
Combinatorial q-Analogues

Manuel Eberl

January 24, 2025

Abstract

This entry defines the q-analogues of various combinatorial symbols,
namely:

• The q-bracket [n]q = 1−qn

1−q for n ∈ Z

• The q-factorial [n]q! = [1]q[2]q · · · [n]q for n ∈ Z

• The q-binomial coefficients
(
n
k

)
q

= [n]q !
[k]q ! [n−k]q ! for n, k ∈ N (also

known as Gaussian binomial coefficients or Gaussian polynomi-
als)

• The infinite q-Pochhammer symbol (a; q)∞ =
∏∞

n=0 (1− aqn)

• Euler’s φ function φ(q) = (q; q)∞
• The finite q-Pochhammer symbol (a; q)n = (a; q)∞/(aqn; q)∞ for

n ∈ Z
Proofs for many basic properties are provided, notably for the q-binomial
theorem:

(−a; q)n =
n−1∏
k=0

(1 + aqn) =
n∑

k=0

(
n

k

)
q

akqk(k−1)/2

Additionally, two identities of Euler are formalised that give power
series expansions for (a; q)∞ and 1/(a; q)∞ in powers of a:

(a; q)∞ =
∞∏

k=0

(1− aqk) =
∞∑

n=0

(−a)nqn(n−1)/2

(1− q) · · · (1− qn)

1
(a; q)∞

=
∞∏

k=0

1
1− aqk

=
∞∑

n=0

an

(1− q) · · · (1− qn)

1

Contents
1 Auxiliary material 3

1.1 Additional facts about infinite products 3
1.2 Miscellanea . 16

2 q-analogues of basic combinatorial symbols 22
2.1 The q-bracket [n]q . 22
2.2 The q-factorial [n]q! . 29
2.3 q-binomial coefficients

(
n
k

)
q

. 33
2.4 The Gaussian polynomials . 38
2.5 The finite Pochhammer symbol (a; q)n 42

3 The infinite q-Pochhammer symbol (a; q)∞ 56
3.1 Definition and basic properties 56
3.2 Uniform convergence and its consequences 59
3.3 Bounds for (a; q)n and

(
n
k

)
q

in terms of (a; q)∞ 65
3.4 Limits of the q-binomial coefficients 67
3.5 Useful identities . 69
3.6 Two series expansions by Euler 73
3.7 Euler’s function . 81

4 q-binomial identities 83
4.1 The q-binomial theorem . 83
4.2 The infinite q-binomial theorem 85
4.3 The q-Vandermonde identity 89

2

1 Auxiliary material

1.1 Additional facts about infinite products
theory More_Infinite_Products

imports "HOL-Analysis.Analysis"
begin

lemma uniform_limit_singleton: "uniform_limit {x} f g F ←→ ((λn. f
n x) −−−→ g x) F"

by (simp add: uniform_limit_iff tendsto_iff)

lemma uniformly_convergent_on_singleton:
"uniformly_convergent_on {x} f ←→ convergent (λn. f n x)"
by (auto simp: uniformly_convergent_on_def uniform_limit_singleton convergent_def)

lemma uniformly_convergent_on_subset:
assumes "uniformly_convergent_on A f" "B ⊆ A"
shows "uniformly_convergent_on B f"
using assms by (meson uniform_limit_on_subset uniformly_convergent_on_def)

lemma raw_has_prod_imp_nonzero:
assumes "raw_has_prod f N P" "n ≥ N"
shows "f n 6= 0"

proof
assume "f n = 0"
from assms(1) have lim: "(λm. (

∏
k≤m. f (k + N))) −−−−→ P" and "P

6= 0"
unfolding raw_has_prod_def by blast+

have "eventually (λm. m ≥ n - N) at_top"
by (rule eventually_ge_at_top)

hence "eventually (λm. (
∏

k≤m. f (k + N)) = 0) at_top"
proof eventually_elim

case (elim m)
have "f ((n - N) + N) = 0" "n - N ∈ {..m}" "finite {..m}"

using ‹n ≥ N› ‹f n = 0› elim by auto
thus "(

∏
k≤m. f (k + N)) = 0"

using prod_zero[of "{..m}" "λk. f (k + N)"] by blast
qed
with lim have "P = 0"

by (simp add: LIMSEQ_const_iff tendsto_cong)
thus False

using ‹P 6= 0› by contradiction
qed

lemma has_prod_imp_tendsto:

3

fixes f :: "nat ⇒ ’a :: {semidom, t2_space}"
assumes "f has_prod P"
shows "(λn.

∏
k≤n. f k) −−−−→ P"

proof (cases "P = 0")
case False
with assms show ?thesis

by (auto simp: has_prod_def raw_has_prod_def)
next

case True
with assms obtain N P’ where "f N = 0" "raw_has_prod f (Suc N) P’"

by (auto simp: has_prod_def)
thus ?thesis

using LIMSEQ_prod_0 True ‹f N = 0› by blast
qed

lemma has_prod_imp_tendsto’:
fixes f :: "nat ⇒ ’a :: {semidom, t2_space}"
assumes "f has_prod P"
shows "(λn.

∏
k<n. f k) −−−−→ P"

using has_prod_imp_tendsto[OF assms] LIMSEQ_lessThan_iff_atMost by blast

lemma convergent_prod_tendsto_imp_has_prod:
fixes f :: "nat ⇒ ’a :: real_normed_field"
assumes "convergent_prod f" "(λn. (

∏
i≤n. f i)) −−−−→ P"

shows "f has_prod P"
using assms by (metis convergent_prod_imp_has_prod has_prod_imp_tendsto

limI)

lemma has_prod_group_nonzero:
fixes f :: "nat ⇒ ’a :: {semidom, t2_space}"
assumes "f has_prod P" "k > 0" "P 6= 0"
shows "(λn. (

∏
i∈{n*k..<n*k+k}. f i)) has_prod P"

proof -
have "(λn.

∏
k<n. f k) −−−−→ P"

using assms(1) by (intro has_prod_imp_tendsto’)
hence "(λn.

∏
k<n*k. f k) −−−−→ P"

by (rule filterlim_compose) (use ‹k > 0› in real_asymp)
also have "(λn.

∏
k<n*k. f k) = (λn.

∏
m<n. prod f {m*k..<m*k+k})"

by (subst prod.nat_group [symmetric]) auto
finally have "(λn.

∏
m≤n. prod f {m*k..<m*k+k}) −−−−→ P"

by (subst (asm) LIMSEQ_lessThan_iff_atMost)
hence "raw_has_prod (λn. prod f {n*k..<n*k+k}) 0 P"

using ‹P 6= 0› by (auto simp: raw_has_prod_def)
thus ?thesis

by (auto simp: has_prod_def)
qed

lemma has_prod_group:

4

fixes f :: "nat ⇒ ’a :: real_normed_field"
assumes "f has_prod P" "k > 0"
shows "(λn. (

∏
i∈{n*k..<n*k+k}. f i)) has_prod P"

proof (rule convergent_prod_tendsto_imp_has_prod)
have "(λn.

∏
k<n. f k) −−−−→ P"

using assms(1) by (intro has_prod_imp_tendsto’)
hence "(λn.

∏
k<n*k. f k) −−−−→ P"

by (rule filterlim_compose) (use ‹k > 0› in real_asymp)
also have "(λn.

∏
k<n*k. f k) = (λn.

∏
m<n. prod f {m*k..<m*k+k})"

by (subst prod.nat_group [symmetric]) auto
finally show "(λn.

∏
m≤n. prod f {m*k..<m*k+k}) −−−−→ P"

by (subst (asm) LIMSEQ_lessThan_iff_atMost)
next

from assms obtain N P’ where prod1: "raw_has_prod f N P’"
by (auto simp: has_prod_def)

define N’ where "N’ = nat dreal N / real ke"
have "k * N’ ≥ N"
proof -

have "(real N / real k * real k) ≤ real (N’ * k)"
unfolding N’_def of_nat_mult by (intro mult_right_mono) (use ‹k

> 0› in auto)
also have "real N / real k * real k = real N"

using ‹k > 0› by simp
finally show ?thesis

by (simp only: mult.commute of_nat_le_iff)
qed

obtain P’’ where prod2: "raw_has_prod f (k * N’) P’’"
using prod1 ‹k * N’ ≥ N› by (rule raw_has_prod_ignore_initial_segment)

hence "P’’ 6= 0"
by (auto simp: raw_has_prod_def)

from prod2 have "raw_has_prod (λn. f (n + k * N’)) 0 P’’"
by (simp add: raw_has_prod_def)

hence "(λn. f (n + k * N’)) has_prod P’’"
by (auto simp: has_prod_def)

hence "(λn.
∏

i=n*k..<n*k+k. f (i + k * N’)) has_prod P’’"
by (rule has_prod_group_nonzero) fact+

hence "convergent_prod (λn.
∏

i=n*k..<n*k+k. f (i + k * N’))"
using has_prod_iff by blast

also have "(λn.
∏

i=n*k..<n*k+k. f (i + k * N’)) = (λn.
∏

i=(n+N’)*k..<(n+N’)*k+k.
f i)"

proof
fix n :: nat
show "(

∏
i=n*k..<n*k+k. f (i + k * N’)) = (

∏
i=(n+N’)*k..<(n+N’)*k+k.

f i)"
by (rule prod.reindex_bij_witness[of _ "λn. n - k*N’" "λn. n +

k*N’"])
(auto simp: algebra_simps)

qed

5

also have "convergent_prod . . . ←→ convergent_prod (λn. (
∏

i=n*k..<n*k+k.
f i))"

by (rule convergent_prod_iff_shift)
finally show "convergent_prod (λn. prod f {n * k..<n * k + k})" .

qed

lemma has_prod_nonneg:
assumes "f has_prod P" "

∧
n. f n ≥ (0::real)"

shows "P ≥ 0"
proof (rule tendsto_le)

show "((λn.
∏

i≤n. f i)) −−−−→ P"
using assms(1) by (rule has_prod_imp_tendsto)

show "(λn. 0::real) −−−−→ 0"
by auto

qed (use assms in ‹auto intro!: always_eventually prod_nonneg›)

lemma has_prod_pos:
assumes "f has_prod P" "

∧
n. f n > (0::real)"

shows "P > 0"
proof -

have "P ≥ 0"
by (rule has_prod_nonneg[OF assms(1)]) (auto intro!: less_imp_le assms(2))

moreover have "f n 6= 0" for n
using assms(2)[of n] by auto

hence "P 6= 0"
using has_prod_0_iff[of f] assms by auto

ultimately show ?thesis
by linarith

qed

lemma prod_ge_prodinf:
fixes f :: "nat ⇒ ’a::{linordered_idom,linorder_topology}"
assumes "f has_prod a" "

∧
i. 0 ≤ f i" "

∧
i. i ≥ n =⇒ f i ≤ 1"

shows "prod f {..<n} ≥ prodinf f"
proof (rule has_prod_le; (intro conjI)?)

show "f has_prod prodinf f"
using assms(1) has_prod_unique by blast

show "(λr. if r ∈ {..<n} then f r else 1) has_prod prod f {..<n}"
by (rule has_prod_If_finite_set) auto

next
fix i
show "f i ≥ 0"

by (rule assms)
show "f i ≤ (if i ∈ {..<n} then f i else 1)"

using assms(3)[of i] by auto
qed

6

lemma has_prod_less:
fixes F G :: real
assumes less: "f m < g m"
assumes f: "f has_prod F" and g: "g has_prod G"
assumes pos: "

∧
n. 0 < f n" and le: "

∧
n. f n ≤ g n"

shows "F < G"
proof -

define F’ G’ where "F’ = (
∏

n<Suc m. f n)" and "G’ = (
∏

n<Suc m. g
n)"

have [simp]: "f n 6= 0" "g n 6= 0" for n
using pos[of n] le[of n] by auto

have [simp]: "F’ 6= 0" "G’ 6= 0"
by (auto simp: F’_def G’_def)

have f’: "(λn. f (n + Suc m)) has_prod (F / F’)"
unfolding F’_def using f
by (intro has_prod_split_initial_segment) auto

have g’: "(λn. g (n + Suc m)) has_prod (G / G’)"
unfolding G’_def using g
by (intro has_prod_split_initial_segment) auto

have "F’ * (F / F’) < G’ * (F / F’)"
proof (rule mult_strict_right_mono)

show "F’ < G’"
unfolding F’_def G’_def
by (rule prod_mono_strict[of m])

(auto intro: le less_imp_le[OF pos] less_le_trans[OF pos le]
less)

show "F / F’ > 0"
using f’ by (rule has_prod_pos) (use pos in auto)

qed
also have " . . . ≤ G’ * (G / G’)"
proof (rule mult_left_mono)

show "F / F’ ≤ G / G’"
using f’ g’ by (rule has_prod_le) (auto intro: less_imp_le[OF pos]

le)
show "G’ ≥ 0"

unfolding G’_def by (intro prod_nonneg order.trans[OF less_imp_le[OF
pos] le])

qed
finally show ?thesis

by simp
qed

Cauchy’s criterion for the convergence of infinite products, adapted to prov-
ing uniform convergence: let fk(x) be a sequence of functions such that

1. fk(x) has uniformly bounded partial products, i.e. there exists a con-
stant C such that

∏m
k=0 fk(x) ≤ C for all m and x ∈ A.

2. For any ε > 0 there exists a number M ∈ N such that, for any m,n ≥
M and all x ∈ A we have |(

∏n
k=m fk(x))− 1| < ε

7

Then
∏n

k=0 fk(x) converges to
∏∞

k=0 fk(x) uniformly for all x ∈ A.
lemma uniformly_convergent_prod_Cauchy:

fixes f :: "nat ⇒ ’a :: topological_space ⇒ ’b :: {real_normed_div_algebra,
comm_ring_1, banach}"

assumes C: "
∧

x m. x ∈ A =⇒ norm (
∏

k<m. f k x) ≤ C"
assumes "

∧
e. e > 0 =⇒ ∃ M. ∀ x∈A. ∀ m≥M. ∀ n≥m. dist (

∏
k=m..n. f

k x) 1 < e"
shows "uniformly_convergent_on A (λN x.

∏
n<N. f n x)"

proof (rule Cauchy_uniformly_convergent, rule uniformly_Cauchy_onI’)
fix ε :: real assume ε: "ε > 0"
define C’ where "C’ = max C 1"
have C’: "C’ > 0"

by (auto simp: C’_def)
define δ where "δ = Min {2 / 3 * ε / C’, 1 / 2}"
from ε have "δ > 0"

using ‹C’ > 0› by (auto simp: δ_def)
obtain M where M: "

∧
x m n. x ∈ A =⇒ m ≥ M =⇒ n ≥ m =⇒ dist (

∏
k=m..n.

f k x) 1 < δ"
using ‹δ > 0› assms by fast

show "∃ M. ∀ x∈A. ∀ m≥M. ∀ n>m. dist (
∏

k<m. f k x) (
∏

k<n. f k x) <
ε"

proof (rule exI, intro ballI allI impI)
fix x m n
assume x: "x ∈ A" and mn: "M + 1 ≤ m" "m < n"
show "dist (

∏
k<m. f k x) (

∏
k<n. f k x) < ε"

proof (cases "∃ k<m. f k x = 0")
case True
hence "(

∏
k<m. f k x) = 0" and "(

∏
k<n. f k x) = 0"

using mn x by (auto intro!: prod_zero)
thus ?thesis

using ε by simp
next

case False
have *: "{..<n} = {..<m} ∪ {m..n-1}"

using mn by auto
have "dist (

∏
k<m. f k x) (

∏
k<n. f k x) = norm ((

∏
k<m. f k x)

* ((
∏

k=m..n-1. f k x) - 1))"
unfolding * by (subst prod.union_disjoint)

(use mn in ‹auto simp: dist_norm algebra_simps
norm_minus_commute›)

also have " . . . = (
∏

k<m. norm (f k x)) * dist (
∏

k=m..n-1. f k x)
1"

by (simp add: norm_mult dist_norm prod_norm)
also have " . . . < (

∏
k<m. norm (f k x)) * (2 / 3 * ε / C’)"

proof (rule mult_strict_left_mono)
show "dist (

∏
k = m..n - 1. f k x) 1 < 2 / 3 * ε / C’"

using M[of x m "n-1"] x mn unfolding δ_def by fastforce
qed (use False in ‹auto intro!: prod_pos›)

8

also have "(
∏

k<m. norm (f k x)) = (
∏

k<M. norm (f k x)) * norm
(
∏

k=M..<m. (f k x))"
proof -

have *: "{..<m} = {..<M} ∪ {M..<m}"
using mn by auto

show ?thesis
unfolding * using mn by (subst prod.union_disjoint) (auto simp:

prod_norm)
qed
also have "norm (

∏
k=M..<m. (f k x)) ≤ 3 / 2"

proof -
have "dist (

∏
k=M..m-1. f k x) 1 < δ"

using M[of x M "m-1"] x mn ‹δ > 0› by auto
also have " . . . ≤ 1 / 2"

by (simp add: δ_def)
also have "{M..m-1} = {M..<m}"

using mn by auto
finally have "norm (

∏
k=M..<m. f k x) ≤ norm (1 :: ’b) + 1 / 2"

by norm
thus ?thesis

by simp
qed
hence "(

∏
k<M. norm (f k x)) * norm (

∏
k = M..<m. f k x) * (2 /

3 * ε / C’) ≤
(
∏

k<M. norm (f k x)) * (3 / 2) * (2 / 3 * ε / C’)"
using ε C’ by (intro mult_left_mono mult_right_mono prod_nonneg)

auto
also have " . . . ≤ C’ * (3 / 2) * (2 / 3 * ε / C’)"
proof (intro mult_right_mono)

have "(
∏

k<M. norm (f k x)) ≤ C"
using C[of x M] x by (simp add: prod_norm)

also have " . . . ≤ C’"
by (simp add: C’_def)

finally show "(
∏

k<M. norm (f k x)) ≤ C’" .
qed (use ε C’ in auto)
finally show "dist (

∏
k<m. f k x) (

∏
k<n. f k x) < ε"

using ‹C’ > 0› by (simp add: field_simps)
qed

qed
qed

By instantiating the set A in this result with a singleton set, we obtain the
“normal” Cauchy criterion for infinite products:
lemma convergent_prod_Cauchy_sufficient:

fixes f :: "nat ⇒ ’b :: {real_normed_div_algebra, comm_ring_1, banach}"
assumes "

∧
e. e > 0 =⇒ ∃ M. ∀ m n. M ≤ m −→ m ≤ n −→ dist (

∏
k=m..n.

f k) 1 < e"
shows "convergent_prod f"

proof -

9

obtain M where M: "
∧

m n. m ≥ M =⇒ n ≥ m =⇒ dist (prod f {m..n})
1 < 1 / 2"

using assms(1)[of "1 / 2"] by auto
have nz: "f m 6= 0" if "m ≥ M" for m

using M[of m m] that by auto

have M’: "dist (prod (λk. f (k + M)) {m..<n}) 1 < 1 / 2" for m n
proof (cases "m < n")

case True
have "dist (prod f {m+M..n-1+M}) 1 < 1 / 2"

by (rule M) (use True in auto)
also have "prod f {m+M..n-1+M} = prod (λk. f (k + M)) {m..<n}"

by (rule prod.reindex_bij_witness[of _ "λk. k + M" "λk. k - M"])
(use True in auto)

finally show ?thesis .
qed auto

have "uniformly_convergent_on {0::’b} (λN x.
∏

n<N. f (n + M))"
proof (rule uniformly_convergent_prod_Cauchy)

fix m :: nat
have "norm (

∏
k=0..<m. f (k + M)) < norm (1 :: ’b) + 1 / 2"

using M’[of 0 m] by norm
thus "norm (

∏
k<m. f (k + M)) ≤ 3 / 2"

by (simp add: atLeast0LessThan)
next

fix e :: real assume e: "e > 0"
obtain M’ where M’: "

∧
m n. M’ ≤ m −→ m ≤ n −→ dist (

∏
k=m..n.

f k) 1 < e"
using assms e by blast

show "∃ M’. ∀ x∈{0}. ∀ m≥M’. ∀ n≥m. dist (
∏

k=m..n. f (k + M)) 1 <
e"

proof (rule exI[of _ M’], intro ballI impI allI)
fix m n :: nat assume "M’ ≤ m" "m ≤ n"
thus "dist (

∏
k=m..n. f (k + M)) 1 < e"

using M’ by (metis add.commute add_left_mono prod.shift_bounds_cl_nat_ivl
trans_le_add1)

qed
qed
hence "convergent (λN.

∏
n<N. f (n + M))"

by (rule uniformly_convergent_imp_convergent[of _ _ 0]) auto
then obtain L where L: "(λN.

∏
n<N. f (n + M)) −−−−→ L"

unfolding convergent_def by blast

show ?thesis
unfolding convergent_prod_altdef

proof (rule exI[of _ M], rule exI[of _ L], intro conjI)
show "∀ n≥M. f n 6= 0"

using nz by auto
next

10

show "(λn.
∏

i≤n. f (i + M)) −−−−→ L"
using LIMSEQ_Suc[OF L] by (subst (asm) lessThan_Suc_atMost)

next
have "norm L ≥ 1 / 2"
proof (rule tendsto_lowerbound)

show "(λn. norm (
∏

i<n. f (i + M))) −−−−→ norm L"
by (intro tendsto_intros L)

show "∀ F n in sequentially. 1 / 2 ≤ norm (
∏

i<n. f (i + M))"
proof (intro always_eventually allI)

fix m :: nat
have "norm (

∏
k=0..<m. f (k + M)) ≥ norm (1 :: ’b) - 1 / 2"

using M’[of 0 m] by norm
thus "norm (

∏
k<m. f (k + M)) ≥ 1 / 2"

by (simp add: atLeast0LessThan)
qed

qed auto
thus "L 6= 0"

by auto
qed

qed

We now prove that the Cauchy criterion for pointwise convergence is both
necessary and sufficient.
lemma convergent_prod_Cauchy_necessary:

fixes f :: "nat ⇒ ’b :: {real_normed_field, banach}"
assumes "convergent_prod f" "e > 0"
shows "∃ M. ∀ m n. M ≤ m −→ m ≤ n −→ dist (

∏
k=m..n. f k) 1 <

e"
proof -

have *: "∃ M. ∀ m n. M ≤ m −→ m ≤ n −→ dist (
∏

k=m..n. f k) 1 < e"
if f: "convergent_prod f" "0 /∈ range f" and e: "e > 0"
for f :: "nat ⇒ ’b" and e :: real

proof -
have *: "(λn. norm (

∏
k<n. f k)) −−−−→ norm (

∏
k. f k)"

using has_prod_imp_tendsto’ f(1) by (intro tendsto_norm) blast
from f(1,2) have [simp]: "(

∏
k. f k) 6= 0"

using prodinf_nonzero by fastforce
obtain M’ where M’: "norm (

∏
k<m. f k) > norm (

∏
k. f k) / 2" if "m

≥ M’" for m
using order_tendstoD(1)[OF *, of "norm (

∏
k. f k) / 2"]

by (auto simp: eventually_at_top_linorder)
define M where "M = Min (insert (norm (

∏
k. f k) / 2) ((λm. norm

(
∏

k<m. f k)) ‘ {..<M’}))"
have "M > 0"

unfolding M_def using f(2) by (subst Min_gr_iff) auto
have norm_ge: "norm (

∏
k<m. f k) ≥ M" for m

proof (cases "m ≥ M’")
case True
have "M ≤ norm (

∏
k. f k) / 2"

11

unfolding M_def by (intro Min.coboundedI) auto
also from True have "norm (

∏
k<m. f k) > norm (

∏
k. f k) / 2"

by (intro M’)
finally show ?thesis by linarith

next
case False
thus ?thesis

unfolding M_def
by (intro Min.coboundedI) auto

qed

have "convergent (λn.
∏

k<n. f k)"
using f(1) convergent_def has_prod_imp_tendsto’ by blast

hence "Cauchy (λn.
∏

k<n. f k)"
by (rule convergent_Cauchy)

moreover have "e * M > 0"
using e ‹M > 0› by auto

ultimately obtain N where N: "dist (
∏

k<m. f k) (
∏

k<n. f k) < e
* M" if "m ≥ N" "n ≥ N" for m n

unfolding Cauchy_def by fast

show "∃ M. ∀ m n. M ≤ m −→ m ≤ n −→ dist (prod f {m..n}) 1 < e"
proof (rule exI[of _ N], intro allI impI, goal_cases)

case (1 m n)
have "dist (

∏
k<m. f k) (

∏
k<Suc n. f k) < e * M"

by (rule N) (use 1 in auto)
also have "dist (

∏
k<m. f k) (

∏
k<Suc n. f k) = norm ((

∏
k<Suc n.

f k) - (
∏

k<m. f k))"
by (simp add: dist_norm norm_minus_commute)

also have "(
∏

k<Suc n. f k) = (
∏

k∈{..<m}∪{m..n}. f k)"
using 1 by (intro prod.cong) auto

also have " . . . = (
∏

k∈{..<m}. f k) * (
∏

k∈{m..n}. f k)"
by (subst prod.union_disjoint) auto

also have " . . . - (
∏

k<m. f k) = (
∏

k<m. f k) * ((
∏

k∈{m..n}. f k)
- 1)"

by (simp add: algebra_simps)
finally have "norm (prod f {m..n} - 1) < e * M / norm (prod f {..<m})"

using f(2) by (auto simp add: norm_mult divide_simps mult_ac)
also have " . . . ≤ e * M / M"

using e ‹M > 0› f(2) by (intro divide_left_mono norm_ge mult_pos_pos)
auto

also have " . . . = e"
using ‹M > 0› by simp

finally show ?case
by (simp add: dist_norm)

qed
qed

obtain M where M: "f m 6= 0" if "m ≥ M" for m

12

using convergent_prod_imp_ev_nonzero[OF assms(1)]
by (auto simp: eventually_at_top_linorder)

have "∃ M’. ∀ m n. M’ ≤ m −→ m ≤ n −→ dist (
∏

k=m..n. f (k + M))
1 < e"

by (rule *) (use assms M in auto)
then obtain M’ where M’: "dist (

∏
k=m..n. f (k + M)) 1 < e" if "M’

≤ m" "m ≤ n" for m n
by blast

show "∃ M. ∀ m n. M ≤ m −→ m ≤ n −→ dist (prod f {m..n}) 1 < e"
proof (rule exI[of _ "M + M’"], safe, goal_cases)

case (1 m n)
have "dist (

∏
k=m-M..n-M. f (k + M)) 1 < e"

by (rule M’) (use 1 in auto)
also have "(

∏
k=m-M..n-M. f (k + M)) = (

∏
k=m..n. f k)"

using 1 by (intro prod.reindex_bij_witness[of _ "λk. k - M" "λk.
k + M"]) auto

finally show ?case .
qed

qed

lemma convergent_prod_Cauchy_iff:
fixes f :: "nat ⇒ ’b :: {real_normed_field, banach}"
shows "convergent_prod f ←→ (∀ e>0. ∃ M. ∀ m n. M ≤ m −→ m ≤ n −→

dist (
∏

k=m..n. f k) 1 < e)"
using convergent_prod_Cauchy_necessary[of f] convergent_prod_Cauchy_sufficient[of

f]
by blast

lemma uniform_limit_suminf:
fixes f:: "nat ⇒ ’a :: topological_space ⇒ ’b::{metric_space, comm_monoid_add}"
assumes "uniformly_convergent_on X (λn x.

