseq-fld: cfseq r xi =⇒ xi ‘ UNIV ⊆ Field r
using lem-rseq-rtr [of xi r ] unfolding cfseq-def by blast

lemma lem-cfseq-inv: cfseq r xi =⇒ single-valued r =⇒ xi ‘ UNIV ∈ Inv r
unfolding cfseq-def single-valued-def Inv-def by blast

lemma lem-scfinv-scf-int: A ∈ SCF r ∩ Inv r =⇒ B ∈ SCF r =⇒ (A ∩ B) ∈
SCF r
proof −

assume a1 : A ∈ SCF r ∩ Inv r and a2 : B ∈ SCF r
moreover have ∀ a ∈ Field r . ∃ b∈A ∩ B. (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain a ′ where b1 : a ′ ∈ A ∧ a ′ ∈ Field r ∧ (a,a ′) ∈ r^∗ using a1

unfolding SCF-def by blast
moreover then obtain b where b2 : b ∈ B ∧ (a ′,b) ∈ r^∗ using a2 unfolding

SCF-def by blast
ultimately have (a, b) ∈ r^∗ by force
moreover have b ∈ A ∩ B using b1 b2 a1 lem-inv-rtr-mem[of A r a ′ b] by

blast
ultimately show ∃ b ∈ A ∩ B. (a, b) ∈ r^∗ by blast

qed
ultimately show (A ∩ B) ∈ SCF r unfolding SCF-def Inv-def by blast

qed

lemma lem-scf-minr : a ∈ Field r =⇒ B ∈ SCF r =⇒ ∃ b ∈ B. (a,b) ∈ (r ∩
((UNIV−B) × UNIV ))^∗
proof −

assume a1 : a ∈ Field r and a2 : B ∈ SCF r
then obtain b ′ where b1 : b ′ ∈ B ∧ (a,b ′) ∈ r^∗ unfolding SCF-def by blast
then obtain n where (a,b ′) ∈ r^^n using rtrancl-power by blast
then obtain f where b2 : f (0 ::nat) = a ∧ f n = b ′ and b3 : ∀ i<n. (f i, f (Suc

i)) ∈ r
using relpow-fun-conv[of a b ′] by blast

obtain N where b4 : N = { i. f i ∈ B } by blast
obtain s where b5 : s = r ∩ ((UNIV−B) × UNIV ) by blast
obtain m where m = (LEAST i. i ∈ N ) by blast
moreover have n ∈ N using b1 b2 b4 by blast
ultimately have m ∈ N ∧ m ≤ n ∧ (∀ i ∈ N . m ≤ i) by (metis LeastI Least-le)
then have m ≤ n ∧ f m ∈ B ∧ (∀ i < m. f i /∈ B) using b4 by force
then have f 0 = a ∧ f m ∈ B ∧ (∀ i<m. (f i, f (Suc i)) ∈ s) using b2 b3 b5

by force
then have f m ∈ B ∧ (a, f m) ∈ s^∗
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using relpow-fun-conv[of a f m] rtrancl-power [of - s] by metis
then show ∃ b ∈ B. (a,b) ∈ (r ∩ ((UNIV−B) × UNIV ))^∗ using b5 by blast

qed

lemma lem-cfseq-ncl:
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes a1 : cfseq r xi and a2 : ¬ Conelike r
shows ∀ n. ∃ k. n ≤ k ∧ (xi (Suc k), xi k) /∈ r^∗
proof

fix n
have (∀ k. n ≤ k −→ (xi (Suc k), xi k) ∈ r^∗) −→ False
proof

assume c1 : ∀ k. n ≤ k −→ (xi (Suc k), xi k) ∈ r^∗
have

∧
k. n ≤ k −→ (xi k, xi n) ∈ r^∗

proof −
fix k
show n ≤ k −→ (xi k, xi n) ∈ r^∗
proof (induct k)

show n ≤ 0 −→ (xi 0 , xi n) ∈ r^∗ by blast
next

fix k
assume e1 : n ≤ k −→ (xi k, xi n) ∈ r^∗
show n ≤ Suc k −→ (xi (Suc k), xi n) ∈ r^∗
proof

assume f1 : n ≤ Suc k
show (xi (Suc k), xi n) ∈ r^∗
proof (cases n = Suc k)

assume n = Suc k
then show ?thesis using c1 by blast

next
assume n 6= Suc k
then have (xi k, xi n) ∈ r^∗ ∧ (xi (Suc k), xi k) ∈ r^∗ using f1 e1 c1

by simp
then show ?thesis by force

qed
qed

qed
qed
moreover have ∀ k ≤ n. (xi k, xi n) ∈ r^∗ using a1 lem-rseq-rtr unfolding

cfseq-def by blast
moreover have ∀ k::nat. k ≤ n ∨ n ≤ k by force
ultimately have b1 : ∀ k. (xi k, xi n) ∈ r^∗ by blast
have xi n ∈ Field r using a1 unfolding cfseq-def Field-def by blast
moreover have b2 : ∀ a ∈ Field r . (a, xi n) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain i where (a, xi i) ∈ r^∗ using a1 unfolding cfseq-def by blast
moreover have (xi i, xi n) ∈ r^∗ using b1 by blast
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ultimately show (a, xi n) ∈ r^∗ by force
qed
ultimately have Conelike r unfolding Conelike-def by blast
then show False using a2 by blast

qed
then show ∃ k. n ≤ k ∧ (xi (Suc k), xi k) /∈ r^∗ by blast

qed

lemma lem-cfseq-inj:
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes a1 : cfseq r xi and a2 : acyclic r
shows inj xi
proof −

have ∀ i j. xi i = xi j −→ i = j
proof (intro allI impI )

fix i j
assume c1 : xi i = xi j
have i < j −→ False
proof

assume i < j
then have (xi i, xi j) ∈ r^+ using a1 lem-rseq-tr unfolding cfseq-def by

blast
then show False using c1 a2 unfolding acyclic-def by force

qed
moreover have j < i −→ False
proof

assume j < i
then have (xi j, xi i) ∈ r^+ using a1 lem-rseq-tr unfolding cfseq-def by

blast
then show False using c1 a2 unfolding acyclic-def by force

qed
ultimately show i = j by simp

qed
then show ?thesis unfolding inj-on-def by blast

qed

lemma lem-cfseq-rmon:
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes a1 : cfseq r xi and a2 : single-valued r and a3 : acyclic r
shows ∀ i j. (xi i, xi j) ∈ r^+ −→ i < j
proof (intro allI impI )

fix i j
assume c1 : (xi i, xi j) ∈ r^+
then obtain j ′ where c2 : i < j ′ ∧ xi j ′ = xi j

using a1 a2 lem-rseq-svacyc-inv-tr [of r xi i] unfolding cfseq-def by metis
have j ≤ i −→ False
proof

assume d1 : j ≤ i
then have (xi j, xi i) ∈ r^∗ using c2 a1 lem-rseq-rtr unfolding cfseq-def by
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blast
then have (xi i, xi i) ∈ r^+ using c1 by force
then show False using a3 unfolding acyclic-def by blast

qed
then show i < j by simp

qed

lemma lem-rseq-hd:
assumes ∀ i<n. (f i, f (Suc i)) ∈ r
shows ∀ i≤n. (f 0 , f i) ∈ r^∗
proof (intro allI impI )

fix i
assume i ≤ n
then have ∀ j<i. (f j, f (Suc j)) ∈ r using assms by force
then have (f 0 , f i) ∈ r^^i using relpow-fun-conv by metis
then show (f 0 , f i) ∈ r^∗ using relpow-imp-rtrancl by blast

qed

lemma lem-rseq-tl:
assumes ∀ i<n. (f i, f (Suc i)) ∈ r
shows ∀ i≤n. (f i, f n) ∈ r^∗
proof (intro allI impI )

fix i
assume b1 : i ≤ n
obtain g where b2 : g = (λ j. f (i + j)) by blast
then have ∀ j<n−i. (g j, g (Suc j)) ∈ r using assms by force
moreover have g 0 = f i ∧ g (n−i) = f n using b1 b2 by simp
ultimately have (f i, f n) ∈ r^^(n−i) using relpow-fun-conv by metis
then show (f i, f n) ∈ r^∗ using relpow-imp-rtrancl by blast

qed

lemma lem-ccext-ntr-rpth: (a,b) ∈ r^^n = (rpth r a b n 6= {})
proof

assume rpth r a b n 6= {}
then obtain f where f ∈ rpth r a b n by blast
then show (a,b) ∈ r^^n unfolding rpth-def using relpow-fun-conv[of a b] by

blast
next

assume (a,b) ∈ r^^n
then obtain f where f ∈ rpth r a b n unfolding rpth-def using relpow-fun-conv[of

a b] by blast
then show rpth r a b n 6= {} by blast

qed

lemma lem-ccext-rtr-rpth: (a,b) ∈ r^∗ =⇒ ∃ n. rpth r a b n 6= {}
using rtrancl-power lem-ccext-ntr-rpth by metis

lemma lem-ccext-rpth-rtr : rpth r a b n 6= {} =⇒ (a,b) ∈ r^∗
using rtrancl-power lem-ccext-ntr-rpth by metis
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lemma lem-ccext-rtr-Fne:
fixes r :: ′U rel and a b:: ′U
shows (a,b) ∈ r^∗ = (F r a b 6= {})
proof

assume (a,b) ∈ r^∗
then obtain n f where f ∈ rpth r a b n using lem-ccext-rtr-rpth[of a b r ] by

blast
then have f‘{i. i≤n} ∈ F r a b unfolding F-def by blast
then show F r a b 6= {} by blast

next
assume F r a b 6= {}
then obtain F where F ∈ F r a b by blast
then obtain n::nat and f ::nat ⇒ ′U where F = f‘{i. i≤n} ∧ f ∈ rpth r a b n

unfolding F-def by blast
then show (a,b) ∈ r^∗ using lem-ccext-rpth-rtr [of r ] by blast

qed

lemma lem-ccext-fprop: F r a b 6= {} =⇒ f r a b ∈ F r a b unfolding f-def using
some-in-eq by metis

lemma lem-ccext-ffin: finite (f r a b)
proof (cases F r a b = {})

assume F r a b = {}
then show finite (f r a b) unfolding f-def by simp

next
assume F r a b 6= {}
then have f r a b ∈ F r a b using lem-ccext-fprop[of r ] by blast
then show finite (f r a b) unfolding F-def by force

qed

lemma lem-ccr-fin-subr-ext:
fixes r s:: ′U rel
assumes a1 : CCR r and a2 : s ⊆ r and a3 : finite s
shows ∃ s ′::( ′U rel). finite s ′ ∧ CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r
proof −

have CCR {} unfolding CCR-def Field-def by blast
then have {} ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ {} ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′) by blast
moreover have

∧
p R. finite R =⇒ p /∈ R =⇒

R ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ R ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′) =⇒
insert p R ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ insert p R ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′)

proof
fix p R
assume c1 : finite R and c2 : p /∈ R

and c3 : R ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ R ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′) and c4 :
insert p R ⊆ r

then obtain r ′′ where c5 : CCR r ′′ ∧ R ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′ by blast
show ∃ r ′′′. CCR r ′′′ ∧ insert p R ⊆ r ′′′ ∧ r ′′′ ⊆ r ∧ finite r ′′′

proof (cases r ′′ = {})
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assume r ′′ = {}
then have insert p R ⊆ {p} using c5 by blast
moreover have CCR {p} unfolding CCR-def Field-def by fastforce
ultimately show ∃ r ′′′. CCR r ′′′ ∧ insert p R ⊆ r ′′′ ∧ r ′′′ ⊆ r ∧ finite r ′′′

using c4 by blast
next

assume d1 : r ′′ 6= {}
then obtain xm where d2 : xm ∈ Field r ′′ ∧ (∀ x ∈ Field r ′′. (x, xm) ∈

r ′′̂ ∗)
using c5 lem-Relprop-fin-ccr [of r ′′] unfolding Conelike-def by blast

then have d3 : xm ∈ Field r using c5 unfolding Field-def by blast
obtain xp yp where d4 : p = (xp, yp) by force
then have d5 : yp ∈ Field r using c4 unfolding Field-def by blast
then obtain t where d6 : t ∈ Field r ∧ (xm, t) ∈ r^∗ ∧ (yp, t) ∈ r^∗ using

a1 d3 unfolding CCR-def by blast
then obtain n m where d7 : (xm, t) ∈ r^^n ∧ (yp, t) ∈ r^^m using

rtrancl-power by blast
obtain fn where d8 : fn (0 ::nat) = xm ∧ fn n = t ∧ (∀ i<n. (fn i, fn(Suc

i)) ∈ r) using d7 relpow-fun-conv[of xm t] by blast
obtain fm where d9 : fm (0 ::nat) = yp ∧ fm m = t ∧ (∀ i<m. (fm i, fm(Suc

i)) ∈ r) using d7 relpow-fun-conv[of yp t] by blast
obtain A where d10 : A = Field r ′′ ∪ { xp } ∪ { x. ∃ i≤n. x = fn i } ∪ {

x. ∃ i≤m. x = fm i } by blast
obtain r ′′′ where d11 : r ′′′ = r ∩ (A × A) by blast
have d12 : r ′′ ⊆ r ′′′ using d10 d11 c5 unfolding Field-def by fastforce
then have d13 : Field r ′′ ⊆ Field r ′′′ unfolding Field-def by blast
have d14 : r ′′̂ ∗ ⊆ r ′′′̂ ∗ using d12 rtrancl-mono by blast
have d15 : ∀ i. i<n −→ (fn i, fn(Suc i)) ∈ r ′′′

proof
fix i
show i<n −→ (fn i, fn(Suc i)) ∈ r ′′′

proof (induct i)
show 0 < n −→ (fn 0 , fn (Suc 0 )) ∈ r ′′′

proof
assume 0 < n
moreover then have (Suc 0 ) ≤ n by force
ultimately have fn 0 ∈ A ∧ fn(Suc 0 ) ∈ A ∧ (fn 0 , fn(Suc 0 )) ∈ r

using d8 d10 by fastforce
then show (fn 0 , fn (Suc 0 )) ∈ r ′′′ using d11 by blast

qed
next

fix i
assume g1 : i < n −→ (fn i, fn (Suc i)) ∈ r ′′′

show Suc i < n −→ (fn (Suc i), fn (Suc (Suc i))) ∈ r ′′′

proof
assume Suc i < n
moreover then have Suc (Suc i) ≤ n by simp
moreover then have (fn i, fn (Suc i)) ∈ r ′′′ using g1 by simp
ultimately show (fn (Suc i), fn (Suc (Suc i))) ∈ r ′′′ using d8 d10 d11
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by blast
qed

qed
qed
have d16 : ∀ i. i<m −→ (fm i, fm(Suc i)) ∈ r ′′′

proof
fix i
show i<m −→ (fm i, fm(Suc i)) ∈ r ′′′

proof (induct i)
show 0 < m −→ (fm 0 , fm (Suc 0 )) ∈ r ′′′

proof
assume 0 < m
moreover then have (Suc 0 ) ≤ m by force
ultimately have fm 0 ∈ A ∧ fm(Suc 0 ) ∈ A ∧ (fm 0 , fm(Suc 0 )) ∈ r

using d9 d10 by fastforce
then show (fm 0 , fm (Suc 0 )) ∈ r ′′′ using d11 by blast

qed
next

fix i
assume g1 : i < m −→ (fm i, fm (Suc i)) ∈ r ′′′

show Suc i < m −→ (fm (Suc i), fm (Suc (Suc i))) ∈ r ′′′

proof
assume Suc i < m
moreover then have Suc (Suc i) ≤ m by simp
moreover then have (fm i, fm (Suc i)) ∈ r ′′′ using g1 by simp
ultimately show (fm (Suc i), fm (Suc (Suc i))) ∈ r ′′′ using d9 d10

d11 by blast
qed

qed
qed

have d17 : (xm, t) ∈ r ′′′̂ ∗ using d8 d15 relpow-fun-conv[of xm t n r ′′′]
rtrancl-power by blast

then have d18 : t ∈ Field r ′′′ using d2 d13 by (metis FieldI2 rtrancl.cases
subsetCE)

have d19 : (yp, t) ∈ r ′′′̂ ∗ using d9 d16 relpow-fun-conv[of yp t m r ′′′]
rtrancl-power by blast

have d20 : ∀ j≤n. (fn j, t) ∈ r ′′′̂ ∗
proof (intro allI impI )

fix j
assume j ≤ n
moreover obtain f ′ where f ′ = (λk. fn (j + k)) by blast
ultimately have f ′ 0 = fn j ∧ f ′ (n − j) = t ∧ (∀ i < n − j. (f ′ i, f ′ (Suc

i)) ∈ r ′′′)
using d8 d15 by simp

then show (fn j, t) ∈ r ′′′̂ ∗
using relpow-fun-conv[of fn j t n − j r ′′′] rtrancl-power by blast

qed
have d21 : ∀ j≤m. (fm j, t) ∈ r ′′′̂ ∗
proof (intro allI impI )
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fix j
assume j ≤ m
moreover obtain f ′ where f ′ = (λk. fm (j + k)) by blast
ultimately have f ′ 0 = fm j ∧ f ′ (m − j) = t ∧ (∀ i < m − j. (f ′ i, f ′

(Suc i)) ∈ r ′′′)
using d9 d16 by simp

then show (fm j, t) ∈ r ′′′̂ ∗
using relpow-fun-conv[of fm j t m − j r ′′′] rtrancl-power by blast

qed
have r ′′′ ⊆ r using d11 by blast
moreover have d22 : insert p R ⊆ r ′′′

proof −
have p ∈ r ′′′ using c4 d4 d9 d10 d11 by blast
moreover have R ⊆ r ′′′

proof
fix p ′

assume p ′ ∈ R
moreover then have p ′ ∈ Field R × Field R using Restr-Field by blast

moreover have Field R ⊆ Field r ′′ using c5 unfolding Field-def by
blast

ultimately show p ′ ∈ r ′′′ using c4 d10 d11 by blast
qed
ultimately show ?thesis by blast

qed
moreover have finite r ′′′ using c5 d10 d11 finite-Field by fastforce
moreover have CCR r ′′′

proof −
let ?jn = λ a b. ∃ c ∈ Field r ′′′. (a,c) ∈ r ′′′̂ ∗ ∧ (b,c) ∈ r ′′′̂ ∗
have ∀ a ∈ Field r ′′′. ∀ b ∈ Field r ′′′. ?jn a b
proof (intro ballI )

fix a b
assume f1 : a ∈ Field r ′′′ and f2 : b ∈ Field r ′′′

then have f3 : a ∈ A ∧ b ∈ A using d11 unfolding Field-def by blast
have f4 : (xp, t) ∈ r ′′′̂ ∗ using d4 d19 d22 by force
have a ∈ Field r ′′ −→ ?jn a b
proof

assume g1 : a ∈ Field r ′′

then have g2 : (a, t) ∈ r ′′′̂ ∗ using d2 d14 d17 by fastforce
have b ∈ Field r ′′ −→ ?jn a b using c5 d13 d14 g1 unfolding CCR-def

by blast
moreover have ?jn a xp using d4 d18 d19 d22 g2 by force
moreover have ∀ j≤n. ?jn a (fn j) using d18 d20 g2 by blast
moreover have ∀ j≤m. ?jn a (fm j) using d18 d21 g2 by blast
ultimately show ?jn a b using d10 f3 by blast

qed
moreover have ?jn xp b
proof −

have b ∈ Field r ′′ −→ ?jn xp b
proof
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assume b ∈ Field r ′′

then have (b, xm) ∈ r ′′′̂ ∗ using d14 d2 by blast
then show ?jn xp b using d17 d18 f4 by force

qed
moreover have ?jn xp xp using d4 d22 unfolding Field-def by blast
moreover have ∀ j≤n. ?jn xp (fn j) using d18 d20 f4 by blast
moreover have ∀ j≤m. ?jn xp (fm j) using d18 d21 f4 by blast
ultimately show ?jn xp b using d10 f3 by blast

qed
moreover have ∀ i≤n. ?jn (fn i) b
proof (intro allI impI )

fix i
assume g1 : i ≤ n
have b ∈ Field r ′′ −→ ?jn (fn i) b
proof

assume b ∈ Field r ′′

then have (b, t) ∈ r ′′′̂ ∗ using d2 d14 d17 by fastforce
then show ?jn (fn i) b using d18 d20 g1 by blast

qed
moreover have ?jn (fn i) xp using d18 d20 f4 g1 by blast
moreover have ∀ j≤n. ?jn (fn i) (fn j) using d18 d20 g1 by blast

moreover have ∀ j≤m. ?jn (fn i) (fm j) using d18 d20 d21 g1 by blast
ultimately show ?jn (fn i) b using d10 f3 by blast

qed
moreover have ∀ i≤m. ?jn (fm i) b
proof (intro allI impI )

fix i
assume g1 : i ≤ m
have b ∈ Field r ′′ −→ ?jn (fm i) b
proof

assume b ∈ Field r ′′

then have (b, t) ∈ r ′′′̂ ∗ using d2 d14 d17 by fastforce
then show ?jn (fm i) b using d18 d21 g1 by blast

qed
moreover have ?jn (fm i) xp using d18 d21 f4 g1 by blast
moreover have ∀ j≤n. ?jn (fm i) (fn j) using d18 d20 d21 g1 by blast
moreover have ∀ j≤m. ?jn (fm i) (fm j) using d18 d21 g1 by blast
ultimately show ?jn (fm i) b using d10 f3 by blast

qed
ultimately show ?jn a b using d10 f3 by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
ultimately show ∃ r ′′′. CCR r ′′′ ∧ insert p R ⊆ r ′′′ ∧ r ′′′ ⊆ r ∧ finite r ′′′

by blast
qed

qed
ultimately have ∃ r ′′. CCR r ′′ ∧ s ⊆ r ′′ ∧ r ′′ ⊆ r ∧ finite r ′′

using a2 a3 finite-induct[of s λ h. h ⊆ r −→ (∃ r ′′. CCR r ′′ ∧ h ⊆ r ′′ ∧ r ′′
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⊆ r ∧ finite r ′′)] by simp
then show ?thesis by blast

qed

lemma lem-Ccext-fint:
fixes r s:: ′U rel and a b:: ′U
assumes a1 : Restr r (f r a b) ⊆ s and a2 : (a,b) ∈ r^∗
shows {a, b} ⊆ f r a b ∧ (∀ c ∈ f r a b. (a,c) ∈ s^∗ ∧ (c,b) ∈ s^∗)
proof −

obtain A where b1 : A = f r a b by blast
then have A ∈ F r a b using a2 lem-ccext-rtr-Fne[of a b r ] lem-ccext-fprop[of

r ] by blast
then obtain n f where b2 : A = f ‘ {i. i ≤ n} and b3 : f ∈ rpth r a b n

unfolding F-def by blast
then have ∀ i<n. (f i, f (Suc i)) ∈ Restr r A unfolding rpth-def by simp
then have b4 : ∀ i<n. (f i, f (Suc i)) ∈ s using a1 b1 by blast
have {a, b} ⊆ f r a b using b1 b2 b3 unfolding rpth-def by blast
moreover have ∀ c ∈ f r a b. (a,c) ∈ s^∗ ∧ (c,b) ∈ s^∗
proof

fix c
assume c ∈ f r a b
then obtain k where c1 : k ≤ n ∧ c = f k using b1 b2 by blast
have f ∈ rpth s a c k using c1 b3 b4 unfolding rpth-def by simp
moreover have (λ i. f (i + k)) ∈ rpth s c b (n − k) using c1 b3 b4 unfolding

rpth-def by simp
ultimately show (a,c) ∈ s^∗ ∧ (c,b) ∈ s^∗ using lem-ccext-rpth-rtr [of s] by

blast
qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-subccr-eqfld:
fixes r r ′:: ′U rel
assumes CCR r and r ⊆ r ′ and Field r ′ = Field r
shows CCR r ′

proof −
have ∀ a∈Field r ′. ∀ b∈Field r ′. ∃ c∈Field r ′. (a, c) ∈ r ′̂ ∗ ∧ (b, c) ∈ r ′̂ ∗
proof (intro ballI )

fix a b
assume a∈Field r ′ and b∈Field r ′

then have a ∈ Field r ∧ b ∈ Field r using assms by blast
then obtain c where c ∈ Field r ∧ (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗ using assms

unfolding CCR-def by blast
then have c ∈ Field r ′ ∧ (a, c) ∈ r ′̂ ∗ ∧ (b, c) ∈ r ′̂ ∗ using assms rtrancl-mono

by blast
then show ∃ c∈Field r ′. (a, c) ∈ r ′̂ ∗ ∧ (b, c) ∈ r ′̂ ∗ by blast

qed
then show CCR r ′ unfolding CCR-def by blast

qed

63



lemma lem-Ccext-finsubccr-pext:
fixes r s:: ′U rel and x:: ′U
assumes a1 : CCR r and a2 : s ⊆ r and a3 : finite s and a5 : x ∈ Field r
shows ∃ s ′::( ′U rel). finite s ′ ∧ CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ x ∈ Field s ′

proof −
obtain y where b1 : (x,y) ∈ r ∨ (y,x) ∈ r using a5 unfolding Field-def by

blast
then obtain x ′ y ′ where b2 : {x ′,y ′} = {x,y} ∧ (x ′,y ′) ∈ r by blast
obtain s1 where b3 : s1 = s ∪ {(x ′,y ′)} by blast
then have finite s1 using a3 by blast
moreover have s1 ⊆ r using b2 b3 a2 by blast
ultimately obtain s ′ where b4 : finite s ′ ∧ CCR s ′ ∧ s1 ⊆ s ′ ∧ s ′ ⊆ r using

a1 lem-ccr-fin-subr-ext[of r s1 ] by blast
moreover have x ∈ Field s1 using b2 b3 unfolding Field-def by blast
ultimately have x ∈ Field s ′ unfolding Field-def by blast
then show ?thesis using b3 b4 by blast

qed

lemma lem-Ccext-finsubccr-dext:
fixes r :: ′U rel and A:: ′U set
assumes a1 : CCR r and a2 : A ⊆ Field r and a3 : finite A
shows ∃ s::( ′U rel). finite s ∧ CCR s ∧ s ⊆ r ∧ A ⊆ Field s
proof −

have finite {} ∧ {} ⊆ Field r −→ (∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧ {} ⊆ Field
s) unfolding CCR-def Field-def by blast

moreover have ∀ x F . finite F −→ x /∈ F −→
finite F ∧ F ⊆ Field r −→ (∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧ F ⊆ Field s) −→
finite (insert x F) ∧ insert x F ⊆ Field r −→

(∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧ insert x F ⊆ Field s)
proof(intro allI impI )

fix x F
assume c1 : finite F and c2 : x /∈ F and c3 : finite F ∧ F ⊆ Field r

and c4 : ∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧ F ⊆ Field s
and c5 : finite (insert x F) ∧ insert x F ⊆ Field r

then obtain s where c6 : finite s ∧ CCR s ∧ s ⊆ r ∧ F ⊆ Field s by blast
moreover have x ∈ Field r using c5 by blast
ultimately obtain s ′ where finite s ′ ∧ CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ x ∈ Field

s ′

using a1 lem-Ccext-finsubccr-pext[of r s x] by blast
moreover then have insert x F ⊆ Field s ′ using c6 unfolding Field-def by

blast
ultimately show ∃ s ′. finite s ′ ∧ CCR s ′ ∧ s ′ ⊆ r ∧ insert x F ⊆ Field s ′ by

blast
qed
ultimately have finite A ∧ A ⊆ Field r −→ (∃ s. finite s ∧ CCR s ∧ s ⊆ r ∧

A ⊆ Field s)
using finite-induct[of A λ A. finite A ∧ A ⊆ Field r −→ (∃ s. finite s ∧ CCR

s ∧ s ⊆ r ∧ A ⊆ Field s)]
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by simp
then show ?thesis using a2 a3 by blast

qed

lemma lem-Ccext-infsubccr-pext:
fixes r s:: ′U rel and x:: ′U
assumes a1 : CCR r and a2 : s ⊆ r and a3 : ¬ finite s and a5 : x ∈ Field r
shows ∃ s ′::( ′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ x ∈ Field s ′

proof −
obtain G:: ′U set ⇒ ′U rel set where b1 : G = (λ A. {t:: ′U rel. finite t ∧ CCR

t ∧ t ⊆ r ∧ A ⊆ Field t}) by blast
obtain g:: ′U set ⇒ ′U rel where b2 : g = (λ A. if A ⊆ Field r ∧ finite A then

(SOME t. t ∈ G A) else {}) by blast
have b3 : ∀ A. A ⊆ Field r ∧ finite A −→ finite (g A) ∧ CCR (g A) ∧ (g A) ⊆

r ∧ A ⊆ Field (g A)
proof (intro allI impI )

fix A
assume c1 : A ⊆ Field r ∧ finite A
then have g A = (SOME t. t ∈ G A) using b2 by simp
moreover have G A 6= {} using b1 a1 c1 lem-Ccext-finsubccr-dext[of r A] by

blast
ultimately have g A ∈ G A using some-in-eq by metis
then show finite (g A) ∧ CCR (g A) ∧ (g A) ⊆ r ∧ A ⊆ Field (g A) using

b1 by blast
qed
have b4 : ∀ A. ¬ (A ⊆ Field r ∧ finite A) −→ g A = {} using b2 by simp
obtain H :: ′U set ⇒ ′U set

where b5 : H = (λ X . X ∪
⋃
{S . ∃ a∈X . ∃ b∈X . S = Field (g {a,b})}) by

blast
obtain ax bx where b6 : (ax, bx) ∈ r ∧ x ∈ {ax, bx} using a5 unfolding

Field-def by blast
obtain D0 :: ′U set where b7 : D0 = Field s ∪ {ax, bx} by blast
obtain Di::nat ⇒ ′U set where b8 : Di = (λ n. (H^^n) D0 ) by blast
obtain D:: ′U set where b9 : D =

⋃
{X . ∃ n. X = Di n} by blast

obtain s ′ where b10 : s ′ = Restr r D by blast
have b11 : ∀ n. (¬ finite (Di n)) ∧ |Di n| ≤o |s|
proof

fix n0
show (¬ finite (Di n0 )) ∧ |Di n0 | ≤o |s|
proof (induct n0 )

have finite {ax, bx} by blast
moreover have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
ultimately have ¬ finite (Field s) ∧ |{ax, bx}| ≤o |Field s|

using card-of-Well-order card-of-ordLeq-infinite ordLeq-total by metis
then have |D0 | =o |Field s| using b7 card-of-Un-infinite by blast
moreover have |Field s| =o |s| using a3 lem-rel-inf-fld-card by blast
ultimately have |D0 | ≤o |s| using ordIso-imp-ordLeq ordIso-transitive by

blast
moreover have ¬ finite D0 using a3 b7 lem-fin-fl-rel by blast
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ultimately show ¬ finite (Di 0 ) ∧ |Di 0 | ≤o |s| using b8 by simp
next

fix n
assume d1 : (¬ finite (Di n)) ∧ |Di n| ≤o |s|
moreover then have |(Di n) × (Di n)| =o |Di n| by simp

ultimately have d2 : |(Di n) × (Di n)| ≤o |s| using ordIso-imp-ordLeq
ordLeq-transitive by blast

have d3 : ∀ a ∈ (Di n). ∀ b ∈ (Di n). |Field (g {a, b})| ≤o |s|
proof (intro ballI )

fix a b
assume a ∈ (Di n) and b ∈ (Di n)
have finite (g {a, b}) using b3 b4 by (metis finite.emptyI )
then have finite (Field (g {a, b})) using lem-fin-fl-rel by blast
then have |Field (g {a, b})| <o |s| using a3 finite-ordLess-infinite2 by

blast
then show |Field (g {a, b})| ≤o |s| using ordLess-imp-ordLeq by blast

qed
have d4 : Di (Suc n) = H (Di n) using b8 by simp
then have Di n ⊆ Di (Suc n) using b5 by blast
then have ¬ finite (Di (Suc n)) using d1 finite-subset by blast
moreover have |Di (Suc n)| ≤o |s|
proof −

obtain I where e1 : I = (Di n) × (Di n) by blast
obtain f where e2 : f = (λ (a,b). Field (g {a,b})) by blast
have |I | ≤o |s| using e1 d2 by blast
moreover have ∀ i∈I . |f i| ≤o |s| using e1 e2 d3 by simp

ultimately have |
⋃

i∈I . f i| ≤o |s| using a3 card-of-UNION-ordLeq-infinite[of
s I f ] by blast

moreover have Di (Suc n) = (Di n) ∪ (
⋃

i∈I . f i) using e1 e2 d4 b5 by
blast

ultimately show ?thesis using d1 a3 by simp
qed
ultimately show (¬ finite (Di (Suc n))) ∧ |Di (Suc n)| ≤o |s| by blast

qed
qed
have b12 : ∀ m. ∀ n. n ≤ m −→ Di n ≤ Di m
proof

fix m0
show ∀ n. n ≤ m0 −→ Di n ≤ Di m0
proof (induct m0 )

show ∀n≤0 . Di n ⊆ Di 0 by blast
next

fix m
assume d1 : ∀n≤m. Di n ⊆ Di m
show ∀n≤Suc m. Di n ⊆ Di (Suc m)
proof (intro allI impI )

fix n
assume e1 : n ≤ Suc m
have Di (Suc m) = H (Di m) using b8 by simp

66



moreover have Di m ⊆ H (Di m) using b5 by blast
ultimately have n ≤ m −→ Di n ⊆ Di (Suc m) using d1 by blast
moreover have n = (Suc m) ∨ n ≤ m using e1 by force
ultimately show Di n ⊆ Di (Suc m) by blast

qed
qed

qed
have Di 0 ⊆ D using b9 by blast
then have b13 : Field s ⊆ D using b7 b8 by simp
then have b14 : s ⊆ s ′ ∧ s ′ ⊆ r using a2 b10 unfolding Field-def by force
moreover have b15 : |D| ≤o |s|
proof −

have |UNIV ::nat set| ≤o |s| using a3 infinite-iff-card-of-nat by blast
then have |

⋃
n. Di n| ≤o |s| using b11 a3 card-of-UNION-ordLeq-infinite[of

s UNIV Di] by blast
moreover have D = (

⋃
n. Di n) using b9 by force

ultimately show ?thesis by blast
qed
moreover have |s ′| =o |s|
proof −

have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
then have ¬ finite D using b13 finite-subset by blast
then have |D × D| =o |D| by simp
moreover have s ′ ⊆ D × D using b10 by blast
ultimately have |s ′| ≤o |s| using b15 card-of-mono1 ordLeq-ordIso-trans or-

dLeq-transitive by metis
moreover have |s| ≤o |s ′| using b14 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
moreover have x ∈ Field s ′

proof −
have Di 0 ⊆ D using b9 by blast
then have {ax, bx} ⊆ D using b7 b8 by simp
then have (ax, bx) ∈ s ′ using b6 b10 by blast
then show ?thesis using b6 unfolding Field-def by blast

qed
moreover have CCR s ′

proof −
have ∀ a ∈ Field s ′. ∀ b ∈ Field s ′. ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈

(s ′)^∗
proof (intro ballI )

fix a b
assume d1 : a ∈ Field s ′ and d2 : b ∈ Field s ′

then have d3 : a ∈ D ∧ b ∈ D using b10 unfolding Field-def by blast
then obtain ia ib where d4 : a ∈ Di ia ∧ b ∈ Di ib using b9 by blast
obtain k where d5 : k = (max ia ib) by blast
then have ia ≤ k ∧ ib ≤ k by simp
then have d6 : a ∈ Di k ∧ b ∈ Di k using d4 b12 by blast
obtain p where d7 : p = g {a,b} by blast
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have Field p ⊆ H (Di k) using b5 d6 d7 by blast
moreover have H (Di k) = Di (Suc k) using b8 by simp
moreover have Di (Suc k) ⊆ D using b9 by blast
ultimately have d8 : Field p ⊆ D by blast
have {a, b} ⊆ Field r using d1 d2 b10 unfolding Field-def by blast
moreover have finite {a, b} by simp
ultimately have d9 : CCR p ∧ p ⊆ r ∧ {a,b} ⊆ Field p using d7 b3 by blast
then obtain c where d10 : c ∈ Field p ∧ (a,c) ∈ p^∗ ∧ (b,c) ∈ p^∗ unfolding

CCR-def by blast
have (p ‘‘ D) ⊆ D using d8 unfolding Field-def by blast
then have D ∈ Inv p unfolding Inv-def by blast

then have p^∗ ∩ (D×(UNIV :: ′U set)) ⊆ (Restr p D)^∗ using lem-Inv-restr-rtr [of
D p] by blast

moreover have Restr p D ⊆ s ′ using d9 b10 by blast
moreover have (a,c) ∈ p^∗ ∩ (D×(UNIV :: ′U set)) ∧ (b,c) ∈ p^∗ ∩

(D×(UNIV :: ′U set)) using d10 d3 by blast
ultimately have (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ using rtrancl-mono by blast
moreover then have c ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-finsubccr-set-ext:
fixes r s:: ′U rel and A:: ′U set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : finite s and a4 : A ⊆ Field r and
a5 : finite A
shows ∃ s ′::( ′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A ⊆ Field s ′

proof −
obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})

by blast
obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
have b2 : pt‘A ⊆ r using p1 p3 by blast
obtain s1 where b3 : s1 = s ∪ (pt‘A) by blast
then have finite s1 using a3 a5 by blast
moreover have s1 ⊆ r using b2 b3 a2 by blast
ultimately obtain s ′ where b4 : finite s ′ ∧ CCR s ′ ∧ s1 ⊆ s ′ ∧ s ′ ⊆ r using

a1 lem-ccr-fin-subr-ext[of r s1 ] by blast
moreover have A ⊆ Field s1
proof

fix x
assume c1 : x ∈ A
then have pt x ∈ s1 using b3 by blast
moreover obtain ax bx where c2 : pt x = (ax,bx) by force

68



ultimately have ax ∈ Field s1 ∧ bx ∈ Field s1 unfolding Field-def by force
then show x ∈ Field s1 using c1 c2 p1 p3 by force

qed
ultimately have A ⊆ Field s ′ unfolding Field-def by blast
then show ?thesis using b3 b4 by blast

qed

lemma lem-Ccext-infsubccr-set-ext:
fixes r s:: ′U rel and A:: ′U set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : ¬ finite s and a4 : A ⊆ Field r and
a5 : |A| ≤o |Field s|
shows ∃ s ′::( ′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A ⊆ Field s ′

proof −
obtain G:: ′U set ⇒ ′U rel set where b1 : G = (λ A. {t:: ′U rel. finite t ∧ CCR

t ∧ t ⊆ r ∧ A ⊆ Field t}) by blast
obtain g:: ′U set ⇒ ′U rel where b2 : g = (λ A. if A ⊆ Field r ∧ finite A then

(SOME t. t ∈ G A) else {}) by blast
have b3 : ∀ A. A ⊆ Field r ∧ finite A −→ finite (g A) ∧ CCR (g A) ∧ (g A) ⊆

r ∧ A ⊆ Field (g A)
proof (intro allI impI )

fix A
assume c1 : A ⊆ Field r ∧ finite A
then have g A = (SOME t. t ∈ G A) using b2 by simp
moreover have G A 6= {} using b1 a1 c1 lem-Ccext-finsubccr-dext[of r A] by

blast
ultimately have g A ∈ G A using some-in-eq by metis
then show finite (g A) ∧ CCR (g A) ∧ (g A) ⊆ r ∧ A ⊆ Field (g A) using

b1 by blast
qed
have b4 : ∀ A. ¬ (A ⊆ Field r ∧ finite A) −→ g A = {} using b2 by simp
obtain H :: ′U set ⇒ ′U set

where b5 : H = (λ X . X ∪
⋃
{S . ∃ a∈X . ∃ b∈X . S = Field (g {a,b})}) by

blast
obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})

by blast
obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
obtain D0 where b7 : D0 = Field s ∪ fst‘(pt‘A) ∪ snd‘(pt‘A) by blast
obtain Di::nat ⇒ ′U set where b8 : Di = (λ n. (H^^n) D0 ) by blast
obtain D:: ′U set where b9 : D =

⋃
{X . ∃ n. X = Di n} by blast

obtain s ′ where b10 : s ′ = Restr r D by blast
have b11 : ∀ n. (¬ finite (Di n)) ∧ |Di n| ≤o |s|
proof

fix n0
show (¬ finite (Di n0 )) ∧ |Di n0 | ≤o |s|
proof (induct n0 )

have |D0 | =o |Field s|
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proof −
have |fst‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c1 : |fst‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |snd‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c2 : |snd‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |fst‘(pt‘A)| ≤o |Field s| ∧ |snd‘(pt‘A)| ≤o |Field s|

using c1 c2 a5 ordLeq-transitive by blast
moreover have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
ultimately have c3 : |D0 | ≤o |Field s| unfolding b7 by simp
have Field s ⊆ D0 unfolding b7 by blast
then have |Field s| ≤o |D0 | by simp
then show ?thesis using c3 ordIso-iff-ordLeq by blast

qed
moreover have |Field s| =o |s| using a3 lem-rel-inf-fld-card by blast
ultimately have |D0 | ≤o |s| using ordIso-imp-ordLeq ordIso-transitive by

blast
moreover have ¬ finite D0 using a3 b7 lem-fin-fl-rel by blast
ultimately show ¬ finite (Di 0 ) ∧ |Di 0 | ≤o |s| using b8 by simp

next
fix n
assume d1 : (¬ finite (Di n)) ∧ |Di n| ≤o |s|
moreover then have |(Di n) × (Di n)| =o |Di n| by simp

ultimately have d2 : |(Di n) × (Di n)| ≤o |s| using ordIso-imp-ordLeq
ordLeq-transitive by blast

have d3 : ∀ a ∈ (Di n). ∀ b ∈ (Di n). |Field (g {a, b})| ≤o |s|
proof (intro ballI )

fix a b
assume a ∈ (Di n) and b ∈ (Di n)
have finite (g {a, b}) using b3 b4 by (metis finite.emptyI )
then have finite (Field (g {a, b})) using lem-fin-fl-rel by blast
then have |Field (g {a, b})| <o |s| using a3 finite-ordLess-infinite2 by

blast
then show |Field (g {a, b})| ≤o |s| using ordLess-imp-ordLeq by blast

qed
have d4 : Di (Suc n) = H (Di n) using b8 by simp
then have Di n ⊆ Di (Suc n) using b5 by blast
then have ¬ finite (Di (Suc n)) using d1 finite-subset by blast
moreover have |Di (Suc n)| ≤o |s|
proof −

obtain I where e1 : I = (Di n) × (Di n) by blast
obtain f where e2 : f = (λ (a,b). Field (g {a,b})) by blast
have |I | ≤o |s| using e1 d2 by blast
moreover have ∀ i∈I . |f i| ≤o |s| using e1 e2 d3 by simp

ultimately have |
⋃

i∈I . f i| ≤o |s| using a3 card-of-UNION-ordLeq-infinite[of
s I f ] by blast

moreover have Di (Suc n) = (Di n) ∪ (
⋃

i∈I . f i) using e1 e2 d4 b5 by
blast

ultimately show ?thesis using d1 a3 by simp
qed
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ultimately show (¬ finite (Di (Suc n))) ∧ |Di (Suc n)| ≤o |s| by blast
qed

qed
have b12 : ∀ m. ∀ n. n ≤ m −→ Di n ≤ Di m
proof

fix m0
show ∀ n. n ≤ m0 −→ Di n ≤ Di m0
proof (induct m0 )

show ∀n≤0 . Di n ⊆ Di 0 by blast
next

fix m
assume d1 : ∀n≤m. Di n ⊆ Di m
show ∀n≤Suc m. Di n ⊆ Di (Suc m)
proof (intro allI impI )

fix n
assume e1 : n ≤ Suc m
have Di (Suc m) = H (Di m) using b8 by simp
moreover have Di m ⊆ H (Di m) using b5 by blast
ultimately have n ≤ m −→ Di n ⊆ Di (Suc m) using d1 by blast
moreover have n = (Suc m) ∨ n ≤ m using e1 by force
ultimately show Di n ⊆ Di (Suc m) by blast

qed
qed

qed
have Di 0 ⊆ D using b9 by blast
then have b13 : Field s ⊆ D using b7 b8 by simp
then have b14 : s ⊆ s ′ ∧ s ′ ⊆ r using a2 b10 unfolding Field-def by force
moreover have b15 : |D| ≤o |s|
proof −

have |UNIV ::nat set| ≤o |s| using a3 infinite-iff-card-of-nat by blast
then have |

⋃
n. Di n| ≤o |s| using b11 a3 card-of-UNION-ordLeq-infinite[of

s UNIV Di] by blast
moreover have D = (

⋃
n. Di n) using b9 by force

ultimately show ?thesis by blast
qed
moreover have |s ′| =o |s|
proof −

have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
then have ¬ finite D using b13 finite-subset by blast
then have |D × D| =o |D| by simp
moreover have s ′ ⊆ D × D using b10 by blast
ultimately have |s ′| ≤o |s| using b15 card-of-mono1 ordLeq-ordIso-trans or-

dLeq-transitive by metis
moreover have |s| ≤o |s ′| using b14 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
moreover have A ⊆ Field s ′

proof
fix x
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assume c1 : x ∈ A
obtain ax bx where c2 : ax = fst (pt x) ∧ bx = snd (pt x) by blast
have pt x ∈ Pt x using c1 p3 by blast
then have c3 : (ax, bx) ∈ r ∧ x ∈ {ax,bx} using c2 p1 by simp
have {ax, bx} ⊆ D0 using b7 c1 c2 by blast
moreover have Di 0 ⊆ D using b9 by blast
moreover have Di 0 = D0 using b8 by simp
ultimately have {ax, bx} ⊆ D by blast
then have (ax, bx) ∈ s ′ using c3 b10 by blast
then show x ∈ Field s ′ using c3 unfolding Field-def by blast

qed
moreover have CCR s ′

proof −
have ∀ a ∈ Field s ′. ∀ b ∈ Field s ′. ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈

(s ′)^∗
proof (intro ballI )

fix a b
assume d1 : a ∈ Field s ′ and d2 : b ∈ Field s ′

then have d3 : a ∈ D ∧ b ∈ D using b10 unfolding Field-def by blast
then obtain ia ib where d4 : a ∈ Di ia ∧ b ∈ Di ib using b9 by blast
obtain k where d5 : k = (max ia ib) by blast
then have ia ≤ k ∧ ib ≤ k by simp
then have d6 : a ∈ Di k ∧ b ∈ Di k using d4 b12 by blast
obtain p where d7 : p = g {a,b} by blast
have Field p ⊆ H (Di k) using b5 d6 d7 by blast
moreover have H (Di k) = Di (Suc k) using b8 by simp
moreover have Di (Suc k) ⊆ D using b9 by blast
ultimately have d8 : Field p ⊆ D by blast
have {a, b} ⊆ Field r using d1 d2 b10 unfolding Field-def by blast
moreover have finite {a, b} by simp
ultimately have d9 : CCR p ∧ p ⊆ r ∧ {a,b} ⊆ Field p using d7 b3 by blast
then obtain c where d10 : c ∈ Field p ∧ (a,c) ∈ p^∗ ∧ (b,c) ∈ p^∗ unfolding

CCR-def by blast
have (p ‘‘ D) ⊆ D using d8 unfolding Field-def by blast
then have D ∈ Inv p unfolding Inv-def by blast

then have p^∗ ∩ (D×(UNIV :: ′U set)) ⊆ (Restr p D)^∗ using lem-Inv-restr-rtr [of
D p] by blast

moreover have Restr p D ⊆ s ′ using d9 b10 by blast
moreover have (a,c) ∈ p^∗ ∩ (D×(UNIV :: ′U set)) ∧ (b,c) ∈ p^∗ ∩

(D×(UNIV :: ′U set)) using d10 d3 by blast
ultimately have (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ using rtrancl-mono by blast
moreover then have c ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
ultimately show ?thesis by blast

qed
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lemma lem-Ccext-finsubccr-pext5 :
fixes r :: ′U rel and A B:: ′U set and x:: ′U
assumes a1 : CCR r and a2 : finite A and a3 : A ∈ SF r
shows ∃ A ′::( ′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
finite A ′

∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B = {y}) −→ Field r ⊆ (A ′∪B))

proof −
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B ) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ⊆ {y})) −→ y1 /∈ B ∧ y2 /∈ B
∧ y1 6= y2 by blast

obtain A1 where b4 : A1 = ({x,y1 ,y2} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : finite A1 using b4 q3 q4 lem-fin-fl-rel by blast
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A1 ⊆

Field s ′

using a1 q2 q3 lem-Ccext-finsubccr-set-ext[of r s A1 ] by blast
obtain A ′ where s2 : A ′ = Field s ′ by blast

73



obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : finite (Field s ′) using s1 lem-fin-fl-rel by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) by blast
moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
moreover have finite A ′ using s2 s5 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof

assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B = {y}) −→ Field r ⊆ (A ′ ∪ B)
proof

assume c1 : ∃ y:: ′U . A ′ − B = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ∧ y1 6= y2 ) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B using c1 c2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-infsubccr-pext5 :
fixes r :: ′U rel and A B:: ′U set and x:: ′U
assumes a1 : CCR r and a2 : ¬ finite A and a3 : A ∈ SF r
shows ∃ A ′::( ′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
|A ′| =o |A|
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∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B = {y}) −→ Field r ⊆ (A ′∪B))

proof −
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : ¬ finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B ) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ⊆ {y})) −→ y1 /∈ B ∧ y2 /∈ B
∧ y1 6= y2 by blast

obtain A1 where b4 : A1 = ({x, y1 , y2} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : |A1 | ≤o |Field s|
proof −

obtain C1 where c1 : C1 = {x,y1 ,y2} ∩ Field r by blast
obtain C2 where c2 : C2 = A ∪ f ‘ A by blast
have ¬ finite A using q4 q3 lem-fin-fl-rel by blast
then have |C2 | =o |A| using c2 b4 q3 by simp
then have |C2 | ≤o |Field s| unfolding q4 using ordIso-iff-ordLeq by blast
moreover have c3 : ¬ finite (Field s) using q3 lem-fin-fl-rel by blast
moreover have |C1 | ≤o |Field s|
proof −
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have |{x,y1 ,y2}| ≤o |Field s| using c3
by (meson card-of-Well-order card-of-ordLeq-finite finite.emptyI finite.insertI

ordLeq-total)
moreover have |C1 | ≤o |{x,y1 ,y2}| unfolding c1 by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately have |C1 ∪ C2 | ≤o |Field s| unfolding b4 using card-of-Un-ordLeq-infinite

by blast
moreover have A1 = C1 ∪ C2 using c1 c2 b4 by blast
ultimately show ?thesis by blast

qed
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A1
⊆ Field s ′

using a1 q2 q3 lem-Ccext-infsubccr-set-ext[of r s A1 ] by blast
obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : |Field s ′| =o |Field s| using s1 q3 lem-cardreleq-cardfldeq-inf [of s ′ s]

by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
moreover have |A ′| =o |A1 |
proof −

have Field s ⊆ A1 using q4 b4 by blast
then have |Field s| ≤o |A1 | by simp
then have |A ′| ≤o |A1 | using s2 s5 ordIso-ordLeq-trans by blast
moreover have |A1 | ≤o |A ′| using s1 s2 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) ∧ |A ′| =o
|A1 | by blast

moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
moreover have |A ′| =o |A| using s5 s2 q4 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof

assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast
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qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B = {y}) −→ Field r ⊆ (A ′ ∪ B)
proof

assume c1 : ∃ y:: ′U . A ′ − B = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ∧ y1 6= y2 ) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B using c1 c2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-subccr-pext5 :
fixes r :: ′U rel and A B:: ′U set and x:: ′U
assumes CCR r and A ∈ SF r
shows ∃ A ′::( ′U set). (x ∈ Field r −→ x ∈ A ′)

∧ A ⊆ A ′

∧ A ′ ∈ SF r
∧ (∀ a∈A. ((r‘‘{a}⊆B) ∨ (r‘‘{a}∩(A ′−B) 6= {})))
∧ ((∃ y:: ′U . A ′−B = {y}) −→ Field r ⊆ (A ′∪B))
∧ CCR (Restr r A ′)
∧ ((finite A −→ finite A ′) ∧ ( (¬ finite A) −→ |A ′| =o |A| ))

proof (cases finite A)
assume finite A
then show ?thesis using assms lem-Ccext-finsubccr-pext5 [of r A x B] by blast

next
assume ¬ finite A
then show ?thesis using assms lem-Ccext-infsubccr-pext5 [of r A x B] by blast

qed

lemma lem-Ccext-finsubccr-set-ext-scf :
fixes r s:: ′U rel and A P:: ′U set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : finite s and a4 : A ⊆ Field r and
a5 : finite A

and a6 : P ∈ SCF r
shows ∃ s ′::( ′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A ⊆ Field s ′

∧ ((Field s ′ ∩ P) ∈ SCF s ′)
proof (cases s = {} ∧ A = {})

assume s = {} ∧ A = {}
moreover obtain s ′:: ′U rel where s ′ = {} by blast
ultimately have CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A ⊆ Field s ′
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∧ ((Field s ′ ∩ P) ∈ SCF s ′) unfolding CCR-def SCF-def Field-def
by blast

then show ?thesis by blast
next

assume b1 : ¬ (s = {} ∧ A = {})
obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})

by blast
obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
have b2 : pt‘A ⊆ r using p1 p3 by blast
obtain s1 where b3 : s1 = s ∪ (pt‘A) by blast
then have finite s1 using a3 a5 by blast
moreover have s1 ⊆ r using b2 b3 a2 by blast
ultimately obtain s2 where b4 : finite s2 ∧ CCR s2 ∧ s1 ⊆ s2 ∧ s2 ⊆ r using

a1 lem-ccr-fin-subr-ext[of r s1 ] by blast
moreover have A ⊆ Field s1
proof

fix x
assume c1 : x ∈ A
then have pt x ∈ s1 using b3 by blast
moreover obtain ax bx where c2 : pt x = (ax,bx) by force
ultimately have ax ∈ Field s1 ∧ bx ∈ Field s1 unfolding Field-def by force
then show x ∈ Field s1 using c1 c2 p1 p3 by force

qed
ultimately have b5 : A ⊆ Field s2 unfolding Field-def by blast
have Conelike s2 using b4 lem-Relprop-fin-ccr by blast
moreover have s2 6= {} using b1 b3 b4 unfolding Field-def by blast
ultimately obtain m where b6 : m ∈ Field s2 ∧ (∀ a∈Field s2 . (a,m) ∈ s2^∗)

unfolding Conelike-def by blast
then have m ∈ Field r using b4 unfolding Field-def by blast
then obtain m ′ where b7 : m ′ ∈ P ∧ (m,m ′) ∈ r^∗ using a6 unfolding SCF-def

by blast
obtain D where b8 : D = Field s2 ∪ (f r m m ′) by blast
obtain s ′ where b9 : s ′ = Restr r D by blast
have b10 : s2 ⊆ s ′ using b4 b8 b9 unfolding Field-def by force
have b11 : ∀ a ∈ Field s ′. (a,m ′) ∈ s ′̂ ∗
proof

fix a
assume c1 : a ∈ Field s ′

have c2 : Restr r (f r m m ′) ⊆ s ′ using b8 b9 by blast
then have c3 : (m,m ′) ∈ s ′̂ ∗ using b7 lem-Ccext-fint[of r m m ′ s ′] by blast
show (a,m ′) ∈ s ′̂ ∗
proof (cases a ∈ Field s2 )

assume a ∈ Field s2
then have (a,m) ∈ s2^∗ using b6 by blast
then have (a,m) ∈ s ′̂ ∗ using b10 rtrancl-mono by blast
then show (a,m ′) ∈ s ′̂ ∗ using c3 by simp
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next
assume a /∈ Field s2
then have a ∈ (f r m m ′) using c1 b8 b9 unfolding Field-def by blast
then show (a,m ′) ∈ s ′̂ ∗ using c2 b7 lem-Ccext-fint[of r m m ′ s ′] by blast

qed
qed
have b12 : m ′ ∈ Field s ′

proof −
have m ∈ Field s ′ using b6 b10 unfolding Field-def by blast
then have m ∈ Field s ′ ∧ (m,m ′) ∈ s ′̂ ∗ using b11 by blast
then show m ′ ∈ Field s ′ using lem-rtr-field by force

qed
have Field s ⊆ D using b3 b4 b8 unfolding Field-def by blast
then have s ⊆ s ′ using a2 b9 unfolding Field-def by force
moreover have s ′ ⊆ r using b9 by blast
moreover have finite s ′

proof −
have finite (Field s2 ) using b4 lem-fin-fl-rel by blast
then have finite D using b8 lem-ccext-ffin by simp
then show ?thesis using b9 by blast

qed
moreover have A ⊆ Field s ′ using b5 b10 unfolding Field-def by blast
moreover have CCR s ′

proof −
have Conelike s ′ using b11 b12 unfolding Conelike-def by blast
then show ?thesis using lem-Relprop-cl-ccr by blast

qed
moreover have (Field s ′ ∩ P) ∈ SCF s ′ using b7 b11 b12 unfolding SCF-def

by blast
ultimately show ?thesis by blast

qed

lemma lem-ccext-scf-sat:
assumes s ⊆ r and Field s = Field r
shows SCF s ⊆ SCF r

using assms rtrancl-mono unfolding SCF-def by blast

lemma lem-Ccext-infsubccr-set-ext-scf2 :
fixes r s:: ′U rel and A:: ′U set and Ps:: ′U set set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : ¬ finite s and a4 : A ⊆ Field r

and a5 : |A| ≤o |Field s| and a6 : Ps ⊆ SCF r ∧ |Ps| ≤o |Field s|
shows ∃ s ′::( ′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A ⊆ Field s ′

∧ (∀ P∈Ps. (Field s ′ ∩ P) ∈ SCF s ′)
proof −

obtain q where q0 : q = (λ P a. SOME p. p ∈ P ∧ (a, p) ∈ r^∗) by blast
have q1 : ∀ P∈Ps. ∀ a∈Field r . (q P a) ∈ Field r ∧ (q P a) ∈ P ∧ (a, q P a)
∈ r^∗

proof (intro ballI )
fix P a
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assume P ∈ Ps and a ∈ Field r
then show (q P a) ∈ Field r ∧ (q P a) ∈ P ∧ (a, q P a) ∈ r^∗

using q0 a6 someI-ex[of λ p. p ∈ P ∧ (a,p) ∈ r^∗] unfolding SCF-def by
blast

qed
obtain G:: ′U set ⇒ ′U rel set where b1 : G = (λ A. {t:: ′U rel. finite t ∧ CCR

t ∧ t ⊆ r ∧ A ⊆ Field t}) by blast
obtain g:: ′U set ⇒ ′U rel where b2 : g = (λ A. if A ⊆ Field r ∧ finite A then

(SOME t. t ∈ G A) else {}) by blast
have b3 : ∀ A. A ⊆ Field r ∧ finite A −→ finite (g A) ∧ CCR (g A) ∧ (g A) ⊆

r ∧ A ⊆ Field (g A)
proof (intro allI impI )

fix A
assume c1 : A ⊆ Field r ∧ finite A
then have g A = (SOME t. t ∈ G A) using b2 by simp
moreover have G A 6= {} using b1 a1 c1 lem-Ccext-finsubccr-dext[of r A] by

blast
ultimately have g A ∈ G A using some-in-eq by metis
then show finite (g A) ∧ CCR (g A) ∧ (g A) ⊆ r ∧ A ⊆ Field (g A) using

b1 by blast
qed
have b4 : ∀ A. ¬ (A ⊆ Field r ∧ finite A) −→ g A = {} using b2 by simp
obtain H :: ′U set ⇒ ′U set

where b5 : H = (λ X . X ∪
⋃
{S . ∃ a∈X . ∃ b∈X . S = Field (g {a,b})} ∪

⋃
{S . ∃ P∈Ps. ∃ a∈X . S = f r a (q P a) }) by blast

obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})
by blast

obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
obtain D0 where b7 : D0 = Field s ∪ fst‘(pt‘A) ∪ snd‘(pt‘A) by blast
obtain Di::nat ⇒ ′U set where b8 : Di = (λ n. (H^^n) D0 ) by blast
obtain D:: ′U set where b9 : D =

⋃
{X . ∃ n. X = Di n} by blast

obtain s ′ where b10 : s ′ = Restr r D by blast
have b11 : ∀ n. (¬ finite (Di n)) ∧ |Di n| ≤o |s|
proof

fix n0
show (¬ finite (Di n0 )) ∧ |Di n0 | ≤o |s|
proof (induct n0 )

have |D0 | =o |Field s|
proof −

have |fst‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c1 : |fst‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |snd‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c2 : |snd‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |fst‘(pt‘A)| ≤o |Field s| ∧ |snd‘(pt‘A)| ≤o |Field s|

using c1 c2 a5 ordLeq-transitive by blast
moreover have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
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ultimately have c3 : |D0 | ≤o |Field s| unfolding b7 by simp
have Field s ⊆ D0 unfolding b7 by blast
then have |Field s| ≤o |D0 | by simp
then show ?thesis using c3 ordIso-iff-ordLeq by blast

qed
moreover have |Field s| =o |s| using a3 lem-rel-inf-fld-card by blast
ultimately have |D0 | ≤o |s| using ordIso-imp-ordLeq ordIso-transitive by

blast
moreover have ¬ finite D0 using a3 b7 lem-fin-fl-rel by blast
ultimately show ¬ finite (Di 0 ) ∧ |Di 0 | ≤o |s| using b8 by simp

next
fix n
assume d1 : (¬ finite (Di n)) ∧ |Di n| ≤o |s|
moreover then have |(Di n) × (Di n)| =o |Di n| by simp

ultimately have d2 : |(Di n) × (Di n)| ≤o |s| using ordIso-imp-ordLeq
ordLeq-transitive by blast

have d3 : ∀ a ∈ (Di n). ∀ b ∈ (Di n). |Field (g {a, b})| ≤o |s|
proof (intro ballI )

fix a b
assume a ∈ (Di n) and b ∈ (Di n)
have finite (g {a, b}) using b3 b4 by (metis finite.emptyI )
then have finite (Field (g {a, b})) using lem-fin-fl-rel by blast
then have |Field (g {a, b})| <o |s| using a3 finite-ordLess-infinite2 by

blast
then show |Field (g {a, b})| ≤o |s| using ordLess-imp-ordLeq by blast

qed
have d4 : Di (Suc n) = H (Di n) using b8 by simp
then have Di n ⊆ Di (Suc n) using b5 by blast
then have ¬ finite (Di (Suc n)) using d1 finite-subset by blast
moreover have |Di (Suc n)| ≤o |s|
proof −

obtain I where e1 : I = (Di n) × (Di n) by blast
obtain f where e2 : f = (λ (a,b). Field (g {a,b})) by blast
have |I | ≤o |s| using e1 d2 by blast
moreover have ∀ i∈I . |f i| ≤o |s| using e1 e2 d3 by simp

ultimately have |
⋃

i∈I . f i| ≤o |s| using a3 card-of-UNION-ordLeq-infinite[of
s I f ] by blast

moreover have Di (Suc n) = (Di n) ∪ (
⋃

i∈I . f i) ∪ (
⋃

P∈Ps. (
⋃

a∈(Di
n). f r a (q P a)))

using e1 e2 d4 b5 by blast
moreover have |

⋃
P∈Ps. (

⋃
a∈(Di n). f r a (q P a))| ≤o |s|

proof −
have

∧
P. P ∈ Ps =⇒ ∀ a∈(Di n). |f r a (q P a)| ≤o |s|

using a3 lem-ccext-ffin by (metis card-of-Well-order card-of-ordLeq-infinite
ordLeq-total)

then have
∧

P. P ∈ Ps =⇒ |
⋃

a∈(Di n). f r a (q P a)| ≤o |s|
using d1 a3 card-of-UNION-ordLeq-infinite[of s Di n λ a. f r a (q - a)]

by blast
moreover have |Ps| ≤o |s| using a3 a6 lem-rel-inf-fld-card[of s]
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lem-fin-fl-rel[of s]
by (metis ordIso-iff-ordLeq ordLeq-transitive)

ultimately show ?thesis
using a3 card-of-UNION-ordLeq-infinite[of s Ps λ P.

⋃
a∈(Di n). f r a

(q P a)] by blast
qed
ultimately show ?thesis using d1 a3 by simp

qed
ultimately show (¬ finite (Di (Suc n))) ∧ |Di (Suc n)| ≤o |s| by blast

qed
qed
have b12 : ∀ m. ∀ n. n ≤ m −→ Di n ≤ Di m
proof

fix m0
show ∀ n. n ≤ m0 −→ Di n ≤ Di m0
proof (induct m0 )

show ∀n≤0 . Di n ⊆ Di 0 by blast
next

fix m
assume d1 : ∀n≤m. Di n ⊆ Di m
show ∀n≤Suc m. Di n ⊆ Di (Suc m)
proof (intro allI impI )

fix n
assume e1 : n ≤ Suc m
have Di (Suc m) = H (Di m) using b8 by simp
moreover have Di m ⊆ H (Di m) using b5 by blast
ultimately have n ≤ m −→ Di n ⊆ Di (Suc m) using d1 by blast
moreover have n = (Suc m) ∨ n ≤ m using e1 by force
ultimately show Di n ⊆ Di (Suc m) by blast

qed
qed

qed
have Di 0 ⊆ D using b9 by blast
then have b13 : Field s ⊆ D using b7 b8 by simp
then have b14 : s ⊆ s ′ ∧ s ′ ⊆ r using a2 b10 unfolding Field-def by force
moreover have b15 : |D| ≤o |s|
proof −

have |UNIV ::nat set| ≤o |s| using a3 infinite-iff-card-of-nat by blast
then have |

⋃
n. Di n| ≤o |s| using b11 a3 card-of-UNION-ordLeq-infinite[of

s UNIV Di] by blast
moreover have D = (

⋃
n. Di n) using b9 by force

ultimately show ?thesis by blast
qed
moreover have |s ′| =o |s|
proof −

have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
then have ¬ finite D using b13 finite-subset by blast
then have |D × D| =o |D| by simp
moreover have s ′ ⊆ D × D using b10 by blast
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ultimately have |s ′| ≤o |s| using b15 card-of-mono1 ordLeq-ordIso-trans or-
dLeq-transitive by metis

moreover have |s| ≤o |s ′| using b14 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
moreover have A ⊆ Field s ′

proof
fix x
assume c1 : x ∈ A
obtain ax bx where c2 : ax = fst (pt x) ∧ bx = snd (pt x) by blast
have pt x ∈ Pt x using c1 p3 by blast
then have c3 : (ax, bx) ∈ r ∧ x ∈ {ax,bx} using c2 p1 by simp
have {ax, bx} ⊆ D0 using b7 c1 c2 by blast
moreover have Di 0 ⊆ D using b9 by blast
moreover have Di 0 = D0 using b8 by simp
ultimately have {ax, bx} ⊆ D by blast
then have (ax, bx) ∈ s ′ using c3 b10 by blast
then show x ∈ Field s ′ using c3 unfolding Field-def by blast

qed
moreover have CCR s ′

proof −
have ∀ a ∈ Field s ′. ∀ b ∈ Field s ′. ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈

(s ′)^∗
proof (intro ballI )

fix a b
assume d1 : a ∈ Field s ′ and d2 : b ∈ Field s ′

then have d3 : a ∈ D ∧ b ∈ D using b10 unfolding Field-def by blast
then obtain ia ib where d4 : a ∈ Di ia ∧ b ∈ Di ib using b9 by blast
obtain k where d5 : k = (max ia ib) by blast
then have ia ≤ k ∧ ib ≤ k by simp
then have d6 : a ∈ Di k ∧ b ∈ Di k using d4 b12 by blast
obtain p where d7 : p = g {a,b} by blast
have Field p ⊆ H (Di k) using b5 d6 d7 by blast
moreover have H (Di k) = Di (Suc k) using b8 by simp
moreover have Di (Suc k) ⊆ D using b9 by blast
ultimately have d8 : Field p ⊆ D by blast
have {a, b} ⊆ Field r using d1 d2 b10 unfolding Field-def by blast
moreover have finite {a, b} by simp
ultimately have d9 : CCR p ∧ p ⊆ r ∧ {a,b} ⊆ Field p using d7 b3 by blast
then obtain c where d10 : c ∈ Field p ∧ (a,c) ∈ p^∗ ∧ (b,c) ∈ p^∗ unfolding

CCR-def by blast
have (p ‘‘ D) ⊆ D using d8 unfolding Field-def by blast
then have D ∈ Inv p unfolding Inv-def by blast

then have p^∗ ∩ (D×(UNIV :: ′U set)) ⊆ (Restr p D)^∗ using lem-Inv-restr-rtr [of
D p] by blast

moreover have Restr p D ⊆ s ′ using d9 b10 by blast
moreover have (a,c) ∈ p^∗ ∩ (D×(UNIV :: ′U set)) ∧ (b,c) ∈ p^∗ ∩

(D×(UNIV :: ′U set)) using d10 d3 by blast
ultimately have (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ using rtrancl-mono by blast
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moreover then have c ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
moreover have ∀ P∈Ps. (Field s ′ ∩ P) ∈ SCF s ′

proof −
have ∀ P ∈ Ps. ∀ a∈Field s ′. ∃ b∈(Field s ′ ∩ P). (a, b) ∈ s ′̂ ∗
proof (intro ballI )

fix P a
assume d0 : P ∈ Ps and d1 : a ∈ Field s ′

then have a ∈ D using b10 unfolding Field-def by blast
then obtain n where a ∈ Di n using b9 by blast
then have f r a (q P a) ⊆ H (Di n) using d0 b5 by blast
moreover have H (Di n) = Di (Suc n) using b8 by simp
ultimately have d2 : f r a (q P a) ⊆ D using b9 by blast
have a ∈ Field r using d1 b10 unfolding Field-def by blast
then have q P a ∈ P ∧ (a, q P a) ∈ r^∗ using d0 q1 by blast
moreover have Restr r (f r a (q P a)) ⊆ s ′ using d0 d2 b10 by blast
ultimately have q P a ∈ P ∧ (a, q P a) ∈ s ′̂ ∗ using lem-Ccext-fint[of r a

q P a s ′] by blast
moreover then have q P a ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ b∈(Field s ′ ∩ P). (a, b) ∈ s ′̂ ∗ by blast

qed
then show ?thesis unfolding SCF-def by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-finsubccr-pext5-scf2 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes a1 : CCR r and a2 : finite A and a3 : A ∈ SF r and a4 : Ps ⊆ SCF r
shows ∃ A ′::( ′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
finite A ′

∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))
∧ ((∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′)))
proof −

obtain P where p0 : P = (if (Ps 6= {}) then (SOME P. P ∈ Ps) else Field r)
by blast

moreover have Field r ∈ SCF r unfolding SCF-def by blast
ultimately have p1 : P ∈ SCF r using a4 by (metis contra-subsetD some-in-eq)
have p2 : (∃ P. Ps = {P}) −→ Ps = {P} using p0 by fastforce
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B ) by blast
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obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ′ ⊆ {y})) −→ y1 /∈ B ′ ∧ y2 /∈
B ′ ∧ y1 6= y2 by blast

obtain A1 where b4 : A1 = ({x,y1 ,y2} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : finite A1 using b4 q3 q4 lem-fin-fl-rel by blast
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A1 ⊆

Field s ′

and s1 ′: (∃ P. Ps = {P}) −→ (Field s ′ ∩ P) ∈ SCF s ′

using p1 a1 a4 q2 q3 lem-Ccext-finsubccr-set-ext-scf [of r s A1 P] by metis
obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : finite (Field s ′) using s1 lem-fin-fl-rel by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) by blast
moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
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ultimately have (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) by
blast

moreover have finite A ′ using s2 s5 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof

assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B ′ = {y}) −→ Field r ⊆ (A ′ ∪ B ′)
proof

assume c1 : ∃ y:: ′U . A ′ − B ′ = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ′ ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2 ) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ′ ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

qed
moreover have (∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′))
proof −

have c1 : s ′ ⊆ r using s3 s4 by blast
then have Field s ′ = Field (Restr r (Field s ′)) using lem-Relprop-fld-sat by

blast
moreover have s ′ ⊆ Restr r (Field s ′) using c1 unfolding Field-def by force
ultimately have SCF s ′ ⊆ SCF (Restr r (Field s ′)) using lem-ccext-scf-sat[of

s ′ Restr r (Field s ′)] by blast
then show ?thesis using p2 s1 ′ s2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-infsubccr-pext5-scf2 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes a1 : CCR r and a2 : ¬ finite A and a3 : A ∈ SF r and a4 : Ps ⊆ SCF r
shows ∃ A ′::( ′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
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|A ′| =o |A|
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))
∧ ( |Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)) )

proof −
obtain Ps ′ where p0 : Ps ′ = (if ( |Ps| ≤o |A| ) then Ps else {}) by blast
then have p1 : Ps ′ ⊆ SCF r ∧ |Ps ′| ≤o |A| using a4 by simp
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : ¬ finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B ) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ′ ⊆ {y})) −→ y1 /∈ B ′ ∧ y2 /∈
B ′ ∧ y1 6= y2 by blast

obtain A1 where b4 : A1 = ({x, y1 , y2} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : |A1 | ≤o |Field s|
proof −

obtain C1 where c1 : C1 = {x,y1 ,y2} ∩ Field r by blast
obtain C2 where c2 : C2 = A ∪ f ‘ A by blast
have ¬ finite A using q4 q3 lem-fin-fl-rel by blast
then have |C2 | =o |A| using c2 b4 q3 by simp
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then have |C2 | ≤o |Field s| unfolding q4 using ordIso-iff-ordLeq by blast
moreover have c3 : ¬ finite (Field s) using q3 lem-fin-fl-rel by blast
moreover have |C1 | ≤o |Field s|
proof −

have |{x,y1 ,y2}| ≤o |Field s| using c3
by (meson card-of-Well-order card-of-ordLeq-finite finite.emptyI finite.insertI

ordLeq-total)
moreover have |C1 | ≤o |{x,y1 ,y2}| unfolding c1 by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately have |C1 ∪ C2 | ≤o |Field s| unfolding b4 using card-of-Un-ordLeq-infinite

by blast
moreover have A1 = C1 ∪ C2 using c1 c2 b4 by blast
ultimately show ?thesis by blast

qed
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A1
⊆ Field s ′

and s1 ′: (∀ P ∈ Ps ′. (Field s ′ ∩ P) ∈ SCF s ′)
using p1 a1 q2 q3 q4 lem-Ccext-infsubccr-set-ext-scf2 [of r s A1 Ps ′] by blast

obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : |Field s ′| =o |Field s| using s1 q3 lem-cardreleq-cardfldeq-inf [of s ′ s]

by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
moreover have |A ′| =o |A1 |
proof −

have Field s ⊆ A1 using q4 b4 by blast
then have |Field s| ≤o |A1 | by simp
then have |A ′| ≤o |A1 | using s2 s5 ordIso-ordLeq-trans by blast
moreover have |A1 | ≤o |A ′| using s1 s2 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) ∧ |A ′| =o
|A1 | by blast

moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
moreover have |A ′| =o |A| using s5 s2 q4 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof
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assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B ′ = {y}) −→ Field r ⊆ (A ′ ∪ B ′)
proof

assume c1 : ∃ y:: ′U . A ′ − B ′ = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ′ ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2 ) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ′ ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

qed
moreover have ( |Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)) )
proof −

have c1 : s ′ ⊆ r using s3 s4 by blast
then have Field s ′ = Field (Restr r (Field s ′)) using lem-Relprop-fld-sat by

blast
moreover have s ′ ⊆ Restr r (Field s ′) using c1 unfolding Field-def by force
ultimately have SCF s ′ ⊆ SCF (Restr r (Field s ′)) using lem-ccext-scf-sat[of

s ′ Restr r (Field s ′)] by blast
moreover have |Ps| ≤o |A| −→ Ps ′ = Ps using p0 by simp
ultimately show ?thesis using s1 ′ s2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-subccr-pext5-scf2 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes CCR r and A ∈ SF r and Ps ⊆ SCF r
shows ∃ A ′::( ′U set). (x ∈ Field r −→ x ∈ A ′)

∧ A ⊆ A ′

∧ A ′ ∈ SF r
∧ (∀ a∈A. ((r‘‘{a}⊆B) ∨ (r‘‘{a}∩(A ′−B) 6= {})))
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))
∧ CCR (Restr r A ′)
∧ ((finite A −→ finite A ′) ∧ ( (¬ finite A) −→ |A ′| =o |A| ))
∧ ( ((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A| )) −→

(∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)))
proof (cases finite A)
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assume b1 : finite A
then obtain A ′:: ′U set where b2 : (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR

(Restr r A ′)
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))
and b3 : finite A ′ ∧ ((∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P)

∈ SCF (Restr r A ′)))
using assms lem-Ccext-finsubccr-pext5-scf2 [of r A Ps x B B ′] by

metis
have b4 : ((finite A −→ finite A ′) ∧ ( (¬ finite A) −→ |A ′| =o |A| ))
and b5 : ( ((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A| )) −→ (∀ P ∈ Ps.

(A ′ ∩ P) ∈ SCF (Restr r A ′)))
using b1 b3 card-of-ordLeq-finite by blast+

show ?thesis
apply (rule exI )
using b2 b4 b5 by force

next
assume b1 : ¬ finite A
then obtain A ′ where b2 : (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr

r A ′)
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ = {y}) −→ Field r ⊆ (A ′∪B ′))

and b3 : |A ′| =o |A| ∧ ( |Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF
(Restr r A ′)) )

using assms lem-Ccext-infsubccr-pext5-scf2 [of r A Ps x B B ′] by metis
have b4 : ((finite A −→ finite A ′) ∧ ( (¬ finite A) −→ |A ′| =o |A| ))

using b1 b3 by metis
have b5 : ( ((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A| )) −→ (∀ P ∈ Ps.

