Clique is not solvable by monotone circuits of polynomial size*

René Thiemann
University of Innsbruck

May 26, 2024

Abstract

Given a graph G with n vertices and a number s, the decision problem Clique asks whether G contains a fully connected subgraph with s vertices. For this NP-complete problem there exists a non-trivial lower bound: no monotone circuit of a size that is polynomial in n can solve Clique.

This entry provides an Isabelle/HOL formalization of a concrete lower bound (the bound is $\sqrt[7]{n} \sqrt[8]{n}$ for the fixed choice of $s=\sqrt[4]{n}$), following a proof by Gordeev.

Contents

1 Introduction 2
2 Preliminaries 2
3 Monotone Formulas 4
3.1 Definition 5
3.2 Conversion of mformulas to true-free mformulas 5
4 Simplied Version of Gordeev's Proof for Monotone Circuits 7
4.1 Setup of Global Assumptions and Proofs of Approximations 7
4.2 Plain Graphs 17
4.3 Test Graphs 21
4.4 Basic operations on sets of graphs 23
4.5 Acceptability 23
4.6 Approximations and deviations 25
4.7 Formalism 43
4.8 Conclusion 53

[^0]
1 Introduction

In this AFP submission we verify the result, that no polynomial-sized circuit can implement the Clique problem.
We arrived at this formalization by trying to verify an unpublished draft of Gordeev [4], which tries to show that Clique cannot be solved by any polynomial-sized circuit, including non-monotone ones, where the concrete exponential lower bound is $\sqrt[7]{n} \sqrt[8]{n}$ for graphs with n vertices and cliques of size $s=\sqrt[4]{n}$.
Although there are some flaws in that draft, all of these disappear if one restricts to monotone circuits. Consequently, the claimed lower bound is valid for monotone circuits.
We verify a simplified version of Gordeev's proof, where those parts that deal with negations in circuits have been eliminated from definitions and proofs.
Gordeev's work itself was inspired by "Razborov's theorem" in a textbook by Papadimitriou [5], which states that Clique cannot be encoded with a monotone circuit of polynomial size. However the proof in the draft uses a construction based on the sunflower lemma of Erdős and Rado [3], following a proof in Boppana and Sipser [2]. There are further proofs on lower bounds of monotone circuits for Clique. For instance, an early result is due to Alon and Boppana [1], where they show a slightly different lower bound (using a differently structured proof without the construction based on sunflowers.)