∑
k<n. f k x)"

shows "uniform_limit X (λn x.
∑

k<n. f k x) (λx.
∑

k. f k x) sequentially"
proof -

obtain S where S: "uniform_limit X (λn x.
∑

k<n. f k x) S sequentially"
using assms uniformly_convergent_on_def by blast

then have "(
∑

k. f k x) = S x" if "x ∈ X" for x
using that sums_iff sums_def by (blast intro: tendsto_uniform_limitI

[OF S])
with S show ?thesis

by (simp cong: uniform_limit_cong’)
qed

lemma uniformly_convergent_on_prod:
fixes f :: "nat ⇒ ’a :: topological_space ⇒ ’b :: {real_normed_div_algebra,

comm_ring_1, banach}"
assumes cont: "

∧
n. continuous_on A (f n)"

13

assumes A: "compact A"
assumes conv_sum: "uniformly_convergent_on A (λN x.

∑
n<N. norm (f

n x))"
shows "uniformly_convergent_on A (λN x.

∏
n<N. 1 + f n x)"

proof -
have lim: "uniform_limit A (λn x.

∑
k<n. norm (f k x)) (λx.

∑
k. norm

(f k x)) sequentially"
by (rule uniform_limit_suminf) fact

have cont’: "∀ F n in sequentially. continuous_on A (λx.
∑

k<n. norm
(f k x))"

using cont by (auto intro!: continuous_intros always_eventually cont)
have "continuous_on A (λx.

∑
k. norm (f k x))"

by (rule uniform_limit_theorem[OF cont’ lim]) auto
hence "compact ((λx.

∑
k. norm (f k x)) ‘ A)"

by (intro compact_continuous_image A)
hence "bounded ((λx.

∑
k. norm (f k x)) ‘ A)"

by (rule compact_imp_bounded)
then obtain C where C: "norm (

∑
k. norm (f k x)) ≤ C" if "x ∈ A" for

x
unfolding bounded_iff by blast

show ?thesis
proof (rule uniformly_convergent_prod_Cauchy)

fix x :: ’a and m :: nat
assume x: "x ∈ A"
have "norm (

∏
k<m. 1 + f k x) = (

∏
k<m. norm (1 + f k x))"

by (simp add: prod_norm)
also have " . . . ≤ (

∏
k<m. norm (1 :: ’b) + norm (f k x))"

by (intro prod_mono) norm
also have " . . . = (

∏
k<m. 1 + norm (f k x))"

by simp
also have " . . . ≤ exp (

∑
k<m. norm (f k x))"

by (rule prod_le_exp_sum) auto
also have "(

∑
k<m. norm (f k x)) ≤ (

∑
k. norm (f k x))"

proof (rule sum_le_suminf)
have "(λn.

∑
k<n. norm (f k x)) −−−−→ (

∑
k. norm (f k x))"

by (rule tendsto_uniform_limitI[OF lim]) fact
thus "summable (λk. norm (f k x))"

using sums_def sums_iff by blast
qed auto
also have "exp (

∑
k. norm (f k x)) ≤ exp (norm (

∑
k. norm (f k x)))"

by simp
also have "norm (

∑
k. norm (f k x)) ≤ C"

by (rule C) fact
finally show "norm (

∏
k<m. 1 + f k x) ≤ exp C"

by - simp_all
next

fix ε :: real assume ε: "ε > 0"
have "uniformly_Cauchy_on A (λN x.

∑
n<N. norm (f n x))"

by (rule uniformly_convergent_Cauchy) fact

14

moreover have "ln (1 + ε) > 0"
using ε by simp

ultimately obtain M where M: "
∧

m n x. x ∈ A =⇒ M ≤ m =⇒ M ≤
n =⇒

dist (
∑

k<m. norm (f k x)) (
∑

k<n. norm (f k x)) < ln (1 + ε)"
using ε unfolding uniformly_Cauchy_on_def by metis

show "∃ M. ∀ x∈A. ∀ m≥M. ∀ n≥m. dist (
∏

k = m..n. 1 + f k x) 1 < ε"
proof (rule exI, intro ballI allI impI)

fix x m n
assume x: "x ∈ A" and mn: "M ≤ m" "m ≤ n"
have "dist (

∑
k<m. norm (f k x)) (

∑
k<Suc n. norm (f k x)) < ln

(1 + ε)"
by (rule M) (use x mn in auto)

also have "dist (
∑

k<m. norm (f k x)) (
∑

k<Suc n. norm (f k x))
=

|
∑

k∈{..<Suc n}-{..<m}. norm (f k x)|"
using mn by (subst sum_diff) (auto simp: dist_norm)

also have "{..<Suc n}-{..<m} = {m..n}"
using mn by auto

also have " |
∑

k=m..n. norm (f k x)| = (
∑

k=m..n. norm (f k x))"
by (intro abs_of_nonneg sum_nonneg) auto

finally have *: "(
∑

k=m..n. norm (f k x)) < ln (1 + ε)" .

have "dist (
∏

k=m..n. 1 + f k x) 1 = norm ((
∏

k=m..n. 1 + f k x)
- 1)"

by (simp add: dist_norm)
also have "norm ((

∏
k=m..n. 1 + f k x) - 1) ≤ (

∏
n=m..n. 1 + norm

(f n x)) - 1"
by (rule norm_prod_minus1_le_prod_minus1)

also have "(
∏

n=m..n. 1 + norm (f n x)) ≤ exp (
∑

k=m..n. norm (f
k x))"

by (rule prod_le_exp_sum) auto
also note *
finally show "dist (

∏
k = m..n. 1 + f k x) 1 < ε"

using ε by - simp_all
qed

qed
qed

lemma uniformly_convergent_on_prod’:
fixes f :: "nat ⇒ ’a :: topological_space ⇒ ’b :: {real_normed_div_algebra,

comm_ring_1, banach}"
assumes cont: "

∧
n. continuous_on A (f n)"

assumes A: "compact A"
assumes conv_sum: "uniformly_convergent_on A (λN x.

∑
n<N. norm (f

n x - 1))"
shows "uniformly_convergent_on A (λN x.

∏
n<N. f n x)"

proof -

15

have "uniformly_convergent_on A (λN x.
∏

n<N. 1 + (f n x - 1))"
by (rule uniformly_convergent_on_prod) (use assms in ‹auto intro!:

continuous_intros›)
thus ?thesis

by simp
qed

end
theory Q_Library

imports "HOL-Analysis.Analysis" "HOL-Computational_Algebra.Computational_Algebra"
begin

1.2 Miscellanea
lemma prod_uminus: "(

∏
x∈A. -f x :: ’a :: comm_ring_1) = (-1) ^ card

A * (
∏

x∈A. f x)"
by (induction A rule: infinite_finite_induct) (auto simp: algebra_simps)

lemma prod_diff_swap:
fixes f :: "’a ⇒ ’b :: comm_ring_1"
shows "prod (λx. f x - g x) A = (-1) ^ card A * prod (λx. g x - f x)

A"
using prod.distrib[of "λ_. -1" "λx. f x - g x" A] by simp

lemma prod_diff:
fixes f :: "’a ⇒ ’b :: field"
assumes "finite A" "B ⊆ A" "

∧
x. x ∈ B =⇒ f x 6= 0"

shows "prod f (A - B) = prod f A / prod f B"
proof -

from assms have [intro, simp]: "finite B"
using finite_subset by blast

have "prod f A = prod f ((A - B) ∪ B)"
using assms by (intro prod.cong) auto

also have " . . . = prod f (A - B) * prod f B"
using assms by (subst prod.union_disjoint) (auto intro: finite_subset)

also have " . . . / prod f B = prod f (A - B)"
using assms by simp

finally show ?thesis ..
qed

lemma power_inject_exp’:
assumes "a 6= 1" "a > (0 :: ’a :: linordered_semidom)"
shows "a ^ m = a ^ n ←→ m = n"

proof (cases "a > 1")
case True
thus ?thesis by simp

next
case False

16

have "a ^ m > a ^ n" if "m < n" for m n
by (rule power_strict_decreasing) (use that assms False in auto)

from this[of m n] this[of n m] show ?thesis
by (cases m n rule: linorder_cases) auto

qed

lemma q_power_neq_1:
assumes "norm (q :: ’a :: real_normed_div_algebra) < 1" "n > 0"
shows "q ^ n 6= 1"

proof (cases "q = 0")
case False
thus ?thesis

using power_inject_exp’[of "norm q" n 0] assms
by (auto simp flip: norm_power)

qed (use assms in ‹auto simp: power_0_left›)

lemma fls_nth_sum: "fls_nth (
∑

x∈A. f x) n = (
∑

x∈A. fls_nth (f x)
n)"

by (induction A rule: infinite_finite_induct) auto

lemma one_plus_fls_X_powi_eq:
"(1 + fls_X) powi n = fps_to_fls (fps_binomial (of_int n :: ’a :: field_char_0))"

proof (cases "n ≥ 0")
case True
thus ?thesis

using fps_binomial_of_nat[of "nat n", where ?’a = ’a]
by (simp add: power_int_def fps_to_fls_power)

next
case False
thus ?thesis

using fps_binomial_minus_of_nat[of "nat (-n)", where ?’a = ’a]
by (simp add: power_int_def fps_to_fls_power fps_inverse_power flip:

fls_inverse_fps_to_fls)
qed

lemma bij_betw_imp_empty_iff: "bij_betw f A B =⇒ A = {} ←→ B = {}"
unfolding bij_betw_def by blast

lemma bij_betw_imp_Ex_iff: "bij_betw f {x. P x} {x. Q x} =⇒ (∃ x. P
x) ←→ (∃ x. Q x)"

unfolding bij_betw_def by blast

lemma bij_betw_imp_Bex_iff: "bij_betw f {x∈A. P x} {x∈B. Q x} =⇒ (∃ x∈A.
P x) ←→ (∃ x∈B. Q x)"

unfolding bij_betw_def by blast

17

lemmas [derivative_intros del] = Deriv.DERIV_power_int
lemma DERIV_power_int [derivative_intros]:

assumes [derivative_intros]: "(f has_field_derivative d) (at x within
s)"

and "n ≥ 0 ∨ f x 6= 0"
shows "((λx. power_int (f x) n) has_field_derivative

(of_int n * power_int (f x) (n - 1) * d)) (at x within s)"
proof (cases n rule: int_cases4)

case (nonneg n)
thus ?thesis

by (cases "n = 0"; cases "f x = 0")
(auto intro!: derivative_eq_intros simp: field_simps power_int_diff

power_diff power_int_0_left_If)
next

case (neg n)
thus ?thesis using assms(2)

by (auto intro!: derivative_eq_intros simp: field_simps power_int_diff
power_int_minus

simp flip: power_Suc power_Suc2 power_add)
qed

lemma uniform_limit_compose’:
assumes "uniform_limit B (λx y. f x y) (λy. f’ y) F" "

∧
y. y ∈ A =⇒

g y ∈ B"
shows "uniform_limit A (λx y. f x (g y)) (λy. f’ (g y)) F"

proof -
have "uniform_limit (g ‘ A) (λx y. f x y) (λy. f’ y) F"

using assms(1) by (rule uniform_limit_on_subset) (use assms(2) in
blast)

thus "uniform_limit A (λx y. f x (g y)) (λy. f’ (g y)) F"
unfolding uniform_limit_iff by auto

qed

lemma eventually_eventually_prod_filter1:
assumes "eventually P (F ×F G)"
shows "eventually (λx. eventually (λy. P (x, y)) G) F"

proof -
from assms obtain Pf Pg where

*: "eventually Pf F" "eventually Pg G" "
∧

x y. Pf x =⇒ Pg y =⇒ P
(x, y)"

unfolding eventually_prod_filter by auto
show ?thesis

using *(1)
proof eventually_elim

18

case x: (elim x)
show ?case

using *(2) by eventually_elim (use x *(3) in auto)
qed

qed

lemma eventually_eventually_prod_filter2:
assumes "eventually P (F ×F G)"
shows "eventually (λy. eventually (λx. P (x, y)) F) G"

proof -
from assms obtain Pf Pg where

*: "eventually Pf F" "eventually Pg G" "
∧

x y. Pf x =⇒ Pg y =⇒ P
(x, y)"

unfolding eventually_prod_filter by auto
show ?thesis

using *(2)
proof eventually_elim

case y: (elim y)
show ?case

using *(1) by eventually_elim (use y *(3) in auto)
qed

qed

proposition swap_uniform_limit’:
assumes f: "∀ F n in F. (f n −−−→ g n) G"
assumes g: "(g −−−→ l) F"
assumes uc: "uniform_limit S f h F"
assumes ev: "∀ F x in G. x ∈ S"
assumes "¬trivial_limit F"
shows "(h −−−→ l) G"

proof (rule tendstoI)
fix e :: real
define e’ where "e’ = e/3"
assume "0 < e"
then have "0 < e’" by (simp add: e’_def)
from uniform_limitD[OF uc ‹0 < e’›]
have "∀ F n in F. ∀ x∈S. dist (h x) (f n x) < e’"

by (simp add: dist_commute)
moreover
from f
have "∀ F n in F. ∀ F x in G. dist (g n) (f n x) < e’"

by eventually_elim (auto dest!: tendstoD[OF _ ‹0 < e’›] simp: dist_commute)
moreover
from tendstoD[OF g ‹0 < e’›] have "∀ F x in F. dist l (g x) < e’"

by (simp add: dist_commute)
ultimately
have "∀ F _ in F. ∀ F x in G. dist (h x) l < e"
proof eventually_elim

19

case (elim n)
note fh = elim(1)
note gl = elim(3)
show ?case

using elim(2) ev
proof eventually_elim

case (elim x)
from fh[rule_format, OF ‹x ∈ S›] elim(1)
have "dist (h x) (g n) < e’ + e’"

by (rule dist_triangle_lt[OF add_strict_mono])
from dist_triangle_lt[OF add_strict_mono, OF this gl]
show ?case by (simp add: e’_def)

qed
qed
thus "∀ F x in G. dist (h x) l < e"

using eventually_happens by (metis ‹¬trivial_limit F›)
qed

proposition swap_uniform_limit:
assumes f: "∀ F n in F. (f n −−−→ g n) (at x within S)"
assumes g: "(g −−−→ l) F"
assumes uc: "uniform_limit S f h F"
assumes nt: "¬trivial_limit F"
shows "(h −−−→ l) (at x within S)"

proof -
have ev: "eventually (λx. x ∈ S) (at x within S)"

using eventually_at_topological by blast
show ?thesis

by (rule swap_uniform_limit’[OF f g uc ev nt])
qed

Tannery’s Theorem proves that, under certain boundedness conditions:

lim
x→x̄

∞∑
k=0

f(k, n) =
∞∑

k=0

lim
x→x̄

f(k, n)

lemma tannerys_theorem:
fixes a :: "nat ⇒ _ ⇒ ’a :: {real_normed_algebra, banach}"
assumes limit: "

∧
k. ((λn. a k n) −−−→ b k) F"

assumes bound: "eventually (λ(k,n). norm (a k n) ≤ M k) (at_top ×F

F)"
assumes "summable M"
assumes [simp]: "F 6= bot"
shows "eventually (λn. summable (λk. norm (a k n))) F ∧

summable (λn. norm (b n)) ∧
((λn. suminf (λk. a k n)) −−−→ suminf b) F"

proof (intro conjI allI)
show "eventually (λn. summable (λk. norm (a k n))) F"

20

proof -
have "eventually (λn. eventually (λk. norm (a k n) ≤ M k) at_top)

F"
using eventually_eventually_prod_filter2[OF bound] by simp

thus ?thesis
proof eventually_elim

case (elim n)
show "summable (λk. norm (a k n))"
proof (rule summable_comparison_test_ev)

show "eventually (λk. norm (norm (a k n)) ≤ M k) at_top"
using elim by auto

qed fact
qed

qed

have bound’: "eventually (λk. norm (b k) ≤ M k) at_top"
proof -

have "eventually (λk. eventually (λn. norm (a k n) ≤ M k) F) at_top"
using eventually_eventually_prod_filter1[OF bound] by simp

thus ?thesis
proof eventually_elim

case (elim k)
show "norm (b k) ≤ M k"
proof (rule tendsto_upperbound)

show "((λn. norm (a k n)) −−−→ norm (b k)) F"
by (intro tendsto_intros limit)

qed (use elim in auto)
qed

qed
show "summable (λn. norm (b n))"

by (rule summable_comparison_test_ev[OF _ ‹summable M›]) (use bound’
in auto)

from bound obtain Pf Pg where
*: "eventually Pf at_top" "eventually Pg F" "

∧
k n. Pf k =⇒ Pg n

=⇒ norm (a k n) ≤ M k"
unfolding eventually_prod_filter by auto

show "((λn.
∑

k. a k n) −−−→ (
∑

k. b k)) F"
proof (rule swap_uniform_limit’)

show "(λK. (
∑

k<K. b k)) −−−−→ (
∑

k. b k)"
using ‹summable (λn. norm (b n))›
by (intro summable_LIMSEQ) (auto dest: summable_norm_cancel)

show "∀ F K in sequentially. ((λn.
∑

k<K. a k n) −−−→ (
∑

k<K. b
k)) F"

by (intro tendsto_intros always_eventually allI limit)
show "∀ F x in F. x ∈ {n. Pg n}"

using *(2) by simp
show "uniform_limit {n. Pg n} (λK n.

∑
k<K. a k n) (λn.

∑
k. a k

21

n) sequentially"
proof (rule Weierstrass_m_test_ev)

show "∀ F k in at_top. ∀ n∈{n. Pg n}. norm (a k n) ≤ M k"
using *(1) by eventually_elim (use *(3) in auto)

show "summable M"
by fact

qed
qed auto

qed

end

2 q-analogues of basic combinatorial symbols
theory Q_Analogues
imports "HOL-Complex_Analysis.Complex_Analysis" Q_Library
begin

Various mathematical operations have generalisations in the form of q-
analogues, usually in the sense that one recovers the original notion if we let
q → 1.

2.1 The q-bracket [n]q

The q-bracket [n]q = 1−qn

1−q is the q-analogue of an integer n. The q-bracket
has a removable singularity at q = 1 with limq→1[n]q = n.
definition qbracket :: "’a ⇒ int ⇒ ’a :: field" where

"qbracket q n = (if q = 1 then of_int n else (1 - q powi n) / (1 - q))"

lemma qbracket_1_left [simp]: "qbracket 1 n = of_int n"
by (simp add: qbracket_def)

lemma qbracket_0_0 [simp]: "qbracket 0 0 = 0"
by (auto simp: qbracket_def power_int_0_left_If)

lemma qbracket_0_nonneg [simp]: "n 6= 0 =⇒ qbracket 0 n = 1"
by (auto simp: qbracket_def power_int_0_left_If)

lemma qbracket_0_left: "qbracket 0 n = (if n = 0 then 0 else 1)"
by auto

lemma qbracket_0 [simp]: "qbracket q 0 = 0"
by (simp add: qbracket_def)

lemma qbracket_1 [simp]: "qbracket q 1 = 1"
by (simp add: qbracket_def)

22

lemma qbracket_2 [simp]: "qbracket q 2 = 1 + q"
by (simp add: qbracket_def field_simps power2_eq_square)

lemma qbracket_of_real: "qbracket (of_real q :: ’a :: real_field) n =
of_real (qbracket q n)"

by (simp add: qbracket_def)

lemma qbracket_minus:
assumes "q = 0 −→ n = 0"
shows "qbracket q (-n) = -qbracket (inverse q) n / q"

proof (cases "q = 1")
case True
thus ?thesis by auto

next
case False
have "qbracket q (-n) = qbracket (inverse q) n * (1 - 1 / q) / (1 -

q)"
using assms False by (auto simp add: qbracket_def power_int_minus

divide_simps)
also have " . . . = -qbracket (inverse q) n / q"

using assms False by (simp add: divide_simps) (auto simp: field_simps
qbracket_0_left)

finally show ?thesis .
qed

lemma qbracket_inverse:
assumes "q = 0 −→ n = 0"
shows "qbracket (inverse q) n = -q * qbracket q (-n)"
using assms by (cases "q = 0") (auto simp: qbracket_minus qbracket_0_left)

lemma qbracket_nonneg_altdef: "n ≥ 0 =⇒ qbracket q n = (
∑

k<nat n.
q ^ k)"

by (auto simp: qbracket_def sum_gp_strict power_int_def)

lemma qbracket_nonpos_altdef:
assumes n: "n ≤ 0" and [simp]: "q 6= 0"
shows "qbracket q n = -(q powi n * (

∑
k<nat (-n). q ^ k))"

proof -
have "qbracket q n = qbracket q (-(-n))"

by simp
also have " . . . = -qbracket (inverse q) (-n) / q"

by (intro qbracket_minus) auto
also have " . . . = -(

∑
k<nat (-n). inverse q ^ k) / q"

using n by (subst qbracket_nonneg_altdef) auto
also have " . . . = -(

∑
k<nat (-n). q powi (-(k+1)))"

by (simp add: sum_divide_distrib field_simps power_int_diff)
also have "(

∑
k<nat (-n). q powi (-(k+1))) = (

∑
k<nat (-n). q powi

(n + k))"
by (intro sum.reindex_bij_witness[of _ "λk. nat (-n) - k - 1" "λk.