(A ′ ∩ P) ∈ SCF (Restr r A ′)))
using b1 b3 by (metis card-of-singl-ordLeq finite.simps)

show ?thesis
apply (rule exI )
using b2 b4 b5 by force

qed

lemma lem-dnEsc-el: F ∈ dnEsc r A a =⇒ a ∈ F ∧ finite F unfolding dnEsc-def
F-def rpth-def by blast

lemma lem-dnEsc-emp: dnEsc r A a = {} =⇒ dnesc r A a = { a } unfolding
dnesc-def by simp

lemma lem-dnEsc-ne: dnEsc r A a 6= {} =⇒ dnesc r A a ∈ dnEsc r A a
unfolding dnesc-def using someI-ex[of λ F . F ∈ dnEsc r A a] by force

lemma lem-dnesc-in: a ∈ dnesc r A a ∧ finite (dnesc r A a)
using lem-dnEsc-emp[of r A a] lem-dnEsc-el[of - r A a] lem-dnEsc-ne[of r A a]

by force

lemma lem-escl-incr : B ⊆ escl r A B using lem-dnesc-in[of - r A] unfolding
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escl-def by blast

lemma lem-escl-card: (finite B −→ finite (escl r A B)) ∧ (¬ finite B −→ |escl r
A B| ≤o |B| )
proof (intro conjI impI )

assume finite B
then show finite (escl r A B) using lem-dnesc-in[of - r A] unfolding escl-def

by blast
next

assume b1 : ¬ finite B
moreover have escl r A B = (

⋃
x∈B. ((dnesc r A) x)) unfolding escl-def by

blast
moreover have ∀ x. |(dnesc r A) x| ≤o |B|
proof

fix x
have finite (dnesc r A x) using lem-dnesc-in[of - r A] by blast
then show |dnesc r A x| ≤o |B| using b1 by (meson card-of-Well-order

card-of-ordLeq-infinite ordLeq-total)
qed
ultimately show |escl r A B| ≤o |B| by (simp add: card-of-UNION-ordLeq-infinite)

qed

lemma lem-Ccext-infsubccr-set-ext-scf3 :
fixes r s:: ′U rel and A A0 :: ′U set and Ps:: ′U set set
assumes a1 : CCR r and a2 : s ⊆ r and a3 : ¬ finite s and a4 : A ⊆ Field r

and a5 : |A| ≤o |Field s| and a6 : Ps ⊆ SCF r ∧ |Ps| ≤o |Field s|
shows ∃ s ′::( ′U rel). CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A ⊆ Field s ′

∧ (∀ P∈Ps. (Field s ′ ∩ P) ∈ SCF s ′) ∧ (escl r A0 (Field s ′) ⊆ Field s ′)
∧ (∃ D. s ′ = Restr r D) ∧ (Conelike s ′ −→ Conelike r)

proof −
obtain w where w0 : w = (λ x. SOME y. y ∈ Field r − dncl r {x}) by blast
have w1 :

∧
x. Field r − dncl r {x} 6= {} =⇒ w x ∈ Field r − dncl r {x}

proof −
fix x
assume Field r − dncl r {x} 6= {}
then show w x ∈ Field r − dncl r {x}

using w0 someI-ex [of λ y. y ∈ Field r − dncl r {x}] by force
qed
obtain q where q0 : q = (λ P a. SOME p. p ∈ P ∧ (a, p) ∈ r^∗) by blast
have q1 : ∀ P∈Ps. ∀ a∈Field r . (q P a) ∈ Field r ∧ (q P a) ∈ P ∧ (a, q P a)
∈ r^∗

proof (intro ballI )
fix P a
assume P ∈ Ps and a ∈ Field r
then show (q P a) ∈ Field r ∧ (q P a) ∈ P ∧ (a, q P a) ∈ r^∗

using q0 a6 someI-ex[of λ p. p ∈ P ∧ (a,p) ∈ r^∗] unfolding SCF-def by
blast

qed
obtain G:: ′U set ⇒ ′U rel set where b1 : G = (λ A. {t:: ′U rel. finite t ∧ CCR
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t ∧ t ⊆ r ∧ A ⊆ Field t}) by blast
obtain g:: ′U set ⇒ ′U rel where b2 : g = (λ A. if A ⊆ Field r ∧ finite A then

(SOME t. t ∈ G A) else {}) by blast
have b3 : ∀ A. A ⊆ Field r ∧ finite A −→ finite (g A) ∧ CCR (g A) ∧ (g A) ⊆

r ∧ A ⊆ Field (g A)
proof (intro allI impI )

fix A
assume c1 : A ⊆ Field r ∧ finite A
then have g A = (SOME t. t ∈ G A) using b2 by simp
moreover have G A 6= {} using b1 a1 c1 lem-Ccext-finsubccr-dext[of r A] by

blast
ultimately have g A ∈ G A using some-in-eq by metis
then show finite (g A) ∧ CCR (g A) ∧ (g A) ⊆ r ∧ A ⊆ Field (g A) using

b1 by blast
qed
have b4 : ∀ A. ¬ (A ⊆ Field r ∧ finite A) −→ g A = {} using b2 by simp
obtain H :: ′U set ⇒ ′U set

where b5 : H = (λ X . X ∪
⋃
{S . ∃ a∈X . ∃ b∈X . S = Field (g {a,b})}

∪
⋃
{S . ∃ P∈Ps. ∃ a∈X . S = f r a (q P a) }

∪ escl r A0 X ∪ (w‘X) ) by blast

obtain Pt:: ′U ⇒ ′U rel where p1 : Pt = (λ x. {p ∈ r . x = fst p ∨ x = snd p})
by blast

obtain pt:: ′U ⇒ ′U× ′U where p2 : pt = (λ x. (SOME p. p ∈ Pt x)) by blast
have ∀ x∈A. Pt x 6= {} using a4 unfolding p1 Field-def by force
then have p3 : ∀ x∈A. pt x ∈ Pt x unfolding p2 by (metis (full-types) Col-

lect-empty-eq Collect-mem-eq someI-ex)
obtain D0 where b7 : D0 = Field s ∪ fst‘(pt‘A) ∪ snd‘(pt‘A) by blast
obtain Di::nat ⇒ ′U set where b8 : Di = (λ n. (H^^n) D0 ) by blast
obtain D:: ′U set where b9 : D =

⋃
{X . ∃ n. X = Di n} by blast

obtain s ′ where b10 : s ′ = Restr r D by blast
have b11 : ∀ n. (¬ finite (Di n)) ∧ |Di n| ≤o |s|
proof

fix n0
show (¬ finite (Di n0 )) ∧ |Di n0 | ≤o |s|
proof (induct n0 )

have |D0 | =o |Field s|
proof −

have |fst‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c1 : |fst‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |snd‘(pt‘A)| ≤o |(pt‘A)| ∧ |(pt‘A)| ≤o |A| by simp
then have c2 : |snd‘(pt‘A)| ≤o |A| using ordLeq-transitive by blast
have |fst‘(pt‘A)| ≤o |Field s| ∧ |snd‘(pt‘A)| ≤o |Field s|

using c1 c2 a5 ordLeq-transitive by blast
moreover have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
ultimately have c3 : |D0 | ≤o |Field s| unfolding b7 by simp
have Field s ⊆ D0 unfolding b7 by blast
then have |Field s| ≤o |D0 | by simp
then show ?thesis using c3 ordIso-iff-ordLeq by blast
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qed
moreover have |Field s| =o |s| using a3 lem-rel-inf-fld-card by blast
ultimately have |D0 | ≤o |s| using ordIso-imp-ordLeq ordIso-transitive by

blast
moreover have ¬ finite D0 using a3 b7 lem-fin-fl-rel by blast
ultimately show ¬ finite (Di 0 ) ∧ |Di 0 | ≤o |s| using b8 by simp

next
fix n
assume d1 : (¬ finite (Di n)) ∧ |Di n| ≤o |s|
moreover then have |(Di n) × (Di n)| =o |Di n| by simp

ultimately have d2 : |(Di n) × (Di n)| ≤o |s| using ordIso-imp-ordLeq
ordLeq-transitive by blast

have d3 : ∀ a ∈ (Di n). ∀ b ∈ (Di n). |Field (g {a, b})| ≤o |s|
proof (intro ballI )

fix a b
assume a ∈ (Di n) and b ∈ (Di n)
have finite (g {a, b}) using b3 b4 by (metis finite.emptyI )
then have finite (Field (g {a, b})) using lem-fin-fl-rel by blast
then have |Field (g {a, b})| <o |s| using a3 finite-ordLess-infinite2 by

blast
then show |Field (g {a, b})| ≤o |s| using ordLess-imp-ordLeq by blast

qed
have d4 : Di (Suc n) = H (Di n) using b8 by simp
then have Di n ⊆ Di (Suc n) using b5 by blast
then have ¬ finite (Di (Suc n)) using d1 finite-subset by blast
moreover have |Di (Suc n)| ≤o |s|
proof −

obtain I where e1 : I = (Di n) × (Di n) by blast
obtain f where e2 : f = (λ (a,b). Field (g {a,b})) by blast
have |I | ≤o |s| using e1 d2 by blast
moreover have ∀ i∈I . |f i| ≤o |s| using e1 e2 d3 by simp

ultimately have |
⋃

i∈I . f i| ≤o |s| using a3 card-of-UNION-ordLeq-infinite[of
s I f ] by blast

moreover have Di (Suc n) = (Di n) ∪ (
⋃

i∈I . f i)
∪ (

⋃
P∈Ps. (

⋃
a∈(Di n). f r a (q P a))) ∪ escl r A0 (Di n) ∪ (w‘(Di

n))
using e1 e2 d4 b5 by blast

moreover have |
⋃

P∈Ps. (
⋃

a∈(Di n). f r a (q P a))| ≤o |s|
proof −

have
∧

P. P ∈ Ps =⇒ ∀ a∈(Di n). |f r a (q P a)| ≤o |s|
using a3 lem-ccext-ffin by (metis card-of-Well-order card-of-ordLeq-infinite

ordLeq-total)
then have

∧
P. P ∈ Ps =⇒ |

⋃
a∈(Di n). f r a (q P a)| ≤o |s|

using d1 a3 card-of-UNION-ordLeq-infinite[of s Di n λ a. f r a (q - a)]
by blast

moreover have |Ps| ≤o |s| using a3 a6 lem-rel-inf-fld-card[of s]
lem-fin-fl-rel[of s]

by (metis ordIso-iff-ordLeq ordLeq-transitive)
ultimately show ?thesis
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using a3 card-of-UNION-ordLeq-infinite[of s Ps λ P.
⋃

a∈(Di n). f r a
(q P a)] by blast

qed
moreover have |escl r A0 (Di n)| ≤o |s|

using d1 lem-escl-card[of Di n r A0 ] by (metis ordLeq-transitive)
moreover have |w‘(Di n)| ≤o |s| using d1 using card-of-image or-

dLeq-transitive by blast
ultimately show ?thesis using d1 a3 by simp

qed
ultimately show (¬ finite (Di (Suc n))) ∧ |Di (Suc n)| ≤o |s| by blast

qed
qed
have b12 : ∀ m. ∀ n. n ≤ m −→ Di n ≤ Di m
proof

fix m0
show ∀ n. n ≤ m0 −→ Di n ≤ Di m0
proof (induct m0 )

show ∀n≤0 . Di n ⊆ Di 0 by blast
next

fix m
assume d1 : ∀n≤m. Di n ⊆ Di m
show ∀n≤Suc m. Di n ⊆ Di (Suc m)
proof (intro allI impI )

fix n
assume e1 : n ≤ Suc m
have Di (Suc m) = H (Di m) using b8 by simp
moreover have Di m ⊆ H (Di m) using b5 by blast
ultimately have n ≤ m −→ Di n ⊆ Di (Suc m) using d1 by blast
moreover have n = (Suc m) ∨ n ≤ m using e1 by force
ultimately show Di n ⊆ Di (Suc m) by blast

qed
qed

qed
have Di 0 ⊆ D using b9 by blast
then have b13 : Field s ⊆ D using b7 b8 by simp
then have b14 : s ⊆ s ′ ∧ s ′ ⊆ r using a2 b10 unfolding Field-def by force
moreover have b15 : |D| ≤o |s|
proof −

have |UNIV ::nat set| ≤o |s| using a3 infinite-iff-card-of-nat by blast
then have |

⋃
n. Di n| ≤o |s| using b11 a3 card-of-UNION-ordLeq-infinite[of

s UNIV Di] by blast
moreover have D = (

⋃
n. Di n) using b9 by force

ultimately show ?thesis by blast
qed
moreover have |s ′| =o |s|
proof −

have ¬ finite (Field s) using a3 lem-fin-fl-rel by blast
then have ¬ finite D using b13 finite-subset by blast
then have |D × D| =o |D| by simp
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moreover have s ′ ⊆ D × D using b10 by blast
ultimately have |s ′| ≤o |s| using b15 card-of-mono1 ordLeq-ordIso-trans or-

dLeq-transitive by metis
moreover have |s| ≤o |s ′| using b14 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
moreover have A ⊆ Field s ′

proof
fix x
assume c1 : x ∈ A
obtain ax bx where c2 : ax = fst (pt x) ∧ bx = snd (pt x) by blast
have pt x ∈ Pt x using c1 p3 by blast
then have c3 : (ax, bx) ∈ r ∧ x ∈ {ax,bx} using c2 p1 by simp
have {ax, bx} ⊆ D0 using b7 c1 c2 by blast
moreover have Di 0 ⊆ D using b9 by blast
moreover have Di 0 = D0 using b8 by simp
ultimately have {ax, bx} ⊆ D by blast
then have (ax, bx) ∈ s ′ using c3 b10 by blast
then show x ∈ Field s ′ using c3 unfolding Field-def by blast

qed
moreover have CCR s ′

proof −
have ∀ a ∈ Field s ′. ∀ b ∈ Field s ′. ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈

(s ′)^∗
proof (intro ballI )

fix a b
assume d1 : a ∈ Field s ′ and d2 : b ∈ Field s ′

then have d3 : a ∈ D ∧ b ∈ D using b10 unfolding Field-def by blast
then obtain ia ib where d4 : a ∈ Di ia ∧ b ∈ Di ib using b9 by blast
obtain k where d5 : k = (max ia ib) by blast
then have ia ≤ k ∧ ib ≤ k by simp
then have d6 : a ∈ Di k ∧ b ∈ Di k using d4 b12 by blast
obtain p where d7 : p = g {a,b} by blast
have Field p ⊆ H (Di k) using b5 d6 d7 by blast
moreover have H (Di k) = Di (Suc k) using b8 by simp
moreover have Di (Suc k) ⊆ D using b9 by blast
ultimately have d8 : Field p ⊆ D by blast
have {a, b} ⊆ Field r using d1 d2 b10 unfolding Field-def by blast
moreover have finite {a, b} by simp
ultimately have d9 : CCR p ∧ p ⊆ r ∧ {a,b} ⊆ Field p using d7 b3 by blast
then obtain c where d10 : c ∈ Field p ∧ (a,c) ∈ p^∗ ∧ (b,c) ∈ p^∗ unfolding

CCR-def by blast
have (p ‘‘ D) ⊆ D using d8 unfolding Field-def by blast
then have D ∈ Inv p unfolding Inv-def by blast

then have p^∗ ∩ (D×(UNIV :: ′U set)) ⊆ (Restr p D)^∗ using lem-Inv-restr-rtr [of
D p] by blast

moreover have Restr p D ⊆ s ′ using d9 b10 by blast
moreover have (a,c) ∈ p^∗ ∩ (D×(UNIV :: ′U set)) ∧ (b,c) ∈ p^∗ ∩

(D×(UNIV :: ′U set)) using d10 d3 by blast
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ultimately have (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ using rtrancl-mono by blast
moreover then have c ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field s ′. (a,c) ∈ (s ′)^∗ ∧ (b,c) ∈ (s ′)^∗ by blast

qed
then show ?thesis unfolding CCR-def by blast

qed
moreover have ∀ P∈Ps. (Field s ′ ∩ P) ∈ SCF s ′

proof −
have ∀ P ∈ Ps. ∀ a∈Field s ′. ∃ b∈(Field s ′ ∩ P). (a, b) ∈ s ′̂ ∗
proof (intro ballI )

fix P a
assume d0 : P ∈ Ps and d1 : a ∈ Field s ′

then have a ∈ D using b10 unfolding Field-def by blast
then obtain n where a ∈ Di n using b9 by blast
then have f r a (q P a) ⊆ H (Di n) using d0 b5 by blast
moreover have H (Di n) = Di (Suc n) using b8 by simp
ultimately have d2 : f r a (q P a) ⊆ D using b9 by blast
have a ∈ Field r using d1 b10 unfolding Field-def by blast
then have q P a ∈ P ∧ (a, q P a) ∈ r^∗ using d0 q1 by blast
moreover have Restr r (f r a (q P a)) ⊆ s ′ using d0 d2 b10 by blast
ultimately have q P a ∈ P ∧ (a, q P a) ∈ s ′̂ ∗ using lem-Ccext-fint[of r a

q P a s ′] by blast
moreover then have q P a ∈ Field s ′ using d1 lem-rtr-field by metis
ultimately show ∃ b∈(Field s ′ ∩ P). (a, b) ∈ s ′̂ ∗ by blast

qed
then show ?thesis unfolding SCF-def by blast

qed
moreover have escl r A0 (Field s ′) ⊆ Field s ′

proof
fix x
assume c1 : x ∈ escl r A0 (Field s ′)
then obtain F a where c2 : x ∈ F ∧ F = dnesc r A0 a ∧ a ∈ Field s ′

unfolding escl-def by blast
obtain n where a ∈ Di n using c2 b9 b10 unfolding Field-def by blast
then have F ⊆ H (Di n) using c2 b5 unfolding escl-def by blast
moreover have H (Di n) = Di (Suc n) using b8 b9 by simp
ultimately have c3 : F ⊆ D using b9 by blast
show x ∈ Field s ′

proof (cases dnEsc r A0 a = {})
assume dnEsc r A0 a = {}
then have x = a using c2 lem-dnEsc-emp[of r A0 ] by blast
then show ?thesis using c2 by blast

next
assume dnEsc r A0 a 6= {}
then have F ∈ dnEsc r A0 a using c2 lem-dnEsc-ne[of r A0 a] by blast
then obtain b where F ∈ F r a b unfolding dnEsc-def by blast
then obtain f k where f ∈ rpth r a b k ∧ F = f‘{i. i≤k} unfolding F-def

by blast
moreover then obtain j where j≤k ∧ x = f j using c2 by blast
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ultimately have f ∈ rpth (Restr r D) a x j using c3 unfolding rpth-def
by force

then have a ∈ Field s ′ ∧ (a,x) ∈ s ′̂ ∗ using c2 b10 lem-ccext-rpth-rtr [of - a
x] by blast

then show ?thesis using lem-rtr-field by metis
qed

qed
moreover have ∃ D. s ′ = Restr r D using b10 by blast
moreover have ¬ Conelike r −→ ¬ Conelike s ′

proof
assume ¬ Conelike r

then have c1 : ∀ a ∈ Field r . Field r − dncl r {a} 6= {} unfolding Conelike-def
dncl-def by blast

have ∀ a ∈ Field s ′. ∃ a ′ ∈ Field s ′. (a ′, a) /∈ s ′̂ ∗
proof

fix a
assume d1 : a ∈ Field s ′

then have d2 : a ∈ Field r using b10 unfolding Field-def by blast
then have d3 : w a ∈ Field r − dncl r {a} using c1 w1 by blast
then have (w a, a) /∈ s ′̂ ∗ unfolding dncl-def using b10 rtrancl-mono[of s ′

r ] by blast
moreover have w a ∈ Field s ′

proof −
obtain n where a ∈ Di n using d1 b9 b10 unfolding Field-def by blast
then have a ∈ Di (Suc n) ∧ w a ∈ Di (Suc n) using b5 b8 by simp
then have e1 : Field (g {a, w a}) ⊆ H (Di (Suc n)) using b5 b8 by blast
have e2 : {a, w a} ⊆ Field r ∧ finite {a, w a} using d2 d3 by blast
have H (Di (Suc n)) = Di (Suc (Suc n)) using b8 by simp
moreover have Di (Suc (Suc n)) ⊆ D using b9 by blast
ultimately have Field (g {a,w a}) ⊆ D using e1 by blast
moreover have Restr (g {a,w a}) D ⊆ s ′ using e2 b3 b10 by blast
ultimately have g {a,w a} ⊆ s ′ unfolding Field-def by fastforce
moreover have w a ∈ Field (g {a, w a}) using e2 b3 by blast
ultimately show w a ∈ Field s ′ unfolding Field-def by blast

qed
ultimately show ∃ a ′ ∈ Field s ′. (a ′, a) /∈ s ′̂ ∗ by blast

qed
moreover have s ′ 6= {} using b14 a3 by force
ultimately show ¬ Conelike s ′ unfolding Conelike-def by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-infsubccr-pext5-scf3 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes a1 : CCR r and a2 : ¬ finite A and a3 : A ∈ SF r and a4 : Ps ⊆ SCF r
shows ∃ A ′::( ′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
|A ′| =o |A|

∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
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∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))
∧ ( |Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)) )
∧ (escl r A A ′ ⊆ A ′) ∧ clterm (Restr r A ′) r

proof −
obtain Ps ′ where p0 : Ps ′ = (if ( |Ps| ≤o |A| ) then Ps else {}) by blast
then have p1 : Ps ′ ⊆ SCF r ∧ |Ps ′| ≤o |A| using a4 by simp
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : ¬ finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B ) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ′ ⊆ {y})) −→ y1 /∈ B ′ ∧ y2 /∈
B ′ ∧ y1 6= y2 by blast

obtain y3 where n3 : (¬ (Field r − B ′ ⊆ {})) −→ y3 ∈ Field r − B ′ by blast
obtain A1 where b4 : A1 = ({x, y1 , y2 , y3} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : |A1 | ≤o |Field s|
proof −

obtain C1 where c1 : C1 = {x,y1 ,y2 ,y3} ∩ Field r by blast
obtain C2 where c2 : C2 = A ∪ f ‘ A by blast
have ¬ finite A using q4 q3 lem-fin-fl-rel by blast
then have |C2 | =o |A| using c2 b4 q3 by simp

98



then have |C2 | ≤o |Field s| unfolding q4 using ordIso-iff-ordLeq by blast
moreover have c3 : ¬ finite (Field s) using q3 lem-fin-fl-rel by blast
moreover have |C1 | ≤o |Field s|
proof −

have |{x,y1 ,y2 ,y3}| ≤o |Field s| using c3
by (meson card-of-Well-order card-of-ordLeq-finite finite.emptyI finite.insertI

ordLeq-total)
moreover have |C1 | ≤o |{x,y1 ,y2 ,y3}| unfolding c1 by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately have |C1 ∪ C2 | ≤o |Field s| unfolding b4 using card-of-Un-ordLeq-infinite

by blast
moreover have A1 = C1 ∪ C2 using c1 c2 b4 by blast
ultimately show ?thesis by blast

qed
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ |s ′| =o |s| ∧ A1
⊆ Field s ′

and s1 ′: (∀ P ∈ Ps ′. (Field s ′ ∩ P) ∈ SCF s ′)
and s1 ′′: escl r A (Field s ′) ⊆ Field s ′

and s1 ′′′: (∃ D. s ′ = Restr r D) ∧ (Conelike s ′ −→ Conelike r)
using p1 a1 q2 q3 q4 lem-Ccext-infsubccr-set-ext-scf3 [of r s A1 Ps ′ A] by blast

obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : |Field s ′| =o |Field s| using s1 q3 lem-cardreleq-cardfldeq-inf [of s ′ s]

by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
moreover have |A ′| =o |A1 |
proof −

have Field s ⊆ A1 using q4 b4 by blast
then have |Field s| ≤o |A1 | by simp
then have |A ′| ≤o |A1 | using s2 s5 ordIso-ordLeq-trans by blast
moreover have |A1 | ≤o |A ′| using s1 s2 by simp
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) ∧ |A ′| =o
|A1 | by blast

moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
moreover have |A ′| =o |A| using s5 s2 q4 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
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have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
proof

assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B ′ ⊆ {y}) −→ Field r ⊆ (A ′ ∪ B ′)
proof

assume c0 : ∃ y:: ′U . A ′ − B ′ ⊆ {y}
show Field r ⊆ (A ′ ∪ B ′)
proof (cases ∃ y:: ′U . A ′ − B ′ = {y})

assume c1 : ∃ y:: ′U . A ′ − B ′ = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ′ ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2 ) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ′ ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

next
assume ¬ (∃ y:: ′U . A ′ − B ′ = {y})
then have c1 : A ′ − B ′ = {} using c0 by blast
show Field r ⊆ (A ′ ∪ B ′)
proof (cases Field r = {})

assume Field r = {}
then show Field r ⊆ (A ′ ∪ B ′) by blast

next
assume Field r 6= {}

moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ Field r using n3 by blast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ A ′ − B ′ using n3 by blast
moreover have ¬ ({y3} ⊆ A ′ − B ′ ) using c1 by force
ultimately have Field r − B ′ ⊆ {} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

qed
qed

qed
moreover have ( |Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)) )
proof −

have c1 : s ′ ⊆ r using s3 s4 by blast
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then have Field s ′ = Field (Restr r (Field s ′)) using lem-Relprop-fld-sat by
blast

moreover have s ′ ⊆ Restr r (Field s ′) using c1 unfolding Field-def by force
ultimately have SCF s ′ ⊆ SCF (Restr r (Field s ′)) using lem-ccext-scf-sat[of

s ′ Restr r (Field s ′)] by blast
moreover have |Ps| ≤o |A| −→ Ps ′ = Ps using p0 by simp
ultimately show ?thesis using s1 ′ s2 by blast

qed
moreover have escl r A A ′ ⊆ A ′ using s1 ′′ s2 by blast
moreover have Conelike (Restr r A ′) −→ Conelike r
proof

assume c1 : Conelike (Restr r A ′)
obtain D where s ′ = Restr r D using s1 ′′′ by blast
then have s ′ = Restr r (Field s ′) unfolding Field-def by force
then have Conelike s ′ using c1 s2 by simp
then show Conelike r using s1 ′′′ by blast

qed
ultimately show ?thesis unfolding clterm-def by blast

qed

lemma lem-Ccext-finsubccr-pext5-scf3 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set
assumes a1 : CCR r and a2 : finite A and a3 : A ∈ SF r and a4 : Ps ⊆ SCF r
shows ∃ A ′::( ′U set). (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) ∧
finite A ′

∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))
∧ ((∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′)))
proof −

obtain P where p0 : P = (if (Ps 6= {}) then (SOME P. P ∈ Ps) else Field r)
by blast

moreover have Field r ∈ SCF r unfolding SCF-def by blast
ultimately have p1 : P ∈ SCF r using a4 by (metis contra-subsetD some-in-eq)
have p2 : (∃ P. Ps = {P}) −→ Ps = {P} using p0 by fastforce
have q1 : Field (Restr r A) = A using a3 unfolding SF-def by blast
obtain s where s = (Restr r A) by blast
then have q2 : s ⊆ r and q3 : finite s and q4 : A = Field s

using a2 q1 lem-fin-fl-rel by (blast, metis, blast)
obtain S where b1 : S = (λ a. r‘‘{a} − B ) by blast
obtain S ′ where b2 : S ′ = (λ a. if (S a) 6= {} then (S a) else {a}) by blast
obtain f where f = (λ a. SOME b. b ∈ S ′ a) by blast
moreover have ∀ a. ∃ b. b ∈ (S ′ a) unfolding b2 by force
ultimately have ∀ a. f a ∈ S ′ a by (metis someI-ex)
then have b3 : ∀ a. (S a 6= {} −→ f a ∈ S a) ∧ (S a = {} −→ f a = a)

unfolding b2 by (clarsimp, metis singletonD)
obtain y1 y2 :: ′U where n1 : Field r 6= {} −→ {y1 , y2} ⊆ Field r

and n2 : (¬ (∃ y:: ′U . Field r − B ′ ⊆ {y})) −→ y1 /∈ B ′ ∧ y2 /∈
B ′ ∧ y1 6= y2 by blast
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obtain y3 where n3 : (¬ (Field r − B ′ ⊆ {})) −→ y3 ∈ Field r − B ′ by blast
obtain A1 where b4 : A1 = ({x,y1 ,y2 ,y3} ∩ Field r) ∪ A ∪ (f ‘ A) by blast
have A1 ⊆ Field r
proof −

have c1 : A ⊆ Field r using q4 q2 unfolding Field-def by blast
moreover have f ‘ A ⊆ Field r
proof

fix x
assume x ∈ f ‘ A
then obtain a where d2 : a ∈ A ∧ x = f a by blast
show x ∈ Field r
proof (cases S a = {})

assume S a = {}
then have x = a using c1 d2 b3 by blast
then show x ∈ Field r using d2 c1 by blast

next
assume S a 6= {}
then have x ∈ S a using d2 b3 by blast
then show x ∈ Field r using b1 unfolding Field-def by blast

qed
qed
ultimately show A1 ⊆ Field r using b4 by blast

qed
moreover have s0 : finite A1 using b4 q3 q4 lem-fin-fl-rel by blast
ultimately obtain s ′ where s1 : CCR s ′ ∧ s ⊆ s ′ ∧ s ′ ⊆ r ∧ finite s ′ ∧ A1 ⊆

Field s ′

and s1 ′: (∃ P. Ps = {P}) −→ (Field s ′ ∩ P) ∈ SCF s ′

using p1 a1 a4 q2 q3 lem-Ccext-finsubccr-set-ext-scf [of r s A1 P] by metis
obtain A ′ where s2 : A ′ = Field s ′ by blast
obtain s ′′ where s3 : s ′′ = Restr r A ′ by blast
then have s4 : s ′ ⊆ s ′′ ∧ Field s ′′ = A ′ using s1 s2 lem-Relprop-fld-sat[of s ′ r

s ′′] by blast
have s5 : finite (Field s ′) using s1 lem-fin-fl-rel by blast
have A1 ∪ ({x} ∩ Field r) ⊆ A ′ using b4 s1 s2 by blast
moreover have CCR (Restr r A ′)
proof −

have CCR s ′′ using s1 s2 s4 lem-Ccext-subccr-eqfld[of s ′ s ′′] by blast
then show ?thesis using s3 by blast

qed
ultimately have b6 : A1 ∪ ({x} ∩ Field r) ⊆ A ′ ∧ CCR (Restr r A ′) by blast
moreover then have A ∪ ({x} ∩ Field r) ⊆ A ′ using b4 by blast
ultimately have (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr r A ′) by

blast
moreover have finite A ′ using s2 s5 by blast
moreover have ∀ a∈A. r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {}
proof

fix a
assume c1 : a ∈ A
have ¬ (r‘‘{a} ⊆ B) −→ r‘‘{a} ∩ (A ′−B) 6= {}
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proof
assume ¬ (r‘‘{a} ⊆ B)
then have S a 6= {} unfolding b1 by blast
then have f a ∈ r‘‘{a} − B using b1 b3 by blast
moreover have f a ∈ A ′ using c1 b4 b6 by blast
ultimately show r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
then show r‘‘{a} ⊆ B ∨ r‘‘{a} ∩ (A ′−B) 6= {} by blast

qed
moreover have A ′ ∈ SF r using s3 s4 unfolding SF-def by blast
moreover have (∃ y:: ′U . A ′ − B ′ ⊆ {y}) −→ Field r ⊆ (A ′ ∪ B ′)
proof

assume c0 : ∃ y:: ′U . A ′ − B ′ ⊆ {y}
show Field r ⊆ (A ′ ∪ B ′)
proof (cases ∃ y:: ′U . A ′ − B ′ = {y})

assume c1 : ∃ y:: ′U . A ′ − B ′ = {y}
moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have {y1 , y2} ⊆ Field r using n1 by blast
then have {y1 , y2} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (∃ y. Field r − B ′ ⊆ {y}) −→ {y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2

using n2 by blast
moreover have ¬ ({y1 , y2} ⊆ A ′ − B ′ ∧ y1 6= y2 ) using c1 by force
ultimately have ∃ y:: ′U . Field r − B ′ ⊆ {y} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

next
assume ¬ (∃ y:: ′U . A ′ − B ′ = {y})
then have c1 : A ′ − B ′ = {} using c0 by blast
show Field r ⊆ (A ′ ∪ B ′)
proof (cases Field r = {})

assume Field r = {}
then show Field r ⊆ (A ′ ∪ B ′) by blast

next
assume Field r 6= {}

moreover have c2 : A ′ ⊆ Field r using s1 s2 unfolding Field-def by blast
ultimately have Field r 6= {} by blast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ Field r using n3 by blast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ A ′ using b4 s1 s2 by fast
then have ¬ (Field r − B ′ ⊆ {}) −→ {y3} ⊆ A ′ − B ′ using n3 by blast
moreover have ¬ ({y3} ⊆ A ′ − B ′ ) using c1 by force
ultimately have Field r − B ′ ⊆ {} by blast
then show Field r ⊆ A ′ ∪ B ′ using c1 c2 by blast

qed
qed

qed
moreover have (∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′))
proof −

have c1 : s ′ ⊆ r using s3 s4 by blast
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then have Field s ′ = Field (Restr r (Field s ′)) using lem-Relprop-fld-sat by
blast

moreover have s ′ ⊆ Restr r (Field s ′) using c1 unfolding Field-def by force
ultimately have SCF s ′ ⊆ SCF (Restr r (Field s ′)) using lem-ccext-scf-sat[of

s ′ Restr r (Field s ′)] by blast
then show ?thesis using p2 s1 ′ s2 by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Ccext-subccr-pext5-scf3 :
fixes r :: ′U rel and A B B ′:: ′U set and x:: ′U and Ps:: ′U set set and C :: ′U set ⇒
bool
assumes a1 : CCR r and a2 : A ∈ SF r and a3 : Ps ⊆ SCF r

and a4 : C = (λ A ′:: ′U set. (x ∈ Field r −→ x ∈ A ′)
∧ A ⊆ A ′

∧ A ′ ∈ SF r
∧ (∀ a∈A. ((r‘‘{a}⊆B) ∨ (r‘‘{a}∩(A ′−B) 6= {})))
∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))
∧ CCR (Restr r A ′)
∧ ((finite A −→ finite A ′) ∧ ( (¬ finite A) −→ |A ′| =o |A| ))
∧ ( ((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A| )) −→

(∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r A ′)))
∧ ( (¬ finite A) −→ ((escl r A A ′ ⊆ A ′) ∧ (clterm (Restr r A ′)

r))) )
shows ∃ A ′::( ′U set). C A ′

proof (cases finite A)
assume b1 : finite A
then obtain A ′:: ′U set where b2 : (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR

(Restr r A ′)
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))
and b3 : finite A ′ ∧ ((∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P)

∈ SCF (Restr r A ′)))
using a1 a2 a3 lem-Ccext-finsubccr-pext5-scf3 [of r A Ps x B B ′]

by metis
have b4 : ((finite A −→ finite A ′) ∧ ( (¬ finite A) −→ |A ′| =o |A| ))
and b5 : ( ((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A| )) −→ (∀ P ∈ Ps.

(A ′ ∩ P) ∈ SCF (Restr r A ′)))
using b1 b3 card-of-ordLeq-finite by blast+

show ?thesis
apply (rule exI )
unfolding a4 using b1 b2 b4 b5 by force

next
assume b1 : ¬ finite A
then obtain A ′ where b2 : (x ∈ Field r −→ x ∈ A ′) ∧ A ⊆ A ′ ∧ CCR (Restr

r A ′)
∧ (∀ a∈A. r‘‘{a}⊆B ∨ r‘‘{a}∩(A ′−B) 6= {}) ∧ A ′ ∈ SF r
∧ ((∃ y:: ′U . A ′−B ′ ⊆ {y}) −→ Field r ⊆ (A ′∪B ′))
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and b3 : |A ′| =o |A| ∧ ( |Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF
(Restr r A ′)) )

and b3 ′: (escl r A A ′ ⊆ A ′) ∧ clterm (Restr r A ′) r
using a1 a2 a3 lem-Ccext-infsubccr-pext5-scf3 [of r A Ps x B B ′] by metis

have b4 : ((finite A −→ finite A ′) ∧ ( (¬ finite A) −→ |A ′| =o |A| ))
using b1 b3 by metis

have b5 : ( ((∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A| )) −→ (∀ P ∈ Ps.
(A ′ ∩ P) ∈ SCF (Restr r A ′)))

using b1 b3 by (metis card-of-singl-ordLeq finite.simps)
have b6 : ( (¬ finite A) −→ ((escl r A A ′ ⊆ A ′) ∧ clterm (Restr r A ′) r)) using

b3 ′ by blast
have C A ′ unfolding a4 using b2 b4 b5 b6 by simp
then show ?thesis by blast

qed

lemma lem-acyc-un-emprd:
fixes r s:: ′U rel
assumes a1 : acyclic r ∧ acyclic s and a2 : (Range r) ∩ (Domain s) = {}
shows acyclic (r ∪ s)
proof −

have
∧

n. (r ∪ s)^^n ⊆ s^∗ O r^∗
proof −

fix n
show (r ∪ s)^^n ⊆ s^∗ O r^∗
proof (induct n)

show (r ∪ s)^^0 ⊆ s^∗ O r^∗ by force
next

fix n
assume (r ∪ s)^^n ⊆ s^∗ O r^∗
moreover then have (r ∪ s)^^n O r ⊆ s^∗ O r^∗ by force
moreover have (s^∗ O r^∗) O s ⊆ s^∗ O r^∗
proof −

have r^+ O s = r^∗ O (r O s) by (simp add: O-assoc trancl-unfold-right)
moreover have r O s = {} using a2 by force
ultimately have s^∗ O (r^+ O s) = {} by force
moreover have s^∗ O s ⊆ s^∗ by force

moreover have r^∗ = Id ∪ r^+ by (metis rtrancl-unfold trancl-unfold-right)
moreover then have (s^∗ O r^∗) O s = (s^∗ O s) ∪ (s^∗ O (r^+ O s))

by fastforce
ultimately show ?thesis by fastforce

qed
moreover have (r ∪ s)^^(Suc n) = ((((r ∪ s)^^n) O r) ∪ (((r ∪ s)^^n) O

s)) by simp
ultimately show (r ∪ s) ^^ (Suc n) ⊆ s^∗ O r^∗ by force

qed
qed
then have b1 : (r ∪ s)^∗ ⊆ s^∗ O r^∗ using rtrancl-power [of - r ∪ s] by blast
have ∀ x. (x,x) ∈ (r ∪ s)^+ −→ False
proof (intro allI impI )
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fix x
assume (x,x) ∈ (r ∪ s)^+
then have (x,x) ∈ (r ∪ s)^∗ O (r ∪ s) using trancl-unfold-right by blast
then have (x,x) ∈ ((s^∗ O r^∗) O r) ∪ ((s^∗ O r^∗) O s) using b1 by force
moreover have (x,x) ∈ ((s^∗ O r^∗) O r) −→ False
proof

assume (x,x) ∈ ((s^∗ O r^∗) O r)
then obtain u v where d1 : (x,u) ∈ s^∗ ∧ (u,v) ∈ r^∗ ∧ (v,x) ∈ r by blast
moreover then have x /∈ Domain s using a2 by blast
ultimately have x = u by (meson Not-Domain-rtrancl)
then have (x,x) ∈ r^+ using d1 by force
then show False using a1 unfolding acyclic-def by blast

qed
moreover have (x,x) ∈ ((s^∗ O r^∗) O s) −→ False
proof

assume (x,x) ∈ ((s^∗ O r^∗) O s)
then obtain u v where d1 : (x,u) ∈ s^∗ ∧ (u,v) ∈ r^∗ ∧ (v,x) ∈ s by blast
have u = v −→ False
proof

assume u = v
then have (x,x) ∈ s^+ using d1 by force
then show False using a1 unfolding acyclic-def by blast

qed
then have (u,v) ∈ r^+ using d1 by (meson rtranclD)
then have v ∈ Range r using trancl-unfold-right[of r ] by force
moreover have v ∈ Domain s using d1 by blast
ultimately show False using a2 by blast

qed
ultimately show False by blast

qed
then show ?thesis using a1 unfolding acyclic-def by blast

qed

lemma lem-spthlen-rtr : (a,b) ∈ r^∗ =⇒ (a,b) ∈ r^^(spthlen r a b)
using rtrancl-power unfolding spthlen-def by (metis LeastI-ex)

lemma lem-spthlen-tr : (a,b) ∈ r^∗ ∧ a 6= b =⇒ (a,b) ∈ r^^(spthlen r a b) ∧ spthlen
r a b > 0
proof −

assume (a,b) ∈ r^∗ ∧ a 6= b
moreover then have b1 : (a,b) ∈ r^^(spthlen r a b) using lem-spthlen-rtr [of a

b] by force
ultimately have spthlen r a b = 0 −→ False by force
then show ?thesis using b1 by blast

qed

lemma lem-spthlen-min: (a,b) ∈ r^^n =⇒ spthlen r a b ≤ n
unfolding spthlen-def by (metis Least-le)
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lemma lem-spth-inj:
fixes r :: ′U rel and a b:: ′U and f ::nat ⇒ ′U and n::nat
assumes a1 : f ∈ spth r a b and a2 : n = spthlen r a b
shows inj-on f {i. i≤n}
proof −

have b1 : f ∈ rpth r a b n using a1 a2 unfolding spth-def by blast
have ∀ i j. i ≤ n ∧ j ≤ n ∧ i < j −→ f i = f j −→ False
proof (intro allI impI )

fix i j
assume c1 : i ≤ n ∧ j ≤ n ∧ i < j and c2 : f i = f j
obtain l where c3 : l = j − i by blast
then have c4 : l 6= 0 using c1 by simp
obtain g where c5 : g = (λ k. if (k≤i) then (f k) else (f (k + l))) by blast
then have g 0 = a using b1 unfolding rpth-def by fastforce
moreover have g (n − l) = b
proof (cases j < n)

assume j < n
then show ?thesis using c5 c3 b1 unfolding rpth-def by simp

next
assume ¬ j < n
then have j = n using c1 by simp
then show ?thesis using c5 c2 c3 c4 b1 unfolding rpth-def by simp

qed
moreover have ∀ k < n − l. (g k, g (Suc k)) ∈ r
proof (intro allI impI )

fix k
assume d1 : k < n − l
have k 6= i −→ (g k, g (Suc k)) ∈ r using c5 d1 b1 unfolding rpth-def by

fastforce
moreover have k = i −→ (g k, g (Suc k)) ∈ r
proof

assume e1 : k = i
then have (g k, g (Suc k)) = (f i, f ((Suc i) + l)) using c5 by simp
moreover have f i = f (i + l) using c1 c2 c3 by simp
moreover have i + l < n using d1 e1 by force
ultimately show (g k, g (Suc k)) ∈ r using b1 unfolding rpth-def by

simp
qed
ultimately show (g k, g (Suc k)) ∈ r by force

qed
ultimately have g ∈ rpth r a b (n − l) unfolding rpth-def by blast
then have spthlen r a b ≤ n − l

using lem-spthlen-min[of a b] lem-ccext-ntr-rpth[of a b] by blast
then show False using a2 c1 c3 by force

qed
moreover then have ∀ i j. i ≤ n ∧ j ≤ n ∧ j < i −→ f i = f j −→ False by

metis
ultimately show ?thesis unfolding inj-on-def by (metis linorder-neqE-nat
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mem-Collect-eq)
qed

lemma lem-rtn-rpth-inj: (a,b) ∈ r^^n =⇒ n = spthlen r a b =⇒ ∃ f . f ∈ rpth r
a b n ∧ inj-on f {i. i ≤ n}
proof −

assume a1 : (a,b) ∈ r^^n and a2 : n = spthlen r a b
then have (a,b) ∈ r^^n using lem-spthlen-rtr [of a b] rtrancl-power by blast
then obtain f where b2 : f ∈ rpth r a b n using lem-ccext-ntr-rpth[of a b] by

blast
then have f ∈ spth r a b using a2 unfolding spth-def by blast
then have inj-on f {i. i ≤ n} using a2 lem-spth-inj[of f ] by blast
then show ?thesis using b2 by blast

qed

lemma lem-rtr-rpth-inj: (a,b) ∈ r^∗ =⇒ ∃ f n . f ∈ rpth r a b n ∧ inj-on f {i. i
≤ n}

using lem-spthlen-rtr [of a b r ] lem-rtn-rpth-inj[of a b - r ] by blast

lemma lem-sum-ind-ex:
assumes a1 : g = (λn::nat.

∑
i<n. f i)

and a2 :∀ i::nat. f i > 0
shows ∃ n k. (m::nat) = g n + k ∧ k < f n
proof(induct m)

have 0 = g 0 + 0 ∧ 0 < f 0 using a1 a2 by simp
then show ∃n k. (0 ::nat) = g n + k ∧ k < f n by blast

next
fix m
assume ∃n k. m = g n + k ∧ k < f n
then obtain n k where b1 : m = g n + k ∧ k < f n by blast
show ∃n ′ k ′. Suc m = g n ′ + k ′ ∧ k ′ < f n ′

proof(cases Suc k < f n)
assume Suc k < f n
then have Suc m = g n + (Suc k) ∧ (Suc k) < f n using b1 by simp
then show ∃n ′ k ′. Suc m = g n ′ + k ′ ∧ k ′ < f n ′ by blast

next
assume ¬ Suc k < f n
then have Suc m = g (Suc n) + 0 ∧ 0 < f (Suc n) using a1 a2 b1 by simp
then show ∃n ′ k ′. Suc m = g n ′ + k ′ ∧ k ′ < f n ′ by blast

qed
qed

lemma lem-sum-ind-un:
assumes a1 : g = (λn::nat.

∑
i<n. f i)

and a2 : ∀ i::nat. f i > 0
and a3 : (m::nat) = g n + k ∧ k < f n
and a4 : m = g n ′ + k ′ ∧ k ′ < f n ′

shows n = n ′ ∧ k = k ′

proof −
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have b1 : ∀ n1 n2 . n1 ≤ n2 −→ g n1 ≤ g n2
proof(intro allI impI )

fix n1 ::nat and n2 ::nat
assume n1 ≤ n2
moreover obtain t where t = n2 − n1 by blast
moreover have g n1 ≤ g (n1 + t) unfolding a1 by (induct t, simp+)
ultimately show g n1 ≤ g n2 by simp

qed
have n < n ′ −→ False
proof

assume n < n ′

then have g (Suc n) ≤ g n ′ using b1 by simp
then have g n + f n ≤ g n ′ using a1 b1 by simp
moreover have g n ′ < g n + f n using a3 a4 by simp
ultimately show False by simp

qed
moreover have n ′ < n −→ False
proof

assume n ′ < n
then have g (Suc n ′) ≤ g n using b1 by simp
then have g n ′ + f n ′ ≤ g n using a1 b1 by simp
moreover have g n < g n ′ + f n ′ using a3 a4 by simp
ultimately show False by simp

qed
ultimately show n = n ′ ∧ k = k ′ using a3 a4 by simp

qed

lemma lem-flatseq:
fixes r :: ′U rel and xi::nat ⇒ ′U
assumes ∀n. (xi n, xi (Suc n)) ∈ r^∗ ∧ (xi n 6= xi (Suc n))
shows ∃ g yi. ( ∀n. (yi n, yi (Suc n)) ∈ r )

∧ (∀ i::nat. ∀ j::nat. i < j ←→ g i < g j )
∧ (∀ i::nat. yi (g i) = xi i)
∧ (∀ i::nat. inj-on yi { k. g i ≤ k ∧ k ≤ g (Suc i) } )
∧ (∀ k::nat. ∃ i::nat. g i ≤ k ∧ Suc k ≤ g (Suc i))
∧ (∀ k i i ′. g i ≤ k ∧ Suc k ≤ g (Suc i) ∧ g i ′ ≤ k ∧ Suc k ≤ g (Suc

i ′) −→ i = i ′ )
proof −

obtain P where b0 : P = (λ n m. m > 0 ∧ (xi n, xi (Suc n)) ∈ r^^m ∧ m =
spthlen r (xi n) (xi (Suc n))) by blast

then have ∀n. ∃m. P n m using assms lem-spthlen-tr [of - - r ] by blast
then obtain f where ∀n. P n (f n) by metis
then have b1 : ∀ n. (f n) > 0 ∧ (xi n, xi (Suc n)) ∈ r^^(f n)

and b1 ′: ∀ n. (f n) = spthlen r (xi n) (xi (Suc n)) using b0 by blast+
have ∀ n. ∃ yi. inj-on yi {i. i ≤ f n} ∧ (yi 0 ) = (xi n) ∧

(∀ k<(f n). (yi k, yi (Suc k)) ∈ r) ∧ (yi (f n)) = (xi (Suc n))
proof

fix n
have (xi n, xi (Suc n)) ∈ r^^(f n) and (f n) = spthlen r (xi n) (xi (Suc n))
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using b1 b1 ′ by blast+
then obtain yi where yi ∈ rpth r (xi n) (xi (Suc n)) (f n) ∧ inj-on yi {i. i

≤ f n}
using lem-rtn-rpth-inj[of xi n xi (Suc n) f n r ] by blast

then show ∃ yi. inj-on yi {i. i ≤ f n} ∧ (yi 0 ) = (xi n) ∧ (∀ k<(f n). (yi k, yi
(Suc k)) ∈ r)

∧ (yi (f n)) = (xi (Suc n)) unfolding rpth-def by blast
qed
then obtain yin where b2 : ∀ n. inj-on (yin n) {i. i ≤ f n} ∧ ((yin n) 0 ) = (xi

n) ∧
(∀ k < (f n). ((yin n) k, (yin n) (Suc k)) ∈ r) ∧ ((yin n) (f n)) = (xi (Suc

n)) by metis
obtain g where b3 : g = (λn.

∑
i<n. f i) by blast

obtain yi where b4 : yi = (λm. let p =
(SOME p. m = (g (fst p)) + (snd p) ∧ (snd p) < (f (fst p)))
in (yin (fst p)) (snd p) ) by blast

have b5 :
∧

m n k. m = (g n) + k ∧ k < f n =⇒ yi m = yin n k
proof −

fix m n k
assume c0 : m = (g n) + k ∧ k < f n
have ∃ p . (m = (g (fst p)) + (snd p)) ∧ ((snd p) < (f (fst p)))

using b1 b3 lem-sum-ind-ex by force
then obtain n ′ k ′ where m = (g n ′) + k ′ ∧ k ′ < (f n ′) ∧ yi m = (yin n ′) k ′

using b4 by (smt someI-ex)
moreover then have n ′ = n ∧ k ′ = k using c0 b1 b3 lem-sum-ind-un[of g f

m n ′ k ′ n k] by blast
ultimately show yi m = yin n k by blast

qed
have ∀m. (yi m, yi (Suc m)) ∈ r
proof

fix m
have ∃ p . (m = (g (fst p)) + (snd p)) ∧ ((snd p) < (f (fst p)))

using b1 b3 lem-sum-ind-ex by force
then obtain n k where c1 : m = (g n) + k ∧ k < (f n) ∧ yi m = (yin n) k

using b4 by (smt someI-ex)
have ∃ p . ((Suc m) = (g (fst p)) + (snd p)) ∧ ((snd p) < (f (fst p)))

using b1 b3 lem-sum-ind-ex by force
then obtain n ′ k ′ where c2 : (Suc m) = (g n ′) + k ′ ∧ k ′ < (f n ′) ∧ yi (Suc

m) = (yin n ′) k ′

using b4 by (smt someI-ex)
show (yi m, yi (Suc m)) ∈ r
proof(cases Suc k < f n)

assume Suc k < f n
then have Suc m = g n + (Suc k) ∧ (Suc k) < f n using c1 by simp
then have n ′ = n ∧ k ′ = Suc k using b1 b3 c2 lem-sum-ind-un[of g] by blast
then show (yi m, yi (Suc m)) ∈ r using b2 c1 c2 by force

next
assume d1 : ¬ Suc k < f n
then have Suc m = g (Suc n) + 0 ∧ 0 < f (Suc n) using b1 b3 c1 by simp
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then have n ′ = Suc n ∧ k ′ = 0 using b1 b3 c2 lem-sum-ind-un[of g] by blast
then show (yi m, yi (Suc m)) ∈ r

using b2 c1 c2 d1 by (metis Suc-le-eq dual-order .antisym not-less)
qed

qed
moreover have b6 : ∀ j::nat. ∀ i::nat. i < j −→ g i < g j
proof

fix j0 ::nat
show ∀ i::nat. i < j0 −→ g i < g j0
proof (induct j0 )

show ∀ i<0 . g i < g 0 by blast
next

fix j::nat
assume d1 : ∀ i<j. g i < g j
show ∀ i<Suc j. g i < g (Suc j)
proof (intro allI impI )

fix i::nat
assume i < Suc j
then have i ≤ j by force
moreover have g j < g (Suc j) using b1 b3 by simp
moreover then have i < j −→ g i < g (Suc j) using d1 by force
ultimately show g i < g (Suc j) by force

qed
qed

qed
moreover have b7 : ∀ j::nat. ∀ i::nat. j ≤ i −→ g j ≤ g i
proof (intro allI impI )

fix j::nat and i::nat
assume j ≤ i
moreover have j < i −→ g j ≤ g i using b6 by force
moreover have j = i −→ g j ≤ g i by blast
ultimately show g j ≤ g i by force

qed
moreover have b8 : ∀ j::nat. ∀ i::nat. g i < g j −→ i < j
proof (intro allI impI )

fix j::nat and i::nat
assume g i < g j
moreover have j ≤ i −→ g j ≤ g i using b7 by blast
ultimately show i < j by simp

qed
moreover have b9 : ∀ i::nat. yi (g i) = xi i
proof

fix i::nat
obtain p where p = (i, 0 ::nat) by blast
then have ((g i) = (g (fst p)) + (snd p)) ∧ ((snd p) < (f (fst p))) using b1

by force
then obtain n k where c1 : (g i) = (g n) + k ∧ k < (f n) ∧ yi (g i) = (yin

n) k
using b4 by (smt someI-ex)
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then have g n ≤ g i by simp
moreover have g n < g i −→ False
proof

assume g n < g i
then have n < i using b8 by blast
then have g (Suc n) ≤ g i using b7 by simp
then show False using c1 b3 b6 by force

qed
ultimately have g i = g n by force
then have ¬ i < n ∧ ¬ n < i using b6 by force
then have i = n ∧ k = 0 using c1 by force
then have yi (g i) = (yin i) 0 using c1 by blast
moreover have (yin i) 0 = xi i using b2 by blast
ultimately show yi (g i) = xi i by simp

qed
moreover have ∀ i::nat. inj-on yi { k. g i ≤ k ∧ k ≤ g (Suc i) }
proof

fix i
have c1 : inj-on (yin i) {k. k ≤ f i} using b2 by blast
have ∀ k1 k2 . g i ≤ k1 ∧ k1 ≤ g (Suc i) −→ g i ≤ k2 ∧ k2 ≤ g (Suc i) −→

yi k1 = yi k2 −→ k1 = k2
proof (intro allI impI )

fix k1 k2
assume d1 : g i ≤ k1 ∧ k1 ≤ g (Suc i)

and d2 : g i ≤ k2 ∧ k2 ≤ g (Suc i) and d3 : yi k1 = yi k2
have g i ≤ k1 ∧ k1 ≤ g i + f i using d1 b3 by simp
then have ∃ t. k1 = g i + t ∧ t ≤ f i by presburger
then obtain t1 where d4 : k1 = g i + t1 ∧ t1 ≤ f i by blast
have g i ≤ k2 ∧ k2 ≤ g i + f i using d2 b3 by simp
then have ∃ t. k2 = g i + t ∧ t ≤ f i by presburger
then obtain t2 where d5 : k2 = g i + t2 ∧ t2 ≤ f i by blast
have t1 < f i ∧ t2 < f i −→ k1 = k2
proof

assume t1 < f i ∧ t2 < f i
then have yi k1 = yin i t1 ∧ yi k2 = yin i t2 using d4 d5 b5 by blast
then have yin i t1 = yin i t2 using d3 by metis
then show k1 = k2 using c1 d4 d5 unfolding inj-on-def by blast

qed
moreover have t1 = f i ∧ t2 < f i −→ False
proof

assume e1 : t1 = f i ∧ t2 < f i
then have e2 : yi k2 = yin i t2 using d4 d5 b5 by blast
have e3 : k1 = g (Suc i) using e1 d4 b3 by simp
then have yi k1 = yin (Suc i) 0 using b1 b5 [of k1 Suc i 0 ] by simp
moreover have yi k1 = yin i (f i) using e3 b9 b2 by simp
ultimately have yin i t2 = yin i (f i) using e2 d3 by metis
then have t2 = f i using c1 d5 unfolding inj-on-def by blast
then show False using e1 by force

qed
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moreover have t1 < f i ∧ t2 = f i −→ False
proof

assume e1 : t1 < f i ∧ t2 = f i
then have e2 : yi k1 = yin i t1 using d4 d5 b5 by blast
have e3 : k2 = g (Suc i) using e1 d5 b3 by simp
then have yi k2 = yin (Suc i) 0 using b1 b5 [of k2 Suc i 0 ] by simp
moreover have yi k2 = yin i (f i) using e3 b9 b2 by simp
ultimately have yin i t1 = yin i (f i) using e2 d3 by metis
then have t1 = f i using c1 d4 unfolding inj-on-def by blast
then show False using e1 by force

qed
ultimately show k1 = k2 using d4 d5 by force

qed
then show inj-on yi { k. g i ≤ k ∧ k ≤ g (Suc i) } unfolding inj-on-def by

blast
qed
moreover have ∀ m. ∃ n. g n ≤ m ∧ Suc m ≤ g (Suc n)
proof

fix m
obtain n k where m = g n + k ∧ k < f n using b1 b3 lem-sum-ind-ex[of g f

m] by blast
then have g n ≤ m ∧ Suc m ≤ g (Suc n) using b3 by simp
then show ∃ n. g n ≤ m ∧ Suc m ≤ g (Suc n) by blast

qed
moreover have ∀ k i i ′. g i ≤ k ∧ Suc k ≤ g (Suc i) ∧ g i ′ ≤ k ∧ Suc k ≤ g

(Suc i ′) −→ i = i ′
proof (intro allI impI )

fix k i i ′
assume g i ≤ k ∧ Suc k ≤ g (Suc i) ∧ g i ′ ≤ k ∧ Suc k ≤ g (Suc i ′)
moreover then have k < g i + f i ∧ k < g i ′ + f i ′ using b3 by simp
ultimately have ∃ l1 . k = g i + l1 ∧ l1 < f i and ∃ l2 . k = g i ′ + l2 ∧ l2

< f i ′ by presburger+
then obtain l1 l2 where k = g i + l1 ∧ l1 < f i and k = g i ′ + l2 ∧ l2 < f

i ′ by blast
then show i = i ′ using b1 b3 lem-sum-ind-un[of g f k i l1 i ′ l2 ] by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-sv-un3 :
fixes r1 r2 r3 :: ′U rel
assumes single-valued (r1 ∪ r3 ) and single-valued (r2 ∪ r3 ) and Field r1 ∩
Field r2 = {}
shows single-valued (r1 ∪ r2 ∪ r3 )

using assms unfolding single-valued-def Field-def by blast

lemma lem-cfcomp-d2uset:
fixes κ:: ′U rel and r :: ′U rel and W :: ′U rel ⇒ ′U set and R:: ′U rel ⇒ ′U rel

and S :: ′U rel set
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assumes a1 : κ =o cardSuc |UNIV ::nat set|
and a3 : T = { t:: ′U rel. t 6= {} ∧ CCR t ∧ single-valued t ∧ acyclic t ∧

(∀ x∈Field t. t‘‘{x} 6= {}) }
and a4 : Refl r

and a5 : S ⊆ {α ∈ O:: ′U rel set. α <o κ}
and a6 : |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S |
and a7 : ∀ α ∈ S . ∃ β ∈ S . α <o β

and a8 : Field r = (
⋃
α∈S . W α) and a9 : ∀α∈S . ∀ β∈S . α 6= β −→ W α ∩

W β = {}
and a10 :

∧
α. α ∈ S =⇒ R α ∈ T ∧ R α ⊆ r ∧ |W α| ≤o |UNIV ::nat set|

∧ Field (R α) = W α ∧ ¬ Conelike (Restr r (W α))
and a11 :

∧
α x. α ∈ S =⇒ x ∈ W α =⇒ ∃ a.

((x,a) ∈ (Restr r (W α))^∗ ∧ (∀ β ∈ S . α <o β −→ (r‘‘{a} ∩ W β)
6= {}))
shows ∃ r ′. CCR r ′ ∧ DCR 2 r ′ ∧ r ′ ⊆ r ∧ (∀ a ∈ Field r . ∃ b ∈ Field r ′. (a,b)
∈ r^∗)
proof −

obtain l :: ′U ⇒ ′U rel where q1 : l = (λ a. SOME α. α ∈ S ∧ a ∈ W α) by
blast

have q2 :
∧

a. a ∈ Field r =⇒ l a ∈ S ∧ a ∈ W (l a)
proof −

fix a
assume a ∈ Field r
then obtain α where α ∈ S ∧ a ∈ W α using q1 a8 by blast
then show l a ∈ S ∧ a ∈ W (l a) using q1 someI-ex[of λ α. α ∈ S ∧ a ∈ W

α] by metis
qed
have q3 :

∧
α a. α ∈ S =⇒ a ∈ W α =⇒ l a = α

proof −
fix α a
assume α ∈ S and a ∈ W α
moreover then have a ∈ W (l a) ∧ α ∈ S ∧ l a ∈ S using q2 a8 a10 by fast
ultimately show l a = α using a9 by blast

qed
have b1 :

∧
α. α ∈ S =⇒ (R α) ∈ T using a3 a10 by blast

have b4 :
∧

α. α ∈ S =⇒ (R α) ⊆ r using a10 by blast
have b7 : ∀ α ∈ S . ∀ β ∈ S . ∃ γ∈S . (α <o γ ∨ α = γ) ∧ (β <o γ ∨ β = γ)
proof (intro ballI )

fix α β
assume α ∈ S and β ∈ S
then have Well-order α ∧ Well-order β and α ∈ S ∧ β ∈ S

using a5 unfolding ordLess-def by blast+
moreover then have α <o β ∨ β <o α ∨ α =o β

using ordLeq-iff-ordLess-or-ordIso ordLess-or-ordLeq by blast
ultimately show ∃ γ ∈ S . (α <o γ ∨ α = γ) ∧ (β <o γ ∨ β = γ)

using a3 a5 lem-Oeq[of α β] by blast
qed
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obtain s :: ′U rel ⇒ nat ⇒ ′U where b8 : s = (λ α. SOME xi. cfseq (R α) xi)
by blast

moreover have ∀ α ∈ S . ∃ xi. cfseq (R α) xi using b1 a3 lem-ccrsv-cfseq by
blast

ultimately have b9 :
∧

α. α ∈ S =⇒ cfseq (R α) (s α) by (metis someI-ex)
obtain en where b-en: en = (λ α. SOME g :: nat ⇒ ′U . W α ⊆ g‘UNIV ) by

blast
obtain ta :: ′U ⇒ ′U rel ⇒ ′U

where b10 : ta = (λ u α ′. SOME u ′. (u,u ′) ∈ r ∧ u ′ ∈ W α ′) by blast
obtain t :: ( ′U rel) × ′U ⇒ ′U rel ⇒ ′U

where b11 : t = (λ (α,a) α ′. ta a α ′) by blast
obtain tm :: ( ′U rel) × nat ⇒ ′U rel ⇒ ′U

where b12 : tm = (λ (α,k) α ′. t (α,(en α k)) α ′) by blast
obtain jnN :: ′U ⇒ ′U ⇒ ′U

where b13 : jnN = (λ u u ′. SOME v. (u,v) ∈ (R (l u))^∗ ∧ (u ′,v) ∈ (R (l
u))^∗) by blast

obtain h where b20 :
∧

α k1 β k2 . α ∈ S ∧ β ∈ S =⇒
(∃ γ ∈ S . α <o γ ∧ β <o γ ∧ h γ = jnN (tm (α,k1 ) γ) (tm (β,k2 ) γ) )

using a1 a5 a6 a7 lem-jnfix-cardsuc[of UNIV ::nat set κ S jnN tm] by blast
define EP where EP = (λ α. { a ∈ W α. ∀ β ∈ S . α <o β −→ (r‘‘{a} ∩ W

β) 6= {} })
have b24 :

∧
α k b. α ∈ S =⇒ (s α k, b) ∈ (R α)^∗ =⇒ (∃ k ′≥k. b = s α k ′)

proof −
fix α k b
assume c1 : α ∈ S and c2 : (s α k, b) ∈ (R α)^∗
moreover then have single-valued (R α) using b1 a3 by blast

moreover have ∀ i. (s α i, s α (Suc i)) ∈ R α using c1 b9 unfolding cfseq-def
by blast

ultimately show ∃ k ′≥k. b = s α k ′

using lem-rseq-svacyc-inv-rtr [of R α s α k b] by blast
qed
have b25 :

∧
α k b. α ∈ S =⇒ (s α k, b) ∈ (R α)^+ =⇒ (∃ k ′>k. b = s α k ′)

proof −
fix α k b
assume c1 : α ∈ S and c2 : (s α k, b) ∈ (R α)^+
moreover then have single-valued (R α) using b1 a3 by blast

moreover have ∀ i. (s α i, s α (Suc i)) ∈ R α using c1 b9 unfolding cfseq-def
by blast

ultimately show ∃ k ′>k. b = s α k ′ using lem-rseq-svacyc-inv-tr [of R α s α
k b] by blast

qed
have b26 :

∧
α a b c. α ∈ S =⇒ a ∈ W α =⇒ b ∈ W α =⇒

c = jnN a b =⇒ c ∈ W α ∧ (a, c) ∈ (R α)^∗ ∧ (b, c) ∈ (R α)^∗
proof −

fix α a b c
assume c1 : α ∈ S and c2 : a ∈ W α and c3 : b ∈ W α and c4 : c = jnN a b
then have CCR (R α) ∧ a ∈ Field (R α) ∧ b ∈ Field (R α) using c1 b1 a3

a10 by blast
then have ∃ c ′. (a, c ′) ∈ (R α)^∗ ∧ (b, c ′) ∈ (R α)^∗ unfolding CCR-def
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by blast
moreover have l a = α using c1 c2 q3 by blast
moreover then have c = (SOME c ′. (a, c ′) ∈ (R α)^∗ ∧ (b, c ′) ∈ (R α)^∗)

using c4 b13 by simp
ultimately have c5 : (a, c) ∈ (R α)^∗ ∧ (b, c) ∈ (R α)^∗

using someI-ex[of λ c ′. (a, c ′) ∈ (R α)^∗ ∧ (b, c ′) ∈ (R α)^∗] by force
moreover have W α ∈ Inv (R α) using c1 a10 [of α] unfolding Field-def

Inv-def by blast
moreover then have c ∈ W α using c2 c5 lem-Inv-restr-rtr2 [of W α R α]

by blast
ultimately show c ∈ W α ∧ (a, c) ∈ (R α)^∗ ∧ (b, c) ∈ (R α)^∗ by blast

qed
have b-enr :

∧
α. α ∈ S =⇒ W α ⊆ (en α)‘(UNIV ::nat set)

proof −
fix α
assume α ∈ S
then have |W α| ≤o |UNIV ::nat set| using a10 by blast
then obtain g::nat ⇒ ′U where W α ⊆ g‘UNIV

by (metis card-of-ordLeq2 empty-subsetI order-refl)
then show W α ⊆ (en α)‘UNIV unfolding b-en using someI-ex by metis

qed
have b-h:

∧
α a β b. α ∈ S ∧ β ∈ S =⇒ a ∈ EP α ∧ b ∈ EP β =⇒

(∃ γ ∈ S . ∃ a ′ ∈ W γ. ∃ b ′ ∈ W γ. α <o γ ∧ β <o γ
∧ (a,a ′) ∈ r ∧ (a ′, h γ) ∈ (R γ)^∗ ∧ (b,b ′) ∈ r ∧ (b ′, h γ) ∈ (R γ)^∗)

proof −
fix α a β b
assume c1 : α ∈ S ∧ β ∈ S and c2 : a ∈ EP α ∧ b ∈ EP β
then have a ∈ W α ∧ b ∈ W β unfolding EP-def by blast
moreover then obtain k1 k2 where c3 : a = en α k1 ∧ b = en β k2 using

c1 b-enr by blast
ultimately obtain γ where c4 : γ ∈ S ∧ α <o γ ∧ β <o γ

and c5 : h γ = jnN (tm (α,k1 ) γ) (tm (β,k2 ) γ) using c1
b20 by blast

have ta a γ = (SOME a ′. (a, a ′) ∈ r ∧ a ′ ∈ W γ) using b10 by simp
moreover have ∃ x. (a, x) ∈ r ∧ x ∈ W γ using c2 c4 unfolding EP-def

by blast
ultimately have c6 : (a, ta a γ) ∈ r ∧ ta a γ ∈ W γ

using someI-ex[of λ a ′. (a, a ′) ∈ r ∧ a ′ ∈ W γ] by metis
have ta b γ = (SOME a ′. (b, a ′) ∈ r ∧ a ′ ∈ W γ) using b10 by simp
moreover have ∃ x. (b, x) ∈ r ∧ x ∈ W γ using c2 c4 unfolding EP-def

by blast
ultimately have c7 : (b, ta b γ) ∈ r ∧ ta b γ ∈ W γ

using someI-ex[of λ a ′. (b, a ′) ∈ r ∧ a ′ ∈ W γ] by metis
have h γ = jnN (ta a γ) (ta b γ) using c3 c5 b11 b12 by simp
moreover have ta a γ ∈ W γ ∧ ta b γ ∈ W γ using c6 c7 by blast
ultimately have h γ ∈ W γ ∧ (ta a γ, h γ) ∈ (R γ)^∗ ∧ (ta b γ, h γ) ∈ (R

γ)^∗
using c4 b26 [of γ ta a γ ta b γ h γ] by blast

then show ∃ γ ∈ S . ∃ a ′ ∈ W γ. ∃ b ′ ∈ W γ. α <o γ ∧ β <o γ
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∧ (a,a ′) ∈ r ∧ (a ′, h γ) ∈ (R γ)^∗ ∧ (b,b ′) ∈ r ∧ (b ′, h γ) ∈ (R γ)^∗
using c4 c6 c7 by blast

qed
have p1 :

∧
α. α ∈ S =⇒ R α ⊆ Restr r (W α) using a10 unfolding Field-def

by fastforce
have p2 :

∧
α. α ∈ S =⇒ Field (Restr r (W α)) = W α

proof −
fix α
assume α ∈ S
then have W α ⊆ Field r using a10 unfolding Field-def by blast

moreover have SF r = {A. A ⊆ Field r} using a4 unfolding SF-def
refl-on-def Field-def by fast

ultimately have W α ∈ SF r by blast
then show Field (Restr r (W α)) = W α unfolding SF-def by blast

qed
have p3 :

∧
α. α ∈ S =⇒ ∀n. ∃ k≥n. (s α (Suc k), s α k) /∈ (Restr r (W α))^∗

proof −
fix α
assume c1 : α ∈ S
have ∀ a∈Field (Restr r (W α)). ∃ i. (a, s α i) ∈ (Restr r (W α))^∗
proof

fix a
assume a ∈ Field (Restr r (W α))
then have a ∈ Field (R α) using c1 a10 [of α] unfolding Field-def by blast
then obtain i where (a, s α i) ∈ (R α)^∗ using c1 b9 [of α] unfolding

cfseq-def by blast
moreover have R α ⊆ Restr r (W α) using c1 p1 by blast
ultimately show ∃ i. (a, s α i) ∈ (Restr r (W α))^∗ using rtrancl-mono by

blast
qed
moreover have ∀ i. (s α i, s α (Suc i)) ∈ Restr r (W α)

using c1 p1 b9 [of α] unfolding cfseq-def using rtrancl-mono by blast
ultimately have cfseq (Restr r (W α)) (s α) unfolding cfseq-def by blast
then show ∀n. ∃ k≥n. (s α (Suc k), s α k) /∈ (Restr r (W α))^∗

using c1 a10 [of α] lem-cfseq-ncl[of Restr r (W α) s α] by blast
qed
obtain E where b27 : E = (λ α. { k. (s α (Suc k), s α k) /∈ (Restr r (W α))^∗
}) by blast

obtain P where b28 : P = (λ α. (s α)‘(E α) ) by blast
obtain K where b29 : K = (λ α. { a ∈ W α. (h α ∈ W α −→ (h α, a) ∈ (R

α)^∗)
∧ (a, h α) /∈ (R α)^∗ }) by blast

let ?F = λ α. P α ∩ K α
have b31 :

∧
α. α ∈ S =⇒ P α ∈ SCF (R α)

proof −
fix α
assume c1 : α ∈ S
then have P α ⊆ Field (R α) using b9 b28 lem-cfseq-fld by blast
moreover have ∀ a ∈ Field (R α). ∃ b ∈ P α. (a, b) ∈ (R α)^∗
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proof
fix a
assume a ∈ Field (R α)
then obtain i where d1 : (a, s α i) ∈ (R α)^∗ using c1 b9 [of α] unfolding

cfseq-def by blast
then obtain k where i≤k ∧ (s α (Suc k), s α k) /∈ (Restr r (W α))^∗ using

c1 p3 [of α] by blast
moreover then have d2 : (s α i, s α k) ∈ (R α)^∗

using c1 b9 [of α] lem-rseq-rtr unfolding cfseq-def by blast
ultimately have s α k ∈ P α using b27 b28 by blast
moreover have (a, s α k) ∈ (R α)^∗ using d1 d2 by simp
ultimately show ∃ b ∈ P α. (a, b) ∈ (R α)^∗ by blast

qed
ultimately show P α ∈ SCF (R α) unfolding SCF-def by blast

qed
have b32 :

∧
α. α ∈ S =⇒ K α ∈ SCF (R α) ∩ Inv (R α)

proof
fix α
assume c1 : α ∈ S
have ∀ a∈Field (R α). ∃ b∈K α. (a, b) ∈ (R α)^∗
proof

fix a
assume d1 : a ∈ Field (R α)
show ∃ b∈K α. (a, b) ∈ (R α)^∗
proof (cases h α ∈ Field (R α))

assume h α ∈ Field (R α)
moreover have CCR (R α) using c1 b1 a3 by blast
ultimately obtain a ′ where a ′ ∈ Field (R α)

and e1 : (a,a ′) ∈ (R α)^∗ ∧ (h α, a ′) ∈ (R α)^∗
using d1 unfolding CCR-def by blast

then obtain b where e2 : (a ′, b) ∈ (R α) using c1 b1 a3 by blast
then have b ∈ Field (R α) unfolding Field-def by blast
moreover have (h α, b) ∈ (R α)^∗ using e1 e2 by force
moreover have (b, h α) ∈ (R α)^∗ −→ False
proof

assume (b, h α) ∈ (R α)^∗
then have (b, b) ∈ (R α)^+ using e1 e2 by fastforce
then show False using c1 b1 a3 unfolding acyclic-def by blast

qed
moreover have (a, b) ∈ (R α)^∗ using e1 e2 by force
ultimately show ?thesis using b29 c1 a10 by blast

next
assume h α /∈ Field (R α)

then have (a, h α) /∈ (R α)^∗ ∧ h α /∈ W α using d1 c1 a10 lem-rtr-field[of
a] by blast

then have a ∈ K α using d1 b29 c1 a10 by blast
then show ?thesis by blast

qed
qed
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then show K α ∈ SCF (R α) using b29 c1 a10 unfolding SCF-def by blast
next

fix α
assume c1 : α ∈ S
have ∀ a b. a ∈ K α ∧ (a,b) ∈ (R α) −→ b ∈ K α
proof (intro allI impI )

fix a b
assume d1 : a ∈ K α ∧ (a,b) ∈ (R α)
then have d3 : a ∈ Field (R α) and d4 : (a, h α) /∈ (R α)∗ using b29 c1 a10

by blast+
have b ∈ Field (R α) using d1 unfolding Field-def by blast
moreover have h α ∈ W α −→ (h α, b) ∈ (R α)^∗ using d1 b29 by force
moreover have (b, h α) ∈ (R α)^∗ −→ False
proof

assume (b, h α) ∈ (R α)^∗
then have (a, h α) ∈ (R α)^∗ using d1 by force
then show False using d4 by blast

qed
ultimately show b ∈ K α using b29 c1 a10 by blast

qed
then show K α ∈ Inv (R α) using b29 unfolding Inv-def by blast

qed
have b33 :

∧
α. α ∈ S =⇒ ?F α ∈ SCF (R α)

proof −
fix α
assume c1 : α ∈ S
have K α ∈ SCF (R α) ∩ Inv (R α) using c1 b31 b32 unfolding Inv-def by

blast+
moreover have P α ∈ SCF (R α) using c1 b31 b32 lem-scfinv-scf-int by blast
ultimately have K α ∩ P α ∈ SCF (R α) using lem-scfinv-scf-int by blast
moreover have ?F α = K α ∩ P α by blast
ultimately show ?F α ∈ SCF (R α) by metis

qed
define rei where rei = (λ α. SOME k. k ∈ E α ∧ (s α k) ∈ ?F α)
define re0 where re0 = (λ α. s α (rei α))
define re1 where re1 = (λ α. s α (Suc (rei α)))
define ep where ep = (λ α. SOME b. (re1 α, b) ∈ (Restr r (W α))^∗ ∧ b ∈

EP α)
define spl where spl = (λ α. spthlen (Restr r (W α)) (re1 α) (ep α))
define sp where sp = (λ α. SOME f . f ∈ spth (Restr r (W α)) (re1 α) (ep α))
define R0 where R0 = (λ α. { (a,b) ∈ R α. (b, re0 α) ∈ (R α)^∗ })
define R2 where R2 = (λ α. { (a,b). ∃ k < (spl α). a = sp α k ∧ b = sp α

(Suc k) })
define R ′ where R ′ = (λ α. R0 α ∪ R2 α ∪ { (re0 α, re1 α) })
define re ′ where re ′ = ({ (a,b) ∈ r . ∃ α ∈ S . ∃ β ∈ S . α <o β ∧ a = ep α ∧

b ∈ W β ∧ (b, h β) ∈ (R β)^∗ })
define r ′ where r ′ = (re ′ ∪ (

⋃
α∈S . R ′ α))

have b-Fne:
∧

α. α ∈ S =⇒ ?F α 6= {}
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proof −
fix α
assume α ∈ S
then have ?F α ∈ SCF (R α) ∧ R α 6= {} using b33 a3 a10 by blast
then show ?F α 6= {} unfolding SCF-def Field-def by force

qed
have b-re0 :

∧
α. α ∈ S =⇒ re0 α ∈ ?F α ∧ rei α ∈ E α

proof −
fix α
assume α ∈ S
then obtain k where k ∈ E α ∧ (s α k) ∈ ?F α using b-Fne b28 by force
then have (s α (rei α)) ∈ ?F α and rei α ∈ E α

using someI-ex[of λ k. k ∈ E α ∧ s α k ∈ P α ∩ K α] unfolding rei-def
by metis+

then show re0 α ∈ ?F α ∧ rei α ∈ E α unfolding re0-def by blast
qed
have b-rs:

∧
α. α ∈ S =⇒ s α ‘ UNIV ⊆ W α

proof −
fix α
assume α ∈ S
then have cfseq (R α) (s α) ∧ Field (R α) = W α using b9 a3 a10 by blast
then show s α ‘ UNIV ⊆ W α using lem-rseq-rtr unfolding cfseq-def by

blast
qed
have b-injs:

∧
α k1 k2 . α ∈ S =⇒ s α k1 = s α k2 =⇒ k1 = k2

proof −
fix α k1 k2
assume α ∈ S and s α k1 = s α k2
moreover then have cfseq (R α) (s α) ∧ acyclic (R α) using b9 a3 a10 by

blast
moreover then have inj (s α) using lem-cfseq-inj by blast
ultimately show k1 = k2 unfolding inj-on-def by blast

qed
have b-re1 :

∧
α. α ∈ S =⇒ re1 α = s α (Suc (rei α))

proof −
fix α
assume c1 : α ∈ S
then have re0 α ∈ ?F α using b-re0 [of α] by blast
then obtain k where c2 : re0 α = s α k ∧ k ∈ E α unfolding b28 by blast
then have (s α (Suc k), s α k) /∈ (Restr r (W α))^∗ unfolding b27 by blast
have rei α = k using c1 c2 b-injs unfolding re0-def by blast
moreover have re1 α = s α (Suc (rei α)) unfolding re1-def by blast
ultimately show re1 α = s α (Suc (rei α)) by blast

qed
have b-re12 :

∧
α. α ∈ S =⇒ (re0 α, re1 α) ∈ R α ∧ (re1 α, re0 α) /∈ (Restr r

(W α))^∗
proof −

fix α
assume c1 : α ∈ S
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then have re0 α = s α (rei α) and re1 α = s α (Suc (rei α))
and cfseq (R α) (s α) using b9 b-re1 re0-def by blast+

then have (re0 α, re1 α) ∈ R α unfolding cfseq-def by simp
moreover have (re1 α, re0 α) ∈ (Restr r (W α))^∗ −→ False
proof

assume (re1 α, re0 α) ∈ (Restr r (W α))^∗
then have (s α (Suc (rei α)), s α (rei α)) ∈ (Restr r (W α))^∗

using c1 b-re1 [of α] unfolding re0-def by metis
moreover have (s α (Suc (rei α)), s α (rei α)) /∈ (Restr r (W α))^∗

using c1 b-re0 [of α] b27 by blast
ultimately show False by blast

qed
ultimately show (re0 α, re1 α) ∈ R α ∧ (re1 α, re0 α) /∈ (Restr r (W α))^∗

by blast
qed
have b-rw:

∧
α a b. α ∈ S =⇒ a ∈ W α =⇒ (a,b) ∈ (Restr r (W α))^∗ =⇒ b

∈ W α
proof −

fix α a b
assume α ∈ S and a ∈ W α and (a,b) ∈ (Restr r (W α))^∗
then show b ∈ W α using lem-Inv-restr-rtr2 [of - Restr r (W α)] unfolding

Inv-def by blast
qed
have b-r0w:

∧
α a b. α ∈ S =⇒ a ∈ W α =⇒ (a,b) ∈ (R α)^∗ =⇒ b ∈ W α

using p1 b-rw rtrancl-mono by blast
have b-ep:

∧
α. α ∈ S =⇒ (re1 α, ep α) ∈ (Restr r (W α))^∗ ∧ ep α ∈ EP α

proof −
fix α
assume c1 : α ∈ S
moreover then have c2 : re1 α ∈ W α using b-rs[of α] b-re1 [of α] by blast
ultimately obtain b

where c3 : (re1 α, b) ∈ (Restr r (W α))^∗ ∧ (∀β∈S . α <o β −→ r‘‘{b} ∩
W β 6= {})

using a11 [of α re1 α] by blast
then have b ∈ W α using c1 c2 b-rw[of α] by blast
moreover obtain L where c4 : L = (λ b. (re1 α, b) ∈ (Restr r (W α))^∗ ∧

b ∈ EP α) by blast
ultimately have L b and ep α = (SOME b. L b) using c3 unfolding EP-def

ep-def by blast+
then have L (ep α) using someI-ex by metis
then show (re1 α, ep α) ∈ (Restr r (W α))^∗ ∧ ep α ∈ EP α using c4 by

blast
qed
have b-sp:

∧
α. α ∈ S =⇒ sp α ∈ spth (Restr r (W α)) (re1 α) (ep α)

proof −
fix α
assume α ∈ S
then have (re1 α, ep α) ∈ (Restr r (W α))^∗ using b-ep by blast
then obtain f where f ∈ spth (Restr r (W α)) (re1 α) (ep α)
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using lem-spthlen-rtr lem-rtn-rpth-inj unfolding spth-def by metis
then show sp α ∈ spth (Restr r (W α)) (re1 α) (ep α)

unfolding sp-def using someI-ex by metis
qed
have b-R0 :

∧
α a. α ∈ S =⇒ (a,re0 α) ∈ (R α)^∗ =⇒ (a,re0 α) ∈ (R0 α)^∗

proof −
fix α a
assume α ∈ S and (a,re0 α) ∈ (R α)^∗
then obtain g n where g ∈ rpth (R α) a (re0 α) n using lem-ccext-rtr-rpth[of

a re0 α] by blast
then have c1 : g 0 = a ∧ g n = re0 α and c2 : ∀ i<n. (g i, g (Suc i)) ∈ R α

unfolding rpth-def by blast+
then have ∀ i≤n. (g i, re0 α) ∈ (R α)^∗ using lem-rseq-tl by metis
then have ∀ i<n. (g i, g (Suc i)) ∈ R0 α using c2 unfolding R0-def by

simp
then show (a, re0 α) ∈ (R0 α)^∗

using c1 lem-ccext-rpth-rtr [of R0 α a re0 α n] unfolding rpth-def by blast
qed
have b-hr0 :

∧
α. α ∈ S =⇒ h α ∈ W α =⇒ (h α, re0 α) ∈ (R0 α)^∗

using b-re0 b-R0 b29 by blast
have b-hf :

∧
α. α ∈ S =⇒ h α ∈ W α =⇒ h α ∈ Field r ′

proof −
fix α
assume c1 : α ∈ S and h α ∈ W α
then have (h α, re0 α) ∈ (R0 α)^∗ using c1 b-hr0 by blast
moreover have R0 α ⊆ R ′ α using c1 unfolding R ′-def by blast
ultimately have (h α, re0 α) ∈ (R ′ α)^∗ using rtrancl-mono by blast
moreover have re0 α ∈ Field (R ′ α) unfolding R ′-def Field-def by blast
ultimately have h α ∈ Field (R ′ α) using lem-rtr-field[of h α re0 α] by force
moreover have R ′ α ⊆ r ′ using c1 unfolding r ′-def by blast
ultimately show h α ∈ Field r ′ unfolding Field-def by blast

qed
have b-fR ′:

∧
α. α ∈ S =⇒ Field (R ′ α) ⊆ W α

proof −
fix α
assume c1 : α ∈ S
then have Field (R0 α) ⊆ W α using a10 unfolding R0-def Field-def by

blast
moreover have Field (R2 α) ⊆ W α
proof

fix a
assume a ∈ Field (R2 α)
then obtain x y where d1 : (x,y) ∈ R2 α ∧ (a = x ∨ a = y) unfolding

Field-def by blast
then obtain k where k < spl α ∧ (x,y) = (sp α k, sp α (Suc k)) unfolding

R2-def by blast
then show a ∈ W α using d1 c1 b-sp[of α] unfolding spth-def rpth-def

spl-def by blast
qed
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moreover have re0 α ∈ W α using c1 b-re0 [of α] b29 by blast
moreover have re1 α ∈ W α using c1 b-re12 [of α] a10 [of α] unfolding

Field-def by blast
ultimately show Field (R ′ α) ⊆ W α unfolding R ′-def Field-def by fast

qed
have b-fR2 :

∧
α a. α ∈ S =⇒ a ∈ Field (R2 α) =⇒ ∃ k. k ≤ spl α ∧ a = sp

α k
proof −

fix α a
assume α ∈ S and a ∈ Field (R2 α)
then obtain x y where (x,y) ∈ R2 α ∧ (a = x ∨ a = y) unfolding Field-def

by blast
moreover then obtain k ′ where k ′ < spl α ∧ x = sp α k ′ ∧ y = sp α (Suc

k ′)
unfolding R2-def by blast

ultimately show ∃ k. k ≤ spl α ∧ a = sp α k by (metis Suc-leI less-or-eq-imp-le)
qed
have b-bhf :

∧
α a. α ∈ S =⇒ a ∈ W α =⇒ (a, h α) ∈ (R α)^∗ =⇒ a ∈ Field

(R ′ α)
proof −

fix α a
assume c1 : α ∈ S and c2 : a ∈ W α and c3 : (a, h α) ∈ (R α)^∗
then have (h α, re0 α) ∈ (R0 α)^∗ using b-hr0 [of α] b-r0w[of α] by blast
moreover have R0 α ⊆ R α unfolding R0-def by blast
ultimately have (h α, re0 α) ∈ (R α)^∗ using c3 rtrancl-mono by blast
then have (a, re0 α) ∈ (R α)^∗ using c3 by force
then have (a, re0 α) ∈ (R0 α)^∗ using c1 c3 b-R0 [of α] by blast
moreover have R0 α ⊆ R ′ α unfolding R ′-def by blast
ultimately have (a, re0 α) ∈ (R ′ α)^∗ using rtrancl-mono by blast
moreover have re0 α ∈ Field (R ′ α) unfolding R ′-def Field-def by blast
ultimately show a ∈ Field (R ′ α) using lem-rtr-field[of a re0 α] by blast

qed
have b-clR ′:

∧
α a. α ∈ S =⇒ a ∈ Field (R ′ α) =⇒ (a, ep α) ∈ (R ′ α)^∗

proof −
fix α a
assume c1 : α ∈ S and c2 : a ∈ Field (R ′ α)

have c3 : sp α 0 = re1 α using c1 b-sp[of α] unfolding spth-def spl-def rpth-def
by blast

then have a ∈ Field (R2 α) ∨ a = re1 α −→ (∃ k. k ≤ spl α ∧ a = sp α k)
using c1 b-fR2 by force

moreover have a ∈ Field (R0 α) ∨ a = re0 α −→ (a, re0 α) ∈ (R α)^∗
unfolding R0-def Field-def by fastforce

moreover have a ∈ Field (R0 α) ∨ a ∈ Field (R2 α) ∨ a = re0 α ∨ a = re1
α

using c1 c2 unfolding R ′-def Field-def by blast
moreover have c4 : ∀ k. (k ≤ spl α −→ (sp α k, ep α) ∈ (R ′ α)^∗)
proof (intro allI impI )

fix k
assume k ≤ spl α
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moreover have sp α (spl α) = ep α
using c1 b-sp[of α] unfolding spth-def spl-def rpth-def by blast

moreover have ∀ i < spl α. (sp α i, sp α (Suc i)) ∈ R ′ α
unfolding R ′-def R2-def by blast

ultimately show (sp α k, ep α) ∈ (R ′ α)^∗ using lem-rseq-tl by metis
qed
moreover have (a, re0 α) ∈ (R α)^∗ −→ (a, ep α) ∈ (R ′ α)^∗
proof

assume (a, re0 α) ∈ (R α)^∗
then have (a, re0 α) ∈ (R0 α)^∗ using c1 b-R0 by blast
moreover have R0 α ⊆ R ′ α using c1 unfolding R ′-def by blast
ultimately have (a, re0 α) ∈ (R ′ α)^∗ using rtrancl-mono by blast

moreover have (re0 α, re1 α) ∈ (R ′ α) using c1 unfolding R ′-def by blast
moreover have (re1 α, ep α) ∈ (R ′ α)^∗ using c3 c4 by force
ultimately show (a, ep α) ∈ (R ′ α)^∗ by simp

qed
ultimately show (a, ep α) ∈ (R ′ α)^∗ by blast

qed
have b-epr ′:

∧
a. a ∈ Field r ′ =⇒ ∃ α ∈ S . (a, ep α) ∈ (R ′ α)^∗

proof −
fix a
assume a ∈ Field r ′

then have a ∈ Field re ′ ∨ (∃ α∈S . a ∈ Field (R ′ α)) unfolding r ′-def Field-def
by blast

moreover have a ∈ Field re ′ −→ (∃ α ∈ S . (a, ep α) ∈ (R ′ α)^∗)
proof

assume a ∈ Field re ′

then obtain x y α β where d1 : a = x ∨ a = y and d2 : α ∈ S ∧ β ∈ S ∧
α <o β

and d3 : x = ep α ∧ y ∈ W β ∧ (y, h β) ∈ (R β)^∗
unfolding re ′-def Field-def by blast

have (x, ep α) ∈ (R ′ α)^∗ using d3 by blast
moreover have (y, ep β) ∈ (R ′ β)^∗ using d2 d3 b-bhf [of β y] b-clR ′[of β]

by blast
ultimately show ∃ α ∈ S . (a, ep α) ∈ (R ′ α)^∗ using d1 d2 by blast

qed
ultimately show ∃ α ∈ S . (a, ep α) ∈ (R ′ α)^∗ using b-clR ′ by blast

qed
have b-svR ′:

∧
α. α ∈ S =⇒ single-valued (R ′ α)

proof −
fix α
assume c1 : α ∈ S
have c2 : re0 α ∈ Domain (R0 α) −→ False
proof

assume re0 α ∈ Domain (R0 α)
then obtain b where (re0 α, b) ∈ R0 α by blast
then have (re0 α, b) ∈ R α ∧ (b, re0 α) ∈ (R α)^∗ unfolding R0-def by

blast
then have (re0 α, re0 α) ∈ (R α)^+ by force
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moreover have acyclic (R α) using c1 a10 a3 by blast
ultimately show False unfolding acyclic-def by blast

qed
have c3 : re0 α ∈ Domain (R2 α) −→ False
proof

assume re0 α ∈ Domain (R2 α)
then obtain b where (re0 α, b) ∈ R2 α by blast
then obtain k where d1 : k ≤ spl α ∧ re0 α = sp α k ∧ b = sp α (Suc k)

unfolding R2-def by force
have sp α ∈ spth (Restr r (W α)) (re1 α) (ep α) using c1 b-sp by blast
then have sp α 0 = re1 α and ∀ i<spl α. (sp α i, sp α (Suc i)) ∈ Restr r

(W α)
unfolding spth-def spl-def rpth-def by blast+

then have (re1 α, re0 α) ∈ (Restr r (W α))^∗ using d1 lem-rseq-hd by
metis

then show False using c1 b-re12 [of α] by blast
qed
have c4 : ∀ a ∈ Field (R0 α) ∩ Field (R2 α). False
proof

fix a
assume d1 : a ∈ Field (R0 α) ∩ Field (R2 α)
obtain k where d2 : k ≤ spl α ∧ a = sp α k using d1 c1 b-fR2 [of α a] by

blast
have sp α ∈ spth (Restr r (W α)) (re1 α) (ep α) using c1 b-sp by blast
then have sp α 0 = re1 α and ∀ i<spl α. (sp α i, sp α (Suc i)) ∈ Restr r