23

nat (-n) - k - 1"])
(auto simp: of_nat_diff)

also have " . . . = q powi n * (
∑

k<nat (-n). q ^ k)"
by (simp add: power_int_add sum_distrib_left sum_distrib_right)

finally show ?thesis .
qed

lemma norm_qbracket_le:
fixes q :: "’a :: real_normed_field"
assumes "n ≥ 0" "norm q ≤ 1"
shows "norm (qbracket q n) ≤ real_of_int n"

proof -
have "norm (qbracket q n) = norm (sum (λk. q ^ k) {..<nat n})"

using assms by (simp add: qbracket_nonneg_altdef)
also have " . . . ≤ (

∑
k<nat n. norm q ^ k)"

by (rule sum_norm_le) (simp_all add: norm_power)
also have " . . . ≤ (

∑
k<nat n. 1 ^ k)"

using assms by (intro sum_mono power_mono) auto
finally show ?thesis

using assms by simp
qed

lemma qbracket_add:
assumes "q 6= 0 ∨ (k + l = 0 −→ k = 0)"
shows "qbracket q (k + l) = qbracket q l * q powi k + qbracket q k"
using assms
by (cases "q = 0")

(auto simp: qbracket_def divide_simps power_int_add power_int_diff
power_int_0_left_If add_eq_0_iff,

(simp add: algebra_simps)?)

lemma qbracket_diff:
assumes "q 6= 0 ∨ (k = l −→ k = 0)"
shows "qbracket q (k - l) = qbracket q (-l) * q powi k + qbracket q

k"
using assms qbracket_add[of q k "-l"] by simp

lemma qbracket_diff’:
assumes "q 6= 0 ∨ (k = l −→ k = 0)"
shows "qbracket q (k - l) = qbracket q k * q powi -l + qbracket q

(-l)"
using assms qbracket_add[of q "-l" k] by simp

lemma qbracket_plus1: "q 6= 0 ∨ n 6= -1 =⇒ qbracket q (n + 1) = qbracket
q n + q powi n"

by (subst qbracket_add) (auto simp: add_eq_0_iff)

lemma qbracket_rec: "q 6= 0 ∨ n 6= 0 =⇒ qbracket q n = qbracket q (n-1)
+ q powi (n-1)"

24

using qbracket_plus1[of q "n-1"] by simp

lemma qbracket_eq_0_iff:
fixes q :: "’a :: field"
shows "qbracket q n = 0 ←→ (q = 1 ∧ of_int n = (0 :: ’a)) ∨ (q

6= 1 ∧ q powi n = 1)"
by (auto simp: qbracket_def)

lemma continuous_on_qbracket [continuous_intros]:
fixes q :: "’a::topological_space ⇒ ’b :: real_normed_field"
assumes [continuous_intros]: "continuous_on A q"
assumes "

∧
x. n < 0 =⇒ x ∈ A =⇒ q x 6= 0"

shows "continuous_on A (λx. qbracket (q x) n)"
proof (cases "n ≥ 0")

case True
thus ?thesis

by (auto simp: qbracket_nonneg_altdef intro!: continuous_intros)
next

case False
thus ?thesis using assms(2)

by (auto simp: qbracket_nonpos_altdef intro!: continuous_intros)
qed

lemma tendsto_qbracket [tendsto_intros]:
fixes q :: "’a::topological_space ⇒ ’b :: real_normed_field"
assumes "(q −−−→ Q) F"
assumes "n < 0 =⇒ Q 6= 0"
shows "((λx. qbracket (q x) n) −−−→ qbracket Q n) F"

proof -
have "continuous_on (if n < 0 then -{0} else UNIV) (λx. qbracket x n

:: ’b)"
by (intro continuous_intros) auto

moreover have "Q ∈ (if n < 0 then -{0} else UNIV)"
using assms(2) by auto

moreover have "open (if n < 0 then -{0::’b} else UNIV)"
by auto

ultimately have "isCont (λx. qbracket x n :: ’b) Q"
using continuous_on_eq_continuous_at by blast

with assms(1) show ?thesis
using continuous_within_tendsto_compose’ by force

qed

lemma continuous_qbracket [continuous_intros]:
fixes q :: "’a::t2_space ⇒ ’b :: real_normed_field"
assumes "continuous F q"
assumes "n < 0 =⇒ q (netlimit F) 6= 0"
shows "continuous F (λx. qbracket (q x) n)"
using assms unfolding continuous_def by (intro tendsto_intros) auto

25

lemma has_field_derivative_qbracket_real [derivative_intros]:
fixes q :: real
assumes "q 6= 0 ∨ n ≥ 0"
defines "D ≡ (if q = 1 then of_int (n * (n - 1)) / 2

else (1 - q powi n)/(1-q)^2 - of_int n * q powi (n-1)
/ (1-q))"

shows "((λq. qbracket q n) has_field_derivative D) (at q within A)"
proof (cases "q = 1")

case False
have "((λq. (1 - q powi n) / (1 - q)) has_field_derivative D) (at q

within A)"
unfolding D_def using assms(1) False
by (auto intro!: derivative_eq_intros simp: divide_simps power2_eq_square)

also have ev: "eventually (λq. q 6= 1) (at q within A)"
using False eventually_neq_at_within by blast

have "((λq. (1 - q powi n) / (1 - q)) has_field_derivative D) (at q
within A) ←→

((λq. qbracket q n) has_field_derivative D) (at q within A)"
by (intro has_field_derivative_cong_eventually eventually_mono[OF

ev]) (auto simp: qbracket_def False)
finally show ?thesis .

next
case True
have ev: "eventually (λq::real. q > 0) (at 1)"

by real_asymp
have "(λq::real. ((1 - q powr n) / (1 - q) - of_int n) / (q - 1)) −1→

of_int (n * (n - 1)) / 2"
by real_asymp

also have "?this ←→ (λq::real. ((1 - q powi n) / (1 - q) - of_int
n) / (q - 1)) −1→ of_int (n * (n - 1)) / 2"

by (intro tendsto_cong) (use ev in eventually_elim, auto simp: powr_real_of_int’)
also have " . . . ←→ ((λy. (qbracket y n - qbracket q n) / (y - q)) −−−→

D) (at q)"
unfolding D_def True
by (intro filterlim_cong eventually_mono[OF eventually_neq_at_within[of

1]])
(auto simp: qbracket_def)

finally show ?thesis
unfolding has_field_derivative_iff using Lim_at_imp_Lim_at_within

by blast
qed

lemma has_field_derivative_qbracket_complex [derivative_intros]:
fixes q :: complex
assumes "q 6= 0 ∨ n ≥ 0"
defines "D ≡ (if q = 1 then of_int (n * (n - 1)) / 2

else (1 - q powi n)/(1-q)^2 - of_int n * q powi (n-1)
/ (1-q))"

shows "((λq. qbracket q n) has_field_derivative D) (at q within A)"

26

proof (cases "q = 1")
case False
have "((λq. (1 - q powi n) / (1 - q)) has_field_derivative D) (at q

within A)"
unfolding D_def using assms(1) False
by (auto intro!: derivative_eq_intros simp: divide_simps power2_eq_square)

also have ev: "eventually (λq. q 6= 1) (at q within A)"
using False eventually_neq_at_within by blast

have "((λq. (1 - q powi n) / (1 - q)) has_field_derivative D) (at q
within A) ←→

((λq. qbracket q n) has_field_derivative D) (at q within A)"
by (intro has_field_derivative_cong_eventually eventually_mono[OF

ev]) (auto simp: qbracket_def False)
finally show ?thesis .

next
case True
define F :: "complex fps"

where "F = fps_binomial (of_int n) - 1 - of_int n * fps_X"
have F: "(λw. ((1 - (1+w) powi n) / (1 - (1+w)) - of_int n) / ((1+w)

- 1)) has_laurent_expansion
fls_shift 2 (fps_to_fls F)"

by (rule has_laurent_expansion_schematicI, (rule laurent_expansion_intros)+)
(simp_all flip: fls_of_int fls_divide_fps_to_fls

add: fls_times_fps_to_fls fls_X_times_conv_shift one_plus_fls_X_powi_eq
F_def)

have F’: "fls_subdegree (fls_shift 2 (fps_to_fls F)) ≥ 0"
proof (cases "F = 0")

case [simp]: False
hence "subdegree F ≥ 2"

by (intro subdegree_geI) (auto simp: F_def numeral_2_eq_2 less_Suc_eq)
thus ?thesis

by (intro fls_shift_nonneg_subdegree) (simp add: fls_subdegree_fls_to_fps)
qed auto

have "(λw. ((1 - w powi n) / (1 - w) - complex_of_int n) / (w - 1))
−1→

fls_nth (fls_shift 2 (fps_to_fls F)) 0"
using has_laurent_expansion_imp_tendsto[OF F F’] .

also have "fls_nth (fls_shift 2 (fps_to_fls F)) 0 = of_int (n * (n -
1)) / 2"

by (simp add: F_def numeral_2_eq_2 gbinomial_Suc_rec)
finally have "(λq :: complex. ((1 - q powi n) / (1 - q) - of_int n) /

(q - 1)) −1→ of_int (n * (n - 1)) / 2" .
also have "?this ←→ ((λy. (qbracket y n - qbracket q n) / (y - q))

−−−→ D) (at q)"
unfolding D_def True
by (intro filterlim_cong eventually_mono[OF eventually_neq_at_within[of

1]])
(auto simp: qbracket_def)

27

finally show ?thesis
unfolding has_field_derivative_iff using Lim_at_imp_Lim_at_within

by blast
qed

lemma holomorphic_on_qbracket [holomorphic_intros]:
assumes "q holomorphic_on A"
assumes "

∧
x. n < 0 =⇒ x ∈ A =⇒ q x 6= 0"

shows "(λx. qbracket (q x) n) holomorphic_on A"
proof -

have "(λx. qbracket x n) holomorphic_on (if n < 0 then -{0} else UNIV)"
by (subst holomorphic_on_open) (auto intro!: derivative_eq_intros)

hence "((λx. qbracket x n) ◦ q) holomorphic_on A"
by (intro holomorphic_on_compose_gen) (use assms in auto)

thus ?thesis
by (simp add: o_def)

qed

lemma analytic_on_qbracket [analytic_intros]:
assumes "q analytic_on A"
assumes "

∧
x. n < 0 =⇒ x ∈ A =⇒ q x 6= 0"

shows "(λx. qbracket (q x) n) analytic_on A"
proof -

have "(λx. qbracket x n) holomorphic_on (if n < 0 then -{0} else UNIV)"
by (intro holomorphic_intros) auto

hence "(λx. qbracket x n) analytic_on (if n < 0 then -{0} else UNIV)"
by (subst analytic_on_open) auto

hence "((λx. qbracket x n) ◦ q) analytic_on A"
by (intro analytic_on_compose_gen) (use assms in auto)

thus ?thesis
by (simp add: o_def)

qed

lemma meromorphic_on_qbracket [meromorphic_intros]:
assumes "q meromorphic_on A"
shows "(λx. qbracket (q x) n) meromorphic_on A"

proof -
have "(λx. qbracket (q x) n) meromorphic_on {z}" if z: "z ∈ A" for z
proof -

have [meromorphic_intros]: "q meromorphic_on {z}"
using assms by (rule meromorphic_on_subset) (use z in auto)

show "(λx. qbracket (q x) n) meromorphic_on {z}"
proof (cases "eventually (λx. q x 6= 1) (at z)")

case True
have "(λx. (1 - q x powi n) / (1 - q x)) meromorphic_on {z}"

by (intro meromorphic_intros)
also have "eventually (λx. (1 - q x powi n) / (1 - q x) = qbracket

(q x) n) (at z)"
using True by eventually_elim (auto simp: qbracket_def)

28

hence "(λx. (1 - q x powi n) / (1 - q x)) meromorphic_on {z} ←→
(λx. qbracket (q x) n) meromorphic_on {z}"

by (intro meromorphic_on_cong) auto
finally show ?thesis .

next
case False
have "(λz. q z - 1) meromorphic_on {z}"

by (intro meromorphic_intros)
with False have "eventually (λx. q x = 1) (at z)"

using not_essential_frequently_0_imp_eventually_0[of "λz. q z
- 1" z]

by (auto simp: meromorphic_at_iff frequently_def)
hence "eventually (λx. qbracket (q x) n = of_int n) (at z)"

by eventually_elim auto
hence "(λx. qbracket (q x) n) meromorphic_on {z} ←→ (λ_. of_int

n) meromorphic_on {z}"
by (intro meromorphic_on_cong) auto

thus ?thesis
by auto

qed
qed
thus ?thesis

using meromorphic_on_meromorphic_at by blast
qed

2.2 The q-factorial [n]q!

Since the q-bracket gives us the q-analogue of an integer n, we can use this
to recursively define the q-factorial [n]q!. Again, letting q → 1, we recover
the “normal” factorial.
definition qfact :: "’a ⇒ int ⇒ ’a :: field" where

"qfact q n = (if n < 0 then 0 else (
∏

k=1..n. qbracket q k))"

lemma qfact_1_of_nat [simp]: "qfact 1 (int n) = fact n"
proof -

have "qfact 1 (int n) = of_int (
∏

k=1..int n. k)"
by (simp add: qfact_def)

also have "(
∏

k=1..int n. k) = (
∏

k=1..n. int k)"
by (intro prod.reindex_bij_witness[of _ int nat]) auto

finally show ?thesis
by (simp add: fact_prod)

qed

lemma qfact_1_nonneg [simp]: "n ≥ 0 =⇒ qfact 1 n = fact (nat n)"
by (subst qfact_1_of_nat [symmetric], subst int_nat_eq) auto

lemma qfact_neg [simp]: "n < 0 =⇒ qfact q n = 0"
by (simp add: qfact_def)

29

lemma qfact_0 [simp]: "qfact q 0 = 1"
by (simp add: qfact_def)

lemma qfact_1 [simp]: "qfact q 1 = 1"
by (simp add: qfact_def)

lemma qfact_2: "qfact q 2 = 1 + q"
proof -

have "{1..2::int} = {1, 2}"
by auto

thus ?thesis
by (simp add: qfact_def)

qed

lemma qfact_of_real: "qfact (of_real q :: ’a :: real_field) n = of_real
(qfact q n)"

by (simp add: qfact_def qbracket_of_real)

lemma qfact_plus1: "n 6= -1 =⇒ qfact q (n + 1) = qfact q n * qbracket
q (n + 1)"

unfolding qfact_def by (simp add: add.commute atLeastAtMostPlus1_int_conv)

lemma qfact_rec: "n > 0 =⇒ qfact q n = qbracket q n * qfact q (n - 1)"
using qfact_plus1[of "n - 1" q] by auto

lemma qfact_altdef: "q 6= 1 =⇒ n ≥ 0 =⇒ qfact q n = (
∏

k=1..n. 1 -
q powi k) * (1 - q) powi (-n)"

by (auto simp: qfact_def qbracket_def prod_dividef power_int_def field_simps)

lemma qfact_int_def: "qfact q (int n) = (
∏

k=1..n. qbracket q (int k))"
unfolding qfact_def by (auto intro!: prod.reindex_bij_witness[of _ int

nat])

lemma qfact_eq_0_iff:
fixes q :: "’a :: field_char_0"
shows "qfact q n = 0 ←→ n < 0 ∨ (q 6= 1 ∧ (∃ k∈{1..nat n}. q ^ k

= 1))"
proof (cases "n < 0")

case False
have "qfact q (int m) = 0 ←→ q 6= 1 ∧ (∃ k∈{1..m}. q ^ k = 1)" for

m
proof (cases "q = 1")

case False
show ?thesis
proof (induction m)

case (Suc m)
have *: "int (Suc m) - 1 = int m"

by simp
have "(qfact q (int (Suc m)) = 0) ←→ (q ^ Suc m = 1 ∨ (∃ k∈{1..m}.

30

q ^ k = 1))"
using False by (simp add: qfact_rec Suc qbracket_eq_0_iff * del:

of_nat_Suc)
also have " . . . ←→ (∃ k∈{1..Suc m}. q ^ k = 1)"

by (subst atLeastAtMostSuc_conv) auto
finally show ?case using False by simp

qed auto
qed auto
from this[of "nat n"] False show ?thesis

by simp
qed auto

lemma qfact_eq_0_iff’ [simp]:
fixes q :: "’a :: real_normed_field"
assumes "norm q 6= 1"
shows "qfact q n = 0 ←→ n < 0"
using assms by (subst qfact_eq_0_iff) (auto dest: power_eq_1_iff)

lemma prod_neg_qbracket_conv_qfact:
assumes [simp]: "q 6= 0"
shows "(

∏
k=1..n. qbracket q (-int k)) = (-1)^n * qfact q n / q ^

((n+1) choose 2)"
proof (cases "q = 1")

case [simp]: False
have "(-1)^n * qfact q n / q ^ ((n+1) choose 2) =

(
∏

k=1..n. (1 - q ^ k) / (1 - q)) / ((-1) ^ n * q ^ (Suc n choose
2))"

by (simp add: qbracket_def prod_dividef qfact_int_def power_int_minus
divide_simps)

also have "(Suc n choose 2) = (
∑

k=1..n. k)"
by (induction n) (auto simp: choose_two)

also have "(-1) ^ n * q ^ (
∑

k=1..n. k) = (
∏

k=1..n. -(q ^ k))"
by (simp add: power_sum prod_uminus)

also have "(
∏

k=1..n. (1 - q ^ k) / (1 - q)) / (
∏

k=1..n. -(q ^ k))
=

(
∏

k=1..n. (1 - q ^ k) / (1 - q) / (-(q ^ k)))"
by (rule prod_dividef [symmetric])

also have " . . . = (
∏

k=1..n. qbracket q (-int k))"
by (intro prod.cong refl) (auto simp: qbracket_def power_int_minus

divide_simps)
finally show ?thesis ..

qed (auto simp: prod_uminus qfact_int_def)

lemma norm_qfact_le:
fixes q :: "’a :: real_normed_field"
assumes "n ≥ 0" "norm q ≤ 1"
shows "norm (qfact q n) ≤ fact (nat n)"

proof -
have "norm (qfact q n) = (

∏
k=1..n. norm (qbracket q k))"

31

using assms by (simp add: qfact_def prod_norm)
also have " . . . ≤ (

∏
k=1..n. real_of_int k)"

using assms by (intro prod_mono norm_qbracket_le conjI) auto
also have " . . . = of_nat (

∏
k=1..nat n. k)"

unfolding of_nat_prod by (intro prod.reindex_bij_witness[of _ int
nat]) auto

also have " . . . = fact (nat n)"
using assms by (simp add: fact_prod)

finally show ?thesis .
qed

lemma continuous_on_qfact [continuous_intros]:
fixes q :: "’a::topological_space ⇒ ’b :: real_normed_field"
assumes [continuous_intros]: "continuous_on A q"
shows "continuous_on A (λx. qfact (q x) n)"

proof (cases "n ≥ 0")
case True
thus ?thesis

by (auto simp: qfact_def intro!: continuous_intros)
qed auto

lemma continuous_qfact [continuous_intros]:
fixes q :: "’a::t2_space ⇒ ’b :: real_normed_field"
assumes [continuous_intros]: "continuous F q"
shows "continuous F (λx. qfact (q x) n)"

proof (cases "n ≥ 0")
case True
thus ?thesis

by (auto simp: qfact_def intro!: continuous_intros)
qed auto

lemma tendsto_qfact [tendsto_intros]:
fixes q :: "’a::topological_space ⇒ ’b :: real_normed_field"
assumes [tendsto_intros]: "(q −−−→ Q) F"
shows "((λx. qfact (q x) n) −−−→ qfact Q n) F"

proof (cases "n ≥ 0")
case True
thus ?thesis

by (auto simp: qfact_def intro!: tendsto_intros)
qed auto

lemma holomorphic_on_qfact [holomorphic_intros]:
assumes [holomorphic_intros]: "q holomorphic_on A"
shows "(λx. qfact (q x) n) holomorphic_on A"

proof (cases "n ≥ 0")
case True
thus ?thesis

by (auto simp: qfact_def intro!: holomorphic_intros)

32

qed auto

lemma analytic_on_qfact [analytic_intros]:
assumes [analytic_intros]: "q analytic_on A"
shows "(λx. qfact (q x) n) analytic_on A"

proof (cases "n ≥ 0")
case True
thus ?thesis

by (auto simp: qfact_def intro!: analytic_intros)
qed auto

lemma meromorphic_on_qfact [meromorphic_intros]:
assumes [meromorphic_intros]: "q meromorphic_on A"
shows "(λx. qfact (q x) n) meromorphic_on A"

proof (cases "n ≥ 0")
case True
thus ?thesis

by (auto simp: qfact_def intro!: meromorphic_intros)
qed auto

2.3 q-binomial coefficients
(

n
k

)
q

We can also define q-binomial coefficients in such a way that we will get(
n

k

)
q

=
[n]q!]

[k]q! [n− k]q!

and therefore recover the “normal” binomial coefficients if we let q → 1.
fun qbinomial :: "’a ⇒ nat ⇒ nat ⇒ ’a :: field" where

"qbinomial q n 0 = 1"
| "qbinomial q 0 (Suc k) = 0"
| "qbinomial q (Suc n) (Suc k) = q ^ Suc k * qbinomial q n (Suc k) + qbinomial
q n k"

lemma qbinomial_induct [case_names zero_right zero_left step]:
"(

∧
n. P n 0) =⇒ (

∧
k. P 0 (Suc k)) =⇒

(
∧

n k. P n (Suc k) =⇒ P n k =⇒ P (Suc n) (Suc k)) =⇒ P n k"
by (induction_schema, pat_completeness, lexicographic_order)

lemma qbinomial_1_left [simp]: "qbinomial 1 n k = of_nat (binomial n
k)"

by (induction n k rule: qbinomial_induct) simp_all

lemma qbinomial_eq_0 [simp]: "k > n =⇒ qbinomial q n k = 0"
by (induction q n k rule: qbinomial.induct) auto

lemma qbinomial_n_n [simp]: "qbinomial q n n = 1"
by (induction n) simp_all

33

lemma qbinomial_0_left: "qbinomial 0 n k = (if k ≤ n then 1 else 0)"
by (induction n k rule: qbinomial_induct) auto

lemma qbinomial_0_left’ [simp]: "k ≤ n =⇒ qbinomial 0 n k = 1"
by (simp add: qbinomial_0_left)

lemma qbinomial_0_middle: "qbinomial q 0 k = (if k = 0 then 1 else 0)"
by (cases k) auto

lemma qbinomial_of_real: "qbinomial (of_real q :: ’a :: real_field) m
n = of_real (qbinomial q m n)"

by (induction m n rule: qbinomial_induct) simp_all

lemma qbinomial_qfact_lemma:
assumes "k ≤ n"
shows "qfact q k * qfact q (int (n - k)) * qbinomial q n k = qfact

q n"
using assms

proof (induction q n k rule: qbinomial.induct)
case (3 q n k)
show ?case
proof (cases "n = k")

case False
with "3.prems" have "k < n"

by auto
hence "(qfact q (int (Suc k)) * qfact q (int (Suc n - Suc k)) * qbinomial

q (Suc n) (Suc k)) =
qbracket q (int (n-k)) * q^(k+1) *

(qfact q (Suc k) * qfact q (int (n-Suc k)) * qbinomial
q n (Suc k)) +

(qbracket q (k+1) * (qfact q k * qfact q (int (n-k)) * qbinomial
q n k))"

by (simp add: qfact_rec of_nat_diff algebra_simps)
also have "qfact q (Suc k) * qfact q (int (n-Suc k)) * qbinomial q

n (Suc k) = qfact q (int n)"
using ‹k < n› by (subst 3) auto

also have "qbracket q (k+1) * (qfact q k * qfact q (int (n-k)) * qbinomial
q n k) =

qbracket q (k+1) * qfact q (int n)"
using ‹k < n› by (subst 3) auto

also have "qbracket q (int (n - k)) * q^(k+1) * qfact q (int n) +
qbracket q (int (k + 1)) * qfact q (int n) =
(qbracket q (int (n - k)) * q^(k+1) + qbracket q (int

(k + 1))) * qfact q (int n)"
by (simp add: algebra_simps)

also have "qbracket q (int (n - k)) * q^(k+1) + qbracket q (int (k
+ 1)) =

qbracket q (int n - int k) * q powi (int (k+1)) + qbracket
q (int (k+1))"

34

using ‹k < n› by (simp add: power_int_add of_nat_diff)
also have " . . . = qbracket q (int (k + 1) + (int n - int k))"

by (rule qbracket_add [symmetric]) auto
also have " . . . = qbracket q (int (Suc n))"

by simp
also have " . . . * qfact q (int n) = qfact q (int (Suc n))"

by (simp add: qfact_rec)
finally show ?thesis .

qed simp_all
qed simp_all

lemma qbinomial_qfact:
fixes q :: "’a :: field_char_0"
assumes "¬(∃ k∈{1..n}. q ^ k = 1)"
shows "qbinomial q n k = qfact q n / (qfact q k * qfact q (int n -

int k))"
proof (cases "k ≤ n")

case True
thus ?thesis using assms

by (subst qbinomial_qfact_lemma[of k n q, symmetric])
(auto simp add: qfact_eq_0_iff of_nat_diff divide_simps)

qed auto

lemma qbinomial_qfact’:
fixes q :: "’a :: real_normed_field"
assumes "q = 1 ∨ norm q 6= 1"
shows "qbinomial q n k = qfact q n / (qfact q k * qfact q (int n -

int k))"
proof (cases "q = 1")

case False
thus ?thesis

using assms by (subst qbinomial_qfact) (auto dest!: power_eq_1_iff)
next

case True
thus ?thesis

by (cases "k ≤ n") (auto simp: binomial_fact simp flip: of_nat_diff)
qed

lemma qbinomial_symmetric:
fixes q :: "’a :: real_normed_field"
assumes "norm q 6= 1" "k ≤ n"
shows "qbinomial q n (n - k) = qbinomial q n k"
using assms by (subst (1 2) qbinomial_qfact’) (auto simp: of_nat_diff)

lemma qbinomial_rec1:
"n > 0 =⇒ k > 0 =⇒

qbinomial q n k = q ^ k * qbinomial q (n - 1) k + qbinomial q (n
- 1) (k - 1)"

by (cases n; cases k) auto

35

lemma qbinomial_rec2:
fixes q :: "’a :: real_normed_field"
assumes "norm q 6= 1" "n > 0" "k < n"
shows "qbinomial q n k = (1 - q ^ n) / (1 - q ^ (n - k)) * qbinomial

q (n-1) k"
proof (cases "q = 0")

case [simp]: False
have *: "q ^ i = q ^ j ←→ i = j" for i j
proof

assume "q ^ i = q ^ j"
hence "norm (q ^ i) = norm (q ^ j)"

by (rule arg_cong)
hence "norm q ^ i = norm q ^ j"

by (simp add: norm_power)
thus "i = j"

by (subst (asm) power_inject_exp’) (use assms in auto)
qed auto
show ?thesis using assms

by (subst (1 2) qbinomial_qfact’)
(use assms

in ‹simp_all add: divide_simps of_nat_diff power_int_diff qfact_rec
qbracket_eq_0_iff

power_0_left qbracket_def power_diff Groups.diff_right_commute
*›)
qed (use assms in ‹auto simp: power_0_left›)

lemma qbinomial_rec3:
fixes q :: "’a :: real_normed_field"
assumes "norm q 6= 1" "k > 0" "k ≤ n"
shows "qbinomial q n k = (1 - q ^ n) / (1 - q ^ k) * qbinomial q (n-1)

(k-1)"
using assms
by (subst (1 2) qbinomial_qfact’)

(auto simp: divide_simps of_nat_diff power_int_diff qfact_rec qbracket_eq_0_iff
power_0_left qbracket_def power_diff dest: power_eq_1_iff)

lemma qbinomial_rec4:
fixes q :: "’a :: real_normed_field"
assumes "norm q 6= 1" "n > 0" "k > 0" "k ≤ n"
shows "qbinomial q n k = (1 - q ^ (Suc n - k)) / (1 - q ^ k) * qbinomial

q n (k-1)"
proof (cases "q = 0")

case False
have "q ^ Suc n 6= q ^ k"
proof

assume *: "q ^ Suc n = q ^ k"
have "q ^ Suc n = q ^ (Suc n - k) * q ^ k"

by (subst power_add [symmetric]) (use assms in simp)

36

with * have "q ^ (Suc n - k) = 1"
using assms False by (auto simp: power_0_left)

thus False using assms by (auto dest: power_eq_1_iff)
qed
thus ?thesis

using assms
by (subst (1 2) qbinomial_qfact’)

(auto simp: divide_simps of_nat_diff power_int_diff qfact_rec qbracket_eq_0_iff
power_0_left qbracket_def power_diff dest: power_eq_1_iff)

qed (use assms in ‹auto simp: power_0_left›)

lemmas qbinomial_Suc_Suc [simp del] = qbinomial.simps(3)

lemma qbinomial_Suc_Suc’:
fixes q :: "’a :: real_normed_field"
assumes q: "norm q 6= 1"
shows "qbinomial q (Suc n) (Suc k) =

qbinomial q n (Suc k) + q^(n-k) * qbinomial q n k"
proof (cases "k < n")

case True
have "qbinomial q (Suc n) (Suc k) = qbinomial q (Suc n) (Suc (n - Suc

k))"
by (subst qbinomial_symmetric [symmetric]) (use True q in auto)

also have " . . . = q ^ (n - k) * qbinomial q n (n - k) + qbinomial q n
(n - Suc k)"

by (subst qbinomial_Suc_Suc) (use True in ‹simp_all del: power_Suc
add: Suc_diff_Suc›)

also have "qbinomial q n (n - k) = qbinomial q n k"
by (rule qbinomial_symmetric) (use q True in auto)

also have "qbinomial q n (n - Suc k) = qbinomial q n (Suc k)"
by (rule qbinomial_symmetric) (use q True in auto)

finally show ?thesis by simp
qed (use assms in ‹auto simp: qbinomial_Suc_Suc›)

lemma continuous_on_qbinomial [continuous_intros]:
fixes q :: "’a::topological_space ⇒ ’b :: real_normed_field"
assumes [continuous_intros]: "continuous_on A q"
shows "continuous_on A (λx. qbinomial (q x) m n)"
by (induction m n rule: qbinomial_induct)

(auto intro!: continuous_intros simp: qbinomial.simps)

lemma continuous_qbinomial [continuous_intros]:
fixes q :: "’a::t2_space ⇒ ’b :: real_normed_field"
assumes [continuous_intros]: "continuous F q"
shows "continuous F (λx. qbinomial (q x) m n)"
by (induction m n rule: qbinomial_induct)

(auto intro!: continuous_intros simp: qbinomial.simps)

37

lemma tendsto_qbinomial [tendsto_intros]:
fixes q :: "’a::topological_space ⇒ ’b :: real_normed_field"
assumes [tendsto_intros]: "(q −−−→ Q) F"
shows "((λx. qbinomial (q x) m n) −−−→ qbinomial Q m n) F"
by (induction m n rule: qbinomial_induct)

(auto intro!: tendsto_intros simp: qbinomial.simps)

lemma holomorphic_on_qbinomial [holomorphic_intros]:
assumes [holomorphic_intros]: "q holomorphic_on A"
shows "(λx. qbinomial (q x) m n) holomorphic_on A"
by (induction m n rule: qbinomial_induct)

(auto intro!: holomorphic_intros simp: qbinomial.simps)

lemma analytic_on_qbinomial [analytic_intros]:
assumes [analytic_intros]: "q analytic_on A"
shows "(λx. qbinomial (q x) m n) analytic_on A"
by (induction m n rule: qbinomial_induct)

(auto intro!: analytic_intros simp: qbinomial.simps)

lemma meromorphic_on_qbinomial [meromorphic_intros]:
assumes [meromorphic_intros]: "q meromorphic_on A"
shows "(λx. qbinomial (q x) m n) meromorphic_on A"
by (induction m n rule: qbinomial_induct)

(auto intro!: meromorphic_intros simp: qbinomial.simps)

2.4 The Gaussian polynomials

The q-binomial coefficient
(
n
k

)
q

is a polynomial of degree k(n−k) in q. These
polynomials are often called the Gaussian polynomials.
fun gauss_poly :: "nat ⇒ nat ⇒ ’a :: comm_semiring_1 poly" where

"gauss_poly n 0 = 1"
| "gauss_poly 0 (Suc k) = 0"
| "gauss_poly (Suc n) (Suc k) = monom 1 (Suc k) * gauss_poly n (Suc k)
+ gauss_poly n k"

lemma poly_gauss_poly [simp]:
"poly (gauss_poly n k) q = qbinomial q n k"
by (induction q n k rule: qbinomial.induct) (auto simp: poly_monom qbinomial_Suc_Suc)

lemma of_nat_coeff_gauss_poly [simp]: "of_nat (coeff (gauss_poly n k)
i) = coeff (gauss_poly n k) i"

by (induction n k arbitrary: i rule: gauss_poly.induct) (auto simp:
coeff_monom_mult)

lemma of_int_coeff_gauss_poly [simp]: "of_int (coeff (gauss_poly n k)
i) = coeff (gauss_poly n k) i"

by (induction n k arbitrary: i rule: gauss_poly.induct) (auto simp:
coeff_monom_mult)

38

lemma norm_coeff_gauss_poly [simp]:
"norm (coeff (gauss_poly n k) i :: ’a :: {real_normed_algebra_1, comm_semiring_1})

=
coeff (gauss_poly n k) i"

proof -
have "norm (coeff (gauss_poly n k) i :: ’a) = norm (of_nat (coeff (gauss_poly

n k) i) :: ’a)"
by (subst of_nat_coeff_gauss_poly) auto

also have " . . . = coeff (gauss_poly n k) i"
by (subst norm_of_nat) auto

finally show ?thesis .
qed

lemmas gauss_poly_Suc_Suc [simp del] = gauss_poly.simps(3)

lemma gauss_poly_eq_0 [simp]: "k > n =⇒ gauss_poly n k = 0"
by (induction n k rule: gauss_poly.induct) (auto simp: gauss_poly_Suc_Suc)

lemma coeff_0_gauss_poly [simp]: "k ≤ n =⇒ coeff (gauss_poly n k) 0
= 1"

by (induction n k rule: gauss_poly.induct) (auto simp: gauss_poly_Suc_Suc
coeff_monom_mult)

lemma gauss_poly_eq_0_iff [simp]: "gauss_poly n k = 0 ←→ k > n"
proof (cases "k ≤ n")

case True
hence "coeff (gauss_poly n k) 0 6= coeff 0 0"

by auto
hence "gauss_poly n k 6= 0"

by metis
thus ?thesis using True

by simp
qed auto

lemma gauss_poly_n_n [simp]: "gauss_poly n n = 1"
by (induction n) (auto simp: gauss_poly_Suc_Suc)

lemma coeff_gauss_poly_nonneg: "coeff (gauss_poly n k :: ’a :: linordered_semidom
poly) i ≥ 0"

by (induction n k arbitrary: i rule: gauss_poly.induct)
(auto simp: gauss_poly_Suc_Suc coeff_monom_mult)

lemma coeff_gauss_poly_le:
"coeff (gauss_poly n k :: ’a :: linordered_semidom poly) i ≤ of_nat

(n choose k)"
proof (induction n k arbitrary: i rule: gauss_poly.induct)

case (3 n k)
show ?case

39

proof (cases "i ≥ Suc k")
case True
hence "coeff (gauss_poly (Suc n) (Suc k) :: ’a poly) i =

coeff (gauss_poly n (Suc k)) (i - Suc k) + coeff (gauss_poly
n k) i"

by (auto simp: gauss_poly_Suc_Suc coeff_monom_mult not_less)
also have " . . . ≤ of_nat (n choose Suc k) + of_nat (n choose k)"

by (intro add_mono "3.IH")
finally show ?thesis

by (simp add: add_ac)
next

case False
hence "coeff (gauss_poly (Suc n) (Suc k) :: ’a poly) i = coeff (gauss_poly

n k) i + 0"
by (auto simp: gauss_poly_Suc_Suc coeff_monom_mult)

also have " . . . ≤ of_nat (n choose k) + of_nat (n choose Suc k)"
by (intro add_mono "3.IH") auto

finally show ?thesis
by (simp add: add_ac)

qed
qed auto

lemma degree_gauss_poly: "degree (gauss_poly n k :: ’a :: idom poly)
= k * (n - k)"
proof (cases "k ≤ n")

case True
have "int (degree (gauss_poly n k :: ’a poly)) = int k * (int n - int

k)"
using True

proof (induction n k rule: gauss_poly.induct)
case (3 n k)
note [simp] = "3.IH"
have "int (degree (gauss_poly (Suc n) (Suc k) :: ’a poly)) =

int (degree (monom 1 (Suc k) * gauss_poly n (Suc k) + gauss_poly
n k :: ’a poly))"

by (auto simp: gauss_poly_Suc_Suc)
also have " . . . = (int k + 1) * (int n - int k)"
proof (cases "n = k")

case True
thus ?thesis using 3 by auto

next
case False
have "int (degree (monom (1::’a) (Suc k) * gauss_poly n (Suc k)))

=
int (Suc k + degree (gauss_poly n (Suc k) :: ’a poly))"

using False "3.prems" by (subst degree_mult_eq) (auto simp: degree_monom_eq)
also have " . . . = (int k + 1) * (int n - int k)"

using False "3.prems" by (simp add: algebra_simps)
finally have deg1: "int (degree (monom (1::’a) (Suc k) * gauss_poly

40

n (Suc k))) =
(int k + 1) * (int n - int k)" .

have "int (degree (gauss_poly n k :: ’a poly)) <
int (degree (monom (1::’a) (Suc k) * gauss_poly n (Suc k)))"

using False "3.prems" by (subst deg1) (auto simp: degree_mult_eq)
thus ?thesis

by (subst degree_add_eq_left) (use deg1 in auto)
qed
finally show ?case

by (simp add: algebra_simps)
qed auto
also have " . . . = int (k * (n - k))"

using True by (simp add: algebra_simps of_nat_diff)
finally show ?thesis

by linarith
qed auto

lemma norm_qbinomial_le_binomial:
fixes q :: "’a :: real_normed_field"
assumes "norm q < 1"
shows "norm (qbinomial q n k) ≤ real (n choose k) * (1 - norm q ^

(k*(n-k)+1)) / (1 - norm q)"
proof (cases "k ≤ n")

case True
have "qbinomial q n k = poly (gauss_poly n k) q"

by simp
also have " . . . = (

∑
i≤k*(n-k). coeff (gauss_poly n k) i * q ^ i)"

unfolding poly_altdef using True by (simp add: degree_gauss_poly)
also have "norm . . . ≤ (

∑
i≤k*(n-k). norm (coeff (gauss_poly n k) i

* q ^ i))"
by (rule norm_sum)

also have " . . . = (
∑

i≤k * (n - k). coeff (gauss_poly n k) i * norm
q ^ i)"

by (simp add: norm_mult norm_power)
also have " . . . ≤ (

∑
i≤k*(n-k). (n choose k) * norm q ^ i)"

by (intro sum_mono mult_right_mono power_mono coeff_gauss_poly_le)
auto

also have " . . . = (n choose k) * (
∑

i≤k * (n - k). norm q ^ i)"
by (simp add: sum_distrib_left)

also have " . . . = real (n choose k) * (1 - norm q ^ (k * (n - k) + 1))
/ (1 - norm q)"

by (subst sum_gp0) (use assms in auto)
finally show ?thesis .

qed auto

lemma norm_qbinomial_le_binomial’:
fixes q :: "’a :: real_normed_field"
assumes "norm q < 1"
shows "norm (qbinomial q n k) ≤ real (n choose k) / (1 - norm q)"

41

proof -
have "norm (qbinomial q n k) ≤ real (n choose k) * (1 - norm q ^ (k*(n-k)+1))

/ (1 - norm q)"
by (rule norm_qbinomial_le_binomial) fact+

also have " . . . ≤ real (n choose k) * (1 - 0) / (1 - norm q)"
by (intro mult_left_mono divide_right_mono diff_left_mono) (use assms

in auto)
finally show ?thesis

by simp
qed

2.5 The finite Pochhammer symbol (a; q)n

The definition of the q-Pochhammer symbol is a bit less obvious. Recall
that the ordinary Pochhamer symbol is defined as

an = a(a + 1) · · · (a + n− 1) .

The q-Pochhammer symbol is defined as

(a; q)n = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1)

for n ≥ 0. We extend the definition to n < 0 such that the recurrences that
hold for n ≥ 0 carry over to the negative domain as well. Effectively, what
we do is to define

(a; q)−n =
1

(aq−n; q)n

definition qpochhammer :: "int ⇒ ’a ⇒ ’a ⇒ ’a :: field" where
"qpochhammer n a q =

(if n ≥ 0 then (
∏

k<nat n. (1 - a * q ^ k)) else (
∏

k=1..nat (-n).
1 / (1 - a / q^k)))"

Seeing in which way it is an analogue of the “normal” Pochhammer symbol
an = a(a + 1) · · · (a + n− 1) is more involved than for the other analogues:
if we simply let q = 1, we merely get (1− a)n.
However, we do have:

lim
q→1

(qa; q)∞
(1− q)n

= an

lemma qpochhammer_tendsto_pochhammer:
"(λq::real. qpochhammer (int n) (q powr a) q / (1 - q) ^ n) −1→ pochhammer

a n"
proof (rule Lim_transform_eventually)

have "(λq.
∏

k<n. (1 - q powr (a + int k)) / (1 - q)) −1→ (
∏

k<n.
a + real k)"

by (rule tendsto_prod) real_asymp
also have "(

∏
k<n. a + real k) = pochhammer a n"

by (simp add: pochhammer_prod atLeast0LessThan)

42

finally show "(λq.
∏

k<n. (1 - q powr (a + int k)) / (1 - q)) −1→ pochhammer
a n" .
next

have "eventually (λq. q ∈ {0<..} - {1}) (at (1::real))"
by (intro eventually_at_in_open) auto

thus "eventually (λq. (
∏

k<n. (1 - q powr (a + int k)) / (1 - q)) =
qpochhammer (int n) (q powr a) q / (1 - q) ^ n)

(at 1)"
by eventually_elim (simp add: qpochhammer_def powr_add powr_realpow

prod_dividef)
qed

lemma qpochhammer_nonneg_def: "qpochhammer (int n) a q = (
∏

k<n. (1 -
a * q ^ k))"

by (simp add: qpochhammer_def)

lemma qpochhammer_0 [simp]: "qpochhammer 0 a q = 1"
by (simp add: qpochhammer_def)

lemma qpochhammer_1 [simp]: "qpochhammer 1 a q = 1 - a"
by (simp add: qpochhammer_def)

lemma qpochhammer_1_right [simp]: "qpochhammer n a 1 = (1 - a) powi n"
by (simp add: qpochhammer_def power_int_def field_simps)

lemma qpochhammer_neg1 [simp]: "q 6= 0 =⇒ q 6= a =⇒ qpochhammer (-1)
a q = q / (q - a)"

by (simp add: qpochhammer_def divide_simps)

lemma qpochhammer_0_middle [simp]: "qpochhammer n 0 q = 1"
by (simp add: qpochhammer_def)

lemma qpochhammer_0_right: "qpochhammer n a 0 = (if n > 0 then 1 - a
else 1)"
proof (cases "n ≥ 0")

case False
thus ?thesis

by (auto simp: qpochhammer_def power_0_left)
next

case True
hence "qpochhammer n a 0 = (

∏
k<nat n. 1 - a * (if k = 0 then 1 else

0))"
by (auto simp add: qpochhammer_def power_0_left)

also have " . . . = (
∏

k∈(if n = 0 then {} else {0::nat}). 1 - a)"
using True by (intro prod.mono_neutral_cong_right) (auto split: if_splits)

also have " . . . = (if n > 0 then 1 - a else 1)"
using True by auto

finally show ?thesis .
qed

43

lemma qpochhammer_0_right_pos [simp]: "n > 0 =⇒ qpochhammer n a 0 =
1 - a"

and qpochhammer_0_right_nonpos [simp]: "n ≤ 0 =⇒ qpochhammer n a 0
= 1"

by (simp_all add: qpochhammer_0_right)

lemma qpochhammer_nat_eq_0_iff:
"qpochhammer (int n) a q = 0 ←→ (∃ k<n. a * q ^ k = 1)"

proof -
have "qpochhammer (int n) a q = (

∏
k<n. 1 - a * q ^ k)"

unfolding qpochhammer_def by simp
also have " . . . = 0 ←→ (∃ k<n. a * q ^ k = 1)"

by (simp add: Bex_def)
finally show ?thesis .

qed

lemma qpochhammer_of_real:
"qpochhammer n (of_real a :: ’a :: real_field) (of_real q) = of_real

(qpochhammer n a q)"
by (simp add: qpochhammer_def)

lemma qpochhammer_eq_0_iff:
"qpochhammer n a q = 0 ←→ (∃ k∈{min n 0..<max n 0}. a * q powi k =

1)"
proof (cases "n ≥ 0")

case True
define m where "m = nat n"
have n_eq: "n = int m"

using True by (auto simp: m_def)
have "qpochhammer n a q = 0 ←→ (∃ k∈{..<m}. a * q ^ k = 1)"

by (simp add: n_eq qpochhammer_nat_eq_0_iff Bex_def)
also have "bij_betw int {k∈{..<m}. a * q ^ k = 1} {k∈{0..<int m}. a

* q powi k = 1}"
by (rule bij_betwI[of _ _ _ nat]) (auto simp: power_int_def)

hence "(∃ k∈{..<m}. a * q ^ k = 1) ←→ (∃ k∈{0..<int m}. a * q powi
k = 1)"

by (rule bij_betw_imp_Bex_iff)
finally show ?thesis

by (simp add: n_eq)
next

case False
define m where "m = nat (-n)"
have n_eq: "n = -int m" and "m > 0"

using False by (auto simp: m_def)
have "qpochhammer n a q = (

∏
k=1..m. 1 / (1 - a / q ^ k))"

using ‹m > 0› by (simp add: qpochhammer_def n_eq)
also have " . . . = 0 ←→ (∃ k∈{1..m}. 1 / (1 - a / q ^ k) = 0)"

by simp

44

also have " . . . ←→ (∃ k∈{1..m}. a / q ^ k = 1)"
by (intro bex_cong) (use ‹m > 0› in auto)

also have "bij_betw (λk. -int k) {k∈{1..m}. a / q ^ k = 1} {k∈{-int
m..<0}. a * q powi k = 1}"

by (rule bij_betwI[of _ _ _ "λk. nat (-k)"]) (auto simp: power_int_def
field_simps)

hence "(∃ k∈{1..m}. a / q ^ k = 1) ←→ (∃ k∈{-int m..<0}. a * q powi
k = 1)"

by (rule bij_betw_imp_Bex_iff)
finally show ?thesis

using ‹m > 0› by (simp add: n_eq)
qed

lemma qpochhammer_rec:
assumes "

∧
k. int k ∈ {0<..-n} =⇒ q ^ k 6= a"

shows "qpochhammer (n + 1) a q = qpochhammer n a q * (1 - a * q powi
n)"
proof -

consider "n ≥ 0" | "n = -1" | "n < 0"
by linarith

thus ?thesis
proof cases

assume "n = -1"
thus ?thesis using assms[of 1]

by (auto simp: qpochhammer_def field_simps)
next

assume "n ≥ 0"
thus ?thesis

by (auto simp: qpochhammer_def nat_add_distrib power_int_def)
next

assume n: "n < 0"
hence "qpochhammer n a q = (

∏
k=1..nat (-n). 1 / (1 - a / q ^ k))"

by (auto simp: qpochhammer_def)
also have "{1..nat (-n)} = insert (nat (-n)) {1..nat (-n-1)}"

using n by auto
also have "(

∏
k∈. . . . 1 / (1 - a / q ^ k)) =

(
∏

k=1..nat (-n-1). 1 / (1 - a / q ^ k)) * (1 / (1 -
a / q ^ nat (-n)))"

by (subst prod.insert) auto
also have "(

∏
k=1..nat (-n-1). 1 / (1 - a / q ^ k)) = qpochhammer

(n + 1) a q"
using n by (simp add: qpochhammer_def)

also have "a / q ^ nat (-n) = a * q powi n"
using n by (simp add: power_int_def field_simps)

finally show ?thesis
using assms[of "nat (-n)"] n by (auto simp: power_int_def field_simps)

qed
qed

45

lemma qpochhammer_plus1:
assumes "n ≥ 0 ∨ x * q powi n 6= 1"
shows "qpochhammer (n + 1) x q = qpochhammer n x q * (1 - x * q powi

n)"
proof (cases "q = 0")

case True
thus ?thesis by (auto simp: qpochhammer_def power_0_left power_int_def

nat_add_distrib)
next

case [simp]: False
consider "n < -1" | "n = -1" | "n ≥ 0"

by linarith
thus ?thesis
proof cases

assume "n < -1"
define m where "m = nat (-n-1)"
have n_eq: "n = -int m-1" and "m > 0"

using ‹n < -1› by (simp_all add: m_def)
show ?thesis using ‹m > 0› assms

by (simp add: n_eq qpochhammer_def power_int_diff power_int_minus

nat_add_distrib divide_simps mult_ac)
next

assume [simp]: "n = -1"
show ?thesis using assms

by (simp add: qpochhammer_def divide_simps)
next

assume "n ≥ 0"
define m where "m = nat n"
have n_eq: "n = int m"

using ‹n ≥ 0› by (simp add: m_def)
show ?thesis using assms

by (simp add: n_eq qpochhammer_def nat_add_distrib)
qed

qed

lemma qpochhammer_minus1:
assumes "x * q powi (n - 1) 6= 1"
shows "qpochhammer (n - 1) x q = qpochhammer n x q / (1 - x * q powi

(n - 1))"
using qpochhammer_plus1[of "n - 1" x q] assms by simp

lemma qpochhammer_1plus:
assumes "n ≥ 0 ∨ x * q powi n 6= 1"
shows "qpochhammer (1 + n) x q = qpochhammer n x q * (1 - x * q powi

n)"
using qpochhammer_plus1[OF assms] by (simp add: add_ac)

lemma qpochhammer_nat_add:

46

fixes m n :: nat
shows "qpochhammer (int m + int n) x q = qpochhammer (int m) x q * qpochhammer

n (q ^ m * x) q"
proof -

have "qpochhammer (int m + int n) x q = (
∏

k<m+n. 1 - x * q ^ k)"
by (simp add: qpochhammer_def nat_add_distrib)

also have " . . . = (
∏

k∈{..<m}∪{m..<m+n}. 1 - x * q ^ k)"
by (intro prod.cong refl) auto

also have " . . . = (
∏

k<m. 1 - x * q ^ k) * (
∏

k=m..<m+n. 1 - x * q ^
k)"

by (subst prod.union_disjoint) auto
also have "(

∏
k<m. 1 - x * q ^ k) = qpochhammer m x q"

by (simp add: qpochhammer_def)
also have "(

∏
k=m..<m+n. 1 - x * q ^ k) = (

∏
k<n. 1 - x * q ^ m * q

^ k)"
by (intro prod.reindex_bij_witness[of _ "λk. k + m" "λk. k - m"])

(auto simp flip: power_add)
also have " . . . = qpochhammer n (q ^ m * x) q"

by (simp add: qpochhammer_def mult_ac)
finally show ?thesis .

qed

lemma qpochhammer_minus:
assumes "n < 0 −→ q 6= 0"
shows "qpochhammer (-n) a q = 1 / qpochhammer n (a / q powi n) q"

proof (cases "q = 0")
case [simp]: True
from assms have "n ≥ 0"

by auto
thus ?thesis

by (simp add: power_int_0_left_If)
next

case [simp]: False

show ?thesis
proof (cases n "0::int" rule: linorder_cases)

case n: less
define m where "m = nat (-n)"
have n_eq: "n = -int m"

using n by (simp add: m_def)
have "1 / qpochhammer n (a / q powi n) q =

(
∏

k=1..m. 1 - a / (q ^ k / q ^ m))"
by (simp add: qpochhammer_def prod_dividef n_eq power_int_minus

inverse_eq_divide)
also have " . . . = (

∏
k<m. 1 - a * q ^ k)"

by (rule prod.reindex_bij_witness[of _ "λi. m - i" "λi. m -i"])

(auto simp: power_diff)
also have " . . . = qpochhammer (-n) a q"

47

by (simp add: qpochhammer_def n_eq)
finally show ?thesis ..

next
case n: greater
define m where "m = nat n"
have n_eq: "n = int m" and "m > 0"

using n by (simp_all add: m_def)
have "qpochhammer (-n) a q = 1 / (

∏
k=1..m. 1 - a / q ^ k)"

using ‹m > 0› by (simp add: qpochhammer_def prod_dividef n_eq)
also have "(

∏
k=1..m. 1 - a / q ^ k) = (

∏
k<m. 1 - a * q ^ k / q ^

m)"
by (rule prod.reindex_bij_witness[of _ "λi. m - i" "λi. m -i"])

(auto simp: power_diff)
also have "1 / . . . = 1 / qpochhammer n (a / q powi n) q"

by (simp add: qpochhammer_def n_eq)
finally show ?thesis .

qed auto
qed

lemma qpochhammer_add:
assumes "

∧
k. k ∈ {m+min n 0..<m+max n 0} =⇒ x * q powi k 6= 1" and

[simp]: "q 6= 0"
shows "qpochhammer (m + n) x q = qpochhammer m x q * qpochhammer n

(q powi m * x) q"
proof -

have *: "qpochhammer (m + int n) x q = qpochhammer m x q * qpochhammer
(int n) (q powi m * x) q"

if "∀ k<n. x * q powi (m + k) 6= 1" for n :: nat and m :: int
using that by (induction n) (auto simp: qpochhammer_1plus add_ac power_int_add)

show ?thesis
proof (cases "n ≥ 0")

case True
define n’ where "n’ = nat n"
have n_eq: "n = int n’"

using True by (simp add: n’_def)
show ?thesis

using *[of n’ m] assms by (auto simp: n_eq)
next

case False
define n’ where "n’ = nat (-n)"
have n_eq: "n = -int n’" and n’: "n’ > 0"

using False by (simp_all add: n’_def)
have "qpochhammer m x q = qpochhammer (m + n + int n’) x q"

by (simp add: n_eq)
also have " . . . = qpochhammer (m + n) x q * qpochhammer (-n) (q powi