(W α)
unfolding spth-def spl-def rpth-def by blast+

then have d3 : (re1 α, a) ∈ (Restr r (W α))^∗
using d2 lem-rseq-hd unfolding spth-def rpth-def by metis

have (a, re0 α) ∈ (R α)^∗ using d1 unfolding R0-def Field-def by force
moreover have R α ⊆ Restr r (W α) using c1 a10 unfolding Field-def

by fastforce
ultimately have (a, re0 α) ∈ (Restr r (W α))^∗ using rtrancl-mono by

blast
then have (re1 α, re0 α) ∈ (Restr r (W α))^∗ using d3 by force
then show False using c1 b-re12 [of α] by blast

qed
have R0 α ⊆ R α unfolding R0-def by blast
then have c5 : single-valued (R0 α) using c1 a3 a10 [of α] unfolding sin-

gle-valued-def by blast
have c6 : ∀ a b c. (a,b) ∈ R2 α ∧ (a,c) ∈ R2 α −→ b = c
proof (intro allI impI )

fix a b c
assume (a,b) ∈ R2 α ∧ (a,c) ∈ R2 α
then obtain k1 k2 where d1 : k1 < spl α ∧ a = sp α k1 ∧ b = sp α (Suc

k1 )
and d2 : k2 < spl α ∧ a = sp α k2 ∧ c = sp α (Suc k2 )

unfolding R2-def by blast
then have sp α k1 = sp α k2 ∧ k1 ≤ spl α ∧ k2 ≤ spl α by force
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moreover have inj-on (sp α) {i. i≤spl α}
using c1 b-sp[of α] lem-spth-inj[of sp α] unfolding spl-def by blast

ultimately have k1 = k2 unfolding inj-on-def by blast
then show b = c using d1 d2 by blast

qed
have single-valued (R0 α ∪ {(re0 α, re1 α)})

using c2 c5 unfolding single-valued-def by blast
moreover have single-valued (R2 α ∪ {(re0 α, re1 α)})

using c3 c6 unfolding single-valued-def by blast
ultimately show single-valued (R ′ α) using c4 lem-sv-un3 unfolding R ′-def

by blast
qed
have b-acR ′:

∧
α. α ∈ S =⇒ acyclic (R ′ α)

proof −
fix α
assume c1 : α ∈ S
obtain s where c2 : s = R0 α ∪ {(re0 α, re1 α)} by blast
then have s ⊆ R α using c1 b-re12 [of α] unfolding R0-def by blast
moreover have acyclic (R α) using c1 a3 a10 by blast
ultimately have acyclic s using acyclic-subset by blast
moreover have acyclic (R2 α)
proof −

have ∀ a. (a,a) ∈ (R2 α)^+ −→ False
proof (intro allI impI )

fix a
assume (a,a) ∈ (R2 α)^+
then obtain n where e1 : n > 0 ∧ (a,a) ∈ (R2 α)^^n using trancl-power

by blast
then obtain g where e2 : g 0 = a ∧ g n = a and e3 : ∀ i<n. (g i, g (Suc

i)) ∈ R2 α
using relpow-fun-conv[of a a n R2 α] by blast

then have (g 0 , g (Suc 0 )) ∈ R2 α using e1 by force
then obtain k0 where e4 : k0 < spl α ∧ g 0 = sp α k0 unfolding R2-def

by blast
have e5 : inj-on (sp α) {i. i≤spl α}

using c1 b-sp[of α] lem-spth-inj[of sp α] unfolding spl-def by blast
have ∀ i≤n. k0 + i ≤ spl α ∧ g i = sp α (k0 + i)
proof

fix i
show i ≤ n −→ k0 + i ≤ spl α ∧ g i = sp α (k0 + i)
proof (induct i)

show 0 ≤ n −→ k0 + 0 ≤ spl α ∧ g 0 = sp α (k0 + 0 ) using e4 by
simp

next
fix i
assume g1 : i ≤ n −→ k0 + i ≤ spl α ∧ g i = sp α (k0 + i)
show Suc i ≤ n −→ k0 + Suc i ≤ spl α ∧ g (Suc i) = sp α (k0 + Suc

i)
proof
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assume h1 : Suc i ≤ n
then have h2 : k0 + i ≤ spl α ∧ g i = sp α (k0 + i) using g1 by

simp
moreover have (g i, g (Suc i)) ∈ R2 α using h1 e3 by simp
ultimately obtain k where

h3 : k < spl α ∧ sp α (k0 + i) = sp α k ∧ g (Suc i) = sp α (Suc k)
unfolding R2-def by fastforce

then have h4 : k0 + i = k using h2 h3 e5 unfolding inj-on-def by
simp

then have k0 + Suc i ≤ spl α using h3 by simp
moreover have g (Suc i) = sp α (k0 + Suc i) using h3 h4 by simp
ultimately show k0 + Suc i ≤ spl α ∧ g (Suc i) = sp α (k0 + Suc

i) by blast
qed

qed
qed
then have k0 + n ≤ spl α ∧ a = sp α (k0 + n) using e2 by simp
moreover have k0 ≤ spl α ∧ a = sp α k0 using e2 e4 by simp
ultimately have k0 + n = k0 using e5 unfolding inj-on-def by blast
then show False using e1 by simp

qed
then show ?thesis unfolding acyclic-def by blast

qed
moreover have ∀ a ∈ (Range (R2 α)) ∩ (Domain s). False
proof

fix a
assume e1 : a ∈ (Range (R2 α)) ∩ (Domain s)
then have e2 : a ∈ Field (R0 α) ∨ a = re0 α using c2 unfolding Field-def

by blast
obtain k where e3 : k ≤ spl α ∧ a = sp α k using e1 c1 b-fR2 [of α a]

unfolding Field-def by blast
have sp α ∈ spth (Restr r (W α)) (re1 α) (ep α) using c1 b-sp by blast
then have sp α 0 = re1 α and ∀ i<spl α. (sp α i, sp α (Suc i)) ∈ Restr r

(W α)
unfolding spth-def spl-def rpth-def by blast+

then have e4 : (re1 α, a) ∈ (Restr r (W α))^∗
using e3 lem-rseq-hd unfolding spth-def rpth-def by metis

have (a, re0 α) ∈ (R α)^∗ using e2 unfolding R0-def Field-def by force
moreover have R α ⊆ Restr r (W α) using c1 a10 unfolding Field-def

by fastforce
ultimately have (a, re0 α) ∈ (Restr r (W α))^∗ using rtrancl-mono by

blast
then have (re1 α, re0 α) ∈ (Restr r (W α))^∗ using e4 by force
then show False using c1 b-re12 [of α] by blast

qed
moreover have R ′ α = R2 α ∪ s using c2 unfolding R ′-def by blast
ultimately show acyclic (R ′ α) using lem-acyc-un-emprd[of R2 α s] by force

qed
have b-dr ′:

∧
α. α ∈ S =⇒ Domain (R ′ α) ∩ Domain re ′ = {}
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proof −
fix α
assume c1 : α ∈ S
have ∀ a b c. (a,b) ∈ (R ′ α) ∧ (a,c) ∈ re ′ −→ False
proof (intro allI impI )

fix a b c
assume d1 : (a,b) ∈ (R ′ α) ∧ (a,c) ∈ re ′

then obtain α ′ where d2 : α ′ ∈ S ∧ a = ep α ′ unfolding re ′-def by blast
then have a ∈ W α ′ using b-ep[of α ′] unfolding EP-def by blast
moreover have a ∈ W α using d1 c1 b-fR ′[of α] unfolding Field-def by

blast
ultimately have α ′ = α using d2 c1 a9 by blast
then have a = ep α using d2 by blast
moreover have (b, ep α) ∈ (R ′ α)^∗ using d1 c1 b-clR ′ unfolding Field-def

by blast
ultimately have (a, a) ∈ (R ′ α)^+ using d1 by force
then show False using c1 b-acR ′ unfolding acyclic-def by blast

qed
then show Domain (R ′ α) ∩ Domain re ′ = {} by blast

qed
have b-pkr ′:

∧
a b1 b2 . (a,b1 ) ∈ r ′ ∧ (a,b2 ) ∈ r ′ ∧ b1 6= b2 =⇒ ∀ b. (a,b) ∈

r ′ −→ (a,b) ∈ re ′

proof −
fix a b1 b2
assume c1 : (a,b1 ) ∈ r ′ ∧ (a,b2 ) ∈ r ′ ∧ b1 6= b2
moreover have ∀α∈S . ∀β∈S . (a,b1 ) ∈ R ′ α ∧ (a,b2 ) ∈ R ′ β −→ False
proof (intro ballI impI )

fix α β
assume α ∈ S and β ∈ S and (a,b1 ) ∈ R ′ α ∧ (a,b2 ) ∈ R ′ β
moreover then have α = β using b-fR ′[of α] b-fR ′[of β] a9 unfolding

Field-def by blast
ultimately show False using c1 b-svR ′[of α] unfolding single-valued-def

by blast
qed
ultimately have (a,b1 ) ∈ re ′ ∨ (a,b2 ) ∈ re ′ unfolding r ′-def by blast
then have ∀ α∈S . a /∈ Domain (R ′ α) using b-dr ′ by blast
then show ∀ b. (a,b) ∈ r ′ −→ (a,b) ∈ re ′ using c1 unfolding r ′-def by blast

qed
have r ′ ⊆ r
proof

fix p
assume p ∈ r ′

moreover have ∀ α ∈ S . p ∈ R ′ α −→ p ∈ r
proof (intro ballI impI )

fix α
assume d1 : α ∈ S and p ∈ R ′ α
moreover have p ∈ R0 α −→ p ∈ r unfolding R0-def using d1 a10 by

blast
moreover have p ∈ R2 α −→ p ∈ r
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proof
assume p ∈ R2 α
then obtain k where k<spl α ∧ p = (sp α k, sp α (Suc k)) unfolding

R2-def by blast
then have p ∈ Restr r (W α) using d1 b-sp[of α] unfolding spth-def

rpth-def spl-def by blast
then show p ∈ r by blast

qed
moreover have (re0 α, re1 α) ∈ r using d1 b-re12 a10 by blast
ultimately show p ∈ r unfolding R ′-def by blast

qed
ultimately show p ∈ r unfolding r ′-def re ′-def by blast

qed
moreover have ∀ a∈Field r . ∃ b∈Field r ′. (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain α where c1 : α ∈ S ∧ a ∈ W α using a8 by blast
then obtain a ′ where c2 : (a, a ′) ∈ (Restr r (W α))^∗

and c3 : ∀β∈S . α <o β −→ r‘‘{a ′} ∩ W β 6= {} using a11 [of α
a] by blast

have a ′ ∈ W α using c1 c2 lem-rtr-field[of a a ′] unfolding Field-def by blast
then have a ′ ∈ EP α using c3 unfolding EP-def by blast
then obtain γ a ′′ where c4 : γ ∈ S and c5 : a ′′ ∈ W γ ∧ (a ′, a ′′) ∈ r ∧ (a ′′,

h γ) ∈ (R γ)^∗
using c1 b-h[of α α a ′ a ′] by blast

moreover then have (a ′′, h γ) ∈ r^∗ using p1 rtrancl-mono[of R γ r ] by
blast

moreover have (a, a ′) ∈ r^∗ using c2 rtrancl-mono[of Restr r (W α) r ] by
blast

ultimately have (a, h γ) ∈ r^∗ by force
moreover have h γ ∈ W γ using c4 c5 b-r0w by blast
moreover then have h γ ∈ Field r ′ using c4 b-hf by blast
ultimately show ∃ b∈Field r ′. (a, b) ∈ r^∗ by blast

qed
moreover have DCR 2 r ′ ∧ CCR r ′

proof −
obtain g0 where c1 : g0 = { (u,v) ∈ r ′. r ′‘‘{u} = {v} } by blast
obtain g1 where c2 : g1 = r ′ − g0 by blast
obtain g where c3 : g = (λn::nat. (if (n=0 ) then g0 else (if (n=1 ) then g1

else {}))) by blast
have c4 : ∀ β ∈ S . R ′ β ⊆ g0
proof

fix β
assume d1 : β ∈ S
then have R ′ β ⊆ r ′ unfolding r ′-def by blast
moreover have ∀ a b c. (a,b) ∈ R ′ β ∧ (a,c) ∈ r ′ −→ b = c
proof (intro allI impI )

fix a b c
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assume e1 : (a, b) ∈ R ′ β ∧ (a, c) ∈ r ′

moreover then have (a,b) ∈ r ′ using d1 unfolding r ′-def by blast
ultimately have b = c ∨ (a, b) ∈ re ′ using b-pkr ′[of a b c] by blast
moreover have (a,b) ∈ re ′ −→ False using e1 d1 b-dr ′[of β] by blast
ultimately show b = c by blast

qed
ultimately show R ′ β ⊆ g0 using c1 by blast

qed
have c5 : re ′ ⊆ g1
proof −

have re ′ ⊆ r ′ unfolding r ′-def by blast
moreover have ∀ a b. (a,b) ∈ re ′ ∧ (a,b) ∈ g0 −→ False
proof (intro allI impI )

fix a b
assume e1 : (a,b) ∈ re ′ ∧ (a,b) ∈ g0
then obtain α where e2 : α ∈ S ∧ a = ep α unfolding re ′-def by blast
then have e3 : a ∈ EP α using b-ep by blast
obtain γ1 a1 where e4 : γ1 ∈ S ∧ α <o γ1 ∧ a1 ∈ W γ1 ∧ (a,a1 ) ∈ re ′

using e2 e3 b-h[of α α a a] b-bhf re ′-def by blast
then have γ1 ∈ S ∧ ep γ1 ∈ EP γ1 using b-ep by blast

then obtain γ2 a2 where e5 : γ2 ∈ S ∧ γ1 <o γ2 ∧ a2 ∈ W γ2 ∧ (a,a2 )
∈ re ′

using e2 e3 b-h[of α γ1 a ep γ1 ] re ′-def by blast
then have γ1 6= γ2 using ordLess-irrefl unfolding irrefl-def by blast
then have a1 6= a2 using e4 e5 a9 by blast
moreover have a1 ∈ r ′‘‘{a} ∧ a2 ∈ r ′‘‘{a} using e4 e5 unfolding r ′-def

by blast
moreover have r ′‘‘{a} = {b} using e1 c1 by blast
ultimately have a1 ∈ {b} ∧ a2 ∈ {b} ∧ a1 6= a2 by blast
then show False by blast

qed
ultimately show ?thesis using c2 by force

qed
have r ′ =

⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

proof
have r ′ ⊆ g0 ∪ g1 using c1 c2 by blast
moreover have g0 = g 0 ∧ g1 = g 1 ∧ (0 ::nat) < 2 ∧ (1 ::nat) < 2 using

c3 by simp
ultimately show r ′ ⊆

⋃
{r ′. ∃α ′<2 . r ′ = g α ′} by blast

next
have

∧
α. g α ⊆ g0 ∪ g1 unfolding c3 by simp

then show
⋃
{r ′. ∃α ′<2 . r ′ = g α ′} ⊆ r ′ using c1 c2 by blast

qed
moreover have ∀ l1 l2 u v w. l1 ≤ l2 −→ (u, v) ∈ g l1 ∧ (u, w) ∈ g l2 −→

(∃ v ′ v ′′ w ′ w ′′ d. (v, v ′, v ′′, d) ∈ D g l1 l2 ∧ (w, w ′, w ′′, d) ∈ D g l2 l1 )
proof (intro allI impI )

fix l1 l2 u v w
assume d1 : l1 ≤ l2 and d2 : (u, v) ∈ g l1 ∧ (u, w) ∈ g l2
have d3 : g0 = g 0 ∧ g1 = g 1
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and d4 : ∀ α. g α 6= {} −→ α = 0 ∨ α = 1 unfolding c3 by simp+
have d5 : L1 g 1 = g0 and d6 : Lv g 1 1 = g0
and d7 : Lv g 1 0 = g0 and d8 : Lv g 0 1 = g0 using d3 unfolding L1-def

Lv-def by blast+
show ∃ v ′ v ′′ w ′ w ′′ d. (v, v ′, v ′′, d) ∈ D g l1 l2 ∧ (w, w ′, w ′′, d) ∈ D g l2 l1
proof −

have l1 = 0 ∧ l2 = 0 =⇒ ?thesis
proof −

assume l1 = 0 ∧ l2 = 0
then have r ′‘‘{u} = {v} ∧ r ′‘‘{u} = {w} using c1 d2 d3 by blast
then have v = w by blast
then show ?thesis unfolding D-def by fastforce

qed
moreover have l1 = 0 ∧ l2 = 1 =⇒ False
proof −

assume l1 = 0 ∧ l2 = 1
then have (u, v) ∈ r ′ ∧ (u, w) ∈ r ′

and r ′‘‘{u} = {v} ∧ r ′‘‘{u} 6= {w} using c1 c2 d2 d3 by blast+
then show False by force

qed
moreover have l1 = 1 ∧ l2 = 1 =⇒ ?thesis
proof −

assume f1 : l1 = 1 ∧ l2 = 1
then have (u,v) ∈ g1 ∧ (u,w) ∈ g1 using d2 d3 by blast
then have (u,v) ∈ re ′ ∧ (u,w) ∈ re ′ using c1 c2 b-pkr ′ by blast
then obtain β1 β2 where f2 : β1 ∈ S ∧ β2 ∈ S

and v ∈ W β1 ∧ (v, h β1 ) ∈ (R β1 )^∗
and w ∈ W β2 ∧ (w, h β2 ) ∈ (R β2 )^∗ unfolding re ′-def by blast

then have v ∈ Field (R ′ β1 ) ∧ w ∈ Field (R ′ β2 ) using b-bhf by blast
then have f3 : (v, ep β1 ) ∈ (R ′ β1 )^∗ ∧ (w, ep β2 ) ∈ (R ′ β2 )^∗ using

f2 b-clR ′ by blast
then have ep β1 ∈ EP β1 ∧ ep β2 ∈ EP β2 using f2 b-ep by blast
then obtain γ v ′′ w ′′ where f4 : γ ∈ S ∧ β1 <o γ ∧ β2 <o γ

and v ′′ ∈ W γ ∧ (ep β1 , v ′′) ∈ r ∧ (v ′′, h γ) ∈ (R γ)^∗
and w ′′ ∈ W γ ∧ (ep β2 , w ′′) ∈ r ∧ (w ′′, h γ) ∈ (R

γ)^∗
using f2 b-h[of β1 β2 ep β1 ep β2 ] by blast

then have (ep β1 , v ′′) ∈ re ′ ∧ (ep β2 , w ′′) ∈ re ′

and (v ′′, ep γ) ∈ (R ′ γ)^∗ ∧ (w ′′, ep γ) ∈ (R ′ γ)^∗
using f2 b-bhf b-clR ′ unfolding re ′-def by blast+

moreover obtain v ′ w ′ d where v ′ = ep β1 ∧ w ′ = ep β2 ∧ d = ep γ
by blast

ultimately have f5 : (v, v ′) ∈ (R ′ β1 )^∗ ∧ (v ′, v ′′) ∈ re ′ ∧ (v ′′, d) ∈ (R ′

γ)^∗
and f6 : (w, w ′) ∈ (R ′ β2 )^∗ ∧ (w ′, w ′′) ∈ re ′ ∧ (w ′′, d) ∈ (R ′

γ)^∗
using f3 by blast+

have (R ′ β1 )^∗ ⊆ (L1 g l1 )^∗ using f1 f2 d5 c4 rtrancl-mono by blast
moreover have re ′ ⊆ g l2 using f1 d3 c5 by blast
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moreover have (R ′ γ)^∗ ⊆ (Lv g l1 l2 )^∗ using f1 f4 d6 c4 rtrancl-mono
by blast

moreover have (R ′ β2 )^∗ ⊆ (L1 g l2 )^∗ using f1 f2 d5 c4 rtrancl-mono
by blast

moreover have re ′ ⊆ g l1 using f1 d3 c5 by blast
moreover have (R ′ γ)^∗ ⊆ (Lv g l2 l1 )^∗ using f1 f4 d6 c4 rtrancl-mono

by blast
ultimately have (v, v ′, v ′′, d) ∈ D g l1 l2 ∧ (w, w ′, w ′′, d) ∈ D g l2 l1

using f5 f6 unfolding D-def by blast
then show ?thesis by blast

qed
moreover have (l1 = 0 ∨ l1 = 1 ) ∧ (l2 = 0 ∨ l2 = 1 ) using d2 d4 by

blast
ultimately show ?thesis using d1 by fastforce

qed
qed
ultimately have c9 : DCR 2 r ′ using lem-Ldo-ldogen-ord unfolding DCR-def

by blast
have ∀ a∈Field r ′. ∀ b∈Field r ′. ∃ c ∈ Field r ′. (a,c) ∈ r ′̂ ∗ ∧ (b,c) ∈ r ′̂ ∗
proof (intro ballI impI )

fix a b
assume d1 : a ∈ Field r ′ and d2 : b ∈ Field r ′

obtain α β where d3 : α ∈ S ∧ β ∈ S
and d4 : (a, ep α) ∈ (R ′ α)^∗ ∧ (b, ep β) ∈ (R ′ β)^∗ using d1 d2 b-epr ′

by blast
then have ep α ∈ EP α ∧ ep β ∈ EP β using b-ep by blast
then obtain γ a ′ b ′ where d5 : γ ∈ S ∧ α <o γ ∧ β <o γ

and d6 : a ′ ∈ W γ ∧ (ep α, a ′) ∈ r ∧ (a ′, h γ) ∈ (R γ)^∗
and d7 : b ′ ∈ W γ ∧ (ep β, b ′) ∈ r ∧ (b ′, h γ) ∈ (R γ)^∗

using d3 b-h[of α β ep α ep β] by blast
then have (a ′, ep γ) ∈ (R ′ γ)^∗ ∧ (b ′, ep γ) ∈ (R ′ γ)^∗ using b-bhf b-clR ′

by blast
moreover have R ′ α ⊆ r ′ ∧ R ′ β ⊆ r ′ ∧ R ′ γ ⊆ r ′ using d3 d5 unfolding

r ′-def by blast
ultimately have (a, ep α) ∈ r ′̂ ∗ ∧ (b, ep β) ∈ r ′̂ ∗

and (a ′, ep γ) ∈ r ′̂ ∗ ∧ (b ′, ep γ) ∈ r ′̂ ∗ using d4 rtrancl-mono
by blast+

moreover have (ep α, a ′) ∈ r ′ using d3 d5 d6 unfolding r ′-def re ′-def by
blast

moreover have (ep β, b ′) ∈ r ′ using d3 d5 d7 unfolding r ′-def re ′-def by
blast

ultimately have (a, ep γ) ∈ r ′̂ ∗ ∧ (b, ep γ) ∈ r ′̂ ∗ by force
moreover then have ep γ ∈ Field r ′ using d1 lem-rtr-field by metis
ultimately show ∃ c ∈ Field r ′. (a,c) ∈ r ′̂ ∗ ∧ (b,c) ∈ r ′̂ ∗ by blast

qed
then have CCR r ′ unfolding CCR-def by blast
then show ?thesis using c9 by blast

qed
ultimately show ?thesis by blast
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qed

lemma lem-uset-cl-ext:
fixes r :: ′U rel and s:: ′U rel
assumes s ∈ U r and Conelike s
shows Conelike r
proof (cases s = {})

assume s = {}
then have r = {} using assms unfolding U-def Field-def by fast
then show Conelike r unfolding Conelike-def by blast

next
assume s 6= {}
then obtain m where m ∈ Field s ∧ (∀ a ∈ Field s. (a,m) ∈ s^∗) using assms

unfolding Conelike-def by blast
moreover have s ⊆ r ∧ (∀ a ∈ Field r . ∃ b ∈ Field s. (a,b) ∈ r^∗) using assms

unfolding U-def by blast
moreover then have Field s ⊆ Field r ∧ s^∗ ⊆ r^∗ unfolding Field-def using

rtrancl-mono by blast
ultimately have (m ∈ Field r) ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗) by (meson

rtrancl-trans subsetCE)
then show Conelike r unfolding Conelike-def by blast

qed

lemma lem-uset-cl-singleton:
fixes r :: ′U rel
assumes Conelike r and r 6= {}
shows ∃ m:: ′U . ∃ m ′:: ′U . {(m ′,m)} ∈ U r
proof −

obtain m where b1 : m ∈ Field r ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗) using assms
unfolding Conelike-def by blast

then obtain x where b2 : (m,x) ∈ r ∨ (x,m) ∈ r unfolding Field-def by blast
then have (x,m) ∈ r^∗ using b1 unfolding Field-def by blast
then obtain m ′ where b3 : (m ′,m) ∈ r using b2 by (metis rtranclE)
have CCR {(m ′,m)} unfolding CCR-def Field-def by force
moreover have ∀ a∈Field r . ∃ b∈Field {(m ′,m)}. (a, b) ∈ r^∗ using b1 un-

folding Field-def by blast
ultimately show ?thesis using b3 unfolding U-def by blast

qed

lemma lem-rcc-emp: ‖{}‖ = {}
unfolding RCC-def RCC-rel-def U-def apply simp
unfolding CCR-def apply simp
using lem-card-emprel by (smt iso-ozero-empty ordIso-symmetric ozero-def someI-ex)

lemma lem-rcc-rccrel:
fixes r :: ′U rel
shows RCC-rel r ‖r‖
proof −

have ∃ α. RCC-rel r α
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proof (cases U r = {})
assume U r = {}
then show ∃ α. RCC-rel r α unfolding RCC-rel-def by blast

next
assume b1 : U r 6= {}
obtain Q where b2 : Q = { α:: ′U rel. ∃ s ∈ U r . α =o |s| } by blast
have b3 : ∀ s ∈ U r . ∃ α ∈ Q. α ≤o |s|
proof

fix s
assume c1 : s ∈ U r
then have c2 : s ⊆ (UNIV :: ′U set) × (UNIV :: ′U set) unfolding U-def by

simp
then have c3 : |s| ≤o |(UNIV :: ′U set) × (UNIV :: ′U set)| by simp
show ∃ α ∈ Q. α ≤o |s|
proof (cases finite (UNIV :: ′U set))

assume finite (UNIV :: ′U set)
then have finite s using c2 finite-subset by blast
moreover have CCR s using c1 unfolding U-def by blast
ultimately have Conelike s using lem-Relprop-fin-ccr by blast
then have d1 : Conelike r using c1 lem-uset-cl-ext by blast
show ∃ α ∈ Q. α ≤o |s|
proof (cases r = {})

assume e1 : r = {}
obtain α where e2 : α = ({}:: ′U rel) by blast

then have α ∈ U r using e1 unfolding U-def CCR-def Field-def by blast
moreover have e3 : α =o |({}:: ′U rel)| using e2 lem-card-emprel or-

dIso-symmetric by blast
ultimately have α ∈ Q using b2 e2 by blast
moreover have α ≤o |s| using e3 card-of-empty ordIso-ordLeq-trans by

blast
ultimately show ∃ α ∈ Q. α ≤o |s| by blast

next
assume e1 : r 6= {}

then obtain m m ′ where e2 : {(m ′,m)} ∈ U r using d1 lem-uset-cl-singleton
by blast

obtain α where e3 : α = |{m}| by blast
then have α =o |{(m ′,m)}| by (simp add: ordIso-iff-ordLeq)
then have α ∈ Q using b2 e2 by blast
moreover have s 6= {} using c1 e1 unfolding U-def Field-def by force
moreover then have α ≤o |s| using e3 by simp
ultimately show ∃ α ∈ Q. α ≤o |s| by blast

qed
next

assume ¬ finite (UNIV :: ′U set)
then have |(UNIV :: ′U set) × (UNIV :: ′U set)| =o |UNIV :: ′U set| using

card-of-Times-same-infinite by blast
then have |s| ≤o |UNIV :: ′U set| using c3 using ordLeq-ordIso-trans by

blast
then obtain A:: ′U set where |s| =o |A| using internalize-card-of-ordLeq2
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by fast
moreover then obtain α:: ′U rel where α = |A| by blast
ultimately have α ∈ Q ∧ α =o |s| using b2 c1 ordIso-symmetric by blast
then show ∃ α ∈ Q. α ≤o |s| using ordIso-iff-ordLeq by blast

qed
qed
then have Q 6= {} using b1 by blast

then obtain α where b4 : α ∈ Q ∧ (∀α ′. α ′<o α −→ α ′ /∈ Q) using wf-ordLess
wf-eq-minimal[of ordLess] by blast

moreover have ∀ α ′∈ Q. Card-order α ′ using b2 using ordIso-card-of-imp-Card-order
by blast

ultimately have ∀ α ′ ∈ Q. ¬ (α ′ <o α) −→ α ≤o α ′ by simp
then have b5 : α ∈ Q ∧ (∀ α ′ ∈ Q. α ≤o α ′) using b4 by blast
then obtain s where b6 : s ∈ U r ∧ |s| =o α using b2 ordIso-symmetric by

blast
moreover have ∀ s ′∈U r . |s| ≤o |s ′|
proof

fix s ′

assume s ′ ∈ U r
then obtain α ′ where α ′ ∈ Q ∧ α ′ ≤o |s ′| using b3 by blast
moreover then have |s| =o α ∧ α ≤o α ′ using b5 b6 by blast
ultimately show |s| ≤o |s ′| using ordIso-ordLeq-trans ordLeq-transitive by

blast
qed
ultimately have RCC-rel r α unfolding RCC-rel-def by blast
then show ∃ α. RCC-rel r α by blast

qed
then show ?thesis unfolding RCC-def by (metis someI2 )

qed

lemma lem-rcc-uset-ne:
assumes U r 6= {}
shows ∃ s ∈ U r . |s| =o ‖r‖ ∧ ( ∀ s ′ ∈ U r . |s| ≤o |s ′| )

using assms lem-rcc-rccrel unfolding RCC-rel-def by blast

lemma lem-rcc-uset-emp:
assumes U r = {}
shows ‖r‖ = {}

using assms lem-rcc-rccrel unfolding RCC-rel-def by blast

lemma lem-rcc-uset-mem-bnd:
assumes s ∈ U r
shows ‖r‖ ≤o |s|
proof −

obtain s0 where s0 ∈ U r ∧ |s0 | =o ‖r‖ ∧ ( ∀ s ′ ∈ U r . |s0 | ≤o |s ′| ) using
assms lem-rcc-uset-ne by blast

moreover then have |s0 | ≤o |s| using assms by blast
ultimately show ‖r‖ ≤o |s| by (metis ordIso-iff-ordLeq ordLeq-transitive)

qed
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lemma lem-rcc-cardord: Card-order ‖r‖
proof (cases U r = {})

assume U r = {}
then have ‖r‖ = {} using lem-rcc-uset-emp by blast
then show Card-order ‖r‖ using lem-cardord-emp by simp

next
assume U r 6= {}
then obtain s where s ∈ U r ∧ |s| =o ‖r‖ using lem-rcc-uset-ne by blast
then show Card-order ‖r‖ using Card-order-ordIso2 card-of-Card-order by blast

qed

lemma lem-uset-ne-rcc-inf :
fixes r :: ′U rel
assumes ¬ ( ‖r‖ <o ω-ord )
shows U r 6= {}
proof −

have ‖r‖ = {} −→ ‖r‖ <o |UNIV :: nat set|
by (metis card-of-Well-order finite.emptyI infinite-iff-card-of-nat ordIso-ordLeq-trans

ordIso-symmetric ordLeq-iff-ordLess-or-ordIso ozero-def ozero-ordLeq)
then have ‖r‖ = {} −→ ‖r‖ <o ω-ord using card-of-nat ordLess-ordIso-trans

by blast
then show U r 6= {} using assms lem-rcc-uset-emp by blast

qed

lemma lem-rcc-inf : ( ω-ord ≤o ‖r‖ ) = ( ¬ ( ‖r‖ <o ω-ord ) )
using lem-rcc-cardord lem-cord-lin by (metis Field-natLeq natLeq-card-order)

lemma lem-Rcc-eq1-12 :
fixes r :: ′U rel
shows CCR r =⇒ r ∈ U r

unfolding U-def CCR-def by blast

lemma lem-Rcc-eq1-23 :
fixes r :: ′U rel
assumes r ∈ U r
shows (r = ({}:: ′U rel)) ∨ (({}:: ′U rel) <o ‖r‖)
proof −

obtain s0 where a2 : s0 ∈ U r and a3 : |s0 | =o ‖r‖ using assms lem-rcc-uset-ne
by blast

have s0 = {} −→ r = {} using a2 unfolding U-def Field-def by force
moreover have s0 6= {} −→ ({}:: ′U rel) <o ‖r‖

using a3 lem-rcc-cardord lem-cardord-emp
by (metis (no-types, lifting) Card-order-iff-ordIso-card-of Field-empty

card-of-empty3 card-order-on-well-order-on not-ordLeq-iff-ordLess
ordLeq-iff-ordLess-or-ordIso ordLeq-ordIso-trans ozero-def ozero-ordLeq)

ultimately show ?thesis by blast
qed
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lemma lem-Rcc-eq1-31 :
fixes r :: ′U rel
assumes (r = ({}:: ′U rel)) ∨ (({}:: ′U rel) <o ‖r‖)
shows CCR r
proof (cases r = {})

assume r = {}
then show CCR r unfolding CCR-def Field-def by blast

next
assume b1 : r 6= {}
then have b2 : ({}:: ′U rel) <o ‖r‖ using assms by blast
then have ‖r‖ 6= ({}:: ′U rel) using ordLess-irreflexive by fastforce
then have U r 6= {} using lem-rcc-uset-emp by blast
then obtain s where b3 : s ∈ U r and b4 : |s| =o ‖r‖ and

b5 : ∀ s ′ ∈ U r . |s| ≤o |s ′| using lem-rcc-uset-ne by blast
have s 6= {} using assms b1 b4 lem-card-emprel not-ordLess-ordIso ordIso-ordLess-trans

by blast
have s ⊆ r using b3 unfolding U-def by blast
then have Field s ⊆ Field r ∧ s^∗ ⊆ r^∗ unfolding Field-def using rtrancl-mono

by blast
have ∀ a∈Field r . ∀ b∈Field r . ∃ c∈Field r . (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗
proof (intro ballI )

fix a b
assume c1 : a ∈ Field r and c2 : b ∈ Field r
then obtain a ′ b ′ where c3 : a ′ ∈ Field s ∧ b ′ ∈ Field s ∧ (a,a ′) ∈ r^∗ ∧ (b,b ′)

∈ r^∗
using b3 unfolding U-def by blast

then obtain c where c4 : c ∈ Field s ∧ (a ′,c) ∈ s^∗ ∧ (b ′,c) ∈ s^∗ using b3
unfolding U-def CCR-def by blast

have a ′ ∈ Field r ∧ b ′ ∈ Field r ∧ c ∈ Field r using b3 c3 c4 unfolding U-def
Field-def by blast

moreover have (a ′,c) ∈ r^∗ ∧ (b ′,c) ∈ r^∗ using b3 c4 unfolding U-def
using rtrancl-mono by blast

ultimately have c ∈ Field r ∧ (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗ using c3 by force
then show ∃ c∈Field r . (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗ by blast

qed
then show CCR r unfolding CCR-def by blast

qed

lemma lem-Rcc-eq2-12 :
fixes r :: ′U rel and a:: ′a
assumes Conelike r
shows ‖r‖ ≤o |{a}|
proof (cases r = {})

assume r = {}
then have ‖r‖ = {} using lem-rcc-emp by blast
then show ‖r‖ ≤o |{a}| by (metis card-of-Well-order ozero-def ozero-ordLeq)

next
assume r 6= {}
then obtain m where b1 : m ∈ Field r ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗) using
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assms unfolding Conelike-def by blast
then obtain m ′ where b2 : (m,m ′) ∈ r ∨ (m ′,m) ∈ r unfolding Field-def by

blast
then have (m ′,m) ∈ r^∗ using b1 by (meson FieldI2 r-into-rtrancl)
then obtain x where (x,m) ∈ r using b2 by (metis rtranclE)
moreover have CCR {(x,m)} unfolding CCR-def Field-def by blast
ultimately have {(x,m)} ∈ U r using b1 unfolding U-def by simp
then have ‖r‖ ≤o |{(x,m)}| using lem-rcc-uset-mem-bnd by blast
moreover have |{(x,m)}| ≤o |{a}| by simp
ultimately show ‖r‖ ≤o |{a}| using ordLeq-transitive by blast

qed

lemma lem-Rcc-eq2-23 :
fixes r :: ′U rel and a:: ′a
assumes ‖r‖ ≤o |{a}|
shows ‖r‖ <o ω-ord
proof −

have |{a}| <o |UNIV :: nat set| using finite-iff-cardOf-nat by blast
then show ‖r‖ <o ω-ord using assms ordLeq-ordLess-trans card-of-nat ord-

Less-ordIso-trans by blast
qed

lemma lem-Rcc-eq2-31 :
fixes r :: ′U rel
assumes CCR r and ‖r‖ <o ω-ord
shows Conelike r
proof −

have r ∈ U r using assms lem-Rcc-eq1-12 by blast
then obtain s where b1 : s ∈ U r and b2 : |s| =o ‖r‖ using lem-rcc-uset-ne by

blast
have |s| <o ω-ord using assms b2 using ordIso-imp-ordLeq ordLeq-ordLess-trans

by blast
then have finite s using finite-iff-ordLess-natLeq by blast
moreover have CCR s using b1 unfolding U-def by blast
ultimately have Conelike s using lem-Relprop-fin-ccr by blast
then show Conelike r using b1 lem-uset-cl-ext by blast

qed

lemma lem-Rcc-range:
fixes r :: ′U rel
shows ‖r‖ ≤o |UNIV ::( ′U set)|

by (simp add: lem-rcc-cardord)

lemma lem-rcc-nccr :
fixes r :: ′U rel
assumes ¬ (CCR r)
shows ‖r‖ = {}
proof −

have ¬ (({}:: ′U rel) <o ‖r‖) using assms lem-Rcc-eq1-31 [of r ] by blast
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moreover have Well-order ({}:: ′U rel) using Well-order-empty by blast
moreover have Well-order ‖r‖ using lem-rcc-cardord unfolding card-order-on-def

by blast
ultimately have ‖r‖ ≤o ({}:: ′U rel) by simp
then show ‖r‖ = {} using lem-ord-subemp by blast

qed

lemma lem-Rcc-relcard-bnd:
fixes r :: ′U rel
shows ‖r‖ ≤o |r |
proof(cases CCR r)

assume CCR r
then show ‖r‖ ≤o |r | using lem-Rcc-eq1-12 lem-rcc-uset-mem-bnd by blast

next
assume ¬ CCR r
then have ‖r‖ = {} using lem-rcc-nccr by blast
then have ‖r‖ ≤o ({}:: ′U rel) by (metis card-of-empty ordLeq-Well-order-simp

ozero-def ozero-ordLeq)
moreover have ({}:: ′U rel) ≤o |r | by (metis card-of-Well-order ozero-def ozero-ordLeq)
ultimately show ‖r‖ ≤o |r | using ordLeq-transitive by blast

qed

lemma lem-Rcc-inf-lim:
fixes r :: ′U rel
assumes ω-ord ≤o ‖r‖
shows ¬( ‖r‖ = {} ∨ isSuccOrd ‖r‖ )

using assms lem-card-inf-lim lem-rcc-cardord by blast

lemma lem-rcc-uset-ne-ccr :
fixes r :: ′U rel
assumes U r 6= {}
shows CCR r
proof −

obtain s where b1 : s ∈ U r using assms by blast
have ∀ a∈Field r . ∀ b∈Field r . ∃ c∈Field r . (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗
proof (intro ballI impI )

fix a b
assume a∈Field r and b∈Field r
then obtain a ′ b ′ where c1 : a ′ ∈ Field s ∧ b ′ ∈ Field s ∧ (a,a ′) ∈ r^∗ ∧ (b,b ′)

∈ r^∗
using b1 unfolding U-def by blast

then obtain c where c ∈ Field s ∧ (a ′,c) ∈ s^∗ ∧ (b ′,c) ∈ s^∗ using b1
unfolding U-def CCR-def by blast

moreover have s ⊆ r using b1 unfolding U-def by blast
ultimately have c ∈ Field r ∧ (a ′,c) ∈ r^∗ ∧ (b ′,c) ∈ r^∗ using rtrancl-mono

unfolding Field-def by blast
moreover then have (a,c) ∈ r^∗ ∧ (b,c) ∈ r^∗ using c1 by force
ultimately show ∃ c∈Field r . (a, c) ∈ r^∗ ∧ (b, c) ∈ r^∗ by blast

qed
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then show ?thesis unfolding CCR-def by blast
qed

lemma lem-rcc-uset-tr :
fixes r s t:: ′U rel
assumes a1 : s ∈ U r and a2 : t ∈ U s
shows t ∈ U r
proof −

have ∀ a∈Field r . ∃ b∈Field t. (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain b ′ where b ′ ∈ Field s ∧ (a,b ′) ∈ r^∗ using a1 unfolding U-def

by blast
moreover then obtain b where b ∈ Field t ∧ (b ′,b) ∈ s^∗ using a2 unfolding

U-def by blast
moreover have s ⊆ r using a1 unfolding U-def by blast
ultimately have b ∈ Field t ∧ (a,b ′) ∈ r^∗ ∧ (b ′,b) ∈ r^∗ using rtrancl-mono

by blast
then have b ∈ Field t ∧ (a,b) ∈ r^∗ by force
then show ∃ b∈Field t. (a, b) ∈ r^∗ by blast

qed
then show ?thesis using a1 a2 unfolding U-def by blast

qed

lemma lem-scf-emp: scf {} = {}
unfolding scf-def scf-rel-def SCF-def apply simp
using lem-card-emprel by (smt card-of-empty-ordIso iso-ozero-empty ordIso-symmetric

ozero-def someI-ex)

lemma lem-scf-scfrel:
fixes r :: ′U rel
shows scf-rel r (scf r)
proof −

have b1 : SCF r 6= {} unfolding SCF-def by blast
obtain Q where b2 : Q = { α:: ′U rel. ∃ A ∈ SCF r . α =o |A| } by blast
have b3 : ∀ A ∈ SCF r . ∃ α ∈ Q. α ≤o |A|
proof

fix A
assume A ∈ SCF r
then have |A| ∈ Q ∧ |A| =o |A| using b2 ordIso-symmetric by force
then show ∃ α ∈ Q. α ≤o |A| using ordIso-iff-ordLeq by blast

qed
then have Q 6= {} using b1 by blast
then obtain α where b4 : α ∈ Q ∧ (∀α ′. α ′ <o α −→ α ′ /∈ Q) using wf-ordLess

wf-eq-minimal[of ordLess] by blast
moreover have ∀ α ′∈ Q. Card-order α ′ using b2 using ordIso-card-of-imp-Card-order

by blast
ultimately have ∀ α ′ ∈ Q. ¬ (α ′ <o α) −→ α ≤o α ′ by simp
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then have b5 : α ∈ Q ∧ (∀ α ′ ∈ Q. α ≤o α ′) using b4 by blast
then obtain A where b6 : A ∈ SCF r ∧ |A| =o α using b2 ordIso-symmetric

by blast
moreover have ∀ B∈SCF r . |A| ≤o |B|
proof

fix B
assume B ∈ SCF r
then obtain α ′ where α ′ ∈ Q ∧ α ′ ≤o |B| using b3 by blast
moreover then have |A| =o α ∧ α ≤o α ′ using b5 b6 by blast
ultimately show |A| ≤o |B| using ordIso-ordLeq-trans ordLeq-transitive by

blast
qed
ultimately have scf-rel r α unfolding scf-rel-def by blast
then show ?thesis unfolding scf-def by (metis someI2 )

qed

lemma lem-scf-uset:
shows ∃ A ∈ SCF r . |A| =o scf r ∧ ( ∀ B ∈ SCF r . |A| ≤o |B| )

using lem-scf-scfrel unfolding scf-rel-def by blast

lemma lem-scf-uset-mem-bnd:
assumes B ∈ SCF r
shows scf r ≤o |B|
proof −

obtain A where A ∈ SCF r ∧ |A| =o scf r ∧ ( ∀ A ′ ∈ SCF r . |A| ≤o |A ′| )
using assms lem-scf-uset by blast

moreover then have |A| ≤o |B| using assms by blast
ultimately show ?thesis by (metis ordIso-iff-ordLeq ordLeq-transitive)

qed

lemma lem-scf-cardord: Card-order (scf r)
proof −

obtain A where A ∈ SCF r ∧ |A| =o scf r using lem-scf-uset by blast
then show Card-order (scf r) using Card-order-ordIso2 card-of-Card-order by

blast
qed

lemma lem-scf-inf : ( ω-ord ≤o (scf r) ) = ( ¬ ( (scf r) <o ω-ord ) )
using lem-scf-cardord lem-cord-lin by (metis Field-natLeq natLeq-card-order)

lemma lem-scf-eq1-12 :
fixes r :: ′U rel
shows Field r ∈ SCF r

unfolding SCF-def by blast

lemma lem-scf-range:
fixes r :: ′U rel
shows (scf r) ≤o |UNIV ::( ′U set)|

by (simp add: lem-scf-cardord)
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lemma lem-scf-relfldcard-bnd:
fixes r :: ′U rel
shows (scf r) ≤o |Field r |

using lem-scf-eq1-12 lem-scf-uset-mem-bnd by blast

lemma lem-scf-ccr-scf-rcc-eq:
fixes r :: ′U rel
assumes CCR r
shows ‖r‖ =o (scf r)
proof −

obtain B where b1 : B ∈ SCF r ∧ |B| =o scf r using lem-scf-scfrel[of r ]
unfolding scf-rel-def by blast

have B ⊆ Field r using b1 unfolding SCF-def by blast
then obtain A where b2 : B ⊆ A ∧ A ∈ SF r

and b3 : (finite B −→ finite A) ∧ ((¬ finite B) −→ |A| =o |B| )
using lem-inv-sf-ext[of B r ] by blast

then obtain A ′ where b4 : A ⊆ A ′ ∧ A ′ ∈ SF r ∧ CCR (Restr r A ′)
and b5 : (finite A −→ finite A ′) ∧ ((¬ finite A) −→ |A ′| =o |A| )

using assms lem-Ccext-subccr-pext5 [of r A - {}] by metis
have Restr r A ′ ∈ U r
proof −

have ∀ a∈Field r . ∃ b∈Field (Restr r A ′). (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then obtain b where b ∈ B ∧ (a,b) ∈ r^∗ using b1 unfolding SCF-def by

blast
moreover then have b ∈ Field (Restr r A ′) using b2 b4 unfolding SF-def

by blast
ultimately show ∃ b∈Field (Restr r A ′). (a, b) ∈ r^∗ by blast

qed
then show Restr r A ′ ∈ U r unfolding U-def using b4 by blast

qed
then have b6 : ‖r‖ ≤o |Restr r A ′| using lem-rcc-uset-mem-bnd by blast
obtain x0 :: ′U where True by blast
have b7 : ‖r‖ ≤o (scf r)
proof (cases finite B)

assume finite B
then have finite (Restr r A ′) using b3 b5 by blast
then have Conelike r

using assms b6 lem-Rcc-eq2-31 [of r ] finite-iff-ordLess-natLeq[of Restr r A ′]
ordLeq-ordLess-trans by blast

then have c1 : ‖r‖ ≤o |{x0}| using lem-Rcc-eq2-12 [of r x0 ] by blast
show ?thesis
proof (cases r = {})

assume r = {}
then have scf r = {} ∧ ‖r‖ = {} using lem-scf-emp lem-rcc-emp by blast
then show ‖r‖ ≤o (scf r) using b1 lem-ord-subemp ordIso-iff-ordLeq by
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metis
next

assume r 6= {}
then have B 6= {} using b1 unfolding SCF-def Field-def by force
then have |{x0}| ≤o |B| using card-of-singl-ordLeq by metis
then show ?thesis using c1 b1 ordLeq-transitive ordIso-imp-ordLeq by metis

qed
next

assume c1 : ¬ finite B
then have |A| =o |B| ∧ |A ′| =o |A| using b3 b5 finite-subset by simp
then have |A ′| =o scf r using b1 using ordIso-transitive by blast

moreover have ω-ord ≤o scf r using c1 b1 infinite-iff-natLeq-ordLeq or-
dLeq-ordIso-trans by blast

ultimately have |Restr r A ′| ≤o scf r using lem-restr-ordbnd[of scf r A ′ r ]
ordIso-imp-ordLeq by blast

then show ‖r‖ ≤o (scf r) using b6 ordLeq-transitive by blast
qed
moreover have (scf r) ≤o ‖r‖
proof −

obtain s where b1 : s ∈ U r ∧ |s| =o ‖r‖ ∧ (∀ s ′∈U r . |s| ≤o |s ′| )
using assms lem-Rcc-eq1-12 [of r ] lem-rcc-uset-ne[of r ] by blast

then have Field s ⊆ Field r ∧ (∀ a∈Field r . ∃ b∈Field s. (a, b) ∈ r^∗)
unfolding U-def Field-def by blast

then have Field s ∈ SCF r unfolding SCF-def by blast
then have b2 : scf r ≤o |Field s| using lem-scf-uset-mem-bnd by blast
show ?thesis
proof (cases finite s)

assume finite s
then have ‖r‖ <o ω-ord

using b1 finite-iff-ordLess-natLeq not-ordLeq-ordLess ordIso-iff-ordLeq or-
dIso-transitive ordLeq-iff-ordLess-or-ordIso ordLeq-transitive by metis

then have c1 : Conelike r using assms lem-Rcc-eq2-31 by blast
show ?thesis
proof (cases r = {})

assume r = {}
then have scf r = {} ∧ ‖r‖ = {} using lem-scf-emp lem-rcc-emp by blast
then show ?thesis using b7 by simp

next
assume d1 : r 6= {}
then obtain m where m ∈ Field r ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗) using

c1 unfolding Conelike-def by blast
then have {m} ∈ SCF r unfolding SCF-def by blast
then have d2 : scf r ≤o |{m}| using lem-scf-uset-mem-bnd by blast
have ({}:: ′U rel) <o ‖r‖ using d1 assms lem-Rcc-eq1-23 lem-Rcc-eq1-12

by blast
then have |{m}| ≤o ‖r‖ using lem-co-one-ne-min by (metis card-of-empty3

card-of-empty4 insert-not-empty ordLess-Well-order-simp)
then show ?thesis using d2 ordLeq-transitive by blast

qed
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next
assume ¬ finite s
then have |Field s| =o |s| using lem-rel-inf-fld-card by blast
then show ?thesis using b1 b2 ordIso-iff-ordLeq ordLeq-transitive by metis

qed
qed
ultimately show ?thesis using not-ordLeq-ordLess ordLeq-iff-ordLess-or-ordIso

by blast
qed

lemma lem-scf-ccr-scf-uset:
fixes r :: ′U rel
assumes CCR r and ¬ Conelike r
shows ∃ s ∈ U r . (¬ finite s) ∧ |Field s| =o (scf r)
proof −

have ‖r‖ =o (scf r) using assms lem-scf-ccr-scf-rcc-eq by blast
moreover then obtain s where b1 : s ∈ U r ∧ |s| =o ‖r‖ using assms

lem-Rcc-eq1-12 lem-rcc-uset-ne[of r ] by blast
moreover have (¬ finite s) −→ |Field s| =o |s| using lem-rel-inf-fld-card by

blast
moreover have finite s −→ False
proof

assume finite s
then have |s| <o ω-ord using finite-iff-ordLess-natLeq by blast
then have ‖r‖ <o ω-ord using b1
by (meson not-ordLess-ordIso ordIso-iff-ordLeq ordIso-transitive ordLeq-iff-ordLess-or-ordIso

ordLeq-transitive)
then show False using assms lem-Rcc-eq2-31 by blast

qed
ultimately show ?thesis using ordIso-transitive by metis

qed

lemma lem-Scf-scfprops:
fixes r :: ′U rel
shows ( (scf r) ≤o |UNIV ::( ′U set)| ) ∧ ( (scf r) ≤o |Field r | )

using lem-scf-range lem-scf-relfldcard-bnd by blast

lemma lem-scf-ccr-finscf-cl:
assumes CCR r
shows finite (Field (scf r)) = Conelike r
proof

assume finite (Field (scf r))
then have finite ‖r‖ using assms lem-scf-ccr-scf-rcc-eq lem-fin-fl-rel ordIso-finite-Field

by blast
then have ‖r‖ <o ω-ord using lem-rcc-cardord lem-fin-fl-rel

by (metis card-of-Field-ordIso finite-iff-ordLess-natLeq ordIso-iff-ordLeq or-
dLeq-ordLess-trans)

then show Conelike r using assms lem-Rcc-eq2-31 by blast
next
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assume Conelike r
then have finite (Field ‖r‖) using lem-Rcc-eq2-12 [of r ] by (metis Field-card-of

finite.emptyI finite-insert ordLeq-finite-Field)
then show finite (Field (scf r)) using assms lem-scf-ccr-scf-rcc-eq ordIso-finite-Field

by blast
qed

lemma lem-sv-uset-sv-span:
fixes r s:: ′U rel
assumes a1 : s ∈ U r and a2 : single-valued s
shows ∃ r1 . r1 ∈ Span r ∧ CCR r1 ∧ single-valued r1 ∧ s ⊆ r1 ∧ (acyclic s −→
acyclic r1 )
proof −

have b0 : s ⊆ r using a1 unfolding U-def by blast
obtain isd where b3 : isd = (λ a i. ∃ b ∈ Field s. (a, b) ∈ r^^i ∧ (∀ i ′. (∃ b
∈ Field s. (a, b) ∈ r^^(i ′)) −→ i ≤ i ′)) by blast

obtain d where b4 : d = (λ a. SOME i. isd a i) by blast
obtain B where b5 : B = (λ a. { a ′. (a, a ′) ∈ r }) by blast
obtain H where b6 : H = (λ a. { a ′ ∈ B a. ∀ a ′′ ∈ B a. (d a ′) ≤ (d a ′′) }) by

blast
obtain D where b7 : D = { a ∈ Field r − Field s. H a 6= {}} by blast
obtain h where h = (λ a. SOME a ′. a ′ ∈ H a) by blast
then have b8 : ∀ a ∈ D. h a ∈ H a using b7 someI-ex[of λ a ′. a ′ ∈ H -] by

force
have q1 :

∧
a. a ∈ Field r =⇒ isd a (d a)

proof −
fix a
assume c1 : a ∈ Field r
then obtain b where c2 : b ∈ Field s ∧ (a,b) ∈ r^∗ using a1 unfolding U-def

by blast
moreover obtain N where c3 : N = {i. ∃ b ∈ Field s. (a, b) ∈ r^^i} by blast
ultimately have N 6= {} using rtrancl-imp-relpow by blast
then obtain m where m ∈ N ∧ (∀ i ∈ N . m ≤ i)

using LeastI [of λ x. x ∈ N ] Least-le[of λ x. x ∈ N ] by blast
then have isd a m using c2 c3 unfolding b3 by blast
then show isd a (d a) using b4 someI-ex by metis

qed
have q2 :

∧
a. B a 6= {} =⇒ H a 6= {}

proof −
fix a
assume B a 6= {}
moreover obtain N where c1 : N = d ‘ (B a) by blast
ultimately have N 6= {} by blast
then obtain m where c2 : m ∈ N ∧ (∀ i ∈ N . m ≤ i)

using LeastI [of λ x. x ∈ N ] Least-le[of λ x. x ∈ N ] by blast
then obtain a ′ where c3 : m = d a ′ ∧ a ′ ∈ B a using c1 by blast
moreover then have ∀ a ′′ ∈ B a. d a ′ ≤ d a ′′ using c1 c2 by force
ultimately have a ′ ∈ H a unfolding b6 by blast
then show H a 6= {} by blast
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qed
have q3 : ∀ a ∈ Field r − Field s. d a = 1 ∨ d a > 1
proof

fix a
assume c1 : a ∈ Field r − Field s
then have isd a (d a) using q1 by blast
then obtain b where b ∈ Field s ∧ (a, b) ∈ r^^(d a) using b3 by blast
then have d a = 0 −→ False using c1 by force
then show d a = 1 ∨ d a > 1 by force

qed
have Field r − Field s ⊆ D
proof

fix a
assume c1 : a ∈ Field r − Field s
moreover have H a = {} −→ False
proof

assume H a = {}
then have B a = {} using q2 by blast

moreover obtain b where b ∈ Field s ∧ (a, b) ∈ r^∗ using a1 c1 unfolding
U-def by blast

ultimately have a ∈ Field s unfolding b5 by (metis Collect-empty-eq
converse-rtranclE)

then show False using c1 by blast
qed
ultimately show a ∈ D using b7 by blast

qed
then have q4 : D = Field r − Field s using b5 b6 b7 by blast
have q5 : ∀ a ∈ D. d a > 1 −→ d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈

D)
proof (intro ballI impI )

fix a
assume c1 : a ∈ D and c2 : d a > 1
then obtain b where c3 : b ∈ Field s and c4 : (a, b) ∈ r^^(d a)

and c5 : ∀ i ′. (∃ b ∈ Field s. (a, b) ∈ r^^(i ′)) −→ (d a) ≤ i ′
using b3 b7 q1 by blast

have c6 : d a ≥ 1 using c1 c4 b7 q3 by force
then have d a = Suc ((d a) − 1 ) by simp
then obtain a ′ where c7 : (a,a ′) ∈ r ∧ (a ′,b) ∈ r^^((d a) − 1 )

using c4 relpow-Suc-D2 [of a b d a − 1 r ] by metis
moreover then have a ′ /∈ Field s using c2 c5 by (metis less-Suc-eq-le

not-less-eq relpow-1 )
ultimately have (a,a ′) ∈ r ∧ a ′ ∈ Field r − Field s unfolding Field-def by

blast
then have a ′ ∈ B a unfolding b5 by blast
moreover have h a ∈ H a using c1 b8 by blast
ultimately have d (h a) ≤ d a ′ unfolding b6 by blast
moreover have Suc (d a ′) ≤ d a
proof −

have d a ′ ≤ d a − 1 using q1 b3 c7 c3 unfolding Field-def by blast
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then show ?thesis using c6 by force
qed
moreover have d a ≤ (Suc (d (h a)))
proof −

have d1 : (a, h a) ∈ r using c1 b5 b6 b8 by blast
then have h a ∈ Field r unfolding Field-def by blast
then obtain b ′ where b ′ ∈ Field s ∧ ((h a), b ′) ∈ r^^(d (h a)) using b3 q1

by blast
moreover then have (a,b ′) ∈ r^^(Suc (d (h a))) using d1 c7 by (meson

relpow-Suc-I2 )
ultimately show d a ≤ (Suc (d (h a))) using c5 by blast

qed
ultimately have d a = Suc (d (h a)) by force
moreover have d (h a) > 1 −→ h a ∈ D
proof

assume d1 : d (h a) > 1
then have d2 : (a, h a) ∈ r using c1 b5 b6 b8 by simp
then have isd (h a) (d (h a)) using d1 q1 unfolding Field-def by force
then have (h a) /∈ Field s using d1 b3 by force
then show h a ∈ D using d2 q4 unfolding Field-def by blast

qed
ultimately show d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) by blast

qed
obtain g1 where b9 : g1 = { (a, b). a ∈ D ∧ b = h a } by blast
have q6 : ∀ a ∈ D. ∃ a ′ ∈ D. d a ′ = 1 ∧ (a,a ′) ∈ g1^∗
proof −

have ∀ n. ∀ a ∈ D. d a = Suc n −→ ((h^^n) a) ∈ D ∧ d ((h^^n) a) = 1
proof

fix n0
show ∀ a ∈ D. d a = Suc n0 −→ ((h^^n0 ) a) ∈ D ∧ d ((h^^n0 ) a) = 1
proof (induct n0 )

show ∀ a∈D. d a = Suc 0 −→ ((h^^0 ) a) ∈ D ∧ d ((h ^^ 0 ) a) = 1
using q4 by force

next
fix n
assume d1 : ∀ a∈D. d a = Suc n −→ ((h^^n) a) ∈ D ∧ d ((h ^^ n) a) = 1
show ∀ a∈D. d a = Suc (Suc n) −→ ((h^^(Suc n)) a) ∈ D ∧ d ((h ^^ Suc

n) a) = 1
proof (intro ballI impI )

fix a
assume e1 : a ∈ D and e2 : d a = Suc (Suc n)
then have d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) using q5

by simp
moreover then have e3 : d (h a) = Suc n using e2 by simp
ultimately have d (h a) > 1 −→ ((h^^n) (h a)) ∈ D ∧ d ((h^^n) (h a))

= 1 using d1 by blast
moreover have (h^^n) (h a) = (h^^(Suc n)) a by (metis comp-apply

funpow-Suc-right)
moreover have e4 : d (h a) = 1 −→ d ((h^^(Suc n)) a) = 1 using e3

147



by simp
moreover have d (h a) = 1 −→ ((h^^(Suc n)) a) ∈ D
proof

assume f1 : d (h a) = 1
then have f2 : n = 0 ∧ (a, h a) ∈ r using e1 e3 b5 b6 b8 by simp
then have isd (h a) 1 using f1 q1 unfolding Field-def by force
then have (h a) /∈ Field s using b3 by force
then have (h a) ∈ D using q4 f2 unfolding Field-def by blast
then show ((h^^(Suc n)) a) ∈ D using f2 by simp

qed
moreover have d (h a) = 1 ∨ d (h a) > 1 using e3 by force
ultimately show ((h^^(Suc n)) a) ∈ D ∧ d ((h ^^ (Suc n)) a) = 1 by

force
qed

qed
qed
moreover have ∀ i. ∀ a ∈ D. d a > i −→ (a, (h^^i) a) ∈ g1^∗
proof

fix i0
show ∀ a ∈ D. d a > i0 −→ (a, (h^^i0 ) a) ∈ g1^∗
proof (induct i0 )

show ∀ a∈D. d a > 0 −→ (a, (h^^0 ) a) ∈ g1^∗ by force
next

fix i
assume d1 : ∀ a∈D. d a > i −→ (a, (h^^i) a) ∈ g1^∗
show ∀ a∈D. d a > (Suc i) −→ (a, (h^^(Suc i)) a) ∈ g1^∗
proof (intro ballI impI )

fix a
assume e1 : a ∈ D and e2 : d a > (Suc i)
then have e3 : d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) using

q5 by simp
moreover then have e4 : d (h a) > i using e2 by simp
ultimately have d (h a) > 1 −→ (h a, (h^^i) (h a)) ∈ g1^∗ using d1

by simp
moreover have (h^^i) (h a) = (h^^(Suc i)) a by (metis comp-apply

funpow-Suc-right)
moreover have d (h a) = 1 −→ (h^^(Suc i)) a = (h a) using e4 by

force
moreover have d (h a) = 1 ∨ d (h a) > 1 using e4 by force
moreover then have (a, h a) ∈ g1 using e1 e3 unfolding b9 by simp
ultimately show (a, (h^^(Suc i)) a) ∈ g1^∗

by (metis converse-rtrancl-into-rtrancl r-into-rtrancl)
qed

qed
qed
ultimately have ∀n. ∀ a∈D. d a = Suc n −→ (h^^n) a ∈ D ∧ d ((h^^n) a)

= 1 ∧ (a, (h ^^ n) a) ∈ g1^∗
by simp

then have ∀n. ∀ a∈D. d a = Suc n −→ (∃ a ′ ∈ D. d a ′ = 1 ∧ (a,a ′) ∈ g1^∗ )
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by blast
moreover have ∀ a ∈ D. ∃ n. d a = Suc n using q3 q4 q5 by force
ultimately show ?thesis by blast

qed
obtain r1 where b19 : r1 = s ∪ g1 by blast
have t1 : g1 ⊆ r1 using b19 by blast
have b20 : s ⊆ r1 using b19 by blast
have b21 : r1 ⊆ r
proof −

have ∀ a ∈ D. (a, h a) ∈ r using b5 b6 b8 by blast
then have g1 ⊆ r using b9 by blast
then show ?thesis using b0 b19 by blast

qed
have b22 : ∀ a ∈ Field r1 − Field s. ∃ b ∈ Field s. (a, b) ∈ r1^∗
proof

fix a
assume d1 : a ∈ Field r1 − Field s
then have a ∈ D using q4 b21 unfolding Field-def by blast
then obtain a ′ where d2 : a ′ ∈ D ∧ d a ′ = 1 ∧ (a, a ′) ∈ g1^∗ using q6 by

blast
then have d3 : (a ′, h a ′) ∈ r1 ∧ h a ′ ∈ H a ′ using b8 b9 t1 by blast
obtain b where b ∈ Field s ∧ (a ′,b) ∈ r using d2 q1 q4 b3 by force
moreover then have isd b (d b) using q1 unfolding Field-def by blast
ultimately have b ∈ B a ′ ∧ d b = 0 using b3 b5 by force
then have d (h a ′) = 0 using d3 b6 by force
then have isd (h a ′) 0 using q1 d3 b21 unfolding Field-def by force
then have h a ′ ∈ Field s using b3 by force
moreover have (a, a ′) ∈ r1^∗ using d2 t1 rtrancl-mono[of g1 r1 ] by blast
ultimately have (h a ′) ∈ Field s ∧ (a, h a ′) ∈ r1^∗ using d3 by force
then show ∃ b ∈ Field s. (a, b) ∈ r1^∗ by blast

qed
have b23 : Field r ⊆ Field r1
proof −

have (Field r − Field s) ⊆ Field r1 using q4 b9 t1 unfolding Field-def by
blast

moreover have Field s ⊆ Field r1 using b20 unfolding Field-def by blast
ultimately show Field r ⊆ Field r1 by blast

qed
have Field r1 ⊆ Field r using b21 unfolding Field-def by blast
then have r1 ∈ Span r using b21 b23 unfolding Span-def by blast
moreover have CCR r1
proof −

have s ∈ U r1 using b20 b22 a1 unfolding U-def by blast
then show CCR r1 using lem-rcc-uset-ne-ccr by blast

qed
moreover have single-valued r1
proof −

have ∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1 −→ b = c
proof (intro allI impI )
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fix a b c
assume (a,b) ∈ r1 ∧ (a,c) ∈ r1

moreover have (a,b) ∈ s ∧ (a,c) ∈ s −→ b = c using a2 unfolding
single-valued-def by blast

moreover have (a,b) ∈ s ∧ (a,c) ∈ g1 −→ False using b9 b7 unfolding
Field-def by blast

moreover have (a,b) ∈ g1 ∧ (a,c) ∈ s −→ b = c using b9 b7 unfolding
Field-def by blast

moreover have (a,b) ∈ g1 ∧ (a,c) ∈ g1 −→ b = c using b9 by blast
ultimately show b = c using b19 by blast

qed
then show ?thesis unfolding single-valued-def by blast

qed
moreover have acyclic s −→ acyclic r1
proof

assume c1 : acyclic s
have c2 : ∀ a ′ ∈ D. d a ′ = 1 −→ d (h a ′) = 0
proof (intro ballI impI )

fix a ′

assume d1 : a ′ ∈ D and d2 : d a ′ = 1
then have d3 : (a ′, h a ′) ∈ r1 ∧ h a ′ ∈ H a ′ using b8 b9 t1 by blast
obtain b where b ∈ Field s ∧ (a ′,b) ∈ r using d1 d2 q1 q4 b3 by force
moreover then have isd b (d b) using q1 unfolding Field-def by blast
ultimately have b ∈ B a ′ ∧ d b = 0 using b3 b5 by force
then show d (h a ′) = 0 using d3 b6 by force

qed
have c3 : ∀ a b. (a,b) ∈ g1 −→ d b < d a
proof (intro allI impI )

fix a b
assume (a,b) ∈ g1
then have d1 : a ∈ D ∧ b = h a using b9 by blast
then have d a > 1 ∨ d a = 1 and d a > 1 −→ d b < d a using q3 q4 q5

by force+
moreover have d a = 1 −→ d b < d a using d1 c2 by force
ultimately show d b < d a by blast

qed
have c4 : ∀ n. ∀ a b. (a,b) ∈ g1^^(Suc n) −→ d b < d a
proof

fix n
show ∀ a b. (a,b) ∈ g1^^(Suc n) −→ d b < d a
proof (induct n)

show ∀ a b. (a, b) ∈ g1 ^^ (Suc 0 ) −→ d b < d a using c3 by force
next

fix n
assume e1 : ∀ a b. (a, b) ∈ g1 ^^ (Suc n) −→ d b < d a
show ∀ a b. (a, b) ∈ g1 ^^ (Suc (Suc n)) −→ d b < d a
proof (intro allI impI )

fix a b
assume (a, b) ∈ g1 ^^ (Suc (Suc n))
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then obtain c where (a,c) ∈ g1^^(Suc n) ∧ (c,b) ∈ g1 by force
then have d c < d a ∧ d b < d c using e1 c3 by blast
then show d b < d a by simp

qed
qed

qed
have ∀ x. (x,x) ∈ g1^+ −→ False
proof (intro allI impI )

fix x
assume (x,x) ∈ g1^+
then obtain m::nat where m > 0 ∧ (x,x) ∈ g1^^m using trancl-power by

blast
moreover then obtain n where m = Suc n using less-imp-Suc-add by

blast
ultimately have d x < d x using c4 by blast
then show False by blast

qed
then have acyclic g1 unfolding acyclic-def by blast

moreover have ∀ a b c. (a,b) ∈ s ∧ (b,c) ∈ g1 −→ False using b9 b7
unfolding Field-def by blast

moreover have r1 = s ∪ g1 using b19 by blast
ultimately show acyclic r1 using c1 lem-acyc-un-emprd by blast

qed
ultimately show ?thesis using b20 by blast

qed

lemma lem-incrfun-nat: ∀ i::nat. f i < f (Suc i) =⇒ ∀ i j. i ≤ j −→ f i + (j−i)
≤ f j
proof −

assume a1 : ∀ i::nat. f i < f (Suc i)
have ∀ j. ∀ i. i≤j −→ f i + (j−i) ≤ f j
proof

fix j0
show ∀ i. i≤j0 −→ f i + (j0−i) ≤ f j0
proof (induct j0 )

show ∀ i≤0 . f i + (0 − i) ≤ f 0 by simp
next

fix j
assume c1 : ∀ i≤j. f i + (j − i) ≤ f j
show ∀ i≤Suc j. f i + (Suc j − i) ≤ f (Suc j)
proof (intro allI impI )

fix i
assume d1 : i ≤ Suc j
show f i + (Suc j − i) ≤ f (Suc j)
proof (cases i ≤ j)

assume i ≤ j
moreover then have f i + (j − i) ≤ f j using c1 by blast
ultimately show ?thesis using a1

by (metis Suc-diff-le Suc-le-eq add-Suc-right not-le order-trans)
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next
assume ¬ i ≤ j
then have i = Suc j using d1 by simp
then show ?thesis by simp

qed
qed

qed
qed
then show ∀ i j. i ≤ j −→ f i + (j−i) ≤ f j by blast

qed

lemma lem-sv-uset-rcceqw:
fixes r :: ′U rel
assumes a1 : ‖r‖ =o ω-ord
shows ∃ r1 ∈ U r . single-valued r1 ∧ acyclic r1 ∧ (∀ x ∈ Field r1 . r1‘‘{x} 6= {})
proof −

have ¬ ( ‖r‖ <o ω-ord ) using a1 by (metis not-ordLess-ordIso)
then obtain s where b1 : s ∈ U r ∧ |s| =o ‖r‖ using lem-rcc-uset-ne lem-uset-ne-rcc-inf

by blast
then have |Field s| =o ω-ord
using a1 lem-rel-inf-fld-card[of s] by (metis ordIso-natLeq-infinite1 ordIso-transitive)

then obtain ai where b2 : Field s = ai ‘ (UNIV ::nat set) using lem-cntset-enum
by blast

obtain f where b3 : f = (λ x. SOME y. (x,y) ∈ r^∗ ∧ y ∈ Field s ) by blast
obtain g where b4 : g = (λ A. SOME y. y ∈ Field r ∧ A ⊆ dncl r {y}) by blast
obtain h where b5 : h = (λ A. SOME y. y ∈ Field r − dncl r A) by blast
have b6 :

∧
x. x ∈ Field r =⇒ (x, f x) ∈ r^∗ ∧ f x ∈ Field s

proof −
fix x
assume x ∈ Field r
then have ∃ y. (x,y) ∈ r^∗ ∧ y ∈ Field s using b1 unfolding U-def by blast
then show (x,f x) ∈ r^∗ ∧ f x ∈ Field s

using b3 someI-ex[of λ y. (x,y) ∈ r^∗ ∧ y ∈ Field s ] by blast
qed
have b7 :

∧
A. finite A ∧ A ⊆ Field r =⇒ g A ∈ Field r ∧ A ⊆ dncl r {g A}

proof −
fix A:: ′U set
assume c1 : finite A ∧ A ⊆ Field r
moreover have CCR r using b1 lem-rcc-uset-ne-ccr by blast
ultimately obtain s where c2 : finite s ∧ CCR s ∧ s ⊆ r ∧ A ⊆ Field s

using lem-Ccext-finsubccr-dext[of r A] by blast
then have c3 : Conelike s using lem-Relprop-fin-ccr by blast
have ∃ y. y ∈ Field r ∧ A ⊆ dncl r {y}
proof (cases A = {})

assume A = {}
moreover have r 6= {} using a1 lem-rcc-emp lem-Rcc-inf-lim by (metis

ordIso-iff-ordLeq)
moreover then have Field r 6= {} unfolding Field-def by force
ultimately show ?thesis unfolding dncl-def by blast
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next
assume d1 : A 6= {}
then have s 6= {} using c2 unfolding Field-def by blast

then obtain y where ∀ x∈A. (x, y) ∈ s^∗ using c2 c3 unfolding Conelike-def
by blast

then have d2 : ∀ x ∈ A. (x,y) ∈ r^∗ using c2 rtrancl-mono by blast
obtain x0 where x0 ∈ A ∩ Field r using d1 c1 c2 by blast
moreover then have (x0 , y) ∈ r^∗ using d2 by blast
ultimately have y ∈ Field r using lem-rtr-field[of x0 y r ] by blast
then show ?thesis using d2 unfolding dncl-def by blast

qed
then show g A ∈ Field r ∧ A ⊆ dncl r {g A}

using b4 someI-ex[of λ y. y ∈ Field r ∧ A ⊆ dncl r {y}] by blast
qed
have b8 :

∧
A:: ′U set. finite A =⇒ (h A) ∈ Field r − dncl r A

proof −
fix A:: ′U set
assume c1 : finite A
have Field r − dncl r A = {} −→ False
proof

assume Field r − dncl r A = {}
then have ∀ x ∈ Field r . ∃ y ∈ A ∩ Field r . (x,y) ∈ r^∗

using lem-rtr-field[of - - r ] unfolding dncl-def by blast
then have A ∩ Field r ∈ SCF r unfolding SCF-def by blast
then have scf r ≤o |A ∩ Field r | using lem-scf-uset-mem-bnd by blast
moreover have |A ∩ Field r | <o ω-ord using c1 finite-iff-ordLess-natLeq by

blast
ultimately have scf r <o ω-ord by (metis ordLeq-ordLess-trans)

moreover have ‖r‖ =o scf r using b1 lem-scf-ccr-scf-rcc-eq[of r ] lem-rcc-uset-ne-ccr [of
r ] by blast

ultimately show False using a1
by (meson not-ordLeq-ordLess ordIso-iff-ordLeq ordLess-ordLeq-trans)

qed
then show (h A) ∈ Field r − dncl r A

using b5 someI-ex[of λ y. y ∈ Field r − dncl r A] by blast
qed
obtain Ci where b9 : Ci = rec-nat { ai 0 } (λ n B. B ∪ {f (g({(h B)} ∪ B ∪

ai‘{k. k≤n}))}) by blast
then have b10 : Ci 0 = {ai 0}

and b11 :
∧

n. Ci (Suc n) = Ci n ∪ {f (g({(h (Ci n))} ∪ Ci n ∪ ai‘{k.
k≤n}))} by simp+

have b12 : Field s ⊆ Field r using b1 unfolding U-def Field-def by blast
have b13 :

∧
n. Ci n ⊆ Field s ∧ finite (Ci n)

proof −
fix n
show Ci n ⊆ Field s ∧ finite (Ci n)
proof (induct n)

show Ci 0 ⊆ Field s ∧ finite (Ci 0 ) using b2 b10 by simp
next
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fix n
assume Ci n ⊆ Field s ∧ finite (Ci n)
moreover then have {h (Ci n)} ∪ Ci n ∪ ai ‘ {k. k ≤ n} ⊆ Field r using

b2 b8 b12 by blast
ultimately show Ci (Suc n) ⊆ Field s ∧ finite (Ci (Suc n)) using b6 b7 b11

by simp
qed

qed
have b14 :

∧
n. ∃ m∈(Ci n). Ci n ∪ ai‘{k. k≤n−1} ⊆ dncl r {m}

proof −
fix n
show ∃ m∈(Ci n). Ci n ∪ ai‘{k. k≤n−1} ⊆ dncl r {m}
proof (induct n)

show ∃m∈Ci 0 . Ci 0 ∪ ai‘{k. k≤0−1} ⊆ dncl r {m} using b10 unfolding
dncl-def by simp

next
fix n
assume ∃m∈Ci n. Ci n ∪ ai‘{k. k≤n−1} ⊆ dncl r {m}
obtain A where d1 : A = {(h (Ci n))} ∪ Ci n ∪ ai‘{k. k≤n} by blast
obtain m where d2 : m = f (g(A)) by blast
have finite A ∧ A ⊆ Field r using d1 b2 b8 b12 b13 by force
then have d3 : g A ∈ Field r ∧ A ⊆ dncl r {g A} using b7 by blast
then have d4 : (g A, m) ∈ r^∗ ∧ m ∈ Field s using d2 b6 by blast
have m ∈ Ci (Suc n) using d1 d2 b11 by blast

moreover have ai‘{k. k≤n} ⊆ dncl r {m} using d1 d3 d4 unfolding dncl-def
by force

moreover have Ci n ⊆ dncl r {m} using d1 d3 d4 unfolding dncl-def by
force

moreover then have Ci (Suc n) ⊆ dncl r {m} using d1 d2 b11 unfolding
dncl-def by blast

ultimately show ∃m∈Ci (Suc n). Ci (Suc n) ∪ ai‘{k. k≤(Suc n)−1} ⊆
dncl r {m} by force

qed
qed
obtain ci where b15 : ci = (λ n. SOME m. m ∈ Ci n ∧ Ci n ⊆ dncl r {m})

by blast
have b16 :

∧
n. (ci n) ∈ Ci n ∧ Ci n ⊆ dncl r {ci n}

proof −
fix n
have ∃ m∈(Ci n). Ci n ⊆ dncl r {m} using b14 by blast
then show (ci n) ∈ Ci n ∧ Ci n ⊆ dncl r {ci n}

using b15 someI-ex[of λ m. m ∈ Ci n ∧ Ci n ⊆ dncl r {m}] by blast
qed
have b17 :

∧
n. ci (Suc n) /∈ dncl r (Ci n)

proof −
fix n
obtain A where c1 : A = {(h (Ci n))} ∪ Ci n ∪ ai‘{k. k≤n} by blast
then have c2 : finite A ∧ A ⊆ Field r using b2 b8 [of Ci n] b13 [of n] b12 by

blast
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then have c3 : g A ∈ Field r ∧ A ⊆ dncl r {g A} using b7 by simp
then have (h (Ci n), g A) ∈ r^∗ using c1 unfolding dncl-def by blast
moreover have (g A, f (g A)) ∈ r^∗ using c3 b6 [of g A] by blast
moreover have (f (g A), ci (Suc n)) ∈ r^∗ using c1 b11 b16 unfolding

dncl-def by blast
ultimately have (h (Ci n), ci (Suc n)) ∈ r^∗ by force
moreover have h (Ci n) /∈ dncl r (Ci n) using b8 [of Ci n] b13 [of n] by blast
ultimately show ci (Suc n) /∈ dncl r (Ci n) unfolding dncl-def

by (meson Image-iff converse-iff rtrancl-trans)
qed
have ∀ n. (ci n, ci (Suc n)) ∈ r^∗ ∧ ci n 6= ci (Suc n)
proof

fix n
have (ci n, ci (Suc n)) ∈ r^∗ using b11 b16 unfolding dncl-def by blast

moreover have ci n 6= ci (Suc n) using b16 [of n] b17 [of n] unfolding dncl-def
by fastforce

ultimately show (ci n, ci (Suc n)) ∈ r^∗ ∧ ci n 6= ci (Suc n) by blast
qed
then obtain l yi where

b18 : ∀n. (yi n, yi (Suc n)) ∈ r
and b19 : ∀ i j. (i < j) = (l i < l j)
and b20 : ∀ i. yi (l i) = ci i
and b21 : ∀ i. inj-on yi {k. l i ≤ k ∧ k ≤ l (Suc i)}
and b22 : ∀ k. ∃ i. l i ≤ k ∧ Suc k ≤ l (Suc i)

using lem-flatseq[of ci r ] by blast
obtain r ′ where b23 : r ′ = { (x,y). ∃ i. x = yi i ∧ y = yi (Suc i) } by blast
have b24 : ∀ j. ∀ i. i ≤ j −→ (yi i, yi j) ∈ r ′̂ ∗
proof

fix j
show ∀ i. i ≤ j −→ (yi i, yi j) ∈ r ′̂ ∗
proof (induct j)

show ∀ i ≤ 0 . (yi i, yi 0 ) ∈ r ′̂ ∗ by blast
next

fix j
assume d1 : ∀ i ≤ j. (yi i, yi j) ∈ r ′̂ ∗
show ∀ i ≤ Suc j. (yi i, yi (Suc j)) ∈ r ′̂ ∗
proof (intro allI impI )

fix i
assume e1 : i ≤ Suc j
show (yi i, yi (Suc j)) ∈ r ′̂ ∗
proof (cases i ≤ j)

assume i ≤ j
then have (yi i, yi j) ∈ r ′̂ ∗ using d1 by blast
moreover have (yi j, yi (Suc j)) ∈ r ′ using b23 by blast
ultimately show ?thesis by simp

next
assume ¬ i ≤ j
then have i = Suc j using e1 by simp
then show ?thesis using e1 by blast
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qed
qed

qed
qed
have b25 : ∀ j. (∀ i. i ≤ j −→ Ci i ⊆ Ci j)
proof

fix j
show ∀ i. i ≤ j −→ Ci i ⊆ Ci j
proof (induct j)

show ∀ i≤0 . Ci i ⊆ Ci 0 by force
next

fix j
assume ∀ i≤j. Ci i ⊆ Ci j
moreover have Ci j ⊆ Ci (Suc j) using b11 by blast
ultimately show ∀ i≤Suc j. Ci i ⊆ Ci (Suc j) using le-Suc-eq by fastforce

qed
qed
have b26 : ∀ k1 k2 . k1 < k2 −→ yi k1 = yi k2 −→ (∃ i. l i ≤ k1 ∧ k2 ≤ l

(i+2 ))
proof (intro allI impI )

fix k1 ::nat and k2 ::nat
assume d1 : k1 < k2 and d2 : yi k1 = yi k2
obtain i1 i2 where d3 : l i1 ≤ k1 ∧ Suc k1 ≤ l (Suc i1 )

and d4 : l i2 ≤ k2 ∧ Suc k2 ≤ l (Suc i2 ) using b22 by blast
have i1 = i2 −→ False
proof

assume i1 = i2
then have l i1 ≤ k2 ∧ k2 ≤ l (Suc i1 ) using d4 by simp
moreover have l i1 ≤ k1 ∧ k1 ≤ l (Suc i1 ) using d3 by simp
ultimately show False using d1 d2 b21 unfolding inj-on-def by blast

qed
moreover have i2 < i1 −→ False
proof

assume i2 < i1
then have Suc i2 = i1 ∨ Suc i2 < i1 by fastforce
then have l (Suc i2 ) = l i1 ∨ l (Suc i2 ) < l i1 using b19 by blast
then have l (Suc i2 ) ≤ l i1 by fastforce
moreover have l i1 < l (Suc i2 ) using d1 d3 d4 by simp
ultimately show False by simp

qed
moreover have Suc i1 < i2 −→ False
proof

assume e1 : Suc i1 < i2
have k1 ≤ l (Suc i1 ) ∧ l i2 ≤ k2 using d3 d4 by force
then have (yi k1 , yi (l (Suc i1 ))) ∈ r^∗ and (yi (l i2 ), yi k2 ) ∈ r^∗

using b18 b23 b24 rtrancl-mono[of r ′ r ] by blast+
then have e2 : (yi k1 , ci (Suc i1 )) ∈ r^∗ and e3 : (ci i2 , yi k1 ) ∈ r^∗ using

d2 b20 by force+
have Suc i1 ≤ i2−1 ∧ i2−1 ≤ i2 and Suc (i2−1 ) = i2 using e1 by simp+
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then have e4 : ci i2 /∈ dncl r (Ci (i2 − 1 )) and e5 : ci (Suc i1 ) ∈ Ci (i2−1 )

using b16 [of Suc i1 ] b17 [of i2 − 1 ] b25 by fastforce+
have yi k1 /∈ dncl r (Ci (i2−1 )) using e3 e4 unfolding dncl-def

by (meson Image-iff converse-iff rtrancl-trans)
moreover have yi k1 ∈ dncl r (Ci (i2−1 )) using e2 e5 unfolding dncl-def

by blast
ultimately show False by blast

qed
ultimately have Suc i1 = i2 by simp
moreover then have l (Suc i1 ) = l i2 using b19 by blast
ultimately have l i1 ≤ k1 ∧ k2 ≤ l (i1 + 2 ) using d3 d4 by simp
then show ∃ i. l i ≤ k1 ∧ k2 ≤ l (i+2 ) by blast

qed
obtain w where b27 : w = (λ k. k + l ((GREATEST j. l j ≤ k) + 2 )) by blast
have b28 :

∧
k. ∀ k ′. yi k = yi k ′ −→ k ′ < Suc (w k)

proof −
fix k
show ∀ k ′. yi k = yi k ′ −→ k ′ < Suc (w k)
proof (cases ∃ k ′ > k. yi k ′ = yi k)

assume d1 : ∃ k ′ > k. yi k ′ = yi k
have d2 : ∀ k ′. k < k ′ −→ yi k = yi k ′ −→ (∃ i. l i ≤ k ∧ k ′ ≤ l (i+2 ))

using b26 by blast
have d3 : ∀ i. i ≤ l i
proof

fix i
show i ≤ l i
proof (induct i)

show 0 ≤ l 0 by blast
next

fix i
assume i ≤ l i
moreover have l i < l (Suc i) using b19 by blast
ultimately show Suc i ≤ l (Suc i) by simp

qed
qed
obtain i0 where d4 : i0 = (GREATEST j. l j ≤ k) by blast
obtain t where d5 : t = k + l (i0+2 ) by blast
then have t ≥ k by force
moreover have ∀ k ′. yi k ′ = yi k −→ k ′ ≤ t
proof (intro allI impI )

fix k ′

assume e1 : yi k ′ = yi k
have k < k ′ −→ k ′ ≤ t
proof

assume k < k ′

then obtain i where f1 : l i ≤ k ∧ k ′ ≤ l (i+2 ) using e1 d2 by metis
moreover have ∀ y. l y ≤ k −→ y < Suc k using d3 less-Suc-eq-le

order-trans by blast
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ultimately have i ≤ i0 using d4 Greatest-le-nat[of λ j. l j ≤ k i Suc k]
by force

then have l (i+2 ) ≤ l(i0+2 ) using b19 by (metis Suc-less-eq add-2-eq-Suc ′

not-le)
then show k ′ ≤ t using f1 d5 by fastforce

qed
then show k ′ ≤ t using d5 by fastforce

qed
ultimately show ?thesis using d4 d5 b27 by fastforce

next
assume ¬ (∃ k ′ > k. yi k ′ = yi k)
then have ∀ k ′. yi k ′ = yi k −→ k ′ ≤ k using leI by blast
then show ?thesis using b27 by fastforce

qed
qed
obtain q where b29 : q = (λ k. GREATEST k ′. yi k = yi k ′) by blast
have b30 :

∧
k. yi k = yi (q k)

proof −
fix k
show yi k = yi (q k) using b28 [of k] b29 GreatestI-nat[of λ k ′. yi k = yi k ′ k

Suc (w k) ] by force
qed
have b31 :

∧
k k ′. yi k ′ = yi (q k) −→ k ′ ≤ q k

proof
fix k k ′

assume yi k ′ = yi (q k)
then show k ′ ≤ q k using b28 [of k] b29 b30 Greatest-le-nat[of λ k ′. yi k = yi

k ′ k ′ Suc (w k)] by force
qed
obtain p where b32 : p = rec-nat (q 0 ) (λ n y. q (Suc y)) by blast
obtain r1 where b33 : r1 = { (x,y). ∃ i. x = yi (p i) ∧ y = yi (Suc (p i)) }

by blast
have b34 :

∧
i. p i = q (p i)

proof −
fix i
show p i = q (p i)
proof (induct i)

show p 0 = q (p 0 ) using b29 b30 b32 by simp
next

fix i
assume p i = q (p i)
then show p (Suc i) = q (p (Suc i)) using b29 b30 b32 by simp

qed
qed
have b35 :

∧
i j. i≤j −→ p i + (j−i) ≤ p j

proof −
fix i j
have

∧
k. q k = k −→ q k < q (Suc k) using b30 b31 by (metis less-eq-Suc-le)

then have ∀ i. p i < p (Suc i) using b32 b34 by simp

158



then show i≤j −→ p i + (j−i) ≤ p j using lem-incrfun-nat[of p] by blast
qed
have b36 : ∀ i j. p i = p j −→ i = j
proof (intro allI impI )

fix i j
assume p i = p j
then have i≤j −→ i = j and j≤i −→ j = i using b35 by fastforce+
then show i = j by fastforce

qed
have b37 : ∀ i j. yi (p i) = yi (p j) −→ i = j using b29 b34 b36 by metis
have b38 : ∀ x ∈ Field r1 . ∃ i. x = yi (p i)
proof

fix x
assume x ∈ Field r1
moreover have ∀ i. yi (Suc (p i)) = yi (p (Suc i)) using b30 b32 by simp
ultimately show ∃ i. x = yi (p i) using b33 unfolding Field-def by force

qed
have b39 :

∧
i. (yi (p i), yi (p (Suc i))) ∈ r1 using b30 b32 b33 by fastforce

have b40 : ∀ j. ∀ i. i ≤ j −→ (yi (p i), yi (p j)) ∈ r1^∗
proof

fix j0
show ∀ i. i ≤ j0 −→ (yi (p i), yi (p j0 )) ∈ r1^∗
proof (induct j0 )

show ∀ i≤0 . (yi (p i), yi (p 0 )) ∈ r1^∗ by blast
next

fix j
assume d1 : ∀ i≤j. (yi (p i), yi (p j)) ∈ r1^∗
show ∀ i≤Suc j. (yi (p i), yi (p (Suc j))) ∈ r1^∗
proof (intro allI impI )

fix i
assume e1 : i≤Suc j
show (yi (p i), yi (p (Suc j))) ∈ r1^∗
proof (cases i = Suc j)

assume i = Suc j
then show ?thesis by force

next
assume i 6= Suc j
then have (yi (p i), yi (p j)) ∈ r1^∗ using e1 d1 by simp
then show ?thesis using e1 d1 b39 [of j] by simp

qed
qed

qed
qed
have r1 ⊆ r ′ using b23 b33 by blast
moreover have ∀ a ∈ Field r ′. ∃ b ∈ Field r1 . (a, b) ∈ r ′̂ ∗
proof

fix a
assume a ∈ Field r ′

then obtain k where a = yi k using b23 unfolding Field-def by blast
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moreover have k ≤ p k using b35 [of 0 k] by fastforce
ultimately have (a, yi (p k)) ∈ r ′̂ ∗ using b24 by blast
moreover have yi (p k) ∈ Field r1 using b33 unfolding Field-def by blast
ultimately show ∃ b ∈ Field r1 . (a, b) ∈ r ′̂ ∗ by blast

qed
moreover have CCR r1
proof −

have ∀ a∈Field r1 . ∀ b∈Field r1 . ∃ c∈Field r1 . (a, c) ∈ r1^∗ ∧ (b, c) ∈ r1^∗
proof (intro ballI )

fix a b
assume d1 : a ∈ Field r1 and d2 : b ∈ Field r1
then obtain i j where a = yi (p i) ∧ b = yi (p j) using b38 by blast
then have i ≤ j −→ (a,b) ∈ r1^∗ and j ≤ i −→ (b,a) ∈ r1^∗ using b40 by

blast+
then show ∃ c∈Field r1 . (a, c) ∈ r1^∗ ∧ (b, c) ∈ r1^∗ using d1 d2 by

fastforce
qed
then show CCR r1 unfolding CCR-def by blast

qed
ultimately have b41 : r1 ∈ U r ′ unfolding U-def by blast
then have CCR r ′ using lem-rcc-uset-ne-ccr by blast
moreover have r ′ ⊆ r using b18 b23 by blast
moreover have ∀ x ∈ Field r . ∃ y ∈ Field r ′. (x, y) ∈ r^∗
proof

fix x
assume c1 : x ∈ Field r
then obtain y where c2 : y ∈ Field s ∧ (x,y) ∈ r^∗ using b1 unfolding U-def

by blast
then obtain n where y = ai n using b2 by blast
then obtain m where y ∈ dncl r {m} ∧ m ∈ Ci (Suc n) using b14 [of Suc

n] by force
then have (y, m) ∈ r^∗ ∧ (m, ci (Suc n)) ∈ r^∗ using b16 unfolding dncl-def

by blast
then have (x, ci (Suc n)) ∈ r^∗ using c2 by force
moreover obtain y ′ where c2 : y ′ = yi (l (Suc n)) by blast
ultimately have c3 : (x,y ′) ∈ r^∗ using b20 by metis
have (y ′, yi (Suc (l (Suc n)))) ∈ r ′ using c2 b23 by blast
then have y ′ ∈ Field r ′ unfolding Field-def by blast
then show ∃ y ∈ Field r ′. (x, y) ∈ r^∗ using c3 by blast

qed
ultimately have r ′ ∈ U r unfolding U-def by blast
then have r1 ∈ U r using b41 lem-rcc-uset-tr by blast
moreover have single-valued r1 using b33 b37 unfolding single-valued-def by

blast
moreover have acyclic r1
proof −

have c1 : ∀ n. ∀ i j. (yi (p i), yi (p j)) ∈ r1^^(Suc n) −→ i < j
proof

fix n0
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show ∀ i j. (yi (p i), yi (p j)) ∈ r1^^(Suc n0 ) −→ i < j
proof (induct n0 )

show ∀ i j. (yi (p i), yi (p j)) ∈ r1 ^^ (Suc 0 ) −→ i < j
proof (intro allI impI )

fix i j
assume (yi (p i), yi (p j)) ∈ r1^^(Suc 0 )
then obtain i ′ j ′::nat where yi (p i) = yi (p i ′) ∧ yi (p j) = yi (Suc (p

i ′)) using b33 by force
then have i = i ′ ∧ j = Suc i ′ using b30 b32 b37 by simp
then show i < j by blast

qed
next

fix n
assume d1 : ∀ i j. (yi (p i), yi (p j)) ∈ r1 ^^ (Suc n) −→ i < j
show ∀ i j. (yi (p i), yi (p j)) ∈ r1 ^^ Suc (Suc n) −→ i < j
proof (intro allI impI )

fix i j
assume (yi (p i), yi (p j)) ∈ r1 ^^ Suc (Suc n)
then obtain x where (yi (p i), x) ∈ r1 ^^ (Suc n) ∧ (x, yi (p j)) ∈ r1

by force
moreover then obtain k where x = yi (p k) using b38 unfolding

Field-def by blast
ultimately have e1 : i < k ∧ (yi (p k), yi (p j)) ∈ r1 using d1 by blast
then obtain i ′ j ′::nat where yi (p k) = yi (p i ′) ∧ yi (p j) = yi (Suc (p

i ′)) using b33 by force
then have k = i ′ ∧ j = Suc i ′ using b30 b32 b37 by simp
then have k < j by blast
then show i < j using e1 by simp

qed
qed

qed
have ∀ x. (x,x) ∈ r1^+ −→ False
proof (intro allI impI )

fix x
assume d1 : (x,x) ∈ r1^+

then have x ∈ Field r1 by (metis FieldI2 Field-def trancl-domain trancl-range)
then obtain i where x = yi (p i) using b38 by blast

moreover obtain m::nat where m > 0 ∧ (x,x) ∈ r1^^m using d1 trancl-power
by blast

moreover then obtain n where m = Suc n using less-imp-Suc-add by
blast

ultimately have n < n using c1 by blast
then show False by blast

qed
then show ?thesis unfolding acyclic-def by blast

qed
moreover have ∀ x ∈ Field r1 . r1‘‘{x} 6= {}
proof

fix x

161



assume x ∈ Field r1
then obtain i where x = yi (p i) using b38 by blast
moreover then obtain y where y = yi (Suc (p i)) by blast
ultimately have (x,y) ∈ r1 using b33 by blast
then show r1‘‘{x} 6= {} by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-sv-span-scflew:
fixes r :: ′U rel
assumes CCR r and scf r ≤o ω-ord
shows ∃ r1 . r1 ∈ Span r ∧ CCR r1 ∧ single-valued r1
proof (cases ‖r‖ =o ω-ord)

assume ‖r‖ =o ω-ord
then obtain s where s ∈ U r ∧ single-valued s using lem-sv-uset-rcceqw by

blast
then show ?thesis using lem-sv-uset-sv-span by blast

next
assume ¬ (‖r‖ =o ω-ord)
then have ‖r‖ <o ω-ord using assms lem-scf-ccr-scf-rcc-eq[of r ]

by (metis ordIso-ordLess-trans ordIso-transitive ordLeq-iff-ordLess-or-ordIso)
then have b1 : Conelike r using assms lem-Rcc-eq2-31 by blast
have ∃ s. s ∈ U r ∧ single-valued s
proof (cases r = {})

assume r = {}
then have {} ∈ U r unfolding U-def CCR-def Field-def by blast
moreover have single-valued {} unfolding single-valued-def by blast
ultimately show ?thesis by blast

next
assume r 6= {}
then obtain m where c1 : m ∈ Field r ∧ (∀ a ∈ Field r . (a, m) ∈ r^∗) using

b1 unfolding Conelike-def by blast
then obtain u v where c2 : (u, v) ∈ r ∧ (u = m ∨ v = m) unfolding Field-def

by blast
obtain s where c3 : s = {(u,v)} by blast
have s ⊆ r using c2 c3 by blast
moreover have CCR s using c3 unfolding CCR-def by fastforce
moreover have ∀ a∈Field r . ∃ b∈Field s. (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
moreover have m ∈ Field s using c2 c3 unfolding Field-def by fastforce
ultimately show ∃ b∈Field s. (a, b) ∈ r^∗ using c1 by blast

qed
ultimately have s ∈ U r unfolding U-def by blast
moreover have single-valued s using c3 unfolding single-valued-def by blast
ultimately show ?thesis by blast

qed
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then show ?thesis using lem-sv-uset-sv-span by blast
qed

lemma lem-sv-span-scfeqw:
fixes r :: ′U rel
assumes CCR r and scf r =o ω-ord
shows ∃ r1 . r1 ∈ Span r ∧ r1 6= {} ∧ CCR r1 ∧ single-valued r1 ∧ acyclic r1 ∧
(∀ x∈Field r1 . r1‘‘{x} 6= {})
proof −

have b1 : ‖r‖ =o ω-ord using assms lem-scf-ccr-scf-rcc-eq[of r ] by (metis or-
dIso-transitive)

then obtain s where s ∈ U r ∧ single-valued s ∧ acyclic s ∧ (∀ x∈Field s. s‘‘{x}
6= {})

using lem-sv-uset-rcceqw by blast
then obtain r1 where b2 : r1 ∈ Span r ∧ CCR r1 ∧ single-valued r1 ∧ s ⊆ r1
∧ acyclic r1

using lem-sv-uset-sv-span[of s r ] by blast
moreover have r1 = {} −→ False
proof

assume r1 = {}
then have r = {} using b2 unfolding Span-def Field-def by force
then show False using b1 lem-Rcc-inf-lim lem-rcc-emp lem-rcc-inf by (metis

not-ordLess-ordIso)
qed
moreover have ∀ x∈Field r1 . r1‘‘{x} = {} −→ False
proof (intro ballI impI )

fix x
assume c1 : x ∈ Field r1 and c2 : r1‘‘{x} = {}
have ∀ a∈Field r1 . (a, x) ∈ r1^∗
proof

fix a
assume a ∈ Field r1
then obtain t where (x,t) ∈ r1^∗ ∧ (a,t) ∈ r1^∗ using c1 b2 unfolding

CCR-def by blast
moreover then have x = t using c2 by (metis Image-singleton-iff con-

verse-rtranclE empty-iff )
ultimately show (a,x) ∈ r1^∗ by blast

qed
then have Conelike r1 using c1 unfolding Conelike-def by blast
moreover have r1 ∈ U r using b2 unfolding U-def Span-def by blast
ultimately have Conelike r using lem-uset-cl-ext[of r1 r ] by blast
then show False using b1 lem-Rcc-eq2-12 [of r ] lem-Rcc-eq2-23 [of r ] by (metis

not-ordLess-ordIso)
qed
ultimately show ?thesis by blast

qed

lemma lem-Ldo-den-ccr-uset:
fixes r s:: ′U rel
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assumes CCR s and s ⊆ r ∧ Field s ∈ Den r
shows s ∈ U r

using assms unfolding Den-def U-def by blast

lemma lem-Ldo-ds-reduc:
fixes r s:: ′U rel and n0 ::nat
assumes a1 : CCR s ∧ DCR n0 s and a2 : s ⊆ r and a3 : Field s ∈ Den r and
a4 : Field s ∈ Inv (r − s)
shows CCR r ∧ DCR (Suc n0 ) r
proof −

obtain g0 where b1 : DCR-generating g0
and b2 : s =

⋃
{r ′. ∃α ′. α ′ < n0 ∧ r ′ = g0 α ′}

using a1 unfolding DCR-def by blast
obtain g :: nat ⇒ ′U rel

where b8 : g = (λ α. if (α < n0 ) then (g0 α) else (r− s)) by blast
obtain n :: nat where b9 : n = (Suc n0 ) by blast
have b11 :

∧
α. α < n0 =⇒ g α = (g0 α) using b8 by simp

have b12 :
∧

α. ¬ (α < n0 ) =⇒ g α = (r− s) using b8 by force
have ∀α β a b c.

α ≤ β −→ (a, b) ∈ g α ∧ (a, c) ∈ g β −→
(∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)

proof (intro allI impI )
fix α β a b c
assume c0 : α ≤ β and c1 : (a, b) ∈ g α ∧ (a, c) ∈ g β
have α < n0 ∧ β < n0
−→ (∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)

proof
assume d1 : α < n0 ∧ β < n0
moreover then have (a, b) ∈ g0 α ∧ (a, c) ∈ g0 β using c1 b11 by blast
then obtain b ′ b ′′ c ′ c ′′ d where d2 : (b, b ′, b ′′, d) ∈ D g0 α β ∧ (c, c ′, c ′′,

d) ∈ D g0 β α
using b1 unfolding DCR-generating-def by blast

have (b, b ′, b ′′, d) ∈ D g α β
proof −

have (b, b ′) ∈ (L1 g α)^∗
proof −

have ∀ α ′. α ′ < α −→ g α ′ = g0 α ′ using d1 b11 by force
then have L1 g α = L1 g0 α unfolding L1-def by blast

moreover have (b,b ′) ∈ (L1 g0 α)^∗ using d2 unfolding D-def by blast
ultimately show ?thesis by metis

qed
moreover have (b ′, b ′′) ∈ (g β)^=
proof −

have g β = g0 β using d1 b11 by blast
moreover have (b ′,b ′′) ∈ (g0 β)^= using d2 unfolding D-def by blast
ultimately show ?thesis by metis

qed
moreover have (b ′′, d) ∈ (Lv g α β)^∗
proof −
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have ∀ α ′. α ′ < α ∨ α ′ < β −→ g α ′ = g0 α ′ using d1 b11 by force
then have Lv g α β = Lv g0 α β unfolding Lv-def by blast
moreover have (b ′′,d) ∈ (Lv g0 α β)^∗ using d2 unfolding D-def by

blast
ultimately show ?thesis by metis

qed
ultimately show ?thesis unfolding D-def by blast

qed
moreover have (c, c ′, c ′′, d) ∈ D g β α
proof −

have (c, c ′) ∈ (L1 g β)^∗
proof −

have ∀ α ′. α ′ < β −→ g α ′ = g0 α ′ using d1 b11 by force
then have L1 g β = L1 g0 β unfolding L1-def by blast

moreover have (c,c ′) ∈ (L1 g0 β)^∗ using d2 unfolding D-def by blast
ultimately show ?thesis by metis

qed
moreover have (c ′, c ′′) ∈ (g α)^=
proof −

have g α = g0 α using d1 b11 by blast
moreover have (c ′,c ′′) ∈ (g0 α)^= using d2 unfolding D-def by blast
ultimately show ?thesis by metis

qed
moreover have (c ′′, d) ∈ (Lv g β α)^∗
proof −

have ∀ α ′. α ′ < α ∨ α ′ < β −→ g α ′ = g0 α ′ using d1 b11 by force
then have Lv g β α = Lv g0 β α unfolding Lv-def by blast
moreover have (c ′′,d) ∈ (Lv g0 β α)^∗ using d2 unfolding D-def by

blast
ultimately show ?thesis by metis

qed
ultimately show ?thesis unfolding D-def by blast

qed
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈

D g β α by blast
qed
moreover have α < n0 ∧ ¬ (β < n0 )
−→ (∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)

proof
assume d1 : α < n0 ∧ ¬ (β < n0 )
then have d2 : (a, b) ∈ g0 α ∧ (g β) = (r − s) using c1 b11 b12 by blast
have d3 : (a,b) ∈ s ∧ (a,c) ∈ r − s using d1 d2 c1 b2 unfolding Field-def

by blast
then have b ∈ Field s ∧ c ∈ Field s using a4 unfolding Field-def Inv-def

by blast
then obtain d where d6 : d ∈ Field s ∧ (b,d) ∈ s^∗ ∧ (c,d) ∈ s^∗

using a1 unfolding CCR-def by blast
have ∀ α ′. α ′ < n0 −→ α ′ < β using d1 by force
then have s ⊆ Lv g α β ∧ s ⊆ Lv g β α using b2 b11 unfolding Lv-def
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by blast
then have (b,d) ∈ (Lv g α β)^∗ ∧ (c,d) ∈ (Lv g β α)^∗ using d6 rtrancl-mono

by blast
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β

α
unfolding D-def by blast

qed
moreover have ¬ (α < n0 ) ∧ (β < n0 ) −→ False using c0 by force
moreover have ¬ (α < n0 ) ∧ ¬ (β < n0 )
−→ (∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)

proof
assume d1 : ¬ (α < n0 ) ∧ ¬ (β < n0 )
then have d2 : (g α) = (r − s) ∧ (g β) = (r − s) using b12 by blast
then have d3 : b ∈ Field r ∧ c ∈ Field r using c1 unfolding Field-def by

blast
obtain b ′′ where d4 : b ′′ ∈ Field s ∧ (b,b ′′) ∈ r^= ∧ ((b,b ′′) ∈ s −→ b = b ′′)

using a3 d3 unfolding Den-def
by (cases ∃ b ′′. (b,b ′′) ∈ s, metis Domain.DomainI Field-def UnCI pair-in-Id-conv,

blast)
obtain c ′′ where d5 : c ′′ ∈ Field s ∧ (c,c ′′) ∈ r^= ∧ ((c,c ′′) ∈ s −→ c = c ′′)

using a3 d3 unfolding Den-def
by (cases ∃ c ′′. (c,c ′′) ∈ s, metis Domain.DomainI Field-def UnCI

pair-in-Id-conv, blast)
obtain d where d6 : d ∈ Field s ∧ (b ′′,d) ∈ s^∗ ∧ (c ′′,d) ∈ s^∗

using d4 d5 a1 unfolding CCR-def by blast
have ∀ α ′. α ′ < n0 −→ α ′ < α using d1 by force
then have s ⊆ Lv g α β ∧ s ⊆ Lv g β α using b2 b11 unfolding Lv-def

by blast
then have (b ′′,d) ∈ (Lv g α β)^∗ ∧ (c ′′,d) ∈ (Lv g β α)^∗ using d6

rtrancl-mono by blast
moreover have (b,b ′′) ∈ (g β)^= using d2 d4 by blast
moreover have (c,c ′′) ∈ (g α)^= using d2 d5 by blast
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈

D g β α
unfolding D-def by blast

qed
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈

D g β α by blast
qed
then have DCR-generating g using lem-Ldo-ldogen-ord by blast
moreover have r =

⋃
{r ′. ∃α ′. α ′ < n ∧ r ′ = g α ′}

proof −
have r ⊆

⋃
{r ′. ∃α ′. α ′ < n ∧ r ′ = g α ′}

proof
fix p
assume c1 : p ∈ r
have ∃ α ′. α ′ < n ∧ p ∈ g α ′

proof (cases p ∈ s)
assume p ∈ s
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then obtain α ′ where α ′ < n0 ∧ p ∈ g α ′ using b2 b11 by blast
moreover then have α ′ < n using b9 by force
ultimately show ∃ α ′. α ′ < n ∧ p ∈ g α ′ by blast

next
assume p /∈ s
moreover have ¬ ( n < n0 ) using b9 by simp
ultimately have p ∈ g n0 using c1 b12 by blast
then show ∃ α ′. α ′ < n ∧ p ∈ g α ′ using b9 by blast

qed
then show p ∈

⋃
{r ′. ∃α ′. α ′ < n ∧ r ′ = g α ′} by blast

qed
moreover have ∀ α ′. g α ′ ⊆ r
proof

fix α ′

have α ′ < n0 −→ g0 α ′ ⊆ r using a2 b2 by blast
then show g α ′ ⊆ r using b8 by (cases α ′ < n0 , force+)

qed
ultimately show ?thesis by force

qed
moreover have CCR r using a1 a2 a3 lem-Ldo-den-ccr-uset lem-rcc-uset-ne-ccr

by blast
ultimately show ?thesis unfolding b9 DCR-def by blast

qed

lemma lem-Ldo-sat-reduc:
fixes r s:: ′U rel and n::nat
assumes a1 : s ∈ Span r and a2 : CCR s ∧ DCR n s
shows CCR r ∧ DCR (Suc n) r
proof −

have Field s ∈ Inv (r − s) using a1 unfolding Span-def Inv-def Field-def by
blast

moreover have s ⊆ r and Field s ∈ Den r using a1 unfolding Span-def
Den-def by blast+

ultimately show ?thesis using a2 lem-Ldo-ds-reduc by blast
qed

lemma lem-Ldo-uset-reduc:
fixes r s:: ′U rel and n0 ::nat
assumes a1 : s ∈ U r and a2 : DCR n0 s and a3 : n0 6= 0
shows DCR (Suc n0 ) r
proof −

have b0 : s ⊆ r using a1 unfolding U-def by blast
obtain g0 where b1 : DCR-generating g0

and b2 : s =
⋃
{r ′. ∃α ′. α ′ < n0 ∧ r ′ = g0 α ′}

using a2 unfolding DCR-def by blast
obtain isd where b3 : isd = (λ a i. ∃ b ∈ Field s. (a, b) ∈ r^^i ∧ (∀ i ′. (∃ b
∈ Field s. (a, b) ∈ r^^(i ′)) −→ i ≤ i ′)) by blast

obtain d where b4 : d = (λ a. SOME i. isd a i) by blast
obtain B where b5 : B = (λ a. { a ′. (a, a ′) ∈ r }) by blast
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obtain H where b6 : H = (λ a. { a ′ ∈ B a. ∀ a ′′ ∈ B a. (d a ′) ≤ (d a ′′) }) by
blast

obtain D where b7 : D = { a ∈ Field r − Field s. H a 6= {}} by blast
obtain h where h = (λ a. SOME a ′. a ′ ∈ H a) by blast
then have b8 : ∀ a ∈ D. h a ∈ H a using b7 someI-ex[of λ a ′. a ′ ∈ H -] by

force
have q1 :

∧
a. a ∈ Field r =⇒ isd a (d a)

proof −
fix a
assume c1 : a ∈ Field r
then obtain b where c2 : b ∈ Field s ∧ (a,b) ∈ r^∗ using a1 unfolding U-def

by blast
moreover obtain N where c3 : N = {i. ∃ b ∈ Field s. (a, b) ∈ r^^i} by blast
ultimately have N 6= {} using rtrancl-imp-relpow by blast
then obtain m where m ∈ N ∧ (∀ i ∈ N . m ≤ i)

using LeastI [of λ x. x ∈ N ] Least-le[of λ x. x ∈ N ] by blast
then have isd a m using c2 c3 unfolding b3 by blast
then show isd a (d a) using b4 someI-ex by metis

qed
have q2 :

∧
a. B a 6= {} =⇒ H a 6= {}

proof −
fix a
assume B a 6= {}
moreover obtain N where c1 : N = d ‘ (B a) by blast
ultimately have N 6= {} by blast
then obtain m where c2 : m ∈ N ∧ (∀ i ∈ N . m ≤ i)

using LeastI [of λ x. x ∈ N ] Least-le[of λ x. x ∈ N ] by blast
then obtain a ′ where c3 : m = d a ′ ∧ a ′ ∈ B a using c1 by blast
moreover then have ∀ a ′′ ∈ B a. d a ′ ≤ d a ′′ using c1 c2 by force
ultimately have a ′ ∈ H a unfolding b6 by blast
then show H a 6= {} by blast

qed
have q3 : ∀ a ∈ Field r − Field s. d a = 1 ∨ d a > 1
proof

fix a
assume c1 : a ∈ Field r − Field s
then have isd a (d a) using q1 by blast
then obtain b where b ∈ Field s ∧ (a, b) ∈ r^^(d a) using b3 by blast
then have d a = 0 −→ False using c1 by force
then show d a = 1 ∨ d a > 1 by force

qed
have Field r − Field s ⊆ D
proof

fix a
assume c1 : a ∈ Field r − Field s
moreover have H a = {} −→ False
proof

assume H a = {}
then have B a = {} using q2 by blast
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moreover obtain b where b ∈ Field s ∧ (a, b) ∈ r^∗ using a1 c1 unfolding
U-def by blast

ultimately have a ∈ Field s unfolding b5 by (metis Collect-empty-eq
converse-rtranclE)

then show False using c1 by blast
qed
ultimately show a ∈ D using b7 by blast

qed
then have q4 : D = Field r − Field s using b5 b6 b7 by blast
have q5 : ∀ a ∈ D. d a > 1 −→ d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈

D)
proof (intro ballI impI )

fix a
assume c1 : a ∈ D and c2 : d a > 1
then obtain b where c3 : b ∈ Field s and c4 : (a, b) ∈ r^^(d a)

and c5 : ∀ i ′. (∃ b ∈ Field s. (a, b) ∈ r^^(i ′)) −→ (d a) ≤ i ′
using b3 b7 q1 by blast

have c6 : d a ≥ 1 using c1 c4 b7 q3 by force
then have d a = Suc ((d a) − 1 ) by simp
then obtain a ′ where c7 : (a,a ′) ∈ r ∧ (a ′,b) ∈ r^^((d a) − 1 )

using c4 relpow-Suc-D2 [of a b d a − 1 r ] by metis
moreover then have a ′ /∈ Field s using c2 c5 by (metis less-Suc-eq-le

not-less-eq relpow-1 )
ultimately have (a,a ′) ∈ r ∧ a ′ ∈ Field r − Field s unfolding Field-def by

blast
then have a ′ ∈ B a unfolding b5 by blast
moreover have h a ∈ H a using c1 b8 by blast
ultimately have d (h a) ≤ d a ′ unfolding b6 by blast
moreover have Suc (d a ′) ≤ d a
proof −

have d a ′ ≤ d a − 1 using q1 b3 c7 c3 unfolding Field-def by blast
then show ?thesis using c6 by force

qed
moreover have d a ≤ (Suc (d (h a)))
proof −

have d1 : (a, h a) ∈ r using c1 b5 b6 b8 by blast
then have h a ∈ Field r unfolding Field-def by blast
then obtain b ′ where b ′ ∈ Field s ∧ ((h a), b ′) ∈ r^^(d (h a)) using b3 q1

by blast
moreover then have (a,b ′) ∈ r^^(Suc (d (h a))) using d1 c7 by (meson

relpow-Suc-I2 )
ultimately show d a ≤ (Suc (d (h a))) using c5 by blast

qed
ultimately have d a = Suc (d (h a)) by force
moreover have d (h a) > 1 −→ h a ∈ D
proof

assume d1 : d (h a) > 1
then have d2 : (a, h a) ∈ r using c1 b5 b6 b8 by simp
then have isd (h a) (d (h a)) using d1 q1 unfolding Field-def by force
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then have (h a) /∈ Field s using d1 b3 by force
then show h a ∈ D using d2 q4 unfolding Field-def by blast

qed
ultimately show d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) by blast

qed
obtain g1 where b9 : g1 = { (a, b). a ∈ D ∧ b = h a } by blast
have q6 : ∀ a ∈ D. ∃ a ′ ∈ D. d a ′ = 1 ∧ (a,a ′) ∈ g1^∗
proof −

have ∀ n. ∀ a ∈ D. d a = Suc n −→ ((h^^n) a) ∈ D ∧ d ((h^^n) a) = 1
proof

fix n0
show ∀ a ∈ D. d a = Suc n0 −→ ((h^^n0 ) a) ∈ D ∧ d ((h^^n0 ) a) = 1
proof (induct n0 )

show ∀ a∈D. d a = Suc 0 −→ ((h^^0 ) a) ∈ D ∧ d ((h ^^ 0 ) a) = 1
using q4 by force

next
fix n
assume d1 : ∀ a∈D. d a = Suc n −→ ((h^^n) a) ∈ D ∧ d ((h ^^ n) a) = 1
show ∀ a∈D. d a = Suc (Suc n) −→ ((h^^(Suc n)) a) ∈ D ∧ d ((h ^^ Suc

n) a) = 1
proof (intro ballI impI )

fix a
assume e1 : a ∈ D and e2 : d a = Suc (Suc n)
then have d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) using q5

by simp
moreover then have e3 : d (h a) = Suc n using e2 by simp
ultimately have d (h a) > 1 −→ ((h^^n) (h a)) ∈ D ∧ d ((h^^n) (h a))

= 1 using d1 by blast
moreover have (h^^n) (h a) = (h^^(Suc n)) a by (metis comp-apply

funpow-Suc-right)
moreover have e4 : d (h a) = 1 −→ d ((h^^(Suc n)) a) = 1 using e3

by simp
moreover have d (h a) = 1 −→ ((h^^(Suc n)) a) ∈ D
proof

assume f1 : d (h a) = 1
then have f2 : n = 0 ∧ (a, h a) ∈ r using e1 e3 b5 b6 b8 by simp
then have isd (h a) 1 using f1 q1 unfolding Field-def by force
then have (h a) /∈ Field s using b3 by force
then have (h a) ∈ D using q4 f2 unfolding Field-def by blast
then show ((h^^(Suc n)) a) ∈ D using f2 by simp

qed
moreover have d (h a) = 1 ∨ d (h a) > 1 using e3 by force
ultimately show ((h^^(Suc n)) a) ∈ D ∧ d ((h ^^ (Suc n)) a) = 1 by

force
qed

qed
qed
moreover have ∀ i. ∀ a ∈ D. d a > i −→ (a, (h^^i) a) ∈ g1^∗
proof
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fix i0
show ∀ a ∈ D. d a > i0 −→ (a, (h^^i0 ) a) ∈ g1^∗
proof (induct i0 )

show ∀ a∈D. d a > 0 −→ (a, (h^^0 ) a) ∈ g1^∗ by force
next

fix i
assume d1 : ∀ a∈D. d a > i −→ (a, (h^^i) a) ∈ g1^∗
show ∀ a∈D. d a > (Suc i) −→ (a, (h^^(Suc i)) a) ∈ g1^∗
proof (intro ballI impI )

fix a
assume e1 : a ∈ D and e2 : d a > (Suc i)
then have e3 : d a = Suc (d (h a)) ∧ (d (h a) > 1 −→ h a ∈ D) using

q5 by simp
moreover then have e4 : d (h a) > i using e2 by simp
ultimately have d (h a) > 1 −→ (h a, (h^^i) (h a)) ∈ g1^∗ using d1

by simp
moreover have (h^^i) (h a) = (h^^(Suc i)) a by (metis comp-apply

funpow-Suc-right)
moreover have d (h a) = 1 −→ (h^^(Suc i)) a = (h a) using e4 by

force
moreover have d (h a) = 1 ∨ d (h a) > 1 using e4 by force
moreover then have (a, h a) ∈ g1 using e1 e3 unfolding b9 by simp
ultimately show (a, (h^^(Suc i)) a) ∈ g1^∗

by (metis converse-rtrancl-into-rtrancl r-into-rtrancl)
qed

qed
qed
ultimately have ∀n. ∀ a∈D. d a = Suc n −→ (h^^n) a ∈ D ∧ d ((h^^n) a)

= 1 ∧ (a, (h ^^ n) a) ∈ g1^∗
by simp

then have ∀n. ∀ a∈D. d a = Suc n −→ (∃ a ′ ∈ D. d a ′ = 1 ∧ (a,a ′) ∈ g1^∗ )
by blast

moreover have ∀ a ∈ D. ∃ n. d a = Suc n using q3 q4 q5 by force
ultimately show ?thesis by blast

qed
let ?cond1 = λ α. α = 0
let ?cond3 = λ α. (1 ≤ α ∧ α < n0 )
obtain g :: nat ⇒ ′U rel

where b12 : g = (λ α. if (?cond1 α) then (g0 α) ∪ g1
else (if (?cond3 α) then (g0 α)
else {} )) by blast

obtain n :: nat where b13 : n = n0 by blast
then have b14 :

∧
α. α < n =⇒ (?cond1 α ∨ ?cond3 α) by force

have b15 :
∧

α. ?cond1 α =⇒ g α = (g0 α) ∪ g1 using b12 by simp
have b17 :

∧
α. ?cond3 α =⇒ g α = (g0 α) using b12 by force

obtain r1 where b19 : r1 =
⋃
{r ′. ∃α ′. α ′ < n ∧ r ′ = g α ′} by blast

have t1 : g1 ⊆ r1 using b15 b19 b13 a3 by blast
have b20 : s ⊆ r1
proof
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fix p
assume p ∈ s
then obtain α ′ where c1 : α ′ < n0 ∧ p ∈ g0 α ′ using b2 by blast
then have c2 : α ′ < n unfolding b13 by fastforce
then have ?cond1 α ′ ∨ ?cond3 α ′ using b14 by blast
then have g0 α ′ ⊆ g α ′ using b12 by fastforce
then show p ∈ r1 using c1 c2 b19 by blast

qed
have b21 : r1 ⊆ r
proof −

have ∀ r ′ α ′. α ′ < n −→ g α ′ ⊆ r
proof (intro allI impI )

fix r ′ α ′

assume d1 : α ′ < n
have ∀ a ∈ D. (a, h a) ∈ r using b5 b6 b8 by blast
then have d2 : g1 ⊆ r using b9 by blast
have (α ′ = 0 ) −→ g α ′ ⊆ r using d2 b0 b2 b15 [of α ′] a3 by blast
moreover have 1 ≤ α ′ −→ g α ′ ⊆ r using b17 b0 b2 b13 d1 by blast
ultimately show g α ′ ⊆ r using d1 b14 by blast

qed
then show r1 ⊆ r unfolding b19 by fast

qed
have b22 : ∀ a ∈ Field r1 − Field s. ∃ b ∈ Field s. (a, b) ∈ r1^∗
proof

fix a
assume d1 : a ∈ Field r1 − Field s
then have a ∈ D using q4 b21 unfolding Field-def by blast
then obtain a ′ where d2 : a ′ ∈ D ∧ d a ′ = 1 ∧ (a, a ′) ∈ g1^∗ using q6 by

blast
then have d3 : (a ′, h a ′) ∈ r1 ∧ h a ′ ∈ H a ′ using q4 b8 b9 t1 a3 by blast
obtain b where b ∈ Field s ∧ (a ′,b) ∈ r using d2 q1 q4 b3 by force
moreover then have isd b (d b) using q1 unfolding Field-def by blast
ultimately have b ∈ B a ′ ∧ d b = 0 using b3 b5 by force
then have d (h a ′) = 0 using d3 b6 by force
then have isd (h a ′) 0 using q1 d3 b21 a3 unfolding Field-def by force
then have h a ′ ∈ Field s using b3 by force
moreover have (a, a ′) ∈ r1^∗ using d2 t1 rtrancl-mono[of g1 r1 ] a3 by blast
ultimately have (h a ′) ∈ Field s ∧ (a, h a ′) ∈ r1^∗ using d3 by force
then show ∃ b ∈ Field s. (a, b) ∈ r1^∗ by blast

qed
have b23 : Field r ⊆ Field r1
proof −

have (Field r − Field s) ⊆ Field r1 using q4 b9 t1 unfolding Field-def by
blast

moreover have Field s ⊆ Field r1 using b20 unfolding Field-def by blast
ultimately show Field r ⊆ Field r1 by blast

qed
have ∀α β a b c. α ≤ β −→ (a,b) ∈ g α ∧ (a,c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β α)
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proof (intro allI impI )
fix α β a b c
assume c1 : α ≤ β and c2 : (a,b) ∈ g α ∧ (a,c) ∈ g β
obtain c123 where c0 : c123 = (λ α::nat. ?cond1 α ∨ ?cond3 α) by blast
have c3 :

∧
α ′. c123 α ′ =⇒ g0 α ′ ⊆ s

proof −
fix α ′

assume c123 α ′

moreover have ?cond1 α ′ −→ g0 α ′ ⊆ s using a3 unfolding b2 by force
moreover have ?cond3 α ′ −→ g0 α ′ ⊆ s using b2 by force
ultimately show g0 α ′ ⊆ s using c0 by blast

qed
have c4 :

∧
α ′.

∧
p. p ∈ g α ′ −→ (?cond1 α ′ ∧ p ∈ (g0 α ′ ∪ g1 )) ∨ (?cond3

α ′ ∧ p ∈ (g0 α ′))
proof (intro impI )

fix α ′ p
assume p ∈ g α ′

then show (?cond1 α ′ ∧ p ∈ (g0 α ′ ∪ g1 )) ∨ (?cond3 α ′ ∧ p ∈ (g0 α ′))
using b12 by (cases ?cond1 α ′, simp, cases ?cond3 α ′, force+)

qed
have c5 :

∧
α ′ β ′. α ′ ≤ β ′ =⇒ c123 β ′ =⇒ c123 α ′ unfolding c0 using b14

by force
have c6 : (a,b) ∈ g0 α ∧ (a,c) /∈ g0 β −→ ¬ c123 β
proof

assume d1 : (a,b) ∈ g0 α ∧ (a,c) /∈ g0 β
then have (a,c) ∈ g1 using c2 c4 by blast
then have a ∈ Field r − Field s using b7 b9 by blast
then have ¬ c123 α using d1 c3 unfolding Field-def by blast
then show ¬ c123 β using c1 c5 by blast

qed
have c7 : (a,b) /∈ g0 α ∧ (a,c) ∈ g0 β −→ ¬ c123 β
proof

assume d1 : (a,b) /∈ g0 α ∧ (a,c) ∈ g0 β
then have (a,b) ∈ g1 using c2 c4 by blast
then have a ∈ Field r − Field s using b7 b9 by blast
then show ¬ c123 β using d1 c3 unfolding Field-def by blast

qed
have c8 :

∧
α ′. c123 α ′ =⇒ g0 α ′ ⊆ g α ′

proof −
fix α ′

assume c123 α ′

then show g0 α ′ ⊆ g α ′ unfolding c0 using b15 [of α ′] b17 [of α ′] by blast
qed
then have c9 :

∧
α ′ α ′′. c123 α ′ =⇒ α ′′ < α ′ =⇒ g0 α ′′ ⊆ g α ′′

using c5 less-or-eq-imp-le by blast
have c10 :

∧
α ′ β ′. c123 α ′ =⇒ c123 β ′ =⇒ D g0 α ′ β ′ ⊆ D g α ′ β ′

proof −
fix α ′ β ′

assume d1 : c123 α ′ and d2 : c123 β ′
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have L1 g0 α ′ ⊆ L1 g α ′ using d1 c9 unfolding L1-def by blast
moreover have Lv g0 α ′ β ′ ⊆ Lv g α ′ β ′ using d1 d2 c9 unfolding Lv-def

by blast
ultimately have (L1 g0 α ′)^∗ ⊆ (L1 g α ′)^∗ ∧ (Lv g0 α ′ β ′)^∗ ⊆ (Lv g α ′

β ′)^∗
using rtrancl-mono by blast

moreover have g0 β ′ ⊆ g β ′ using d2 c8 by blast
ultimately show D g0 α ′ β ′ ⊆ D g α ′ β ′ unfolding D-def by blast

qed
show ∃ b ′ b ′′ c ′ c ′′ d ′. (b,b ′,b ′′,d ′) ∈ D g α β ∧ (c,c ′,c ′′,d ′) ∈ D g β α
proof (cases c123 β)

assume d1 : c123 β
show ?thesis
proof (cases (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β)

assume e1 : (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β
then obtain b ′ b ′′ c ′ c ′′ d ′ where (b, b ′, b ′′, d ′) ∈ D g0 α β ∧ (c, c ′, c ′′,

d ′) ∈ D g0 β α
using b1 unfolding DCR-generating-def by blast

moreover have c123 α using d1 c1 c5 by blast
ultimately have (b, b ′, b ′′, d ′) ∈ D g α β ∧ (c, c ′, c ′′, d ′) ∈ D g β α using

d1 c10 by blast
then show ?thesis by blast

next
assume ¬ ((a,b) ∈ g0 α ∧ (a,c) ∈ g0 β)
then have (a,b) /∈ g0 α ∧ (a,c) /∈ g0 β using d1 c6 c7 by blast
moreover have c123 α using d1 c1 c5 by blast
ultimately have (a,b) ∈ g1 ∧ (a,c) ∈ g1 using d1 c0 c2 c4 by blast
then have b = c using b9 by blast
then show ?thesis unfolding D-def by blast

qed
next

assume d1 : ¬ c123 β
then have d2 : False using c2 c4 unfolding c0 by blast
then show ?thesis by blast

qed
qed
then have b24 : DCR-generating g using a3 lem-Ldo-ldogen-ord by blast
moreover then have Field r1 ⊆ Field r using b21 unfolding Field-def by

blast
ultimately have r1 ∈ Span r using b21 b23 unfolding Span-def by blast
moreover have DCR n r1 using b19 b24 unfolding DCR-def by blast
moreover have CCR r1
proof −

have s ∈ U r1 using b20 b22 a1 unfolding U-def by blast
then show CCR r1 using lem-rcc-uset-ne-ccr by blast

qed
ultimately show DCR (Suc n0 ) r using b13 a3 lem-Ldo-sat-reduc by blast

qed
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lemma lem-Ldo-addid:
fixes r :: ′U rel and r ′:: ′U rel and n0 ::nat and A:: ′U set
assumes a1 : DCR n0 r and a2 : r ′ = r ∪ {(a,b). a = b ∧ a ∈ A} and a3 : n0 6=
0
shows DCR n0 r ′

proof −
obtain g0 where b1 : DCR-generating g0 and b2 : r =

⋃
{r ′. ∃α ′<n0 . r ′ = g0

α ′} using a1 unfolding DCR-def by blast
obtain g :: nat ⇒ ′U rel where b3 : g = (λ α. (g0 α) ∪ {(a,b). a = b ∧ a ∈ A})

by blast
have ∀α β a b c. α ≤ β −→ (a,b) ∈ g α ∧ (a,c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β α)
proof (intro allI impI )

fix α β a b c
assume c1 : α ≤ β and c2 : (a,b) ∈ g α ∧ (a,c) ∈ g β
have c3 :

∧
α ′ β ′. D g0 α ′ β ′ ⊆ D g α ′ β ′

proof −
fix α ′ β ′

have L1 g0 α ′ ⊆ (L1 g α ′)^= unfolding L1-def b3 by (clarsimp, auto)
moreover have Lv g0 α ′ β ′ ⊆ (Lv g α ′ β ′)^= unfolding Lv-def b3 by

(clarsimp, auto)
ultimately have (L1 g0 α ′)^∗ ⊆ (L1 g α ′)^∗ ∧ (Lv g0 α ′ β ′)^∗ ⊆ (Lv g α ′

β ′)^∗ using rtrancl-reflcl rtrancl-mono by blast
moreover have (g0 β ′)^= ⊆ (g β ′)^= unfolding b3 by force
ultimately show D g0 α ′ β ′ ⊆ D g α ′ β ′ unfolding D-def by blast

qed
have c4 : ((a,b) ∈ g0 α ∨ a = b) ∧ ((a,c) ∈ g0 β ∨ a = c) using c1 c2 b3 by

blast
moreover then have a = b ∨ a = c −→ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g

α β ∧ (c,c ′,c ′′,d) ∈ D g β α)
using b3 unfolding D-def by blast

moreover have (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β −→ (∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d)
∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β α)

proof
assume (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β
then obtain b ′ b ′′ c ′ c ′′ d ′ where (b, b ′, b ′′, d ′) ∈ D g0 α β ∧ (c, c ′, c ′′,

d ′) ∈ D g0 β α
using b1 unfolding DCR-generating-def by blast

then have (b, b ′, b ′′, d ′) ∈ D g α β ∧ (c, c ′, c ′′, d ′) ∈ D g β α using c3 by
blast

then show ∃ b ′ b ′′ c ′ c ′′ d ′. (b,b ′,b ′′,d ′) ∈ D g α β ∧ (c,c ′,c ′′,d ′) ∈ D g β α
by blast

qed
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β

α by blast
qed
then have DCR-generating g using lem-Ldo-ldogen-ord by blast
moreover have r ′ =

⋃
{s. ∃α ′<n0 . s = g α ′} unfolding b2 b3 a2 using a3

by blast
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ultimately show DCR n0 r ′ unfolding DCR-def by blast
qed

lemma lem-Ldo-removeid:
fixes r :: ′U rel and r ′:: ′U rel and n0 ::nat
assumes a1 : DCR n0 r and a2 : r ′ = r − {(a,b). a = b}
shows DCR n0 r ′

proof −
obtain g0 where b1 : DCR-generating g0 and b2 : r =

⋃
{r ′. ∃α ′<n0 . r ′ = g0

α ′} using a1 unfolding DCR-def by blast
obtain g :: nat ⇒ ′U rel where b3 : g = (λ α. (g0 α) − {(a,b). a = b }) by

blast
have ∀α β a b c. α ≤ β −→ (a,b) ∈ g α ∧ (a,c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b,b ′,b ′′,d) ∈ D g α β ∧ (c,c ′,c ′′,d) ∈ D g β α)
proof (intro allI impI )

fix α β a b c
assume c1 : α ≤ β and c2 : (a,b) ∈ g α ∧ (a,c) ∈ g β
have c3 :

∧
α ′ β ′. D g0 α ′ β ′ ⊆ D g α ′ β ′

proof −
fix α ′ β ′

have L1 g0 α ′ ⊆ (L1 g α ′)^= unfolding L1-def b3 by (clarsimp, auto)
moreover have Lv g0 α ′ β ′ ⊆ (Lv g α ′ β ′)^= unfolding Lv-def b3 by

(clarsimp, auto)
ultimately have (L1 g0 α ′)^∗ ⊆ (L1 g α ′)^∗ ∧ (Lv g0 α ′ β ′)^∗ ⊆ (Lv g α ′

β ′)^∗ using rtrancl-reflcl rtrancl-mono by blast
moreover have (g0 β ′)^= ⊆ (g β ′)^= unfolding b3 by force
ultimately show D g0 α ′ β ′ ⊆ D g α ′ β ′ unfolding D-def by blast

qed
have (a,b) ∈ g0 α ∧ (a,c) ∈ g0 β using c1 c2 b3 by blast
then obtain b ′ b ′′ c ′ c ′′ d ′ where (b, b ′, b ′′, d ′) ∈ D g0 α β ∧ (c, c ′, c ′′, d ′)

∈ D g0 β α
using b1 unfolding DCR-generating-def by blast

then have (b, b ′, b ′′, d ′) ∈ D g α β ∧ (c, c ′, c ′′, d ′) ∈ D g β α using c3 by
blast

then show ∃ b ′ b ′′ c ′ c ′′ d ′. (b,b ′,b ′′,d ′) ∈ D g α β ∧ (c,c ′,c ′′,d ′) ∈ D g β α
by blast

qed
then have DCR-generating g using lem-Ldo-ldogen-ord by blast
moreover have r ′ =

⋃
{s. ∃α ′<n0 . s = g α ′} unfolding b2 b3 a2 by blast

ultimately show DCR n0 r ′ unfolding DCR-def by blast
qed

lemma lem-Ldo-eqid:
fixes r :: ′U rel and r ′:: ′U rel and n::nat
assumes a1 : DCR n r and a2 : r ′ − {(a,b). a = b} = r − {(a,b). a = b} and
a3 : n 6= 0
shows DCR n r ′

proof −
obtain r ′′ where b1 : r ′′ = r ′ − {(a,b). a = b} by blast
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then have DCR n r ′′ using a1 a2 lem-Ldo-removeid by blast
moreover have r ′ = r ′′ ∪ {(a,b). a = b ∧ (a,a) ∈ r ′} using b1 by blast
ultimately show DCR n r ′ using lem-Ldo-addid[of n r ′′ r ′ {a . (a,a) ∈ r ′}] a3

by blast
qed

lemma lem-wdn-range-lb: A ⊆ w-dncl r A
unfolding w-dncl-def dncl-def F-def rpth-def by fastforce

lemma lem-wdn-range-ub: w-dncl r A ⊆ dncl r A unfolding w-dncl-def by blast

lemma lem-wdn-mon: A ⊆ A ′ =⇒ w-dncl r A ⊆ w-dncl r A ′ unfolding w-dncl-def
dncl-def by blast

lemma lem-wdn-compl:
fixes r :: ′U rel and A:: ′U set
shows UNIV − w-dncl r A = {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗}
proof
show UNIV − w-dncl r A ⊆ {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗}
proof

fix x
assume c1 : x ∈ UNIV − w-dncl r A
show x ∈ {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗}
proof (cases x ∈ dncl r A)

assume x ∈ dncl r A
then obtain b F where d1 : F ∈ F r x b ∧ b /∈ dncl r A ∧ F ∩ A = {}

using c1 unfolding w-dncl-def by blast
then obtain f n where f ∈ rpth r x b n ∧ F = f ‘ {i. i≤n} unfolding F-def

by blast
moreover then have ∀ i≤n. f i /∈ A using d1 unfolding rpth-def by blast
ultimately have f ∈ rpth (Restr r (UNIV−A)) x b n unfolding rpth-def

by force
then have (x,b) ∈ (Restr r (UNIV−A))^∗ using lem-ccext-rpth-rtr [of Restr

r (UNIV−A)] by blast
then show ?thesis using d1 by blast

next
assume x /∈ dncl r A
then show ?thesis unfolding w-dncl-def by blast

qed
qed

next
show {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗} ⊆ UNIV −

w-dncl r A
proof

fix x
assume x ∈ {a. ∃ b. b /∈ dncl r A ∧ (a,b) ∈ (Restr r (UNIV−A))^∗}
then obtain y where c1 : y /∈ dncl r A ∧ (x,y) ∈ (Restr r (UNIV−A))^∗ by

blast
obtain f n where c2 : f ∈ rpth (Restr r (UNIV−A)) x y n using c1 lem-ccext-rtr-rpth[of
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x y] by blast
then have c3 : f ∈ rpth r x y n unfolding rpth-def by blast
obtain F where c4 : F = f‘{i. i≤n} by blast
have n = 0 −→ f 0 /∈ A using c1 c3 unfolding rpth-def dncl-def by blast
moreover have ∀ i<n. f i /∈ A ∧ f (Suc i) /∈ A using c2 unfolding rpth-def

by blast
moreover have ∀ i≤n. (n = 0 ∨ (∃ j<n. (j=i ∨ i=Suc j)))

by (metis le-eq-less-or-eq lessI less-Suc-eq-0-disj)
ultimately have ∀ i≤n. f i /∈ A by blast
then have F ∩ A = {} using c4 by blast
moreover have F ∈ F r x y using c3 c4 unfolding F-def by blast
ultimately show x ∈ UNIV − w-dncl r A using c1 unfolding w-dncl-def by

blast
qed

qed

lemma lem-cowdn-uset:
fixes r :: ′U rel and A A ′ W :: ′U set
assumes a1 : CCR (Restr r A ′) and a2 : escl r A A ′ ⊆ A ′

and a3 : Q = A ′ − dncl r A and a4 : W = A ′ − w-dncl r A and a5 : Q ∈ SF r
shows Restr r Q ∈ U (Restr r W )
proof −

have CCR (Restr r Q) using a1 a3 lem-Inv-ccr-restr-invdiff lem-Inv-dncl-invbk
by blast

moreover have Restr r Q ⊆ Restr r W using a3 a4 lem-wdn-range-ub[of r ] by
blast

moreover have ∀ a∈Field (Restr r W ). ∃ b∈Field (Restr r Q). (a, b) ∈ (Restr
r W )^∗

proof
fix a
assume a ∈ Field (Restr r W )
then have c1 : a ∈ W unfolding Field-def by blast
show ∃ b∈Field (Restr r Q). (a, b) ∈ (Restr r W )^∗
proof (cases a ∈ Q)

assume a ∈ Q
then show ?thesis using a5 unfolding SF-def by blast

next
assume a /∈ Q
then obtain b F where d1 : a ∈ A ′ ∧ F ∈ F r a b ∧ b /∈ dncl r A ∧ F ∩ A

= {}
using c1 a3 a4 unfolding w-dncl-def by blast

then have d2 : dnesc r A a ⊆ escl r A A ′ unfolding escl-def by blast
obtain E where d3 : E = dnesc r A a by blast
have dnEsc r A a 6= {} using d1 unfolding dnEsc-def by blast
then have E ∈ dnEsc r A a using d3 lem-dnEsc-ne[of r A] by blast
then obtain b ′ where d4 : b ′ /∈ dncl r A ∧ E ∈ F r a b ′ ∧ E ∩ A = {}

unfolding dnEsc-def by blast
have d5 : E ⊆ A ′ using d2 d3 a2 by blast
have b ′ ∈ E using d4 unfolding F-def rpth-def by blast
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then have b ′ ∈ Field (Restr r Q) using d4 d5 a3 a5 unfolding SF-def by
blast

moreover have (a, b ′) ∈ (Restr r W )^∗
proof −

obtain f n where e1 : f ∈ rpth r a b ′ n and e2 : E = f ‘ {i. i ≤ n}
using d4 unfolding F-def by blast

have e3 : ∀ i≤n. f i ∈ W
proof (intro allI impI )

fix i
assume f1 : i ≤ n
obtain g where f2 : g = (λ k. f (k + i)) by blast
have g 0 = f i using f2 by simp
moreover have g (n − i) = b ′ using f1 f2 e1 unfolding rpth-def by

simp
moreover have ∀ k<n−i. (g k, g (Suc k)) ∈ Restr r (UNIV − A)
proof (intro allI impI )

fix k
assume k < n−i
then have (g k, g (Suc k)) ∈ (Restr r E) using f2 e1 e2 unfolding

rpth-def by simp
then show (g k, g (Suc k)) ∈ Restr r (UNIV − A) using d4 by blast

qed
ultimately have g ∈ rpth (Restr r (UNIV−A)) (f i) b ′ (n−i) unfolding

rpth-def by blast
then have (f i, b ′) ∈ (Restr r (UNIV−A))^∗ using lem-ccext-rpth-rtr [of

- f i b ′] by blast
then have f i /∈ w-dncl r A using d4 lem-wdn-compl[of r A] by blast
then show f i ∈ W using f1 e2 d5 a4 by blast

qed
have ∀ i<n. (f i, f (Suc i)) ∈ Restr r W
proof (intro allI impI )

fix i
assume i < n
moreover then have f i ∈ W ∧ f (Suc i) ∈ W using e2 e3 by force

ultimately show (f i, f (Suc i)) ∈ Restr r W using e1 unfolding rpth-def
by blast

qed
then have E ∈ F (Restr r W ) a b ′ using e1 e2 unfolding rpth-def F-def

by blast
then show ?thesis using lem-ccext-rtr-Fne[of a b ′] by blast

qed
ultimately show ?thesis by blast

qed
qed
ultimately show ?thesis unfolding U-def by blast

qed

lemma lem-shrel-L-eq:
fixes f :: ′U rel ⇒ ′U set and α:: ′U rel and β:: ′U rel
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assumes α =o β
shows L f α = L f β
proof

show L f α ⊆ L f β using assms ordLess-ordIso-trans unfolding L-def by
fastforce
next

have β =o α using assms ordIso-symmetric by blast
then show L f β ⊆ L f α using ordLess-ordIso-trans unfolding L-def by

fastforce
qed

lemma lem-shrel-dbk-eq:
fixes f :: ′U rel ⇒ ′U set and Ps:: ′U set set and α:: ′U rel and β:: ′U rel
assumes f ∈ N r Ps and α =o β and α ≤o |Field r | and β ≤o |Field r |
shows (∇ f α) = (∇ f β)
proof −

have α ≤o β ∧ β ≤o α using assms ordIso-iff-ordLeq by blast
then have f α = f β using assms unfolding N -def N1-def by blast
moreover have L f α = L f β using assms lem-shrel-L-eq by blast
ultimately show ?thesis unfolding Dbk-def by blast

qed

lemma lem-L-emp: α =o ({}:: ′U rel) =⇒ L f α = {}
proof −

assume α =o ({}:: ′U rel)
then have ∀ α ′. α ′ <o α −→ False using lem-ord-subemp

by (metis iso-ozero-empty not-ordLess-ordIso ordLess-imp-ordLeq ozero-def )
then show L f α = {} unfolding L-def by blast

qed

lemma lem-der-qinv1 :
fixes r :: ′U rel and α:: ′U rel and x y:: ′U
assumes a1 : x ∈ Q r f α and a2 : (x,y) ∈ r^∗ and a3 : y ∈ (f α)
shows y ∈ Q r f α
proof −

obtain A where b1 : A = (L f α) by blast
have ∀ x y. y ∈ dncl r A −→ (x,y) ∈ r −→ x ∈ dncl r A
proof (intro allI impI )

fix x y
assume y ∈ dncl r A and (x,y) ∈ r
moreover then obtain a where a ∈ A ∧ (y,a) ∈ r^∗ unfolding dncl-def by

blast
ultimately have a ∈ A ∧ (x,a) ∈ r^∗ by force
then show x ∈ dncl r A unfolding dncl-def by blast

qed
then have (UNIV − dncl r A) ∈ Inv r unfolding Inv-def by blast
moreover have x ∈ UNIV − (dncl r A) using b1 a1 unfolding Q-def by blast
ultimately have y ∈ UNIV − (dncl r A) using a2 lem-Inv-restr-rtr2 [of UNIV
− dncl r A r ] by blast
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then show ?thesis using b1 a3 unfolding Q-def by blast
qed

lemma lem-der-qinv2 :
fixes r :: ′U rel and α:: ′U rel and x y:: ′U
assumes a1 : x ∈ Q r f α and a2 : (x,y) ∈ (Restr r (f α))^∗ and a3 : y ∈ (f α)
shows (x,y) ∈ (Restr r (Q r f α))^∗
proof −

obtain Q where b1 : Q = Q r f α by blast
have ∀ a b. a ∈ Q −→ (a,b) ∈ Restr r (f α) −→ b ∈ Q

using lem-der-qinv1 [of - r f α -] unfolding b1 by blast
then have Q ∈ Inv (Restr r (f α)) unfolding Inv-def by blast
moreover have x ∈ Q using b1 a1 by blast
ultimately have (x,y) ∈ (Restr (Restr r (f α)) Q)^∗

using a2 lem-Inv-restr-rtr [of Q Restr r (f α)] by blast
moreover have Restr (Restr r (f α)) Q ⊆ Restr r (Q r f α) using b1 by blast
ultimately show ?thesis using rtrancl-mono by blast

qed

lemma lem-der-qinv3 :
fixes r :: ′U rel and α:: ′U rel
assumes a1 : A ⊆ (f α) and a2 : ∀ x ∈ (f α). ∃ y ∈ A. (x,y) ∈ (Restr r (f α))^∗
shows ∀ x ∈ (Q r f α). ∃ y ∈ (A ∩ (Q r f α)). (x,y) ∈ (Restr r (Q r f α))^∗
proof

fix x
assume b1 : x ∈ (Q r f α)
then have b2 : x ∈ (f α) unfolding Q-def by blast
then obtain y where b3 : y ∈ A ∧ (x,y) ∈ (Restr r (f α))^∗ using a2 by blast
then have (x, y) ∈ (Restr r (Q r f α))^∗ using a1 b1 lem-der-qinv2 [of x r f α

y] by blast
moreover then have y ∈ (Q r f α) using b1 IntE mem-Sigma-iff rtranclE [of

x y] by metis
ultimately show ∃ y ∈ (A ∩ (Q r f α)). (x,y) ∈ (Restr r (Q r f α))^∗ using

b3 by blast
qed

lemma lem-der-inf-qrestr-ccr1 :
fixes r :: ′U rel and Ps:: ′U set set and α:: ′U rel
assumes f ∈ N r Ps and α ≤o |Field r |
shows CCR (Restr r (Q r f α))
proof −

have CCR (Restr r (f α)) using assms unfolding N -def N6-def by blast
moreover have dncl r (L f α) ∈ Inv (r^−1 ) using lem-Inv-dncl-invbk by blast
ultimately show ?thesis unfolding Q-def using lem-Inv-ccr-restr-invdiff by

blast
qed

lemma lem-Nfdn-aemp:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
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assumes a1 : CCR r and a2 : f ∈ N r Ps and a3 : α <o scf r and a4 : Field r ⊆
dncl r (f α)
shows α = {}
proof (cases finite r)

assume finite r
then have scf r <o ω-ord using lem-scf-relfldcard-bnd lem-fin-fl-rel

by (metis finite-iff-ordLess-natLeq ordLeq-ordLess-trans)
then have finite (Field (scf r)) using finite-iff-ordLess-natLeq by force
then have Conelike r using a1 lem-scf-ccr-finscf-cl by blast
moreover obtain a:: ′U where True by blast
ultimately have α <o |{a}| using a1 a3 lem-Rcc-eq2-12 lem-scf-ccr-scf-rcc-eq

by (metis ordIso-iff-ordLeq ordLess-ordLeq-trans)
then have b1 : α =o |{}:: ′U set| using lem-co-one-ne-min

by (metis card-of-card-order-on card-of-empty3 card-of-unique insert-not-empty
not-ordLeq-ordLess ordIso-Well-order-simp ordLess-Well-order-simp)

then have α ≤o |Field r | using card-of-empty ordIso-ordLeq-trans by blast
then have b2 : f α ∈ SF r using a2 unfolding N -def N5-def by blast
have ¬ (∃ α ′:: ′U rel. α ′ <o α) using b1
by (metis BNF-Cardinal-Order-Relation.ordLess-Field card-of-empty5 ordLess-ordIso-trans)

then show α = {} using a3 b1 using lem-co-one-ne-min
by (metis card-of-empty card-of-empty3 insert-not-empty

ordIso-ordLeq-trans ordLeq-transitive ordLess-Well-order-simp)
next

assume q0 : ¬ finite r
have b0 : α <o ‖r‖ using a1 a3 lem-scf-ccr-scf-rcc-eq by (metis ordIso-iff-ordLeq

ordLess-ordLeq-trans)
obtain A ′ where b1 : A ′ = Q r f α by blast
have ‖r‖ ≤o |r | using lem-Rcc-relcard-bnd by blast
moreover have |Field r | =o |r | using q0 lem-rel-inf-fld-card by blast
ultimately have ‖r‖ ≤o |Field r | using ordIso-symmetric ordLeq-ordIso-trans

by blast
then have b2 : α ≤o |Field r | using b0 ordLeq-transitive ordLess-imp-ordLeq by

blast
then have b3 : f α ∈ SF r ∧ CCR (Restr r (f α))

using b1 a2 unfolding N -def N5-def N10-def N6-def by blast+
have b5 : (A ′ ∈ SF r ) ∨ (∃ y:: ′U . A ′ = {y})

using b1 b3 unfolding Q-def using lem-Inv-ccr-sf-dn-diff [of f α r A ′ L f α]
by blast

have ∀ a∈Field r . ∃ b∈Field (Restr r (f α)). (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then have a ∈ dncl r (f α) using a4 by blast
then obtain b:: ′U where (a, b) ∈ r^∗ ∧ b ∈ f α unfolding dncl-def by blast
moreover have (f α) ∈ SF r using b3 by blast
ultimately have b ∈ Field (Restr r (f α)) ∧ (a, b) ∈ r^∗ unfolding SF-def

by blast
then show ∃ b∈Field (Restr r (f α)). (a, b) ∈ r^∗ by blast

qed
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moreover have CCR (Restr r (f α)) using b3 by blast
ultimately have Restr r (f α) ∈ U r unfolding U-def by blast
then have d3 : ‖r‖ ≤o |Restr r (f α)| using lem-rcc-uset-mem-bnd by blast
obtain x:: ′U where d4 : True by blast
have ω-ord ≤o α −→ False
proof

assume e1 : ω-ord ≤o α
then have |f α| ≤o α using b2 a2 unfolding N -def N7-def by blast
moreover then have |Restr r (f α)| ≤o α using e1 lem-restr-ordbnd by blast
ultimately have ‖r‖ ≤o α using d3 ordLeq-transitive by blast
then show False using b0 not-ordLess-iff-ordLeq ordLess-Well-order-simp by

blast
qed
then have α <o ω-ord using b0 natLeq-Well-order not-ordLess-iff-ordLeq ord-

Less-Well-order-simp by blast
then have |f α| <o ω-ord using b2 a2 unfolding N -def N7-def by blast
then have finite (f α) using finite-iff-ordLess-natLeq by blast
then have finite (Restr r (f α)) by blast
then have |Restr r (f α)| <o ω-ord using finite-iff-ordLess-natLeq by blast
then have d5 : ‖r‖ <o ω-ord using d3 ordLeq-ordLess-trans by blast
have ‖r‖ ≤o |{x}|
proof (cases CCR r)

assume CCR r
then show ‖r‖ ≤o |{x}| using d5 lem-Rcc-eq2-31 [of r ] lem-Rcc-eq2-12 [of r x]

by blast
next

assume ¬ CCR r
moreover then have ‖r‖ = {} using lem-rcc-nccr by blast

moreover have {} ≤o |{x}| by (metis card-of-Well-order ozero-def ozero-ordLeq)
ultimately show ‖r‖ ≤o |{x}| by metis

qed
then have α <o |{x}| using b0 ordLess-ordLeq-trans by blast
then show α = {} by (meson lem-co-one-ne-min not-ordLeq-ordLess ordLess-Well-order-simp)

qed

lemma lem-der-qccr-lscf-sf :
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : CCR r and a2 : f ∈ N r Ps and a3 : α <o scf r
shows (Q r f α) ∈ SF r
proof (cases finite r)

assume finite r
then have scf r <o ω-ord using lem-scf-relfldcard-bnd lem-fin-fl-rel

by (metis finite-iff-ordLess-natLeq ordLeq-ordLess-trans)
then have finite (Field (scf r)) using finite-iff-ordLess-natLeq by force
then have Conelike r using a1 lem-scf-ccr-finscf-cl by blast
moreover obtain a:: ′U where True by blast
ultimately have α <o |{a}| using a1 a3 lem-Rcc-eq2-12 lem-scf-ccr-scf-rcc-eq

by (metis ordIso-iff-ordLeq ordLess-ordLeq-trans)
then have b1 : α =o |{}:: ′U set| using lem-co-one-ne-min
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by (metis card-of-card-order-on card-of-empty3 card-of-unique insert-not-empty
not-ordLeq-ordLess ordIso-Well-order-simp ordLess-Well-order-simp)

then have α ≤o |Field r | using card-of-empty ordIso-ordLeq-trans by blast
then have b2 : f α ∈ SF r using a2 unfolding N -def N5-def by blast
have ¬ (∃ α ′:: ′U rel. α ′ <o α) using b1
by (metis BNF-Cardinal-Order-Relation.ordLess-Field card-of-empty5 ordLess-ordIso-trans)

then have L f α = {} unfolding L-def by blast
then have Q r f α = f α unfolding Q-def dncl-def by blast
then show ?thesis using b2 by metis

next
assume q0 : ¬ finite r
have b0 : α <o ‖r‖ using a1 a3 lem-scf-ccr-scf-rcc-eq by (metis ordIso-iff-ordLeq

ordLess-ordLeq-trans)
obtain A ′ where b1 : A ′ = Q r f α by blast
have ‖r‖ ≤o |r | using lem-Rcc-relcard-bnd by blast
moreover have |Field r | =o |r | using q0 lem-rel-inf-fld-card by blast
ultimately have ‖r‖ ≤o |Field r | using ordIso-symmetric ordLeq-ordIso-trans

by blast
then have b2 : α ≤o |Field r | using b0 ordLeq-transitive ordLess-imp-ordLeq by

blast
then have b3 : f α ∈ SF r ∧ CCR (Restr r (f α))

and b4 : (∃ y:: ′U . A ′ = {y}) −→ Field r ⊆ dncl r (f α)
using b1 a2 unfolding N -def N5-def N10-def N6-def by blast+

have b5 : (A ′ ∈ SF r ) ∨ (∃ y:: ′U . A ′ = {y})
using b1 b3 unfolding Q-def using lem-Inv-ccr-sf-dn-diff [of f α r A ′ L f α]

by blast
show (Q r f α) ∈ SF r
proof (cases Field r ⊆ dncl r (f α))

assume c1 : Field r ⊆ dncl r (f α)
have ∀ a∈Field r . ∃ b∈Field (Restr r (f α)). (a, b) ∈ r^∗
proof

fix a
assume a ∈ Field r
then have a ∈ dncl r (f α) using c1 by blast
then obtain b:: ′U where (a, b) ∈ r^∗ ∧ b ∈ f α unfolding dncl-def by

blast
moreover have (f α) ∈ SF r using b3 by blast
ultimately have b ∈ Field (Restr r (f α)) ∧ (a, b) ∈ r^∗ unfolding SF-def

by blast
then show ∃ b∈Field (Restr r (f α)). (a, b) ∈ r^∗ by blast

qed
moreover have CCR (Restr r (f α)) using b3 by blast
ultimately have Restr r (f α) ∈ U r unfolding U-def by blast
then have d3 : ‖r‖ ≤o |Restr r (f α)| using lem-rcc-uset-mem-bnd by blast
obtain x:: ′U where d4 : True by blast
have ω-ord ≤o α −→ False
proof

assume e1 : ω-ord ≤o α
then have |f α| ≤o α using b2 a2 unfolding N -def N7-def by blast
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moreover then have |Restr r (f α)| ≤o α using e1 lem-restr-ordbnd by
blast

ultimately have ‖r‖ ≤o α using d3 ordLeq-transitive by blast
then show False using b0 not-ordLess-iff-ordLeq ordLess-Well-order-simp by

blast
qed
then have α <o ω-ord using b0 natLeq-Well-order not-ordLess-iff-ordLeq ord-

Less-Well-order-simp by blast
then have |f α| <o ω-ord using b2 a2 unfolding N -def N7-def by blast
then have finite (f α) using finite-iff-ordLess-natLeq by blast
then have finite (Restr r (f α)) by blast
then have |Restr r (f α)| <o ω-ord using finite-iff-ordLess-natLeq by blast
then have d5 : ‖r‖ <o ω-ord using d3 ordLeq-ordLess-trans by blast
have ‖r‖ ≤o |{x}|
proof (cases CCR r)

assume CCR r
then show ‖r‖ ≤o |{x}| using d5 lem-Rcc-eq2-31 [of r ] lem-Rcc-eq2-12 [of r

x] by blast
next

assume ¬ CCR r
moreover then have ‖r‖ = {} using lem-rcc-nccr by blast

moreover have {} ≤o |{x}| by (metis card-of-Well-order ozero-def ozero-ordLeq)
ultimately show ‖r‖ ≤o |{x}| by metis

qed
then have α <o |{x}| using b0 ordLess-ordLeq-trans by blast

then have α = {} by (meson lem-co-one-ne-min not-ordLeq-ordLess ord-
Less-Well-order-simp)

then have ∀ α ′. α ′<o α −→ False using lem-ord-subemp by (metis iso-ozero-empty
not-ordLess-ordIso ordLess-imp-ordLeq ozero-def )

then have dncl r (L f α) = {} unfolding dncl-def L-def by blast
then have Q r f α = f α unfolding Q-def by blast
then show (Q r f α) ∈ SF r using b3 by metis

next
assume ¬ (Field r ⊆ dncl r (f α))
then have A ′ ∈ SF r using b4 b5 by blast
then show (Q r f α) ∈ SF r using b1 by blast

qed
qed

lemma lem-der-q-uset:
fixes r :: ′U rel and Ps:: ′U set set and α:: ′U rel
assumes a1 : CCR r and a2 : f ∈ N r Ps and a3 : α <o scf r and a4 : isSuccOrd
α
shows Restr r (Q r f α) ∈ U (Restr r (f α))
proof −

have b1 : α ≤o |Field r | using a3 lem-scf-relfldcard-bnd
by (metis ordLess-ordLeq-trans ordLess-imp-ordLeq)

have a4 : Q r f α = {} −→ False
proof
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assume Q r f α = {}
then have Field r ⊆ dncl r (f α) using b1 a2 a4 unfolding N -def N11-def

by blast
then have α = {} using a1 a2 a3 lem-Nfdn-aemp by blast
then show False using a4 using wo-rel-def wo-rel.isSuccOrd-def unfolding

Field-def by force
qed
have (Q r f α) ∈ SF r using a1 a2 a3 lem-der-qccr-lscf-sf by blast
then have b2 : Field (Restr r (Q r f α)) 6= {} using a4 unfolding SF-def by

blast
have Restr r (Q r f α) ⊆ Restr r (f α) unfolding Q-def by blast
moreover have CCR (Restr r (Q r f α)) using b1 a2 lem-der-inf-qrestr-ccr1

by blast
moreover have ∀ a∈Field (Restr r (f α)). ∃ b∈Field (Restr r (Q r f α)). (a,b)
∈ (Restr r (f α))^∗

proof
fix a
assume c1 : a ∈ Field (Restr r (f α))
obtain b where c2 : b ∈ Field (Restr r (Q r f α)) using b2 by blast
then have c3 : b ∈ f α ∧ b ∈ Q r f α unfolding Q-def Field-def by blast
have f α ∈ SF r using b1 a2 unfolding N -def N5-def by blast
then have b ∈ Field (Restr r (f α)) using c3 unfolding SF-def by blast
moreover have CCR (Restr r (f α)) using b1 a2 unfolding N -def N6-def

by blast
ultimately obtain c where c ∈ Field (Restr r (f α))

and c4 : (a,c) ∈ (Restr r (f α))^∗ ∧ (b,c) ∈ (Restr r (f α))^∗
using c1 unfolding CCR-def by blast

moreover then have c ∈ f α unfolding Field-def by blast
ultimately have (b, c) ∈ (Restr r (Q r f α))^∗ using c3 lem-der-qinv2 [of b

r f α c] by blast
moreover have Field (Restr r (Q r f α)) ∈ Inv (Restr r (Q r f α))

unfolding Inv-def Field-def by blast
ultimately have c ∈ Field (Restr r (Q r f α))

using c2 lem-Inv-restr-rtr2 [of Field (Restr r (Q r f α))] by blast
then show ∃ b∈Field (Restr r (Q r f α)). (a, b) ∈ (Restr r (f α))^∗ using c4

by blast
qed
ultimately show Restr r (Q r f α) ∈ U (Restr r (f α)) unfolding U-def by

blast
qed

lemma lem-qw-range: f ∈ N r Ps =⇒ α ≤o |Field r | =⇒ W r f α ⊆ Field r
unfolding N -def N5-def SF-def Field-def W-def by blast

lemma lem-der-qw-eq:
fixes r :: ′U rel and Ps:: ′U set set and α β:: ′U rel
assumes f ∈ N r Ps and α =o β
shows W r f α = W r f β
proof −
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have f α = f β using assms unfolding N -def by blast
moreover have L f α = L f β using assms lem-shrel-L-eq by blast
ultimately show ?thesis unfolding W-def by simp

qed

lemma lem-Der-inf-qw-disj:
fixes r :: ′U rel and α β:: ′U rel
assumes Well-order α and Well-order β
shows (¬ (α =o β)) −→ (W r f α) ∩ (W r f β) = {}
proof

assume b1 : ¬ (α =o β)
obtain W where b2 : W = (λ α. W r f α) by blast
have α <o β ∨ β <o α using b1 assms by (meson not-ordLeq-iff-ordLess or-

dLeq-iff-ordLess-or-ordIso)
moreover have ∀ α ′ β ′. α ′ <o β ′ −→ (W α ′ ∩ W β ′ 6= {}) −→ False
proof (intro allI impI )

fix α ′ β ′:: ′U rel
assume d1 : α ′ <o β ′ and W α ′ ∩ W β ′ 6= {}
then obtain a where d2 : a ∈ W α ′ ∩ W β ′ by blast
then have a ∈ f α ′ using b2 unfolding W-def by blast
then have a ∈ L f β ′ using d1 unfolding L-def by blast
then have a /∈ W β ′ using b2 lem-wdn-range-lb[of - r ] unfolding W-def by

blast
then show False using d2 by blast

qed
ultimately show (W r f α) ∩ (W r f β) = {} unfolding b2 by blast

qed

lemma lem-der-inf-qw-restr-card:
fixes r :: ′U rel and Ps:: ′U set set and α:: ′U rel
assumes a1 : ¬ finite r and a2 : f ∈ N r Ps and a3 : α <o |Field r |
shows |Restr r (W r f α)| <o |Field r |
proof −

have b0 : |Field r | =o |r | using a1 lem-rel-inf-fld-card by blast
obtain W where b2 : W = (λ α. W r f α) by blast
have α ≤o |Field r | using a3 b0 ordLess-imp-ordLeq ordIso-iff-ordLeq ordLeq-transitive

by blast
then have (α <o ω-ord −→ |f α| <o ω-ord) ∧ (ω-ord ≤o α −→ |f α| ≤o α)

using a2 unfolding N -def N7-def by blast
moreover have c2 : α <o ω-ord ∨ ω-ord ≤o α using a3 Field-natLeq natLeq-well-order-on

by force
moreover have c3 : |f α| <o ω-ord −→ |Restr r (W α)| <o |Field r |
proof

assume |f α| <o ω-ord
then have finite (f α) using finite-iff-ordLess-natLeq by blast
then have finite (Restr r (W α)) unfolding b2 W-def by blast
then have |Restr r (W α)| <o ω-ord using finite-iff-ordLess-natLeq by blast
moreover have ω-ord ≤o |r | using a1 infinite-iff-natLeq-ordLeq by blast
moreover then have ω-ord ≤o |Field r | using lem-rel-inf-fld-card
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by (metis card-of-ordIso-finite infinite-iff-natLeq-ordLeq)
ultimately show |Restr r (W α)| <o |Field r | using ordLess-ordLeq-trans by

blast
qed
moreover have ω-ord ≤o α ∧ |f α| ≤o α −→ |Restr r (W α)| <o |Field r |
proof

assume d1 : ω-ord ≤o α ∧ |f α| ≤o α
moreover have |W α| ≤o |f α| unfolding b2 W-def by simp
ultimately have |W α| ≤o α using ordLeq-transitive by blast
then have |Restr r (W α)| ≤o α using d1 lem-restr-ordbnd[of α W α r ] by

blast
then show |Restr r (W α)| <o |Field r | using a3 ordLeq-ordLess-trans by

blast
qed
ultimately show ?thesis using b2 by blast

qed

lemma lem-QS-subs-WS : Q r f α ⊆ W r f α
unfolding Q-def W-def using lem-wdn-range-ub by force

lemma lem-WS-limord:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : ¬ finite r and a2 : f ∈ N r Ps and a3 : α <o |Field r |

and a4 : ¬ (α = {} ∨ isSuccOrd α)
shows W r f α = {}
proof −

have α ≤o |Field r | using a3 ordLess-imp-ordLeq by blast
then have f α ⊆ L f α using a2 a4 unfolding N -def N2-def Dbk-def by blast
then have w-dncl r (f α) ⊆ w-dncl r (L f α) using lem-wdn-mon by blast
moreover have f α ⊆ w-dncl r (f α) using lem-wdn-range-lb[of f α r ] by metis
ultimately have f α ⊆ w-dncl r (L f α) by blast
then show ?thesis unfolding W-def by blast

qed

lemma lem-der-inf-qw-restr-uset:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : Refl r ∧ ¬ finite r and a2 : f ∈ N r Ps

and a3 : α <o |Field r | and a4 : ω-ord ≤o |L f α|
shows Restr r (Q r f α) ∈ U (Restr r (W r f α))
proof (cases α = {} ∨ isSuccOrd α)

assume α = {} ∨ isSuccOrd α
moreover have |Field r | =o |r | using a1 lem-rel-inf-fld-card by blast
then have b1 : α ≤o |Field r | using a3 ordLess-imp-ordLeq ordIso-iff-ordLeq

ordLeq-transitive by blast
ultimately have b2 : escl r (L f α) (f α) ⊆ f α using a2 a4 unfolding N -def
N3-def by blast

moreover have b3 : CCR (Restr r (f α)) using b1 a2 unfolding N -def N6-def
by blast

moreover have SF r = {A. A ⊆ Field r} using a1 unfolding SF-def refl-on-def
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Field-def by fast
moreover then have W r f α ∈ SF r and Q r f α ∈ SF r
using a2 a3 lem-qw-range[of f r Ps α] lem-QS-subs-WS [of r f α] ordLess-imp-ordLeq

by fast+
ultimately show ?thesis

using a1 lem-cowdn-uset[of r f α L f α] Q-def [of r f α] W-def [of r f α] by
blast
next

assume ¬ (α = {} ∨ isSuccOrd α)
then have W r f α = {} ∧ Q r f α = {}

using assms lem-WS-limord lem-QS-subs-WS [of r f α] by blast
then show ?thesis unfolding U-def CCR-def Field-def by blast

qed

lemma lem-der-inf-qw-restr-ccr :
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : Refl r ∧ ¬ finite r and a2 : f ∈ N r Ps

and a3 : α <o |Field r | and a4 : ω-ord ≤o |L f α|
shows CCR (Restr r (W r f α))

using assms lem-der-inf-qw-restr-uset lem-rcc-uset-ne-ccr by blast

lemma lem-der-qw-uset:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : CCR r ∧ Refl r ∧ ¬ finite r and a2 : f ∈ N r Ps

and a3 : α <o scf r and a4 : ω-ord ≤o |L f α| and a5 : isSuccOrd α
shows Restr r (W r f α) ∈ U (Restr r (f α))
proof −
have b1 : α <o |Field r | using a3 lem-scf-relfldcard-bnd by (metis ordLess-ordLeq-trans)
have Q r f α ⊆ W r f α using lem-QS-subs-WS [of r f α] by blast
then have Field (Restr r (Q r f α)) ⊆ Field (Restr r (W r f α)) unfolding

Field-def by blast
moreover have Restr r (Q r f α) ∈ U (Restr r (f α))

using a1 a2 a3 a5 lem-der-q-uset ordLess-imp-ordLeq by blast
ultimately have ∀ a∈Field (Restr r (f α)). ∃ b∈Field (Restr r (W r f α)).
(a,b) ∈ (Restr r (f α))^∗ unfolding U-def by blast

moreover have Restr r (W r f α) ⊆ Restr r (f α) unfolding W-def by blast
moreover have CCR (Restr r (W r f α)) using assms b1 lem-der-inf-qw-restr-ccr

by blast
ultimately show ?thesis unfolding U-def by blast

qed

lemma lem-Shinf-N1 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
shows ∀α. Well-order α −→ f ∈ N1 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 ))
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and b4 : ∀ α. (lm-ord α −→ f α =
⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N1 r {} using b2 unfolding N1-def by (clarsimp, metis lem-ord-subemp)
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N1 r α0 −→ f ∈ N1 r α
proof (intro allI impI )