(m + n) * x) q"
by (subst *) (use assms in ‹auto simp: n_eq›)

48

also have " . . . = qpochhammer (m + n) x q / qpochhammer n (q powi m
* x) q"

by (subst qpochhammer_minus) (use False in ‹auto simp: power_int_add›)
finally have "qpochhammer m x q = qpochhammer (m + n) x q / qpochhammer

n (q powi m * x) q" .
moreover have "qpochhammer n (q powi m * x) q 6= 0"
proof

assume "qpochhammer n (q powi m * x) q = 0"
then obtain k where k: "k ∈ {-int n’..<0}" "x * q powi (m + k)

= 1"
using n’ by (auto simp: n_eq qpochhammer_eq_0_iff power_int_add

mult_ac)
moreover from k(1) have "m + k ∈ {m+min n 0..<m+max n 0}"

using n’ by (auto simp: n_eq)
ultimately show False

using k(2) assms by blast
qed
ultimately show ?thesis

by (simp add: divide_simps power_int_add)
qed

qed

lemma qfact_conv_qpochhammer_aux:
assumes "n < 0 −→ q 6= 0"
shows "qpochhammer n q q = qfact q n * (1 - q) powi n"

proof (cases "q = 1")
case q: False
show ?thesis
proof (cases "n ≥ 0")

case True
thus ?thesis
proof (induction n rule: int_ge_induct)

case base
thus ?case by auto

next
case (step n)
thus ?case using q

by (subst qpochhammer_rec)
(auto simp: qfact_plus1 power_int_diff qbracket_def power_int_add

add_eq_0_iff2)
qed

qed (use assms in ‹auto simp: qpochhammer_def not_le intro: bexI[of
_ 1]›)
qed (use assms in ‹auto simp: qpochhammer_def power_0_left qfact_def not_less›)

lemma qfact_conv_qpochhammer:
assumes "if n ≥ 0 then q 6= 1 else q 6= 0"
shows "qfact q n = qpochhammer n q q * (1 - q) powi (-n)"
using qfact_conv_qpochhammer_aux[of n q] assms

49

by (auto simp: power_int_minus divide_simps split: if_splits)

lemma qbinomial_conv_qpochhammer:
fixes q :: "’a :: field_char_0"
assumes "k ≤ n"
assumes "

∧
k. 0 < k =⇒ k ≤ n =⇒ q ^ k 6= 1"

shows "qbinomial q n k =
qpochhammer (int n) q q / (qpochhammer (int k) q q * qpochhammer

(int n - int k) q q)"
proof (cases "n = 0")

case False
with assms(2)[of 1] have [simp]: "q 6= 1"

by auto
define P where "P = (λn. qpochhammer (int n) q q)"
have "qbinomial q n k = qfact q (int n) / (qfact q (int k) * qfact q

(int n - int k))"
using assms by (subst qbinomial_qfact) (use assms in auto)

also have " . . . = P n / (P k * P (n - k))"
by (subst (1 2 3) qfact_conv_qpochhammer)

(use ‹k ≤ n› in ‹auto simp: power_int_minus power_int_diff field_simps
P_def of_nat_diff›)

finally show ?thesis
using assms(1) by (simp add: P_def of_nat_diff)

qed (use assms(1) in auto)

lemma norm_qpochhammer_nonneg_le:
fixes a q :: "’a::{real_normed_field}"
assumes "norm q ≤ 1"
shows "norm (qpochhammer (int n) a q) ≤ (1 + norm a) ^ n"

proof -
have "norm (qpochhammer (int n) a q) = (

∏
x<n. norm (1 - a * q ^ x))"

by (simp add: qpochhammer_nonneg_def flip: prod_norm)
also have " . . . ≤ (

∏
x<n. norm (1::’a) + norm (a * q ^ x))"

by (intro prod_mono conjI norm_ge_zero) norm
also have " . . . = (

∏
k<n. norm (1::’a) + norm a * norm q ^ k)"

by (simp add: norm_power norm_mult)
also have " . . . ≤ (

∏
k<n. norm (1::’a) + norm a * norm q ^ 0)"

by (intro prod_mono add_mono mult_left_mono power_decreasing conjI)
(use assms in auto)

finally show ?thesis
by simp

qed

lemma norm_qpochhammer_nonneg_ge:
fixes a q :: "’a::{real_normed_field}"
assumes "norm q ≤ 1" "norm a ≤ 1"
shows "norm (qpochhammer (int n) a q) ≥ (1 - norm a) ^ n"

proof -
have "(

∏
k<n. norm (1::’a) - norm a * norm q ^ 0) ≤

50

(
∏

k<n. norm (1::’a) - norm a * norm q ^ k)"
by (intro prod_mono diff_mono mult_left_mono power_decreasing conjI)

(use assms in auto)
also have " . . . ≤ (

∏
k<n. norm (1::’a) - norm (a * q ^ k))"

by (simp add: norm_power norm_mult)
also have " . . . ≤ (

∏
k<n. norm (1 - a * q ^ k))"

proof (intro prod_mono conjI)
fix i :: nat
show "norm (1::’a) - norm (a * q ^ i) ≤ norm (1 - a * q ^ i)"

by norm
have "norm a * norm q ^ i ≤ 1 * 1 ^ i"

using assms by (intro mult_mono power_mono) auto
thus "norm (1::’a) - norm (a * q ^ i) ≥ 0"

by (simp add: norm_power norm_mult)
qed
also have " . . . = norm (qpochhammer (int n) a q)"

by (simp add: qpochhammer_nonneg_def flip: prod_norm)
finally show ?thesis

by simp
qed

lemma qpochhammer_nonneg_nonzero:
fixes q :: "’a :: real_normed_field"
assumes "norm q < 1" "norm a < 1"
shows "qpochhammer (int k) a q 6= 0"

proof -
have "0 < (1 - norm a) ^ k"

using assms by simp
also have "(1 - norm a) ^ k ≤ norm (qpochhammer (int k) a q)"

by (rule norm_qpochhammer_nonneg_ge) (use assms in auto)
finally show ?thesis

by auto
qed

lemma qbinomial_conv_qpochhammer’:
fixes q :: "’a :: {real_normed_field}"
assumes "norm q < 1" "k ≤ n"
shows "qbinomial q n k = qpochhammer (int k) (q ^ (n + 1 - k)) q /

qpochhammer (int k) q q"
proof -

have eq: "qpochhammer (int n) q q =
qpochhammer (int k) (q ^ Suc (n - k)) q * qpochhammer (int

(n - k)) q q"
using qpochhammer_nat_add[of "n - k" k q q] assms by (simp add: of_nat_diff

mult_ac)
have [simp]: "q ^ k 6= 1" if "k > 0" for k

using assms by (simp add: q_power_neq_1 that)
have "qbinomial q n k = (qpochhammer (int n) q q / qpochhammer (int

n - int k) q q) / (qpochhammer (int k) q q)"

51

by (subst qbinomial_conv_qpochhammer) (use assms in ‹auto simp: field_simps›)
also have " . . . = qpochhammer (int k) (q ^ (n + 1 - k)) q / qpochhammer

(int k) q q"
unfolding eq using assms
by (auto simp add: qpochhammer_nonneg_nonzero Suc_diff_le simp flip:

of_nat_diff)
finally show ?thesis .

qed

lemma norm_qbinomial_le:
fixes a q :: "’a::{real_normed_field}"
assumes "norm q < 1"
shows "norm (qbinomial q n k) ≤ ((1 + norm q) / (1 - norm q)) ^ k"

proof (cases "k ≤ n")
case True
have [simp]: "q ^ k 6= 1" if "k > 0" for k

using assms(1) q_power_neq_1 that by blast
have "norm (qbinomial q n k) =

norm (qpochhammer (int k) (q ^ (Suc n - k)) q) / norm (qpochhammer
(int k) q q)"

by (subst qbinomial_conv_qpochhammer’)
(use assms True in ‹auto simp: norm_divide norm_mult of_nat_diff›)

also have " . . . ≤ (1 + norm (q ^ (Suc n - k))) ^ k / (1 - norm q) ^ k"
by (intro frac_le mult_mono norm_qpochhammer_nonneg_le

norm_qpochhammer_nonneg_ge mult_pos_pos)
(use assms in auto)

also have " . . . ≤ (1 + norm q ^ 1) ^ k / (1 - norm q) ^ k"
unfolding norm_power
by (intro divide_right_mono power_mono add_left_mono power_decreasing)

(use assms True in auto)
also have " . . . = ((1 + norm q) / (1 - norm q)) ^ k"

using assms by (simp add: power_divide True flip: power_add)
finally show ?thesis .

qed (use assms in auto)

lemma norm_qbinomial_ge:
fixes a q :: "’a::{real_normed_field}"
assumes "norm q < 1" "k ≤ n"
shows "norm (qbinomial q n k) ≥ ((1 - norm q) / (1 + norm q)) ^ k"

proof -
have not_one: "q ^ k 6= 1" if "k > 0" for k

using assms(1) q_power_neq_1 that by blast
have [simp]: "qpochhammer (int i) q q 6= 0" for i
proof

assume "qpochhammer (int i) q q = 0"
then obtain k where "q * q powi k = 1" "k ≥ 0"

by (subst (asm) qpochhammer_eq_0_iff) auto
hence "q ^ Suc (nat k) = 1"

by (cases k) auto

52

thus False
using not_one[of "Suc (nat k)"] by simp

qed

have "((1 - norm q) / (1 + norm q)) ^ k = (1 - norm q ^ 1) ^ k / (1
+ norm q) ^ k"

using assms by (simp add: power_divide flip: power_add)
also have " . . . ≤ (1 - norm (q ^ (Suc n - k))) ^ k / (1 + norm q) ^ k"

unfolding norm_power
by (intro divide_right_mono diff_left_mono power_mono power_decreasing)

(use assms in auto)
also have " . . . ≤ norm (qpochhammer (int k) (q ^ (Suc n - k)) q) / norm

(qpochhammer (int k) q q)"
by (intro frac_le mult_mono norm_qpochhammer_nonneg_le

norm_qpochhammer_nonneg_ge mult_pos_pos)
(use assms in ‹auto simp: norm_power power_le_one_iff›)

also have " . . . = norm (qbinomial q n k)"
by (subst qbinomial_conv_qpochhammer’)

(use assms in ‹auto simp: norm_divide norm_mult of_nat_diff not_one›)
finally show ?thesis .

qed

lemma norm_qpochhammer_nonneg_le_qpochhammer:
fixes q :: "’a :: real_normed_field"
shows "norm (qpochhammer (int k) a q) ≤ qpochhammer (int k) (-norm

a) (norm q)"
proof -

have "norm (qpochhammer (int k) a q) = (
∏

i<k. norm (1 - a * q ^ i))"
by (simp add: qpochhammer_nonneg_def prod_norm)

also have " . . . ≤ (
∏

i<k. norm (1::’a) + norm (a * q ^ i))"
by (intro prod_mono conjI norm_ge_zero) norm

also have " . . . = qpochhammer (int k) (-norm a) (norm q)"
by (simp add: qpochhammer_nonneg_def norm_mult norm_power)

finally show ?thesis .
qed

lemma norm_qpochhammer_nonneg_ge_qpochhammer:
fixes q :: "’a :: real_normed_field"
assumes "norm q ≤ 1" "norm a ≤ 1"
shows "norm (qpochhammer (int k) a q) ≥ qpochhammer (int k) (norm

a) (norm q)"
proof -

have "qpochhammer (int k) (norm a) (norm q) = (
∏

i<k. norm (1::’a) -
norm (a * q ^ i))"

by (simp add: qpochhammer_nonneg_def norm_mult norm_power)
also have " . . . ≤ (

∏
i<k. norm (1 - a * q ^ i))"

proof (intro prod_mono conjI norm_ge_zero)
fix i assume i: "i ∈ {..<k}"
have "norm a * norm q ^ i ≤ 1 * 1 ^ i"

53

by (intro mult_mono power_mono) (use assms in auto)
thus "0 ≤ norm (1::’a) - norm (a * q ^ i)"

by (auto simp: norm_mult norm_power)
qed norm
also have " . . . = norm (qpochhammer (int k) a q)"

by (simp add: qpochhammer_nonneg_def prod_norm)
finally show ?thesis .

qed

lemma qpochhammer_nonneg:
assumes "a ≤ 1" "0 ≤ q" "q ≤ 1"
shows "qpochhammer (int n) a (q::real) ≥ 0"

proof -
have "a * q ^ i ≤ 1" for i
proof -

have "a * q ^ i ≤ 1 * 1 ^ i"
by (intro mult_mono power_mono) (use assms in auto)

thus ?thesis
by simp

qed
thus ?thesis

unfolding qpochhammer_nonneg_def by (intro prod_nonneg) auto
qed

lemma qpochhammer_pos:
assumes "a < 1" "0 ≤ q" "q ≤ 1"
shows "qpochhammer (int n) a (q::real) > 0"

proof -
have "a * q ^ i < 1" for i
proof (cases "a ≥ 0")

case True
have "a * q ^ i ≤ a * 1 ^ i"

by (intro mult_left_mono power_mono) (use assms True in auto)
thus ?thesis

using assms by auto
next

case False
hence "a * q ^ i ≤ 0"

by (intro mult_nonpos_nonneg) (use assms in auto)
also have " . . . < 1"

by simp
finally show ?thesis

by simp
qed
thus ?thesis

unfolding qpochhammer_nonneg_def by (intro prod_pos) auto
qed

54

lemma holomorphic_qpochhammer [holomorphic_intros]:
fixes f g :: "complex ⇒ complex"
assumes [holomorphic_intros]: "f holomorphic_on A" "g holomorphic_on

A"
assumes "

∧
x k. x ∈ A =⇒ int k ∈ {0<..-n} =⇒ f x ^ k 6= g x" "

∧
x.

x ∈ A =⇒ f x 6= 0"
shows "(λx. qpochhammer n (g x) (f x)) holomorphic_on A"
unfolding qpochhammer_def using assms(3,4)
by (cases "n ≥ 0")

(force intro!: holomorphic_intros simp: Suc_le_eq not_le eq_commute[of
_ "g x" for x])+

lemma analytic_qpochhammer [analytic_intros]:
fixes f g :: "complex ⇒ complex"
assumes [analytic_intros]: "f analytic_on A" "g analytic_on A"
assumes "

∧
x k. x ∈ A =⇒ int k ∈ {0<..-n} =⇒ f x ^ k 6= g x" "

∧
x.

x ∈ A =⇒ f x 6= 0"
shows "(λx. qpochhammer n (g x) (f x)) analytic_on A"
unfolding qpochhammer_def using assms(3,4)
by (cases "n ≥ 0")

(force intro!: analytic_intros simp: Suc_le_eq not_le eq_commute[of
_ "g x" for x])+

lemma meromorphic_qpochhammer [meromorphic_intros]:
fixes f g :: "complex ⇒ complex"
assumes [meromorphic_intros]: "f meromorphic_on A" "g meromorphic_on

A"
shows "(λx. qpochhammer n (g x) (f x)) meromorphic_on A"
unfolding qpochhammer_def by (cases "n ≥ 0") (auto intro!: meromorphic_intros)

lemma continuous_on_qpochhammer [continuous_intros]:
fixes f g :: "’a :: topological_space ⇒ ’b :: {real_normed_field}"
assumes [continuous_intros]: "continuous_on A f" "continuous_on A g"
assumes "

∧
x k. x ∈ A =⇒ int k ∈ {0<..-n} =⇒ f x ^ k 6= g x" "

∧
x.

x ∈ A =⇒ f x 6= 0"
shows "continuous_on A (λx. qpochhammer n (g x) (f x))"
unfolding qpochhammer_def using assms(3,4)
by (cases "n ≥ 0")

(force intro!: continuous_intros simp: Suc_le_eq not_le eq_commute[of
_ "g x" for x])+

lemma continuous_qpochhammer [continuous_intros]:
fixes f g :: "’a :: t2_space ⇒ ’b :: {real_normed_field}"
assumes [continuous_intros]: "continuous (at x within A) f" "continuous

(at x within A) g"
assumes "

∧
k. int k ∈ {0<..-n} =⇒ f x ^ k 6= g x" "f x 6= 0"

shows "continuous (at x within A) (λx. qpochhammer n (g x) (f x))"
unfolding qpochhammer_def using assms(3,4)
by (cases "n ≥ 0")

55

(force intro!: continuous_intros simp: Suc_le_eq not_le eq_commute[of
_ "g x" for x])+

lemma tendsto_qpochhammer [tendsto_intros]:
fixes f g :: "’a ⇒ ’b :: {real_normed_field}"
assumes [tendsto_intros]: "(f −−−→ q) F" "(g −−−→ a) F"
assumes "

∧
k. int k ∈ {0<..-n} =⇒ q ^ k 6= a" "q 6= 0"

shows "((λx. qpochhammer n (g x) (f x)) −−−→ qpochhammer n a q) F"
proof (cases "n ≥ 0")

case True
have "((λx.

∏
k<nat n. 1 - g x * f x ^ k) −−−→ (

∏
k<nat n. 1 - a *

q ^ k)) F"
by (intro tendsto_intros)

thus ?thesis
using True by (simp add: qpochhammer_def [abs_def])

next
case False
have " ((λx.

∏
k=1..nat (- n). 1 / (1 - g x / f x ^ k)) −−−→

(
∏

k=1..nat (- n). 1 / (1 - a / q ^ k))) F"
by (intro tendsto_intros; use assms False in ‹force simp: Suc_le_eq›)

thus ?thesis
using False by (simp add: qpochhammer_def [abs_def])

qed

end

3 The infinite q-Pochhammer symbol (a; q)∞

theory Q_Pochhammer_Infinite
imports

More_Infinite_Products
Q_Analogues

begin

3.1 Definition and basic properties
definition qpochhammer_inf :: "’a :: {real_normed_field, banach, heine_borel}
⇒ ’a ⇒ ’a" where

"qpochhammer_inf a q = prodinf (λk. 1 - a * q ^ k)"

bundle qpochhammer_inf_notation
begin
notation qpochhammer_inf ("’(_ ; _’)∞")
end

bundle no_qpochhammer_inf_notation
begin
no_notation qpochhammer_inf ("’(_ ; _’)∞")
end

56

lemma qpochhammer_inf_0_left [simp]: "qpochhammer_inf 0 q = 1"
by (simp add: qpochhammer_inf_def)

lemma qpochhammer_inf_0_right [simp]: "qpochhammer_inf a 0 = 1 - a"
proof -

have "qpochhammer_inf a 0 = (
∏

k≤0. 1 - a * 0 ^ k)"
unfolding qpochhammer_inf_def by (rule prodinf_finite) auto

also have " . . . = 1 - a"
by simp

finally show ?thesis .
qed

lemma abs_convergent_qpochhammer_inf:
fixes a q :: "’a :: {real_normed_div_algebra, banach}"
assumes "norm q < 1"
shows "abs_convergent_prod (λn. 1 - a * q ^ n)"

proof (rule summable_imp_abs_convergent_prod)
show "summable (λn. norm (1 - a * q ^ n - 1))"

using assms by (auto simp: norm_power norm_mult)
qed

lemma convergent_qpochhammer_inf:
fixes a q :: "’a :: {real_normed_field, banach}"
assumes "norm q < 1"
shows "convergent_prod (λn. 1 - a * q ^ n)"
using abs_convergent_qpochhammer_inf[OF assms] abs_convergent_prod_imp_convergent_prod

by blast

lemma has_prod_qpochhammer_inf:
"norm q < 1 =⇒ (λn. 1 - a * q ^ n) has_prod qpochhammer_inf a q"
using convergent_qpochhammer_inf unfolding qpochhammer_inf_def
by (intro convergent_prod_has_prod)

We now also see that the infinite q-Pochhammer symbol (a; q)∞ really is the
limit of (a; q)n for n→∞:
lemma qpochhammer_tendsto_qpochhammer_inf:

assumes q: "norm q < 1"
shows "(λn. qpochhammer (int n) t q) −−−−→ qpochhammer_inf t q"
using has_prod_imp_tendsto’[OF has_prod_qpochhammer_inf[OF q, of t]]
by (simp add: qpochhammer_def)

lemma qpochhammer_inf_of_real:
assumes " |q | < 1"
shows "qpochhammer_inf (of_real a) (of_real q) = of_real (qpochhammer_inf

a q)"
proof -

have "(λn. of_real (1 - a * q ^ n) :: ’a) has_prod of_real (qpochhammer_inf

57

a q)"
unfolding has_prod_of_real_iff by (rule has_prod_qpochhammer_inf)

(use assms in auto)
also have "(λn. of_real (1 - a * q ^ n) :: ’a) = (λn. 1 - of_real a

* of_real q ^ n)"
by simp

finally have " . . . has_prod of_real (qpochhammer_inf a q)" .
moreover have "(λn. 1 - of_real a * of_real q ^ n :: ’a) has_prod

qpochhammer_inf (of_real a) (of_real q)"
by (rule has_prod_qpochhammer_inf) (use assms in auto)

ultimately show ?thesis
using has_prod_unique2 by blast

qed

lemma qpochhammer_inf_zero_iff:
assumes q: "norm q < 1"
shows "qpochhammer_inf a q = 0 ←→ (∃ n. a * q ^ n = 1)"

proof -
have "(λn. 1 - a * q ^ n) has_prod qpochhammer_inf a q"

using has_prod_qpochhammer_inf[OF q] by simp
hence "qpochhammer_inf a q = 0 ←→ (∃ n. a * q ^ n = 1)"

by (subst has_prod_eq_0_iff) auto
thus ?thesis .

qed

lemma qpochhammer_inf_nonzero:
assumes "norm q < 1" "norm a < 1"
shows "qpochhammer_inf a q 6= 0"

proof
assume "qpochhammer_inf a q = 0"
then obtain n where n: "a * q ^ n = 1"

using assms by (subst (asm) qpochhammer_inf_zero_iff) auto
have "norm (q ^ n) * norm a ≤ 1 * norm a"

unfolding norm_power using assms by (intro mult_right_mono power_le_one)
auto

also have " . . . < 1"
using assms by simp

finally have "norm (a * q ^ n) < 1"
by (simp add: norm_mult mult.commute)

with n show False
by auto

qed

lemma qpochhammer_inf_pos:
assumes " |q | < 1" " |a | < (1::real)"
shows "qpochhammer_inf a q > 0"
using has_prod_qpochhammer_inf

proof (rule has_prod_pos)

58

fix n :: nat
have " |a * q ^ n | = |a | * |q | ^ n"

by (simp add: abs_mult power_abs)
also have " |a | * |q | ^ n ≤ |a | * 1 ^ n"

by (intro mult_left_mono power_mono) (use assms in auto)
also have " . . . < 1"

using assms by simp
finally show "0 < 1 - a * q ^ n"

by simp
qed (use assms in auto)

lemma qpochhammer_inf_nonneg:
assumes " |q | < 1" " |a | ≤ (1::real)"
shows "qpochhammer_inf a q ≥ 0"
using has_prod_qpochhammer_inf

proof (rule has_prod_nonneg)
fix n :: nat
have " |a * q ^ n | = |a | * |q | ^ n"

by (simp add: abs_mult power_abs)
also have " |a | * |q | ^ n ≤ |a | * 1 ^ n"

by (intro mult_left_mono power_mono) (use assms in auto)
also have " . . . ≤1"

using assms by simp
finally show "0 ≤ 1 - a * q ^ n"

by simp
qed (use assms in auto)

3.2 Uniform convergence and its consequences
context

fixes P :: "nat ⇒ ’a :: {real_normed_field, banach, heine_borel} ⇒
’a ⇒ ’a"

defines "P ≡ (λN a q.
∏

n<N. 1 - a * q ^ n)"
begin

lemma uniformly_convergent_qpochhammer_inf_aux:
assumes r: "0 ≤ ra" "0 ≤ rq" "rq < 1"
shows "uniformly_convergent_on (cball 0 ra × cball 0 rq) (λn (a,q).

P n a q)"
unfolding P_def case_prod_unfold

proof (rule uniformly_convergent_on_prod’)
show "uniformly_convergent_on (cball 0 ra × cball 0 rq)

(λN aq.
∑

n<N. norm (1 - fst aq * snd aq ^ n - 1 :: ’a))"
proof (intro Weierstrass_m_test’_ev always_eventually allI ballI)

show "summable (λn. ra * rq ^ n)" using r
by (intro summable_mult summable_geometric) auto

next
fix n :: nat and aq :: "’a × ’a"
assume "aq ∈ cball 0 ra × cball 0 rq"

59

then obtain a q where [simp]: "aq = (a, q)" and aq: "norm a ≤ ra"
"norm q ≤ rq"

by (cases aq) auto
have "norm (norm (1 - a * q ^ n - 1)) = norm a * norm q ^ n"

by (simp add: norm_mult norm_power)
also have " . . . ≤ ra * rq ^ n"

using aq r by (intro mult_mono power_mono) auto
finally show "norm (norm (1 - fst aq * snd aq ^ n - 1)) ≤ ra * rq

^ n"
by simp

qed
qed (auto intro!: continuous_intros compact_Times)

lemma uniformly_convergent_qpochhammer_inf:
assumes "compact A" "A ⊆ UNIV × ball 0 1"
shows "uniformly_convergent_on A (λn (a,q). P n a q)"

proof (cases "A = {}")
case False
obtain rq where rq: "rq ≥ 0" "rq < 1" "

∧
a q. (a, q) ∈ A =⇒ norm

q ≤ rq"
proof -

from ‹compact A› have "compact (norm ‘ snd ‘ A)"
by (intro compact_continuous_image continuous_intros)

hence "Sup (norm ‘ snd ‘ A) ∈ norm ‘ snd ‘ A"
by (intro closed_contains_Sup bounded_imp_bdd_above compact_imp_bounded

compact_imp_closed)
(use ‹A 6= {}› in auto)

then obtain aq0 where aq0: "aq0 ∈ A" "norm (snd aq0) = Sup (norm
‘ snd ‘ A)"

by auto
show ?thesis
proof (rule that[of "norm (snd aq0)"])

show "norm (snd aq0) ≥ 0" and "norm (snd aq0) < 1"
using assms(2) aq0(1) by auto

next
fix a q assume "(a, q) ∈ A"
hence "norm q ≤ Sup (norm ‘ snd ‘ A)"

by (intro cSup_upper bounded_imp_bdd_above compact_imp_bounded
assms

compact_continuous_image continuous_intros) force
with aq0 show "norm q ≤ norm (snd aq0)"

by simp
qed

qed

obtain ra where ra: "ra ≥ 0" "
∧

a q. (a, q) ∈ A =⇒ norm a ≤ ra"
proof -

have "bounded (fst ‘ A)"
by (intro compact_imp_bounded compact_continuous_image continuous_intros

60

assms)
then obtain ra where ra: "norm a ≤ ra" if "a ∈ fst ‘ A" for a

unfolding bounded_iff by blast
from ‹A 6= {}› obtain aq0 where "aq0 ∈ A"

by blast
have "0 ≤ norm (fst aq0)"

by simp
also have "fst aq0 ∈ fst ‘ A"

using ‹aq0 ∈ A› by blast
with ra[of "fst aq0"] and ‹A 6= {}› have "norm (fst aq0) ≤ ra"

by simp
finally show ?thesis

using that[of ra] ra by fastforce
qed

have "uniformly_convergent_on (cball 0 ra × cball 0 rq) (λn (a,q).
P n a q)"

by (intro uniformly_convergent_qpochhammer_inf_aux) (use ra rq in
auto)

thus ?thesis
by (rule uniformly_convergent_on_subset) (use ra rq in auto)

qed auto

lemma uniform_limit_qpochhammer_inf:
assumes "compact A" "A ⊆ UNIV × ball 0 1"
shows "uniform_limit A (λn (a,q). P n a q) (λ(a,q). qpochhammer_inf

a q) at_top"
proof -

obtain g where g: "uniform_limit A (λn (a,q). P n a q) g at_top"
using uniformly_convergent_qpochhammer_inf[OF assms(1,2)]
by (auto simp: uniformly_convergent_on_def)

also have "?this ←→ uniform_limit A (λn (a,q). P n a q) (λ(a,q). qpochhammer_inf
a q) at_top"

proof (intro uniform_limit_cong)
fix aq :: "’a × ’a"
assume "aq ∈ A"
then obtain a q where [simp]: "aq = (a, q)" and aq: "(a, q) ∈ A"

by (cases aq) auto
from aq and assms have q: "norm q < 1"

by auto
have "(λn. case aq of (a, q) ⇒ P n a q) −−−−→ g aq"

by (rule tendsto_uniform_limitI[OF g]) fact
hence "(λn. case aq of (a, q) ⇒ P (Suc n) a q) −−−−→ g aq"

by (rule filterlim_compose) (rule filterlim_Suc)
moreover have "(λn. case aq of (a, q) ⇒ P (Suc n) a q) −−−−→ qpochhammer_inf

a q"
using convergent_prod_LIMSEQ[OF convergent_qpochhammer_inf[of q

a]] aq q
unfolding P_def lessThan_Suc_atMost

61

by (simp add: qpochhammer_inf_def)
ultimately show "g aq = (case aq of (a, q) ⇒ qpochhammer_inf a q)"

using tendsto_unique by force
qed auto
finally show ?thesis .

qed

lemma continuous_on_qpochhammer_inf [continuous_intros]:
fixes a q :: "’b :: topological_space ⇒ ’a"
assumes [continuous_intros]: "continuous_on A a" "continuous_on A q"
assumes "

∧
x. x ∈ A =⇒ norm (q x) < 1"

shows "continuous_on A (λx. qpochhammer_inf (a x) (q x))"
proof -

have *: "continuous_on (cball 0 ra × cball 0 rq) (λ(a,q). qpochhammer_inf
a q :: ’a)"

if r: "0 ≤ ra" "0 ≤ rq" "rq < 1" for ra rq :: real
proof (rule uniform_limit_theorem)

show "uniform_limit (cball 0 ra × cball 0 rq) (λn (a,q). P n a q)
(λ(a,q). qpochhammer_inf a q) at_top"

by (rule uniform_limit_qpochhammer_inf) (use r in ‹auto simp: compact_Times›)
qed (auto intro!: always_eventually intro!: continuous_intros simp:

P_def case_prod_unfold)

have **: "isCont (λ(a,q). qpochhammer_inf a q) (a, q)" if q: "norm q
< 1" for a q :: ’a

proof -
obtain R where R: "norm q < R" "R < 1"

using dense q by blast
with norm_ge_zero[of q] have "R ≥ 0"

by linarith
have "continuous_on (cball 0 (norm a + 1) × cball 0 R) (λ(a,q). qpochhammer_inf

a q :: ’a)"
by (rule *) (use R ‹R ≥ 0› in auto)

hence "continuous_on (ball 0 (norm a + 1) × ball 0 R) (λ(a,q). qpochhammer_inf
a q :: ’a)"

by (rule continuous_on_subset) auto
moreover have "(a, q) ∈ ball 0 (norm a + 1) × ball 0 R"

using q R by auto
ultimately show ?thesis

by (subst (asm) continuous_on_eq_continuous_at) (auto simp: open_Times)
qed
hence ***: "continuous_on ((λx. (a x, q x)) ‘ A) (λ(a,q). qpochhammer_inf

a q)"
using assms(3) by (intro continuous_at_imp_continuous_on) auto

have "continuous_on A ((λ(a,q). qpochhammer_inf a q) ◦ (λx. (a x, q
x)))"

by (rule continuous_on_compose[OF _ ***]) (intro continuous_intros)
thus ?thesis

by (simp add: o_def)

62

qed

lemma continuous_qpochhammer_inf [continuous_intros]:
fixes a q :: "’b :: t2_space ⇒ ’a"
assumes "continuous (at x within A) a" "continuous (at x within A)

q" "norm (q x) < 1"
shows "continuous (at x within A) (λx. qpochhammer_inf (a x) (q x))"

proof -
have "continuous_on (UNIV × ball 0 1) (λx. qpochhammer_inf (fst x)

(snd x) :: ’a)"
by (intro continuous_intros) auto

moreover have "(a x, q x) ∈ UNIV × ball 0 1"
using assms(3) by auto

ultimately have "isCont (λx. qpochhammer_inf (fst x) (snd x)) (a x,
q x)"

by (simp add: continuous_on_eq_continuous_at open_Times)
hence "continuous (at (a x, q x) within (λx. (a x, q x)) ‘ A)

(λx. qpochhammer_inf (fst x) (snd x))"
using continuous_at_imp_continuous_at_within by blast

hence "continuous (at x within A) ((λx. qpochhammer_inf (fst x) (snd
x)) ◦ (λx. (a x, q x)))"

by (intro continuous_intros assms)
thus ?thesis

by (simp add: o_def)
qed

lemma tendsto_qpochhammer_inf [tendsto_intros]:
fixes a q :: "’b ⇒ ’a"
assumes "(a −−−→ a0) F" "(q −−−→ q0) F" "norm q0 < 1"
shows "((λx. qpochhammer_inf (a x) (q x)) −−−→ qpochhammer_inf a0

q0) F"
proof -

define f where "f = (λx. qpochhammer_inf (fst x) (snd x) :: ’a)"
have "((λx. f (a x, q x)) −−−→ f (a0, q0)) F"
proof (rule isCont_tendsto_compose[of _ f])

show "isCont f (a0, q0)"
using assms(3) by (auto simp: f_def intro!: continuous_intros)

show "((λx. (a x, q x)) −−−→ (a0, q0)) F "
by (intro tendsto_intros assms)

qed
thus ?thesis

by (simp add: f_def)
qed

end

context
fixes P :: "nat ⇒ complex ⇒ complex ⇒ complex"
defines "P ≡ (λN a q.

∏
n<N. 1 - a * q ^ n)"

63

begin

lemma holomorphic_qpochhammer_inf [holomorphic_intros]:
assumes [holomorphic_intros]: "a holomorphic_on A" "q holomorphic_on

A"
assumes "

∧
x. x ∈ A =⇒ norm (q x) < 1" "open A"

shows "(λx. qpochhammer_inf (a x) (q x)) holomorphic_on A"
proof (rule holomorphic_uniform_sequence)

fix x assume x: "x ∈ A"
then obtain r where r: "r > 0" "cball x r ⊆ A"

using ‹open A› unfolding open_contains_cball by blast
have *: "compact ((λx. (a x, q x)) ‘ cball x r)" using r

by (intro compact_continuous_image continuous_intros)
(auto intro!: holomorphic_on_imp_continuous_on[OF holomorphic_on_subset]

holomorphic_intros)
have "uniform_limit ((λx. (a x, q x)) ‘ cball x r) (λn (a,q). P n a

q) (λ(a,q). qpochhammer_inf a q) at_top"
unfolding P_def
by (rule uniform_limit_qpochhammer_inf[OF *]) (use r assms(3) in ‹auto

simp: compact_Times›)
hence "uniform_limit (cball x r) (λn x. case (a x, q x) of (a, q) ⇒

P n a q)
(λx. case (a x, q x) of (a, q) ⇒ qpochhammer_inf a q) at_top"

by (rule uniform_limit_compose’) auto
thus "∃ d>0. cball x d ⊆ A ∧ uniform_limit (cball x d)

(λn x. case (a x, q x) of (a, q) ⇒ P n a q)
(λx. qpochhammer_inf (a x) (q x)) sequentially"

using r by fast
qed (use ‹open A› in ‹auto intro!: holomorphic_intros simp: P_def›)

lemma analytic_qpochhammer_inf [analytic_intros]:
assumes [analytic_intros]: "a analytic_on A" "q analytic_on A"
assumes "

∧
x. x ∈ A =⇒ norm (q x) < 1"

shows "(λx. qpochhammer_inf (a x) (q x)) analytic_on A"
proof -

from assms(1) obtain A1 where A1: "open A1" "A ⊆ A1" "a holomorphic_on
A1"

by (auto simp: analytic_on_holomorphic)
from assms(2) obtain A2 where A2: "open A2" "A ⊆ A2" "q holomorphic_on

A2"
by (auto simp: analytic_on_holomorphic)

have "continuous_on A2 q"
by (rule holomorphic_on_imp_continuous_on) fact

hence "open (q -‘ ball 0 1 ∩ A2)"
using A2 by (subst (asm) continuous_on_open_vimage) auto

define A’ where "A’ = (q -‘ ball 0 1 ∩ A2) ∩ A1"
have "open A’"

unfolding A’_def by (rule open_Int) fact+

64

note [holomorphic_intros] = holomorphic_on_subset[OF A1(3)] holomorphic_on_subset[OF
A2(3)]

have "(λx. qpochhammer_inf (a x) (q x)) holomorphic_on A’"
using ‹open A’› by (intro holomorphic_intros) (auto simp: A’_def)

moreover have "A ⊆ A’"
using A1(2) A2(2) assms(3) unfolding A’_def by auto

ultimately show ?thesis
using analytic_on_holomorphic ‹open A’› by blast

qed

lemma meromorphic_qpochhammer_inf [meromorphic_intros]:
assumes [analytic_intros]: "a analytic_on A" "q analytic_on A"
assumes "

∧
x. x ∈ A =⇒ norm (q x) < 1"

shows "(λx. qpochhammer_inf (a x) (q x)) meromorphic_on A"
by (rule analytic_on_imp_meromorphic_on) (use assms(3) in ‹auto intro!:

analytic_intros›)

end

3.3 Bounds for (a; q)n and
(

n
k

)
q

in terms of (a; q)∞

lemma qpochhammer_le_qpochhammer_inf:
assumes "q ≥ 0" "q < 1" "a ≤ 0"
shows "qpochhammer (int k) a q ≤ qpochhammer_inf a (q::real)"
unfolding qpochhammer_nonneg_def qpochhammer_inf_def

proof (rule prod_le_prodinf)
show "(λk. 1 - a * q ^ k) has_prod qpochhammer_inf a q"

by (rule has_prod_qpochhammer_inf) (use assms in auto)
next

fix i :: nat
have *: "a * q ^ i ≤ 0"

by (rule mult_nonpos_nonneg) (use assms in auto)
show "1 - a * q ^ i ≥ 0" "1 ≤ 1 - a * q ^ i"

using * by simp_all
qed

lemma qpochhammer_ge_qpochhammer_inf:
assumes "q ≥ 0" "q < 1" "a ≥ 0" "a ≤ 1"
shows "qpochhammer (int k) a q ≥ qpochhammer_inf a (q::real)"
unfolding qpochhammer_nonneg_def qpochhammer_inf_def

proof (rule prod_ge_prodinf)
show "(λk. 1 - a * q ^ k) has_prod qpochhammer_inf a q"

by (rule has_prod_qpochhammer_inf) (use assms in auto)
next

fix i :: nat
have "a * q ^ i ≤ 1 * 1 ^ i"

using assms by (intro mult_mono power_mono) auto
thus "1 - a * q ^ i ≥ 0"

by auto

65

show "1 - a * q ^ i ≤ 1"
using assms by auto

qed

lemma norm_qbinomial_le_qpochhammer_inf_strong:
fixes q :: "’a :: {real_normed_field}"
assumes q: "norm q < 1"
shows "norm (qbinomial q n k) ≤

qpochhammer_inf (-(norm q ^ (n + 1 - k))) (norm q) /
qpochhammer_inf (norm q) (norm q)"

proof (cases "k ≤ n")
case k: True
have "norm (qbinomial q n k) =

norm (qpochhammer (int k) (q ^ (n + 1 - k)) q) /
norm (qpochhammer (int k) q q)"

using q k by (subst qbinomial_conv_qpochhammer’) (simp_all add: norm_divide)
also have " . . . ≤ qpochhammer (int k) (-norm (q ^ (n + 1 - k))) (norm

q) /
qpochhammer (int k) (norm q) (norm q)"

by (intro frac_le norm_qpochhammer_nonneg_le_qpochhammer norm_qpochhammer_nonneg_ge_qpochhammer
qpochhammer_nonneg qpochhammer_pos)

(use assms in ‹auto intro: order.trans[OF _ norm_ge_zero]›)
also have " . . . ≤ qpochhammer_inf (-(norm (q ^ (n+1-k)))) (norm q) /

qpochhammer_inf (norm q) (norm q)"
by (intro frac_le qpochhammer_le_qpochhammer_inf qpochhammer_ge_qpochhammer_inf

qpochhammer_inf_pos qpochhammer_inf_nonneg)
(use assms in ‹auto simp: norm_power power_le_one_iff simp del:

power_Suc›)
finally show ?thesis

by (simp_all add: norm_power)
qed (use q in ‹auto intro!: divide_nonneg_nonneg qpochhammer_inf_nonneg›)

lemma norm_qbinomial_le_qpochhammer_inf:
fixes q :: "’a :: {real_normed_field}"
assumes q: "norm q < 1"
shows "norm (qbinomial q n k) ≤

qpochhammer_inf (-norm q) (norm q) / qpochhammer_inf (norm
q) (norm q)"
proof (cases "k ≤ n")

case True
have "norm (qbinomial q n k) ≤

qpochhammer_inf (-(norm q ^ (n + 1 - k))) (norm q) /
qpochhammer_inf (norm q) (norm q)"

by (rule norm_qbinomial_le_qpochhammer_inf_strong) (use q in auto)
also have " . . . ≤ qpochhammer_inf (-norm q) (norm q) / qpochhammer_inf

(norm q) (norm q)"
proof (rule divide_right_mono)

show "qpochhammer_inf (- (norm q ^ (n + 1 - k))) (norm q) ≤ qpochhammer_inf
(- norm q) (norm q)"

66

proof (intro has_prod_le[OF has_prod_qpochhammer_inf has_prod_qpochhammer_inf]
conjI)

fix i :: nat
have "norm q ^ (n + 1 - k + i) ≤ norm q ^ (Suc i)"

by (intro power_decreasing) (use assms True in simp_all)
thus "1 - - (norm q ^ (n + 1 - k)) * norm q ^ i ≤ 1 - - norm q

* norm q ^ i"
by (simp_all add: power_add)

qed (use assms in auto)
qed (use assms in ‹auto intro!: qpochhammer_inf_nonneg›)
finally show ?thesis .

qed (use q in ‹auto intro!: divide_nonneg_nonneg qpochhammer_inf_nonneg›)

3.4 Limits of the q-binomial coefficients

The following limit is Fact 7.7 in Andrews & Eriksson [2].
lemma tendsto_qbinomial1:

fixes q :: "’a :: {real_normed_field, banach, heine_borel}"
assumes q: "norm q < 1"
shows "(λn. qbinomial q n m) −−−−→ 1 / qpochhammer m q q"

proof -
have not_one: "q ^ k 6= 1" if "k > 0" for k :: nat

using q_power_neq_1[of q k] that q by simp
have [simp]: "q 6= 1"

using q by auto

define P where "P = (λn. qpochhammer (int n) q q)"
have [simp]: "qpochhammer_inf q q 6= 0"

using q by (auto simp: qpochhammer_inf_zero_iff not_one simp flip:
power_Suc)

have [simp]: "P m 6= 0"
proof

assume "P m = 0"
then obtain k where k: "q * q powi k = 1" "k ∈ {0..<int m}"

by (auto simp: P_def qpochhammer_eq_0_iff power_int_add)
show False

by (use k not_one[of "Suc (nat k)"] in ‹auto simp: power_int_add
power_int_def›)

qed

have [tendsto_intros]: "(λn. P (h n)) −−−−→ qpochhammer_inf q q"
if h: "filterlim h at_top at_top" for h :: "nat ⇒ nat"
unfolding P_def using filterlim_compose[OF qpochhammer_tendsto_qpochhammer_inf[OF

q] h, of q] .
have "(λn. P n / (P m * P (n - m))) −−−−→ 1 / P m"

by (auto intro!: tendsto_eq_intros filterlim_ident filterlim_minus_const_nat_at_top)
also have "(∀ F n in at_top. P n / (P m * P (n - m)) = qbinomial q n

m)"
using eventually_ge_at_top[of m]

67

by eventually_elim (auto simp: qbinomial_conv_qpochhammer P_def not_one
of_nat_diff)

hence "(λn. P n / (P m * P (n - m))) −−−−→ 1 / P m ←→
(λn. qbinomial q n m) −−−−→ 1 / P m"

by (intro filterlim_cong) auto
finally show "(λn. qbinomial q n m) −−−−→ 1 / qpochhammer m q q"

unfolding P_def .
qed

The following limit is a slightly stronger version of Fact 7.8 in Andrews &
Eriksson [2]. Their version has f(n) = rn + c1 and g(n) = sn + c2 with
r > s.
lemma tendsto_qbinomial2:

fixes q :: "’a :: {real_normed_field, banach, heine_borel}"
assumes q: "norm q < 1"
assumes lim_fg: "filterlim (λn. f n - g n) at_top F"
assumes lim_g: "filterlim g at_top F"
shows "((λn. qbinomial q (f n) (g n)) −−−→ 1 / qpochhammer_inf q

q) F"
proof -

have not_one: "q ^ k 6= 1" if "k > 0" for k :: nat
using q_power_neq_1[of q k] that q by simp

have [simp]: "q 6= 1"
using q by auto

define P where "P = (λn. qpochhammer (int n) q q)"
have [simp]: "qpochhammer_inf q q 6= 0"

using q by (auto simp: qpochhammer_inf_zero_iff not_one simp flip:
power_Suc)

have lim_f: "filterlim f at_top F"
using lim_fg by (rule filterlim_at_top_mono) auto

have fg: "eventually (λn. f n ≥ g n) F"
proof -

have "eventually (λn. f n - g n > 0) F"
using lim_fg by (metis eventually_gt_at_top filterlim_iff)

thus ?thesis
by eventually_elim auto

qed
from lim_g and fg have lim_f: "filterlim f at_top F"

using filterlim_at_top_mono by blast

have [tendsto_intros]: "((λn. P (h n)) −−−→ qpochhammer_inf q q) F"
if h: "filterlim h at_top F" for h
unfolding P_def using filterlim_compose[OF qpochhammer_tendsto_qpochhammer_inf[OF

q] h, of q] .
have "((λn. P (f n) / (P (g n) * P (f n - g n))) −−−→ 1 / qpochhammer_inf

q q) F"
by (auto intro!: tendsto_eq_intros lim_f lim_g lim_fg)

68

also from fg have "(∀ F n in F. P (f n) / (P (g n) * P (f n - g n))
= qbinomial q (f n) (g n))"

by eventually_elim
(auto simp: qbinomial_qfact not_one of_nat_diff qfact_conv_qpochhammer

power_int_minus power_int_diff P_def field_simps)
hence "((λn. P (f n) / (P (g n) * P (f n - g n))) −−−→ 1 / qpochhammer_inf

q q) F ←→
((λn. qbinomial q (f n) (g n)) −−−→ 1 / qpochhammer_inf q q)

F"
by (intro filterlim_cong) auto

finally show "((λn. qbinomial q (f n) (g n)) −−−→ 1 / qpochhammer_inf
q q) F" .
qed

3.5 Useful identities

The following lemmas give a recurrence for the infinite q-Pochhammer sym-
bol similar to the one for the “normal” Pochhammer symbol.
lemma qpochhammer_inf_mult_power_q:

assumes "norm q < 1"
shows "qpochhammer_inf a q = qpochhammer (int n) a q * qpochhammer_inf

(a * q ^ n) q"
proof -

have "(λn. 1 - a * q ^ n) has_prod qpochhammer_inf a q"
by (rule has_prod_qpochhammer_inf) (use assms in auto)

hence "convergent_prod (λn. 1 - a * q ^ n)"
by (simp add: has_prod_iff)

hence "(λn. 1 - a * q ^ n) has_prod
((

∏
k<n. 1 - a * q ^ k) * (

∏
k. 1 - a * q ^ (k + n)))"

by (intro has_prod_ignore_initial_segment’)
also have "(

∏
k. 1 - a * q ^ (k + n)) = (

∏
k. 1 - (a * q ^ n) * q ^

k)"
by (simp add: power_add mult_ac)

also have "(λk. 1 - (a * q ^ n) * q ^ k) has_prod qpochhammer_inf (a
* q ^ n) q"

by (rule has_prod_qpochhammer_inf) (use assms in auto)
hence "(

∏
k. 1 - (a * q ^ n) * q ^ k) = qpochhammer_inf (a * q ^ n)

q"
by (simp add: qpochhammer_inf_def)

finally show ?thesis
by (simp add: qpochhammer_inf_def has_prod_iff qpochhammer_nonneg_def)

qed

One can express the finite q-Pochhammer symbol in terms of the infinite
one:

(a; q)n =
(a; q)∞
(a; qn)∞

lemma qpochhammer_conv_qpochhammer_inf_nonneg:

69

assumes "norm q < 1" "
∧

m. m ≥ n =⇒ a * q ^ m 6= 1"
shows "qpochhammer (int n) a q = qpochhammer_inf a q / qpochhammer_inf

(a * q ^ n) q"
proof (cases "qpochhammer_inf (a * q ^ n) q = 0")

case False
thus ?thesis

by (subst qpochhammer_inf_mult_power_q[OF assms(1), of _ n])
(auto simp: qpochhammer_inf_zero_iff)

next
case True
with assms obtain k where "a * q ^ (n + k) = 1"

by (auto simp: qpochhammer_inf_zero_iff power_add mult_ac)
moreover have "n + k ≥ n"

by auto
ultimately have "∃ m≥n+k. a * q ^ m = 1"

by blast
with assms have False

by auto
thus ?thesis ..

qed

lemma qpochhammer_conv_qpochhammer_inf:
fixes q a :: "’a :: {real_normed_field, banach, heine_borel}"
assumes q: "norm q < 1" "n < 0 −→ q 6= 0"
assumes not_one: "

∧
k. int k ≥ n =⇒ a * q ^ k 6= 1"

shows "qpochhammer n a q = qpochhammer_inf a q / qpochhammer_inf (a
* q powi n) q"
proof (cases "n ≥ 0")

case n: True
define m where "m = nat n"
have n_eq: "n = int m"

using n by (auto simp: m_def)
show ?thesis unfolding n_eq

by (subst qpochhammer_conv_qpochhammer_inf_nonneg) (use q not_one
in ‹auto simp: n_eq›)
next

case n: False
define m where "m = nat (-n)"
have n_eq: "n = -int m" and m: "m > 0"

using n by (auto simp: m_def)
have nz: "qpochhammer_inf a q 6= 0"

using q not_one n by (auto simp: qpochhammer_inf_zero_iff)
have "qpochhammer n a q = 1 / qpochhammer (int m) (a / q ^ m) q"

using ‹m > 0› by (simp add: n_eq qpochhammer_minus)
also have " . . . = qpochhammer_inf a q / qpochhammer_inf (a / q ^ m) q"

using qpochhammer_inf_mult_power_q[OF q(1), of "a / q ^ m" m] nz q
n

by (auto simp: divide_simps)
also have "a / q ^ m = a * q powi n"

70

by (simp add: n_eq power_int_minus field_simps)
finally show "qpochhammer n a q = qpochhammer_inf a q / qpochhammer_inf

(a * q powi n) q" .
qed

lemma qpochhammer_inf_divide_power_q:
assumes "norm q < 1" and [simp]: "q 6= 0"
shows "qpochhammer_inf (a / q ^ n) q = (

∏
k = 1..n. 1 - a / q ^ k)

* qpochhammer_inf a q"
proof -

have "qpochhammer_inf (a / q ^ n) q =
qpochhammer (int n) (a / q ^ n) q * qpochhammer_inf (a / q^n

* q^n) q"
using assms(1) by (rule qpochhammer_inf_mult_power_q)

also have "qpochhammer (int n) (a / q ^ n) q = (
∏

k<n. 1 - a / q ^ (n
- k))"

unfolding qpochhammer_nonneg_def by (intro prod.cong) (auto simp:
power_diff)

also have " . . . = (
∏

k=1..n. 1 - a / q ^ k)"
by (intro prod.reindex_bij_witness[of _ "λk. n - k" "λk. n - k"])

auto
finally show ?thesis

by simp
qed

lemma qpochhammer_inf_mult_q:
assumes "norm q < 1"
shows "qpochhammer_inf a q = (1 - a) * qpochhammer_inf (a * q) q"
using qpochhammer_inf_mult_power_q[OF assms, of a 1] by simp

lemma qpochhammer_inf_divide_q:
assumes "norm q < 1" "q 6= 0"
shows "qpochhammer_inf (a / q) q = (1 - a / q) * qpochhammer_inf

a q"
using qpochhammer_inf_divide_power_q[of q a 1] assms by simp

The following lemma allows combining a product of several q-Pochhammer
symbols into one by grouping factors:

(a; qm)∞ (aq; qm)∞ · · · (aqm−1; qm)∞ = (a; q)∞

lemma prod_qpochhammer_group:
assumes "norm q < 1" and "m > 0"
shows "(

∏
i<m. qpochhammer_inf (a * q^i) (q^m)) = qpochhammer_inf

a q"
proof (rule has_prod_unique2)

show "(λn. (
∏

i<m. 1 - a * q^i * (q^m) ^ n)) has_prod (
∏

i<m. qpochhammer_inf
(a * q^i) (q^m))"

by (intro has_prod_prod has_prod_qpochhammer_inf)

71

(use assms in ‹auto simp: norm_power power_less_one_iff›)
next

have "(λn. 1 - a * q ^ n) has_prod qpochhammer_inf a q"
by (rule has_prod_qpochhammer_inf) (use assms in auto)

hence "(λn.
∏

i=n*m..<n*m+m. 1 - a * q^i) has_prod qpochhammer_inf
a q"

by (rule has_prod_group) (use assms in auto)
also have "(λn.