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N1 r α0
then have c2 : f α = F α0 (f α0 ) using b3 by blast
have ∀α ′ α ′′. α ′ ≤o α ∧ α ′′ ≤o α ′ −→ f α ′′ ⊆ f α ′

proof (intro allI impI )
fix α ′ α ′′:: ′U rel
assume d1 : α ′ ≤o α ∧ α ′′ ≤o α ′

moreover then have α ′′ ≤o α using ordLeq-transitive by blast
ultimately have (α ′′ ≤o α0 ∨ α ′′ =o α) ∧ (α ′ ≤o α0 ∨ α ′ =o α) using c1

unfolding sc-ord-def
by (meson not-ordLess-iff-ordLeq ordLeq-iff-ordLess-or-ordIso ordLess-Well-order-simp)
moreover have α ′ ≤o α0 −→ f α ′′ ⊆ f α ′ using d1 c1 unfolding N1-def

by blast
moreover have α ′ =o α ∧ α ′′ =o α −→ f α ′′ ⊆ f α ′ using b5 by blast
moreover have α ′ =o α ∧ α ′′ ≤o α0 −→ f α ′′ ⊆ f α ′

proof
assume e1 : α ′ =o α ∧ α ′′ ≤o α0

moreover then have α0 ≤o α0 using ordLeq-Well-order-simp or-
dLeq-reflexive by blast

ultimately have f α ′′ ⊆ f α0 using c1 unfolding N1-def by blast
moreover have f α0 ⊆ f α using a1 c2 e1 ordLeq-Well-order-simp by

blast
ultimately show f α ′′ ⊆ f α ′ using b5 e1 by blast

qed
ultimately show f α ′′ ⊆ f α ′ by blast

qed
then show f ∈ N1 r α unfolding N1-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N1 r β) −→ f ∈ N1 r

α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N1 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′ α ′′. α ′ ≤o α ∧ α ′′ ≤o α ′ −→ f α ′′ ⊆ f α ′

proof (intro allI impI )
fix α ′ α ′′:: ′U rel
assume d1 : α ′ ≤o α ∧ α ′′ ≤o α ′

then have (α ′ <o α ∨ α ′ =o α) ∧ (α ′′ <o α ′ ∨ α ′′ =o α ′) using or-
dLeq-iff-ordLess-or-ordIso by blast

moreover have α ′ <o α −→ f α ′′ ⊆ f α ′

using d1 c1 ordLeq-Well-order-simp ordLeq-reflexive unfolding N1-def by
blast

moreover have α ′ =o α ∧ α ′′ <o α ′ −→ f α ′′ ⊆ f α ′
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using c2 b5 ordLess-ordIso-trans by blast
moreover have α ′ =o α ∧ α ′′ =o α ′ −→ f α ′′ ⊆ f α ′ using b5 by blast
ultimately show f α ′′ ⊆ f α ′ by blast

qed
then show f ∈ N1 r α unfolding N1-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N1 r α] by blast

qed

lemma lem-Shinf-N2 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F
shows ∀α. Well-order α −→ f ∈ N2 r α
proof −

have b4 : ∀ α. (lm-ord α −→ f α =
⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N2 r {} using lem-ord-subemp unfolding N2-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N2 r α0 −→ f ∈ N2 r α
proof (intro allI impI )

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N2 r α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ ¬ (α ′ = {} ∨ isSuccOrd α ′) −→ (∇ f α ′) = {}
proof (intro allI impI )

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ ¬ (α ′ = {} ∨ isSuccOrd α ′)
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ (∇ f α ′) = {} using d1 c1 unfolding N2-def

by blast
moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def

using ordIso-iff-ordLeq by blast
moreover have α =o α ′ −→ False
proof

assume α =o α ′

moreover have isSuccOrd α using c1 lem-ordint-sucord[of α0 α] unfolding
sc-ord-def by blast

ultimately have isSuccOrd α ′ using lem-osucc-eq by blast
then show False using d1 by blast

qed
ultimately show (∇ f α ′) = {} by blast

qed
then show f ∈ N2 r α unfolding N2-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N2 r β) −→ f ∈ N2 r

α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N2 r β)
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then have c2 : f α =
⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ ¬ (α ′ = {} ∨ isSuccOrd α ′) −→ (∇ f α ′) = {}
proof (intro allI impI )

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ ¬ (α ′ = {} ∨ isSuccOrd α ′)
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ (∇ f α ′) = {}
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show (∇ f α ′) = {} using c1 d1 unfolding N2-def by blast

qed
moreover have α ′ =o α −→ (∇ f α ′) = {}
proof

assume α ′ =o α
moreover have (∇ f α) = {} using c2 unfolding Dbk-def L-def by blast
ultimately show (∇ f α ′) = {} using b5 lem-shrel-L-eq unfolding Dbk-def

by blast
qed
ultimately show (∇ f α ′) = {} by blast

qed
then show f ∈ N2 r α unfolding N2-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N2 r α] by blast

qed

lemma lem-Shinf-N3 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a3 : ∀ α A. Well-order α −→ A ∈ SF r −→

(ω-ord ≤o |A| −→ escl r A (F α A) ⊆ (F α A) ∧ clterm (Restr r (F
α A)) r)
shows ∀α. Well-order α −→ f ∈ N3 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 ))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have L f {} = {} unfolding L-def using b2 lem-ord-subemp ordLess-imp-ordLeq

by blast
then have ¬ ω-ord ≤o |L f {}| using ctwo-ordLess-natLeq finite-iff-ordLess-natLeq

ordLeq-transitive by auto
then have f ∈ N3 r {} using b2 lem-ord-subemp unfolding N3-def Field-def

by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N3 r α0 −→ f ∈ N3 r α
proof (intro allI impI )
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fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N3 r α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→ (ω-ord ≤o |L f α ′|

−→
escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)

proof (intro allI impI )
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) and d2 : ω-ord ≤o |L f α ′|
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ (ω-ord ≤o |L f α ′| −→

escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)
using d1 c1 unfolding N3-def by blast

moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ (ω-ord ≤o |L f α ′| −→
escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)

proof (intro impI )
assume e1 : α =o α ′ and e2 : ω-ord ≤o |L f α ′|
have L f α ⊆ f α0
proof

fix p
assume p ∈ L f α

then obtain β:: ′U rel where β <o α ∧ p ∈ f β unfolding L-def by blast
moreover then have β ≤o α0 ∧ α0 ≤o α0 using c1 unfolding sc-ord-def

using not-ordLess-iff-ordLeq ordLess-Well-order-simp by blast
moreover then have f ∈ N1 r α0 using a0 a1 lem-Shinf-N1 [of f F ]

ordLeq-Well-order-simp by metis
ultimately show p ∈ f α0 unfolding N1-def by blast

qed
moreover have f α0 ⊆ L f α using c1 unfolding sc-ord-def L-def by

blast
ultimately have e3 : L f α = f α0 by blast
then have ω-ord ≤o |f α0 | using e1 e2 lem-shrel-L-eq by metis
moreover have Well-order α0 using c1 unfolding sc-ord-def ordLess-def

by blast
moreover then have (f α0 ) ∈ SF r

using a5 unfolding N5-def using ordLeq-reflexive by blast
moreover have f α = F α0 (f α0 ) using c1 b3 by blast
ultimately have e4 : escl r (f α0 ) (f α) ⊆ f α ∧ clterm (Restr r (f α)) r

using a3 by metis
then have escl r (L f α) (f α) ⊆ f α using e3 by simp

then have escl r (L f α ′) (f α ′) ⊆ f α ′ using e1 b5 lem-shrel-L-eq by metis
moreover have clterm (Restr r (f α ′)) r using e1 e4 b5 by metis
ultimately show escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r

by blast
qed
ultimately show escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r
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using d2 by blast
qed
then show f ∈ N3 r α unfolding N3-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N3 r β) −→ f ∈ N3 r α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N3 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→ (ω-ord ≤o |L f α ′|
−→

escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)
proof (intro allI impI )

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) and d2 : ω-ord ≤o |L f α ′|
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ (ω-ord ≤o |L f α ′| −→

escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r)
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show (ω-ord ≤o |L f α ′| −→ escl r (L f α ′) (f α ′) ⊆ f α ′ ∧

clterm (Restr r (f α ′)) r)
using c1 d1 unfolding N3-def by blast

qed
moreover have α ′ =o α −→ False
proof

assume α ′ =o α
moreover then have α ′ = {} ∨ isSuccOrd α using d1 lem-osucc-eq by

blast
moreover have ¬ (α = {} ∨ isSuccOrd α) using c1 unfolding lm-ord-def

by blast
ultimately have α ′ =o α ∧ α ′ = {} ∧ α 6= {} by blast
then show False by (metis iso-ozero-empty ordIso-symmetric ozero-def )

qed
ultimately show escl r (L f α ′) (f α ′) ⊆ f α ′ ∧ clterm (Restr r (f α ′)) r

using d2 by blast
qed
then show f ∈ N3 r α unfolding N3-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N3 r α] by blast

qed

lemma lem-Shinf-N4 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
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and a4 : ∀ α A. Well-order α −→ A ∈ SF r −→ (∀ a∈A. r‘‘{a} ⊆ w-dncl r A
∨ r‘‘{a} ∩ (F α A − w-dncl r A) 6= {})
shows ∀α. Well-order α −→ f ∈ N4 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 ))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have L f {} = {} unfolding L-def using lem-ord-subemp ordLeq-iff-ordLess-or-ordIso

ordLess-irreflexive by blast
then have f ∈ N4 r {} using lem-ord-subemp unfolding N4-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N4 r α0 −→ f ∈ N4 r α
proof (intro allI impI )

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N4 r α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→

( ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′ − w-dncl r (L f
α ′)) 6={} )

proof (intro allI impI )
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′)
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ ( ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′)

∨ r‘‘{a}∩(f α ′ − w-dncl r (L f α ′)) 6={} )
using d1 c1 unfolding N4-def Dbk-def W-def by blast

moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ ( ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨
r‘‘{a}∩(f α ′ − w-dncl r (L f α ′)) 6={} )

proof
assume e1 : α =o α ′

have Well-order α0 using c1 unfolding sc-ord-def ordLess-def by blast
moreover then have (f α0 ) ∈ SF r

using a5 unfolding N5-def using ordLeq-reflexive by blast
moreover have f α = F α0 (f α0 ) using c1 b3 by blast
ultimately have e2 : ∀ a ∈ (f α0 ). r‘‘{a} ⊆ w-dncl r (f α0 ) ∨ r‘‘{a}∩(f α

− w-dncl r (f α0 ))6={}
using a4 by metis

have L f α ⊆ f α0
proof

fix p
assume p ∈ L f α

then obtain β:: ′U rel where β <o α ∧ p ∈ f β unfolding L-def by blast
moreover then have β ≤o α0 ∧ α0 ≤o α0 using c1 unfolding sc-ord-def

using not-ordLess-iff-ordLeq ordLess-Well-order-simp by blast
moreover then have f ∈ N1 r α0 using a0 a1 lem-Shinf-N1 [of f F ]

ordLeq-Well-order-simp by metis
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ultimately show p ∈ f α0 unfolding N1-def by blast
qed
moreover have f α0 ⊆ L f α using c1 unfolding sc-ord-def L-def by

blast
ultimately have L f α = f α0 by blast
then have L f α ′ = f α0 using e1 lem-shrel-L-eq by blast
then show ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′ −

w-dncl r (L f α ′)) 6={}
using e2 e1 b5 by metis

qed
ultimately show ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′

− w-dncl r (L f α ′)) 6={} by blast
qed
then show f ∈ N4 r α unfolding N4-def Dbk-def W-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N4 r β) −→ f ∈ N4 r

α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N4 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→
( ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′ − w-dncl r (L f

α ′)) 6={} )
proof (intro allI impI )

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′)
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ ( ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨

r‘‘{a}∩(f α ′ − w-dncl r (L f α ′)) 6={} )
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show ( ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f

α ′ − w-dncl r (L f α ′))6={} )
using c1 d1 unfolding N4-def Dbk-def W-def by blast

qed
moreover have α ′ =o α −→ False
proof

assume α ′ =o α
moreover then have α ′ = {} ∨ isSuccOrd α using d1 lem-osucc-eq by

blast
moreover have ¬ (α = {} ∨ isSuccOrd α) using c1 unfolding lm-ord-def

by blast
ultimately have α ′ =o α ∧ α ′ = {} ∧ α 6= {} by blast
then show False by (metis iso-ozero-empty ordIso-symmetric ozero-def )

qed
ultimately show ∀ a ∈ (L f α ′). r‘‘{a} ⊆ w-dncl r (L f α ′) ∨ r‘‘{a}∩(f α ′
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− w-dncl r (L f α ′)) 6={} by blast
qed
then show f ∈ N4 r α unfolding N4-def Dbk-def W-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N4 r α] by blast

qed

lemma lem-Shinf-N5 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F
assumes a5 : ∀ α A. (Well-order α ∧ A ∈ SF r) −→ (F α A) ∈ SF r
shows ∀α. Well-order α −→ f ∈ N5 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 ))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N5 r {} using b2 lem-ord-subemp unfolding N5-def SF-def Field-def

by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N5 r α0 −→ f ∈ N5 r α
proof (intro allI impI )

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N5 r α0
have ∀α ′:: ′U rel. α ′ ≤o α −→ (f α ′) ∈ SF r
proof (intro allI impI )

fix α ′:: ′U rel
assume d1 : α ′ ≤o α
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ Field (Restr r (f α ′)) = (f α ′) using c1

unfolding N5-def SF-def by blast
moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def

using ordIso-iff-ordLeq by blast
moreover have α =o α ′ −→ (f α ′) ∈ SF r
proof

assume α =o α ′

moreover have (f α) ∈ SF r
proof −

have α0 ≤o α0 using c1 unfolding sc-ord-def
using ordLess-Well-order-simp ordLeq-reflexive by blast

then have (f α0 ) ∈ SF r using c1 unfolding N5-def by blast
moreover have Well-order α0 using c1 unfolding sc-ord-def using

ordLess-Well-order-simp by blast
moreover have f α = F α0 (f α0 ) using c1 b3 by blast
ultimately show (f α) ∈ SF r using a5 by metis

qed
ultimately show (f α ′) ∈ SF r using b5 by metis

qed
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ultimately show (f α ′) ∈ SF r unfolding SF-def by blast
qed
then show f ∈ N5 r α unfolding N5-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N5 r β) −→ f ∈ N5 r

α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N5 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α −→ (f α ′) ∈ SF r
proof (intro allI impI )

fix α ′:: ′U rel
assume d1 : α ′ ≤o α
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ Field (Restr r (f α ′)) = (f α ′)
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show Field (Restr r (f α ′)) = (f α ′) using c1 d1 unfolding

N5-def SF-def by blast
qed
moreover have α ′ =o α −→ (f α ′) ∈ SF r
proof

assume α ′ =o α
moreover have (f α) ∈ SF r
proof −

have ∀ β. β <o α −→ (f β) ∈ SF r using c1 unfolding N5-def
using ordLess-Well-order-simp ordLeq-reflexive by blast

then show ?thesis using c2 lem-Relprop-sat-un[of {D. ∃β. β <o α ∧ D
= f β} r f α] unfolding SF-def by blast

qed
ultimately show (f α ′) ∈ SF r using b5 by metis

qed
ultimately show (f α ′) ∈ SF r unfolding SF-def by blast

qed
then show f ∈ N5 r α unfolding N5-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N5 r α] by blast

qed

lemma lem-Shinf-N6 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a6 : ∀ α A. Well-order α −→ A ∈ SF r −→ CCR (Restr r (F α A))

shows ∀α. Well-order α −→ f ∈ N6 r α
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proof −
have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 ))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N6 r {} using b2 lem-ord-subemp unfolding N6-def CCR-def Field-def

by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N6 r α0 −→ f ∈ N6 r α
proof (intro allI impI )

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N6 r α0
then have c2 : f α = F α0 (f α0 ) using b3 by blast
have ∀α ′. α ′ ≤o α −→ CCR (Restr r (f α ′))
proof (intro allI impI )

fix α ′:: ′U rel
assume α ′ ≤o α
then have α ′ ≤o α0 ∨ α ′ =o α using c1 unfolding sc-ord-def
by (meson ordIso-iff-ordLeq ordLeq-Well-order-simp ordLess-Well-order-simp

ordLess-or-ordLeq)
moreover have α ′ ≤o α0 −→ CCR (Restr r (f α ′)) using c1 unfolding

N6-def by blast
moreover have α ′ =o α −→ CCR (Restr r (f α ′))
proof

assume α ′ =o α
moreover have CCR (Restr r (f α))
proof −

have Well-order α0
using c1 ordLess-Well-order-simp unfolding sc-ord-def by blast

moreover then have (f α0 ) ∈ SF r
using a5 unfolding N5-def using ordLeq-reflexive by blast

ultimately show CCR (Restr r (f α)) unfolding c2 using a6 by blast
qed
ultimately show CCR (Restr r (f α ′)) using b5 by metis

qed
ultimately show CCR (Restr r (f α ′)) by blast

qed
then show f ∈ N6 r α unfolding N6-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N6 r β) −→ f ∈ N6 r α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N6 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have c3 : ∀α ′. α ′ ≤o α −→ CCR (Restr r (f α ′))
proof (intro allI impI )

fix α ′:: ′U rel
assume α ′ ≤o α

then have α ′ <o α ∨ α ′ =o α using ordIso-iff-ordLeq ordLeq-Well-order-simp
ordLess-or-ordLeq by blast
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moreover have α ′ <o α −→ CCR (Restr r (f α ′)) using c1 unfolding
N6-def

using ordLess-Well-order-simp ordLeq-reflexive by blast
moreover have α ′ =o α −→ CCR (Restr r (f α ′))
proof

assume α ′ =o α
moreover have CCR (Restr r (f α))
proof −
obtain C where f1 : C = { A. ∃ β:: ′U rel. β <o α ∧ A = f β } by blast
obtain S where f2 : S = { s. ∃ A ∈ C . s = Restr r A } by blast
have f3 : ∀A1 ∈ C . ∀A2 ∈ C . A1 ⊆ A2 ∨ A2 ⊆ A1
proof (intro ballI )

fix A1 A2
assume A1 ∈ C and A2 ∈ C
then obtain β1 β2 :: ′U rel where A1 = f β1 ∧ A2 = f β2 ∧ β1 <o

α ∧ β2 <o α using f1 by blast
moreover then have (β1 ≤o β2 ∨ β2 ≤o β1 ) ∧ β1 ≤o α ∧ β2 ≤o α
using ordLeq-total ordLess-Well-order-simp ordLess-imp-ordLeq by blast

moreover have f ∈ N1 r α using a0 a1 c1 lem-Shinf-N1 [of f F r ]
unfolding lm-ord-def by blast

ultimately show A1 ⊆ A2 ∨ A2 ⊆ A1 unfolding N1-def by blast
qed
have ∀ s ∈ S . CCR s using f1 f2 c1 unfolding N6-def

using ordLess-Well-order-simp ordLeq-reflexive by blast
moreover have ∀ s1∈S . ∀ s2∈S . s1 ⊆ s2 ∨ s2 ⊆ s1 using f2 f3 by blast
ultimately have CCR (

⋃
S) using lem-Relprop-ccr-ch-un[of S ] by blast

moreover have Restr r (
⋃
{D. ∃β. β <o α ∧ D = f β} ) =

⋃
S

using f1 f2 f3 lem-Relprop-restr-ch-un[of C r ] by blast
ultimately show ?thesis unfolding c2 by simp

qed
ultimately show CCR (Restr r (f α ′)) using b5 by metis

qed
ultimately show CCR (Restr r (f α ′)) by blast

qed
then show f ∈ N6 r α unfolding N6-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N6 r α] by blast

qed

lemma lem-Shinf-N7 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a7 : ∀ α A. ( |A| <o ω-ord −→ |F α A| <o ω-ord )

∧ ( ω-ord ≤o |A| −→ |F α A| ≤o |A| )
shows ∀α. Well-order α −→ f ∈ N7 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 ))
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and b4 : ∀ α. (lm-ord α −→ f α =
⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have ∀α:: ′U rel. α ≤o {} −→ |f α| ≤o α ∧ |f α| <o ω-ord
proof (intro allI impI )

fix α:: ′U rel
assume α ≤o {}
moreover then have (f α) = {} using b2 lem-ord-subemp by blast
ultimately show |f α| ≤o α ∧ |f α| <o ω-ord using lem-ord-subemp
by (metis Field-natLeq card-of-empty1 card-of-empty5 ctwo-def ctwo-ordLess-natLeq

natLeq-well-order-on not-ordLeq-iff-ordLess ordLeq-Well-order-simp)
qed
then have f ∈ N7 r {} unfolding N7-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N7 r α0 −→ f ∈ N7 r α
proof (intro allI impI )

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N7 r α0
then have c2 : f α = F α0 (f α0 ) using b3 by blast
have ∀α ′. α ′ ≤o α ∧ ω-ord ≤o α ′ −→ |f α ′| ≤o α ′

proof (intro allI impI )
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ ω-ord ≤o α ′

then have α ′ ≤o α0 ∨ α ′ =o α using c1 unfolding sc-ord-def
by (meson ordIso-iff-ordLeq ordLeq-Well-order-simp ordLess-Well-order-simp

ordLess-or-ordLeq)
moreover have α ′ ≤o α0 −→ |f α ′| ≤o α ′ using c1 d1 unfolding N7-def

by blast
moreover have α ′ =o α −→ |f α ′| ≤o α ′

proof
assume e1 : α ′ =o α
then have e2 : ω-ord ≤o α using d1 b5 ordLeq-transitive by blast
then have e3 : ω-ord ≤o α0 using c1 lem-ord-suc-ge-w by blast
then have Well-order α0 ∧ |f α0 | ≤o α0

using c1 unfolding sc-ord-def N7-def using ordLess-Well-order-simp
ordLeq-reflexive by blast

moreover then have |f α| ≤o |f α0 | ∨ |f α| <o ω-ord unfolding c2
using a7

using finite-iff-ordLess-natLeq infinite-iff-natLeq-ordLeq by blast
moreover have α0 ≤o α using c1 unfolding sc-ord-def using ord-

Less-imp-ordLeq by blast
ultimately have |f α| ≤o α using e3 ordLeq-transitive ordLess-imp-ordLeq

by metis
then show |f α ′| ≤o α ′ using b5 e1 ordIso-iff-ordLeq ordLeq-transitive by

metis
qed
ultimately show |f α ′| ≤o α ′ by blast

qed
moreover have ∀α ′. α ′ ≤o α ∧ α ′ <o ω-ord −→ |f α ′| <o ω-ord
proof (intro allI impI )

fix α ′:: ′U rel

201



assume d1 : α ′ ≤o α ∧ α ′ <o ω-ord
then have α ′ ≤o α0 ∨ α ′ =o α using c1 unfolding sc-ord-def
by (meson ordIso-iff-ordLeq ordLeq-Well-order-simp ordLess-Well-order-simp

ordLess-or-ordLeq)
moreover have α ′ ≤o α0 −→ |f α ′| <o ω-ord using c1 d1 unfolding

N7-def by blast
moreover have α ′ =o α −→ |f α ′| <o ω-ord
proof

assume e1 : α ′ =o α
then have e2 : α <o ω-ord using d1 ordIso-iff-ordLeq ordIso-ordLess-trans

by blast
then have e3 : α0 <o ω-ord using c1 unfolding sc-ord-def using or-

dLeq-ordLess-trans ordLess-imp-ordLeq by blast
then have Well-order α0 ∧ |f α0 | <o ω-ord

using c1 unfolding sc-ord-def N7-def using ordLess-Well-order-simp
ordLeq-reflexive by blast

then have |f α| <o ω-ord unfolding c2 using a7 by blast
then show |f α ′| <o ω-ord using b5 e1 by metis

qed
ultimately show |f α ′| <o ω-ord by blast

qed
ultimately show f ∈ N7 r α unfolding N7-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N7 r β) −→ f ∈ N7 r α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N7 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′. α ′ ≤o α ∧ ω-ord ≤o α ′ −→ |f α ′| ≤o α ′

proof (intro allI impI )
fix α ′:: ′U rel
assume e1 : α ′ ≤o α ∧ ω-ord ≤o α ′

then have α ′ <o α ∨ α ′ =o α using ordIso-iff-ordLeq ordLeq-Well-order-simp
ordLess-or-ordLeq by blast

moreover have α ′ <o α −→ |f α ′| ≤o α ′ using c1 e1 unfolding N7-def
using ordLess-Well-order-simp ordLeq-reflexive by blast

moreover have α ′ =o α −→ |f α ′| ≤o α ′

proof
assume α ′ =o α
moreover have |f α| ≤o α
proof −

obtain S where f1 : S = { A. ∃ β:: ′U rel. β <o α ∧ A = f β } by blast
have f2 : ω-ord ≤o α using c1 lem-lmord-inf lem-inford-ge-w unfolding

lm-ord-def by blast
have f3 : ∀ s ∈ S . |s| ≤o α
proof

fix s
assume s ∈ S
then obtain β where β <o α ∧ s = f β using f1 by blast
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then show |s| ≤o α
using c1 f2 unfolding N7-def apply clarsimp

by (metis card-of-Well-order natLeq-Well-order not-ordLess-ordLeq
ordLeq-reflexive ordLess-Well-order-simp ordLess-or-ordLeq ordLess-transitive)

qed
moreover have |S | ≤o α
proof −

have f ‘ {γ. γ <o α} = S using f1 by force
then show ?thesis using f1 f2 b5 lem-ord-int-card-le-inf [of f α ] by blast
qed
ultimately have |

⋃
S | ≤o α using f2 lem-card-un-bnd[of S α] by blast

then show ?thesis unfolding f1 c2 by blast
qed
ultimately show |f α ′| ≤o α ′ using b5 ordIso-iff-ordLeq ordLeq-transitive

by metis
qed
ultimately show |f α ′| ≤o α ′ by blast

qed
moreover have ∀α ′. α ′ ≤o α ∧ α ′ <o ω-ord −→ |f α ′| <o ω-ord
proof (intro allI impI )

fix α ′:: ′U rel
assume e1 : α ′ ≤o α ∧ α ′ <o ω-ord

then have α ′ <o α ∨ α ′ =o α using ordIso-iff-ordLeq ordLeq-Well-order-simp
ordLess-or-ordLeq by blast

moreover have α ′ <o α −→ |f α ′| <o ω-ord using c1 e1 unfolding N7-def
using ordLess-Well-order-simp ordLeq-reflexive by blast

moreover have α ′ =o α −→ |f α ′| <o ω-ord
proof

assume α ′ =o α
moreover have |f α| ≤o α
proof −

obtain S where f1 : S = { A. ∃ β:: ′U rel. β <o α ∧ A = f β } by blast
have f2 : ω-ord ≤o α using c1 lem-lmord-inf lem-inford-ge-w unfolding

lm-ord-def by blast
have f3 : ∀ s ∈ S . |s| ≤o α
proof

fix s
assume s ∈ S
then obtain β where β <o α ∧ s = f β using f1 by blast
then show |s| ≤o α

using c1 f2 unfolding N7-def apply clarsimp
by (metis card-of-Well-order natLeq-Well-order not-ordLess-ordLeq

ordLeq-reflexive ordLess-Well-order-simp ordLess-or-ordLeq ordLess-transitive)
qed
moreover have |S | ≤o α
proof −

have f ‘ {γ. γ <o α} = S using f1 by force
then show ?thesis using f1 f2 b5 lem-ord-int-card-le-inf [of f α ] by blast
qed
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ultimately have |
⋃

S | ≤o α using f2 lem-card-un-bnd[of S α] by blast
then show ?thesis unfolding f1 c2 by blast

qed
ultimately show |f α ′| <o ω-ord using e1 b5 ordIso-iff-ordLeq or-

dLeq-transitive
by (metis card-of-Well-order natLeq-Well-order not-ordLess-ordLeq ord-

Less-or-ordLeq)
qed
ultimately show |f α ′| <o ω-ord by blast

qed
ultimately show f ∈ N7 r α unfolding N7-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N7 r α] by blast

qed

lemma lem-Shinf-N8 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set and Ps:: ′U
set set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a7 : ∀ α A. ( |A| <o ω-ord −→ |F α A| <o ω-ord )

∧ ( ω-ord ≤o |A| −→ |F α A| ≤o |A| )
and a8 : ∀α A. A ∈ SF r −→ Ep r Ps A (F α A)

shows ∀α. Well-order α −→ f ∈ N8 r Ps α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 ))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N8 r Ps {} using b2 lem-ord-subemp unfolding N8-def SCF-def

Field-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N8 r Ps α0 −→ f ∈ N8 r Ps α
proof (intro allI impI )

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N8 r Ps α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→

((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′| )) −→ (∀P∈Ps. f α ′ ∩ P
∈ SCF (Restr r (f α ′)))

proof (intro allI , rule impI )
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′)
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f

α ′| )) −→
(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′)))

using d1 c1 unfolding N8-def by blast
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moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f
α ′| )) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′)))
proof (intro ballI impI )

fix P
assume e1 : α =o α ′ and e2 : (∃P ′. Ps = {P ′}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f

α ′| ) and e3 : P ∈ Ps
have e4 : f α ′ = f α using b5 e1 by blast
have Well-order α0 using c1 unfolding sc-ord-def ordLess-def by blast

then have (f α0 ) ∈ SF r using a5 unfolding N5-def using ordLeq-reflexive
by blast

moreover have e5 : f α = F α0 (f α0 ) using c1 b3 by blast
moreover have ¬ (∃P ′. Ps = {P ′}) −→ (¬ finite Ps ∧ |Ps| ≤o |f α0 | )
proof

assume f1 : ¬ (∃P ′. Ps = {P ′})
then have f2 : ω-ord ≤o |Ps| ∧ |Ps| ≤o |f α| using e2 e4 infi-

nite-iff-natLeq-ordLeq by metis
then have ¬ |F α0 (f α0 )| <o ω-ord using e5

by (metis finite-ordLess-infinite2 infinite-iff-natLeq-ordLeq not-ordLess-ordLeq)
then have ¬ |f α0 | <o ω-ord using a7 by blast

then have ω-ord ≤o |f α0 | by (metis finite-iff-ordLess-natLeq infi-
nite-iff-natLeq-ordLeq)

then have |F α0 (f α0 )| ≤o |f α0 | using a7 by blast
then have |Ps| ≤o |f α0 | using f2 e5 ordLeq-transitive by metis
then show ¬ finite Ps ∧ |Ps| ≤o |f α0 | using f1 e2 by blast

qed
ultimately show f α ′ ∩ P ∈ SCF (Restr r (f α ′)) using e3 e4 a8 unfolding

Ep-def by metis
qed
ultimately show ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′| )) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′))) by blast
qed
then show f ∈ N8 r Ps α unfolding N8-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N8 r Ps β) −→ f ∈ N8

r Ps α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N8 r Ps β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′) −→
((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′| )) −→ (∀P∈Ps. f α ′ ∩ P ∈

SCF (Restr r (f α ′)))
proof (intro allI , rule impI )

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (α ′ = {} ∨ isSuccOrd α ′)
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
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moreover have α ′ <o α −→ ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f
α ′| )) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′)))
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′| )) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′)))
using c1 d1 unfolding N8-def by blast

qed
moreover have α ′ =o α −→ False
proof

assume α ′ =o α
moreover then have α ′ = {} ∨ isSuccOrd α using d1 lem-osucc-eq by

blast
moreover have ¬ (α = {} ∨ isSuccOrd α) using c1 unfolding lm-ord-def

by blast
ultimately have α ′ =o α ∧ α ′ = {} ∧ α 6= {} by blast
then show False by (metis iso-ozero-empty ordIso-symmetric ozero-def )

qed
ultimately show ((∃P. Ps = {P}) ∨ (¬ finite Ps ∧ |Ps| ≤o |f α ′| )) −→

(∀P∈Ps. f α ′ ∩ P ∈ SCF (Restr r (f α ′))) by blast
qed
then show f ∈ N8 r Ps α unfolding N8-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N8 r Ps α] by

blast
qed

lemma lem-Shinf-N9 :
fixes r :: ′U rel and g:: ′U rel ⇒ ′U

and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a2 : ∀ α A. Well-order α −→ g α ∈ Field r −→ g α ∈ F α A
and a11 : ω-ord ≤o |Field r | −→ Field r ⊆ g ‘ { γ:: ′U rel. γ <o |Field r | }

shows f ∈ N9 r |Field r |
proof −

have b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 )) using a0
unfolding T -def by blast+

have ∀ a ∈ Field r . ω-ord ≤o |Field r | −→ a ∈ f |Field r |
proof (intro ballI impI )

fix a
assume c1 : a ∈ Field r and c2 : ω-ord ≤o |Field r |
then obtain α0 :: ′U rel where c4 : α0 <o |Field r | ∧ g α0 = a using a11 by

blast
moreover then obtain α where c5 : sc-ord α0 α using lem-sucord-ex[of α0

|Field r |] by blast
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ultimately have c6 : α ≤o |Field r | unfolding sc-ord-def by blast
have Well-order |Field r | by simp

then have f ∈ N1 r |Field r | using a0 a1 lem-Shinf-N1 unfolding card-order-on-def
by metis

moreover have c7 : |Field r | ≤o |Field r | by simp
moreover have f α = F α0 (f α0 ) using c5 b3 by blast
moreover have a ∈ F α0 (f α0 ) using a2 c4 c1 ordLess-Well-order-simp by

blast
ultimately show a ∈ f |Field r | using c6 unfolding N1-def by blast

qed
then show ?thesis unfolding N9-def by blast

qed

lemma lem-Shinf-N10 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a10 : ∀ α A. Well-order α −→ A ∈ SF r −→

((∃ y. (F α A) − dncl r A ⊆ {y}) −→ (Field r ⊆ dncl r (F α A)))
shows ∀α. Well-order α −→ f ∈ N10 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 ))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have f ∈ N10 r {} using b2 lem-ord-subemp unfolding N10-def Q-def by

blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N10 r α0 −→ f ∈ N10 r α
proof (intro allI impI )

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N10 r α0
have ∀α ′:: ′U rel. α ′ ≤o α −→

((∃ y. (f α ′) − dncl r (L f α ′) = {y}) −→ (Field r ⊆ dncl r (f α ′)))
proof (intro allI impI )

fix α ′:: ′U rel
assume d1 : α ′ ≤o α and d2 : ∃ y. (f α ′) − dncl r (L f α ′) = {y}
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ ((∃ y. (f α ′) − dncl r (L f α ′) = {y}) −→

(Field r ⊆ dncl r (f α ′)))
using d1 c1 unfolding N10-def Q-def by blast

moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ (Field r ⊆ dncl r (f α ′))
proof

assume e1 : α =o α ′

have Well-order α0 using c1 unfolding sc-ord-def ordLess-def by blast
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moreover then have (f α0 ) ∈ SF r
using a5 unfolding N5-def using ordLeq-reflexive by blast

moreover have f α = F α0 (f α0 ) using c1 b3 by blast
ultimately have e2 : ((∃ y. (f α) − dncl r (f α0 ) ⊆ {y}) −→ (Field r ⊆

dncl r (f α)))
using a10 by metis

have L f α ⊆ f α0
proof

fix p
assume p ∈ L f α

then obtain β:: ′U rel where β <o α ∧ p ∈ f β unfolding L-def by blast
moreover then have β ≤o α0 ∧ α0 ≤o α0 using c1 unfolding sc-ord-def

using not-ordLess-iff-ordLeq ordLess-Well-order-simp by blast
moreover then have f ∈ N1 r α0 using a0 a1 lem-Shinf-N1 [of f F ]

ordLeq-Well-order-simp by metis
ultimately show p ∈ f α0 unfolding N1-def by blast

qed
moreover have f α0 ⊆ L f α using c1 unfolding sc-ord-def L-def by

blast
ultimately have L f α = f α0 by blast
then have L f α ′ = f α0 using e1 lem-shrel-L-eq by blast
then show Field r ⊆ dncl r (f α ′) using d2 e2 e1 b5 by force

qed
ultimately show Field r ⊆ dncl r (f α ′) using d2 by blast

qed
then show f ∈ N10 r α unfolding N10-def Q-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N10 r β) −→ f ∈ N10

r α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N10 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α −→
((∃ y. (f α ′) − dncl r (L f α ′) = {y}) −→ (Field r ⊆ dncl r (f α ′)))

proof (intro allI impI )
fix α ′:: ′U rel
assume d1 : α ′ ≤o α and d2 : ∃ y. (f α ′) − dncl r (L f α ′) = {y}
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ (Field r ⊆ dncl r (f α ′))
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show Field r ⊆ dncl r (f α ′) using c1 d1 d2 unfolding N10-def

Q-def by blast
qed
moreover have α ′ =o α −→ False
proof
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assume e1 : α ′ =o α
moreover then have e2 : L f α ′ = L f α using lem-shrel-L-eq by blast
ultimately have ∃ y. (f α) − dncl r (L f α) = {y} using d2 b5 by metis
moreover have f α ⊆ L f α using c2 unfolding L-def by blast
ultimately show False unfolding dncl-def by blast

qed
ultimately show Field r ⊆ dncl r (f α ′) using d2 by blast

qed
then show f ∈ N10 r α unfolding N10-def Q-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N10 r α] by blast

qed

lemma lem-Shinf-N11 :
fixes r :: ′U rel and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀ α A. Well-order α −→ A ⊆ F α A
and a5 : ∀α. Well-order α −→ f ∈ N5 r α
and a10 : ∀ α A. Well-order α −→ A ∈ SF r −→

((∃ y. (F α A) − dncl r A ⊆ {y}) −→ (Field r ⊆ dncl r (F α A)))
shows ∀α. Well-order α −→ f ∈ N11 r α
proof −

have b2 : f {} = {}
and b3 : ∀ α0 α:: ′U rel. (sc-ord α0 α −→ f α = F α0 (f α0 ))
and b4 : ∀ α. (lm-ord α −→ f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β })

and b5 : ∀α β. α =o β −→ f α = f β using a0 unfolding T -def by blast+
have ¬ isSuccOrd ({}:: ′U rel)

using wo-rel-def wo-rel.isSuccOrd-def unfolding Field-def by force
then have f ∈ N11 r {} using lem-ord-subemp unfolding N11-def by blast
moreover have ∀α0 α. sc-ord α0 α ∧ f ∈ N11 r α0 −→ f ∈ N11 r α
proof (intro allI impI )

fix α0 α:: ′U rel
assume c1 : sc-ord α0 α ∧ f ∈ N11 r α0
have ∀α ′:: ′U rel. α ′ ≤o α ∧ (isSuccOrd α ′) −→

(( (f α ′) − dncl r (L f α ′) = {}) −→ (Field r ⊆ dncl r (f α ′)))
proof (intro allI impI )

fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (isSuccOrd α ′)

and d2 : (f α ′) − dncl r (L f α ′) = {}
then have α0 <o α ′ ∨ α ′ ≤o α0 using c1 unfolding sc-ord-def
using not-ordLeq-iff-ordLess ordLeq-Well-order-simp ordLess-Well-order-simp

by blast
moreover have α ′ ≤o α0 −→ (((f α ′) − dncl r (L f α ′) = {}) −→ (Field r

⊆ dncl r (f α ′)))
using d1 c1 unfolding N11-def Q-def by blast

moreover have α0 <o α ′ −→ α =o α ′ using d1 c1 unfolding sc-ord-def
using ordIso-iff-ordLeq by blast

moreover have α =o α ′ −→ (Field r ⊆ dncl r (f α ′))
proof
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assume e1 : α =o α ′

have Well-order α0 using c1 unfolding sc-ord-def ordLess-def by blast
moreover then have (f α0 ) ∈ SF r

using a5 unfolding N5-def using ordLeq-reflexive by blast
moreover have f α = F α0 (f α0 ) using c1 b3 by blast
ultimately have e2 : (((f α) − dncl r (f α0 ) = {}) −→ (Field r ⊆ dncl r

(f α)))
using a10 by fastforce

have L f α ⊆ f α0
proof

fix p
assume p ∈ L f α

then obtain β:: ′U rel where β <o α ∧ p ∈ f β unfolding L-def by blast
moreover then have β ≤o α0 ∧ α0 ≤o α0 using c1 unfolding sc-ord-def

using not-ordLess-iff-ordLeq ordLess-Well-order-simp by blast
moreover then have f ∈ N1 r α0 using a0 a1 lem-Shinf-N1 [of f F ]

ordLeq-Well-order-simp by metis
ultimately show p ∈ f α0 unfolding N1-def by blast

qed
moreover have f α0 ⊆ L f α using c1 unfolding sc-ord-def L-def by

blast
ultimately have L f α = f α0 by blast
then have L f α ′ = f α0 using e1 lem-shrel-L-eq by blast
then show Field r ⊆ dncl r (f α ′) using d2 e2 e1 b5 by force

qed
ultimately show Field r ⊆ dncl r (f α ′) using d2 by blast

qed
then show f ∈ N11 r α unfolding N11-def Q-def by blast

qed
moreover have ∀α. lm-ord α ∧ (∀β. β <o α −→ f ∈ N11 r β) −→ f ∈ N11

r α
proof (intro allI impI )

fix α:: ′U rel
assume c1 : lm-ord α ∧ (∀β. β <o α −→ f ∈ N11 r β)
then have c2 : f α =

⋃
{ D. ∃ β. β <o α ∧ D = f β } using b4 by blast

have ∀α ′:: ′U rel. α ′ ≤o α ∧ (isSuccOrd α ′) −→
(((f α ′) − dncl r (L f α ′) = {}) −→ (Field r ⊆ dncl r (f α ′)))

proof (intro allI impI )
fix α ′:: ′U rel
assume d1 : α ′ ≤o α ∧ (isSuccOrd α ′)

and d2 : (f α ′) − dncl r (L f α ′) = {}
then have α ′ <o α ∨ α ′ =o α using ordLeq-iff-ordLess-or-ordIso by blast
moreover have α ′ <o α −→ (Field r ⊆ dncl r (f α ′))
proof

assume α ′ <o α
moreover then have α ′≤o α ′ using ordLess-Well-order-simp ordLeq-reflexive

by blast
ultimately show Field r ⊆ dncl r (f α ′) using c1 d1 d2 unfolding N11-def

Q-def by blast qed
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moreover have α ′ =o α −→ False
proof

assume α ′ =o α
moreover then have α ′ = {} ∨ isSuccOrd α using d1 lem-osucc-eq by

blast
moreover have ¬ (α = {} ∨ isSuccOrd α) using c1 unfolding lm-ord-def

by blast
ultimately have α ′ =o α ∧ α ′ = {} ∧ α 6= {} by blast
then show False by (metis iso-ozero-empty ordIso-symmetric ozero-def )

qed
ultimately show Field r ⊆ dncl r (f α ′) using d2 by blast

qed
then show f ∈ N11 r α unfolding N11-def Q-def by blast

qed
ultimately show ?thesis using lem-sclm-ordind[of λ α. f ∈ N11 r α] by blast

qed

lemma lem-Shinf-N12 :
fixes r :: ′U rel and g:: ′U rel ⇒ ′U

and F :: ′U rel ⇒ ′U set ⇒ ′U set and f :: ′U rel ⇒ ′U set
assumes a0 : f ∈ T F

and a1 : ∀α. Well-order α −→ f ∈ N1 r α
and a2 : ∀ α A. Well-order α −→ g α ∈ Field r −→ g α ∈ F α A
and a11 : ω-ord ≤o |Field r | −→ Field r = g ‘ { γ:: ′U rel. γ <o |Field r | }
and a2 ′: ∀α:: ′U rel. ω-ord ≤o α ∧ α ≤o |Field r | −→ ω-ord ≤o |g ‘ {γ. γ <o

α}|
shows f ∈ N12 r |Field r |
proof −

have b1 : ∀α. ω-ord =o α ∧ α ≤o |Field r | −→ ω-ord ≤o |L f α|
proof (intro allI impI )

fix α:: ′U rel
assume c1 : ω-ord =o α ∧ α ≤o |Field r |
then have c2 : ω-ord ≤o |g‘{γ. γ <o α}| using a2 ′ ordIso-imp-ordLeq by blast
have g‘{γ. γ <o α} ⊆ g‘{γ. γ <o |Field r |} using c1 ordLess-ordLeq-trans by

force
then have g‘{γ. γ <o α} ⊆ Field r

using c1 a11 ordLeq-transitive ordIso-imp-ordLeq[of ω-ord] by metis
have g‘{γ. γ <o α} ⊆ L f α
proof

fix a
assume a ∈ g‘{γ. γ <o α}
then obtain γ where d1 : a = g γ ∧ γ <o α by blast
obtain γ ′ where d2 : sc-ord γ γ ′ using d1 lem-sucord-ex by blast
then have f γ ′ = F γ (f γ) using a0 unfolding T -def by blast
moreover have Well-order γ using d2 unfolding sc-ord-def using ord-

Less-def by blast
moreover have g γ ∈ Field r using d1 c1 a11 ordIso-ordLeq-trans ord-

Less-ordLeq-trans by blast
ultimately have a ∈ f γ ′ using d1 a2 by blast
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moreover have γ ′ <o α
proof −
have isLimOrd ω-ord by (simp add: Field-natLeq card-order-infinite-isLimOrd

natLeq-card-order)
then have ¬ isSuccOrd α

using c1 lem-osucc-eq ordIso-symmetric
using natLeq-Well-order wo-rel.isLimOrd-def wo-rel-def by blast

then obtain β:: ′U rel where γ <o β ∧ ¬ (α ≤o β) using d1 lem-ordint-sucord
by blast

then have γ <o β ∧ β <o α using d1
by (metis ordIso-imp-ordLeq ordLess-Well-order-simp ordLess-imp-ordLeq

ordLess-or-ordIso)
then show γ ′<o α using d2 unfolding sc-ord-def using ordLeq-ordLess-trans

by blast
qed
ultimately show a ∈ L f α unfolding L-def by blast

qed
then have |g‘{γ. γ <o α}| ≤o |L f α| by simp
then show ω-ord ≤o |L f α| using c2 ordLeq-transitive by blast

qed
have ∀α. ω-ord ≤o α ∧ α ≤o |Field r | −→ ω-ord ≤o |L f α|
proof (intro allI impI )

fix α:: ′U rel
assume ω-ord ≤o α ∧ α ≤o |Field r |
moreover then obtain α0 :: ′U rel where d1 : ω-ord =o α0 ∧ α0 ≤o α

using internalize-ordLeq[of ω-ord α] by blast
ultimately have ω-ord =o α0 ∧ α0 ≤o |Field r | using ordLeq-transitive by

blast
then have ω-ord ≤o |L f α0 | using b1 by blast
moreover have L f α0 ⊆ L f α using d1 unfolding L-def using ord-

Less-ordLeq-trans by blast
moreover then have |L f α0 | ≤o |L f α| by simp
ultimately show ω-ord ≤o |L f α| using ordLeq-transitive by blast

qed
then show ?thesis unfolding N12-def by blast

qed

lemma lem-Shinf-E-ne:
fixes r :: ′U rel and a0 :: ′U and A:: ′U set and Ps:: ′U set set
assumes a2 : CCR r and a3 : Ps ⊆ SCF r
shows E r a0 A Ps 6= {}
proof (cases A ∈ SF r)

assume b0 : A ∈ SF r
show E r a0 A Ps 6= {}
proof (cases finite A)

assume b1 : finite A
then obtain A ′ where (a0 ∈ Field r −→ a0 ∈ A ′) and b2 : A ⊆ A ′ and b3 :

CCR (Restr r A ′) ∧ finite A ′

and (∀ a∈A. r‘‘{a}⊆w-dncl r A ∨ r‘‘{a}∩(A ′−w-dncl r A) 6= {})
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and A ′ ∈ SF r and b4 : (∃ y. A ′ − dncl r A ⊆ {y}) −→ Field r ⊆
A ′ ∪ dncl r A

and b5 : (∃ P. Ps = {P}) −→ (∀ P ∈ Ps. (A ′ ∩ P ∈ SCF (Restr
r A ′)))

using b0 a2 a3
lem-Ccext-finsubccr-pext5-scf3 [of r A Ps a0 w-dncl r A dncl r A]
by metis

moreover have |A ′| <o ω-ord using b3 finite-iff-ordLess-natLeq by blast
moreover have ¬ ( ω-ord ≤o |A| ) using b1 infinite-iff-natLeq-ordLeq by blast
moreover have (∃ y. A ′ − dncl r A ⊆ {y}) −→ Field r ⊆ dncl r A ′ using b2

b4 unfolding dncl-def by blast
moreover have (∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A| ) −→ (∃ P.

Ps = {P})
using b1 card-of-ordLeq-finite by blast

ultimately have A ′ ∈ E r a0 A Ps unfolding E-def Ep-def by fast
then show ?thesis by blast

next
assume b1 : ¬ finite A
then obtain A ′ where b2 : (a0 ∈ Field r −→ a0 ∈ A ′) and b3 : A ⊆ A ′ and

b4 : CCR (Restr r A ′)
and b5 : |A ′| =o |A| and b6 : (∀ a∈A. r‘‘{a}⊆w-dncl r A ∨

r‘‘{a}∩(A ′−w-dncl r A) 6= {})
and b7 : A ′ ∈ SF r and b8 : (∃ y. A ′ − dncl r A ⊆ {y}) −→ Field

r ⊆ A ′ ∪ dncl r A
and b9 : ( |Ps| ≤o |A| −→ (∀ P ∈ Ps. (A ′ ∩ P) ∈ SCF (Restr r

A ′)) )
and b10 : escl r A A ′ ⊆ A ′ and b11 : clterm (Restr r A ′) r

using b0 a2 a3
lem-Ccext-infsubccr-pext5-scf3 [of r A Ps a0 w-dncl r A dncl r A] by metis

then have (ω-ord ≤o |A| −→ |A ′| ≤o |A| ) using ordIso-iff-ordLeq by blast
moreover have ( |A| <o ω-ord −→ |A ′| <o ω-ord) using b1 finite-iff-ordLess-natLeq

by blast
moreover have (∃ y. A ′ − dncl r A ⊆ {y}) −→ (Field r ⊆ dncl r A ′) using

b3 b8 unfolding dncl-def by blast
moreover have (∃ P. Ps = {P}) ∨ ((¬ finite Ps) ∧ |Ps| ≤o |A| ) −→ |Ps|

≤o |A|
using b1 by (metis card-of-singl-ordLeq finite.simps)

ultimately have A ′ ∈ E r a0 A Ps unfolding E-def Ep-def
using b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 by fast

then show ?thesis by blast
qed

next
assume A /∈ SF r
moreover obtain A ′ where b1 : A ′ = A ∪ {a0} by blast
moreover then have |A| <o ω-ord −→ |A ′| <o ω-ord using finite-iff-ordLess-natLeq

by blast
moreover have ω-ord ≤o |A| −→ |A ′| ≤o |A|
proof

assume ω-ord ≤o |A|
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then have ¬ finite A using finite-iff-ordLess-natLeq not-ordLeq-ordLess by
blast

then have |A ′| =o |A| unfolding b1 using infinite-card-of-insert by simp
then show |A ′| ≤o |A| using ordIso-imp-ordLeq by blast

qed
ultimately have A ′ ∈ E r a0 A Ps unfolding E-def by blast
then show E r a0 A Ps 6= {} by blast

qed

lemma lem-oseq-fin-inj:
fixes g:: ′U rel ⇒ ′a and I :: ′U rel ⇒ ′U rel set and A:: ′a set
assumes a1 : I = (λ α ′. { α:: ′U rel. α <o α ′ })

and a2 : ω-ord ≤o |A|
and a3 : ∀ α β. α =o β −→ g α = g β

shows ∃ h. (∀ α ′. g‘(I α ′) ⊆ h‘(I α ′) ∧ h‘(I α ′) ⊆ g‘(I α ′) ∪ A)
∧ (∀ α ′. ω-ord ≤o α ′ −→ ω-ord ≤o |h‘(I α ′)| )
∧ (∀ α β. α =o β −→ h α = h β)

proof(cases ∃ α:: ′U rel. ω-ord ≤o α)
assume ∃ α:: ′U rel. ω-ord ≤o α
then obtain αm:: ′U rel where b1 : ω-ord =o αm by (metis internalize-ordLeq)
obtain f ::nat ⇒ ′U rel where b2 : f = (λ n. SOME α. α =o (natLeq-on n)) by

blast
have |UNIV ::nat set| ≤o |A| using a2 using card-of-nat ordIso-imp-ordLeq

ordLeq-transitive by blast
then obtain xi::nat ⇒ ′a where b3 : inj xi ∧ xi ‘ UNIV ⊆ A by (meson

card-of-ordLeq)
obtain yi where b4 : yi = (λ n. if (∃ i<n. g (f n) = g (f i)) then (xi n) else (g

(f n))) by blast
obtain h where b5 : h = (λ α. if (∃ n. α =o f n) then (yi (SOME n. (α =o f

n))) else (g α)) by blast
have b6 :

∧
n::nat. f n =o (natLeq-on n)

proof −
fix n

have natLeq-on n <o αm using b1 natLeq-on-ordLess-natLeq ordLess-ordIso-trans
by blast

then obtain α:: ′U rel where α =o (natLeq-on n)
using internalize-ordLess ordIso-symmetric by fastforce
then show f n =o natLeq-on n using b2 someI-ex [of λα:: ′U rel. α =o

(natLeq-on n)] by blast
qed
then have b7 :

∧
n m. n ≤ m =⇒ f n ≤o f m

by (metis (no-types, lifting) natLeq-on-ordLeq-less-eq ordIso-imp-ordLeq or-
dIso-symmetric ordLeq-transitive)

have b8 :
∧

n m. f n =o f m =⇒ n = m
proof −

fix n m
assume f n =o f m

moreover then have natLeq-on n =o f m using b6 ordIso-transitive or-
dIso-symmetric by blast
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ultimately have natLeq-on n =o natLeq-on m using b6 ordIso-transitive by
blast

then show n = m using natLeq-on-injective-ordIso by blast
qed
have b9 :

∧
α n. α =o f n =⇒ h α = yi n

proof −
fix α:: ′U rel and n::nat
assume α =o f n
moreover obtain m where m = (SOME n. (α =o f n)) by blast
ultimately have h α = yi m ∧ α =o f m ∧ α =o f n using b5 someI-ex [of λ

n. α =o f n] by fastforce
moreover then have m = n using b8 ordIso-transitive ordIso-symmetric by

blast
ultimately show h α = yi n by blast

qed
have b10 :

∧
n. yi‘{k. k ≤ n} ⊆ g‘(f‘({k. k ≤ n})) ∪ A

proof −
fix n0
show yi‘{k. k ≤ n0} ⊆ g‘(f‘({k. k ≤ n0})) ∪ A
proof (induct n0 )

show yi‘{k. k ≤ 0} ⊆ g‘(f‘{k. k ≤ 0}) ∪ A using b4 by simp
next

fix n
assume d1 : yi‘{k. k ≤ n} ⊆ g‘(f‘({k. k ≤ n})) ∪ A
show yi‘{k. k ≤ Suc n} ⊆ g‘(f‘({k. k ≤ (Suc n)})) ∪ A
proof (cases ∃ i<Suc n. g (f (Suc n)) = g (f i))

assume ∃ i<Suc n. g (f (Suc n)) = g (f i)
then obtain i where i<Suc n ∧ g (f (Suc n)) = g (f i) by blast
then have i ≤ n ∧ yi (Suc n) = xi (Suc n) using b4 by force
then have yi (Suc n) ∈ g‘(f‘({k. k ≤ Suc n})) ∪ A using b3 by blast
moreover have yi‘{k. k ≤ n} ⊆ g‘(f‘({k. k ≤ Suc n})) ∪ A using d1 by

fastforce
moreover have

∧
k. k ≤ Suc n ←→ (k ≤n ∨ k = Suc n) by linarith

moreover then have yi‘{k. k ≤ Suc n} = yi‘{k. k ≤ n} ∪ {yi (Suc n)}
by fastforce

ultimately show ?thesis by blast
next

assume ¬ (∃ i<Suc n. g (f (Suc n)) = g (f i))
then have yi (Suc n) = g (f (Suc n)) using b4 by force
then have yi (Suc n) ∈ g‘(f‘({k. k ≤ Suc n})) ∪ A by blast
moreover have yi‘{k. k ≤ n} ⊆ g‘(f‘({k. k ≤ Suc n})) ∪ A using d1 by

fastforce
moreover have

∧
k. k ≤ Suc n ←→ (k ≤n ∨ k = Suc n) by linarith

moreover then have yi‘{k. k ≤ Suc n} = yi‘{k. k ≤ n} ∪ {yi (Suc n)}
by fastforce

ultimately show ?thesis by blast
qed

qed
qed
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have ∀ α ′. g‘(I α ′) ⊆ h‘(I α ′) ∧ h‘(I α ′) ⊆ g‘(I α ′) ∪ A
proof

fix α ′:: ′U rel
have g‘(I α ′) ⊆ h‘(I α ′)
proof

fix a
assume a ∈ g‘(I α ′)
then obtain β where d1 : β <o α ′ ∧ a = g β using a1 by blast
show a ∈ h‘(I α ′)
proof (cases ∃ n. β =o f n)

assume ∃ n. β =o f n
then obtain n where e1 : β =o f n by blast
then have e2 : a = g (f n) ∧ h β = yi n using d1 b9 a3 by blast
obtain P where e3 : P = (λ i. i≤n ∧ g (f n) = g (f i)) by blast
obtain k where k = (LEAST i. P i) by blast
moreover have P n using e3 by blast

ultimately have P k ∧ (∀ i. P i −→ k ≤ i) using LeastI Least-le by metis
then have k ≤ n ∧ g (f n) = g (f k) ∧ ¬ (∃ i<k. g (f k) = g (f i))

using e3 by (metis leD less-le-trans less-or-eq-imp-le)
then have a = yi k ∧ f k ≤o f n using e2 b4 b7 by fastforce
moreover then have f k <o α ′

using e1 d1 by (metis ordIso-symmetric ordLeq-ordIso-trans ordLeq-ordLess-trans)
ultimately have f k ∈ I α ′ ∧ h (f k) = a using a1 b7 b9 ordIso-iff-ordLeq

by blast
then show ?thesis by blast

next
assume ¬ (∃ n. β =o f n)
then have h β = g β using b5 by simp
then show ?thesis using d1 a1 by force

qed
qed
moreover have h‘(I α ′) ⊆ g‘(I α ′) ∪ A
proof

fix a
assume a ∈ h‘(I α ′)
then obtain β where d1 : β <o α ′ ∧ a = h β using a1 by blast
show a ∈ g‘(I α ′) ∪ A
proof (cases ∃ n. β =o f n)

assume ∃ n. β =o f n
then obtain n where e1 : β =o f n by blast
then have a = yi n using d1 b9 by blast
then have a ∈ g‘(f‘({k. k ≤ n})) ∪ A using b10 by blast
moreover have ∀ k. k ≤ n −→ f k ∈ I α ′

proof (intro allI impI )
fix k
assume k ≤ n
then have f k ≤o f n using b7 by blast
then show f k ∈ I α ′ using e1 a1 d1

using ordIso-symmetric ordLeq-ordIso-trans ordLeq-ordLess-trans by
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fastforce
qed
ultimately show ?thesis by blast

next
assume ¬ (∃ n. β =o f n)
then show ?thesis using d1 a1 b5 by force

qed
qed
ultimately show g‘(I α ′) ⊆ h‘(I α ′) ∧ h‘(I α ′) ⊆ g‘(I α ′) ∪ A by blast

qed
moreover have ∀ α ′. ω-ord ≤o α ′ −→ ω-ord ≤o |h‘(I α ′)|
proof (intro allI impI )

fix α ′:: ′U rel
assume ω-ord ≤o α ′

then have I αm ⊆ I α ′

using a1 b1 by (smt mem-Collect-eq not-ordLess-ordIso ordIso-symmetric
ordLeq-iff-ordLess-or-ordIso ordLeq-ordLess-trans ordLeq-transitive subsetI )

moreover have f‘UNIV ⊆ I αm using b1 a1
using b6 natLeq-on-ordLess-natLeq ordIso-ordLess-trans ordLess-ordIso-trans

by fastforce
ultimately have h‘(f‘UNIV ) ⊆ h‘(I α ′) by blast
then have |h‘(f‘UNIV )| ≤o |h‘(I α ′)| by simp
moreover have ω-ord ≤o |h‘(f‘UNIV )|
proof −

have ∀ n. h (f n) = yi n using b7 b9 ordIso-iff-ordLeq by blast
then have yi‘UNIV ⊆ h‘(f‘UNIV ) by (smt imageE image-eqI subset-eq)
then have |yi‘UNIV | ≤o |h‘(f‘UNIV )| by simp
moreover have ω-ord ≤o |yi‘UNIV |
proof (cases finite (g‘(f‘UNIV )))

assume e1 : finite(g‘(f‘UNIV ))
obtain J where e3 : J = {n. ∃ i<n. g (f n) = g (f i)} by blast
have (∀ m. ∃ n>m. n /∈ J ) −→ False
proof

assume f1 : ∀ m. ∃ n>m. n /∈ J
obtain w where f2 : w = (λ m. SOME n. n>m ∧ n /∈ J ) by blast
have f3 : ∀ m. w m > m ∧ w m /∈ J
proof

fix m
show w m > m ∧ w m /∈ J using f1 f2 someI-ex[of λ n. n>m ∧ n /∈

J ] by metis
qed
obtain p where f4 : p = (λ k::nat. (w^^k) 0 ) by blast
have f5 : ∀ k. k 6= 0 −→ p k /∈ J
proof

fix k
show k 6= 0 −→ p k /∈ J
proof (induct k)

show 0 6= 0 −→ p 0 /∈ J by blast
next
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fix k
assume k 6= 0 −→ p k /∈ J
show Suc k 6= 0 −→ p (Suc k) /∈ J using f3 f4 by simp

qed
qed
have ∀ j. ∀ i<j. p i < p j
proof

fix j
show ∀ i<j. p i < p j
proof (induct j)

show ∀ i<0 . p i < p 0 by blast
next

fix j
assume ∀ i<j. p i < p j
moreover have p j < p (Suc j) using f3 f4 by force
ultimately show ∀ i<Suc j. p i < p (Suc j) by (metis less-antisym

less-trans)
qed

qed
then have inj p unfolding inj-on-def by (metis nat-neq-iff )
then have ¬ finite (p‘UNIV ) using finite-imageD by blast
moreover obtain P where f6 : P = p‘{k. k 6= 0} by blast
moreover have UNIV = {0} ∪ {k::nat. k 6= 0} by blast
moreover then have p‘UNIV = p‘{0} ∪ P ∧ finite (p‘{0}) using f6 by

fastforce
ultimately have f7 : ¬ finite P using finite-UnI by metis
have ∀ n ∈ P. ∀ m ∈ P. g (f n) = g (f m) −→ n = m
proof (intro ballI impI )

fix n m
assume g1 : n ∈ P and g2 : m ∈ P and g3 : g (f n) = g (f m)
have n < m −→ False
proof

assume n < m
moreover then have m /∈ J using g2 f5 f6 by blast
ultimately show False using g3 e3 by force

qed
moreover have m < n −→ False
proof

assume m < n
moreover then have n /∈ J using g1 f5 f6 by blast
ultimately show False using g3 e3 by force

qed
ultimately show n = m by force

qed
then have inj-on (g ◦ f ) P unfolding inj-on-def by simp
then have ¬ finite ((g ◦ f )‘UNIV ) using f7

by (metis finite-imageD infinite-iff-countable-subset subset-UNIV sub-
set-image-iff )

moreover have (g ◦ f )‘UNIV = g‘(f‘UNIV ) by force
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ultimately show False using e1 by simp
qed
then obtain m where ∀ n>m. n ∈ J by blast
then have ∀ n>m. yi n = xi n using e3 b4 by force
then have e4 : xi‘{n. n>m} ⊆ yi‘UNIV by (metis image-Collect-subsetI

rangeI )
have e5 : |xi‘{n. n>m}| =o |{n. n>m}| using b3 by (metis card-of-image

image-inv-f-f ordIso-iff-ordLeq)
have finite {n. n≤m} ∧ (¬ finite (UNIV ::nat set)) ∧ {n. n≤m} ∪ {n.

n>m} = UNIV by force
then have ¬ finite {n. n>m} using finite-UnI by metis

then have |xi‘{n. n>m}| =o ω-ord using e5 by (meson card-of-UNIV
card-of-nat

finite-iff-cardOf-nat ordIso-transitive ordLeq-iff-ordLess-or-ordIso)
then show ?thesis using e4

by (metis finite-subset infinite-iff-natLeq-ordLeq ordIso-natLeq-infinite1 )
next

assume ¬ finite (g‘(f‘UNIV ))
moreover have g‘(f‘UNIV ) ⊆ yi‘UNIV
proof

fix a
assume a ∈ g‘(f‘UNIV )
then obtain n where e1 : a = g (f n) by blast
obtain P where e3 : P = (λ i. i≤n ∧ g (f n) = g (f i)) by blast
obtain k where k = (LEAST i. P i) by blast
moreover have P n using e3 by blast
ultimately have P k ∧ (∀ i. P i −→ k ≤ i) using LeastI Least-le by

metis
then have g (f n) = g (f k) ∧ ¬ (∃ i<k. g (f k) = g (f i))

using e3 by (metis leD less-le-trans less-or-eq-imp-le)
then have yi k = a using e1 b4 b7 by fastforce
then show a ∈ yi‘UNIV by blast

qed
ultimately have ¬ finite (yi‘UNIV ) using finite-subset by metis
then show ?thesis using infinite-iff-natLeq-ordLeq by blast

qed
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately show ω-ord ≤o |h‘(I α ′)| using ordLeq-transitive by blast

qed
moreover have ∀ α β. α =o β −→ h α = h β
proof (intro allI impI )

fix α:: ′U rel and β:: ′U rel
assume c1 : α =o β
show h α = h β
proof (cases ∃ n. α =o f n)

assume ∃ n. α =o f n
moreover then have ∃ n. β =o f n using c1 ordIso-transitive ordIso-symmetric

by metis
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moreover have ∀ n. (α =o f n) = (β =o f n) using c1 ordIso-transitive
ordIso-symmetric by metis

ultimately show h α = h β using b5 by simp
next

assume ¬ (∃ n. α =o f n)
moreover then have ¬ (∃ n. β =o f n) using c1 ordIso-transitive by metis
ultimately show h α = h β using b5 c1 a3 by simp

qed
qed
ultimately show ?thesis by blast

next
assume ¬ (∃ α:: ′U rel. ω-ord ≤o α)
then show ?thesis using a3 by blast

qed

lemma lem-Shinf-N-ne:
fixes r :: ′U rel and Ps:: ′U set set
assumes CCR r and Ps ⊆ SCF r
shows N r Ps 6= {}
proof −

obtain E :: ′U ⇒ ′U set ⇒ ′U set where E = (λ a A. SOME A ′. A ′ ∈ E r a A
Ps) by blast

moreover have ∀ a A. ∃ A ′. A ′ ∈ E r a A Ps using assms lem-Shinf-E-ne[of
r Ps] by blast

ultimately have b1 : ∀ a A. E a A ∈ E r a A Ps by (meson someI-ex)
have ∃ g:: ′U rel ⇒ ′U . (ω-ord ≤o |Field r | −→ Field r = g ‘ {γ. γ <o |Field

r |}) ∧
(∀α ′:: ′U rel. ω-ord ≤o α ′ ∧ α ′ ≤o |Field r | −→ ω-ord ≤o |g ‘ {γ. γ <o α ′}|

) ∧
(∀α β. α =o β −→ g α = g β)

proof(cases ω-ord ≤o |Field r |)
assume c1 : ω-ord ≤o |Field r |
moreover have Card-order |Field r | ∧ |Field r | ≤o |Field r | by simp
ultimately obtain g0 :: ′U rel ⇒ ′U where

c2 : Field r ⊆ g0 ‘ {γ. γ <o |Field r | }
and c3 : ∀ α β. α =o β −→ g0 α = g0 β
using c1 lem-card-setcv-inf-stab[of |Field r | Field r ] by blast

have Field r 6= {} using c1 by (metis finite.emptyI infinite-iff-natLeq-ordLeq)
then obtain a0 where a0 ∈ Field r by blast
moreover obtain t where t = (λ a. if (a ∈ Field r) then a else a0 ) by blast
moreover obtain g1 where g1 = (λ α. t (g0 α)) by blast
ultimately have c4 : Field r ⊆ g1‘{γ . γ <o |Field r | }

and c5 : ∀ α β. α =o β −→ g1 α = g1 β and c6 : g1‘UNIV ⊆ Field
r using c2 c3 by force+

obtain I where c7 : I = (λα ′:: ′U rel. {α:: ′U rel. α <o α ′}) by blast
then obtain g where c8 : (∀ α ′. g1‘(I α ′) ⊆ g‘(I α ′) ∧ g‘(I α ′) ⊆ g1‘(I α ′) ∪

(Field r))
and c9 : ∀ α ′. ω-ord ≤o α ′ −→ ω-ord ≤o |g‘(I α ′)|
and c10 : (∀ α β. α =o β −→ g α = g β) using c1 c5 lem-oseq-fin-inj[of
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I Field r g1 ] by blast
have g1‘(I |Field r | ) ⊆ Field r using c6 by blast
then have g ‘ { γ. γ <o |Field r | } ⊆ Field r using c7 c8 by blast
moreover have Field r ⊆ g‘{ γ. γ <o |Field r | } using c4 c7 c8 by force
ultimately have ω-ord ≤o |Field r | −→ Field r = g‘{ γ. γ <o |Field r | } by

blast
then show ?thesis using c7 c9 c10 by blast

next
assume ¬ ω-ord ≤o |Field r |
moreover then have ∀α ′:: ′U rel. ¬ (ω-ord ≤o α ′ ∧ α ′ ≤o |Field r | ) using

ordLeq-transitive by blast
moreover have ∃ g:: ′U rel ⇒ ′U . (∀ α β. α =o β −→ g α = g β) by force
ultimately show ?thesis by blast

qed
then obtain g:: ′U rel ⇒ ′U where

b4 : ω-ord ≤o |Field r | −→ Field r = g ‘ { γ:: ′U rel. γ <o |Field r | }
and b4 ′: ∀α ′:: ′U rel. ω-ord ≤o α ′ ∧ α ′ ≤o |Field r | −→ ω-ord ≤o |g ‘ {γ. γ

<o α ′}|
and b5 : ∀ α β. α =o β −→ g α = g β by blast

obtain F :: ′U rel ⇒ ′U set ⇒ ′U set where b6 : F = (λ α A. E (g α) A) by
blast

then have ∀ α β. α =o β −→ F α = F β using b5 by fastforce
then obtain f :: ′U rel ⇒ ′U set where b7 : f ∈ T F

unfolding T -def using lem-ordseq-rec-sets[of F {}] by clarsimp
have b8 : Well-order |Field r | by simp
have N r Ps 6= {}
proof −

have c0 : ∀ α A. A ∈ SF r −→ F α A ∈ SF r using b6 b1 unfolding E-def
by simp

have c1 : ∀ α A. A ⊆ F α A using b6 b1 unfolding E-def by simp
have c2 : ∀ α A. (g α ∈ Field r −→ g α ∈ F α A) using b6 b1 unfolding

E-def by blast
have c3 : ∀ α A. A ∈ SF r −→ ω-ord ≤o |A| −→ escl r A (F α A) ⊆ (F α A)

∧ clterm (Restr r (F α A)) r
using b6 b1 unfolding E-def by blast

have c4 : ∀ α A. A ∈ SF r −→
( ∀ a∈A. r ‘‘ {a} ⊆ w-dncl r A ∨ r ‘‘ {a} ∩ (F α A − w-dncl r A) 6=

{} )
using b6 b1 unfolding E-def by blast

have c6 : ∀ α A. A ∈ SF r −→ CCR (Restr r (F α A))
using b6 b1 unfolding E-def by blast

have c7 : ∀ α A. ( |A| <o ω-ord −→ |F α A| <o ω-ord) ∧ ( ω-ord ≤o |A| −→
|F α A| ≤o |A| )

using b6 b1 unfolding E-def by blast
have c8 : ∀ α A. A ∈ SF r −→ Ep r Ps A (F α A) using b6 b1 unfolding

E-def Ep-def by blast
have c10 : ∀ α A. A ∈ SF r −→ ((∃ y. (F α A) − dncl r A ⊆ {y}) −→ (Field

r ⊆ dncl r (F α A)))
using b6 b1 unfolding E-def by blast

221



have c1 ′: ∀α. Well-order α −→ f ∈ N1 r α using b7 b8 c1 lem-Shinf-N1 [of f
F r ] by blast

have c5 ′: ∀α. Well-order α −→ f ∈ N5 r α using b7 b8 c0 lem-Shinf-N5 [of f
F r ] by blast

have f ∈ N1 r |Field r | using b7 b8 c1 lem-Shinf-N1 [of f F r ] by blast
moreover have f ∈ N2 r |Field r | using b7 b8 lem-Shinf-N2 [of f F r ] by blast
moreover have f ∈ N3 r |Field r | using b7 b8 c1 c3 c5 ′ lem-Shinf-N3 [of f F

r ] by blast
moreover have f ∈ N4 r |Field r | using b7 b8 c1 c4 c5 ′ lem-Shinf-N4 [of f F

r ] by blast
moreover have f ∈ N5 r |Field r | using b7 b8 c0 lem-Shinf-N5 [of f F r ] by

blast
moreover have f ∈ N6 r |Field r | using b7 b8 c1 c6 c5 ′ lem-Shinf-N6 [of f F

r ] by blast
moreover have f ∈ N7 r |Field r | using b7 b8 c1 c7 lem-Shinf-N7 [of f F r ]

by blast
moreover have f ∈ N8 r Ps |Field r | using b7 b8 c1 c7 c8 c5 ′ lem-Shinf-N8 [of

f F r Ps] by blast
moreover have f ∈ N9 r |Field r | using b7 b4 c1 c2 lem-Shinf-N9 [of f F g

r ] by blast
moreover have f ∈ N10 r |Field r | using b7 b8 c1 c10 c5 ′ lem-Shinf-N10 [of

f F r ] by metis
moreover have f ∈ N11 r |Field r | using b7 b8 c1 c10 c5 ′ lem-Shinf-N11 [of

f F r ] by metis
moreover have f ∈ N12 r |Field r | using b7 c1 ′ c2 b4 b4 ′ lem-Shinf-N12 [of

f F r g] by blast
moreover have ∀ α β. α =o β −→ f α = f β using b7 unfolding T -def by

blast
ultimately show ?thesis unfolding N -def by blast

qed
then show ?thesis by blast

qed

lemma lem-wrankrel-eq: wrank-rel r A0 α =⇒ α =o β =⇒ wrank-rel r A0 β
proof −

assume a1 : wrank-rel r A0 α and a2 : α =o β
then obtain B where B ∈ wbase r A0 ∧ |B| =o α ∧ ( ∀ B ′ ∈ wbase r A0 . |B|
≤o |B ′| ) unfolding wrank-rel-def by blast

moreover then have |B| =o β using a2 by (metis ordIso-transitive)
ultimately show wrank-rel r A0 β unfolding wrank-rel-def by blast

qed

lemma lem-wrank-wrankrel:
fixes r :: ′U rel and A0 :: ′U set
shows wrank-rel r A0 (wrank r A0 )
proof −

have b1 : wbase r A0 6= {} using lem-wdn-range-lb[of A0 r ] unfolding wbase-def
by blast

obtain Q where b2 : Q = { α:: ′U rel. ∃ A ∈ wbase r A0 . α =o |A| } by blast
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have b3 : ∀ A ∈ wbase r A0 . ∃ α ∈ Q. α ≤o |A|
proof

fix A
assume A ∈ wbase r A0
then have |A| ∈ Q ∧ |A| =o |A| using b2 ordIso-symmetric by force
then show ∃ α ∈ Q. α ≤o |A| using ordIso-iff-ordLeq by blast

qed
then have Q 6= {} using b1 by blast
then obtain α where b4 : α ∈ Q ∧ (∀α ′. α ′ <o α −→ α ′ /∈ Q) using wf-ordLess

wf-eq-minimal[of ordLess] by blast
moreover have ∀ α ′∈ Q. Card-order α ′ using b2 using ordIso-card-of-imp-Card-order

by blast
ultimately have ∀ α ′ ∈ Q. ¬ (α ′ <o α) −→ α ≤o α ′ by simp
then have b5 : α ∈ Q ∧ (∀ α ′ ∈ Q. α ≤o α ′) using b4 by blast
then obtain A where b6 : A ∈ wbase r A0 ∧ |A| =o α using b2 ordIso-symmetric

by blast
moreover have ∀ B∈wbase r A0 . |A| ≤o |B|
proof

fix B
assume B ∈ wbase r A0
then obtain α ′ where α ′ ∈ Q ∧ α ′ ≤o |B| using b3 by blast
moreover then have |A| =o α ∧ α ≤o α ′ using b5 b6 by blast
ultimately show |A| ≤o |B| using ordIso-ordLeq-trans ordLeq-transitive by

blast
qed
ultimately have wrank-rel r A0 α unfolding wrank-rel-def by blast
then show ?thesis unfolding wrank-def by (metis someI2 )

qed

lemma lem-wrank-uset:
fixes r :: ′U rel and A0 :: ′U set
shows ∃ A ∈ wbase r A0 . |A| =o wrank r A0 ∧ ( ∀ B ∈ wbase r A0 . |A| ≤o |B|
)

using lem-wrank-wrankrel unfolding wrank-rel-def by blast

lemma lem-wrank-uset-mem-bnd:
fixes r :: ′U rel and A0 B:: ′U set
assumes B ∈ wbase r A0
shows wrank r A0 ≤o |B|
proof −

obtain A where A ∈ wbase r A0 ∧ |A| =o wrank r A0 ∧ ( ∀ A ′ ∈ wbase r A0 .
|A| ≤o |A ′| ) using assms lem-wrank-uset by blast

moreover then have |A| ≤o |B| using assms by blast
ultimately show ?thesis by (metis ordIso-iff-ordLeq ordLeq-transitive)

qed

lemma lem-wrank-cardord: Card-order (wrank r A0 )
proof −

obtain A where A ∈ wbase r A0 ∧ |A| =o wrank r A0 using lem-wrank-uset
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by blast
then show Card-order (wrank r A0 ) using Card-order-ordIso2 card-of-Card-order

by blast
qed

lemma lem-wrank-ub: wrank r A0 ≤o |A0 |
using lem-wdn-range-lb[of A0 r ] lem-wrank-uset-mem-bnd unfolding wbase-def

by blast

lemma lem-card-un2-bnd: ω-ord ≤o α =⇒ |A| ≤o α =⇒ |B| ≤o α =⇒ |A ∪ B|
≤o α
proof −

assume ω-ord ≤o α and |A| ≤o α and |B| ≤o α
moreover have |{A, B}| ≤o ω-ord using finite-iff-ordLess-natLeq ordLess-imp-ordLeq

by blast
ultimately have |

⋃
{A, B}| ≤o α using lem-card-un-bnd[of {A,B}] ordLeq-transitive

by blast
then show |A ∪ B| ≤o α by simp

qed

lemma lem-card-un2-lsbnd: ω-ord ≤o α =⇒ |A| <o α =⇒ |B| <o α =⇒ |A ∪ B|
<o α
proof −

assume b1 : ω-ord ≤o α and b2 : |A| <o α and b3 : |B| <o α
have ¬ finite A −→ |A ∪ B| <o α
proof

assume c1 : ¬ finite A
show |A ∪ B| <o α
proof (cases |A| ≤o |B|)

assume |A| ≤o |B|
then have |A ∪ B| =o |B| using c1 by (metis card-of-Un-infinite card-of-ordLeq-finite)

then show ?thesis using b3 by (metis ordIso-ordLess-trans)
next

assume ¬ |A| ≤o |B|
then have |B| ≤o |A| by (metis card-of-Well-order ordLeq-total)
then have |A ∪ B| =o |A| using c1 by (metis card-of-Un-infinite)
then show ?thesis using b2 by (metis ordIso-ordLess-trans)

qed
qed
moreover have ¬ finite B −→ |A ∪ B| <o α
proof

assume c1 : ¬ finite B
show |A ∪ B| <o α
proof (cases |A| ≤o |B|)

assume |A| ≤o |B|
then have |A ∪ B| =o |B| using c1 by (metis card-of-Un-infinite)
then show ?thesis using b3 by (metis ordIso-ordLess-trans)

next
assume ¬ |A| ≤o |B|

224



then have |B| ≤o |A| by (metis card-of-Well-order ordLeq-total)
then have |A ∪ B| =o |A| using c1 by (metis card-of-Un-infinite card-of-ordLeq-finite)

then show ?thesis using b2 by (metis ordIso-ordLess-trans)
qed

qed
moreover have finite A ∧ finite B −→ |A ∪ B| <o α
proof

assume finite A ∧ finite B
then have finite (A ∪ B) by blast
then show |A ∪ B| <o α using b1
by (meson card-of-nat finite-iff-cardOf-nat ordIso-imp-ordLeq ordLess-ordLeq-trans)

qed
ultimately show ?thesis by blast

qed

lemma lem-wrank-un-bnd:
fixes r :: ′U rel and S :: ′U set set and α:: ′U rel
assumes a1 : ∀ A∈S . wrank r A ≤o α and a2 : |S | ≤o α and a3 : ω-ord ≤o α
shows wrank r (

⋃
S) ≤o α

proof −
obtain h where b1 : h = (λ A B. B ∈ wbase r A ∧ |B| =o wrank r A) by blast
obtain Bi where b2 : Bi = (λ A. SOME B. h A B) by blast
have ∀A∈S . ∃ B. h A B using b1 lem-wrank-uset[of r ] by blast
then have ∀A∈S . h A (Bi A) using b2 by (metis someI-ex)
then have b3 : ∀A∈S . (Bi A) ∈ wbase r A ∧ |Bi A| =o wrank r A using b1 by

blast
then have b4 : ∀ A ∈ S . |Bi A| ≤o α using assms ordIso-ordLeq-trans by blast
obtain S ′ where b5 : S ′ = Bi ‘ S by blast
then have |S ′| ≤o |S | ∧ (∀ X ∈ S ′. |X | ≤o α) using b4 by simp
moreover then have |S ′| ≤o α using a2 by (metis ordLeq-transitive)
ultimately have |

⋃
S ′| ≤o α using a3 lem-card-un-bnd[of S ′ α] by blast

moreover obtain B where b6 : B = (
⋃

A∈S . Bi A) by blast
ultimately have b7 : |B| ≤o α using b5 by simp
have ∀A∈S . A ⊆ w-dncl r (Bi A) using b3 unfolding wbase-def by blast
then have

⋃
S ⊆ w-dncl r B using b6 lem-wdn-mon[of - B r ] by blast

then have B ∈ wbase r (
⋃

S) unfolding wbase-def by blast
then have wrank r (

⋃
S) ≤o |B| using lem-wrank-uset-mem-bnd by blast

then show ?thesis using b7 by (metis ordLeq-transitive)
qed

lemma lem-wrank-un-bnd-stab:
fixes r :: ′U rel and S :: ′U set set and α:: ′U rel
assumes a1 : ∀ A∈S . wrank r A <o α and a2 : |S | <o α and a3 : stable α
shows wrank r (

⋃
S) <o α

proof −
obtain h where b1 : h = (λ A B. B ∈ wbase r A ∧ |B| =o wrank r A) by blast
obtain Bi where b2 : Bi = (λ A. SOME B. h A B) by blast
have ∀A∈S . ∃ B. h A B using b1 lem-wrank-uset[of r ] by blast
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then have ∀A∈S . h A (Bi A) using b2 by (metis someI-ex)
then have b3 : ∀A∈S . (Bi A) ∈ wbase r A ∧ |Bi A| =o wrank r A using b1 by

blast
then have b4 : ∀ A ∈ S . |Bi A| <o α using assms ordIso-ordLess-trans by blast
obtain S ′ where b5 : S ′ = Bi ‘ S by blast
then have |S ′| ≤o |S | ∧ (∀ X ∈ S ′. |X | <o α) using b4 by simp
moreover then have |S ′| <o α using a2 by (metis ordLeq-ordLess-trans)
ultimately have |

⋃
S ′| <o α using a3 lem-card-un-bnd-stab[of α S ′] by blast

moreover obtain B where b6 : B = (
⋃

A∈S . Bi A) by blast
ultimately have b7 : |B| <o α using b5 by simp
have ∀A∈S . A ⊆ w-dncl r (Bi A) using b3 unfolding wbase-def by blast
then have

⋃
S ⊆ w-dncl r B using b6 lem-wdn-mon[of - B r ] by blast

then have B ∈ wbase r (
⋃

S) unfolding wbase-def by blast
then have wrank r (

⋃
S) ≤o |B| using lem-wrank-uset-mem-bnd by blast

then show ?thesis using b7 by (metis ordLeq-ordLess-trans)
qed

lemma lem-wrank-fw:
fixes r :: ′U rel and K :: ′U set and α:: ′U rel
assumes a1 : ω-ord ≤o α and a2 : wrank r K ≤o α and a3 : ∀ b∈K . wrank r
(r‘‘{b}) ≤o α
shows wrank r (

⋃
b∈K . (r‘‘{b})) ≤o α

proof −
obtain h where b1 : h = (λ A B. B ∈ wbase r A ∧ |B| =o wrank r A) by blast
obtain Bi where b2 : Bi = (λ b. SOME B. h (r‘‘{b}) B) by blast
have ∀ b∈K . ∃ B. h (r‘‘{b}) B using b1 lem-wrank-uset[of r ] by blast
then have ∀ b∈K . h (r‘‘{b}) (Bi b) using b2 by (metis someI-ex)
then have b3 : ∀ b∈K . (Bi b) ∈ wbase r (r‘‘{b}) ∧ |Bi b| =o wrank r (r‘‘{b})

using b1 by blast
obtain BK where b4 : BK ∈ wbase r K ∧ |BK | =o wrank r K using lem-wrank-uset[of

r K ] by blast
obtain BU where b5 : BU = BK ∪ (

⋃
b∈(K∩BK ). Bi b) by blast

obtain S where b6 : S = (
⋃

b∈K . (r‘‘{b})) by blast
have b7 : ∀ b ∈ K∩BK . (r‘‘{b}) ⊆ w-dncl r BU
proof

fix b
assume b ∈ K ∩ BK
then have Bi b ⊆ BU ∧ (Bi b) ∈ wbase r (r‘‘{b}) using b3 b5 by blast
then show r‘‘{b} ⊆ w-dncl r BU using lem-wdn-mon unfolding wbase-def

by blast
qed
have BU ∈ wbase r S
proof −

have ∀ b ∈ K . r‘‘{b} ⊆ dncl r BU
proof

fix b
assume d1 : b ∈ K
show r‘‘{b} ⊆ dncl r BU
proof (cases b ∈ BK )
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assume b ∈ BK
then show ?thesis using d1 b7 unfolding w-dncl-def by blast

next
assume e1 : b /∈ BK
have ∀ t ∈ r‘‘{b}. t /∈ dncl r BU −→ False
proof (intro ballI impI )

fix t
assume f1 : t ∈ r‘‘{b} and f2 : t /∈ dncl r BU
then have f3 : t /∈ dncl r BK using b5 unfolding dncl-def by blast
moreover have b ∈ w-dncl r BK using d1 b4 unfolding wbase-def by

blast
ultimately have f4 : ∀F ∈ F r b t. F ∩ BK 6= {} unfolding w-dncl-def

by blast
obtain f where f5 : f = (λ n::nat. if (n = 0 ) then b else t) by blast
then have f 0 = b ∧ f 1 = t by simp
moreover then have ∀ i<1 . (f i, f (Suc i)) ∈ r using f1 by simp
ultimately have f ∈ rpth r b t 1 ∧ {b, t} = f ‘ {i. i ≤ 1}

using f5 unfolding rpth-def by force
then have {b, t} ∈ F r b t unfolding F-def by blast
then have {b, t} ∩ BK 6= {} using f4 by blast
then show False using e1 f3 unfolding dncl-def by blast

qed
then show ?thesis by blast

qed
qed
then have c1 : S ⊆ dncl r BU using b6 by blast
moreover have ∀ x ∈ S . ∀ c. ∀F∈F r x c. c /∈ dncl r BU −→ F ∩ BU 6= {}
proof (intro ballI allI impI )

fix x c F
assume d1 : x ∈ S and d2 : F ∈ F r x c and d3 : c /∈ dncl r BU
then obtain b where d4 : b ∈ K ∧ (b,x) ∈ r using b6 by blast
show F ∩ BU 6= {}
proof (cases b ∈ BK )

assume b ∈ BK
then have x ∈ w-dncl r BU using b7 d4 by blast
then show ?thesis using d2 d3 unfolding w-dncl-def by blast

next
assume e1 : b /∈ BK
have e2 : b ∈ w-dncl r BK using d4 b4 unfolding wbase-def by blast
obtain f n where e3 : f ∈ rpth r x c n and e4 : F = f ‘ {i. i≤n}

using d2 unfolding F-def by blast
obtain g where e5 : g = (λ k::nat. if (k=0 ) then b else (f (k−1 ))) by blast
then have g ∈ rpth r b c (Suc n)

using e3 d4 unfolding rpth-def
by (simp, metis Suc-le-eq diff-Suc-Suc diff-zero gr0-implies-Suc less-Suc-eq-le)
then have g ‘ {i. i ≤ (Suc n)} ∈ F r b c ∧ c /∈ dncl r BK

using d3 b5 unfolding F-def dncl-def by blast
then have g ‘ {i. i ≤ (Suc n)} ∩ BK 6= {} using e2 unfolding w-dncl-def

by blast
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moreover have g ‘ {i. i ≤ (Suc n)} ⊆ F ∪ {b}
proof

fix a
assume a ∈ g ‘ {i. i ≤ (Suc n)}
then obtain i where i ≤ (Suc n) ∧ a = g i by blast
then show a ∈ F ∪ {b} using e4 e5 by force

qed
ultimately have (F ∪ {b}) ∩ BK 6= {} by blast
then show ?thesis using e1 b5 by blast

qed
qed
ultimately have S ⊆ w-dncl r BU unfolding w-dncl-def by blast
then show ?thesis unfolding wbase-def by blast

qed
moreover have |BU | ≤o α
proof −

have c1 : |BK | ≤o α using b4 a2 by (metis ordIso-ordLeq-trans)
then have |K ∩ BK | ≤o α by (meson card-of-mono1 inf-le2 ordLeq-transitive)
then have |Bi ‘ (K ∩ BK )| ≤o α by (metis card-of-image ordLeq-transitive)
moreover have ∀ b∈(K∩BK ). |Bi b| ≤o α using b3 a3 by (meson Int-iff

ordIso-ordLeq-trans)
ultimately have |

⋃
(Bi ‘ (K ∩ BK ))| ≤o α using a1 lem-card-un-bnd[of

Bi‘(K∩BK ) α] by blast
then show |BU | ≤o α using c1 b5 a1 lem-card-un2-bnd[of α BK

⋃
(Bi ‘ (K

∩ BK ))] by simp
qed
ultimately have wrank r S ≤o α using b6 lem-wrank-uset-mem-bnd ordLeq-transitive

by blast
then show ?thesis using b6 by blast

qed

lemma lem-wrank-fw-stab:
fixes r :: ′U rel and K :: ′U set and α:: ′U rel
assumes a1 : ω-ord ≤o α ∧ stable α and a2 : wrank r K <o α and a3 : ∀ b∈K .
wrank r (r‘‘{b}) <o α
shows wrank r (

⋃
b∈K . (r‘‘{b})) <o α

proof −
obtain h where b1 : h = (λ A B. B ∈ wbase r A ∧ |B| =o wrank r A) by blast
obtain Bi where b2 : Bi = (λ b. SOME B. h (r‘‘{b}) B) by blast
have ∀ b∈K . ∃ B. h (r‘‘{b}) B using b1 lem-wrank-uset[of r ] by blast
then have ∀ b∈K . h (r‘‘{b}) (Bi b) using b2 by (metis someI-ex)
then have b3 : ∀ b∈K . (Bi b) ∈ wbase r (r‘‘{b}) ∧ |Bi b| =o wrank r (r‘‘{b})

using b1 by blast
obtain BK where b4 : BK ∈ wbase r K ∧ |BK | =o wrank r K using lem-wrank-uset[of

r K ] by blast
obtain BU where b5 : BU = BK ∪ (

⋃
b∈(K∩BK ). Bi b) by blast

obtain S where b6 : S = (
⋃

b∈K . (r‘‘{b})) by blast
have b7 : ∀ b ∈ K∩BK . (r‘‘{b}) ⊆ w-dncl r BU
proof
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fix b
assume b ∈ K ∩ BK
then have Bi b ⊆ BU ∧ (Bi b) ∈ wbase r (r‘‘{b}) using b3 b5 by blast
then show r‘‘{b} ⊆ w-dncl r BU using lem-wdn-mon unfolding wbase-def

by blast
qed
have BU ∈ wbase r S
proof −

have ∀ b ∈ K . r‘‘{b} ⊆ dncl r BU
proof

fix b
assume d1 : b ∈ K
show r‘‘{b} ⊆ dncl r BU
proof (cases b ∈ BK )

assume b ∈ BK
then show ?thesis using d1 b7 unfolding w-dncl-def by blast

next
assume e1 : b /∈ BK
have ∀ t ∈ r‘‘{b}. t /∈ dncl r BU −→ False
proof (intro ballI impI )

fix t
assume f1 : t ∈ r‘‘{b} and f2 : t /∈ dncl r BU
then have f3 : t /∈ dncl r BK using b5 unfolding dncl-def by blast
moreover have b ∈ w-dncl r BK using d1 b4 unfolding wbase-def by

blast
ultimately have f4 : ∀F ∈ F r b t. F ∩ BK 6= {} unfolding w-dncl-def

by blast
obtain f where f5 : f = (λ n::nat. if (n = 0 ) then b else t) by blast
then have f 0 = b ∧ f 1 = t by simp
moreover then have ∀ i<1 . (f i, f (Suc i)) ∈ r using f1 by simp
ultimately have f ∈ rpth r b t 1 ∧ {b, t} = f ‘ {i. i ≤ 1}

using f5 unfolding rpth-def by force
then have {b, t} ∈ F r b t unfolding F-def by blast
then have {b, t} ∩ BK 6= {} using f4 by blast
then show False using e1 f3 unfolding dncl-def by blast

qed
then show ?thesis by blast

qed
qed
then have c1 : S ⊆ dncl r BU using b6 by blast
moreover have ∀ x ∈ S . ∀ c. ∀F∈F r x c. c /∈ dncl r BU −→ F ∩ BU 6= {}
proof (intro ballI allI impI )

fix x c F
assume d1 : x ∈ S and d2 : F ∈ F r x c and d3 : c /∈ dncl r BU
then obtain b where d4 : b ∈ K ∧ (b,x) ∈ r using b6 by blast
show F ∩ BU 6= {}
proof (cases b ∈ BK )

assume b ∈ BK
then have x ∈ w-dncl r BU using b7 d4 by blast
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then show ?thesis using d2 d3 unfolding w-dncl-def by blast
next

assume e1 : b /∈ BK
have e2 : b ∈ w-dncl r BK using d4 b4 unfolding wbase-def by blast
obtain f n where e3 : f ∈ rpth r x c n and e4 : F = f ‘ {i. i≤n}

using d2 unfolding F-def by blast
obtain g where e5 : g = (λ k::nat. if (k=0 ) then b else (f (k−1 ))) by blast
then have g ∈ rpth r b c (Suc n)

using e3 d4 unfolding rpth-def
by (simp, metis Suc-le-eq diff-Suc-Suc diff-zero gr0-implies-Suc less-Suc-eq-le)
then have g ‘ {i. i ≤ (Suc n)} ∈ F r b c ∧ c /∈ dncl r BK

using d3 b5 unfolding F-def dncl-def by blast
then have g ‘ {i. i ≤ (Suc n)} ∩ BK 6= {} using e2 unfolding w-dncl-def

by blast
moreover have g ‘ {i. i ≤ (Suc n)} ⊆ F ∪ {b}
proof

fix a
assume a ∈ g ‘ {i. i ≤ (Suc n)}
then obtain i where i ≤ (Suc n) ∧ a = g i by blast
then show a ∈ F ∪ {b} using e4 e5 by force

qed
ultimately have (F ∪ {b}) ∩ BK 6= {} by blast
then show ?thesis using e1 b5 by blast

qed
qed
ultimately have S ⊆ w-dncl r BU unfolding w-dncl-def by blast
then show ?thesis unfolding wbase-def by blast

qed
moreover have |BU | <o α
proof −
have c1 : |BK | <o α using b4 a2 by (metis ordIso-imp-ordLeq ordLeq-ordLess-trans)
then have |K ∩ BK | <o α by (meson Int-iff card-of-mono1 ordLeq-ordLess-trans

subsetI )
then have |Bi ‘ (K ∩ BK )| <o α by (metis card-of-image ordLeq-ordLess-trans)

moreover have ∀ b∈(K∩BK ). |Bi b| <o α using b3 a3 by (meson Int-iff
ordIso-ordLess-trans)

ultimately have |
⋃
(Bi ‘ (K ∩ BK ))| <o α using a1 lem-card-un-bnd-stab[of

α Bi‘(K∩BK )] by blast
then show |BU | <o α using c1 b5 a1 lem-card-un2-lsbnd[of α BK

⋃
(Bi ‘ (K

∩ BK ))] by simp
qed
ultimately have wrank r S <o α using b6 lem-wrank-uset-mem-bnd[of BU r S ]

by (metis ordLeq-ordLess-trans)
then show ?thesis using b6 by blast

qed

lemma lem-wnb-neib:
fixes r :: ′U rel and α:: ′U rel
assumes a1 : ω-ord ≤o α and a2 : α <o ‖r‖
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shows ∀ a ∈ Field r . ∃ b ∈ Mwn r α. (a,b) ∈ r^∗
proof

fix a
assume b1 : a ∈ Field r
have ¬ (∃ b ∈ Mwn r α. (a,b) ∈ r^∗) −→ False
proof

assume c1 : ¬ (∃ b ∈ Mwn r α. (a,b) ∈ r^∗)
obtain B where c2 : B = (r^∗)‘‘{a} by blast
obtain S where c3 : S = ( (λ n. (r^^n)‘‘{a}) ‘ (UNIV ::nat set) ) by blast
have c4 : ∀ b ∈ B. wrank r (r‘‘{b}) ≤o α
proof

fix b
assume d1 : b ∈ B
then obtain k where b ∈ (r^^k)‘‘{a} using c2 rtrancl-power by blast
moreover have ∀ n. (r^^n) ‘‘ {a} ⊆ Field r
proof

fix n
show (r^^n) ‘‘ {a} ⊆ Field r using b1
by (induct n, force, meson FieldI2 Image-singleton-iff relpow-Suc-E subsetI )

qed
ultimately have b ∈ Field r by blast
moreover have b /∈ Mwn r α using d1 c1 c2 by blast
ultimately have b ∈ Field r − Mwn r α by blast
moreover have Well-order α using assms unfolding ordLess-def by blast
moreover have Well-order (wrank r (r‘‘{b})) using lem-wrank-cardord by

(metis card-order-on-well-order-on)
ultimately show wrank r (r‘‘{b}) ≤o α unfolding Mwn-def by simp

qed
have ∀ n. wrank r ((r^^n)‘‘{a}) ≤o α
proof

fix n0
show wrank r ((r^^n0 )‘‘{a}) ≤o α
proof (induct n0 )

have |{a}| ≤o ω-ord using card-of-Well-order finite.emptyI
infinite-iff-natLeq-ordLeq natLeq-Well-order ordLeq-total by blast

then have |(r^^0 )‘‘{a}| ≤o ω-ord by simp
then show wrank r ((r^^0 )‘‘{a}) ≤o α

using a1 lem-wrank-ub[of r (r^^0 )‘‘{a}] by (metis ordLeq-transitive)
next

fix n
assume e1 : wrank r ((r^^n)‘‘{a}) ≤o α
obtain K where e2 : K = (r^^n)‘‘{a} by blast
obtain S ′ where e3 : S ′ = ((λ b. r‘‘{b}) ‘ K ) by blast
have wrank r K ≤o α using e1 e2 by blast
moreover have ∀A∈S ′. wrank r A ≤o α
proof

fix A
assume A ∈ S ′

then obtain b where b ∈ K ∧ A = r‘‘{b} using e3 by blast
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moreover then have b ∈ B using c2 e2 rtrancl-power by blast
ultimately show wrank r A ≤o α using c4 by blast

qed
ultimately have e4 : wrank r (

⋃
S ′) ≤o α

using a1 e3 lem-wrank-fw[of α r K ] by fastforce
have (r^^(Suc n))‘‘{a} = r‘‘K using e2 by force
moreover have r‘‘K =

⋃
S ′ using e3 by blast

ultimately have (r^^(Suc n))‘‘{a} =
⋃

S ′ using e2 by blast
then show wrank r ((r^^(Suc n))‘‘{a}) ≤o α using e4 by simp

qed
qed
then have ∀A∈S . wrank r A ≤o α using c3 by blast
moreover have B =

⋃
S using c2 c3 rtrancl-power

apply (simp)
by blast

moreover have |S | ≤o α
proof −

have |S | ≤o |UNIV ::nat set| using c3 by simp
moreover have |UNIV ::nat set| =o ω-ord using card-of-nat by blast
ultimately show ?thesis using a1 ordLeq-ordIso-trans ordLeq-transitive by

blast
qed
ultimately have wrank r B ≤o α using a1 lem-wrank-un-bnd[of S r α] by

blast
moreover obtain B0 where B0 ∈ wbase r B ∧ |B0 | =o wrank r B using

lem-wrank-uset[of r B] by blast
ultimately have c5 : B ⊆ dncl r B0 ∧ |B0 | ≤o α

unfolding wbase-def w-dncl-def using ordIso-ordLeq-trans by blast
have (({}:: ′U rel) <o ‖r‖) using a2 by (metis ordLeq-ordLess-trans ord-

Less-Well-order-simp ozero-def ozero-ordLeq)
then have c6 : CCR r using lem-Rcc-eq1-31 by blast
obtain B1 where c7 : B1 = B0 ∩ Field r by blast

then have c8 : |B1 | ≤o α using c5 by (meson IntE card-of-mono1 or-
dLeq-transitive subsetI )

have B1 ⊆ Field r using c7 by blast
moreover have ∀ x ∈ Field r . ∃ y ∈ B1 . (x, y) ∈ r^∗
proof

fix x
assume e1 : x ∈ Field r
then obtain y where (x,y) ∈ r^∗ ∧ (a,y) ∈ r^∗ using c6 b1 unfolding

CCR-def by blast
moreover then have y ∈ B unfolding c2 by blast

moreover then obtain y ′ where y ′ ∈ B0 ∧ (y,y ′) ∈ r^∗ using c5 unfolding
dncl-def by blast

ultimately have y ′ ∈ B0 ∧ (x,y ′) ∈ r^∗ by force
moreover then have x = y ′ ∨ y ′ ∈ Field r using lem-rtr-field[of x y ′] by

blast
ultimately have y ′ ∈ B1 ∧ (x,y ′) ∈ r^∗ using e1 c7 by blast
then show ∃ y∈B1 . (x, y) ∈ r^∗ by blast
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qed
ultimately have B1 ∈ SCF r unfolding SCF-def by blast
then have scf r ≤o |B1 | using lem-scf-uset-mem-bnd by blast
then have scf r ≤o α using c8 by (metis ordLeq-transitive)
moreover have ‖r‖ =o scf r using c6 lem-scf-ccr-scf-rcc-eq[of r ] by blast

ultimately show False using a2 by (metis not-ordLeq-ordLess ordIso-ordLeq-trans)
qed
then show ∃ b ∈ Mwn r α. (a,b) ∈ r^∗ by blast

qed

lemma lem-wnb-neib3 :
fixes r :: ′U rel
assumes a1 : ω-ord <o ‖r‖ and a2 : stable ‖r‖
shows ∀ a ∈ Field r . ∃ b ∈ Mwnm r . (a,b) ∈ r^∗
proof

fix a
assume b1 : a ∈ Field r
have ¬ (∃ b ∈ Mwnm r . (a,b) ∈ r^∗) −→ False
proof

assume c1 : ¬ (∃ b ∈ Mwnm r . (a,b) ∈ r^∗)
obtain B where c2 : B = (r^∗)‘‘{a} by blast
obtain S where c3 : S = ( (λ n. (r^^n)‘‘{a}) ‘ (UNIV ::nat set) ) by blast
have c4 : ∀ b ∈ B. wrank r (r ‘‘{b}) <o ‖r‖
proof

fix b
assume d1 : b ∈ B
then obtain k where b ∈ (r^^k)‘‘{a} using c2 rtrancl-power by blast
moreover have ∀ n. (r^^n) ‘‘ {a} ⊆ Field r
proof

fix n
show (r^^n) ‘‘ {a} ⊆ Field r using b1
by (induct n, force, meson FieldI2 Image-singleton-iff relpow-Suc-E subsetI )

qed
ultimately have b ∈ Field r by blast
moreover have b /∈ Mwnm r using d1 c1 c2 by blast
ultimately have b ∈ Field r − Mwnm r by blast
moreover have Well-order (wrank r (r‘‘{b})) using lem-wrank-cardord by

(metis card-order-on-well-order-on)
moreover have Well-order ‖r‖ using lem-rcc-cardord unfolding card-order-on-def

by blast
ultimately show wrank r (r‘‘{b}) <o ‖r‖ unfolding Mwnm-def by simp

qed
have ∀ n. wrank r ((r^^n)‘‘{a}) <o ‖r‖
proof

fix n0
show wrank r ((r^^n0 )‘‘{a}) <o ‖r‖
proof (induct n0 )

have |{a}| ≤o ω-ord using card-of-Well-order finite.emptyI
infinite-iff-natLeq-ordLeq natLeq-Well-order ordLeq-total by blast
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then have |(r^^0 )‘‘{a}| ≤o ω-ord by simp
then show wrank r ((r^^0 )‘‘{a}) <o ‖r‖

using a1 lem-wrank-ub[of r (r^^0 )‘‘{a}] by (metis ordLeq-ordLess-trans)
next

fix n
assume e1 : wrank r ((r^^n)‘‘{a}) <o ‖r‖
obtain K where e2 : K = (r^^n)‘‘{a} by blast
obtain S ′ where e3 : S ′ = ((λ b. r‘‘{b}) ‘ K ) by blast
have wrank r K <o ‖r‖ using e1 e2 by blast
moreover have ∀A∈S ′. wrank r A <o ‖r‖
proof

fix A
assume A ∈ S ′

then obtain b where b ∈ K ∧ A = r‘‘{b} using e3 by blast
moreover then have b ∈ B using c2 e2 rtrancl-power by blast
ultimately show wrank r A <o ‖r‖ using c4 by blast

qed
moreover have ω-ord ≤o ‖r‖ using a1 by (metis ordLess-imp-ordLeq)
ultimately have e4 : wrank r (

⋃
S ′) <o ‖r‖

using e3 a2 lem-wrank-fw-stab[of ‖r‖ r K ] by fastforce
have (r^^(Suc n))‘‘{a} = r‘‘K using e2 by force
moreover have r‘‘K =

⋃
S ′ using e3 by blast

ultimately have (r^^(Suc n))‘‘{a} =
⋃

S ′ using e2 by blast
then show wrank r ((r^^(Suc n)) ‘‘ {a}) <o ‖r‖ using e4 by simp

qed
qed
then have ∀A∈S . wrank r A <o ‖r‖ using c3 by blast
moreover have B =

⋃
S using c2 c3 rtrancl-power

apply (simp)
by blast

moreover have |S | <o ‖r‖
proof −

have |S | ≤o |UNIV ::nat set| using c3 by simp
moreover have |UNIV ::nat set| =o ω-ord using card-of-nat by blast
ultimately show ?thesis using a1 ordLeq-ordIso-trans ordLeq-ordLess-trans

by blast
qed
ultimately have wrank r B <o ‖r‖ using a2 lem-wrank-un-bnd-stab[of S r

‖r‖] by blast
moreover obtain B0 where B0 ∈ wbase r B ∧ |B0 | =o wrank r B using

lem-wrank-uset[of r B] by blast
ultimately have c5 : B ⊆ dncl r B0 ∧ |B0 | <o ‖r‖

unfolding wbase-def w-dncl-def
by (metis (no-types, lifting) mem-Collect-eq ordIso-ordLess-trans subsetI sub-

set-trans)
have (({}:: ′U rel) <o ‖r‖) using a1 by (metis ordLeq-ordLess-trans ord-

Less-Well-order-simp ozero-def ozero-ordLeq)
then have c6 : CCR r using lem-Rcc-eq1-31 by blast
obtain B1 where c7 : B1 = B0 ∩ Field r by blast
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then have c8 : |B1 | <o ‖r‖ using c5 by (meson IntE card-of-mono1 or-
dLeq-ordLess-trans subsetI )

have B1 ⊆ Field r using c7 by blast
moreover have ∀ x ∈ Field r . ∃ y ∈ B1 . (x, y) ∈ r^∗
proof

fix x
assume e1 : x ∈ Field r
then obtain y where (x,y) ∈ r^∗ ∧ (a,y) ∈ r^∗ using c6 b1 unfolding

CCR-def by blast
moreover then have y ∈ B unfolding c2 by blast

moreover then obtain y ′ where y ′ ∈ B0 ∧ (y,y ′) ∈ r^∗ using c5 unfolding
dncl-def by blast

ultimately have y ′ ∈ B0 ∧ (x,y ′) ∈ r^∗ by force
moreover then have x = y ′ ∨ y ′ ∈ Field r using lem-rtr-field[of x y ′] by

blast
ultimately have y ′ ∈ B1 ∧ (x,y ′) ∈ r^∗ using e1 c7 by blast
then show ∃ y∈B1 . (x, y) ∈ r^∗ by blast

qed
ultimately have B1 ∈ SCF r unfolding SCF-def by blast
then have scf r ≤o |B1 | using lem-scf-uset-mem-bnd by blast
then have scf r <o ‖r‖ using c8 by (metis ordLeq-ordLess-trans)
moreover have ‖r‖ =o scf r using c6 lem-scf-ccr-scf-rcc-eq[of r ] by blast
ultimately show False by (metis not-ordLess-ordIso ordIso-symmetric)

qed
then show ∃ b ∈ Mwnm r . (a,b) ∈ r^∗ by blast

qed

lemma lem-scfgew-ncl: ω-ord ≤o scf r =⇒ ¬ Conelike r
proof (cases CCR r)

assume ω-ord ≤o scf r and CCR r
then have ω-ord ≤o ‖r‖ using lem-scf-ccr-scf-rcc-eq[of r ]

by (metis ordIso-iff-ordLeq ordLeq-transitive)
then have ∀ a. ¬ ( ‖r‖ ≤o |{a}| ) using finite-iff-ordLess-natLeq

ordLess-ordLeq-trans[of - ω-ord ‖r‖] not-ordLess-ordLeq[of - ‖r‖] by blast
then show ¬ Conelike r using lem-Rcc-eq2-12 [of r ] by metis

next
assume ω-ord ≤o scf r and ¬ CCR r
then show ¬ Conelike r unfolding CCR-def Conelike-def by fastforce

qed

lemma lem-wnb-P-ncl-reg-grw:
fixes r :: ′U rel
assumes a1 : CCR r and a2 : ω-ord <o scf r and a3 : regularCard (scf r)
shows ∃ P ∈ SCF r . (∀ α:: ′U rel. α <o scf r −→ (∀ a ∈ P. α <o wrank r (r‘‘{a})
))
proof −

have ¬ Conelike r using a2 lem-scfgew-ncl ordLess-imp-ordLeq by blast
moreover obtain P where b1 : P = { a ∈ Field r . scf r ≤o wrank r (r ‘‘{a})
} by blast
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ultimately have stable (scf r)
using a1 a3 lem-scf-ccr-finscf-cl lem-scf-cardord regularCard-stable by blast

then have stable ‖r‖ using a1 lem-scf-ccr-scf-rcc-eq stable-ordIso1 by blast
moreover have ω-ord <o ‖r‖ using a1 a2 lem-scf-ccr-scf-rcc-eq[of r ]

by (metis ordIso-iff-ordLeq ordLess-ordLeq-trans)
ultimately have ∀ a∈Field r . ∃ b ∈ Mwnm r . (a, b) ∈ r^∗ using lem-wnb-neib3

by blast
moreover have Mwnm r ⊆ P unfolding b1 Mwnm-def using a1 lem-scf-ccr-scf-rcc-eq[of

r ]
by (clarsimp, metis ordIso-ordLeq-trans ordIso-symmetric)

moreover have P ⊆ Field r using b1 by blast
ultimately have P ∈ SCF r unfolding SCF-def by blast
moreover have ∀ α:: ′U rel. α <o scf r −→ (∀ a ∈ P. α <o wrank r (r‘‘{a}) )

using b1 ordLess-ordLeq-trans by blast
ultimately show ?thesis by blast

qed

lemma lem-wnb-P-ncl-nreg:
fixes r :: ′U rel
assumes a1 : CCR r and a2 : ω-ord ≤o scf r and a3 : ¬ regularCard (scf r)
shows ∃ Ps:: ′U set set. Ps ⊆ SCF r ∧ |Ps| <o scf r

∧ (∀ α:: ′U rel. α <o scf r −→ (∃ P ∈ Ps. ∀ a ∈ P. α <o wrank
r (r‘‘{a}) ))
proof −

have ¬ Conelike r using a2 lem-scfgew-ncl by blast
then have b1 : ¬ finite (Field (scf r)) using a1 lem-scf-ccr-finscf-cl by blast
have b2 :

∧
α:: ′U rel. ω-ord ≤o α =⇒ α <o scf r =⇒ { a ∈ Field r . α <o wrank

r (r ‘‘{a}) } ∈ SCF r
proof −

fix α:: ′U rel
assume c1 : ω-ord ≤o α and c2 : α <o scf r

have α <o ‖r‖ using a1 c2 lem-scf-ccr-scf-rcc-eq ordIso-iff-ordLeq ordLess-ordLeq-trans
by blast

then have ∀ a ∈ Field r . ∃ b ∈ Mwn r α. (a,b) ∈ r^∗ using c1 lem-wnb-neib
by blast

then show { a ∈ Field r . α <o wrank r (r ‘‘{a}) } ∈ SCF r unfolding SCF-def
Mwn-def by blast

qed
have b3 : ω-ord <o scf r
proof −

have c1 : ¬ stable (scf r) using b1 a3 lem-scf-cardord stable-regularCard by
blast

have ω-ord ≤o scf r using b1 lem-inford-ge-w lem-scf-cardord unfolding
card-order-on-def by blast

moreover have ω-ord =o scf r −→ False using c1 stable-ordIso stable-natLeq
by blast

ultimately show ?thesis using ordLeq-iff-ordLess-or-ordIso by blast
qed
obtain S :: ′U rel set where b4 : |S | <o scf r and b5 : ∀α∈S . α <o scf r
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and b6 : ∀α::( ′U rel). α <o scf r −→ (∃β∈S . α ≤o β)
using b1 a3 lem-scf-cardord[of r ] lem-card-nreg-inf-osetlm[of scf r ] by blast

obtain S1 :: ′U rel set where b7 : S1 = { α ∈ S . ω-ord ≤o α } by blast
obtain f :: ′U rel ⇒ ′U set where b8 : f = (λ α. { a ∈ Field r . α <o wrank r (r

‘‘{a}) }) by blast
obtain Ps:: ′U set set where b9 : Ps = f ‘ S1 by blast
have Ps ⊆ SCF r using b2 b5 b7 b8 b9 by blast
moreover have |Ps| <o scf r
proof −

have |Ps| ≤o |S1 | using b9 by simp
moreover have |S1 | ≤o |S | using b7 card-of-mono1 [of S1 S ] by blast
ultimately show ?thesis using b4 ordLeq-ordLess-trans ordLeq-transitive by

blast
qed
moreover have ∀ α:: ′U rel. α <o scf r −→ (∃ P ∈ Ps. ∀ a ∈ P. α <o wrank

r (r‘‘{a}) )
proof (intro allI impI )

fix α:: ′U rel
assume c1 : α <o scf r
have ∃ αm::( ′U rel). ω-ord ≤o αm ∧ α ≤o αm ∧ αm <o scf r
proof (cases ω-ord ≤o α)

assume ω-ord ≤o α
then show ?thesis using c1 ordLeq-reflexive unfolding ordLeq-def by blast

next
assume ¬ (ω-ord ≤o α)

then have d1 : α ≤o ω-ord using c1 natLeq-Well-order ordLess-Well-order-simp

ordLess-imp-ordLeq ordLess-or-ordLeq by blast
have isLimOrd (scf r)
using b1 lem-scf-cardord[of r ] card-order-infinite-isLimOrd[of scf r ] by blast

then obtain αm:: ′U rel where ω-ord ≤o αm ∧ αm <o scf r
using b3 lem-lmord-prec[of ω-ord scf r ] ordLess-imp-ordLeq by blast

then show ?thesis using d1 ordLeq-transitive by blast
qed
then obtain αm:: ′U rel where ω-ord ≤o αm ∧ α ≤o αm ∧ αm <o scf r by

blast
moreover then obtain β:: ′U rel where β ∈ S ∧ αm ≤o β using b6 by blast
ultimately have c2 : α ≤o β and c3 : β ∈ S1 using b7 ordLeq-transitive by

blast+
obtain P where c4 : P = f β by blast
then have P ∈ Ps using c3 b9 by blast

moreover have ∀ a ∈ P. α <o wrank r (r‘‘{a}) using c2 c4 b8 ordLeq-ordLess-trans
by blast

ultimately show ∃ P ∈ Ps. ∀ a ∈ P. α <o wrank r (r‘‘{a}) by blast
qed
ultimately show ?thesis by blast

qed

lemma lem-Wf-ext-arc:
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fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel and a:: ′U
assumes a1 : scf r =o |Field r | and a2 : f ∈ N r Ps

and a3 : ∀ γ:: ′U rel. γ <o scf r −→ (∀ a ∈ P. γ <o wrank r (r‘‘{a}))
and a4 : ω-ord ≤o α and a5 : a ∈ f α ∩ P

shows
∧

β. α <o β ∧ β <o |Field r | ∧ (β = {} ∨ isSuccOrd β) =⇒ (r‘‘{a} ∩
(W r f β) 6= {})
proof (elim conjE)

fix β:: ′U rel
assume b1 : α <o β and b2 : β <o |Field r | and b3 : β = {} ∨ isSuccOrd β
have b4 : ω-ord ≤o β using b1 a4 by (metis ordLeq-ordLess-trans ordLess-imp-ordLeq)
have b5 : a ∈ (L f β) ∩ P using b1 a5 unfolding L-def by blast
show r‘‘{a} ∩ (W r f β) 6= {}
proof −

have r‘‘{a} ⊆ w-dncl r (L f β) ∨ ( r‘‘{a} ∩ (W r f β)6={})
using b2 b3 b5 a2 unfolding N -def N4-def using ordLess-imp-ordLeq by

blast
moreover have r‘‘{a} ⊆ w-dncl r (L f β) −→ False
proof

assume r‘‘{a} ⊆ w-dncl r (L f β)
then have L f β ∈ wbase r (r‘‘{a}) unfolding wbase-def by blast
then have d1 : wrank r (r‘‘{a}) ≤o |L f β| using lem-wrank-uset-mem-bnd

by blast
have L f β ⊆ f β using b2 a2 unfolding N -def N1-def L-def using

ordLess-imp-ordLeq by blast
then have |L f β| ≤o |f β| by simp
moreover have |f β| ≤o β using a2 b2 b4 unfolding N -def N7-def using

ordLess-imp-ordLeq by blast
ultimately have wrank r (r‘‘{a}) ≤o β using d1 ordLeq-transitive by blast
moreover have β <o wrank r (r ‘‘ {a}) using b2 b5 a1 a3 by (meson IntE

ordIso-symmetric ordLess-ordIso-trans)
ultimately show False by (metis not-ordLeq-ordLess)

qed
ultimately show ?thesis by blast

qed
qed

lemma lem-Wf-esc-pth:
fixes r :: ′U rel and Ps:: ′U set set and f :: ′U rel ⇒ ′U set and α:: ′U rel
assumes a1 : Refl r ∧ ¬ finite r and a2 : f ∈ N r Ps

and a3 : ω-ord ≤o |L f α| and a4 : α <o |Field r |
shows

∧
F . F ∈ SCF (Restr r (f α)) =⇒
∀ a ∈ W r f α. ∃ b ∈ (F ∩ (W r f α)). (a,b) ∈ (Restr r (W r f α))^∗

proof −
fix F
assume a5 : F ∈ SCF (Restr r (f α))
show ∀ a ∈ (W r f α). ∃ b ∈ (F ∩ (W r f α)). (a,b) ∈ (Restr r (W r f α))^∗
proof

fix a
assume b1 : a ∈ W r f α
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have b2 : SF r = {A. A ⊆ Field r} using a1 unfolding SF-def refl-on-def
Field-def by fast

moreover have f α ⊆ Field r
using a2 a4 unfolding N -def N5-def SF-def Field-def using ordLess-imp-ordLeq

by blast
ultimately have ∀ x ∈ f α. ∃ y ∈ f α ∩ F . (x, y) ∈ (Restr r (f α))^∗

using a5 unfolding SF-def SCF-def by blast
then have b3 : ∀ x ∈ Q r f α. ∃ y ∈ (f α ∩ F ∩ Q r f α). (x, y) ∈ (Restr r (Q

r f α))^∗
using lem-der-qinv3 [of (f α) ∩ F f α r ] by blast

have b4 : Restr r (Q r f α) ∈ U (Restr r (W r f α))
using a1 a2 a3 a4 lem-der-inf-qw-restr-uset[of r f Ps α] by blast

moreover have a ∈ Field (Restr r (W r f α))
proof −

have W r f α ⊆ Field r using a2 a4 lem-qw-range ordLess-imp-ordLeq by
blast

then have W r f α ∈ SF r using b2 by blast
then show ?thesis using b1 unfolding SF-def by blast

qed
ultimately obtain a ′ where b5 : a ′ ∈ Q r f α ∧ (a, a ′) ∈ (Restr r (W r f

α))^∗
unfolding U-def Field-def by blast

then obtain b where b6 : b ∈ (f α ∩ F ∩ Q r f α) ∧ (a ′, b) ∈ (Restr r (Q r
f α))^∗ using b3 by blast

then have b ∈ (F ∩ (W r f α)) ∧ (a, b) ∈ (Restr r (W r f α))^∗
using b5 lem-QS-subs-WS [of r f α] rtrancl-mono[of Restr r (Q r f α) Restr

r (W r f α)] by force
then show ∃ b ∈ (F ∩ (W r f α)). (a,b) ∈ (Restr r (W r f α))^∗ by blast

qed
qed

lemma lem-Nf-lewfbnd:
assumes a1 : f ∈ N r Ps and a2 : α ≤o |Field r | and a3 : ω-ord ≤o |L f α|
shows ω-ord ≤o α
proof −

have L f α ⊆ f α using a1 a2 unfolding N -def N1-def L-def using ord-
Less-imp-ordLeq by blast

then have ω-ord ≤o |f α| using a3 by (metis card-of-mono1 ordLeq-transitive)
moreover have α <o ω-ord −→ |f α| <o ω-ord using a1 a2 unfolding N -def
N7-def by blast

ultimately show ?thesis using a2 not-ordLess-ordLeq by force
qed

lemma lem-regcard-iso: κ =o κ ′ =⇒ regularCard κ ′ =⇒ regularCard κ
proof −

assume a1 : κ =o κ ′ and a2 : regularCard κ ′

then obtain f where b1 : iso κ κ ′ f unfolding ordIso-def by blast
have ∀K . K ⊆ Field κ ∧ cofinal K κ −→ |K | =o κ
proof (intro allI impI )
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fix K
assume c1 : K ⊆ Field κ ∧ cofinal K κ
moreover then obtain K ′ where c2 : K ′ = f ‘ K by blast
ultimately have K ′ ⊆ Field κ ′ using b1 unfolding iso-def bij-betw-def by

blast
moreover have cofinal K ′ κ ′

proof −
have ∀ a ′∈Field κ ′. ∃ b ′∈K ′. a ′ 6= b ′ ∧ (a ′, b ′) ∈ κ ′

proof
fix a ′

assume a ′ ∈ Field κ ′

then obtain a where e1 : a ′ = f a ∧ a ∈ Field κ using b1 unfolding
iso-def bij-betw-def by blast

then obtain b where e2 : b ∈ K ∧ a 6= b ∧ (a, b) ∈ κ using c1 unfolding
cofinal-def by blast

then have f b ∈ K ′ using c2 by blast
moreover have a ′ 6= f b using e1 e2 c1 b1 unfolding iso-def bij-betw-def

inj-on-def by blast
moreover have (a ′, f b) ∈ κ ′

proof −
have (a,b) ∈ κ using e2 by blast
moreover have embed κ κ ′ f using b1 unfolding iso-def by blast
ultimately have (f a, f b) ∈ κ ′ using compat-def embed-compat by metis
then show ?thesis using e1 by blast

qed
ultimately show ∃ b ′∈K ′. a ′ 6= b ′ ∧ (a ′, b ′) ∈ κ ′ by blast

qed
then show ?thesis unfolding cofinal-def by blast

qed
ultimately have c3 : |K ′| =o κ ′ using a2 unfolding regularCard-def by blast
have inj-on f K using c1 b1 unfolding iso-def bij-betw-def inj-on-def by blast
then have bij-betw f K K ′ using c2 unfolding bij-betw-def by blast
then have |K | =o |K ′| using card-of-ordIsoI by blast
then have |K | =o κ ′ using c3 ordIso-transitive by blast
then show |K | =o κ using a1 ordIso-symmetric ordIso-transitive by blast

qed
then show regularCard κ unfolding regularCard-def by blast

qed

lemma lem-cardsuc-inf-gwreg: ¬ finite A =⇒ κ =o cardSuc |A| =⇒ ω-ord <o κ
∧ regularCard κ
proof −

assume a1 : ¬ finite A and a2 : κ =o cardSuc |A|
moreover then have regularCard (cardSuc |A| ) using infinite-cardSuc-regularCard

by force
ultimately have a3 : regularCard κ using lem-regcard-iso ordIso-transitive by

blast
have |A| <o cardSuc |A| by simp
then have |A| <o κ using a2 ordIso-symmetric ordLess-ordIso-trans by blast
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moreover have ω-ord ≤o |A| using a1 infinite-iff-natLeq-ordLeq by blast
ultimately have ω-ord <o κ using ordLeq-ordLess-trans by blast
then show ?thesis using a3 by blast

qed

lemma lem-ccr-rcscf-struct:
fixes r :: ′U rel
assumes a1 : Refl r and a2 : CCR r and a3 : ω-ord <o scf r and a4 : regularCard
(scf r)

and a5 : scf r =o |Field r |
shows ∃ Ps. ∃ f ∈ N r Ps.

∀α. ω-ord ≤o |L f α| ∧ α <o |Field r | ∧ isSuccOrd α −→
CCR (Restr r (W r f α)) ∧ |Restr r (W r f α)| <o |Field r |
∧ (∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a))

proof −
obtain P where b1 : P ∈ SCF r

and b2 : ∀α:: ′U rel. α <o scf r −→ (∀ a ∈ P. α <o wrank r (r‘‘{a}))
using a2 a3 a4 lem-wnb-P-ncl-reg-grw[of r ] by blast

then obtain f where b3 : f ∈ N r {P} using a1 a2 lem-Shinf-N-ne[of r {P}]
by blast

moreover have ∀α. ω-ord ≤o |L f α| ∧ α <o |Field r | ∧ (α = {} ∨ isSuccOrd
α) −→

CCR (Restr r (W r f α)) ∧ |Restr r (W r f α)| <o |Field r |
∧ (∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a))

proof (intro allI impI )
fix α
assume c1 : ω-ord ≤o |L f α| ∧ α <o |Field r | ∧ (α = {} ∨ isSuccOrd α)
then have c2 : (f α ∩ P) ∈ SCF (Restr r (f α))

using b3 unfolding N -def N8-def using ordLess-imp-ordLeq by blast
have c3 : ¬ finite r using a2 a3 lem-scfgew-ncl lem-scf-ccr-scf-uset[of r ]

unfolding U-def using ordLess-imp-ordLeq finite-subset[of - r ] by blast
have CCR (Restr r (W r f α)) using c1 c3 b3 a1 lem-der-inf-qw-restr-ccr [of

r f {P} α] by blast
moreover have |Restr r (W r f α)| <o |Field r | using c1 c3 b3 lem-der-inf-qw-restr-card[of

r f {P} α] by blast
moreover have ∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a)
proof

fix a
assume a ∈ W r f α
then obtain b where d1 : b ∈ (P ∩ (W r f α)) and d2 : (a,b) ∈ (Restr r (W

r f α))^∗
using c1 c2 c3 b3 a1 lem-Wf-esc-pth[of r f {P} α f α ∩ P] by blast

moreover then have b ∈ (f α) ∩ P unfolding W-def by blast
moreover have ω-ord ≤o α using c1 b3 lem-Nf-lewfbnd[of f r {P} α]

ordLess-imp-ordLeq by blast
ultimately have ∀ β. α <o β ∧ β <o |Field r | ∧ (β = {} ∨ isSuccOrd β)

−→ r ‘‘ {b} ∩ W r f β 6= {}
using b2 b3 a5 lem-Wf-ext-arc[of r f {P} P α b] by blast

then have wesc-rel r f α a b using d1 d2 unfolding wesc-rel-def by blast
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then have ∃ b. wesc-rel r f α a b by blast
then show wesc-rel r f α a (wesc r f α a)

using someI-ex[of λ b. wesc-rel r f α a b] unfolding wesc-def by blast
qed
ultimately show CCR (Restr r (W r f α))

∧ |Restr r (W r f α)| <o |Field r |
∧ (∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a)) by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-oint-infcard-sc-cf :
fixes α0 :: ′a rel and κ:: ′U rel and S :: ′U rel set
assumes a1 : Card-order κ and a2 : ω-ord ≤o κ

and a3 : S = {α ∈ O:: ′U rel set. α0 ≤o α ∧ isSuccOrd α ∧ α <o κ}
shows ∀ α ∈ S . ∃ β ∈ S . α <o β
proof

fix α
assume b1 : α ∈ S
then have α <o κ using a3 by blast
then obtain β where b2 : sc-ord α β using lem-sucord-ex by blast
obtain β ′ where b3 : β ′ = nord β by blast
have b4 : isSuccOrd β using b2 unfolding sc-ord-def using lem-ordint-sucord

by blast
moreover have β =o β ′ using b2 b3 lem-nord-l unfolding sc-ord-def ord-

Less-def by blast
ultimately have isSuccOrd β ′ using lem-osucc-eq by blast
moreover have β ′ ∈ O using b2 b3 lem-nordO-ls-r unfolding sc-ord-def by

blast
moreover have α0 ≤o β ′ using b1 b2 b3 a3 unfolding sc-ord-def

using lem-nord-le-r ordLeq-ordLess-trans ordLess-imp-ordLeq by blast
moreover have β ′ <o κ
proof −

have β ≤o κ using b1 b2 a3 unfolding sc-ord-def by blast
moreover have β =o κ −→ False
proof

assume β =o κ
then have isSuccOrd κ using b4 lem-osucc-eq by blast

moreover have isLimOrd κ using a1 a2 lem-ge-w-inford by (metis card-order-infinite-isLimOrd)
moreover have Well-order κ using a1 unfolding card-order-on-def by blast
ultimately show False using wo-rel.isLimOrd-def unfolding wo-rel-def by

blast
qed
ultimately have β <o κ using ordLeq-iff-ordLess-or-ordIso by blast
then show ?thesis using b3 lem-nord-ls-l by blast

qed
moreover have α <o β ′ using b2 b3 lem-nord-ls-r unfolding sc-ord-def by

blast
ultimately have β ′ ∈ S ∧ α <o β ′ using a3 by blast
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then show ∃ β ∈ S . α <o β by blast
qed

lemma lem-oint-infcard-gew-sc-cfbnd:
fixes α0 :: ′a rel and κ:: ′U rel and S :: ′U rel set
assumes a1 : Card-order κ and a2 : ω-ord ≤o κ and a3 : α0 <o κ and a4 : α0
=o ω-ord

and a5 : S = {α ∈ O:: ′U rel set. α0 ≤o α ∧ isSuccOrd α ∧ α <o κ}
shows |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S |
∧ (∃ f . (∀ α ∈ O:: ′U rel set. α0 ≤o α ∧ α <o κ −→ α ≤o f α ∧ f α ∈ S))

proof −
have |UNIV ::nat set| <o κ using a3 a4 by (meson card-of-nat ordIso-ordLess-trans

ordIso-symmetric)
then obtain N where N ⊆ Field κ ∧ |UNIV ::nat set| =o |N |

using internalize-card-of-ordLess[of UNIV ::nat set κ] by force
moreover obtain α0 ′:: ′U rel where α0 ′ = |N | by blast
ultimately have b0 : α0 ′ =o ω-ord using card-of-nat ordIso-symmetric or-

dIso-transitive by blast
then have b0 ′: α0 ′ <o κ using a3 a4 ordIso-symmetric ordIso-ordLess-trans by

metis
have b0 ′′: α0 =o α0 ′ using b0 a4 ordIso-symmetric ordIso-transitive by blast
obtain S1 where b1 : S1 = {α ∈ O:: ′U rel set. α0 ≤o α ∧ α <o κ} by blast
obtain f where f = (λα:: ′U rel. SOME β. sc-ord α β) by blast
moreover have ∀ α ∈ S1 . ∃ β. sc-ord α β using b1 lem-sucord-ex by blast
ultimately have b2 :

∧
α. α ∈ S1 =⇒ sc-ord α (f α) using someI-ex by metis

have b3 : (nord ◦ f ) ‘ S1 ⊆ S
proof

fix α
assume α ∈ (nord ◦ f ) ‘ S1
then obtain α ′ where c1 : α ′ ∈ S1 ∧ α = nord (f α ′) by force
then have c2 : sc-ord α ′ (f α ′) using b2 by blast
then have c3 : isSuccOrd (f α ′) unfolding sc-ord-def using lem-ordint-sucord

by blast
moreover have f α ′ =o α using c1 c2 lem-nord-l unfolding sc-ord-def

ordLess-def by blast
ultimately have c4 : isSuccOrd α using lem-osucc-eq by blast
have α0 ≤o α ′ ∧ α ′ <o κ using c1 b1 by blast
then have c5 : α0 ≤o (f α ′) ∧ (f α ′) ≤o κ
using c1 b2 unfolding sc-ord-def using ordLeq-ordLess-trans ordLess-imp-ordLeq

by blast
then have c6 : α0 ≤o α using c1 lem-nord-le-r by blast
have c7 : α ∈ O using c1 c2 lem-nordO-ls-r unfolding sc-ord-def by blast
have (f α ′) =o κ −→ False
proof

assume (f α ′) =o κ
then have isSuccOrd κ using c3 lem-osucc-eq by blast

moreover have isLimOrd κ using a1 a2 lem-ge-w-inford by (metis card-order-infinite-isLimOrd)
moreover have Well-order κ using a1 unfolding card-order-on-def by blast
ultimately show False using wo-rel.isLimOrd-def unfolding wo-rel-def by
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blast
qed
then have f α ′ <o κ using c5 using ordLeq-iff-ordLess-or-ordIso by blast
then have α <o κ using c1 lem-nord-ls-l by blast
then show α ∈ S using c4 c6 c7 a5 by blast

qed
moreover have inj-on (nord ◦ f ) S1
proof −

have ∀α∈S1 . ∀β∈S1 . (nord ◦ f ) α = (nord ◦ f ) β −→ α = β
proof (intro ballI impI )

fix α β
assume d1 : α ∈ S1 and d2 : β ∈ S1 and (nord ◦ f ) α = (nord ◦ f ) β
then have nord (f α) = nord (f β) by simp
moreover have Well-order (f α) ∧ Well-order (f β)

using d1 d2 b2 unfolding sc-ord-def ordLess-def by blast
ultimately have d3 : f α =o f β using lem-nord-req by blast
have d4 : sc-ord α (f α) ∧ sc-ord β (f β) using d1 d2 b2 by blast
have Well-order α ∧ Well-order β using d1 d2 b1 unfolding ordLess-def

by blast
moreover have α <o β −→ False
proof

assume α <o β
then have f α ≤o β ∧ β <o f β using d4 unfolding sc-ord-def by blast
then show False using d3 using not-ordLess-ordIso ordLeq-ordLess-trans

by blast
qed
moreover have β <o α −→ False
proof

assume β <o α
then have f β ≤o α ∧ α <o f α using d4 unfolding sc-ord-def by blast
then show False using d3 using not-ordLess-ordIso ordLeq-ordLess-trans

ordIso-symmetric by blast
qed
ultimately have α =o β using ordIso-or-ordLess by blast
then show α = β using d1 d2 b1 lem-Oeq by blast

qed
then show ?thesis unfolding inj-on-def by blast

qed
ultimately have b4 : |S1 | ≤o |S | using card-of-ordLeq by blast
obtain S2 where b5 : S2 = { α ∈ O:: ′U rel set. α <o α0 } by blast
have b6 : |UNIV ::nat set| ≤o |S1 |
proof −

obtain xi where c1 : xi = (λ i::nat. ((nord ◦ f )^^i) (nord α0 ′)) by blast
have c2 : ∀ i. xi i ∈ S1
proof

fix i0
show xi i0 ∈ S1
proof (induct i0 )

have α0 ′ ≤o nord α0 ′
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using b0 ′ lem-nord-l unfolding ordLess-def using ordIso-iff-ordLeq by
blast

then have α0 ≤o nord α0 ′ using b0 ′′ ordIso-ordLeq-trans by blast
moreover then have nord α0 ′ <o κ ∧ nord α0 ′ ∈ O

using b0 ′ lem-nordO-ls-l lem-nord-ls-l ordLeq-ordLess-trans by blast
ultimately show xi 0 ∈ S1 using c1 b1 by simp

next
fix i
assume xi i ∈ S1
then have (nord ◦ f ) (xi i) ∈ S using b3 by blast
then show xi (Suc i) ∈ S1 using c1 b1 a5 by simp

qed
qed
have c3 : ∀ j. ∀ i<j. xi i <o xi j
proof

fix j0
show ∀ i<j0 . xi i <o xi j0
proof (induct j0 )

show ∀ i<0 . xi i <o xi 0 by blast
next

fix j
assume e1 : ∀ i<j. xi i <o xi j
show ∀ i<Suc j. xi i <o xi (Suc j)
proof(intro allI impI )

fix i
assume f1 : i < Suc j

have xi j <o nord (f (xi j)) using c2 b2 unfolding sc-ord-def using
lem-nord-ls-r by blast

then have xi j <o xi (Suc j) using c1 by simp
moreover then have i < j −→ xi i <o xi (Suc j) and i = j −→ xi i <o

xi (Suc j)
using e1 ordLess-transitive by blast+

moreover have i < j ∨ i = j using f1 by force
ultimately show xi i <o xi (Suc j) by blast

qed
qed

qed
then have ∀ i j. xi i = xi j −→ i = j by (metis linorder-neqE-nat ord-

Less-irreflexive)
then have inj xi unfolding inj-on-def by blast
moreover have xi ‘ UNIV ⊆ S1 using c2 by blast
ultimately show |UNIV ::nat set| ≤o |S1 | using card-of-ordLeq by blast

qed
then have ¬ finite S1 using infinite-iff-card-of-nat by blast
moreover have |S1 | ≤o |S2 | ∨ |S2 | ≤o |S1 |

using card-of-Well-order ordLess-imp-ordLeq ordLess-or-ordLeq by blast
ultimately have |S1 ∪ S2 | ≤o |S1 | ∨ |S1 ∪ S2 | ≤o |S2 |
by (metis card-of-Un1 card-of-Un-ordLeq-infinite card-of-ordLeq-finite sup.idem)

moreover have |S2 | ≤o |S |
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proof −
have |UNIV ::nat set| ≤o |S | using b4 b6 ordLeq-transitive by blast
moreover have |S2 | ≤o |UNIV ::nat set|
proof −

have ∀ α ∈ S2 . α <o ω-ord ∧ α ∈ O using b5 a4 ordLess-ordIso-trans by
blast

then have d1 : ∀ α ∈ S2 . α =o natLeq-on (card (Field α)) ∧ α ∈ O using
lem-wolew-nat by blast

obtain A where d2 : A = natLeq-on ‘ UNIV by blast
moreover obtain f where d3 : f = (λ α:: ′U rel. natLeq-on (card (Field α)))

by blast
ultimately have f ‘ UNIV ⊆ A by force
moreover have inj-on f S2
proof −

have ∀ α ∈ S2 . ∀ β ∈ S2 . f α = f β −→ α = β
proof (intro ballI impI )

fix α β
assume α ∈ S2 and β ∈ S2 and f α = f β
then have α =o natLeq-on (card (Field α)) and β =o natLeq-on (card

(Field β))
and natLeq-on (card (Field α)) = natLeq-on (card (Field β))
and α ∈ O ∧ β ∈ O using d1 d3 by blast+

moreover then have α =o β
by (metis (no-types, lifting) ordIso-symmetric ordIso-transitive)

ultimately show α = β using lem-Oeq by blast
qed
then show ?thesis unfolding inj-on-def by blast

qed
ultimately have |S2 | ≤o |A| using card-of-ordLeq[of S2 A] by blast
moreover have |A| ≤o |UNIV ::nat set| using d2 by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately show ?thesis using ordLeq-transitive by blast

qed
ultimately have b7 : |S1 ∪ S2 | ≤o |S | using b4 ordLeq-transitive by blast
have {α ∈ O:: ′U rel set. α <o κ} ⊆ S1 ∪ S2 using b1 b5 a1 a3 by fastforce
then have |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S1 ∪ S2 | by simp
moreover have ∀ α ∈ O:: ′U rel set. α0 ≤o α ∧ α <o κ −→ α ≤o (nord ◦ f )

α ∧ (nord ◦ f ) α ∈ S
proof (intro ballI impI )

fix α:: ′U rel
assume c1 : α ∈ O and c2 : α0 ≤o α ∧ α <o κ
then have c3 : (nord ◦ f ) α ∈ S using b1 b3 by blast
moreover have α <o f α using c1 c2 b1 b2 [of α] unfolding sc-ord-def by

blast
then have α ≤o f α using ordLess-imp-ordLeq by blast
then have α ≤o (nord ◦ f ) α using lem-nord-le-r by simp
then show α ≤o (nord ◦ f ) α ∧ (nord ◦ f ) α ∈ S using c3 by blast

qed

246



ultimately show ?thesis using b7 ordLeq-transitive by blast
qed

lemma lem-rcc-uset-rcc-bnd:
assumes s ∈ U r
shows ‖r‖ ≤o ‖s‖
proof −

obtain s0 where b1 : s0 ∈ U r ∧ |s0 | =o ‖r‖ ∧ |s0 | ≤o |s| ∧ ( ∀ s ′ ∈ U r . |s0 |
≤o |s ′| )

using assms lem-rcc-uset-ne by blast
have CCR s using assms unfolding U-def by blast
then obtain t where b2 : t ∈ U s ∧ |t| =o ‖s‖ ∧ ( ∀ s ′ ∈ U s. |t| ≤o |s ′| )

using lem-Rcc-eq1-12 lem-rcc-uset-ne by blast
have t ∈ U r using b2 assms lem-rcc-uset-tr by blast
then have ‖r‖ ≤o |t| using lem-rcc-uset-mem-bnd by blast
then show ‖r‖ ≤o ‖s‖ using b2 ordLeq-ordIso-trans by blast

qed

lemma lem-dc2-ccr-scf-lew:
fixes r :: ′U rel
assumes a1 : CCR r and a2 : scf r ≤o ω-ord
shows DCR 2 r
proof −

have ∃ s. s ∈ U r ∧ single-valued s
proof (cases scf r <o ω-ord)

assume scf r <o ω-ord
then have b1 : Conelike r using a1 lem-scf-ccr-finscf-cl lem-fin-fl-rel lem-wolew-fin

by blast
show ?thesis
proof (cases r = {})

assume r = {}
then have r ∈ U r ∧ single-valued r

unfolding U-def CCR-def single-valued-def Field-def by blast
then show ?thesis by blast

next
assume r 6= {}
then obtain m where c2 : m ∈ Field r ∧ (∀ a ∈ Field r . (a,m) ∈ r^∗)

using b1 unfolding Conelike-def by blast
then obtain a b where (a,b) ∈ r ∧ (m = a ∨ m = b) unfolding Field-def

by blast
moreover obtain s where s = {(a,b)} by blast
ultimately have s ∈ U r and single-valued s

using c2 unfolding U-def CCR-def Field-def single-valued-def by blast+
then show ?thesis by blast

qed
next

assume ¬ (scf r <o ω-ord)
then have scf r =o ω-ord using a2 ordLeq-iff-ordLess-or-ordIso by blast
then obtain s where b1 : s ∈ Span r and b2 : CCR s and b3 : single-valued s
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using a1 lem-sv-span-scfeqw by blast
then have s ∈ U r ∧ single-valued s unfolding Span-def U-def by blast
then show ?thesis by blast

qed
then obtain s where b1 : s ∈ U r ∧ single-valued s by blast
moreover have DCR 1 s
proof −

obtain g where g = (λ α::nat. s) by blast
moreover then have DCR-generating g

using b1 unfolding D-def single-valued-def DCR-generating-def by blast
ultimately show ?thesis unfolding DCR-def by blast

qed
ultimately have DCR (Suc 1 ) r using lem-Ldo-uset-reduc[of s r 1 ] by fastforce
moreover have (Suc 1 ) = (2 ::nat) by simp
ultimately show ?thesis by metis

qed

lemma lem-dc3-ccr-refl-scf-wsuc:
fixes r :: ′U rel
assumes a1 : Refl r and a2 : CCR r

and a3 : |Field r | =o cardSuc |UNIV ::nat set| and a4 : scf r =o |Field r |
shows DCR 3 r
proof −

obtain κ:: ′U rel where b0 : κ = |Field r | by blast
have b1 : ω-ord <o (scf r) ∧ regularCard (scf r)
and b2 : ω-ord <o |Field r |
using a3 a4 lem-cardsuc-inf-gwreg ordIso-transitive by blast+

then obtain Ps f
where b3 : f ∈ N r Ps

and b4 :
∧
α. ω-ord ≤o |L f α| ∧ α <o κ ∧ isSuccOrd α =⇒

CCR (Restr r (W r f α)) ∧ |Restr r (W r f α)| <o κ
∧ (∀ a ∈ W r f α. wesc-rel r f α a (wesc r f α a))

using b0 a1 a2 a4 lem-ccr-rcscf-struct by blast
have q0 :

∧
α. ω-ord ≤o α ∧ α <o κ ∧ isSuccOrd α =⇒ ¬ Conelike (Restr r (f

α))
proof −

fix α:: ′U rel
assume ω-ord ≤o α ∧ α <o κ ∧ isSuccOrd α
then have Conelike (Restr r (f α)) −→ Conelike r

using b3 b0 unfolding N -def N3-def N12-def clterm-def using ord-
Less-imp-ordLeq by blast

moreover have Conelike r −→ False
proof

assume Conelike r
then have finite (Field (scf r)) using a2 lem-scf-ccr-finscf-cl by blast
then show False using b2 a4

by (metis Field-card-of infinite-iff-natLeq-ordLeq ordIso-finite-Field ord-
Less-imp-ordLeq)

qed
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ultimately show ¬ Conelike (Restr r (f α)) by blast
qed
have q1 :

∧
α. ω-ord ≤o α ∧ α <o κ ∧ isSuccOrd α =⇒
ω-ord ≤o |L f α| ∧ scf (Restr r (f α)) =o ω-ord

proof −
fix α:: ′U rel
assume c1 : ω-ord ≤o α ∧ α <o κ ∧ isSuccOrd α
have Card-order ω-ord ∧ ¬finite (Field ω-ord) ∧ Well-order ω-ord

using natLeq-Card-order Field-natLeq by force
then have ¬ isSuccOrd ω-ord

using card-order-infinite-isLimOrd wo-rel.isLimOrd-def wo-rel-def by blast
then have ω-ord <o α using c1 using lem-osucc-eq ordIso-symmetric or-

dLeq-iff-ordLess-or-ordIso by blast
then obtain α0 :: ′U rel where c2 : ω-ord =o α0 ∧ α0 <o α using internal-

ize-ordLess[of ω-ord α] by blast
then have c3 : f α0 ⊆ L f α unfolding L-def by blast
obtain γ where c4 : γ = scf (Restr r (f α)) by blast
have ¬ Conelike (Restr r (f α)) using c1 q0 by blast
moreover have CCR (Restr r (f α)) using c1 b0 b3 unfolding N -def N6-def

using ordLess-imp-ordLeq by blast
ultimately have Card-order γ ∧ ¬ finite (Field γ) and c5 : ¬ finite (Restr r

(f α))
using c4 lem-scf-ccr-finscf-cl lem-scf-cardord lem-Relprop-fin-ccr by blast+

then have c6 : ω-ord ≤o γ
by (meson card-of-Field-ordIso infinite-iff-natLeq-ordLeq ordIso-iff-ordLeq

ordLeq-transitive)
have ω-ord ≤o |L f α| using c1 b0 b3 unfolding N -def N12-def using

ordLess-imp-ordLeq by blast
moreover have scf (Restr r (f α)) =o ω-ord
proof −

have |f α| ≤o α using c1 b0 b3 unfolding N -def N7-def using ord-
Less-imp-ordLeq by blast

then have |Restr r (f α)| ≤o α using c1 lem-restr-ordbnd by blast
then have γ ≤o α using c4 c5 lem-rel-inf-fld-card[of Restr r (f α)]

lem-scf-relfldcard-bnd ordLeq-ordIso-trans ordLeq-transitive by blast
then have γ <o cardSuc |UNIV ::nat set| using c1 b0 a3

using ordIso-iff-ordLeq ordLeq-ordLess-trans ordLess-ordLeq-trans by blast
moreover have Card-order γ using c4 lem-scf-cardord by blast
ultimately have γ ≤o |UNIV ::nat set| by simp

then show ?thesis using c4 c6 using card-of-nat ordIso-iff-ordLeq or-
dLeq-ordIso-trans by blast

qed
ultimately show ω-ord ≤o |L f α| ∧ scf (Restr r (f α)) =o ω-ord by blast

qed
obtain is-st:: ′U rel ⇒ ′U rel ⇒ bool

where q3 : is-st = (λ s t. t ∈ Span s ∧ t 6= {} ∧ CCR t ∧
single-valued t ∧ acyclic t ∧ (∀ x∈Field t. t‘‘{x} 6= {})) by blast

obtain st where q4 : st = (λ s:: ′U rel. SOME t. is-st s t) by blast
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have q5 :
∧

s. CCR s ∧ scf s =o ω-ord =⇒ is-st s (st s)
proof −

fix s:: ′U rel
assume CCR s ∧ scf s =o ω-ord
then obtain t where is-st s t using q3 lem-sv-span-scfeqw[of s] by blast
then show is-st s (st s) using q4 someI-ex by metis

qed
obtain κ0 where b5 : κ0 = ω-ord by blast
obtain S where b6 : S = {α ∈ O:: ′U rel set. κ0 ≤o α ∧ isSuccOrd α ∧ α <o

κ} by blast
obtain R where b8 : R = (λ α. st (Restr r (W r f α))) by blast
obtain T :: ′U rel set where b11 : T = { t. t 6= {} ∧ CCR t ∧ single-valued t ∧

acyclic t ∧ (∀ x∈Field t. t‘‘{x} 6= {}) } by blast
obtain W :: ′U rel ⇒ ′U set where b12 : W = (λ α. W r f α) by blast
obtain Wa where b13 : Wa = (

⋃
α∈S . W α) by blast

obtain r1 where b14 : r1 = Restr r Wa by blast
have b15 :

∧
α. α ∈ S =⇒ Restr r (W r f α) = Restr r1 (W α) using b12 b13

b14 by blast
have b16 :

∧
α. α ∈ S =⇒ Restr r (W r f α) ∈ U (Restr r (f α))

proof −
fix α
assume c1 : α ∈ S
have d1 : ¬ finite r using b2 lem-fin-fl-rel by (metis infinite-iff-natLeq-ordLeq

ordLess-imp-ordLeq)
moreover have α <o scf r using c1 b0 b6 a4 using ordIso-symmetric ord-

Less-ordIso-trans by blast
moreover have ω-ord ≤o |L f α| using c1 b5 b6 q1 by blast
moreover have isSuccOrd α using c1 b6 by blast
ultimately show Restr r (W r f α) ∈ U (Restr r (f α))

using b3 a1 a2 lem-der-qw-uset[of r f Ps α] by blast
qed
have κ =o cardSuc |UNIV ::nat set| using b0 a3 by blast
moreover have Refl r1 using a1 b14 unfolding refl-on-def Field-def by blast
moreover have S ⊆ {α ∈ O:: ′U rel set. α <o κ} using b6 by blast
moreover have b17 : |{α ∈ O:: ′U rel set. α <o κ}| ≤o |S |

∧ (∃ h. ∀α∈O:: ′U rel set. κ0 ≤o α ∧ α <o κ −→ α ≤o h α ∧ h α ∈ S)
proof −

have Card-order κ using b0 by simp
moreover have ω-ord ≤o κ using b0 b2 ordLess-imp-ordLeq by blast
moreover have κ0 <o κ using b0 b2 b5 by blast
moreover have κ0 =o ω-ord using b5 ordIso-refl natLeq-Card-order by blast
ultimately show ?thesis using b6 lem-oint-infcard-gew-sc-cfbnd[of κ κ0 S ]

by blast
qed
moreover have ∀ α ∈ S . ∃ β ∈ S . α <o β
proof −

have Card-order κ using b0 by simp
moreover have ω-ord ≤o κ using b0 b2 ordLess-imp-ordLeq by blast
ultimately show ?thesis using b6 lem-oint-infcard-sc-cf [of κ S κ0 ] by blast

250



qed
moreover have b18 : Field r1 = (

⋃
α∈S . W α)

proof −
have SF r = {A. A ⊆ Field r} using a1 unfolding SF-def Field-def refl-on-def

by fast
moreover have Wa ⊆ Field r

using b0 b3 b6 b12 b13 lem-qw-range[of f r Ps -] ordLess-imp-ordLeq[of - κ]
by blast

ultimately have Field r1 = Wa using b14 unfolding SF-def by blast
then show ?thesis using b13 by blast

qed
moreover have ∀α∈S . ∀ β∈S . α 6= β −→ W α ∩ W β = {}
proof (intro ballI impI )

fix α β
assume α ∈ S and β ∈ S and α 6= β
then have Well-order α ∧ Well-order β ∧ ¬ (α =o β) using b6 lem-Owo

lem-Oeq by blast
then show W α ∩ W β = {} using b12 lem-Der-inf-qw-disj by blast

qed
moreover have

∧
α. α ∈ S =⇒ R α ∈ T ∧ R α ⊆ Restr r1 (W α) ∧ |W α|

≤o |UNIV ::nat set|
∧ Field (R α) = W α ∧ ¬ Conelike (Restr r1 (W α))

proof −
fix α
assume c1 : α ∈ S
then have c2 : CCR (Restr r (W r f α)) ∧ scf (Restr r (f α)) =o ω-ord using

b4 q1 b5 b6 by blast
moreover have c3 : scf (Restr r (W r f α)) =o ω-ord ∧ |W r f α| ≤o

|UNIV ::nat set|
proof −
have d1 : ¬ finite r using b2 lem-fin-fl-rel by (metis infinite-iff-natLeq-ordLeq

ordLess-imp-ordLeq)
have Restr r (W r f α) ∈ U (Restr r (f α)) using c1 b16 by blast

then have d2 : ‖Restr r (f α)‖ ≤o ‖Restr r (W r f α)‖ using lem-rcc-uset-rcc-bnd
by blast

have scf (Restr r (f α)) =o ω-ord using c1 b5 b6 q1 by blast
moreover have CCR (Restr r (f α))

using c1 b0 b3 b6 unfolding N -def N6-def using ordLess-imp-ordLeq by
blast

ultimately have ω-ord =o ‖Restr r (f α)‖
using lem-scf-ccr-scf-rcc-eq ordIso-symmetric ordIso-transitive by blast

then have d3 : ω-ord ≤o ‖Restr r (W r f α)‖ using d2 ordIso-ordLeq-trans
by blast

have |Restr r (W r f α)| <o |Field r | using d1 c1 b0 b3 b6 lem-der-inf-qw-restr-card
by blast

then have |Restr r (W r f α)| <o cardSuc |UNIV ::nat set| using a3 ord-
Less-ordIso-trans by blast

then have d4 : |Restr r (W r f α)| ≤o |UNIV ::nat set| by simp
then have ‖Restr r (W r f α)‖ ≤o ω-ord using lem-Rcc-relcard-bnd

251



by (metis ordLeq-transitive card-of-nat ordLeq-ordIso-trans)
then have ‖Restr r (W r f α)‖ =o ω-ord using d3 using ordIso-iff-ordLeq

by blast
moreover have |W r f α| ≤o |UNIV ::nat set|
proof −

have W r f α ⊆ f α unfolding W-def by blast
then have |W r f α| ≤o |f α| by simp
moreover have |f α| <o |Field r | using c1 b3 b5 b6 b0 unfolding N -def

N7-def
using ordLess-imp-ordLeq ordLeq-ordLess-trans by blast

ultimately have |W r f α| <o cardSuc |UNIV ::nat set|
using a3 ordLeq-ordLess-trans ordLess-ordIso-trans by blast

then show ?thesis by simp
qed
ultimately show ?thesis using c2 lem-scf-ccr-scf-rcc-eq[of Restr r (W r f

α)]
by (metis ordIso-symmetric ordIso-transitive)

qed
ultimately have c4 : is-st (Restr r (W r f α)) (R α) using q5 b8 by blast
then have c5 : R α ∈ Span (Restr r (W r f α)) using q3 by blast
then have Field (R α) = Field (Restr r (W r f α)) unfolding Span-def by

blast
moreover have SF r = {A. A ⊆ Field r} using a1 unfolding SF-def

refl-on-def Field-def by fast
moreover have W r f α ⊆ Field r using c1 b0 b3 b6 lem-qw-range ord-

Less-imp-ordLeq by blast
ultimately have Field (R α) = W r f α unfolding SF-def by blast
then have R α ⊆ Restr r1 (W α) ∧ Field (R α) = W α

using c1 c5 b12 b13 b14 unfolding Span-def by blast
moreover have R α ∈ T using c4 q3 b11 by blast
moreover have ¬ Conelike (Restr r1 (W α))
proof −

obtain s1 where d1 : s1 = Restr r (W r f α) by blast
then have scf s1 =o ω-ord ∧ CCR s1 using c2 c3 by blast
moreover then have ¬ finite (Field (scf s1 ))

by (metis Field-natLeq infinite-UNIV-nat ordIso-finite-Field)
ultimately have ¬ Conelike s1 using lem-scf-ccr-finscf-cl by blast
then show ?thesis using d1 c1 b15 [of α] by metis

qed
ultimately show R α ∈ T ∧ R α ⊆ Restr r1 (W α) ∧ |W α| ≤o |UNIV ::nat

set|
∧ Field (R α) = W α ∧ ¬ Conelike (Restr r1 (W α)) using c3

b12 by blast
qed
moreover have

∧
α x. α ∈ S =⇒ x ∈ W α =⇒

∃ a. ((x,a) ∈ (Restr r1 (W α))^∗ ∧ (∀ β ∈ S . α <o β −→ (r1‘‘{a} ∩
W β) 6= {}))

proof −
fix α x
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assume c1 : α ∈ S and c2 : x ∈ W α
moreover obtain a where a = wesc r f α x by blast
ultimately have wesc-rel r f α x a using b4 b0 b5 b6 b12 q1 by blast
then have c3 : a ∈ W r f α ∧ (x,a) ∈ (Restr r (W r f α))^∗ and

c4 : ∀β. α <o β ∧ β <o |Field r | ∧ (β = {} ∨ isSuccOrd β) −→ r‘‘{a} ∩ W
r f β 6= {}

unfolding wesc-rel-def by blast+
have (x,a) ∈ (Restr r1 (W α))^∗ using c1 c3 b15 by metis
moreover have ∀ β ∈ S . α <o β −→ (r1‘‘{a} ∩ W β) 6= {}
proof (intro ballI impI )

fix β
assume d1 : β ∈ S and α <o β
then obtain b where (a,b) ∈ r ∧ b ∈ W β using c4 b6 b0 b12 by blast
moreover then have b ∈ Wa using d1 b13 by blast
moreover have a ∈ Wa using c1 c3 b12 b13 by blast
ultimately have (a,b) ∈ r1 ∧ b ∈ W β using b14 by blast
then show (r1‘‘{a} ∩ W β) 6= {} by blast

qed
ultimately show ∃ a. ((x,a) ∈ (Restr r1 (W α))^∗

∧ (∀ β ∈ S . α <o β −→ (r1‘‘{a} ∩ W β) 6= {})) by blast
qed
ultimately obtain r ′ where b19 : CCR r ′ ∧ DCR 2 r ′ ∧ r ′ ⊆ r1

and ∀ a ∈ Field r1 . ∃ b ∈ Field r ′. (a,b) ∈ r1^∗
using b11 lem-cfcomp-d2uset[of κ T r1 S W R] by blast

then have b20 : r ′ ∈ U r1 unfolding U-def Span-def by blast
moreover have r1 ∈ U r
proof −

have ∀ a ∈ Field r . ∃ α ∈ S . a ∈ f α
proof

fix a
assume d1 : a ∈ Field r
obtain A where d2 : A = {α ∈ O:: ′U rel set. κ0 ≤o α ∧ α <o κ} by blast
have d3 : a ∈ f |Field r | ∧ ω-ord ≤o |Field r | using d1 b3 b2

unfolding N -def N9-def using ordLess-imp-ordLeq by blast
moreover have Card-order |Field r | by simp

ultimately have ¬ ( |Field r | = {} ∨ isSuccOrd |Field r | ) using lem-card-inf-lim
by blast

moreover have |Field r | ≤o |Field r | by simp
ultimately have (∇ f |Field r | ) = {} using b3 unfolding N -def N2-def

by blast
then have f |Field r | ⊆ L f |Field r | unfolding Dbk-def by blast
then obtain γ where d4 : γ <o κ ∧ a ∈ f γ using d3 b0 unfolding L-def

by blast
have ∃ α ∈ A. a ∈ f α
proof (cases κ0 ≤o γ)

assume κ0 ≤o γ
then have nord γ ∈ A ∧ nord γ =o γ using d4 d2 lem-nord-le-r lem-nord-ls-l

lem-nord-r lem-nordO-le-r ordLess-Well-order-simp by blast
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moreover then have f (nord γ) = f γ using b3 unfolding N -def by
blast

ultimately have nord γ ∈ A ∧ a ∈ f (nord γ) using d4 by blast
then show ?thesis by blast

next
assume ¬ κ0 ≤o γ
moreover have Well-order κ0 ∧ Well-order γ

using d4 b5 natLeq-Well-order ordLess-Well-order-simp by blast
ultimately have γ ≤o κ0 using ordLeq-total by blast
moreover have κ0 <o κ using b0 b2 b5 by blast
moreover then obtain α0 :: ′U rel where κ0 =o α0 ∧ α0 <o κ

using internalize-ordLess[of κ0 κ] by blast
ultimately have γ ≤o α0 ∧ κ0 ≤o α0 ∧ α0 <o κ

using ordLeq-ordIso-trans ordIso-iff-ordLeq by blast
then have γ ≤o nord α0 ∧ κ0 ≤o nord α0 ∧ nord α0 <o κ ∧ nord α0 ∈

O
using lem-nord-le-r lem-nord-le-r lem-nord-ls-l lem-nordO-le-r

ordLess-Well-order-simp by blast
moreover then have f γ ⊆ f (nord α0 )

using b3 b0 ordLess-imp-ordLeq unfolding N -def N1-def by blast
ultimately have a ∈ f (nord α0 ) ∧ nord α0 ∈ A using d4 d2 by blast
then show ?thesis by blast

qed
then obtain α α ′ where α ′ ∈ S ∧ α ≤o α ′ ∧ α ∈ A ∧ a ∈ f α using d2

b17 by blast
moreover then have α ′ ≤o |Field r | using b6 b0 using ordLess-imp-ordLeq

by blast
ultimately have α ′ ∈ S ∧ a ∈ f α ′ using b3 b0 b0 unfolding N -def N1-def

by blast
then show ∃ α ∈ S . a ∈ f α by blast

qed
moreover have ∀ α ∈ S . f α ⊆ dncl r (Field r1 )
proof

fix α
assume d1 : α ∈ S
show f α ⊆ dncl r (Field r1 )
proof

fix a
assume a ∈ f α
moreover have f α ∈ SF r using d1 b0 b3 b6

unfolding N -def N5-def using ordLess-imp-ordLeq by blast
ultimately have a ∈ Field (Restr r (f α)) unfolding SF-def by blast
moreover have Restr r (W r f α) ∈ U (Restr r (f α)) using d1 b16 by

blast
ultimately obtain b where b ∈ Field (Restr r (W r f α)) ∧ (a, b) ∈

(Restr r (f α))^∗
unfolding U-def by blast

then have b ∈ W r f α ∧ (a,b) ∈ r^∗
unfolding Field-def using rtrancl-mono[of Restr r (f α) r ] by blast
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moreover then have b ∈ Field r1 using d1 b12 b18 by blast
ultimately show a ∈ dncl r (Field r1 ) unfolding dncl-def by blast

qed
qed
ultimately have ∀ a ∈ Field r . ∃ b ∈ Field r1 . (a, b) ∈ r^∗ unfolding

dncl-def by blast
moreover have CCR r1 using b20 lem-rcc-uset-ne-ccr by blast
moreover have r1 ⊆ r using b14 by blast
ultimately show r1 ∈ U r unfolding U-def by blast

qed
ultimately have r ′ ∈ U r using lem-rcc-uset-tr by blast
then show DCR 3 r using b19 lem-Ldo-uset-reduc[of r ′ r 2 ] by simp

qed

lemma lem-dc3-ccr-scf-lewsuc:
fixes r :: ′U rel
assumes a1 : CCR r and a2 : |Field r | ≤o cardSuc |UNIV ::nat set|
shows DCR 3 r
proof (cases scf r ≤o ω-ord)

assume scf r ≤o ω-ord
then have DCR 2 r using a1 lem-dc2-ccr-scf-lew by blast
moreover have r ∈ U r using a1 unfolding U-def by blast
ultimately show DCR 3 r using lem-Ldo-uset-reduc[of r r 2 ] by simp

next
assume ¬ (scf r ≤o ω-ord)
then have ω-ord <o |Field r | using lem-scf-relfldcard-bnd lem-scf-inf

by (metis ordIso-iff-ordLeq ordLeq-iff-ordLess-or-ordIso ordLeq-transitive)
then have |UNIV ::nat set| <o |Field r | using card-of-nat ordIso-ordLess-trans

by blast
then have cardSuc |UNIV ::nat set| ≤o |Field r | by (meson cardSuc-ordLess-ordLeq

card-of-Card-order)
then have b0 : |Field r | =o cardSuc |UNIV ::nat set| using a2

using not-ordLeq-ordLess ordLeq-iff-ordLess-or-ordIso by blast
obtain r1 where b1 : r1 = r ∪ {(x,y). x = y ∧ x ∈ Field r} by blast
have b2 : Field r1 = Field r using b1 unfolding Field-def by blast
have r ∈ U r1 using b1 b2 a1 unfolding U-def by blast
then have b3 : CCR r1 using lem-rcc-uset-ne-ccr [of r1 ] by blast
have (¬ (scf r1 ≤o ω-ord)) −→ scf r1 =o |Field r1 |
proof

assume ¬ (scf r1 ≤o ω-ord)
then have ω-ord <o scf r1

using lem-scf-inf by (metis ordIso-iff-ordLeq ordLeq-iff-ordLess-or-ordIso)
then have |UNIV ::nat set| <o scf r1 ∧ Card-order (scf r1 )

using lem-scf-cardord by (metis card-of-nat ordIso-ordLess-trans)
then have cardSuc |UNIV ::nat set| ≤o scf r1 by (meson cardSuc-ordLess-ordLeq

card-of-Card-order)
then have |Field r1 | ≤o scf r1 using b0 b2 by (metis ordIso-ordLeq-trans)
then show scf r1 =o |Field r1 | using lem-scf-relfldcard-bnd[of r1 ]

by (metis not-ordLeq-ordLess ordLeq-iff-ordLess-or-ordIso)
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qed
moreover have scf r1 ≤o ω-ord −→ DCR 3 r1
proof

assume scf r1 ≤o ω-ord
then have DCR 2 r1 using b3 lem-dc2-ccr-scf-lew by blast
moreover have r1 ∈ U r1 using b3 unfolding U-def by blast
ultimately show DCR 3 r1 using lem-Ldo-uset-reduc[of r1 r1 2 ] by simp

qed
moreover have scf r1 =o |Field r1 | −→ DCR 3 r1
proof

assume scf r1 =o |Field r1 |
moreover have Refl r1 using b1 unfolding refl-on-def Field-def by force
ultimately show DCR 3 r1 using b0 b2 b3 lem-dc3-ccr-refl-scf-wsuc[of r1 ]

by simp
qed
ultimately have DCR 3 r1 by blast
moreover have

∧
n. n 6= 0 =⇒ DCR n r1 =⇒ DCR n r using b1 lem-Ldo-eqid

by blast
ultimately show DCR 3 r by force

qed

lemma lem-Cprf-conf-ccr-decomp:
fixes r :: ′U rel
assumes confl-rel r
shows ∃ S ::( ′U rel set). (∀ s∈S . CCR s) ∧ (r =

⋃
S) ∧ (∀ s1∈S . ∀ s2∈S . s1 6=

s2 −→ Field s1 ∩ Field s2 = {} )
proof −

obtain D where b1 : D = { D. ∃ x ∈ Field r . D = (r^<−>∗) ‘‘ {x} } by blast
obtain S where b2 : S = { s. ∃ D ∈ D. s = Restr r D } by blast
have r =

⋃
S

proof
show r ⊆

⋃
S

proof
fix a b
assume d1 : (a,b) ∈ r
then have a ∈ Field r unfolding Field-def by blast
moreover obtain D where d2 : D = (r^<−>∗) ‘‘ {a} by blast
ultimately have D ∈ D using b1 by blast
moreover then have (a,b) ∈ Restr r D using d1 d2 by blast
ultimately show (a,b) ∈

⋃
S using b2 by blast

qed
next

show
⋃

S ⊆ r using b2 by blast
qed
moreover have ∀ s1∈S . ∀ s2∈S . Field s1 ∩ Field s2 6= {} −→ s1 = s2
proof (intro ballI impI )

fix s1 s2
assume s1 ∈ S and s2 ∈ S and Field s1 ∩ Field s2 6= {}
moreover then obtain D1 D2 where c1 : D1 ∈ D ∧ D2 ∈ D ∧ s1 = Restr
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r D1 ∧ s2 = Restr r D2 using b2 by blast
ultimately have c2 : D1 ∩ D2 6= {} unfolding Field-def by blast
obtain a b c where c3 : c ∈ D1 ∩ D2 ∧ D1 = (r^<−>∗) ‘‘ {a} ∧ D2 =