∏
i=n*m..<n*m+m. 1 - a * q^i) = (λn.

∏
i<m. 1 - a *

q ^ i * (q ^ m) ^ n)"
proof

fix n :: nat
have "(

∏
i=n*m..<n*m+m. 1 - a * q^i) = (

∏
i<m. 1 - a * q^(n*m + i))"

by (intro prod.reindex_bij_witness[of _ "λi. i + n * m" "λi. i
- n * m"]) auto

thus "(
∏

i=n*m..<n*m+m. 1 - a * q^i) = (
∏

i<m. 1 - a * q ^ i * (q
^ m) ^ n)"

by (simp add: power_add mult_ac flip: power_mult)
qed
finally show "(λn. (

∏
i<m. 1 - a * q^i * (q^m) ^ n)) has_prod qpochhammer_inf

a q" .
qed

A product of two q-Pochhammer symbols (±a; q)∞ can be combined into a
single q-Pochhammer symbol:
lemma qpochhammer_inf_square:

assumes q: "norm q < 1"
shows "qpochhammer_inf a q * qpochhammer_inf (-a) q = qpochhammer_inf

(a^2) (q^2)"
(is "?lhs = ?rhs")

proof -
have "(λn. (1 - a * q ^ n) * (1 - (-a) * q ^ n)) has_prod

(qpochhammer_inf a q * qpochhammer_inf (-a) q)"
by (intro has_prod_qpochhammer_inf has_prod_mult) (use q in auto)

also have "(λn. (1 - a * q ^ n) * (1 - (-a) * q ^ n)) = (λn. (1 - a
^ 2 * (q ^ 2) ^ n))"

by (auto simp: fun_eq_iff algebra_simps power2_eq_square simp flip:
power_add mult_2)

finally have "(λn. (1 - a ^ 2 * (q ^ 2) ^ n)) has_prod ?lhs" .
moreover have "(λn. (1 - a ^ 2 * (q ^ 2) ^ n)) has_prod qpochhammer_inf

(a^2) (q^2)"
by (intro has_prod_qpochhammer_inf) (use assms in ‹auto simp: norm_power

power_less_one_iff›)
ultimately show ?thesis

using has_prod_unique2 by blast
qed

72

3.6 Two series expansions by Euler

The following two theorems and their proofs are taken from Bellman [3][§40].
He credits them, in their original form, to Euler. One could also deduce these
relatively easily from the infinite version of the q-binomial theorem (which
we will prove later), but the proves given by Bellman are so nice that I do
not want to omit them from here.
The first theorem states that for any complex x, t with |x| < 1, we have:

(t; x)∞ =
∞∏

k=0

(1− txk) =
∞∑

n=0

xn(n−1)/2tn

(x− 1) · · · (xn − 1)

This tells us the power series expansion for fx(t) = (t; x)∞.
lemma

fixes x :: complex
assumes x: "norm x < 1"
shows sums_qpochhammer_inf_complex:

"(λn. x^(n*(n-1) div 2) * t^n / (
∏

k=1..n. x^k - 1)) sums qpochhammer_inf
t x"

and has_fps_expansion_qpochhammer_inf_complex:
"(λt. qpochhammer_inf t x) has_fps_expansion

Abs_fps (λn. x^(n*(n-1) div 2) / (
∏

k=1..n. x^k - 1))"
proof -

For a fixed x, we define f(t) = (t; x)∞ and note that f satisfies the functional
equation f(t) = (1− t)f(tx).

define f where "f = (λt. qpochhammer_inf t x)"
have f_eq: "f t = (1 - t) * f (t * x)" for t

unfolding f_def using qpochhammer_inf_mult_q[of x t] x by simp
define F where "F = fps_expansion f 0"
define a where "a = fps_nth F"
have ana: "f analytic_on UNIV"

unfolding f_def by (intro analytic_intros) (use x in auto)

We note that f is entire and therefore has a Maclaurin expansion, say f(t) =∑∞
n=0 anxn.
have F: "f has_fps_expansion F"

unfolding F_def by (intro analytic_at_imp_has_fps_expansion_0 analytic_on_subset[OF
ana]) auto

have "fps_conv_radius F ≥ ∞"
unfolding F_def by (rule conv_radius_fps_expansion) (auto intro!:

analytic_imp_holomorphic ana)
hence [simp]: "fps_conv_radius F = ∞"

by simp
have F_sums: "(λn. fps_nth F n * t ^ n) sums f t" for t
proof -

have "(λn. fps_nth F n * t ^ n) sums eval_fps F t"

73

using sums_eval_fps[of t F] by simp
also have "eval_fps F t = f t"

by (rule has_fps_expansion_imp_eval_fps_eq[OF F, of _ "norm t +
1"])

(auto intro!: analytic_imp_holomorphic analytic_on_subset[OF
ana])

finally show ?thesis .
qed

have F_eq: "F = (1 - fps_X) * (F oo (fps_const x * fps_X))"
proof -

have "(λt. (1 - t) * (f ◦ (λt. t * x)) t) has_fps_expansion
(fps_const 1 - fps_X) * (F oo (fps_X * fps_const x))"

by (intro fps_expansion_intros F) auto
also have " . . . = (1 - fps_X) * (F oo (fps_const x * fps_X))"

by (simp add: mult_ac)
also have "(λt. (1 - t) * (f ◦ (λt. t * x)) t) = f"

unfolding o_def by (intro ext f_eq [symmetric])
finally show "F = (1 - fps_X) * (F oo (fps_const x * fps_X))"

using F fps_expansion_unique_complex by blast
qed

have a_0 [simp]: "a 0 = 1"
using has_fps_expansion_imp_0_eq_fps_nth_0[OF F] by (simp add: a_def

f_def)

Applying the functional equation to the Maclaurin series, we obtain a re-
currence for the coefficients an, namely an+1 = anxn

xn+1−1
.

have a_rec: "(x ^ Suc n - 1) * a (Suc n) = x ^ n * a n" for n
proof -

have "a (Suc n) = fps_nth F (Suc n)"
by (simp add: a_def)

also have "F = (F oo (fps_const x * fps_X)) - fps_X * (F oo (fps_const
x * fps_X))"

by (subst F_eq) (simp_all add: algebra_simps)
also have "fps_nth . . . (Suc n) = x ^ Suc n * a (Suc n) - x ^ n * a

n"
by (simp add: fps_compose_linear a_def)

finally show "(x ^ Suc n - 1) * a (Suc n) = x ^ n * a n"
by (simp add: algebra_simps)

qed

define tri where "tri = (λn::nat. n * (n-1) div 2)"
have not_one: "x ^ k 6= 1" if k: "k > 0" for k :: nat
proof -

have "norm (x ^ k) < 1"
using x k by (simp add: norm_power power_less_one_iff)

thus ?thesis
by auto

74

qed

The recurrence is easily solved and we get an = xn(n−1)/2(x− 1)(x2 − 1) · · · (xn − 1).
have a_sol: "(

∏
k=1..n. (x^k - 1)) * a n = x ^ tri n" for n

proof (induction n)
case 0
thus ?case

by (simp add: tri_def)
next

case (Suc n)
have "(

∏
k=1..Suc n. (x^k - 1)) * a (Suc n) =

(
∏

k=1..n. x ^ k - 1) * ((x ^ Suc n - 1) * a (Suc n))"
by (simp add: a_rec mult_ac)

also have " . . . = (
∏

k = 1..n. x ^ k - 1) * a n * x ^ n"
by (subst a_rec) simp_all

also have "(
∏

k=1..n. x ^ k - 1) * a n = x ^ tri n"
by (subst Suc.IH) auto

also have "x ^ tri n * x ^ n = x ^ (tri n + (2*n) div 2)"
by (simp add: power_add)

also have "tri n + (2*n) div 2 = tri (Suc n)"
unfolding tri_def
by (subst div_plus_div_distrib_dvd_left [symmetric]) (auto simp:

algebra_simps)
finally show ?case .

qed

have a_sol’: "a n = x ^ tri n / (
∏

k=1..n. (x ^ k - 1))" for n
using not_one a_sol[of n] by (simp add: divide_simps mult_ac)

show "(λn. x ^ tri n * t ^ n / (
∏

k=1..n. x ^ k - 1)) sums f t"
using F_sums[of t] a_sol’ by (simp add: a_def)

have "F = Abs_fps (λn. x^(n*(n-1) div 2) / (
∏

k=1..n. x^k - 1))"
by (rule fps_ext) (simp add: a_sol’[unfolded a_def] tri_def)

thus "f has_fps_expansion Abs_fps (λn. x^(n*(n-1) div 2) / (
∏

k=1..n.
x^k - 1))"

using F by simp
qed

lemma sums_qpochhammer_inf_real:
assumes " |x | < (1 :: real)"
shows "(λn. x^(n*(n-1) div 2) * t^n / (

∏
k=1..n. x^k - 1)) sums qpochhammer_inf

t x"
proof -

have "(λn. complex_of_real x ^ (n*(n-1) div 2) * of_real t ^ n / (
∏

k=1..n.
of_real x ^ k - 1))

sums qpochhammer_inf (of_real t) (of_real x)" (is "?f sums ?S")
by (intro sums_qpochhammer_inf_complex) (use assms in auto)

also have "?f = (λn. complex_of_real (x ^ (n*(n-1) div 2) * t ^ n /

75

(
∏

k=1..n. x ^ k - 1)))"
by simp

also have "qpochhammer_inf (of_real t) (of_real x) = complex_of_real
(qpochhammer_inf t x)"

by (rule qpochhammer_inf_of_real) fact
finally show ?thesis

by (subst (asm) sums_of_real_iff)
qed

lemma norm_summable_qpochhammer_inf:
fixes x t :: "’a :: {real_normed_field}"
assumes "norm x < 1"
shows "summable (λn. norm (x^(n*(n-1) div 2) * t ^ n / (

∏
k=1..n.

x^k - 1)))"
proof -

have "norm x < 1"
using assms by simp

then obtain r where "norm x < r" "r < 1"
using dense by blast

hence r: "0 < r" "norm x < r" "r < 1"
using le_less_trans[of 0 "norm x" r] by auto

define R where "R = Max {2, norm t, r + 1}"
have R: "r < R" "norm t ≤ R" "R > 1"

unfolding R_def by auto

show ?thesis
proof (rule summable_comparison_test_bigo)

show "summable (λn. norm ((1/2::real) ^ n))"
unfolding norm_power norm_divide by (rule summable_geometric) (use

r in auto)
next

have "(λn. norm (x ^ (n * (n - 1) div 2) * t ^ n / (
∏

k = 1..n. x
^ k - 1))) ∈

O(λn. r^(n*(n-1) div 2) * R ^ n / (1 - r) ^ n)"
proof (rule bigoI[of _ 1], intro always_eventually allI)

fix n :: nat
have "norm (norm (x^(n*(n-1) div 2) * t ^ n / (

∏
k=1..n. x^k - 1)))

=
norm x ^ (n * (n - 1) div 2) * norm t ^ n / (

∏
k=1..n. norm

(1 - x ^ k))"
by (simp add: norm_power norm_mult norm_divide norm_minus_commute

abs_prod flip: prod_norm)
also have " . . . ≤ norm x ^ (n * (n - 1) div 2) * norm t ^ n / (

∏
k=1..n.

1 - norm x)"
proof (intro divide_left_mono mult_pos_pos prod_pos prod_mono conjI

mult_nonneg_nonneg)
fix k :: nat assume k: "k ∈ {1..n}"
have "norm x ^ k ≤ norm x ^ 1"

by (intro power_decreasing) (use assms k in auto)

76

hence "1 - norm x ≤ norm (1::’a) - norm (x ^ k)"
by (simp add: norm_power)

also have " . . . ≤ norm (1 - x ^ k)"
by norm

finally show "1 - norm x ≤ norm (1 - x ^ k)" .
have "0 < 1 - norm x"

using assms by simp
also have " . . . ≤ norm (1 - x ^ k)"

by fact
finally show "norm (1 - x ^ k) > 0" .

qed (use assms in auto)
also have "(

∏
k=1..n. 1 - norm x) = (1 - norm x) ^ n"

by simp
also have "norm x ^ (n*(n-1) div 2) * norm t ^ n / (1 - norm x)

^ n ≤
r ^ (n*(n-1) div 2) * R ^ n / (1 - r) ^ n"

by (intro frac_le mult_mono power_mono) (use r R in auto)
also have " . . . ≤ abs (r^(n*(n-1) div 2) * R ^ n / (1 - r) ^ n)"

by linarith
finally show "norm (norm (x ^ (n * (n - 1) div 2) * t ^ n / (

∏
k

= 1..n. x ^ k - 1)))
≤ 1 * norm (r ^ (n * (n - 1) div 2) * R ^ n / (1

- r) ^ n)"
by simp

qed
also have "(λn. r ^ (n*(n-1) div 2) * R ^ n / (1 - r) ^ n) ∈ O(λn.

(1/2) ^ n)"
using r R by real_asymp

finally show "(λn. norm (x ^ (n * (n - 1) div 2) * t ^ n / (
∏

k =
1..n. x ^ k - 1))) ∈

O(λn. (1/2) ^ n)" .
qed

qed

The second theorem states that for any complex x, t with |x| < 1, |t| < 1,
we have:

1
(t; x)∞

=
∞∏

k=0

1
1− txk

=
∞∑

n=0

tn

(1− x) · · · (1− xn)

This gives us the multiplicative inverse of the power series from the previous
theorem.
lemma

fixes x :: complex
assumes x: "norm x < 1" and t: "norm t < 1"
shows sums_inverse_qpochhammer_inf_complex:

"(λn. t^n / (
∏

k=1..n. 1 - x^k)) sums inverse (qpochhammer_inf
t x)"

and has_fps_expansion_inverse_qpochhammer_inf_complex:
"(λt. inverse (qpochhammer_inf t x)) has_fps_expansion

77

Abs_fps (λn. 1 / (
∏

k=1..n. 1 - x^k))"
proof -

The proof is very similar to the one before, except that our function is now
g(x) = 1/(t; x)∞ with the functional equation is g(tx) = (1− t)g(t).

define f where "f = (λt. qpochhammer_inf t x)"
define g where "g = (λt. inverse (f t))"
have f_nz: "f t 6= 0" if t: "norm t < 1" for t
proof

assume "f t = 0"
then obtain n where "t * x ^ n = 1"

using x by (auto simp: qpochhammer_inf_zero_iff f_def mult_ac)
have "norm (t * x ^ n) = norm t * norm (x ^ n)"

by (simp add: norm_mult)
also have " . . . ≤ norm t * 1"

using x by (intro mult_left_mono) (auto simp: norm_power power_le_one_iff)
also have "norm t < 1"

using t by simp
finally show False

using ‹t * x ^ n = 1› by simp
qed

have mult_less_1: "a * b < 1" if "0 ≤ a" "a < 1" "b ≤ 1" for a b ::
real

proof -
have "a * b ≤ a * 1"

by (rule mult_left_mono) (use that in auto)
also have "a < 1"

by fact
finally show ?thesis

by simp
qed

have g_eq: "g (t * x) = (1 - t) * g(t)" if t: "norm t < 1" for t
proof -

have "f t = (1 - t) * f (t * x)"
using qpochhammer_inf_mult_q[of x t] x
by (simp add: algebra_simps power2_eq_square f_def)

moreover have "norm (t * x) < 1"
using t x by (simp add: norm_mult mult_less_1)

ultimately show ?thesis
using t by (simp add: g_def field_simps f_nz)

qed

define G where "G = fps_expansion g 0"
define a where "a = fps_nth G"
have [analytic_intros]: "f analytic_on A" for A

unfolding f_def by (intro analytic_intros) (use x in auto)

78

have ana: "g analytic_on ball 0 1" unfolding g_def
by (intro analytic_intros)

(use x in ‹auto simp: qpochhammer_inf_zero_iff f_nz›)
have G: "g has_fps_expansion G" unfolding G_def

by (intro analytic_at_imp_has_fps_expansion_0 analytic_on_subset[OF
ana]) auto

have "fps_conv_radius G ≥ 1"
unfolding G_def
by (rule conv_radius_fps_expansion)

(auto intro!: analytic_imp_holomorphic ana analytic_on_subset[OF
ana])

have G_sums: "(λn. fps_nth G n * t ^ n) sums g t" if t: "norm t < 1"
for t

proof -
have "ereal (norm t) < 1"

using t by simp
also have " . . . ≤ fps_conv_radius G"

by fact
finally have "(λn. fps_nth G n * t ^ n) sums eval_fps G t"

using sums_eval_fps[of t G] by simp
also have "eval_fps G t = g t"

by (rule has_fps_expansion_imp_eval_fps_eq[OF G, of _ 1])
(auto intro!: analytic_imp_holomorphic analytic_on_subset[OF

ana] t)
finally show ?thesis .

qed

have G_eq: "(G oo (fps_const x * fps_X)) - (1 - fps_X) * G = 0"
proof -

define G’ where "G’ = (G oo (fps_const x * fps_X)) - (1 - fps_X) *
G"

have "(λt. (g ◦ (λt. t * x)) t - (1 - t) * g t) has_fps_expansion
G’"

unfolding G’_def by (subst mult.commute, intro fps_expansion_intros
G) auto

also have "eventually (λt. t ∈ ball 0 1) (nhds (0::complex))"
by (intro eventually_nhds_in_open) auto

hence "eventually (λt. (g ◦ (λt. t * x)) t - (1 - t) * g t = 0) (nhds
0)"

unfolding o_def by eventually_elim (subst g_eq, auto)
hence "(λt. (g ◦ (λt. t * x)) t - (1 - t) * g t) has_fps_expansion

G’ ←→
(λt. 0) has_fps_expansion G’"

by (intro has_fps_expansion_cong refl)
finally have "G’ = 0"

by (rule fps_expansion_unique_complex) auto
thus ?thesis

unfolding G’_def .

79

qed

have not_one: "x ^ k 6= 1" if k: "k > 0" for k :: nat
proof -

have "norm (x ^ k) < 1"
using x k by (simp add: norm_power power_less_one_iff)

thus ?thesis
by auto

qed

have a_rec: " a (Suc m) = a m / (1 - x ^ Suc m)" for m
proof -

have "0 = fps_nth ((G oo (fps_const x * fps_X)) - (1 - fps_X) * G)
(Suc m)"

by (subst G_eq) simp_all
also have " . . . = (x ^ Suc m - 1) * a (Suc m) + a m"

by (simp add: ring_distribs fps_compose_linear a_def)
finally show ?thesis

using not_one[of "Suc m"] by (simp add: field_simps)
qed

have a_0: "a 0 = 1"
using has_fps_expansion_imp_0_eq_fps_nth_0[OF G] by (simp add: a_def

f_def g_def)
have a_sol: "a n = 1 / (

∏
k=1..n. (1 - x^k))" for n

by (induction n) (simp_all add: a_0 a_rec)

show "(λn. t^n / (
∏

k=1..n. 1 - x ^ k)) sums (inverse (qpochhammer_inf
t x))"

using G_sums[of t] t by (simp add: a_sol[unfolded a_def] f_def g_def)

have "G = Abs_fps (λn. 1 / (
∏

k=1..n. 1 - x^k))"
by (rule fps_ext) (simp add: a_sol[unfolded a_def])

thus "g has_fps_expansion Abs_fps (λn. 1 / (
∏

k=1..n. 1 - x^k))"
using G by simp

qed

lemma sums_inverse_qpochhammer_inf_real:
assumes " |x | < (1 :: real)" " |t | < 1"
shows "(λn. t^n / (

∏
k=1..n. 1 - x^k)) sums inverse (qpochhammer_inf

t x)"
proof -

have "(λn. complex_of_real t ^ n / (
∏

k=1..n. 1 - of_real x ^ k))
sums inverse (qpochhammer_inf (of_real t) (of_real x))" (is "?f

sums ?S")
by (intro sums_inverse_qpochhammer_inf_complex) (use assms in auto)

also have "?f = (λn. complex_of_real (t ^ n / (
∏

k=1..n. 1 - x ^ k)))"
by simp

also have "inverse (qpochhammer_inf (of_real t) (of_real x)) =

80

complex_of_real (inverse (qpochhammer_inf t x))"
by (subst qpochhammer_inf_of_real) (use assms in auto)

finally show ?thesis
by (subst (asm) sums_of_real_iff)

qed

lemma norm_summable_inverse_qpochhammer_inf:
fixes x t :: "’a :: {real_normed_field}"
assumes "norm x < 1" "norm t < 1"
shows "summable (λn. norm (t ^ n / (

∏
k=1..n. 1 - x^k)))"

proof (rule summable_comparison_test)
show "summable (λn. norm t ^ n / (

∏
k=1..n. 1 - norm x ^ k))"

by (rule sums_summable, rule sums_inverse_qpochhammer_inf_real) (use
assms in auto)
next

show "∃ N. ∀ n≥N. norm (norm (t ^ n / (
∏

k = 1..n. 1 - x ^ k))) ≤
norm t ^ n / (

∏
k = 1..n. 1 - norm x ^ k)"

proof (intro exI[of _ 0] allI impI)
fix n :: nat
have "norm (norm (t ^ n / (

∏
k=1..n. 1 - x ^ k))) = norm t ^ n / (

∏
k=1..n.

norm (1 - x ^ k))"
by (simp add: norm_mult norm_power norm_divide abs_prod flip:prod_norm)

also have " . . . ≤ norm t ^ n / (
∏

k=1..n. 1 - norm x ^ k)"
proof (intro divide_left_mono mult_pos_pos prod_pos prod_mono)

fix k assume k: "k ∈ {1..n}"
have *: "0 < norm (1::’a) - norm (x ^ k)"

using assms k by (simp add: norm_power power_less_one_iff)
also have " . . . ≤ norm (1 - x ^ k)"

by norm
finally show "norm (1 - x ^ k) > 0" .
from * show "1 - norm x ^ k > 0"

by (simp add: norm_power)
have "norm (1::’a) - norm (x ^ k) ≤ norm (1 - x ^ k)"

by norm
thus "0 ≤ 1 - norm x ^ k ∧ 1 - norm x ^ k ≤ norm (1 - x ^ k)"

using assms by (auto simp: norm_power power_le_one_iff)
qed auto
finally show "norm (norm (t ^ n / (

∏
k = 1..n. 1 - x ^ k)))

≤ norm t ^ n / (
∏

k = 1..n. 1 - norm x ^ k)" .
qed

qed

3.7 Euler’s function

Euler’s φ function is closely related to the Dedekind η function and the
Jacobi ϑ nullwert functions. The q-Pochhammer symbol gives us a simple
and convenient way to define it.
definition euler_phi :: "’a :: {real_normed_field, banach, heine_borel}
⇒ ’a" where

81

"euler_phi q = qpochhammer_inf q q"

lemma euler_phi_0 [simp]: "euler_phi 0 = 1"
by (simp add: euler_phi_def)

lemma abs_convergent_euler_phi:
assumes "(q :: ’a :: real_normed_div_algebra) ∈ ball 0 1"
shows "abs_convergent_prod (λn. 1 - q ^ Suc n)"

proof (rule summable_imp_abs_convergent_prod)
show "summable (λn. norm (1 - q ^ Suc n - 1))"

using assms by (subst summable_Suc_iff) (auto simp: norm_power)
qed

lemma convergent_euler_phi:
assumes "(q :: ’a :: {real_normed_field, banach}) ∈ ball 0 1"
shows "convergent_prod (λn. 1 - q ^ Suc n)"
using abs_convergent_euler_phi[OF assms] abs_convergent_prod_imp_convergent_prod

by blast

lemma has_prod_euler_phi:
"norm q < 1 =⇒ (λn. 1 - q ^ Suc n) has_prod euler_phi q"
using has_prod_qpochhammer_inf[of q q] by (simp add: euler_phi_def)

lemma euler_phi_nonzero [simp]:
assumes x: "x ∈ ball 0 1"
shows "euler_phi x 6= 0"
using assms by (simp add: euler_phi_def qpochhammer_inf_nonzero)

lemma holomorphic_euler_phi [holomorphic_intros]:
assumes [holomorphic_intros]: "f holomorphic_on A"
assumes "