(r^<−>∗) ‘‘ {b} using b1 c1 c2 by blast
then have (a,c) ∈ r^<−>∗ ∧ (b,c) ∈ r^<−>∗ by blast

then have (a,b) ∈ r^<−>∗ by (metis conversion-inv conversion-rtrancl rtrancl.intros(2 ))
moreover have equiv UNIV (r^<−>∗) unfolding equiv-def by (metis con-

version-def refl-rtrancl conversion-sym trans-rtrancl)
ultimately have D1 = D2 using c3 equiv-class-eq by simp
then show s1 = s2 using c1 by blast

qed
moreover have ∀ s∈S . CCR s
proof

fix s
assume s ∈ S
then obtain D where c1 : D ∈ D ∧ s = Restr r D using b2 by blast
then obtain x where c2 : x ∈ Field r ∧ D = (r^<−>∗) ‘‘ {x} using b1 by

blast
have c3 : r ‘‘ D ⊆ D
proof

fix b
assume b ∈ r ‘‘ D
then obtain a where d1 : a ∈ D ∧ (a,b) ∈ r by blast
then have (x,a) ∈ r^<−>∗ using c2 by blast
then have (x,b) ∈ r^<−>∗ using d1
by (metis conversionI ′ conversion-rtrancl rtrancl.rtrancl-into-rtrancl rtrancl.rtrancl-refl)
then show b ∈ D using c2 by blast

qed
have c4 : r^∗ ∩ (D × (UNIV :: ′U set)) ⊆ s^∗
proof −

have ∀ n. ∀ a b. (a,b) ∈ r^^n ∧ a ∈ D −→ (a,b) ∈ s^∗
proof

fix n0
show ∀ a b. (a,b) ∈ r^^n0 ∧ a ∈ D −→ (a,b) ∈ s^∗
proof (induct n0 )

show ∀ a b. (a,b) ∈ r^^0 ∧ a ∈ D −→ (a,b) ∈ s^∗ by simp
next

fix n
assume f1 : ∀ a b. (a,b) ∈ r^^n ∧ a ∈ D −→ (a,b) ∈ s^∗
show ∀ a b. (a,b) ∈ r^^(Suc n) ∧ a ∈ D −→ (a,b) ∈ s^∗
proof (intro allI impI )

fix a b
assume g1 : (a,b) ∈ r^^(Suc n) ∧ a ∈ D
moreover then obtain c where g2 : (a,c) ∈ r^^n ∧ (c,b) ∈ r by force
ultimately have g3 : (a,c) ∈ s^∗ using f1 by blast
have c ∈ D using c2 g1 g2

by (metis Image-singleton-iff conversionI ′ conversion-rtrancl relpow-imp-rtrancl
rtrancl.rtrancl-into-rtrancl)

then have (c,b) ∈ s using c1 c3 g2 by blast
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then show (a,b) ∈ s^∗ using g3 by (meson rtrancl.rtrancl-into-rtrancl)
qed

qed
qed
then show ?thesis using rtrancl-power by blast

qed
have ∀ a ∈ Field s. ∀ b ∈ Field s. ∃ c ∈ Field s. (a,c) ∈ s^∗ ∧ (b,c) ∈ s^∗
proof (intro ballI )

fix a b
assume d1 : a ∈ Field s and d2 : b ∈ Field s
then have d3 : a ∈ D ∧ b ∈ D using c1 unfolding Field-def by blast
then have (x,a) ∈ r^<−>∗ ∧ (x,b) ∈ r^<−>∗ using c2 by blast

then have (a,b) ∈ r^<−>∗ by (metis conversion-inv conversion-rtrancl
rtrancl.rtrancl-into-rtrancl)

moreover have CR r using assms unfolding confl-rel-def Abstract-Rewriting.CR-on-def
by blast

ultimately obtain c where (a,c) ∈ r^∗ ∧ (b,c) ∈ r^∗
by (metis Abstract-Rewriting.CR-imp-conversionIff-join Abstract-Rewriting.joinD)
then have (a,c) ∈ s^∗ ∧ (b,c) ∈ s^∗ using c4 d3 by blast
moreover then have c ∈ Field s using d1 unfolding Field-def by (metis

Range.intros Un-iff rtrancl.cases)
ultimately show ∃ c ∈ Field s. (a,c) ∈ s^∗ ∧ (b,c) ∈ s^∗ by blast

qed
then show CCR s unfolding CCR-def by blast

qed
ultimately show ?thesis by blast

qed

lemma lem-Cprf-dc-disj-fld-un:
fixes S :: ′U rel set and n::nat
assumes a1 : ∀ s1∈S . ∀ s2∈S . s1 6=s2 −→ Field s1 ∩ Field s2 = {}

and a2 : ∀ s∈S . DCR n s
shows DCR n (

⋃
S)

proof −
obtain gi:: ′U rel ⇒ nat ⇒ ′U rel

where b1 : gi = (λ s. (SOME g. DCR-generating g ∧ s =
⋃
{r ′. ∃α ′<n. r ′ =

g α ′})) by blast
obtain ga where b2 : ga = (λ α. if (α < n) then

⋃
s∈S . gi s α else {}) by blast

have b3 :
∧

s. s ∈ S =⇒ DCR-generating (gi s) ∧ s =
⋃
{r ′. ∃α ′<n. r ′ = gi s

α ′}
proof −

fix s
assume s ∈ S
then obtain g where DCR-generating g ∧ s =

⋃
{r ′. ∃α ′<n. r ′ = g α ′}

using a2 unfolding DCR-def by force
then show DCR-generating (gi s) ∧ s =

⋃
{r ′. ∃α ′<n. r ′ = gi s α ′}

using b1 someI-ex[of λ g. DCR-generating g ∧ s =
⋃
{r ′. ∃α ′<n. r ′ = g α ′}]

by blast
qed
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have ∀α β a b c. (a, b) ∈ ga α ∧ (a, c) ∈ ga β −→
(∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D ga α β ∧ (c, c ′, c ′′, d) ∈ D ga β α)

proof (intro allI impI )
fix α β a b c
assume c1 : (a, b) ∈ ga α ∧ (a, c) ∈ ga β
moreover have α < n using c1 b2 by (cases α<n, simp+)
moreover have β < n using c1 b2 by (cases β<n, simp+)
ultimately obtain s1 s2 where c2 : α < n ∧ s1 ∈ S ∧ (a,b) ∈ gi s1 α

and c3 : β < n ∧ s2 ∈ S ∧ (a,c) ∈ gi s2 β using c1 b2
by fastforce

then have (a,b) ∈ s1 ∧ (a,c) ∈ s2 using b3 by blast
then have s1 = s2 using c2 c3 a1 unfolding Field-def by blast
then obtain b ′ b ′′ c ′ c ′′ d

where c4 : (b, b ′, b ′′, d) ∈ D (gi s1 ) α β and c5 : (c, c ′, c ′′, d) ∈ D (gi s1 )
β α

using c2 c3 b3 [of s1 ] unfolding DCR-generating-def by blast
have (b, b ′, b ′′, d) ∈ D ga α β
proof −

have d1 : (b, b ′) ∈ (L1 (gi s1 ) α)^∗ ∧ (b ′, b ′′) ∈ (gi s1 β)^= ∧ (b ′′, d) ∈ (Lv
(gi s1 ) α β)^∗

using c4 unfolding D-def by blast
have L1 (gi s1 ) α ⊆ L1 ga α
proof

fix p
assume p ∈ L1 (gi s1 ) α
then obtain γ where γ < α ∧ p ∈ gi s1 γ unfolding L1-def by blast
moreover then have p ∈ ga γ using c2 b2 by fastforce
ultimately show p ∈ L1 ga α unfolding L1-def by blast

qed
then have d2 : (b, b ′) ∈ (L1 ga α)^∗ using d1 rtrancl-mono by blast
have gi s1 β ⊆ ga β using c2 c3 b2 by fastforce
then have d3 : (b ′, b ′′) ∈ (ga β)^= using d1 by blast
have Lv (gi s1 ) α β ⊆ Lv ga α β
proof

fix p
assume p ∈ Lv (gi s1 ) α β
then obtain γ where (γ < α ∨ γ < β) ∧ p ∈ gi s1 γ unfolding Lv-def

by blast
moreover then have p ∈ ga γ using c2 c3 b2 by fastforce
ultimately show p ∈ Lv ga α β unfolding Lv-def by blast

qed
then have (b ′′, d) ∈ (Lv ga α β)^∗ using d1 rtrancl-mono by blast
then show ?thesis using d2 d3 unfolding D-def by blast

qed
moreover have (c, c ′, c ′′, d) ∈ D ga β α
proof −
have d1 : (c, c ′) ∈ (L1 (gi s1 ) β)^∗ ∧ (c ′, c ′′) ∈ (gi s1 α)^= ∧ (c ′′, d) ∈ (Lv

(gi s1 ) β α)^∗
using c5 unfolding D-def by blast
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have L1 (gi s1 ) β ⊆ L1 ga β
proof

fix p
assume p ∈ L1 (gi s1 ) β
then obtain γ where γ < β ∧ p ∈ gi s1 γ unfolding L1-def by blast
moreover then have p ∈ ga γ using c2 c3 b2 by fastforce
ultimately show p ∈ L1 ga β unfolding L1-def by blast

qed
then have d2 : (c, c ′) ∈ (L1 ga β)^∗ using d1 rtrancl-mono by blast
have gi s1 α ⊆ ga α using c2 b2 by fastforce
then have d3 : (c ′, c ′′) ∈ (ga α)^= using d1 by blast
have Lv (gi s1 ) β α ⊆ Lv ga β α
proof

fix p
assume p ∈ Lv (gi s1 ) β α
then obtain γ where (γ < β ∨ γ < α) ∧ p ∈ gi s1 γ unfolding Lv-def

by blast
moreover then have p ∈ ga γ using c2 c3 b2 by fastforce
ultimately show p ∈ Lv ga β α unfolding Lv-def by blast

qed
then have (c ′′, d) ∈ (Lv ga β α)^∗ using d1 rtrancl-mono by blast
then show ?thesis using d2 d3 unfolding D-def by blast

qed
ultimately show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D ga α β ∧ (c, c ′, c ′′, d) ∈

D ga β α by blast
qed
then have DCR-generating ga unfolding DCR-generating-def by blast
moreover have

⋃
S =

⋃
{r ′. ∃α ′<n. r ′ = ga α ′}

proof
show

⋃
S ⊆

⋃
{r ′. ∃α ′<n. r ′ = ga α ′}

proof
fix p
assume p ∈

⋃
S

then obtain s where s ∈ S ∧ p ∈ s by blast
moreover then obtain α where α<n ∧ p ∈ gi s α using b3 by blast
ultimately have α<n ∧ p ∈ ga α using b2 by force
then show p ∈

⋃
{r ′. ∃α ′<n. r ′ = ga α ′} by blast

qed
next

show
⋃
{r ′. ∃α ′<n. r ′ = ga α ′} ⊆

⋃
S

proof
fix p
assume p ∈

⋃
{r ′. ∃α ′<n. r ′ = ga α ′}

then obtain α where α<n ∧ p ∈ ga α by blast
moreover then obtain s where s ∈ S ∧ p ∈ gi s α using b2 by force
ultimately have s ∈ S ∧ p ∈ s using b3 by blast
then show p ∈

⋃
S by blast

qed
qed
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ultimately show ?thesis unfolding DCR-def by blast
qed

lemma lem-dc3-to-d3 :
fixes r :: ′U rel
assumes DCR 3 r
shows DCR3 r
proof −

obtain g where b1 : DCR-generating g and b2 : r =
⋃
{r ′. ∃α ′<3 . r ′ = g α ′}

using assms unfolding DCR-def by blast
have ∀ α::nat. α<2 ←→ α = 0 ∨ α = 1 by force
then have b3 : L1 g 0 = {} ∧ L1 g 1 = g 0 ∧ L1 g 2 = g 0 ∪ g 1
∧ Lv g 0 0 = {} ∧ Lv g 1 0 = g 0 ∧ Lv g 0 1 = g 0 ∧ Lv g 1 1 = g 0
∧ Lv g 2 0 = g 0 ∪ g 1 ∧ Lv g 2 1 = g 0 ∪ g 1
∧ Lv g 2 2 = g 0 ∪ g 1 ∧ Lv g 0 2 = g 0 ∪ g 1 ∧ Lv g 1 2 = g 0 ∪ g 1

unfolding L1-def Lv-def by (simp-all, blast+)
have r = (g 0 ) ∪ (g 1 ) ∪ (g 2 )
proof

show r ⊆ (g 0 ) ∪ (g 1 ) ∪ (g 2 )
proof

fix p
assume p ∈ r
then obtain α where p ∈ g α ∧ α < 3 using b2 by blast
moreover have ∀ α::nat. α<3 ←→ α = 0 ∨ α = 1 ∨ α = 2 by force
ultimately show p ∈ (g 0 ) ∪ (g 1 ) ∪ (g 2 ) by force

qed
next

have (0 ::nat) < (3 ::nat) ∧ (1 ::nat) < (3 ::nat) ∧ (2 ::nat) < (3 ::nat) by simp
then show (g 0 ) ∪ (g 1 ) ∪ (g 2 ) ⊆ r using b2 by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 0 ) −→ jn00 (g 0 ) b c
proof (intro allI impI )

fix a b c
assume (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 0 )
then obtain b ′ b ′′ c ′ c ′′ d where (b, b ′, b ′′, d) ∈ D g 0 0 ∧ (c, c ′, c ′′, d) ∈

D g 0 0
using b1 unfolding DCR-generating-def by blast

then show jn00 (g 0 ) b c unfolding jn00-def D-def L1-def Lv-def by force
qed
moreover have ∀ a b c. (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 1 ) −→ jn01 (g 0 ) (g 1 ) b c
proof (intro allI impI )

fix a b c
assume (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 1 )
then obtain b ′ b ′′ c ′ c ′′ d where
(b, b ′, b ′′, d) ∈ D g 0 1 ∧ (c, c ′, c ′′, d) ∈ D g 1 0

using b1 unfolding DCR-generating-def by blast
then show jn01 (g 0 ) (g 1 ) b c unfolding jn01-def D-def L1-def Lv-def by

force
qed
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moreover have ∀ a b c. (a,b) ∈ (g 1 ) ∧ (a,c) ∈ (g 1 ) −→ jn11 (g 0 ) (g 1 ) b c
proof (intro allI impI )

fix a b c
assume (a,b) ∈ (g 1 ) ∧ (a,c) ∈ (g 1 )
then obtain b ′ b ′′ c ′ c ′′ d where (b, b ′, b ′′, d) ∈ D g 1 1 ∧ (c, c ′, c ′′, d) ∈

D g 1 1
using b1 unfolding DCR-generating-def by blast

then show jn11 (g 0 ) (g 1 ) b c unfolding jn11-def D-def
apply (simp only: b3 )
by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 2 ) −→ jn02 (g 0 ) (g 1 ) (g

2 ) b c
proof (intro allI impI )

fix a b c
assume (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 2 )
then obtain b ′ b ′′ c ′ c ′′ d where c1 : (b, b ′, b ′′, d) ∈ D g 0 2 ∧ (c, c ′, c ′′, d)

∈ D g 2 0
using b1 unfolding DCR-generating-def by blast

then have (c, c ′) ∈ (g 0 ∪ g 1 )^∗ ∧ (c ′,c ′′) ∈ (g 0 )^= ∧ (c ′′,d) ∈ (g 0 ∪ g
1 )^∗

unfolding D-def by (simp add: b3 )
moreover then have (c ′,c ′′) ∈ (g 0 ∪ g 1 )^∗ by blast
ultimately have (c, d) ∈ (g 0 ∪ g 1 )^∗ by force
then show jn02 (g 0 ) (g 1 ) (g 2 ) b c

using c1 unfolding jn02-def D-def
apply (simp add: b3 )
by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 1 ) ∧ (a,c) ∈ (g 2 ) −→ jn12 (g 0 ) (g 1 ) (g

2 ) b c
proof (intro allI impI )

fix a b c
assume (a,b) ∈ (g 1 ) ∧ (a,c) ∈ (g 2 )
then obtain b ′ b ′′ c ′ c ′′ d where c1 : (b, b ′, b ′′, d) ∈ D g 1 2 ∧ (c, c ′, c ′′, d)

∈ D g 2 1
using b1 unfolding DCR-generating-def by blast

then have (c, c ′) ∈ (g 0 ∪ g 1 )^∗ ∧ (c ′,c ′′) ∈ (g 1 )^= ∧ (c ′′,d) ∈ (g 0 ∪ g
1 )^∗

unfolding D-def apply (simp only: b3 )
by blast

moreover then have (c ′,c ′′) ∈ (g 0 ∪ g 1 )^∗ by blast
ultimately have (c, d) ∈ (g 0 ∪ g 1 )^∗ by force
then show jn12 (g 0 ) (g 1 ) (g 2 ) b c

using c1 unfolding jn12-def D-def apply (simp only: b3 )
by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 2 ) ∧ (a,c) ∈ (g 2 ) −→ jn22 (g 0 ) (g 1 ) (g

2 ) b c
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proof (intro allI impI )
fix a b c
assume (a,b) ∈ (g 2 ) ∧ (a,c) ∈ (g 2 )
then obtain b ′ b ′′ c ′ c ′′ d where c1 : (b, b ′, b ′′, d) ∈ D g 2 2 ∧ (c, c ′, c ′′, d)

∈ D g 2 2
using b1 unfolding DCR-generating-def by blast

then show jn22 (g 0 ) (g 1 ) (g 2 ) b c
unfolding jn22-def D-def apply (simp only: b3 )
by blast

qed
ultimately have LD3 r (g 0 ) (g 1 ) (g 2 ) unfolding LD3-def by blast
then show ?thesis unfolding DCR3-def by blast

qed

lemma lem-dc3-confl-lewsuc:
fixes r :: ′U rel
assumes a1 : confl-rel r and a2 : |Field r | ≤o cardSuc |UNIV ::nat set|
shows DCR 3 r
proof −

obtain S where b1 : r =
⋃

S
and b2 : ∀ s1 ∈ S . ∀ s2 ∈ S . s1 6= s2 −→ Field s1 ∩ Field s2 = {}
and b3 : ∀ s ∈ S . CCR s using a1 lem-Cprf-conf-ccr-decomp[of r ] by

blast
have ∀ s∈S . DCR 3 s
proof

fix s
assume s ∈ S
then have CCR s ∧ Field s ⊆ Field r using b1 b3 unfolding Field-def by

blast
moreover then have |Field s| ≤o |Field r | by simp
ultimately have CCR s ∧ |Field s| ≤o cardSuc |UNIV ::nat set| using a2

ordLeq-transitive by blast
then show DCR 3 s using lem-dc3-ccr-scf-lewsuc by blast

qed
then show DCR 3 r using b1 b2 lem-Cprf-dc-disj-fld-un[of S ] by blast

qed

lemma lem-cle-eqdef : |A| ≤o |B| = (∃ g . A ⊆ g‘B)
by (metis surj-imp-ordLeq card-of-ordLeq2 empty-subsetI order-refl)

lemma lem-cardLeN1-eqdef :
fixes A:: ′a set
shows cardLeN1 A = ( |A| ≤o cardSuc |{n::nat . True}| )
proof

assume b1 : cardLeN1 A
obtain κ where b2 : κ = cardSuc |UNIV ::nat set| by blast
have cardSuc |UNIV ::nat set| <o |A| −→ False
proof

assume cardSuc |UNIV ::nat set| <o |A|
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then have c1 : κ <o |A| ∧ |Field κ| =o κ using b2 by simp
then have |Field κ| ≤o |A| using ordIso-ordLess-trans ordLess-imp-ordLeq by

blast
then obtain B where c2 : B ⊆ A ∧ |Field κ| =o |B|

using internalize-card-of-ordLeq2 [of Field κ A] by blast
moreover have |UNIV ::nat set| <o κ using b2 by simp
ultimately have c3 : B ⊆ A ∧ |UNIV ::nat set| <o |B|
using c1 by (meson ordIso-imp-ordLeq ordIso-symmetric ordLess-ordLeq-trans)
then obtain C where c4 : C ⊆ B ∧ |UNIV ::nat set| =o |C |
using internalize-card-of-ordLeq2 [of UNIV ::nat set B] ordLess-imp-ordLeq by

blast
obtain c where c ∈ C using c4 using card-of-empty2 by fastforce
moreover obtain D where c5 : D = C − {c} by blast
ultimately have c6 : C = D ∪ {c} by blast
have ¬ finite D using c4 c5 using card-of-ordIso-finite by force

moreover then have |{c}| ≤o |D| by (metis card-of-singl-ordLeq finite.emptyI )
ultimately have |C | ≤o |D| using c6 using card-of-Un-infinite ordIso-imp-ordLeq

by blast
then obtain f where C ⊆ f ‘ D by (metis card-of-ordLeq2 empty-subsetI

order-refl)
moreover have D ⊂ C ∧ C ⊆ B ∧ B ⊆ A using c3 c4 c5 c6 by blast
ultimately have (∃ f . B ⊆ f ‘ C ) ∨ (∃ g. A ⊆ g‘B) using b1 unfolding

cardLeN1-def by metis
moreover have (∃ f . B ⊆ f ‘ C ) −→ False
proof

assume ∃ f . B ⊆ f ‘ C
then obtain f where B ⊆ f ‘ C by blast
then have |B| ≤o |f‘C | by simp
moreover have |f‘C | ≤o |C | by simp
ultimately have |B| ≤o |C | using ordLeq-transitive by blast
then show False using c3 c4 not-ordLess-ordIso ordLess-ordLeq-trans by

blast
qed
moreover have (∃ g. A ⊆ g‘B) −→ False
proof

assume ∃ g. A ⊆ g‘B
then obtain g where A ⊆ g‘B by blast
then have |A| ≤o |g‘B| by simp
moreover have |g‘B| ≤o |B| by simp
ultimately have |A| ≤o |B| using ordLeq-transitive by blast
then show False using c1 c2

by (metis BNF-Cardinal-Order-Relation.ordLess-Field not-ordLess-ordIso
ordLess-ordLeq-trans)

qed
ultimately show False by blast

qed
then show |A| ≤o cardSuc |{n::nat . True}| by simp

next
assume |A| ≤o cardSuc |{n::nat . True}|
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then have b1 : |A| ≤o cardSuc |UNIV ::nat set| by simp
have ∀ B ⊆ A. ( ∀ C ⊆ B . ((∃ D f . D ⊂ C ∧ C ⊆ f‘D ) −→ ( ∃ f . B ⊆ f‘C

)) )
∨ ( ∃ g . A ⊆ g‘B )

proof (intro allI impI )
fix B
assume B ⊆ A
show (∀ C ⊆ B . ((∃ D f . D ⊂ C ∧ C ⊆ f‘D ) −→ ( ∃ f . B ⊆ f‘C ))) ∨ ( ∃

g . A ⊆ g‘B )
proof (cases |B| ≤o |UNIV ::nat set|)

assume d1 : |B| ≤o |UNIV ::nat set|
have ∀ C ⊆ B . ((∃ D f . D ⊂ C ∧ C ⊆ f‘D ) −→ ( ∃ f . B ⊆ f‘C ))
proof (intro allI impI )

fix C
assume C ⊆ B and ∃ D f . D ⊂ C ∧ C ⊆ f‘D
then obtain D f where e1 : D ⊂ C ∧ C ⊆ f‘D by blast
have finite C −→ False
proof

assume finite C
moreover then have finite D using e1 finite-subset by blast
ultimately have |D| <o |C |

using e1 by (metis finite-card-of-iff-card3 psubset-card-mono)
moreover have |C | ≤o |D| using e1 using surj-imp-ordLeq by blast
ultimately show False using not-ordLeq-ordLess by blast

qed
then have |B| ≤o |C | using d1 by (metis infinite-iff-card-of-nat or-

dLeq-transitive)
then show ∃ f . B ⊆ f‘C by (metis card-of-ordLeq2 empty-subsetI order-refl)
qed
then show ?thesis by blast

next
assume ¬ |B| ≤o |UNIV ::nat set|
then have |A| ≤o |B| using b1 lem-cord-lin

by (metis cardSuc-ordLeq-ordLess card-of-Card-order ordLess-ordLeq-trans)
then have ∃ g . A ⊆ g‘B by (metis card-of-ordLeq2 empty-subsetI order-refl)
then show ?thesis by blast

qed
qed
then show cardLeN1 A unfolding cardLeN1-def by blast

qed

lemma lem-cleN1-eqdef :
fixes r ::( ′U× ′U ) set
shows ( |r | ≤o cardSuc |{n::nat . True}| )
←→ ( ∀ s ⊆ r . ( ( ∀ t ⊆ s . ((∃ t ′ f . t ′ ⊂ t ∧ t ⊆ f‘t ′) −→ (∃ f . s ⊆ f‘t )) )

∨ ( ∃ g . r ⊆ g‘s )
) )

using lem-cardLeN1-eqdef [of r ] cardLeN1-def by blast
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1.2.3 Result

The next theorem has the following meaning: if the cardinality of a confluent
binary relation r does not exceed the first uncountable cardinal, then con-
fluence of r can be proved with the help of the decreasing diagrams method
using no more than 3 labels (e.g. 0, 1, 2 ordered in the usual way).
theorem thm-main:
fixes r ::( ′U× ′U ) set
assumes ∀ a b c . (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→ (∃ d. (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)

and |r | ≤o cardSuc |{n::nat . True}|
shows ∃ r0 r1 r2 . (

( r = (r0 ∪ r1 ∪ r2 ) )
∧ ( ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0

−→ (∃ d.
(b,d) ∈ r0^=
∧ (c,d) ∈ r0^= ) )

∧ ( ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1
−→ (∃ b ′ d.

(b,b ′) ∈ r1^= ∧ (b ′,d) ∈ r0^∗
∧ (c,d) ∈ r0^∗ ) )

∧ ( ∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1
−→ (∃ b ′ b ′′ c ′ c ′′ d.

(b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗
∧ (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗ ) )

∧ ( ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r2
−→ (∃ b ′ d.

(b,b ′) ∈ r2^= ∧ (b ′,d) ∈ (r0 ∪ r1 )^∗
∧ (c,d) ∈ (r0 ∪ r1 )^∗ ) )

∧ ( ∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r2
−→ ( ∃ b ′ b ′′ d.

(b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r2^= ∧ (b ′′,d) ∈ (r0 ∪ r1 )^∗
∧ (c,d) ∈ (r0 ∪ r1 )^∗ ) )

∧ ( ∀ a b c. (a,b) ∈ r2 ∧ (a,c) ∈ r2
−→ (∃ b ′ b ′′ c ′ c ′′ d.

(b,b ′) ∈ (r0 ∪ r1 )^∗ ∧ (b ′,b ′′) ∈ r2^= ∧ (b ′′,d) ∈ (r0 ∪ r1 )^∗
∧ (c,c ′) ∈ (r0 ∪ r1 )^∗ ∧ (c ′,c ′′) ∈ r2^= ∧ (c ′′,d) ∈ (r0 ∪ r1 )^∗

) )
)

proof −
have b0 : |r | ≤o cardSuc |UNIV ::nat set| using assms(2 ) by simp
obtain κ where b1 : κ = cardSuc |UNIV ::nat set| by blast
have |Field r | ≤o κ
proof (cases finite r)

assume finite r
then show ?thesis using b1 lem-fin-fl-rel by (metis Field-card-of Field-natLeq

cardSuc-ordLeq-ordLess
card-of-card-order-on card-of-mono2 finite-iff-ordLess-natLeq ordLess-imp-ordLeq)

next
assume ¬ finite r
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then show ?thesis using b0 b1 lem-rel-inf-fld-card using ordIso-ordLeq-trans
by blast

qed
moreover have confl-rel r using assms(1 ) unfolding confl-rel-def by blast
ultimately have DCR3 r using b1 lem-dc3-confl-lewsuc[of r ] lem-dc3-to-d3 by

blast
then show ?thesis unfolding DCR3-def LD3-def

jn00-def jn01-def jn02-def jn11-def jn12-def jn22-def by fast
qed

end

1.3 Optimality of the DCR3 method for proving confluence
of relations of the least uncountable cardinality

theory DCR3-Optimality
imports

HOL−Cardinals.Cardinals
Finite-DCR-Hierarchy

begin

1.3.1 Auxiliary definitions
datatype Lev = l0 | l1 | l2 | l3 | l4 | l5 | l6 | l7 | l8

type-synonym ′U rD = Lev × ′U set × ′U set × ′U set

fun rP :: Lev ⇒ ′U set ⇒ ′U set ⇒ ′U set ⇒ Lev ⇒ ′U set ⇒ ′U set ⇒ ′U set
⇒ bool
where

rP l0 A B C n ′ A ′ B ′ C ′ = (A = {} ∧ B = {} ∧ C = {} ∧ n ′ = l1 ∧ finite A ′

∧ B ′ = {} ∧ C ′ = {})
| rP l1 A B C n ′ A ′ B ′ C ′ = (finite A ∧ B = {} ∧ C = {} ∧ n ′ = l2 ∧ A ′ = A
∧ B ′ = {} ∧ C ′ = {})
| rP l2 A B C n ′ A ′ B ′ C ′ = (finite A ∧ B = {} ∧ C = {} ∧ n ′ = l3 ∧ A ′ = A
∧ finite B ′ ∧ C ′ = {})
| rP l3 A B C n ′ A ′ B ′ C ′ = (finite A ∧ finite B ∧ C = {} ∧ n ′ = l4 ∧ A ′ = A
∧ B ′ = B ∧ C ′ = {})
| rP l4 A B C n ′ A ′ B ′ C ′ = (finite A ∧ finite B ∧ C = {} ∧ n ′ = l5 ∧ A ′ = A
∧ B ′ = B ∧ finite C ′)
| rP l5 A B C n ′ A ′ B ′ C ′ = (finite A ∧ finite B ∧ finite C ∧ n ′ = l6 ∧ A ′ = A
∧ B ′ = B ∧ C ′ = C )
| rP l6 A B C n ′ A ′ B ′ C ′ = (finite A ∧ finite B ∧ finite C ∧ n ′ = l7 ∧ A ′ = A
∪ B ∪ C ∧ B ′ = A ′ ∧ C ′ = A ′)
| rP l7 A B C n ′ A ′ B ′ C ′ = (finite A ∧ B = A ∧ C = A ∧ n ′ = l8 ∧ A ′ = A ∧
B ′ = A ′ ∧ C ′ = A ′)
| rP l8 A B C n ′ A ′ B ′ C ′ = (finite A ∧ B = A ∧ C = A ∧ n ′ = l7 ∧ A ⊂ A ′ ∧
finite A ′ ∧ B ′ = A ′ ∧ C ′ = A ′)

definition rC :: ′U set ⇒ ′U set ⇒ ′U set ⇒ ′U set ⇒ bool
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where
rC S A B C = (A ⊆ S ∧ B ⊆ S ∧ C ⊆ S)

definition rE :: ′U set ⇒ ( ′U rD) rel
where

rE S = { ((n1 , A1 , B1 , C1 ), (n2 , A2 , B2 , C2 )). rP n1 A1 B1 C1 n2 A2 B2
C2 ∧ rC S A1 B1 C1 ∧ rC S A2 B2 C2 }

fun lev-next :: Lev ⇒ Lev
where

lev-next l0 = l1
| lev-next l1 = l2
| lev-next l2 = l3
| lev-next l3 = l4
| lev-next l4 = l5
| lev-next l5 = l6
| lev-next l6 = l7
| lev-next l7 = l8
| lev-next l8 = l7

fun levrd :: ′U rD ⇒ Lev
where

levrd (n, A, B, C ) = n

fun wrd :: ′U rD ⇒ ′U set
where

wrd (n, A, B, C ) = A ∪ B ∪ C

definition Wrd :: ′U rD set ⇒ ′U set
where

Wrd S = (
⋃

(wrd ‘ S))

definition bkset :: ′a rel ⇒ ′a set ⇒ ′a set
where

bkset r A = ((r^∗)^−1 )‘‘A

1.3.2 Auxiliary lemmas
lemma lem-rtr-field: (x,y) ∈ r^∗ =⇒ (x = y) ∨ (x ∈ Field r ∧ y ∈ Field r)

by (metis Field-def Not-Domain-rtrancl Range.RangeI UnCI rtranclE)

lemma lem-fin-fl-rel: finite (Field r) = finite r
using finite-Field finite-subset trancl-subset-Field2 by fastforce

lemma lem-rel-inf-fld-card:
fixes r :: ′U rel
assumes ¬ finite r
shows |Field r | =o |r |
proof −
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obtain f1 :: ′U × ′U ⇒ ′U where b1 : f1 = (λ (x,y). x) by blast
obtain f2 :: ′U × ′U ⇒ ′U where b2 : f2 = (λ (x,y). y) by blast
then have f1 ‘ r = Domain r ∧ f2 ‘ r = Range r using b1 b2 by force
then have b3 : |Domain r | ≤o |r | ∧ |Range r | ≤o |r |

using card-of-image[of f1 r ] card-of-image[of f2 r ] by simp
have |Domain r | ≤o |Range r | ∨ |Range r | ≤o |Domain r | by (simp add: or-

dLeq-total)
moreover have |Domain r | ≤o |Range r | −→ |Field r | ≤o |r |
proof

assume c1 : |Domain r | ≤o |Range r |
moreover have finite (Domain r) ∧ finite (Range r) −→ finite (Field r)

unfolding Field-def by blast
ultimately have ¬ finite (Range r)

using assms lem-fin-fl-rel card-of-ordLeq-finite by blast
then have |Field r | =o |Range r | using c1 card-of-Un-infinite unfolding

Field-def by blast
then show |Field r | ≤o |r | using b3 ordIso-ordLeq-trans by blast

qed
moreover have |Range r | ≤o |Domain r | −→ |Field r | ≤o |r |
proof

assume c1 : |Range r | ≤o |Domain r |
moreover have finite (Domain r) ∧ finite (Range r) −→ finite (Field r)

unfolding Field-def by blast
ultimately have ¬ finite (Domain r)

using assms lem-fin-fl-rel card-of-ordLeq-finite by blast
then have |Field r | =o |Domain r | using c1 card-of-Un-infinite unfolding

Field-def by blast
then show |Field r | ≤o |r | using b3 ordIso-ordLeq-trans by blast

qed
ultimately have |Field r | ≤o |r | by blast
moreover have |r | ≤o |Field r |
proof −

have r ⊆ (Field r) × (Field r) unfolding Field-def by force
then have c1 : |r | ≤o |Field r × Field r | by simp
have ¬ finite (Field r) using assms lem-fin-fl-rel by blast
then have c2 : |Field r × Field r | =o |Field r | by simp
show ?thesis using c1 c2 using ordLeq-ordIso-trans by blast

qed
ultimately show ?thesis using ordIso-iff-ordLeq by blast

qed

lemma lem-confl-field: confl-rel r = (∀ a ∈ Field r . ∀ b ∈ Field r . ∀ c ∈ Field r .
(a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→

(∃ d ∈ Field r . (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗))
proof

assume b1 : confl-rel r
show ∀ a ∈ Field r . ∀ b ∈ Field r . ∀ c ∈ Field r . (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→

(∃ d ∈ Field r . (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)
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proof (intro ballI impI )
fix a b c
assume c1 : a ∈ Field r and c2 : b ∈ Field r and c3 : c ∈ Field r and c4 : (a,b)

∈ r^∗ ∧ (a,c) ∈ r^∗
obtain d where (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗ using b1 c4 unfolding confl-rel-def

by blast
moreover then have d ∈ Field r using c2 using lem-rtr-field by fastforce
ultimately show ∃ d ∈ Field r . (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗ by blast

qed
next

assume b1 : ∀ a ∈ Field r . ∀ b ∈ Field r . ∀ c ∈ Field r . (a,b) ∈ r^∗ ∧ (a,c) ∈
r^∗ −→

(∃ d ∈ Field r . (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)
have ∀ a b c. (a, b) ∈ r^∗ ∧ (a, c) ∈ r^∗ −→ (∃ d. (b, d) ∈ r^∗ ∧ (c, d) ∈ r^∗)
proof (intro allI impI )

fix a b c
assume (a, b) ∈ r^∗ ∧ (a, c) ∈ r^∗
moreover then have a /∈ Field r ∨ b /∈ Field r ∨ c /∈ Field r −→ a = b ∨ a

= c by (meson lem-rtr-field)
ultimately show ∃ d. (b, d) ∈ r^∗ ∧ (c, d) ∈ r^∗ using b1 by blast

qed
then show confl-rel r unfolding confl-rel-def by blast

qed

lemma lem-d2-to-dc2 :
fixes r :: ′U rel
assumes DCR2 r
shows DCR 2 r
proof −

obtain r0 r1 where b1 : r = r0 ∪ r1
and b2 : ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ jn00 r0 b c
and b3 : ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1 −→ jn01 r0 r1 b c
and b4 : ∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1 −→ jn11 r0 r1 b c

using assms unfolding DCR2-def LD2-def by blast
obtain g::nat ⇒ ′U rel

where b5 : g = (λ α::nat. if α = 0 then r0 else (if α = 1 then r1 else {})) by
blast

have b6 : g 0 = r0 ∧ g 1 = r1 using b5 by simp
have b7 : ∀ n. (¬ (n = 0 ∨ n = 1 )) −→ g n = {} using b5 by simp
have ∀α β a b c. (a, b) ∈ g α ∧ (a, c) ∈ g β −→

(∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α)
proof (intro allI impI )

fix α β a b c
assume c1 : (a, b) ∈ g α ∧ (a, c) ∈ g β
then have c2 : (α = 0 ∨ α = 1 ) ∧ (β = 0 ∨ β = 1 ) using b7 by blast
show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g β α
proof −

have α = 0 ∧ β = 0 −→ ?thesis
proof
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assume e1 : α = 0 ∧ β = 0
then have jn00 r0 b c using c1 b2 b6 by blast
then obtain d where (b, d) ∈ r0^= ∧ (c, d) ∈ r0^= unfolding jn00-def

by blast
then have (b, b, d, d) ∈ D g 0 0 ∧ (c, c, d, d) ∈ D g 0 0 using b6

unfolding D-def by blast
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g

β α using e1 by blast
qed
moreover have α = 0 ∧ β = 1 −→ ?thesis
proof

assume e1 : α = 0 ∧ β = 1
then have jn01 r0 r1 b c using c1 b3 b6 by blast
then obtain b ′′ d where (b,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗ ∧ (c,d) ∈ r0^∗

unfolding jn01-def by blast
moreover have Lv g 0 1 = g 0 ∧ Lv g 1 0 = g 0 using b6 b7 unfolding

Lv-def by blast
ultimately have (b, b, b ′′, d) ∈ D g 0 1 ∧ (c, c, c, d) ∈ D g 1 0 using b6

unfolding D-def by simp
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g

β α using e1 by blast
qed
moreover have α = 1 ∧ β = 0 −→ ?thesis
proof

assume e1 : α = 1 ∧ β = 0
then have jn01 r0 r1 c b using c1 b3 b6 by blast
then obtain c ′′ d where (c,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗ ∧ (b,d) ∈ r0^∗

unfolding jn01-def by blast
moreover have Lv g 0 1 = g 0 ∧ Lv g 1 0 = g 0 using b6 b7 unfolding

Lv-def by blast
ultimately have (b, b, b, d) ∈ D g 1 0 ∧ (c, c, c ′′, d) ∈ D g 0 1 using b6

unfolding D-def by simp
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g

β α using e1 by blast
qed
moreover have α = 1 ∧ β = 1 −→ ?thesis
proof

assume e1 : α = 1 ∧ β = 1
then have jn11 r0 r1 b c using c1 b4 b6 by blast
then obtain b ′ b ′′ c ′ c ′′ d where

e2 : (b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗
and e3 : (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗ unfolding jn11-def

by blast
moreover have Lv g 1 1 = g 0 ∧ L1 g 1 = g 0 using b6 b7 unfolding

L1-def Lv-def by blast
ultimately have (b, b ′, b ′′, d) ∈ D g 1 1 ∧ (c, c ′, c ′′, d) ∈ D g 1 1 using

b6 unfolding D-def by simp
then show ∃ b ′ b ′′ c ′ c ′′ d. (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d) ∈ D g

β α using e1 by blast
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qed
ultimately show ?thesis using c2 by blast

qed
qed
then have DCR-generating g unfolding DCR-generating-def by blast
moreover have r =

⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

proof
show r ⊆

⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

proof
fix p
assume p ∈ r
then have p ∈ r0 ∨ p ∈ r1 using b1 by blast
moreover have (0 ::nat) < (2 ::nat) ∧ (1 ::nat) < (2 ::nat) by simp
ultimately show p ∈

⋃
{r ′. ∃α ′<2 . r ′ = g α ′} using b6 by blast

qed
next

show
⋃
{r ′. ∃α ′<2 . r ′ = g α ′} ⊆ r

proof
fix p
assume p ∈

⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

then obtain α ′ where α ′<2 ∧ p ∈ g α ′ by blast
moreover then have α ′ = 0 ∨ α ′ = 1 by force
ultimately show p ∈ r using b1 b6 by blast

qed
qed
ultimately show ?thesis unfolding DCR-def by blast

qed

lemma lem-dc2-to-d2 :
fixes r :: ′U rel
assumes DCR 2 r
shows DCR2 r
proof −

obtain g where b1 : DCR-generating g and b2 : r =
⋃
{r ′. ∃α ′<2 . r ′ = g α ′}

using assms unfolding DCR-def by blast
have ∀ α::nat. α<2 ←→ α = 0 ∨ α = 1 by force
then have b3 : L1 g 0 = {} ∧ L1 g 1 = g 0 ∧ L1 g 2 = g 0 ∪ g 1
∧ Lv g 0 0 = {} ∧ Lv g 1 0 = g 0 ∧ Lv g 0 1 = g 0 ∧ Lv g 1 1 = g 0

unfolding L1-def Lv-def by (simp-all, blast+)
have r = (g 0 ) ∪ (g 1 )
proof

show r ⊆ (g 0 ) ∪ (g 1 )
proof

fix p
assume p ∈ r
then obtain α where p ∈ g α ∧ α < 2 using b2 by blast
moreover have ∀ α::nat. α<2 ←→ α = 0 ∨ α = 1 by force
ultimately show p ∈ (g 0 ) ∪ (g 1 ) by force

qed
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next
have (0 ::nat) < (2 ::nat) ∧ (1 ::nat) < (2 ::nat) by simp
then show (g 0 ) ∪ (g 1 ) ⊆ r using b2 by blast

qed
moreover have ∀ a b c. (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 0 ) −→ jn00 (g 0 ) b c
proof (intro allI impI )

fix a b c
assume (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 0 )
then obtain b ′ b ′′ c ′ c ′′ d where (b, b ′, b ′′, d) ∈ D g 0 0 ∧ (c, c ′, c ′′, d) ∈

D g 0 0
using b1 unfolding DCR-generating-def by blast

then show jn00 (g 0 ) b c unfolding jn00-def D-def L1-def Lv-def by force
qed
moreover have ∀ a b c. (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 1 ) −→ jn01 (g 0 ) (g 1 ) b c
proof (intro allI impI )

fix a b c
assume (a,b) ∈ (g 0 ) ∧ (a,c) ∈ (g 1 )
then obtain b ′ b ′′ c ′ c ′′ d where
(b, b ′, b ′′, d) ∈ D g 0 1 ∧ (c, c ′, c ′′, d) ∈ D g 1 0

using b1 unfolding DCR-generating-def by blast
then show jn01 (g 0 ) (g 1 ) b c unfolding jn01-def D-def L1-def Lv-def by

force
qed
moreover have ∀ a b c. (a,b) ∈ (g 1 ) ∧ (a,c) ∈ (g 1 ) −→ jn11 (g 0 ) (g 1 ) b c
proof (intro allI impI )

fix a b c
assume (a,b) ∈ (g 1 ) ∧ (a,c) ∈ (g 1 )
then obtain b ′ b ′′ c ′ c ′′ d where (b, b ′, b ′′, d) ∈ D g 1 1 ∧ (c, c ′, c ′′, d) ∈

D g 1 1
using b1 unfolding DCR-generating-def by blast

then show jn11 (g 0 ) (g 1 ) b c
unfolding jn11-def D-def apply (simp only: b3 )
by blast

qed
ultimately have LD2 r (g 0 ) (g 1 ) unfolding LD2-def by blast
then show ?thesis unfolding DCR2-def by blast

qed

lemma lem-rP-inv: rP n A B C n ′ A ′ B ′ C ′ =⇒ ( A ⊆ A ′ ∧ B ⊆ B ′ ∧ C ⊆ C ′

∧ finite A ∧ finite B ∧ finite C ∧ finite A ′ ∧ finite B ′ ∧ finite C ′ )
by (cases n, cases n ′, force+)

lemma lem-infset-finext:
fixes S :: ′U set and A:: ′U set
assumes ¬ finite S and finite A and A ⊆ S
shows ∃ B. B ⊆ S ∧ A ⊂ B ∧ finite B
proof −

have b1 : finite A using assms lem-rP-inv by blast
then have A 6= S using assms by blast
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then obtain A2 x where x ∈ S ∧ A2 = A ∪ {x} ∧ x /∈ A ∧ A2 ⊆ S using
assms by force

moreover then have finite A2 using b1 by blast
ultimately show ?thesis by blast

qed

lemma lem-rE-df :
fixes S :: ′U set
shows (u,v) ∈ rE S =⇒ (u,w) ∈ rE S =⇒ (v,t) ∈ (rE S)^= =⇒ (w,t) ∈ (rE
S)^= =⇒ v = w
proof −

assume (u,v) ∈ rE S and (u,w) ∈ rE S and (v,t) ∈ (rE S)^= and (w,t) ∈ (rE
S)^=

moreover have
∧

u v w t. (u,v) ∈ rE S =⇒ (u, w) ∈ rE S =⇒ (v, t) ∈ rE S
∨ v = t =⇒ (w, t) ∈ rE S =⇒ v = w

proof −
fix u v w t
assume (u,v) ∈ (rE S) and (u, w) ∈ (rE S) and (v, t) ∈ (rE S) ∨ v = t and

(w, t) ∈ (rE S)
moreover obtain n::Lev and a b c where u = (n,a,b,c) using prod-cases4

by blast
moreover obtain n ′::Lev and a ′ b ′ c ′ where v = (n ′,a ′,b ′,c ′) using prod-cases4

by blast
moreover obtain n ′′::Lev and a ′′ b ′′ c ′′ where w = (n ′′,a ′′,b ′′,c ′′) using

prod-cases4 by blast
moreover obtain n ′′′::Lev and a ′′′ b ′′′ c ′′′ where t = (n ′′′,a ′′′,b ′′′,c ′′′) using

prod-cases4 by blast
ultimately show v = w

apply (simp add: rE-def )
apply (cases n)
apply (cases n ′)
apply (cases n ′′)
apply (cases n ′′′)
by simp+

qed
ultimately show ?thesis by blast

qed

lemma lem-rE-succ-lev:
fixes S :: ′U set
assumes (u,v) ∈ rE S
shows levrd v = (lev-next (levrd u))
proof −

obtain n A B C where b1 : u = (n,A,B,C ) using prod-cases4 by blast
moreover obtain n ′ A ′ B ′ C ′ where b2 : v = (n ′,A ′,B ′,C ′) using prod-cases4

by blast
ultimately have rP n A B C n ′ A ′ B ′ C ′ using assms unfolding rE-def by

blast
then have n ′ = (lev-next n) by (cases n, auto+)
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then show ?thesis using b1 b2 by simp
qed

lemma lem-rE-levset-inv:
fixes S :: ′U set and L u v
assumes a1 : (u,v) ∈ (rE S)^∗ and a2 : levrd u ∈ L and a3 : lev-next ‘ L ⊆ L
shows levrd v ∈ L
proof −

have
∧

k. ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^k ∧ levrd u ∈ L −→ levrd v ∈ L
proof −

fix k
show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^k ∧ levrd u ∈ L −→ levrd v ∈ L
proof (induct k)

show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^0 ∧ levrd u ∈ L −→ levrd v ∈ L by
simp

next
fix k
assume d1 : ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^k ∧ levrd u ∈ L −→ levrd v ∈ L
show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^(Suc k) ∧ levrd u ∈ L −→ levrd v ∈ L
proof (intro allI impI )

fix u v:: ′U rD
assume (u,v) ∈ (rE S)^^(Suc k) ∧ levrd u ∈ L
moreover then obtain v ′ where e1 : (u,v ′) ∈ (rE S)^^k ∧ (v ′,v) ∈ (rE

S) by force
ultimately have levrd v ′ ∈ L using d1 by blast
then have levrd v ∈ lev-next ‘ L using e1 lem-rE-succ-lev[of v ′ v] by force
then show levrd v ∈ L using a3 by force

qed
qed

qed
then show ?thesis using a1 a2 rtrancl-imp-relpow by blast

qed

lemma lem-rE-levun:
fixes S :: ′U set
shows u ∈ Domain (rE S) =⇒ levrd u ∈ {l1 , l3 , l5} =⇒ ∃ v. (rE S)‘‘{u} ⊆ {v}
proof −

assume a1 : u ∈ Domain (rE S) and a2 : levrd u ∈ {l1 , l3 , l5}
then obtain v where b1 : (u,v) ∈ (rE S) by blast
obtain n a b c where b2 : u = (n,a,b,c) using prod-cases4 by blast
obtain n ′ a ′ b ′ c ′ where b3 : v = (n ′,a ′,b ′,c ′) using prod-cases4 by blast
have b4 : rP n a b c n ′ a ′ b ′ c ′ using b1 b2 b3 unfolding rE-def by blast
have n = l1 ∨ n = l3 ∨ n = l5 using b2 a2 by simp
moreover have n = l1 −→ (rE S) ‘‘ {u} ⊆ {v} using b2 b3 b4 unfolding

rE-def by force
moreover have n = l3 −→ (rE S) ‘‘ {u} ⊆ {v} using b2 b3 b4 unfolding

rE-def by force
moreover have n = l5 −→ (rE S) ‘‘ {u} ⊆ {v} using b2 b3 b4 unfolding

rE-def by force
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ultimately show ∃ v. (rE S)‘‘{u} ⊆ {v} by blast
qed

lemma lem-rE-domfield:
fixes S :: ′U set
assumes ¬ finite S
shows Domain (rE S) = Field (rE S)
proof −

have
∧

u2 u1 :: ′U rD. (u2 ,u1 ) ∈ rE S =⇒ ∃ u3 . (u1 ,u3 ) ∈ rE S
proof −

fix u2 u1 :: ′U rD
assume c1 : (u2 ,u1 ) ∈ rE S
obtain n1 A1 B1 C1 where c2 : u1 = (n1 ,A1 ,B1 ,C1 ) using prod-cases4 by

blast
obtain n2 A2 B2 C2 where c3 : u2 = (n2 ,A2 ,B2 ,C2 ) using prod-cases4 by

blast
have c4 : rP n2 A2 B2 C2 n1 A1 B1 C1 ∧ rC S A2 B2 C2 ∧ rC S A1 B1 C1

using c1 c2 c3 unfolding rE-def by blast
then have finite (A1 ∪ A2 ) using lem-rP-inv by blast
moreover have A1 ∪ A2 ⊆ S using c4 unfolding rC-def by blast
ultimately obtain A3 where c5 : A3 ⊆ S ∧ A1 ⊂ A3 ∧ A2 ⊂ A3 ∧ finite

A3
using assms lem-infset-finext[of S A1 ∪ A2 ] by blast

have ∃ n3 A3 B3 C3 . (rP n1 A1 B1 C1 n3 A3 B3 C3 ∧ rC S A3 B3 C3 )
using c4 unfolding rC-def

apply (cases n1 )
apply (cases n2 , simp+)
apply (cases n2 , simp+)
apply (cases n2 , simp+)
apply (force, simp+)
apply (cases n2 , simp+)
apply (cases n2 , simp+)
apply (force, simp+)
apply (cases n2 , simp+)
apply (cases n2 , simp+)
apply (cases n2 , simp+)
using c5 apply (cases n2 )
apply simp+
apply blast
apply simp
done

then obtain n3 A3 B3 C3 where rP n1 A1 B1 C1 n3 A3 B3 C3 ∧ rC S A3
B3 C3 by blast

moreover obtain u3 where u3 = (n3 , A3 , B3 , C3 ) by blast
moreover have rC S A1 B1 C1 using c1 c2 unfolding rE-def by blast
ultimately have (u1 ,u3 ) ∈ rE S using c2 unfolding rE-def by blast
then show ∃ u3 . (u1 ,u3 ) ∈ rE S by blast

qed
then show ?thesis unfolding Field-def by blast
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qed

lemma lem-wrd-fin-field-rE :
fixes S :: ′U set
assumes ¬ finite S
shows u ∈ Field (rE S) =⇒ finite (wrd u)
proof −

assume u ∈ Field (rE S)
then have u ∈ Domain (rE S) using assms lem-rE-domfield by blast
then show finite (wrd u) using lem-rP-inv unfolding rE-def by force

qed

lemma lem-rE-rtr-wrd-mon:
fixes S :: ′U set and u v:: ′U rD
shows (u,v) ∈ (rE S)^∗ =⇒ wrd u ⊆ wrd v
proof −

assume a1 : (u,v) ∈ (rE S)^∗
have b1 :

∧
u v:: ′U rD. (u,v) ∈ (rE S) =⇒ wrd u ⊆ wrd v

proof −
fix u v:: ′U rD
assume a1 : (u,v) ∈ (rE S)
obtain n A B C where b1 : u = (n,A,B,C ) using prod-cases4 by blast
obtain n ′ A ′ B ′ C ′ where b2 : v = (n ′,A ′,B ′,C ′) using prod-cases4 by blast
have wrd u = A ∪ B ∪ C ∧ wrd v = A ′∪ B ′∪ C ′ using a1 b1 b2 by simp
then show wrd u ⊆ wrd v using a1 b1 b2 lem-rP-inv unfolding rE-def by

fast
qed
have

∧
n. ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^n −→ wrd u ⊆ wrd v

proof −
fix n
show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^n −→ wrd u ⊆ wrd v
proof (induct n)

show ∀ u v. (u,v) ∈ (rE S)^^0 −→ wrd u ⊆ wrd v by simp
next

fix m
assume d1 : ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^m −→ wrd u ⊆ wrd v
show ∀ u v:: ′U rD. (u,v) ∈ (rE S)^^(Suc m) −→ wrd u ⊆ wrd v
proof (intro allI impI )

fix u v:: ′U rD
assume (u,v) ∈ (rE S)^^(Suc m)
then obtain v ′ where (u,v ′) ∈ (rE S)^^m ∧ (v ′,v) ∈ (rE S) by force
then show wrd u ⊆ wrd v using d1 b1 by blast

qed
qed

qed
then show wrd u ⊆ wrd v using a1 rtrancl-imp-relpow by blast

qed

lemma lem-Wrd-bkset-rE : Wrd (bkset (rE S) U ) = Wrd U
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proof
show Wrd (bkset (rE S) U ) ⊆ Wrd U
proof

fix y
assume y ∈ Wrd (bkset (rE S) U )
then obtain u v where u ∈ U ∧ (v,u) ∈ (rE S)^∗ ∧ y ∈ wrd v unfolding

Wrd-def bkset-def by force
moreover then have wrd v ⊆ wrd u using lem-rE-rtr-wrd-mon by blast
ultimately show y ∈ Wrd U unfolding Wrd-def by blast

qed
next

show Wrd U ⊆ Wrd (bkset (rE S) U ) unfolding Wrd-def bkset-def by blast
qed

lemma lem-Wrd-rE-field-subs-cnt:
fixes S :: ′U set and U ::( ′U rD) set
assumes ¬ finite S
shows U ⊆ Field (rE S) =⇒ |U | ≤o |UNIV ::nat set| =⇒ |Wrd U | ≤o |UNIV ::nat
set|
proof −

assume b1 : U ⊆ Field (rE S) and a2 : |U | ≤o |UNIV ::nat set|
moreover have ∀ u∈U . |wrd u| ≤o |UNIV ::nat set|
proof

fix u:: ′U rD
assume u ∈ U
then have finite (wrd u) using b1 assms lem-wrd-fin-field-rE by blast
then show |wrd u| ≤o |UNIV ::nat set| using ordLess-imp-ordLeq by force

qed
ultimately have |

⋃
u∈U . wrd u| ≤o |UNIV ::nat set|

using card-of-UNION-ordLeq-infinite infinite-UNIV-nat by blast
then show |Wrd U | ≤o |UNIV ::nat set| unfolding Wrd-def by simp

qed

lemma lem-rE-dn-cnt:
fixes S :: ′U set and U ::( ′U rD) set
assumes ¬ finite S
shows U ⊆ Field (rE S) =⇒ |U | ≤o |UNIV ::nat set| =⇒ V ⊆ bkset (rE S) U
=⇒ |Wrd V | ≤o |UNIV ::nat set|
proof −

assume a1 : U ⊆ Field (rE S) and a2 : |U | ≤o |UNIV ::nat set| and a3 : V ⊆
bkset (rE S) U

have Wrd V ⊆ Wrd (bkset (rE S) U ) using a3 unfolding Wrd-def by blast
then have |Wrd V | ≤o |Wrd (bkset (rE S) U )| by simp
moreover have |Wrd (bkset (rE S) U )| ≤o |UNIV ::nat set|

using a1 a2 assms lem-Wrd-bkset-rE [of S U ] lem-Wrd-rE-field-subs-cnt[of S U ]
by force

ultimately show |Wrd V | ≤o |UNIV ::nat set| using ordLeq-transitive by blast
qed
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lemma lem-rE-succ-Wrd-univ: (u,w) ∈ (rE S) =⇒ levrd u ∈ {l0 , l2 , l4} =⇒ S −
wrd w ⊆ Wrd (((rE S)‘‘{u}) − {w})
proof −

assume a1 : (u,w) ∈ (rE S) and a2 : levrd u ∈ {l0 , l2 , l4}
moreover obtain n a b c where b2 : u = (n,a,b,c) using prod-cases4 by blast
moreover obtain n ′ a ′ b ′ c ′ where b3 : w = (n ′,a ′,b ′,c ′) using prod-cases4 by

blast
ultimately have b4 : rP n a b c n ′ a ′ b ′ c ′ ∧ rC S a b c ∧ rC S a ′ b ′ c ′ unfolding

rE-def by blast
have ∀ y ∈ S . y /∈ wrd w −→ (∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v)
proof (intro ballI impI )

fix y
assume c0 : y ∈ S and c1 : y /∈ wrd w
have n = l0 −→ (∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v)
proof

assume n = l0
then have (u, (l1 , {y}, {}, {})) ∈ (rE S) using c0 b2 b4 unfolding rE-def

rC-def by force
then show ∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v using c1 by force

qed
moreover have n = l2 −→ (∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v)
proof

assume n = l2
then have (u, (l3 , a, {y}, {})) ∈ (rE S) using c0 b2 b4 unfolding rE-def

rC-def by force
then show ∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v using c1 by force

qed
moreover have n = l4 −→ (∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v)
proof

assume n = l4
then have (u, (l5 , a, b, {y})) ∈ (rE S) using c0 b2 b4 unfolding rE-def

rC-def by force
then show ∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v using c1 by force

qed
ultimately show ∃ v ∈ (rE S)‘‘{u} − {w}. y ∈ wrd v using a2 b2 by force

qed
then show S − wrd w ⊆ Wrd (((rE S)‘‘{u}) − {w}) unfolding Wrd-def by

blast
qed

lemma lem-rE-succ-nocntbnd:
fixes S :: ′U set and u0 :: ′U rD and v0 :: ′U rD and U ::( ′U rD) set
assumes a0 : ¬ |S | ≤o |UNIV ::nat set| and a1 : (u0 , v0 ) ∈ (rE S) and a2 : levrd
u0 ∈ {l0 , l2 , l4}

and a3 : U ⊆ Field (rE S) and a4 : ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) U
shows ¬ |U | ≤o |UNIV ::nat set|
proof

assume |U | ≤o |UNIV ::nat set|
moreover have c0 : ¬ finite S using a0 by (meson card-of-Well-order infi-
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nite-iff-card-of-nat ordLeq-total)
ultimately have c1 : |Wrd (((rE S)‘‘{u0}) − {v0})| ≤o |UNIV ::nat set| using

a3 a4 lem-rE-dn-cnt by blast
have v0 ∈ Field (rE S) using a1 unfolding Field-def by blast
then have finite (wrd v0 ) using c0 a0 lem-wrd-fin-field-rE by blast
then have ¬ |S − wrd v0 | ≤o |UNIV ::nat set| using a0

by (metis card-of-infinite-diff-finite finite-iff-cardOf-nat ordIso-symmetric or-
dLeq-iff-ordLess-or-ordIso ordLeq-transitive)
moreover have S − wrd v0 ⊆Wrd (((rE S)‘‘{u0}) − {v0}) using lem-rE-succ-Wrd-univ

a1 a2 by blast
ultimately have ¬ |Wrd (((rE S)‘‘{u0}) − {v0})| ≤o |UNIV ::nat set| by (metis

card-of-mono1 ordLeq-transitive)
then show False using c1 by blast

qed

lemma lem-rE-succ-nocntbnd2 :
fixes S :: ′U set and u0 :: ′U rD and v0 :: ′U rD
assumes a0 : ¬ |S | ≤o |UNIV ::nat set|

and a1 : (u0 , v0 ) ∈ (rE S) and a2 : levrd u0 ∈ {l0 , l2 , l4}
and a3 : r ⊆ (rE S) and a4 : ∀ u. |r‘‘{u}| ≤o |UNIV ::nat set|
and a5 : ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) ((r^∗)‘‘{u0})

shows False
proof −

have b1 :
∧

n::nat.
∧

u::( ′U rD). u ∈ Field (rE S) −→ (r^^n)‘‘{u} ⊆ Field (rE
S) ∧ |(r^^n)‘‘{u}| ≤o |UNIV ::nat set|

proof (intro impI )
fix n::nat and u:: ′U rD
assume c1 : u ∈ Field (rE S)
show (r^^n)‘‘{u} ⊆ Field (rE S) ∧ |(r^^n) ‘‘ {u}| ≤o |UNIV ::nat set|
proof (induct n)

show (r^^0 )‘‘{u} ⊆ Field (rE S) ∧ |(r ^^ 0 ) ‘‘ {u}| ≤o |UNIV ::nat set|
using c1 by simp

next
fix m
assume d1 : (r^^m)‘‘{u} ⊆ Field (rE S) ∧ |(r^^m)‘‘{u}| ≤o |UNIV ::nat set|
moreover have ∀ v ∈ (r^^m)‘‘{u}. |r‘‘{v}| ≤o |UNIV ::nat set| using a4

by blast
moreover have (r ^^ Suc m) ‘‘ {u} = (

⋃
v∈((r^^m)‘‘{u}). r ‘‘{v}) by force

ultimately have |(r ^^ Suc m) ‘‘ {u}| ≤o |UNIV ::nat set|
using card-of-UNION-ordLeq-infinite[of UNIV ::nat set (r^^m)‘‘{u}] infi-

nite-UNIV-nat by simp
moreover have (r ^^ Suc m)‘‘{u} ⊆ Field (rE S) using d1 a3 unfolding

Field-def by fastforce
ultimately show (r ^^ Suc m)‘‘{u} ⊆ Field (rE S) ∧ |(r ^^ Suc m) ‘‘ {u}|

≤o |UNIV ::nat set| by blast
qed

qed
have b2 :

∧
u:: ′U rD. u ∈ Field (rE S) −→ |(r^∗) ‘‘ {u}| ≤o |UNIV ::nat set|

proof (intro impI )
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fix u:: ′U rD
assume c1 : u ∈ Field (rE S)
have |UNIV ::nat set| ≤ |UNIV ::nat set| by simp
moreover have ∀n. |(r^^n) ‘‘ {u}| ≤o |UNIV ::nat set| using c1 b1 by blast
ultimately have c1 : |

⋃
n. (r^^n) ‘‘ {u}| ≤o |UNIV ::nat set|

using card-of-UNION-ordLeq-infinite[of UNIV ::nat set UNIV ::nat set] infi-
nite-UNIV-nat by simp

have (r^∗) ‘‘ {u} ⊆ (
⋃

n. (r^^n) ‘‘ {u}) by (simp add: rtrancl-is-UN-relpow
subset-eq)

then have |(r^∗) ‘‘ {u}| ≤o |
⋃

n. (r^^n) ‘‘ {u}| by simp
then show |(r^∗) ‘‘ {u}| ≤o |UNIV ::nat set| using c1 ordLeq-transitive by

blast
qed
obtain U where b3 : U = ((r^∗) ‘‘ {u0}) by blast
have U ⊆ (

⋃
n. (r^^n) ‘‘ {u0}) using b3 by (simp add: rtrancl-is-UN-relpow

subset-eq)
moreover have u0 ∈ Field (rE S) using a1 unfolding Field-def by blast
ultimately have U ⊆ Field (rE S) ∧ |U | ≤o |UNIV ::nat set| using b1 b2 b3

by blast
moreover have ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) U using b3 a5 by

blast
ultimately show False using a0 a1 a2 lem-rE-succ-nocntbnd[of S u0 v0 U ] by

blast
qed

lemma lem-rE-diamsubr-un:
fixes S :: ′U set
assumes a1 : r0 ⊆ (rE S) and a2 : ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ (∃ d.
(b,d) ∈ r0^= ∧ (c,d) ∈ r0^=)
shows ∀ u. ∃ v. r0‘‘{u} ⊆ {v}
proof

fix u
have ∀ v w. (u,v) ∈ r0 ∧ (u,w) ∈ r0 −→ v = w
proof (intro allI impI )

fix v w
assume (u,v) ∈ r0 ∧ (u,w) ∈ r0
moreover then obtain t where (v,t) ∈ r0^= ∧ (w,t) ∈ r0^= using a2 by

blast
ultimately have (u,v) ∈ (rE S) ∧ (u,w) ∈ (rE S) ∧ (v,t) ∈ (rE S)^= ∧ (w,t)

∈ (rE S)^= using a1 by blast
then show v = w using lem-rE-df by blast

qed
then show ∃ v. r0‘‘{u} ⊆ {v} by blast

qed

lemma lem-rE-succ-nocntbnd3 :
fixes S :: ′U set and u0 :: ′U rD and v0 :: ′U rD
assumes a0 : ¬ |S | ≤o |UNIV ::nat set|

and a1 : LD2 (rE S) r0 r1
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and a2 : (u0 , v0 ) ∈ (rE S) and a3 : levrd u0 ∈ {l0 , l2 , l4}
and a4 : r = {(u,v) ∈ rE S . u = v0} ∪ r0
and a5 : ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) ((r^∗)‘‘{u0})

shows False
proof −

have b1 : r0 ⊆ (rE S) using a1 unfolding LD2-def by blast
then have r ⊆ (rE S) using a4 by blast
moreover have ∀ u. |r‘‘{u}| ≤o |UNIV ::nat set|
proof

fix u
have ∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0 −→ (∃ d. (b,d) ∈ r0^= ∧ (c,d) ∈ r0^=)

using a1 unfolding LD2-def jn00-def by blast
then obtain v where r0‘‘{u} ⊆ {v} using b1 lem-rE-diamsubr-un[of r0 ] by

blast
moreover have r‘‘{u} ⊆ r0‘‘{u} ∪ (rE S)‘‘{v0} using a4 by blast
ultimately have r‘‘{u} ⊆ {v} ∪ (rE S)‘‘{v0} by blast
moreover have |{v} ∪ (rE S)‘‘{v0}| ≤o |UNIV ::nat set|
proof −

have levrd v0 ∈ {l1 , l3 , l5} using a2 a3 unfolding rE-def by force
moreover have ¬ finite S using a0 by (meson card-of-Well-order infi-

nite-iff-card-of-nat ordLeq-total)
moreover then have v0 ∈ Domain (rE S) using a2 a0 lem-rE-domfield

unfolding Field-def by blast
ultimately obtain v0 ′ where (rE S)‘‘{v0} ⊆ {v0 ′} using lem-rE-levun by

blast
then have {v} ∪ (rE S)‘‘{v0} ⊆ {v,v0 ′} by blast
then have finite ({v} ∪ (rE S)‘‘{v0}) by (meson finite.emptyI finite.insertI

rev-finite-subset)
then show ?thesis by (simp add: ordLess-imp-ordLeq)

qed
ultimately show |r‘‘{u}| ≤o |UNIV ::nat set| using card-of-mono1 ordLeq-transitive

by blast
qed
ultimately show ?thesis using a0 a2 a3 a5 lem-rE-succ-nocntbnd2 [of S u0 v0

r ] by blast
qed

lemma lem-rE-one:
fixes S :: ′U set and u0 :: ′U rD and v0 :: ′U rD
assumes a0 : ¬ |S | ≤o |UNIV ::nat set| and a1 : LD2 (rE S) r0 r1

and a2 : (u0 , v0 ) ∈ r0 and a3 : levrd u0 ∈ {l0 , l2 , l4}
shows False
proof −

obtain r where b1 : r = {(u,v) ∈ rE S . u = v0} ∪ r0 by blast
moreover have (u0 , v0 ) ∈ (rE S) using a1 a2 unfolding LD2-def by blast
moreover have ((rE S) ‘‘ {u0}) − {v0} ⊆ bkset (rE S) ((r^∗)‘‘{u0})
proof

fix v
assume c1 : v ∈ ((rE S) ‘‘ {u0}) − {v0}
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have ∃ v. r0‘‘{u0} ⊆ {v} using a1 lem-rE-diamsubr-un[of r0 S ] unfolding
LD2-def jn00-def by blast

then have r0 ‘‘ {u0} ⊆ {v0} using a2 by blast
moreover have c2 : (rE S) = r0 ∪ r1 using a1 unfolding LD2-def by blast
ultimately have (u0 , v) ∈ r1 using c1 by blast
then have jn01 r0 r1 v0 v using a1 a2 unfolding LD2-def by blast
then obtain v0 ′ d where c3 : (v0 , v0 ′) ∈ r1^= ∧ (v0 ′, d) ∈ r0^∗ ∧ (v, d) ∈

r0^∗ unfolding jn01-def by blast
obtain U where c4 : U = (r^∗)‘‘{u0} by blast
have (u0 , d) ∈ r^∗
proof −

have v0 = v0 ′ ∨ (v0 ,v0 ′) ∈ (rE S) using c2 c3 by blast
then have (v0 , v0 ′) ∈ r^= using b1 by blast
moreover have (u0 , v0 ) ∈ r using b1 a2 by blast
ultimately have (u0 , v0 ′) ∈ r^∗ by force
moreover have (v0 ′,d) ∈ r^∗ using c3 b1 rtrancl-mono[of r0 r ] by blast
ultimately show ?thesis by force

qed
then have d ∈ U using c4 by blast
then have c3 : v ∈ bkset r0 U using c3 unfolding bkset-def by blast
have r0 ⊆ (rE S) using a1 unfolding LD2-def by blast
then have bkset r0 U ⊆ bkset (rE S) U unfolding bkset-def by (simp add:

Image-mono rtrancl-mono)
then show v ∈ bkset (rE S) ((r^∗)‘‘{u0}) using c3 c4 by blast

qed
ultimately show False using a0 a1 a3 lem-rE-succ-nocntbnd3 [of S r0 r1 u0 v0

r ] by blast
qed

lemma lem-rE-jn0 :
fixes S :: ′U set and u1 :: ′U rD and u2 :: ′U rD and v:: ′U rD
assumes a1 : (u1 ,v) ∈ (rE S) and a2 : (u2 ,v) ∈ (rE S) and a3 : u1 6= u2
shows levrd v ∈ {l7 , l8}
proof −

obtain n1 a1 b1 c1 where b1 : u1 = (n1 ,a1 ,b1 ,c1 ) using prod-cases4 by blast
obtain n2 a2 b2 c2 where b2 : u2 = (n2 ,a2 ,b2 ,c2 ) using prod-cases4 by blast
obtain n a b c where b3 : v = (n,a,b,c) using prod-cases4 by blast
have rP n1 a1 b1 c1 n a b c using b1 b3 a1 unfolding rE-def by blast
moreover have rP n2 a2 b2 c2 n a b c using b2 b3 a2 unfolding rE-def by

blast
moreover have (n1 ,a1 ,b1 ,c1 ) 6= (n2 ,a2 ,b2 ,c2 ) using a3 b1 b2 by blast
ultimately have n ∈ { l7 , l8}

apply (cases n1 , cases n2 )
apply (simp+, cases n2 )
apply (simp+, cases n2 )
apply (simp+, cases n2 )
apply (simp+, cases n2 )
apply (simp+, cases n2 )
apply simp+
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done
then show ?thesis using b3 by simp

qed

lemma lem-rE-jn1 :
fixes S :: ′U set and u1 :: ′U rD and u2 :: ′U rD and v:: ′U rD
assumes a1 : (u1 ,v) ∈ (rE S) and a2 : (u2 ,v) ∈ (rE S)^∗ and a3 : (u1 ,u2 ) /∈ (rE
S) ∧ (u2 ,u1 ) /∈ (rE S)^∗
shows levrd v ∈ {l7 , l8}
proof −

have
∧

k2 . ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k2 ∧ (u1 ,u2 ) /∈ (rE S) ∧ (u2 ,u1 ) /∈ (rE
S)^∗ −→ (u1 ,v) ∈ (rE S) −→ (u2 ,v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8}

proof −
fix k2
show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k2 ∧ (u1 ,u2 ) /∈ (rE S) ∧ (u2 ,u1 ) /∈ (rE S)^∗

−→ (u1 ,v) ∈ (rE S) −→ (u2 ,v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8}
proof (induct k2 )
show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ 0 ∧ (u1 ,u2 ) /∈ (rE S) ∧ (u2 ,u1 ) /∈ (rE S)^∗

−→ (u1 , v) ∈ (rE S) −→ (u2 , v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8} by force
next

fix k2
assume d1 : ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k2 ∧ (u1 ,u2 ) /∈ (rE S) ∧ (u2 , u1 ) /∈

(rE S)^∗ −→
(u1 , v) ∈ (rE S) −→ (u2 , v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8}

show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ Suc k2 ∧ (u1 ,u2 ) /∈ (rE S) ∧ (u2 , u1 ) /∈
(rE S)^∗ −→

(u1 , v) ∈ (rE S) −→ (u2 , v) ∈ (rE S)^^i −→ levrd v ∈ {l7 , l8}
proof (intro allI impI )

fix u1 u2 v:: ′U rD and i
assume e1 : i ≤ Suc k2 ∧ (u1 , u2 ) /∈ (rE S) ∧ (u2 , u1 ) /∈ (rE S)^∗

and e2 : (u1 , v) ∈ (rE S) and e3 : (u2 , v) ∈ (rE S)^^i
show levrd v ∈ {l7 , l8}
proof (cases i = Suc k2 )

assume f1 : i = Suc k2
then obtain v ′ where f2 : (u2 , v ′) ∈ (rE S) and f3 : (v ′, v) ∈ (rE S)^^k2

using e3 by (meson relpow-Suc-E2 )
moreover have k2 ≤ k2 using e1 by force
ultimately have (v ′,u1 ) /∈ (rE S)^∗ ∧ (u1 ,v ′) /∈ (rE S) −→ levrd v ∈

{l7 , l8} using e2 d1 by blast
moreover have (v ′,u1 ) ∈ (rE S)^∗ −→ False
proof

assume (v ′,u1 ) ∈ (rE S)^∗
then have (u2 ,u1 ) ∈ (rE S)^∗ using f2 by force
then show False using e1 by blast

qed
moreover have (u1 ,v ′) ∈ (rE S) −→ levrd v ∈ {l7 , l8}
proof

assume (u1 ,v ′) ∈ (rE S)
moreover have u1 6= u2 using e1 by force
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ultimately have levrd v ′ ∈ {l7 , l8} using f2 lem-rE-jn0 [of u1 v ′ S u2 ]
by blast

moreover have (v ′, v) ∈ (rE S)^∗ using f3 rtrancl-power by blast
moreover have lev-next ‘ {l7 , l8} ⊆ {l7 , l8} by simp
ultimately show levrd v ∈ {l7 , l8} using lem-rE-levset-inv[of v ′ v S

{l7 , l8}] by blast
qed
ultimately show ?thesis by blast

next
assume i 6= Suc k2
then have i ≤ k2 using e1 by force
then show ?thesis using d1 e1 e2 e3 by blast

qed
qed

qed
qed
moreover obtain k2 where (u2 ,v) ∈ (rE S)^^k2 using a2 rtrancl-imp-relpow

by blast
moreover have k2 ≤ k2 by force
ultimately show ?thesis using a1 a3 by blast

qed

lemma lem-rE-jn2 :
fixes S :: ′U set and u1 :: ′U rD and u2 :: ′U rD and v:: ′U rD
assumes a1 : (u1 ,v) ∈ (rE S)^∗ and a2 : (u2 ,v) ∈ (rE S)^∗ and a3 : (u1 ,u2 ) /∈
(rE S)^∗ ∧ (u2 ,u1 ) /∈ (rE S)^∗
shows levrd v ∈ {l7 , l8}
proof −

have
∧

k1 . ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k1 ∧ (u1 ,u2 ) /∈ (rE S)^∗ ∧ (u2 ,u1 ) /∈
(rE S)^∗ −→ (u1 ,v) ∈ (rE S)^^i −→ (u2 ,v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}

proof −
fix k1
show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k1 ∧ (u1 ,u2 ) /∈ (rE S)^∗ ∧ (u2 ,u1 ) /∈ (rE

S)^∗ −→ (u1 ,v) ∈ (rE S)^^i −→ (u2 ,v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}
proof (induct k1 )

show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ 0 ∧ (u1 ,u2 ) /∈ (rE S)^∗ ∧ (u2 ,u1 ) /∈ (rE
S)^∗ −→ (u1 , v) ∈ (rE S)^^i −→ (u2 , v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}

proof (intro allI impI )
fix u1 u2 v:: ′U rD and i
assume i ≤ 0 ∧ (u1 ,u2 ) /∈ (rE S)^∗ ∧ (u2 ,u1 ) /∈ (rE S)^∗ and (u1 , v) ∈

(rE S)^^i and (u2 , v) ∈ (rE S)^∗
moreover then have (u2 ,u1 ) ∈ (rE S)^∗ using rtrancl-power by fastforce
ultimately have False by blast
then show levrd v ∈ {l7 , l8} by blast

qed
next

fix k1
assume d1 : ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ k1 ∧ (u1 , u2 ) /∈ (rE S)^∗ ∧ (u2 ,

u1 ) /∈ (rE S)^∗ −→
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(u1 , v) ∈ (rE S) ^^ i −→ (u2 , v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}
show ∀ u1 u2 v:: ′U rD. ∀ i. i ≤ Suc k1 ∧ (u1 , u2 ) /∈ (rE S)^∗ ∧ (u2 , u1 )

/∈ (rE S)^∗ −→
(u1 , v) ∈ (rE S) ^^ i −→ (u2 , v) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}

proof (intro allI impI )
fix u1 u2 v:: ′U rD and i
assume e1 : i ≤ Suc k1 ∧ (u1 , u2 ) /∈ (rE S)^∗ ∧ (u2 , u1 ) /∈ (rE S)^∗

and e2 : (u1 , v) ∈ (rE S)^^i and e3 : (u2 , v) ∈ (rE S)^∗
show levrd v ∈ {l7 , l8}
proof (cases i = Suc k1 )

assume f1 : i = Suc k1
then obtain v ′ where f2 : (u1 , v ′) ∈ (rE S) and f3 : (v ′, v) ∈ (rE S)^^k1

using e2 by (meson relpow-Suc-E2 )
moreover have k1 ≤ k1 using e1 by force
ultimately have (v ′,u2 ) /∈ (rE S)^∗ ∧ (u2 ,v ′) /∈ (rE S)^∗ −→ levrd v ∈

{l7 , l8} using e3 d1 by blast
moreover have (v ′,u2 ) ∈ (rE S)^∗ −→ False
proof

assume (v ′,u2 ) ∈ (rE S)^∗
then have (u1 ,u2 ) ∈ (rE S)^∗ using f2 by force
then show False using e1 by blast

qed
moreover have (u2 ,v ′) ∈ (rE S)^∗ −→ levrd v ∈ {l7 , l8}
proof

assume (u2 ,v ′) ∈ (rE S)^∗
then have levrd v ′ ∈ {l7 , l8} using e1 f2 lem-rE-jn1 [of u1 v ′ S u2 ] by

blast
moreover have (v ′, v) ∈ (rE S)^∗ using f3 rtrancl-power by blast
moreover have lev-next ‘ {l7 , l8} ⊆ {l7 , l8} by simp
ultimately show levrd v ∈ {l7 , l8} using lem-rE-levset-inv[of v ′ v S

{l7 , l8}] by blast
qed
ultimately show ?thesis by blast

next
assume i 6= Suc k1
then have i ≤ k1 using e1 by force
then show ?thesis using d1 e1 e2 e3 by blast

qed
qed

qed
qed
moreover obtain k1 where (u1 ,v) ∈ (rE S)^^k1 using a1 rtrancl-imp-relpow

by blast
moreover have k1 ≤ k1 by force
ultimately show ?thesis using a2 a3 by blast

qed

lemma lem-rel-pow2fw: (u,u1 ) ∈ r ∧ (u1 ,v) ∈ r−→ (u,v) ∈ r^^2
by (metis Suc-1 relpow-1 relpow-Suc-I )
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lemma lem-rel-pow3fw: (u,u1 ) ∈ r ∧ (u1 ,u2 ) ∈ r ∧ (u2 ,v) ∈ r −→ (u,v) ∈ r^^3
by (metis One-nat-def numeral-3-eq-3 relpow-1 relpow-Suc-I )

lemma lem-rel-pow3 : (u,v) ∈ r^^3 =⇒ ∃ u1 u2 . (u,u1 ) ∈ r ∧ (u1 ,u2 ) ∈ r ∧
(u2 ,v) ∈ r

by (metis One-nat-def numeral-3-eq-3 relpow-1 relpow-Suc-E)

lemma lem-rel-pow4 : (u,v) ∈ r^^4 =⇒ ∃ u1 u2 u3 . (u,u1 ) ∈ r ∧ (u1 ,u2 ) ∈ r ∧
(u2 ,u3 ) ∈ r ∧ (u3 ,v) ∈ r
proof −

assume (u,v) ∈ r^^4
then obtain u3 where (u,u3 ) ∈ r^^3 ∧ (u3 ,v) ∈ r using relpow-E by force
moreover then obtain u1 u2 where (u,u1 ) ∈ r ∧ (u1 ,u2 ) ∈ r ∧ (u2 ,u3 ) ∈ r

by (metis One-nat-def numeral-3-eq-3 relpow-1 relpow-Suc-E)
ultimately show ∃ u1 u2 u3 . (u,u1 ) ∈ r ∧ (u1 ,u2 ) ∈ r ∧ (u2 ,u3 ) ∈ r ∧ (u3 ,v)
∈ r by blast
qed

lemma lem-rel-pow5 : (u,v) ∈ r^^5 =⇒ ∃ u1 u2 u3 u4 . (u,u1 ) ∈ r ∧ (u1 ,u2 ) ∈
r ∧ (u2 ,u3 ) ∈ r ∧ (u3 ,u4 ) ∈ r ∧ (u4 ,v) ∈ r
proof −

assume (u,v) ∈ r^^5
then obtain u4 where (u,u4 ) ∈ r^^4 ∧ (u4 ,v) ∈ r using relpow-E by force
moreover then obtain u1 u2 u3 where (u,u1 ) ∈ r ∧ (u1 ,u2 ) ∈ r ∧ (u2 ,u3 )
∈ r ∧ (u3 , u4 ) ∈ r

using lem-rel-pow4 [of u u4 r ] by blast
ultimately show ∃ u1 u2 u3 u4 . (u,u1 ) ∈ r ∧ (u1 ,u2 ) ∈ r ∧ (u2 ,u3 ) ∈ r ∧

(u3 ,u4 ) ∈ r ∧ (u4 ,v) ∈ r by blast
qed

lemma lem-rE-l1-l78-dist:
fixes S :: ′U set
assumes a1 : levrd u = l1 and a2 : levrd v ∈ {l7 , l8} and a3 : n ≤ 5
shows (u,v) /∈ (rE S)^^n
proof −

have b0 : (u,v) /∈ (rE S)^^0 using a1 a2 by force
have b1 : (u,v) /∈ (rE S)^^1 using a1 a2 lem-rE-succ-lev[of u v] by force
have

∧
u1 . (u,u1 ) ∈ (rE S) ∧ (u1 ,v) ∈ (rE S) =⇒ False

using a1 a2 lem-rE-succ-lev
by (metis Lev.distinct(49 ) Lev.distinct(51 ) insertE lev-next.simps(2 ) lev-next.simps(3 )

singletonD)
then have b2 : (u,v) /∈ (rE S)^^2 by (metis Suc-1 relpow-1 relpow-Suc-D2 )
have

∧
u1 u2 . (u,u1 ) ∈ (rE S) ∧ (u1 ,u2 ) ∈ (rE S) ∧ (u2 ,v) ∈ (rE S) =⇒ False

using a1 a2 lem-rE-succ-lev
by (metis Lev.distinct(57 ) Lev.distinct(59 ) insertE lev-next.simps(2 ) lev-next.simps(3 )

lev-next.simps(4 ) singletonD)
then have b3 : (u,v) /∈ (rE S)^^3 using lem-rel-pow3 [of u v rE S ] by blast
have

∧
u1 u2 u3 . (u,u1 ) ∈ (rE S) ∧ (u1 ,u2 ) ∈ (rE S) ∧ (u2 ,u3 ) ∈ (rE S) ∧
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(u3 ,v) ∈ (rE S) =⇒ False
using a1 a2 lem-rE-succ-lev

by (metis Lev.distinct(63 ) Lev.distinct(65 ) insertE lev-next.simps(2 ) lev-next.simps(3 )
lev-next.simps(4 ) lev-next.simps(5 ) singletonD)

then have b4 : (u,v) /∈ (rE S)^^4 using lem-rel-pow4 [of u v rE S ] by blast
have

∧
u1 u2 u3 u4 . (u,u1 ) ∈ (rE S) ∧ (u1 ,u2 ) ∈ (rE S) ∧ (u2 ,u3 ) ∈ (rE S)