∧
z. z ∈ A =⇒ norm (f z) < 1"

shows "(λz. euler_phi (f z)) holomorphic_on A"
proof -

have *: "euler_phi holomorphic_on ball 0 1"
unfolding euler_phi_def by (intro holomorphic_intros) auto

show ?thesis
by (rule holomorphic_on_compose_gen[OF assms(1) *, unfolded o_def])

(use assms(2) in auto)
qed

lemma analytic_euler_phi [analytic_intros]:
assumes [analytic_intros]: "f analytic_on A"
assumes "

∧
z. z ∈ A =⇒ norm (f z) < 1"

shows "(λz. euler_phi (f z)) analytic_on A"
using assms(2) by (auto intro!: analytic_intros simp: euler_phi_def)

lemma meromorphic_on_euler_phi [meromorphic_intros]:
"f analytic_on A =⇒ (

∧
z. z ∈ A =⇒ norm (f z) < 1) =⇒ (λz. euler_phi

(f z)) meromorphic_on A"

82

unfolding euler_phi_def by (intro meromorphic_intros)

lemma continuous_on_euler_phi [continuous_intros]:
assumes "continuous_on A f" "

∧
z. z ∈ A =⇒ norm (f z) < 1"

shows "continuous_on A (λz. euler_phi (f z))"
using assms unfolding euler_phi_def by (intro continuous_intros) auto

lemma continuous_euler_phi [continuous_intros]:
fixes a q :: "’b :: t2_space ⇒ ’a :: {real_normed_field, banach, heine_borel}"
assumes "continuous (at x within A) f" "norm (f x) < 1"
shows "continuous (at x within A) (λx. euler_phi (f x))"
unfolding euler_phi_def by (intro continuous_intros assms)

lemma tendsto_euler_phi [tendsto_intros]:
assumes [tendsto_intros]: "(f −−−→ c) F" and "norm c < 1"
shows "((λx. euler_phi (f x)) −−−→ euler_phi c) F"
unfolding euler_phi_def using assms by (auto intro!: tendsto_intros)

end

4 q-binomial identities
theory Q_Binomial_Identities

imports Q_Pochhammer_Infinite
begin

4.1 The q-binomial theorem

Recall the binomial theorem:

(1 + t)n =
n∑

k=0

(
n

k

)
tn

The q-binomial numbers satisfy an analogous theorem:

n−1∏
k=0

(
1 + tqk

)
=

n∑
k=0

qk(k−1)/2

(
n

k

)
q

tk

It can be seen easily that letting q → 1 would give us the “normal” binomial
theorem.
theorem qbinomial_theorem:

"qpochhammer (int n) (-t) q = (
∑

k≤n. qbinomial q n k * q ^ (k choose
2) * t ^ k)"
proof (induction n arbitrary: t)

case (Suc n)
have *: "{..Suc n} = insert 0 {1..Suc n}"

by auto

83

have "(
∑

k≤Suc n. qbinomial q (Suc n) k * q ^ (k choose 2) * t ^ k)
=

1 + (
∑

k=1..Suc n. qbinomial q (Suc n) k * q ^ (k choose 2) *
t ^ k)"

unfolding * by (subst sum.insert) (auto simp: binomial_eq_0)
also have "(

∑
k=1..Suc n. qbinomial q (Suc n) k * q ^ (k choose 2) *

t ^ k) =
(
∑

k≤n. q ^ (Suc k choose 2) * qbinomial q (Suc n) (Suc
k) * t ^ Suc k)"

by (intro sum.reindex_bij_witness[of _ "Suc" "λk. k - 1"]) auto
also have " . . . = (

∑
k≤n. q ^ (Suc (Suc k) choose 2) * qbinomial q n

(Suc k) * t ^ Suc k) +
(
∑

k≤n. q ^ (Suc k choose 2) * qbinomial q n k * t
^ Suc k)"

by (simp add: qbinomial_Suc_Suc ring_distribs sum.distrib power_add
mult_ac numeral_2_eq_2)

also have "(
∑

k≤n. q ^ (Suc (Suc k) choose 2) * qbinomial q n (Suc
k) * t ^ Suc k) =

(
∑

k=1..Suc n. q ^ (Suc k choose 2) * qbinomial q n k * t
^ k)"

by (intro sum.reindex_bij_witness[of _ "λk. k - 1" "Suc"]) auto
also have " . . . = (

∑
k∈insert 0 {1..Suc n}. q ^ (Suc k choose 2) * qbinomial

q n k * t ^ k) - 1"
by (subst sum.insert) (auto simp: numeral_2_eq_2)

also have "(
∑

k∈insert 0 {1..Suc n}. q ^ (Suc k choose 2) * qbinomial
q n k * t ^ k)

= (
∑

k≤n. q ^ (Suc k choose 2) * qbinomial q n k * t ^ k)"
by (intro sum.mono_neutral_right) auto

also have "1 + ((
∑

k≤n. q ^ (Suc k choose 2) * qbinomial q n k * t
^ k) -

1 + (
∑

k≤n. q ^ (Suc k choose 2) * qbinomial q n k * t
^ Suc k)) =

(
∑

k≤n. q ^ (Suc k choose 2) * qbinomial q n k * (t ^ Suc
k + t ^ k))"

unfolding ring_distribs sum.distrib by simp
also have " . . . = (

∑
k≤n. qbinomial q n k * q ^ (k choose 2) * (q *

t)^k) * (1 + t)"
by (simp add: sum_distrib_left sum_distrib_right algebra_simps numeral_2_eq_2

power_add)
also have " . . . = qpochhammer (int n) (-q * t) q * (1 + t)"

by (subst Suc.IH [symmetric]) (simp_all add: algebra_simps)
also have "qpochhammer (int n) (-q * t) q = (

∏
k<n. 1 + t * q ^ Suc

k)"
by (simp add: qpochhammer_def mult_ac)

also have " . . . = (
∏

k=1..<Suc n. 1 + t * q ^ k)"
by (intro prod.reindex_bij_witness[of _ "λk. k - 1" Suc]) auto

also have " . . . * (1 + t) = (
∏

k∈insert 0 {1..<Suc n}. 1 + t * q ^ k)"
by (subst prod.insert) auto

also have "insert 0 {1..<Suc n} = {..<Suc n}"

84

by auto
also have "(

∏
k<Suc n. 1 + t * q ^ k) = qpochhammer (int (Suc n)) (-

t) q"
unfolding qpochhammer_def by (subst nat_int) auto

finally show ?case ..
qed (auto simp: binomial_eq_0)

lemma qbinomial_theorem’:
"qpochhammer (int n) t q = (

∑
k≤n. qbinomial q n k * q ^ (k choose

2) * (-t) ^ k)"
using qbinomial_theorem[of n "-t" q] by simp

4.2 The infinite q-binomial theorem

Taking the limit n → ∞ in the q-binomial theorem and interchanging the
limits with Tannery’s Theorem, we obtain, for any q with |q| < 1:

∞∑
k=0

tkqk(k−1)/2

[k]q!(1− q)k
=
∞∏

k=0

(
1 + tqk

)
= (−t; q)∞

theorem qbinomial_theorem_inf:
fixes q t :: "’a :: {real_normed_field, banach, heine_borel}"
assumes q: "q ∈ ball 0 1"
defines "S ≡ (λk. (q ^ (k choose 2) * t ^ k) / (qfact q (int k) * (1

- q) ^ k))"
shows "summable (λk. norm (S k))" and "(

∑
k. S k) = qpochhammer_inf

(-t) q"
proof -

have q’: "norm q < 1"
using q by auto

from q have [simp]: "q 6= 1"
by auto

have "(λn. qpochhammer (int n) (-t) q) −−−−→ qpochhammer_inf (-t) q"
by (rule qpochhammer_tendsto_qpochhammer_inf) (use q in auto)

also have "(λn. qpochhammer (int n) (-t) q) = (λn. (
∑

k≤n. qbinomial
q n k * q ^ (k choose 2) * t ^ k))"

by (simp only: qbinomial_theorem)
finally have "(λn.

∑
k≤n. q ^ (k choose 2) * qbinomial q n k * t ^ k)

−−−−→ qpochhammer_inf (- t) q" by (simp only: mult_ac)
also have "(λn.

∑
k≤n. q ^ (k choose 2) * qbinomial q n k * t ^ k)

=
(λn.

∑
k≤n. qfact q n / qfact q (n - k) * (q ^ (k choose

2) * t ^ k / qfact q k))"
by (intro ext sum.cong refl, subst qbinomial_qfact’) (use q in ‹auto

simp: field_simps›)
also have " . . . = (λn.

∑
k≤n. (

∏
i<k. qbracket q (n - int i)) * (q ^

(k choose 2) * t ^ k / qfact q k))"
proof (intro ext sum.cong refl, goal_cases)

85

case (1 n k)
have "(

∏
i<k. qbracket q (n - int i)) = (

∏
i∈{n-k<..n}. qbracket

q (int i))"
by (rule prod.reindex_bij_witness[of _ "λi. n - i" "λi. n - i"])

(use 1 in ‹auto simp: of_nat_diff›)
also have " . . . = (

∏
i∈{1..n}-{1..n-k}. qbracket q (int i))"

by (intro prod.cong refl) auto
also have " . . . = qfact q n / qfact q (n - k)"

using q by (subst prod_diff) (auto simp: qbracket_def qfact_int_def
dest: power_eq_1_iff)

finally show ?case
using 1 by (simp add: of_nat_diff)

qed
also have " . . . = (λn.

∑
k≤n. (

∏
i<k. 1 - q ^ (n - i)) * S k)"

by (simp add: qbracket_def prod_dividef mult_ac S_def flip: of_nat_diff)
finally have lim1: "(λn.

∑
k≤n. (

∏
i<k. 1 - q ^ (n - i)) * S k) −−−−→

qpochhammer_inf (- t) q" .

define g where "g = (λk. 2 ^ k * (norm q ^ (k choose 2) * norm t ^
k / (1 - norm q) ^ k))"

have g_altdef: "g k = 2 ^ k * norm q powr (k * (k - 1) / 2) * norm t
^ k / (1 - norm q) ^ k"

if [simp]: "q 6= 0" for k
proof -

have "norm q ^ (k choose 2) = norm q powr real (k choose 2)"
by (auto simp: powr_realpow)

also have "real (k choose 2) = real k * (real k - 1) / 2"
unfolding choose_two by (subst real_of_nat_div) (auto simp:)

finally show ?thesis
by (simp add: g_def)

qed

have lim2: "eventually (λn. summable (λk. norm ((
∏

i<k. 1 - q ^ (n
- i)) * S k))) at_top ∧

summable (λn. norm (S n)) ∧
(λn.

∑
k. (

∏
i<k. 1 - q ^ (n - i)) * S k) −−−−→ suminf

S"
proof (rule tannerys_theorem)

show "(λn. (
∏

i<k. 1 - q ^ (n - i)) * S k) −−−−→ S k" for k
by (rule tendsto_eq_intros tendsto_power_zero filterlim_minus_const_nat_at_top

refl q’)+ simp
next

show "∀ F (k, n) in at_top ×F at_top. norm ((
∏

i<k. 1 - q ^ (n -
i)) * S k) ≤ g k"

proof (intro always_eventually, safe)
fix k n :: nat
have "norm ((

∏
i<k. 1 - q ^ (n - i)) * S k) = (

∏
i<k. norm (1 -

q ^ (n - i))) * norm (S k)"
by (simp add: norm_mult flip: prod_norm)

86

also have " . . . ≤ 2 ^ k * (norm q ^ (k choose 2) * norm t ^ k / (1
- norm q) ^ k)"

proof (rule mult_mono)
have "(

∏
i<k. norm (1 - q ^ (n - i))) ≤ (

∏
i<k. 2)"

proof (intro prod_mono conjI)
fix i :: nat assume i: "i ∈ {..<k}"
have "norm (1 - q ^ (n - i)) ≤ norm (1 :: ’a) + norm (q ^ (n

- i))"
by norm

also have "norm (q ^ (n - i)) ≤ norm (q ^ 0)"
using q i unfolding norm_power by (intro power_decreasing)

auto
finally show "norm (1 - q ^ (n - i)) ≤ 2"

by simp
qed auto
thus "(

∏
i<k. norm (1 - q ^ (n - i))) ≤ 2 ^ k"

by simp
next

have "norm (S k) = norm q ^ (k choose 2) * norm t ^ k / (norm
(qfact q (int k) * (1 - q) ^ k))"

by (simp add: S_def norm_divide norm_mult norm_power)
also have "qfact q (int k) * (1 - q) ^ k = (

∏
k = 1..int k. 1

- q powi k)"
by (simp add: qfact_altdef power_int_minus field_simps)

also have " . . . = (
∏

k = 1..k. 1 - q ^ k)"
by (intro prod.reindex_bij_witness[of _ int nat]) (auto simp:

power_int_def)
also have "norm . . . = (

∏
k=1..k. norm (1 - q ^ k))"

by (simp add: prod_norm)
also have "1 - norm q ≤ norm (1 - q ^ i)" if "i > 0" for i
proof -

have "norm (1 - q ^ i) ≥ norm (1 :: ’a) - norm (q ^ i)"
by norm

moreover have "norm q ^ i ≤ norm q ^ 1"
using q that by (intro power_decreasing) auto

ultimately show ?thesis
by (simp add: norm_power)

qed
hence "norm q ^ (k choose 2) * norm t ^ k / (

∏
k = 1..k. norm

(1 - q ^ k)) ≤
norm q ^ (k choose 2) * norm t ^ k / (

∏
i = 1..k. 1 - norm

q)"
using q
by (intro divide_left_mono prod_mono mult_pos_pos prod_pos)

(auto intro: power_le_one simp: power_less_one_iff dest:
power_eq_1_iff)

finally show "norm (S k) ≤ norm q ^ (k choose 2) * norm t ^ k
/ (1 - norm q) ^ k"

by simp

87

qed auto
also have " . . . = g k"

by (simp add: g_def)
finally show "norm ((

∏
i<k. 1 - q ^ (n - i)) * S k) ≤ g k" .

qed
next

show "summable g"
proof (rule summable_comparison_test_bigo)

show "g ∈ O(λk. (1/2) ^ k)"
proof (cases "q = 0 ∨ t = 0")

case True
have "eventually (λk. g k = 0) at_top"

using eventually_gt_at_top[of 2] by eventually_elim (use True
in ‹auto simp: g_def›)

from landau_o.big.in_cong[OF this] show ?thesis
by simp

next
case False
hence "q 6= 0"

by auto
have 1: "1 + norm q > 0"

using q by (auto intro: add_pos_nonneg)
have 2: "ln (norm q) / 2 < 0"

using 1 False q by (auto simp: field_simps)
show ?thesis

unfolding g_altdef[OF ‹q 6= 0›] using False 1 2 by real_asymp
qed

next
show "summable (λn. norm ((1 / 2) ^ n :: real))"

by (simp add: norm_power)
qed

qed auto

from lim2 show "summable (λk. norm (S k))"
by blast

note lim2
also have "(λn.

∑
k. (

∏
i<k. 1 - q ^ (n - i)) * S k) = (λn.

∑
k≤n.

(
∏

i<k. 1 - q ^ (n - i)) * S k)"
proof (intro ext suminf_finite)

fix n k :: nat assume k: "k /∈ {..n}"
hence "n ∈ {..<k}" "q ^ (n - n) = 1"

by auto
hence "∃ a∈{..<k}. q ^ (n - a) = 1"

by blast
thus "(

∏
i<k. 1 - q ^ (n - i)) * S k = 0"

by auto
qed auto
finally have "(λn.

∑
k≤n. (

∏
i<k. 1 - q ^ (n - i)) * S k) −−−−→ (

∑
a.

88

S a)"
by blast

with lim1 show "(
∑

a. S a) = qpochhammer_inf (-t) q"
using LIMSEQ_unique by blast

qed

4.3 The q-Vandermonde identity

The following is the q-analog of Vandermonde’s identity(
m + n

r

)
=

r∑
i=0

(
m

i

)(
n

r − i

)
,

namely: (
m + n

r

)
q

=
r∑

i=0

(
m

i

)
q

(
n

r − i

)
q

q(m−i)(r−i)

theorem qvandermonde:
fixes m n :: nat and q :: "’a :: real_normed_field"
assumes "norm q 6= 1"
shows "qbinomial q (m + n) r =

(
∑

i≤r. qbinomial q m i * qbinomial q n (r - i) * q ^ ((m
- i) * (r - i)))"
proof (cases "q = 0")

case [simp]: False
define Q where "Q = fls_const q"
define X where "X = (fls_X :: ’a fls)"
have [simp]: "qbinomial (fls_const q) n k = fls_const (qbinomial q n

k)" for n k
by (induction q n k rule: qbinomial.induct)

(simp_all add: qbinomial_Suc_Suc fls_plus_const fls_const_mult_const
flip: fls_const_power)

define F where
"F = Abs_fps (λk. if k ≤ m + n then qbinomial q (m + n) k * q ^ (k

choose 2) else 0)"
define G where

"G = Abs_fps (λk. if k ≤ m then qbinomial q m k * q ^ (k choose 2)
else 0)"

define H where
"H = Abs_fps (λk. if k ≤ n then qbinomial q n k * q ^ (k choose 2)

* q ^ (m * k) else 0)"
have two_times_choose_two: "2 * int (n choose 2) = n * (n - 1)" for

n
proof -

have "2 * int (n choose 2) = int (2 * (n choose 2))"
by simp

also have "2 * (n choose 2) = n * (n - 1)"
unfolding choose_two by (simp add: algebra_simps)

89

finally show ?thesis
by simp

qed

have *: "(
∑

k∈A. if x = int k then f k else 0) = (if x ≥ 0 ∧ nat x
∈ A then f (nat x) else 0)"

if "finite A" for A :: "nat set" and f :: "nat ⇒ ’a" and x
proof -

have "(
∑

k∈A. if x = int k then f k else 0) =
(
∑

k∈(if x ≥ 0 ∧ nat x ∈ A then {nat x} else {}). if x
= int k then f k else 0)"

using that by (intro sum.mono_neutral_right) auto
thus ?thesis

by auto
qed

have "0 = qpochhammer (m + n) (-X) Q - qpochhammer m (-X) Q * qpochhammer
n (Q ^ m * (-X)) Q"

unfolding of_nat_add by (subst qpochhammer_nat_add) auto
also have " . . . = (

∑
k≤m + n. qbinomial Q (m + n) k * Q ^ (k choose

2) * X ^ k) -
(
∑

k≤m. qbinomial Q m k * Q ^ (k choose 2) * X ^ k)
*

(
∑

k≤n. qbinomial Q n k * Q ^ (k choose 2) * Q ^ (m
* k) * X ^ k)"

by (subst (1 2 3) qbinomial_theorem’) (simp add: power_mult_distrib
mult_ac flip: power_mult)

also have "(
∑

k≤m + n. qbinomial Q (m + n) k * Q ^ (k choose 2) * X
^ k) = fps_to_fls F"

by (rule fls_eqI)
(auto simp: F_def Q_def X_def fls_nth_sum fls_X_power_times_conv_shift

*
simp flip: fls_const_power)

also have "(
∑

k≤m. qbinomial Q m k * Q ^ (k choose 2) * X ^ k) = fps_to_fls
G"

by (rule fls_eqI)
(auto simp: G_def Q_def X_def fls_nth_sum fls_X_power_times_conv_shift

*
simp flip: fls_const_power)

also have "(
∑

k≤n. qbinomial Q n k * Q ^ (k choose 2) * Q ^ (m * k)
* X ^ k) = fps_to_fls H"

by (rule fls_eqI)
(auto simp: H_def Q_def X_def fls_nth_sum fls_X_power_times_conv_shift

*
simp flip: fls_const_power)

also have "fls_nth (fps_to_fls F - fps_to_fls G * fps_to_fls H) (int
r) =

fps_nth F r - fps_nth (G * H) r"
by (simp flip: fls_times_fps_to_fls)

90

finally have eq: "fps_nth F r = fps_nth (G * H) r"
by simp

show "qbinomial q (m + n) r =
(
∑

i≤r. qbinomial q m i * qbinomial q n (r - i) * q ^ ((m
- i) * (r - i)))"

proof (cases "r ≤ m + n")
case True
have "qbinomial q (m + n) r * q ^ (r choose 2) =

(
∑

i≤r. qbinomial q m i * q ^ (i choose 2) * qbinomial q
n (r - i) *

q ^ ((r - i) choose 2) * q ^ (m * (r - i)))"
using eq True
by (auto simp: F_def G_def H_def fps_mult_nth atLeast0AtMost intro!:

sum.cong)
also have " . . . = (

∑
i≤r. qbinomial q m i * qbinomial q n (r - i)

* q ^
((i choose 2) + ((r - i) choose 2) + m *

(r - i)))"
by (subst power_add)+ (simp add: mult_ac)

also have " . . . = (
∑

i≤r. qbinomial q m i * qbinomial q n (r - i)
*

q ^ (r choose 2 + (m - i) * (r - i)))"
proof (intro sum.cong refl, goal_cases)

case (1 k)
have eq: "k choose 2 + (r - k choose 2) + m * (r - k) = (r choose

2) + (m - k) * (r - k)"
if "k ≤ m" "k ≤ r"

proof -
have "2 * (int (k choose 2) + int (r - k choose 2) + m * (int

r - int k)) =
2 * ((r choose 2) + (int m - int k) * (int r - int k))"

unfolding ring_distribs two_times_choose_two using that
apply (cases "k = 0"; cases "r = 0"; cases "r = k")

apply (simp_all add: of_nat_diff)
apply (simp_all add: algebra_simps)?
done

hence "2 * (k choose 2 + (r - k choose 2) + m * (r - k)) =
2 * ((r choose 2) + (m - k) * (r - k))"

using that by (simp add: nat_plus_as_int of_nat_diff)
thus ?thesis

by simp
qed
show ?case
proof (cases "k ≤ m")

case True
thus ?thesis using 1

by (subst eq) auto
next

91

case False
thus ?thesis using True

by (auto simp: not_le choose_two)
qed

qed
also have " . . . = (

∑
i≤r. qbinomial q m i * qbinomial q n (r - i)

*
q ^ ((m - i) * (r - i))) * q ^ (r choose 2)"

by (simp add: sum_distrib_right sum_distrib_left power_add mult_ac)
finally show ?thesis

by simp
next

case False
hence "i > m ∨ r - i > n" if "i ≤ r" for i

using that by linarith
have "(

∑
i≤r. qbinomial q m i * qbinomial q n (r - i) * q ^ ((m -

i) * (r - i))) = 0"
proof (intro sum.neutral ballI, goal_cases)

case (1 i)
hence "i ≤ r"

by simp
hence "i > m ∨ r - i > n"

using False by linarith
thus ?case

by auto
qed
thus ?thesis using False

by simp
qed

next
case [simp]: True
have "(

∑
i≤r. qbinomial q m i * qbinomial q n (r - i) * q ^ ((m - i)

* (r - i))) =
(
∑

i ∈ (if r ≤ m + n then {min m r} else {}). 1)"
using True by (intro sum.mono_neutral_cong_right)

(auto simp: qbinomial_0_left min_def split: if_splits)
also have " . . . = qbinomial q (m + n) r"

by auto
finally show ?thesis ..

qed

We therefore also get the following identity for the central q-binomial coef-
ficient:
corollary qbinomial_square_sum:

fixes q :: "’a :: real_normed_field"
assumes q: "norm q 6= 1"
shows "(

∑
k≤n. qbinomial q n k ^ 2 * q ^ (k ^ 2)) = qbinomial q

(2 * n) n"
proof -

92

have "qbinomial q (2 * n) n = (
∑

k≤n. qbinomial q n k ^ 2 * q ^ ((n
- k)^2))"

using qvandermonde[of q n n n] q
by (auto simp: power2_eq_square qbinomial_symmetric simp flip: mult_2

intro!: sum.cong)
also have " . . . = (

∑
k≤n. qbinomial q n k ^ 2 * q ^ (k^2))"

using q
by (intro sum.reindex_bij_witness[of _ "λk. n - k" "λk. n - k"])

(auto simp: qbinomial_symmetric)
finally show ?thesis ..

qed

end

References

[1] G. Andrews, R. Askey, and R. Roy. Special Functions. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1999.

[2] G. Andrews and K. Eriksson. Integer Partitions. Cambridge University
Press, 2004.

[3] R. Bellman. A Brief Introduction to Theta Functions. Athena series.
Holt, Rinehart and Winston, 1961.

93

	Auxiliary material
	Additional facts about infinite products
	Miscellanea

	q-analogues of basic combinatorial symbols
	The q-bracket [n]q
	The q-factorial [n]q!
	q-binomial coefficients (widthheight.(widthheight.(widthheight.(widthheight.nk)widthheight.)widthheight.)widthheight.)widthheight.q
	The Gaussian polynomials
	The finite Pochhammer symbol (a; q)n

	The infinite q-Pochhammer symbol (a; q)
	Definition and basic properties
	Uniform convergence and its consequences
	Bounds for (a; q)n and (widthheight.(widthheight.(widthheight.(widthheight.nk)widthheight.)widthheight.)widthheight.)widthheight.q in terms of (a; q)
	Limits of the q-binomial coefficients
	Useful identities
	Two series expansions by Euler
	Euler's function

	q-binomial identities
	The q-binomial theorem
	The infinite q-binomial theorem
	The q-Vandermonde identity