∧ (u3 ,u4 ) ∈ (rE S) ∧ (u4 ,v) ∈ (rE S) =⇒ False
using a1 a2 lem-rE-succ-lev

by (metis Lev.distinct(67 ) Lev.distinct(69 ) insertE lev-next.simps(2 ) lev-next.simps(3 )
lev-next.simps(4 ) lev-next.simps(5 ) lev-next.simps(6 ) singletonD)

then have b5 : (u,v) /∈ (rE S)^^5 using lem-rel-pow5 [of u v rE S ] by blast
have n = 0 ∨ n = 1 ∨ n = 2 ∨ n = 3 ∨ n = 4 ∨ n = 5 using a3 by force
then show ?thesis using b0 b1 b2 b3 b4 b5 by blast

qed

lemma lem-rE-notLD2 :
fixes S :: ′U set and r0 r1 ::( ′U rD) rel
assumes a0 : ¬ |S | ≤o |UNIV ::nat set| and a1 : LD2 (rE S) r0 r1
shows False
proof −

obtain x0 :: ′U where b0 : x0 ∈ S using a0
by (metis all-not-in-conv card-of-mono1 card-of-singl-ordLeq empty-subsetI

finite.emptyI infinite-UNIV-char-0 ordLeq-transitive)
obtain u:: ′U rD where b1 : u = (l0 , {}, {}, {}) by blast
obtain v1 :: ′U rD where b2 : v1 = (l1 , {}, {}, {}) by blast
obtain v2 :: ′U rD where b3 : v2 = (l1 , {x0}, {}, {}) by blast
have levrd u = l0 using b1 by simp
then have (u,v1 ) /∈ r0 ∧ (u,v2 ) /∈ r0 using a0 a1 lem-rE-one[of S r0 r1 u ] by

blast
moreover have (u,v1 ) ∈ (rE S) ∧ (u,v2 ) ∈ (rE S) using b0 b1 b2 b3 unfolding

rE-def rC-def by simp
ultimately have (u,v1 ) ∈ r1 ∧ (u,v2 ) ∈ r1 using a1 unfolding LD2-def by

blast
then have jn11 r0 r1 v1 v2 using a1 unfolding LD2-def by blast
then obtain b ′ b ′′ c ′ c ′′ d where

b4 : (v1 , b ′) ∈ r0^∗ ∧ (b ′, b ′′) ∈ r1^= ∧ (b ′′, d) ∈ r0^∗
and b5 : (v2 , c ′) ∈ r0^∗ ∧ (c ′, c ′′) ∈ r1^= ∧ (c ′′, d) ∈ r0^∗ unfolding jn11-def

by blast
have b6 :

∧
v v ′:: ′U rD. levrd v ∈ {l1 , l3} ∧ (v, v ′) ∈ r0^∗ =⇒ (v,v ′) ∈ r0^=

proof −
fix v v ′:: ′U rD
assume c1 : levrd v ∈ {l1 , l3} ∧ (v, v ′) ∈ r0^∗
then obtain k1 where c2 : (v, v ′) ∈ r0^^k1 using rtrancl-imp-relpow by blast
have k1 ≥ 2 −→ False
proof

assume k1 ≥ 2
then obtain k where k1 = 2 + k using le-Suc-ex by blast
then obtain w ′ where (v, w ′) ∈ r0^^2 using c2 relpow-add[of 2 k r0 ] by

fastforce
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then obtain w w ′ where (v, w) ∈ r0 ∧ (w, w ′) ∈ r0 by (metis One-nat-def
numeral-2-eq-2 relpow-1 relpow-Suc-E)

moreover then have (v, w) ∈ (rE S) using a1 unfolding LD2-def by blast
moreover then have levrd w ∈ {l2 , l4} using c1 unfolding rE-def by

force
ultimately show False using a0 a1 lem-rE-one by blast

qed
then have k1 = 0 ∨ k1 = 1 by (simp add: less-2-cases)
then show (v, v ′) ∈ r0^= using c2 by force

qed
then have b7 : (v1 , b ′) ∈ r0^= ∧ (v2 , c ′) ∈ r0^= using b2 b3 b4 b5 by simp
have b8 : levrd d ∈ {l7 , l8}
proof −

have r0 ⊆ (rE S) ∧ r1 ⊆ (rE S) using a1 unfolding LD2-def by blast
then have r0^∗ ⊆ (rE S)^∗ ∧ r1^= ⊆ (rE S)^∗ using rtrancl-mono by blast
then have (v1 , b ′) ∈ (rE S)^∗ ∧ (b ′, b ′′) ∈ (rE S)^∗ ∧ (b ′′, d) ∈ (rE S)^∗

and (v2 , c ′) ∈ (rE S)^∗ ∧ (c ′, c ′′) ∈ (rE S)^∗ ∧ (c ′′, d) ∈ (rE S)^∗ using
b4 b5 by blast+

then have e1 : (v1 ,d) ∈ (rE S)^∗ ∧ (v2 ,d) ∈ (rE S)^∗ by force
have

∧
v v ′:: ′U rD. levrd v = l1 −→ (v,v ′) ∈ (rE S)^∗ −→ v 6= v ′ −→ levrd

v ′ 6= l1
proof (intro impI )

fix v v ′:: ′U rD
assume d1 : levrd v = l1 and d2 : (v,v ′) ∈ (rE S)^∗ and d3 : v 6= v ′

moreover then obtain k where (v,v ′) ∈ (rE S)^^k using rtrancl-imp-relpow
by blast

ultimately obtain k ′ where (v,v ′) ∈ (rE S)^^(Suc k ′) by (cases k, force+)
then obtain v ′′ where (v,v ′′) ∈ (rE S) ∧ (v ′′,v ′) ∈ (rE S)^^k ′ by (meson

relpow-Suc-D2 )
then have levrd v ′′ = l2 ∧ (v ′′,v ′) ∈ (rE S)^∗ using d1 lem-rE-succ-lev[of v

v ′′] relpow-imp-rtrancl by force
moreover have lev-next ‘ {l2 , l3 , l4 , l5 , l6 , l7 , l8} ⊆ {l2 , l3 , l4 , l5 , l6 , l7 ,

l8} by simp
ultimately have levrd v ′∈ {l2 , l3 , l4 , l5 , l6 , l7 , l8} using lem-rE-levset-inv[of

v ′′ v ′ S {l2 , l3 , l4 , l5 , l6 , l7 , l8}] by simp
then show levrd v ′ 6= l1 by force

qed
then have (v1 ,v2 ) /∈ (rE S)^∗ and (v2 ,v1 ) /∈ (rE S)^∗ using b2 b3 by

fastforce+
then show levrd d ∈ {l7 , l8} using e1 lem-rE-jn2 by blast

qed
then have b9 : ∀ n ≤ 5 . (v1 ,d) /∈ (rE S)^^n ∧ (v2 ,d) /∈ (rE S)^^n using b2

b3 lem-rE-l1-l78-dist[of - d] by simp
have b10 : levrd b ′′ = l2
proof −

have c1 : v1 = b ′ ∨ (v1 ,b ′) ∈ (rE S) using b7 a1 unfolding LD2-def by blast
then have levrd b ′ ∈ {l1 , l2} using b2 lem-rE-succ-lev[of v1 b ′] by force

moreover have c2 : b ′ = b ′′ ∨ (b ′,b ′′) ∈ (rE S) using b4 a1 unfolding LD2-def
by blast
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ultimately have levrd b ′′ ∈ {l1 , l2 , l3} using lem-rE-succ-lev[of b ′ b ′′] by
force

moreover have levrd b ′′ ∈ {l1 , l3} −→ False
proof

assume levrd b ′′ ∈ {l1 , l3}
then have (b ′′,d) ∈ r0^= using b4 b6 by blast
then have d1 : b ′′ = d ∨ (b ′′, d) ∈ (rE S) using a1 unfolding LD2-def by

blast
have (v1 ,d) ∈ (rE S)^^0 ∨ (v1 ,d) ∈ (rE S)^^1 ∨ (v1 ,d) ∈ (rE S)^^2 ∨

(v1 ,d) ∈ (rE S)^^3
using c1 c2 d1 lem-rel-pow2fw[of - - rE S ] lem-rel-pow3fw[of - - rE S ] by

(metis relpow-0-I relpow-1 )
then show False using b9

by (meson le0 numeral-le-iff one-le-numeral semiring-norm(68 ) semir-
ing-norm(72 ) semiring-norm(73 ))

qed
ultimately show levrd b ′′ = l2 by blast

qed
then have b ′′ 6= d using b8 by force
then obtain t where b11 : (b ′′,t) ∈ r0 ∧ (t, d) ∈ r0^∗ using b4 by (meson

converse-rtranclE)
then have b12 : (b ′′,t) ∈ (rE S) using a1 unfolding LD2-def by blast
then have levrd t = l3 using b10 a1 lem-rE-succ-lev[of b ′′ t S ] unfolding

LD2-def by simp
then have (t,d) ∈ r0^= using b11 b6 by blast
then have b13 : t = d ∨ (t,d) ∈ (rE S) using a1 unfolding LD2-def by blast
have b14 : v1 = b ′ ∨ (v1 ,b ′) ∈ (rE S) using b7 a1 unfolding LD2-def by blast
moreover have b15 : b ′ = b ′′ ∨ (b ′,b ′′) ∈ (rE S) using b4 a1 unfolding LD2-def

by blast
ultimately have (v1 ,b ′′) ∈ (rE S)^^0 ∨ (v1 ,b ′′) ∈ (rE S)^^1 ∨ (v1 ,b ′′) ∈ (rE

S)^^2
using lem-rel-pow2fw[of - - rE S ] by (metis relpow-0-I relpow-1 )

then have (v1 ,t) ∈ (rE S)^^1 ∨ (v1 ,t) ∈ (rE S)^^2 ∨ (v1 ,t) ∈ (rE S)^^3
using b12 b14 b15

lem-rel-pow2fw[of - - rE S ] lem-rel-pow3fw[of - - rE S ] by (metis relpow-1 )
moreover have (v1 ,t) ∈ (rE S)^^1 −→ (v1 ,d) ∈ (rE S)^^1 ∨ (v1 ,d) ∈ (rE

S)^^2 using b13 lem-rel-pow2fw by fastforce
moreover have (v1 ,t) ∈ (rE S)^^2 −→ (v1 ,d) ∈ (rE S)^^2 ∨ (v1 ,d) ∈ (rE

S)^^3 using b13 relpow-Suc-I by fastforce
moreover have (v1 ,t) ∈ (rE S)^^3 −→ (v1 ,d) ∈ (rE S)^^3 ∨ (v1 ,d) ∈ (rE

S)^^4 using b13 relpow-Suc-I by fastforce
ultimately have ∃ n ∈ {1 ,2 ,3 ,4}. (v1 ,d) ∈ (rE S)^^n by blast
moreover have ∀ n ∈ {1 ,2 ,3 ,4}::nat set. n ≤ 5 by simp
ultimately show False using b9 by blast

qed

lemma lem-rE-dominv:
fixes S :: ′U set
assumes ¬ finite S
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shows u ∈ Domain (rE S) =⇒ (u,v) ∈ (rE S)^∗ =⇒ v ∈ Domain (rE S)
using assms lem-rE-domfield unfolding Field-def by (metis Range.RangeI UnCI

rtranclE)

lemma lem-rE-next:
fixes S :: ′U set
assumes ¬ finite S and u ∈ Domain (rE S)
shows ∃ v. (u,v) ∈ (rE S) ∧ v ∈ Domain (rE S) ∧ levrd v = (lev-next (levrd u))
proof −

obtain u ′ where b1 : (u,u ′) ∈ (rE S) using assms by blast
obtain n A B C where b2 : u = (n,A,B,C ) using prod-cases4 by blast
obtain n ′ A ′ B ′ C ′ where b3 : u ′ = (n ′,A ′,B ′,C ′) using prod-cases4 by blast
have b4 : rP n A B C n ′ A ′ B ′ C ′ ∧ rC S A B C ∧ rC S A ′ B ′ C ′ using b1 b2

b3 unfolding rE-def by blast
moreover then have A ⊆ S unfolding rC-def by blast
moreover then have b4 ′: ∃A2⊆S . A ⊂ A2 ∧ finite A2

using b4 assms lem-rP-inv lem-infset-finext[of S A] by metis
ultimately have (∃ A1 B1 C1 n2 A2 B2 C2 . rP n A B C (lev-next n) A1 B1

C1 ∧ rC S A1 B1 C1
∧ rP (lev-next n) A1 B1 C1 n2 A2 B2 C2 ∧ rC S A2 B2

C2 )
apply (cases n)
unfolding rC-def by auto+

then obtain A1 B1 C1 n2 A2 B2 C2 where
rP n A B C (lev-next n) A1 B1 C1 ∧ rC S A1 B1 C1 ∧ rP (lev-next n) A1

B1 C1 n2 A2 B2 C2 ∧ rC S A2 B2 C2 by blast
moreover obtain v where v = ((lev-next n), A1 , B1 , C1 ) by blast
ultimately have (u,v) ∈ (rE S) ∧ v ∈ Domain (rE S) ∧ levrd v = (lev-next

(levrd u))
using b2 b4 unfolding rE-def by force

then show ?thesis by blast
qed

lemma lem-rE-reachl8 :
fixes S :: ′U set
assumes ¬ finite S and u ∈ Domain (rE S)
shows ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8
proof −

have levrd u = l8 −→ ?thesis using assms by blast
moreover have b0 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l7 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 )
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l7
moreover then have (lev-next (levrd u)) = l8 by force
ultimately obtain v where (u,v) ∈ (rE S) ∧ v ∈ Domain (rE S) ∧ levrd v

= l8 using assms lem-rE-next by metis
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
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qed
moreover have b1 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l6 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 )
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l6
moreover then have (lev-next (levrd u)) = l7 by force
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l7 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b0 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b2 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l5 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 )
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l5
moreover then have (lev-next (levrd u)) = l6 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l6 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b1 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b3 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l4 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 )
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l4
moreover then have (lev-next (levrd u)) = l5 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l5 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b2 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b4 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l3 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 )
proof −
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fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l3
moreover then have (lev-next (levrd u)) = l4 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l4 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b3 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b5 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l2 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 )
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l2
moreover then have (lev-next (levrd u)) = l3 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l3 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b4 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b6 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l1 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 )
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l1
moreover then have (lev-next (levrd u)) = l2 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd

v ′ = l2 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b5 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
moreover have b7 :

∧
u:: ′U rD. u ∈ Domain (rE S) =⇒ levrd u = l0 =⇒ (∃

v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 )
proof −

fix u:: ′U rD
assume u ∈ Domain (rE S) and levrd u = l0
moreover then have (lev-next (levrd u)) = l1 by simp
ultimately obtain v ′ where (u,v ′) ∈ (rE S) ∧ v ′ ∈ Domain (rE S) ∧ levrd
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v ′ = l1 using assms lem-rE-next by metis
moreover then obtain v where (v ′,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧

levrd v = l8 using b6 by blast
ultimately have (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

force
then show ∃ v. (u,v) ∈ (rE S)^∗ ∧ v ∈ Domain (rE S) ∧ levrd v = l8 by

blast
qed
ultimately show ?thesis using assms by (meson lev-next.cases)

qed

lemma lem-rE-jn:
fixes S :: ′U set
assumes a0 : ¬ finite S and a1 : u1 ∈ Domain (rE S) and a2 : u2 ∈ Domain (rE
S)
shows ∃ t. (u1 ,t) ∈ (rE S)^∗ ∧ (u2 ,t) ∈ (rE S)^∗
proof −

obtain v1 where b1 : (u1 ,v1 ) ∈ (rE S)^∗ and b2 : v1 ∈ Domain (rE S) ∧ levrd
v1 = l8 using a0 a1 lem-rE-reachl8 by blast

obtain v2 where b3 : (u2 ,v2 ) ∈ (rE S)^∗ and b4 : v2 ∈ Domain (rE S) ∧ levrd
v2 = l8 using a0 a2 lem-rE-reachl8 by blast

obtain n1 A1 B1 C1 where b5 : v1 = (n1 ,A1 ,B1 ,C1 ) using prod-cases4 by
blast

obtain n2 A2 B2 C2 where b6 : v2 = (n2 ,A2 ,B2 ,C2 ) using prod-cases4 by
blast

have b7 : n1 = l8 ∧ A1 = B1 ∧ A1 = C1 ∧ finite A1 ∧ A1 ⊆ S using b5 b2
unfolding rE-def rC-def by force

have b8 : n2 = l8 ∧ A2 = B2 ∧ A2 = C2 ∧ finite A2 ∧ A2 ⊆ S using b6 b4
unfolding rE-def rC-def by force

have finite (A1 ∪ A2 ) ∧ A1 ∪ A2 ⊆ S using b7 b8 by blast
then obtain A3 where A3 ⊆ S ∧ A1 ∪ A2 ⊂ A3 ∧ finite A3 using a0

lem-infset-finext[of S A1 ∪ A2 ] by blast
moreover obtain t where t = (l7 , A3 , A3 , A3 ) by blast
ultimately have (v1 , t) ∈ (rE S) ∧ (v2 , t) ∈ (rE S) using b5 b6 b7 b8 un-

folding rE-def rC-def by force
then have (u1 ,t) ∈ (rE S)^∗ ∧ (u2 ,t) ∈ (rE S)^∗ using b1 b3 by force
then show ?thesis by blast

qed

lemma lem-rE-confl:
fixes S :: ′U set
assumes ¬ finite S
shows confl-rel (rE S)
proof −

have ∀ a b c:: ′U rD. (a,b) ∈ (rE S)^∗ −→ (a,c) ∈ (rE S)^∗ −→ (∃ d. (b,d) ∈
(rE S)^∗ ∧ (c,d) ∈ (rE S)^∗)

proof (intro allI impI )
fix a b c:: ′U rD
assume c1 : (a,b) ∈ (rE S)^∗ and c2 : (a,c) ∈ (rE S)^∗
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show ∃ d. (b,d) ∈ (rE S)^∗ ∧ (c,d) ∈ (rE S)^∗
proof (cases a ∈ Domain (rE S))

assume a ∈ Domain (rE S)
then have b ∈ Domain (rE S) ∧ c ∈ Domain (rE S) using c1 c2 assms

lem-rE-dominv by blast
then obtain d where (b,d) ∈ (rE S)^∗ ∧ (c,d) ∈ (rE S)^∗ using assms

lem-rE-jn by blast
then show ?thesis by blast

next
assume a /∈ Domain (rE S)
then have a = b ∧ a = c using c1 c2 by (meson Not-Domain-rtrancl)
then show ?thesis by blast

qed
qed
then show ?thesis unfolding confl-rel-def by blast

qed

lemma lem-rE-dc3dc2 :
fixes S :: ′U set
assumes ¬ |S | ≤o |UNIV ::nat set|
shows confl-rel (rE S) ∧ (¬ DCR2 (rE S))
proof (intro conjI )

have ¬ finite S using assms by (meson card-of-Well-order infinite-iff-card-of-nat
ordLeq-total)

then show confl-rel (rE S) using lem-rE-confl by blast
next

show ¬ DCR2 (rE S) using assms lem-rE-notLD2 unfolding DCR2-def by
blast
qed

lemma lem-rE-cardbnd:
fixes S :: ′U set
assumes ¬ finite S
shows |rE S | ≤o |S |
proof −

obtain L where b1 : L = (UNIV ::Lev set) by blast
obtain F where b2 : F = { A. A ⊆ S ∧ finite A } by blast
obtain D where b3 : D = (L × (F × (F × F))) by blast
have ∀ u v. (u,v) ∈ rE S −→ u ∈ D ∧ v ∈ D
proof (intro allI impI )

fix u v
assume (u,v) ∈ rE S
then obtain n A B C n ′ A ′ B ′ C ′

where u = (n,A,B,C ) ∧ v = (n ′,A ′,B ′,C ′) ∧ rC S A B C ∧ rC S A ′ B ′ C ′

∧ rP n A B C n ′ A ′ B ′ C ′ unfolding rE-def by blast
moreover then have n ∈ L ∧ A ∈ F ∧ B ∈ F ∧ C ∈ F ∧ n ′ ∈ L ∧ A ′ ∈ F

∧ B ′ ∈ F ∧ C ′ ∈ F
using b1 b2 lem-rP-inv unfolding rC-def by fast

ultimately show u ∈ D ∧ v ∈ D using b3 by blast
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qed
then have rE S ⊆ D × D by force
then have |rE S | ≤o |D × D| by simp
moreover have |D × D| ≤o |S |
proof −

have F = Fpow S using b2 unfolding Fpow-def by simp
then have c1 : |F | =o |S | using assms by simp
then have |F × F | =o |F | ∧ ¬ finite F using assms by simp
then have |F | ≤o |F | ∧ |F × F | ≤o |F | ∧ ¬ finite F using ordIso-iff-ordLeq

by force
then have c2 : |F × (F × F)| ≤o |S | using c1 card-of-Times-ordLeq-infinite

ordLeq-ordIso-trans by blast
have L ⊆ {l0 ,l1 ,l2 ,l3 ,l4 ,l5 ,l6 ,l7 ,l8}
proof

fix l
assume l ∈ L
show l ∈ {l0 ,l1 ,l2 ,l3 ,l4 ,l5 ,l6 ,l7 ,l8} by (cases l, simp+)

qed
moreover have finite {l0 ,l1 ,l2 ,l3 ,l4 ,l5 ,l6 ,l7 ,l8} by simp
ultimately have finite L using finite-subset by blast
then have |L| ≤o |S | using assms ordLess-imp-ordLeq by force
then have |D| ≤o |S | using b3 c2 assms card-of-Times-ordLeq-infinite by blast
then show ?thesis using assms card-of-Times-ordLeq-infinite by blast

qed
ultimately show |rE S | ≤o |S | using ordLeq-transitive by blast

qed

lemma lem-fmap-rel:
fixes f r s a0 b0
assumes a1 : (a0 , b0 ) ∈ r^∗ and a2 : ∀ a b. (a,b) ∈ r −→ (f a, f b) ∈ s
shows (f a0 , f b0 ) ∈ s^∗
proof −

have
∧

n. ∀ a b. (a,b) ∈ r^^n −→ (f a, f b) ∈ s^∗
proof −

fix n0
show ∀ a b. (a,b) ∈ r^^n0 −→ (f a, f b) ∈ s^∗
proof (induct n0 )

show ∀ a b. (a,b) ∈ r^^0 −→ (f a, f b) ∈ s^∗ by simp
next

fix n
assume ∀ a b. (a,b) ∈ r^^n −→ (f a, f b) ∈ s^∗
then show ∀ a b. (a,b) ∈ r^^(Suc n) −→ (f a, f b) ∈ s^∗ using a2 by force

qed
qed
then show ?thesis using a1 rtrancl-power by blast

qed

lemma lem-fmap-confl:
fixes r :: ′a rel and f :: ′a ⇒ ′b
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assumes a1 : inj-on f (Field r) and a2 : confl-rel r
shows confl-rel {(u,v). ∃ a b. u = f a ∧ v = f b ∧ (a,b) ∈ r}
proof −

obtain rA where q1 : rA = {(u,v). ∃ a b. u = f a ∧ v = f b ∧ (a,b) ∈ r} by
blast

then have q2 : ∀ a b. (a, b) ∈ r −→ (f a, f b) ∈ rA by blast
have q3 : Field rA ⊆ f‘(Field r) using q1 unfolding Field-def by blast
obtain g where q4 : g = inv-into (Field r) f by blast
then have q5 : ∀ x ∈ Field r . g (f x) = x using a1 by simp
have q6 : ∀ u v. (u,v) ∈ rA −→ (g u, g v) ∈ r
proof (intro allI impI )

fix u v
assume (u,v) ∈ rA
then obtain a b where u = f a ∧ v = f b ∧ (a,b) ∈ r using q1 by blast
moreover then have a ∈ Field r ∧ b ∈ Field r unfolding Field-def by blast
ultimately show (g u, g v) ∈ r using q5 by force

qed
have ∀ u ∈ Field rA. ∀ v ∈ Field rA. ∀ w ∈ Field rA.
(u,v) ∈ rA^∗ ∧ (u,w) ∈ rA^∗ −→ (∃ t ∈ Field rA. (v,t) ∈ rA^∗ ∧ (w,t) ∈

rA^∗)
proof (intro ballI impI )

fix u v w
assume c1 : u ∈ Field rA and c2 : v ∈ Field rA and c3 : w ∈ Field rA

and c4 : (u,v) ∈ rA^∗ ∧ (u,w) ∈ rA^∗
then have (g u, g v) ∈ r^∗ ∧ (g u, g w) ∈ r^∗ using q6 lem-fmap-rel[of u -

rA g r ] by blast
then obtain d where c5 : (g v, d) ∈ r^∗ ∧ (g w, d) ∈ r^∗ using a2 unfolding

confl-rel-def by blast
moreover have c6 : g v ∈ Field r ∧ g w ∈ Field r using c2 c3 q3 q5 by force
ultimately have d ∈ Field r using lem-rtr-field by fastforce
have v = f (g v) ∧ w = f (g w) using c2 c3 q3 q4 a1 by force
moreover have (f (g v), f d) ∈ rA^∗ ∧ (f (g w), f d) ∈ rA^∗

using c5 q2 lem-fmap-rel[of - d r f rA] by blast
ultimately have (v, f d) ∈ rA^∗ ∧ (w, f d) ∈ rA^∗ by simp
moreover then have f d ∈ Field rA using c2 lem-rtr-field by fastforce
ultimately show ∃ t ∈ Field rA. (v,t) ∈ rA^∗ ∧ (w,t) ∈ rA^∗ by blast

qed
then show ?thesis using q1 lem-confl-field by blast

qed

lemma lem-fmap-dcn:
fixes r :: ′a rel and f :: ′a ⇒ ′b
assumes a1 : inj-on f (Field r) and a2 : DCR n r
shows DCR n {(u,v). ∃ a b. u = f a ∧ v = f b ∧ (a,b) ∈ r}
proof −

obtain rA where q1 : rA = {(u,v). ∃ a b. u = f a ∧ v = f b ∧ (a,b) ∈ r} by
blast

have q2 : ∀ a ∈ Field r . ∀ b ∈ Field r . (a,b) ∈ r ←→ (f a, f b) ∈ rA
using a1 q1 unfolding Field-def inj-on-def by blast
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have q3 : Field rA ⊆ f‘(Field r) using q1 unfolding Field-def by blast
obtain g::nat ⇒ ′a rel where b1 : DCR-generating g

and b2 : r =
⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = g α ′ } using a2 unfolding

DCR-def by blast
obtain gA::nat ⇒ ′b rel

where b3 : gA = (λ α. if α < n then {(x,y). ∃ a b. x = f a ∧ y = f b ∧ (a,b)
∈ g α } else {}) by blast

have ∀α β u v w. (u, v) ∈ gA α ∧ (u, w) ∈ gA β −→
(∃ v ′ v ′′ w ′ w ′′ e. (v, v ′, v ′′, e) ∈ D gA α β ∧ (w, w ′, w ′′, e) ∈ D gA β α)

proof (intro allI impI )
fix α β u v w
assume c1 : (u, v) ∈ gA α ∧ (u, w) ∈ gA β
obtain a b where c2 : α < n ∧ u = f a ∧ v = f b ∧ (a,b) ∈ g α using c1 b3

by (cases α < n, force+)
obtain a ′ c where c3 : β < n ∧ u = f a ′ ∧ w = f c ∧ (a ′,c) ∈ g β using c1

b3 by (cases β < n, force+)
have (a,b) ∈ r ∧ (a ′,c) ∈ r using c2 c3 b2 by blast
then have a ′ = a using c2 c3 a1 unfolding inj-on-def Field-def by blast
then have (a,b) ∈ g α ∧ (a,c) ∈ g β using c2 c3 by blast
then obtain b ′ b ′′ c ′ c ′′ d where c4 : (b, b ′, b ′′, d) ∈ D g α β ∧ (c, c ′, c ′′, d)

∈ D g β α
using b1 unfolding DCR-generating-def by blast

have c5 :
∧

α ′. α ′ < n =⇒ ∀ a0 b0 . (a0 ,b0 ) ∈ L1 g α ′ −→ (f a0 , f b0 ) ∈ L1
gA α ′

proof (intro allI impI )
fix α ′ a0 b0
assume d1 : α ′ < n and (a0 ,b0 ) ∈ L1 g α ′

then obtain α ′′ where (a0 ,b0 ) ∈ g α ′′ ∧ α ′′ < α ′ unfolding L1-def by
blast

moreover then have (f a0 , f b0 ) ∈ gA α ′′ using d1 c2 b3 by force
ultimately show (f a0 , f b0 ) ∈ L1 gA α ′ using c2 b3 unfolding L1-def by

blast
qed
have c6 :

∧
α ′ a0 b0 . α ′ < n =⇒ (a0 ,b0 ) ∈ (g α ′)^= −→ (f a0 , f b0 ) ∈ (gA

α ′)^= using b3 by force
have c7 :

∧
α ′ β ′. α ′ < n =⇒ β ′ < n =⇒ ∀ a0 b0 . (a0 ,b0 ) ∈ Lv g α ′ β ′ −→

(f a0 , f b0 ) ∈ Lv gA α ′ β ′

proof (intro allI impI )
fix α ′ β ′ a0 b0
assume d1 : α ′ < n and d2 : β ′ < n and (a0 ,b0 ) ∈ Lv g α ′ β ′

then obtain α ′′ where (a0 ,b0 ) ∈ g α ′′ ∧ (α ′′ < α ′ ∨ α ′′ < β ′) unfolding
Lv-def by blast

moreover then have (f a0 , f b0 ) ∈ gA α ′′ using d1 d2 c2 b3 by force
ultimately show (f a0 , f b0 ) ∈ Lv gA α ′ β ′ using c2 b3 unfolding Lv-def

by blast
qed

have (v, f b ′) ∈ (L1 gA α)^∗ using c2 c4 c5 [of α] lem-fmap-rel[of b b ′]
unfolding D-def by blast

moreover have (f b ′, f b ′′) ∈ (gA β)^= using c3 c4 c6 unfolding D-def by
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blast
moreover have (f b ′′, f d) ∈ (Lv gA α β)^∗ using c2 c3 c4 c7 [of α β]

lem-fmap-rel[of b ′′ d] unfolding D-def by blast
moreover have (w, f c ′) ∈ (L1 gA β)^∗ using c3 c4 c5 [of β] lem-fmap-rel[of

c c ′] unfolding D-def by blast
moreover have (f c ′, f c ′′) ∈ (gA α)^= using c2 c4 c6 unfolding D-def by

blast
moreover have (f c ′′, f d) ∈ (Lv gA β α)^∗ using c2 c3 c4 c7 [of β α]

lem-fmap-rel[of c ′′ d] unfolding D-def by blast
ultimately show ∃ v ′ v ′′ w ′ w ′′ e. (v, v ′, v ′′, e) ∈ D gA α β ∧ (w, w ′, w ′′, e)

∈ D gA β α
unfolding D-def by blast

qed
then have DCR-generating gA unfolding DCR-generating-def by blast
moreover have rA =

⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = gA α ′}

proof
show rA ⊆

⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = gA α ′}

proof
fix p
assume p ∈ rA
then obtain x y where d1 : p = (x,y) ∧ p ∈ rA by force
moreover then obtain a b where d2 : x = f a ∧ y = f b ∧ a ∈ Field r ∧ b

∈ Field r
using q3 unfolding Field-def by blast

ultimately have (a,b) ∈ r using q2 by blast
then obtain α ′ where α ′ < n ∧ (a,b) ∈ g α ′ using b2 by blast
then have α ′ < n ∧ (x,y) ∈ gA α ′ using d2 b3 by force
then show p ∈

⋃
{r ′. ∃α ′<n. r ′ = gA α ′} using d1 by blast

qed
next

show
⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = gA α ′} ⊆ rA

proof
fix p
assume p ∈

⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = gA α ′}

then obtain α ′ where d1 : α ′ < n ∧ p ∈ gA α ′ by blast
then obtain x y where d2 : p = (x,y) ∧ p ∈ gA α ′ by force
then obtain a b where x = f a ∧ y = f b ∧ (a,b) ∈ g α ′ using d1 b3 by

force
moreover then have (a,b) ∈ r using d1 b2 by blast
ultimately show p ∈ rA using d2 q2 unfolding Field-def by blast

qed
qed
ultimately have DCR n rA unfolding DCR-def by blast
then show ?thesis using q1 by blast

qed

lemma lem-not-dcr2 :
assumes cardSuc |UNIV ::nat set| ≤o |UNIV :: ′U set|
shows ∃ r :: ′U rel. confl-rel r ∧ |r | ≤o cardSuc |UNIV ::nat set| ∧ (¬ DCR2 r)
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proof −
obtain A where b1 : A = (UNIV :: ′U set) by blast
obtain S where b2 : S ⊆ A ∧ |S | =o cardSuc |UNIV ::nat set|

using b1 assms
by (smt Card-order-ordIso2 Field-card-of cardSuc-Card-order card-of-Field-ordIso

card-of-card-order-on internalize-ordLeq ordIso-symmetric ordIso-transitive)
then have ¬ ( |S | ≤o |UNIV ::nat set| ) by (simp add: cardSuc-ordLess-ordLeq

ordIso-iff-ordLeq)
moreover then have ¬ finite S by (meson card-of-Well-order infinite-iff-card-of-nat

ordLeq-total)
moreover obtain s where b3 : s = (rE S) by blast
ultimately have b4 : confl-rel s ∧ ¬ DCR2 s ∧ |s| ≤o |S | using lem-rE-dc3dc2

lem-rE-cardbnd by blast
obtain B where b5 : B = Field s by blast
obtain C :: ′U set where b6 : C = UNIV by blast
then have cardSuc |UNIV ::nat set| ≤o |C | using assms by blast
moreover have b6 ′: |s| ≤o cardSuc |UNIV ::nat set| using b2 b4 ordLeq-ordIso-trans

by blast
ultimately have |s| ≤o |C | using ordLeq-transitive by blast
moreover have b6 ′′: ¬ finite (Field s) −→ |Field s| =o |s| using lem-fin-fl-rel

lem-rel-inf-fld-card by blast
ultimately have ¬ finite (Field s) −→ |Field s| ≤o |C | using ordIso-ordLeq-trans

by blast
moreover have ¬ finite C using b6 assms ordLeq-finite-Field by fastforce
moreover then have finite (Field s) −→ |Field s| ≤o |C | using ordLess-imp-ordLeq

by force
ultimately have |B| ≤o |C | using b5 by blast
then obtain f where b7 : f‘B ⊆ C ∧ inj-on f B by (meson card-of-ordLeq)
moreover obtain g where b8 : g = inv-into B f by blast
ultimately have b9 : ∀ x ∈ B. g (f x) = x by simp
obtain r where b10 : r = {(a,b). ∃ x y. a = f x ∧ b = f y ∧ (x,y) ∈ s} by blast
have s ⊆ {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r}
proof

fix p
assume p ∈ s
then obtain x y where p = (x,y) ∧ (x,y) ∈ s by (cases p, blast)
moreover then have (f x, f y) ∈ r ∧ x ∈ B ∧ y ∈ B using b5 b10 unfolding

Field-def by blast
moreover then have x = g (f x) ∧ y = g (f y) using b9 by simp
ultimately show p ∈ {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r} using b9

by blast
qed
moreover have {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r} ⊆ s
proof

fix p
assume p ∈ {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r}
then obtain a b where p = (g a, g b) ∧ (a,b) ∈ r by blast
moreover then obtain x y where a = f x ∧ b = f y ∧ (x,y) ∈ s using b10
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by blast
moreover then have x ∈ B ∧ y ∈ B using b5 unfolding Field-def by blast
ultimately show p ∈ s using b9 by force

qed
ultimately have b11 : s = {(x,y). ∃ a b. x = g a ∧ y = g b ∧ (a,b) ∈ r} by

blast
have inj-on g (f‘B) using b8 inj-on-inv-into[of f‘B f B] by blast
moreover have b12 : Field r ⊆ f‘B
proof

fix c
assume c ∈ Field r
then obtain a b where (a,b) ∈ r ∧ (c = a ∨ c = b) unfolding Field-def by

blast
moreover then obtain x y where a = f x ∧ b = f y ∧ (x,y) ∈ s using b10

by blast
moreover then have x ∈ B ∧ y ∈ B using b5 unfolding Field-def by blast
ultimately show c ∈ f ‘ B by blast

qed
ultimately have inj-on g (Field r) using Fun.subset-inj-on by blast
moreover have ¬ DCR 2 s using b4 lem-dc2-to-d2 by blast
ultimately have ¬ DCR 2 r using b11 lem-fmap-dcn[of g r 2 ] by blast
then have ¬ DCR2 r using lem-d2-to-dc2 by blast
moreover have confl-rel r using b4 b5 b7 b10 lem-fmap-confl[of f s] by blast
moreover have |r | ≤o cardSuc |UNIV ::nat set|
proof −

have finite (Field s) −→ |B| ≤o cardSuc |UNIV ::nat set| using b2 b5
by (metis Field-card-of cardSuc-greater card-of-card-order-on finite-ordLess-infinite2

infinite-UNIV-nat ordLeq-transitive ordLess-imp-ordLeq)
moreover have ¬ finite (Field s) −→ |B| ≤o cardSuc |UNIV ::nat set|

using b5 b6 ′ b6 ′′ ordIso-ordLeq-trans by blast
ultimately have |B| ≤o cardSuc |UNIV ::nat set| by blast
moreover have |f‘B| ≤o |B| by simp
moreover have |Field r | ≤o |f‘B| using b12 by simp
ultimately have |Field r | ≤o cardSuc |UNIV ::nat set| using ordLeq-transitive

by metis
then have ¬ finite r −→ |r | ≤o cardSuc |UNIV ::nat set|

using lem-rel-inf-fld-card[of r ] ordIso-ordLeq-trans ordIso-symmetric by blast
moreover have finite r −→ |r | ≤o cardSuc |UNIV ::nat set| by (simp add:

ordLess-imp-ordLeq)
ultimately show ?thesis by blast

qed
ultimately show ?thesis by blast

qed

1.3.3 Result

The next theorem has the following meaning: if the set of elements of type
′U is uncountable, then there exists a confluent binary relation r on ′U such
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that the cardinality of r does not exceed the first uncountable cardinal and
confluence of r cannot be proved using the decreasing diagrams method with
2 labels.
theorem thm-example-not-dcr2 :
assumes cardSuc |{n::nat. True}| ≤o |{x:: ′U . True}|
shows ∃ r :: ′U rel. (

( ∀ a b c. (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→ (∃ d. (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)
)

∧ |r | ≤o cardSuc |{n::nat. True}|
∧ (¬ ( ∃ r0 r1 . (

( r = (r0 ∪ r1 ) )
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0
−→ (∃ d.

(b,d) ∈ r0^=
∧ (c,d) ∈ r0^=) )

∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1
−→ (∃ b ′ d.

(b,b ′) ∈ r1^= ∧ (b ′,d) ∈ r0^∗
∧ (c,d) ∈ r0^∗) )

∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1
−→ (∃ b ′ b ′′ c ′ c ′′ d.

(b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗
∧ (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗) ) ) )

) )
proof −

have cardSuc |UNIV ::nat set| ≤o |UNIV :: ′U set| using assms by (simp only:
UNIV-def )

then have ∃ r :: ′U rel. confl-rel r ∧ |r | ≤o cardSuc |UNIV ::nat set| ∧ (¬ DCR2
r)

using assms lem-not-dcr2 by blast
then show ?thesis unfolding confl-rel-def DCR2-def LD2-def jn00-def jn01-def

jn11-def
by (simp only: UNIV-def )

qed

corollary cor-example-not-dcr2 :
shows ∃ r ::(nat set) rel. (

( ∀ a b c. (a,b) ∈ r^∗ ∧ (a,c) ∈ r^∗ −→ (∃ d. (b,d) ∈ r^∗ ∧ (c,d) ∈ r^∗)
)

∧ |r | ≤o cardSuc |{n::nat. True}|
∧ (¬ ( ∃ r0 r1 . (

( r = (r0 ∪ r1 ) )
∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r0
−→ (∃ d.

(b,d) ∈ r0^=
∧ (c,d) ∈ r0^=) )

∧ (∀ a b c. (a,b) ∈ r0 ∧ (a,c) ∈ r1
−→ (∃ b ′ d.

(b,b ′) ∈ r1^= ∧ (b ′,d) ∈ r0^∗
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∧ (c,d) ∈ r0^∗) )
∧ (∀ a b c. (a,b) ∈ r1 ∧ (a,c) ∈ r1
−→ (∃ b ′ b ′′ c ′ c ′′ d.

(b,b ′) ∈ r0^∗ ∧ (b ′,b ′′) ∈ r1^= ∧ (b ′′,d) ∈ r0^∗
∧ (c,c ′) ∈ r0^∗ ∧ (c ′,c ′′) ∈ r1^= ∧ (c ′′,d) ∈ r0^∗) ) ) )

) )
proof −

have cardSuc |{x::nat. True}| ≤o |{x::nat set. True}| by force
then show ?thesis using thm-example-not-dcr2 by blast

qed

end

1.4 DCR implies LD Property
theory Main-Result-DCR-N1

imports
DCR3-Method
Decreasing−Diagrams.Decreasing-Diagrams

begin

1.4.1 Auxiliary definitions
definition map-seq-labels :: ( ′b ⇒ ′c) ⇒ ( ′a, ′b) seq ⇒ ( ′a, ′c) seq
where

map-seq-labels f σ = (fst σ, map (λ(α,a). (f α, a)) (snd σ))

fun map-diag-labels :: ( ′b ⇒ ′c) ⇒
( ′a, ′b) seq × ( ′a, ′b) seq × ( ′a, ′b) seq × ( ′a, ′b) seq ⇒
( ′a, ′c) seq × ( ′a, ′c) seq × ( ′a, ′c) seq × ( ′a, ′c) seq

where
map-diag-labels f (τ ,σ,σ ′,τ ′) = ((map-seq-labels f τ), (map-seq-labels f σ), (map-seq-labels

f σ ′), (map-seq-labels f τ ′))

fun f-to-ls :: (nat ⇒ ′a) ⇒ nat ⇒ ′a list
where

f-to-ls f 0 = []
| f-to-ls f (Suc n) = (f-to-ls f n) @ [(f n)]

1.4.2 Auxiliary lemmas
lemma lem-ftofs-len: length (f-to-ls f n) = n by (induct n, simp+)

lemma lem-irr-inj-im-irr :
fixes r :: ′a rel and r ′:: ′b rel and f :: ′a ⇒ ′b
assumes irrefl r and inj-on f (Field r)

and r ′ = {(a ′,b ′). ∃ a b. a ′ = f a ∧ b ′ = f b ∧ (a,b) ∈ r}
shows irrefl r ′

using assms unfolding inj-on-def Field-def irrefl-def by blast
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lemma lem-tr-inj-im-tr :
fixes r :: ′a rel and r ′:: ′b rel and f :: ′a ⇒ ′b
assumes trans r and inj-on f (Field r)

and r ′ = {(a ′,b ′). ∃ a b. a ′ = f a ∧ b ′ = f b ∧ (a,b) ∈ r}
shows trans r ′

using assms unfolding inj-on-def Field-def trans-def by blast

lemma lem-lpeak-expr : local-peak lrs (τ , σ) = (∃ a b c α β. (a,α,b) ∈ lrs ∧ (a,β,c)
∈ lrs ∧ τ = (a,[(α,b)]) ∧ σ = (a,[(β,c)]))
proof

assume local-peak lrs (τ , σ)
then show ∃ a b c α β. (a,α,b) ∈ lrs ∧ (a,β,c) ∈ lrs ∧ τ = (a,[(α,b)]) ∧ σ =

(a,[(β,c)])
unfolding Decreasing-Diagrams.local-peak-def Decreasing-Diagrams.peak-def
apply(cases τ , cases σ, simp)
using Decreasing-Diagrams.seq-tail1 (2 )
by (metis (no-types, lifting) Suc-length-conv length-0-conv prod.collapse)

next
assume ∃ a b c α β. (a,α,b) ∈ lrs ∧ (a,β,c) ∈ lrs ∧ τ = (a,[(α,b)]) ∧ σ =

(a,[(β,c)])
then obtain a b c α β where (a,α,b) ∈ lrs ∧ (a,β,c) ∈ lrs ∧ τ = (a,[(α,b)]) ∧

σ = (a,[(β,c)]) by blast
then show local-peak lrs (τ , σ)

unfolding Decreasing-Diagrams.local-peak-def Decreasing-Diagrams.peak-def
by (simp add: Decreasing-Diagrams.seq.intros)

qed

lemma lem-map-seq:
fixes lrs::( ′a, ′b) lars and f :: ′b ⇒ ′c and lrs ′::( ′a, ′c) lars and σ::( ′a, ′b) seq
assumes a1 : lrs ′ = {(a,l ′,b). ∃ l. l ′ = f l ∧ (a,l,b) ∈ lrs }

and a2 : σ ∈ Decreasing-Diagrams.seq lrs
shows (map-seq-labels f σ) ∈ Decreasing-Diagrams.seq lrs ′

proof −
have ∀ s a. (a,s) ∈ Decreasing-Diagrams.seq lrs −→ (map-seq-labels f (a,s)) ∈

Decreasing-Diagrams.seq lrs ′

proof
fix s
show ∀ a. (a,s) ∈ Decreasing-Diagrams.seq lrs −→ (map-seq-labels f (a,s)) ∈

Decreasing-Diagrams.seq lrs ′

proof (induct s)
show ∀ a. (a, []) ∈ Decreasing-Diagrams.seq lrs −→ map-seq-labels f (a, []) ∈

Decreasing-Diagrams.seq lrs ′

unfolding map-seq-labels-def by (simp add: seq.intros(1 ))
next

fix p s1
assume d1 : ∀ b. (b, s1 ) ∈ Decreasing-Diagrams.seq lrs −→ map-seq-labels f

(b, s1 ) ∈ Decreasing-Diagrams.seq lrs ′

show ∀ b. (b, p # s1 ) ∈ Decreasing-Diagrams.seq lrs −→ map-seq-labels f (b,
p # s1 ) ∈ Decreasing-Diagrams.seq lrs ′
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proof (intro allI impI )
fix b
assume e1 : (b, p # s1 ) ∈ Decreasing-Diagrams.seq lrs
moreover obtain l b ′ where e2 : p = (l, b ′) by force
ultimately have e3 : (b,l,b ′) ∈ lrs ∧ (b ′,s1 ) ∈ Decreasing-Diagrams.seq lrs

by (metis Decreasing-Diagrams.seq-tail1 (1 ) Decreasing-Diagrams.seq-tail1 (2 )
prod.collapse snd-conv)

then have (b,f l,b ′) ∈ lrs ′ using a1 by blast
moreover have map-seq-labels f (b ′, s1 ) ∈ Decreasing-Diagrams.seq lrs ′

using d1 e3 by blast
ultimately show map-seq-labels f (b, p # s1 ) ∈ Decreasing-Diagrams.seq

lrs ′

using e2 unfolding map-seq-labels-def by (simp add: seq.intros(2 ))
qed

qed
qed
moreover obtain a s where σ = (a,s) by force
ultimately show (map-seq-labels f σ) ∈ Decreasing-Diagrams.seq lrs ′ using a2

by blast
qed

lemma lem-map-diag:
fixes lrs::( ′a, ′b) lars and f :: ′b ⇒ ′c and lrs ′::( ′a, ′c) lars

and d::( ′a, ′b) seq × ( ′a, ′b) seq × ( ′a, ′b) seq × ( ′a, ′b) seq
assumes a1 : lrs ′ = {(a,l ′,b). ∃ l. l ′ = f l ∧ (a,l,b) ∈ lrs }

and a2 : diagram lrs d
shows diagram lrs ′ (map-diag-labels f d)
proof −

obtain τ σ σ ′ τ ′ where b1 : d = (τ , σ, σ ′, τ ′) using prod-cases4 by blast
moreover obtain τ1 σ1 σ1 ′ τ1 ′ where b2 : τ1 = (map-seq-labels f τ) ∧ σ1 =

(map-seq-labels f σ)
∧ (σ1 ′ = map-seq-labels f σ ′) ∧ (τ1 ′ = map-seq-labels f τ ′)

by blast
ultimately have b3 : (map-diag-labels f d) = (τ1 , σ1 , σ1 ′, τ1 ′) by simp
have b4 : fst σ = fst τ ∧ lst σ = fst τ ′ ∧ lst τ = fst σ ′ ∧ lst σ ′ = lst τ ′

using b1 a2 unfolding Decreasing-Diagrams.diagram-def by simp
have b5 : σ1 ∈ Decreasing-Diagrams.seq lrs ′ ∧ τ1 ∈ Decreasing-Diagrams.seq lrs ′

∧ σ1 ′ ∈ Decreasing-Diagrams.seq lrs ′ ∧ τ1 ′ ∈ Decreasing-Diagrams.seq lrs ′

using a1 a2 b1 b2 lem-map-seq[of lrs ′ f ] by (simp add: Decreasing-Diagrams.diagram-def )
moreover have fst σ1 = fst τ1 using b2 b4 unfolding map-seq-labels-def by

simp
moreover have lst σ1 = fst τ1 ′ ∧ lst τ1 = fst σ1 ′ using b4
by (simp add: b2 map-seq-labels-def lst-def , metis (no-types, lifting) case-prod-beta

last-map snd-conv)
moreover have lst σ1 ′ = lst τ1 ′ using b4
by (simp add: b2 map-seq-labels-def lst-def , metis (no-types, lifting) case-prod-beta

last-map snd-conv)
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ultimately show diagram lrs ′ (map-diag-labels f d) using b3 b5 unfolding
Decreasing-Diagrams.diagram-def by simp
qed

lemma lem-map-D-loc:
fixes cmp cmp ′ s1 s2 s3 s4 f
assumes a1 : Decreasing-Diagrams.D cmp s1 s2 s3 s4

and a2 : trans cmp and a3 : irrefl cmp and a4 : inj-on f (Field cmp)
and a5 : cmp ′ = {(a ′,b ′). ∃ a b. a ′ = f a ∧ b ′ = f b ∧ (a,b) ∈ cmp}
and a6 : length s1 = 1 and a7 : length s2 = 1

shows Decreasing-Diagrams.D cmp ′ (map f s1 ) (map f s2 ) (map f s3 ) (map f s4 )
proof −

obtain α where b1 : s2 = [α] using a7 by (metis One-nat-def Suc-length-conv
length-0-conv)

moreover obtain β where b2 : s1 = [β] using a6 by (metis One-nat-def
Suc-length-conv length-0-conv)

ultimately have b3 : Decreasing-Diagrams.D cmp [β] [α] s3 s4 using a1 by
blast

then obtain σ1 σ2 σ3 τ1 τ2 τ3 where b4 : s3 = σ1@σ2@σ3 and b5 : s4 =
τ1@τ2@τ3 and b6 : LD ′ cmp β α σ1 σ2 σ3 τ1 τ2 τ3

using Decreasing-Diagrams.proposition3-4-inv[of cmp β α s3 s4 ] a2 a3 by blast
obtain σ1 ′ σ2 ′ σ3 ′ where b7 : σ1 ′ = map f σ1 ∧ σ2 ′ = map f σ2 ∧ σ3 ′ =

map f σ3 by blast
obtain τ1 ′ τ2 ′ τ3 ′ where b8 : τ1 ′ = map f τ1 ∧ τ2 ′ = map f τ2 ∧ τ3 ′ = map

f τ3 by blast
obtain s3 ′ s4 ′ where b9 : s3 ′ = map f s3 and b10 : s4 ′ = map f s4 by blast
have trans cmp ′ using a2 a4 a5 lem-tr-inj-im-tr by blast
moreover have irrefl cmp ′ using a3 a4 a5 lem-irr-inj-im-irr by blast
moreover have s3 ′ = σ1 ′@σ2 ′@σ3 ′ using b4 b7 b9 by simp
moreover have s4 ′ = τ1 ′@τ2 ′@τ3 ′ using b5 b8 b10 by simp
moreover have LD ′ cmp ′ (f β) (f α) σ1 ′ σ2 ′ σ3 ′ τ1 ′ τ2 ′ τ3 ′

proof −
have c1 : LD-1 ′ cmp β α σ1 σ2 σ3 and c2 : LD-1 ′ cmp α β τ1 τ2 τ3
using b6 unfolding Decreasing-Diagrams.LD ′-def by blast+

have LD-1 ′ cmp ′ (f β) (f α) σ1 ′ σ2 ′ σ3 ′

using c1 unfolding Decreasing-Diagrams.LD-1 ′-def Decreasing-Diagrams.ds-def
by (simp add: a5 b7 , blast)

moreover have LD-1 ′ cmp ′ (f α) (f β) τ1 ′ τ2 ′ τ3 ′

using c2 unfolding Decreasing-Diagrams.LD-1 ′-def Decreasing-Diagrams.ds-def
by (simp add: a5 b8 , blast)

ultimately show LD ′ cmp ′ (f β) (f α) σ1 ′ σ2 ′ σ3 ′ τ1 ′ τ2 ′ τ3 ′ unfolding
Decreasing-Diagrams.LD ′-def by blast

qed
ultimately have Decreasing-Diagrams.D cmp ′ [f β] [f α] s3 ′ s4 ′ using Decreas-

ing-Diagrams.proposition3-4 [of cmp ′] by blast
moreover have (map f s1 ) = [f β] ∧ (map f s2 ) = [f α] using b1 b2 by simp
ultimately show Decreasing-Diagrams.D cmp ′ (map f s1 ) (map f s2 ) (map f

s3 ) (map f s4 ) using b9 b10 by simp
qed
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lemma lem-map-DD-loc:
fixes lrs::( ′a, ′b) lars and cmp:: ′b rel and lrs ′::( ′a, ′c) lars and cmp ′:: ′c rel and
f :: ′b ⇒ ′c
assumes a1 : trans cmp and a2 : irrefl cmp and a3 : inj-on f (Field cmp)

and a4 : cmp ′ = {(a ′,b ′). ∃ a b. a ′ = f a ∧ b ′ = f b ∧ (a,b) ∈ cmp}
and a5 : lrs ′ = {(a,l ′,b). ∃ l. l ′ = f l ∧ (a,l,b) ∈ lrs }
and a6 : length (snd (fst d)) = 1 and a7 : length (snd (fst (snd d))) = 1
and a8 : DD lrs cmp d

shows DD lrs ′ cmp ′ (map-diag-labels f d)
proof −

have diagram lrs ′ (map-diag-labels f d) using a4 a5 a8 lem-map-diag unfolding
Decreasing-Diagrams.DD-def by blast

moreover have D2 cmp ′ (map-diag-labels f d)
proof −

obtain τ σ σ ′ τ ′ where c1 : d = (τ ,σ,σ ′,τ ′) by (metis prod-cases3 )
obtain s1 s2 s3 s4 where c2 : s1 = labels τ ∧ s2 = labels σ ∧ s3 = labels σ ′

∧ s4 = labels τ ′ by blast
have Decreasing-Diagrams.D cmp s1 s2 s3 s4
using a8 c1 c2 unfolding Decreasing-Diagrams.DD-def Decreasing-Diagrams.D2-def

by simp
moreover have length s1 = 1 ∧ length s2 = 1 using a6 a7 c1 c2 unfolding

labels-def by simp
ultimately have Decreasing-Diagrams.D cmp ′ (map f s1 ) (map f s2 ) (map f

s3 ) (map f s4 )
using a1 a2 a3 a4 lem-map-D-loc by blast

moreover have labels (map-seq-labels f τ) = (map f s1 )
and labels (map-seq-labels f σ) = (map f s2 )
and labels (map-seq-labels f σ ′) = (map f s3 )
and labels (map-seq-labels f τ ′) = (map f s4 )

using c2 unfolding map-seq-labels-def Decreasing-Diagrams.labels-def by
force+

ultimately have D2 cmp ′ ((map-seq-labels f τ), (map-seq-labels f σ), (map-seq-labels
f σ ′), (map-seq-labels f τ ′))

unfolding Decreasing-Diagrams.D2-def by simp
then show D2 cmp ′ (map-diag-labels f d) using c1 unfolding Decreas-

ing-Diagrams.D2-def by simp
qed
ultimately show DD lrs ′ cmp ′ (map-diag-labels f d) unfolding Decreasing-Diagrams.DD-def

by blast
qed

lemma lem-ddseq-mon: lrs1 ⊆ lrs2 =⇒ Decreasing-Diagrams.seq lrs1 ⊆ Decreas-
ing-Diagrams.seq lrs2
proof −

assume a1 : lrs1 ⊆ lrs2
show Decreasing-Diagrams.seq lrs1 ⊆ Decreasing-Diagrams.seq lrs2
proof

fix a s
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assume b1 : (a,s) ∈ Decreasing-Diagrams.seq lrs1
show (a,s) ∈ Decreasing-Diagrams.seq lrs2

by (rule Decreasing-Diagrams.seq.induct[of - - lrs1 ],
simp only: b1 , simp only: seq.intros(1 ), meson a1 contra-subsetD seq.intros(2 ))

qed
qed

lemma lem-dd-D-mon:
fixes cmp1 cmp2 α β s1 s2
assumes a1 : trans cmp1 ∧ irrefl cmp1 and a2 : trans cmp2 ∧ irrefl cmp2 and
a3 : cmp1 ⊆ cmp2

and a4 : Decreasing-Diagrams.D cmp1 [α] [β] s1 s2
shows Decreasing-Diagrams.D cmp2 [α] [β] s1 s2
proof −

obtain σ1 σ2 σ3 τ1 τ2 τ3
where b1 : s1 = σ1@σ2@σ3 ∧ s2 = τ1@τ2@τ3 and b2 : LD ′ cmp1 α β σ1

σ2 σ3 τ1 τ2 τ3
using a1 a4 Decreasing-Diagrams.proposition3-4-inv[of cmp1 α β s1 s2 ] by

blast
then have b3 : LD-1 ′ cmp1 α β σ1 σ2 σ3 and b4 : LD-1 ′ cmp1 β α τ1 τ2 τ3

unfolding Decreasing-Diagrams.LD ′-def by blast+
have LD-1 ′ cmp2 α β σ1 σ2 σ3
using a3 b3 unfolding Decreasing-Diagrams.LD-1 ′-def Decreasing-Diagrams.ds-def

by blast
moreover have LD-1 ′ cmp2 β α τ1 τ2 τ3
using a3 b4 unfolding Decreasing-Diagrams.LD-1 ′-def Decreasing-Diagrams.ds-def

by blast
ultimately show Decreasing-Diagrams.D cmp2 [α] [β] s1 s2

using Decreasing-Diagrams.proposition3-4 [of cmp2 α β] by (simp add: a2 b1
LD ′-def )
qed

1.4.3 Result

The next lemma has the following meaning: every ARS in the finite DCR
hierarchy has the LD property.
lemma lem-dcr-to-ld:
fixes n::nat and r :: ′U rel
assumes DCR n r
shows LD (UNIV ::nat set) r
proof −

obtain g::nat ⇒ ′U rel where
b1 : DCR-generating g and b3 : r =

⋃
{ r ′. ∃ α ′. α ′ < n ∧ r ′ = g α ′ }

using assms unfolding DCR-def by blast
obtain lrs::( ′U , nat) lars where b4 : lrs = {(a,α ′,b). α ′ < n ∧ (a,b) ∈ g α ′} by

blast
obtain cmp::nat rel where b5 : cmp = {(α, β). α < β } by blast
have r = unlabel lrs using b3 b4 unfolding unlabel-def by blast
moreover have b6 : trans cmp using b5 unfolding trans-def by force
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moreover have b7 : wf cmp
proof −

have cmp = ({(x::nat, y::nat). x < y})
unfolding b5 lex-prod-def by fastforce

moreover have wf {(x::nat, y::nat). x < y} using wf-less by blast
ultimately show ?thesis using wf-lex-prod by blast

qed
moreover have ∀P. local-peak lrs P −→ (∃ σ ′ τ ′. DD lrs cmp (fst P,snd P,σ ′,τ ′))
proof (intro allI impI )

fix P
assume c1 : local-peak lrs P
moreover obtain τ σ where c2 : P = (τ , σ) using surjective-pairing by blast
ultimately obtain a b c α β

where c3 : (a,α,b) ∈ lrs ∧ (a,β,c) ∈ lrs
and c4 : σ = (a,[(α,b)]) ∧ τ = (a,[(β,c)]) using lem-lpeak-expr [of lrs] by

blast
then have c5 : α < n ∧ β < n and c6 : (a,b) ∈ (g α) ∧ (a,c) ∈ (g β) using

b4 by blast+
obtain b ′ b ′′ c ′ c ′′ d where

c7 : (b,b ′) ∈ (L1 g α)^∗ ∧ (b ′,b ′′) ∈ (g β)^= ∧ (b ′′,d) ∈ (Lv g α β)^∗
and c8 : (c,c ′) ∈ (L1 g β)^∗ ∧ (c ′,c ′′) ∈ (g α)^= ∧ (c ′′,d) ∈ (Lv g β

α)^∗
using b1 c6 unfolding DCR-generating-def D-def by (metis (no-types,

lifting) mem-Collect-eq old.prod.case)
obtain pn1 where (b,b ′) ∈ (L1 g α)^^pn1 using c7 by fastforce
then obtain ph1 where pc9 : ph1 0 = b ∧ ph1 pn1 = b ′ and ∀ i::nat. i <

pn1 −→ (ph1 i, ph1 (Suc i)) ∈ (L1 g α)
using relpow-fun-conv by metis

then have ∀ i::nat. i<pn1 −→ (∃ α ′. α ′ < α ∧ (ph1 i, ph1 (Suc i)) ∈ g α ′)
unfolding L1-def by blast

then obtain pαi1 ::nat ⇒ nat
where pc10 : ∀ i::nat. i<pn1 −→ (pαi1 i) < α ∧ (ph1 i, ph1 (Suc i)) ∈ g

(pαi1 i) by metis
let ?pf1 = λi. ( pαi1 i, ph1 (Suc i) )
obtain pls1 where pc11 : pls1 = (f-to-ls ?pf1 pn1 ) by blast
obtain n1 where (b ′′,d) ∈ (Lv g α β)^^n1 using c7 by fastforce
then obtain h1 where c9 : h1 0 = b ′′ ∧ h1 n1 = d and ∀ i::nat. i < n1 −→

(h1 i, h1 (Suc i)) ∈ (Lv g α β)
using relpow-fun-conv by metis

then have ∀ i::nat. i < n1 −→ (∃ α ′. (α ′ < α ∨ α ′ < β) ∧ (h1 i, h1 (Suc i))
∈ g α ′) unfolding Lv-def by blast

then obtain αi1 ::nat ⇒ nat
where c10 : ∀ i::nat. i<n1 −→ ((αi1 i) < α ∨ (αi1 i) < β) ∧ (h1 i, h1 (Suc

i)) ∈ g (αi1 i) by metis
let ?f1 = λi. ( αi1 i, h1 (Suc i) )
obtain ls1 where c11 : ls1 = (f-to-ls ?f1 n1 ) by blast
obtain τ ′′ where qc12 : τ ′′ = (if b ′ = b ′′ then (b ′′, ls1 ) else (b ′, (β, b ′′) #

ls1 )) by blast
obtain τ ′ where c12 : τ ′ = (b, pls1 @ (snd τ ′′)) by blast
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obtain pn2 where (c,c ′) ∈ (L1 g β)^^pn2 using c8 by fastforce
then obtain ph2 where pc13 : ph2 0 = c ∧ ph2 pn2 = c ′ and ∀ i::nat. i <

pn2 −→ (ph2 i, ph2 (Suc i)) ∈ (L1 g β)
using relpow-fun-conv by metis

then have ∀ i::nat. i<pn2 −→ (∃ α ′. α ′ < β ∧ (ph2 i, ph2 (Suc i)) ∈ g α ′)
unfolding L1-def by blast

then obtain pαi2 ::nat ⇒ nat
where pc14 : ∀ i::nat. i<pn2 −→ (pαi2 i) < β ∧ (ph2 i, ph2 (Suc i)) ∈ g

(pαi2 i) by metis
let ?pf2 = λi. ( pαi2 i, ph2 (Suc i) )
obtain pls2 where pc15 : pls2 = (f-to-ls ?pf2 pn2 ) by blast
have Lv g β α = Lv g α β unfolding Lv-def by blast
then have (c ′′,d) ∈ (Lv g α β)^∗ using c8 by simp
then obtain n2 where (c ′′,d) ∈ (Lv g α β)^^n2 using c8 by fastforce
then obtain h2 where c13 : h2 0 = c ′′ ∧ h2 n2 = d and ∀ i::nat. i < n2

−→ (h2 i, h2 (Suc i)) ∈ (Lv g α β)
using relpow-fun-conv by metis

then have ∀ i::nat. i<n2 −→ (∃ α ′. (α ′ < α ∨ α ′ < β) ∧ (h2 i, h2 (Suc i))
∈ g α ′) unfolding Lv-def by blast

then obtain αi2 ::nat ⇒ nat
where c14 : ∀ i::nat. i<n2 −→ ((αi2 i) < α ∨ (αi2 i) < β) ∧ (h2 i, h2 (Suc

i)) ∈ g (αi2 i) by metis
let ?f2 = λi. ( αi2 i, h2 (Suc i) )
obtain ls2 where c15 : ls2 = (f-to-ls ?f2 n2 ) by blast
obtain σ ′′ where qc16 : σ ′′ = (if c ′ = c ′′ then (c ′′, ls2 ) else (c ′, (α, c ′′) #

ls2 )) by blast
obtain σ ′ where c16 : σ ′ = (c, pls2 @ (snd σ ′′)) by blast
have DD lrs cmp (τ , σ, σ ′, τ ′)
proof −

have d1 ′: ∀ k. k < pn1 −→ (ph1 k, pαi1 k, ph1 (Suc k)) ∈ lrs
proof (intro allI impI )

fix k
assume k < pn1
moreover then have (ph1 k, ph1 (Suc k)) ∈ g (pαi1 k) ∧ (pαi1 k < n)

using c5 pc10 by force
ultimately show (ph1 k, pαi1 k, ph1 (Suc k)) ∈ lrs using b4 by blast

qed
have d1 : ∀ k. k < n1 −→ (h1 k, αi1 k, h1 (Suc k)) ∈ lrs
proof (intro allI impI )

fix k
assume k < n1
moreover then have (h1 k, h1 (Suc k)) ∈ g (αi1 k) ∧ αi1 k < n

using c5 c10 by force
ultimately show (h1 k, αi1 k, h1 (Suc k)) ∈ lrs using b4 by blast

qed
have d2 ′: ∀ k. k < pn2 −→ (ph2 k, pαi2 k, ph2 (Suc k)) ∈ lrs
proof (intro allI impI )

fix k
assume k < pn2
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moreover then have (ph2 k, ph2 (Suc k)) ∈ g (pαi2 k) ∧ pαi2 k < n
using c5 pc14 by force

ultimately show (ph2 k, pαi2 k, ph2 (Suc k)) ∈ lrs using b4 by blast
qed
have d2 : ∀ k. k < n2 −→ (h2 k, αi2 k, h2 (Suc k)) ∈ lrs
proof (intro allI impI )

fix k
assume k < n2
moreover then have (h2 k, h2 (Suc k)) ∈ g (αi2 k) ∧ αi2 k < n

using c5 c14 by force
ultimately show (h2 k, αi2 k, h2 (Suc k)) ∈ lrs using b4 by blast

qed
have d3 : τ ′′ ∈ Decreasing-Diagrams.seq lrs
proof −

have ∀ k. k ≤ n1 −→ (b ′′, (f-to-ls ?f1 k)) ∈ Decreasing-Diagrams.seq lrs
proof

fix k0
show k0 ≤ n1 −→ (b ′′, (f-to-ls ?f1 k0 )) ∈ Decreasing-Diagrams.seq lrs
proof (induct k0 )

show 0 ≤ n1 −→ (b ′′, f-to-ls ?f1 0 ) ∈ Decreasing-Diagrams.seq lrs
using Decreasing-Diagrams.seq.intros(1 )[of - lrs] by simp

next
fix k

assume g1 : k ≤ n1 −→ (b ′′, f-to-ls ?f1 k) ∈ Decreasing-Diagrams.seq lrs
show Suc k ≤ n1 −→ (b ′′, f-to-ls ?f1 (Suc k)) ∈ Decreasing-Diagrams.seq

lrs
proof

assume h1 : Suc k ≤ n1
then have h2 : (b ′′, f-to-ls ?f1 k) ∈ Decreasing-Diagrams.seq lrs using

g1 by simp
obtain s where h3 : s = (h1 k, [(αi1 k, h1 (Suc k))]) by blast
then have s ∈ Decreasing-Diagrams.seq lrs

using h1 d1 Decreasing-Diagrams.seq.intros(2 )[of h1 k αi1 k]
Decreasing-Diagrams.seq.intros(1 )[of - lrs] by simp

moreover have lst (b ′′, f-to-ls ?f1 k) = fst s
using c9 h3 unfolding lst-def by (cases k, simp+)

ultimately show (b ′′, f-to-ls ?f1 (Suc k)) ∈ Decreasing-Diagrams.seq
lrs

using h2 h3 Decreasing-Diagrams.seq-concat-helper [of b ′′ f-to-ls ?f1 k
lrs s] by simp

qed
qed

qed
then have (b ′′, ls1 ) ∈ Decreasing-Diagrams.seq lrs using c11 by blast

moreover then have b ′ 6= b ′′−→ (b ′, (β, b ′′) # ls1 ) ∈ Decreasing-Diagrams.seq
lrs

using b4 c5 c7 Decreasing-Diagrams.seq.intros(2 )[of b ′ β b ′′] by fastforce
ultimately show τ ′′ ∈ Decreasing-Diagrams.seq lrs using qc12 by simp

qed
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have d4 : σ ′′ ∈ Decreasing-Diagrams.seq lrs
proof −

have ∀ k. k ≤ n2 −→ (c ′′, (f-to-ls ?f2 k)) ∈ Decreasing-Diagrams.seq lrs
proof

fix k0
show k0 ≤ n2 −→ (c ′′, (f-to-ls ?f2 k0 )) ∈ Decreasing-Diagrams.seq lrs
proof (induct k0 )

show 0 ≤ n2 −→ (c ′′, f-to-ls ?f2 0 ) ∈ Decreasing-Diagrams.seq lrs
using Decreasing-Diagrams.seq.intros(1 )[of - lrs] by simp

next
fix k

assume g1 : k ≤ n2 −→ (c ′′, f-to-ls ?f2 k) ∈ Decreasing-Diagrams.seq lrs
show Suc k ≤ n2 −→ (c ′′, f-to-ls ?f2 (Suc k)) ∈ Decreasing-Diagrams.seq

lrs
proof

assume h1 : Suc k ≤ n2
then have h2 : (c ′′, f-to-ls ?f2 k) ∈ Decreasing-Diagrams.seq lrs using

g1 by simp
obtain s where h3 : s = (h2 k, [(αi2 k, h2 (Suc k))]) by blast
then have s ∈ Decreasing-Diagrams.seq lrs

using h1 d2 Decreasing-Diagrams.seq.intros(2 )[of h2 k αi2 k]
Decreasing-Diagrams.seq.intros(1 )[of - lrs] by simp

moreover have lst (c ′′, f-to-ls ?f2 k) = fst s
using c13 h3 unfolding lst-def by (cases k, simp+)

ultimately show (c ′′, f-to-ls ?f2 (Suc k)) ∈ Decreasing-Diagrams.seq
lrs

using h2 h3 Decreasing-Diagrams.seq-concat-helper [of c ′′ f-to-ls ?f2 k
lrs s] by simp

qed
qed

qed
then have (c ′′, ls2 ) ∈ Decreasing-Diagrams.seq lrs using c15 by blast

moreover then have c ′ 6= c ′′ −→ (c ′, (α, c ′′) # ls2 ) ∈ Decreas-
ing-Diagrams.seq lrs

using b4 c5 c8 Decreasing-Diagrams.seq.intros(2 )[of c ′ α c ′′] by fastforce
ultimately show σ ′′ ∈ Decreasing-Diagrams.seq lrs using qc16 by simp

qed
have σ ∈ Decreasing-Diagrams.seq lrs by (simp add: c3 c4 seq.intros(1 )

seq.intros(2 ))
moreover have τ ∈ Decreasing-Diagrams.seq lrs by (simp add: c3 c4

seq.intros(1 ) seq.intros(2 ))
moreover have d5 : σ ′ ∈ Decreasing-Diagrams.seq lrs ∧ lst σ ′ = lst σ ′′

proof −
have (c, pls2 ) ∈ Decreasing-Diagrams.seq lrs
proof −
have ∀ k. k ≤ pn2 −→ (c, (f-to-ls ?pf2 k)) ∈ Decreasing-Diagrams.seq lrs
proof

fix k0
show k0 ≤ pn2 −→ (c, (f-to-ls ?pf2 k0 )) ∈ Decreasing-Diagrams.seq lrs
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proof (induct k0 )
show 0 ≤ pn2 −→ (c, f-to-ls ?pf2 0 ) ∈ Decreasing-Diagrams.seq lrs

using Decreasing-Diagrams.seq.intros(1 )[of - lrs] by simp
next

fix k
assume g1 : k ≤ pn2 −→ (c, f-to-ls ?pf2 k) ∈ Decreasing-Diagrams.seq

lrs
show Suc k ≤ pn2 −→ (c, f-to-ls ?pf2 (Suc k)) ∈ Decreasing-Diagrams.seq

lrs
proof

assume h1 : Suc k ≤ pn2
then have h2 : (c, f-to-ls ?pf2 k) ∈ Decreasing-Diagrams.seq lrs using

g1 by simp
obtain s where h3 : s = (ph2 k, [(pαi2 k, ph2 (Suc k))]) by blast
then have s ∈ Decreasing-Diagrams.seq lrs

using h1 d2 ′ Decreasing-Diagrams.seq.intros(2 )[of ph2 k pαi2 k]
Decreasing-Diagrams.seq.intros(1 )[of - lrs] by simp

moreover have lst (c, f-to-ls ?pf2 k) = fst s
using pc13 h3 unfolding lst-def by (cases k, simp+)

ultimately show (c, f-to-ls ?pf2 (Suc k)) ∈ Decreasing-Diagrams.seq
lrs

using h2 h3 Decreasing-Diagrams.seq-concat-helper [of c f-to-ls ?pf2
k lrs s] by simp

qed
qed

qed
then show ?thesis using pc15 by blast

qed
moreover have lst (c, pls2 ) = fst σ ′′

proof −
have lst (c, pls2 ) = c ′ using pc13 pc15 unfolding lst-def by (cases pn2 ,

simp+)
then show ?thesis unfolding qc16 by simp

qed
ultimately show ?thesis using d4

unfolding c16 using Decreasing-Diagrams.seq-concat-helper [of c pls2 lrs
σ ′′ ] by blast

qed
moreover have d6 : τ ′ ∈ Decreasing-Diagrams.seq lrs ∧ lst τ ′ = lst τ ′′

proof −
have (b, pls1 ) ∈ Decreasing-Diagrams.seq lrs
proof −
have ∀ k. k ≤ pn1 −→ (b, (f-to-ls ?pf1 k)) ∈ Decreasing-Diagrams.seq lrs
proof

fix k0
show k0 ≤ pn1 −→ (b, (f-to-ls ?pf1 k0 )) ∈ Decreasing-Diagrams.seq lrs
proof (induct k0 )

show 0 ≤ pn1 −→ (b, f-to-ls ?pf1 0 ) ∈ Decreasing-Diagrams.seq lrs
using Decreasing-Diagrams.seq.intros(1 )[of - lrs] by simp
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next
fix k
assume g1 : k ≤ pn1 −→ (b, f-to-ls ?pf1 k) ∈ Decreasing-Diagrams.seq

lrs
show Suc k ≤ pn1 −→ (b, f-to-ls ?pf1 (Suc k)) ∈ Decreasing-Diagrams.seq

lrs
proof

assume h1 : Suc k ≤ pn1
then have h2 : (b, f-to-ls ?pf1 k) ∈ Decreasing-Diagrams.seq lrs using

g1 by simp
obtain s where h3 : s = (ph1 k, [(pαi1 k, ph1 (Suc k))]) by blast
then have s ∈ Decreasing-Diagrams.seq lrs

using h1 d1 ′ Decreasing-Diagrams.seq.intros(2 )[of ph1 k pαi1 k]
Decreasing-Diagrams.seq.intros(1 )[of - lrs] by simp

moreover have lst (b, f-to-ls ?pf1 k) = fst s
using pc9 h3 unfolding lst-def by (cases k, simp+)

ultimately show (b, f-to-ls ?pf1 (Suc k)) ∈ Decreasing-Diagrams.seq
lrs

using h2 h3 Decreasing-Diagrams.seq-concat-helper [of b f-to-ls ?pf1
k lrs s] by simp

qed
qed

qed
then show ?thesis using pc11 by blast

qed
moreover have lst (b, pls1 ) = fst τ ′′

proof −
have lst (b, pls1 ) = b ′ using pc9 pc11 unfolding lst-def by (cases pn1 ,

simp+)
then show ?thesis unfolding qc12 by simp

qed
ultimately show ?thesis using d3

unfolding c12 using Decreasing-Diagrams.seq-concat-helper [of b pls1 lrs
τ ′′ ] by blast

qed
moreover have fst σ = fst τ using c4 by simp
moreover have lst σ = fst τ ′ using c4 c12 unfolding lst-def by simp
moreover have lst τ = fst σ ′ using c4 c16 unfolding lst-def by simp
moreover have lst σ ′ = lst τ ′

proof −
have lst τ ′′ = d
proof (cases n1 = 0 )

assume n1 = 0
then show lst τ ′′ = d using c9 c11 qc12 unfolding lst-def by force

next
assume n1 6= 0
moreover then have last ls1 = ( αi1 (n1−1 ), h1 n1 ) using c11 by

(cases n1 , simp+)
ultimately show lst τ ′′ = d using c9 c11 qc12 lem-ftofs-len unfolding
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lst-def
by (smt last-ConsR list.distinct(1 ) list.size(3 ) snd-conv)

qed
moreover have lst σ ′′ = d
proof (cases n2 = 0 )

assume n2 = 0
then show lst σ ′′ = d using c13 c15 qc16 unfolding lst-def by force

next
assume n2 6= 0
moreover then have last ls2 = ( αi2 (n2−1 ), h2 n2 ) using c15 by

(cases n2 , simp+)
ultimately show lst σ ′′ = d using c13 c15 qc16 lem-ftofs-len unfolding

lst-def
by (smt last-ConsR list.distinct(1 ) list.size(3 ) snd-conv)

qed
moreover have lst τ ′ = lst τ ′′ ∧ lst σ ′ = lst σ ′′ using d5 d6 by blast
ultimately show ?thesis by metis

qed
moreover have Decreasing-Diagrams.D cmp (labels τ) (labels σ) (labels σ ′)

(labels τ ′)
proof −

obtain σ1 where e01 : σ1 = (f-to-ls pαi2 pn2 ) by blast
obtain σ2 where e1 : σ2 = (if c ′ = c ′′ then [] else [α]) by blast
obtain σ3 where e2 : σ3 = (f-to-ls αi2 n2 ) by blast
obtain τ1 where e02 : τ1 = (f-to-ls pαi1 pn1 ) by blast
obtain τ2 where e3 : τ2 = (if b ′ = b ′′ then [] else [β]) by blast
obtain τ3 where e4 : τ3 = (f-to-ls αi1 n1 ) by blast
have labels τ = [β] ∧ labels σ = [α] using c4 unfolding labels-def by simp
moreover have labels σ ′ = σ1 @ σ2 @ σ3
proof −

have labels σ ′′ = σ2 @ σ3
proof −

have ∀ k. k ≤ n2 −→ map fst (f-to-ls ?f2 k) = f-to-ls αi2 k
proof

fix k
show k ≤ n2 −→ map fst (f-to-ls ?f2 k) = f-to-ls αi2 k by (induct k,

simp+)
qed
then show ?thesis using c15 qc16 e1 e2 unfolding labels-def by simp

qed
moreover have labels σ ′ = σ1 @ labels σ ′′

proof −
have ∀ k. k ≤ pn2 −→ map fst (f-to-ls ?pf2 k) = f-to-ls pαi2 k
proof

fix k
show k ≤ pn2 −→ map fst (f-to-ls ?pf2 k) = f-to-ls pαi2 k by (induct

k, simp+)
qed
then have map fst pls2 = σ1 unfolding pc15 e01 by blast
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then show ?thesis unfolding c16 labels-def by simp
qed
ultimately show ?thesis by simp

qed
moreover have labels τ ′ = τ1 @ τ2 @ τ3
proof −

have labels τ ′′ = τ2 @ τ3
proof −

have ∀ k. k ≤ n1 −→ map fst (f-to-ls ?f1 k) = f-to-ls αi1 k
proof

fix k
show k ≤ n1 −→ map fst (f-to-ls ?f1 k) = f-to-ls αi1 k by (induct k,

simp+)
qed
then show ?thesis using c11 qc12 e3 e4 unfolding labels-def by simp

qed
moreover have labels τ ′ = τ1 @ labels τ ′′

proof −
have ∀ k. k ≤ pn1 −→ map fst (f-to-ls ?pf1 k) = f-to-ls pαi1 k
proof

fix k
show k ≤ pn1 −→ map fst (f-to-ls ?pf1 k) = f-to-ls pαi1 k by (induct

k, simp+)
qed
then have map fst pls1 = τ1 unfolding pc11 e02 by blast
then show ?thesis unfolding c12 labels-def by simp

qed
ultimately show ?thesis by simp

qed
moreover have LD ′ cmp β α σ1 σ2 σ3 τ1 τ2 τ3
proof −

let ?dn = {α ′ . (α ′,α) ∈ cmp ∨ (α ′,β) ∈ cmp}
have pf1 : set σ1 ⊆ {y. (y, β) ∈ cmp}
proof −

have ∀ k. k ≤ pn2 −→ set (f-to-ls pαi2 k) ⊆ {y. (y, β) ∈ cmp}
proof

fix k
show k ≤ pn2 −→ set (f-to-ls pαi2 k) ⊆ {y. (y, β) ∈ cmp} using b5

pc14 by (induct k, simp+)
qed
then show ?thesis using e01 by blast

qed
have pf2 : set τ1 ⊆ {y. (y, α) ∈ cmp}
proof −

have ∀ k. k ≤ pn1 −→ set (f-to-ls pαi1 k) ⊆ {y. (y, α) ∈ cmp}
proof

fix k
show k ≤ pn1 −→ set (f-to-ls pαi1 k) ⊆ {y. (y, α) ∈ cmp} using b5

pc10 by (induct k, simp+)
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qed
then show ?thesis using e02 by blast

qed
have f1 : set σ3 ⊆ ?dn
proof −

have ∀ k. k ≤ n2 −→ set (f-to-ls αi2 k) ⊆ ?dn
proof

fix k
show k ≤ n2 −→ set (f-to-ls αi2 k) ⊆ ?dn using b5 c14 by (induct

k, simp+)
qed
then show ?thesis using e2 by blast

qed
have f2 : set τ3 ⊆ ?dn
proof −

have ∀ k. k ≤ n1 −→ set (f-to-ls αi1 k) ⊆ ?dn
proof

fix k
show k ≤ n1 −→ set (f-to-ls αi1 k) ⊆ ?dn using b5 c10 by (induct

k, simp+)
qed
then show ?thesis using e4 by blast

qed
have LD-1 ′ cmp β α σ1 σ2 σ3 using pf1 f1 e1 e2 unfolding LD-1 ′-def

Decreasing-Diagrams.ds-def by simp
moreover have LD-1 ′ cmp α β τ1 τ2 τ3 using pf2 f2 e3 e4 unfolding

LD-1 ′-def Decreasing-Diagrams.ds-def by force
ultimately show ?thesis unfolding LD ′-def by blast

qed
moreover have trans cmp ∧ wf cmp using b6 b7 by blast
moreover then have irrefl cmp using irrefl-def by fastforce
ultimately show ?thesis using proposition3-4 [of cmp β α σ1 σ2 σ3 τ1

τ2 τ3 ] by simp
qed
ultimately show ?thesis unfolding DD-def diagram-def D2-def by simp

qed
then show ∃ σ ′ τ ′. DD lrs cmp (fst P,snd P,σ ′,τ ′) using c2 by fastforce

qed
ultimately show ?thesis unfolding LD-def by blast

qed

2 Main theorem
The next theorem has the following meaning: if the cardinality of a binary re-
lation r does not exceed the first uncountable cardinal (cardSuc |UNIV ::nat
set|), then the following two conditions are equivalent:

1. r is confluent (Abstract-Rewriting.CR r)
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2. r can be proven confluent using the decreasing diagrams method with
natural numbers as labels (Decreasing-Diagrams.LD (UNIV ::nat set) r).
theorem N1-completeness:
fixes r :: ′a rel
assumes |r | ≤o cardSuc |UNIV ::nat set|
shows Abstract-Rewriting.CR r = Decreasing-Diagrams.LD (UNIV ::nat set) r
proof

assume b0 : CR r
have b1 : |r | ≤o cardSuc |UNIV ::nat set| using assms by simp
obtain κ where b2 : κ = cardSuc |UNIV ::nat set| by blast
have |Field r | ≤o cardSuc |UNIV ::nat set|
proof (cases finite r)

assume finite r
then show ?thesis using b2 lem-fin-fl-rel by (metis Field-card-of Field-natLeq

cardSuc-ordLeq-ordLess
card-of-card-order-on card-of-mono2 finite-iff-ordLess-natLeq ordLess-imp-ordLeq)

next
assume ¬ finite r
then show ?thesis using b1 b2 lem-rel-inf-fld-card using ordIso-ordLeq-trans

by blast
qed
moreover have confl-rel r using b0 unfolding confl-rel-def Abstract-Rewriting.CR-on-def

by blast
ultimately show LD (UNIV ::nat set) r using lem-dc3-confl-lewsuc[of r ] lem-dcr-to-ld

by blast
next

assume LD (UNIV ::nat set) r
then show CR r using Decreasing-Diagrams.sound by blast

qed

end
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