2 Preliminaries

```
theory Preliminaries
    imports
        Main
        HOL.Real
        HOL-Library.FuncSet
begin
lemma fact-approx-add: fact (l+n)\leq fact l*(real l + real n) ^}
proof (induct n arbitrary: l)
    case (Suc n l)
    have fact (l+Suc n)=(real l + Suc n)* fact (l+n) by simp
    also have ... \leq(real l +Suc n)*(fact l*(real l + real n)^ n)
        by (intro mult-left-mono[OF Suc], auto)
    also have ... = fact l * ((real l + Suc n)*(real l + real n) ^ n) by simp
    also have ... \leq fact l * ((real l + Suc n)*(real l + real (Suc n)) ^ n)
        by (rule mult-left-mono, rule mult-left-mono, rule power-mono, auto)
    finally show ?case by simp
qed simp
```

```
lemma fact-approx-minus: assumes \(k \geq n\)
    shows fact \(k \leq\) fact \((k-n) *(\) real \(k \xlongequal{\wedge} n)\)
proof -
    define \(l\) where \(l=k-n\)
    from assms have \(k: k=l+n\) unfolding \(l\)-def by auto
    show ?thesis unfolding \(k\) using fact-approx-add[of \(l n]\) by simp
qed
lemma fact-approx-upper-add: assumes al: \(a \leq\) Suc \(l\) shows fact \(l *\) real \(a{ }^{\wedge} n\)
\(\leq\) fact \((l+n)\)
proof (induct \(n\) )
    case (Suc n)
    have fact \(l *\) real \(a \wedge(\) Suc \(n)=\left(\right.\) fact \(l *\) real \(\left.a^{\wedge} n\right) *\) real \(a\) by simp
    also have \(\ldots \leq \operatorname{fact}(l+n) *\) real \(a\)
        by (rule mult-right-mono[OF Suc], auto)
    also have \(\ldots \leq\) fact \((l+n) * \operatorname{real}(S u c(l+n))\)
        by (intro mult-left-mono, insert al, auto)
    also have \(\ldots=\) fact \((S u c(l+n))\) by simp
    finally show? case by simp
qed \(\operatorname{simp}\)
lemma fact-approx-upper-minus: assumes \(n \leq k\) and \(n+a \leq S u c k\)
    shows fact \((k-n) *\) real \(a{ }^{\wedge} n \leq\) fact \(k\)
proof -
    define \(l\) where \(l=k-n\)
    from assms have \(k: k=l+n\) unfolding \(l\)-def by auto
    show ?thesis using assms unfolding \(k\)
        apply simp
        apply (rule fact-approx-upper-add, insert assms, auto simp: l-def)
        done
qed
lemma choose-mono: \(n \leq m \Longrightarrow n\) choose \(k \leq m\) choose \(k\)
    unfolding binomial-def
    by (rule card-mono, auto)
lemma div-mult-le: \((a \operatorname{div} b) * c \leq(a * c) \operatorname{div}(b::\) nat \()\)
    by (metis div-mult2-eq div-mult-mult2 mult.commute mult-0-right times-div-less-eq-dividend)
lemma div-mult-pow-le: \((a \operatorname{div} b) \widehat{n} \leq a \widehat{n} \operatorname{div}(b:: n a t) \widehat{n}\)
proof (cases \(b=0\) )
    case True
    thus ?thesis by (cases n, auto)
next
    case b: False
    then obtain \(c d\) where \(a: a=b * c+d\) and \(i d: c=a\) div \(b d=a \bmod b\) by
auto
    have \((a\) div \(b) \uparrow n=c \wedge n\) unfolding \(i d\) by simp
    also have \(\ldots=(b * c) \uparrow n\) div \(b\) ^ \(n\) using \(b\)
```

```
    by (metis div-power dvd-triv-left nonzero-mult-div-cancel-left)
    also have ... \leq (b*c+d)^n div b^n
    by (rule div-le-mono, rule power-mono, auto)
    also have ... = a^n div b`n unfolding a by simp
    finally show ?thesis.
qed
lemma choose-inj-right:
    assumes id: (n choose l)}=(k\mathrm{ choose l)
        and n0: n choose l}=
        and l0: l\not=0
    shows n=k
proof (rule ccontr)
    assume nk: n\not=k
    define m}\mathrm{ where m=min nk
    define }M\mathrm{ where }M=\operatorname{max}n
    from nk have mM:m<M unfolding m-def M-def by auto
    let ?new = insert (M-1) {0..<l-1}
    let ?m}={K\inPow {0..<m}. card K=l
    let ?M = {K P Pow {0..<M}. card K=l}
    from id n0 have lM :l\leqM unfolding m-def M-def by auto
    from id have id:( m choose l) =( }M\mathrm{ choose l)
        unfolding m-def M-def by auto
    from this[unfolded binomial-def]
    have card ?M < Suc (card ?m)
    by auto
    also have ... = card (insert ?new ?m)
    by (rule sym, rule card-insert-disjoint, force, insert mM, auto)
    also have ... \leqcard (insert ?new ?M)
    by (rule card-mono, insert mM, auto)
    also have insert ?new ?M = ?M
    by (insert mM lM l0, auto)
    finally show False by simp
qed
end
```


3 Monotone Formulas

We define monotone formulas, i.e., without negation, and show that usually the constant TRUE is not required.

```
theory Monotone-Formula
    imports Main
begin
```


3.1 Definition

```
datatype 'a mformula =
    TRUE | FALSE | - True and False
    Var 'a| - propositional variables
    Conj 'a mformula 'a mformula | - conjunction
    Disj 'a mformula 'a mformula - disjunction
```

the set of subformulas of a mformula

```
fun \(S U B\) :: 'a mformula \(\Rightarrow\) 'a mformula set where
    \(\operatorname{SUB}(\operatorname{Conj} \varphi \psi)=\{\operatorname{Conj} \varphi \psi\} \cup S U B \varphi \cup S U B \psi\)
\(\mid S U B(\operatorname{Disj} \varphi \psi)=\{\operatorname{Disj} \varphi \psi\} \cup S U B \varphi \cup S U B \psi\)
\(\mid \operatorname{SUB}(\operatorname{Var} x)=\{\operatorname{Var} x\}\)
|SUB FALSE \(=\{F A L S E\}\)
\(\mid S U B\) TRUE \(=\{T R U E\}\)
```

the variables of a mformula

```
fun vars :: ' \(a\) mformula \(\Rightarrow\) 'a set where
    vars \((\operatorname{Var} x)=\{x\}\)
\(\mid \operatorname{vars}(\operatorname{Conj} \varphi \psi)=\) vars \(\varphi \cup\) vars \(\psi\)
\(\mid\) vars \((\operatorname{Disj} \varphi \psi)=\) vars \(\varphi \cup\) vars \(\psi\)
| vars \(F A L S E=\{ \}\)
\(\mid\) vars TRUE \(=\{ \}\)
```

lemma finite-SUB[simp, intro]: finite (SUB φ)
by (induct φ, auto)

The circuit-size of a mformula: number of subformulas
definition $c s::$ ' a mformula \Rightarrow nat where
cs $\varphi=\operatorname{card}(S U B \varphi)$
variable assignments
type-synonym ' a VAS = ' $a \Rightarrow$ bool
evaluation of mformulas
fun eval :: 'a VAS \Rightarrow 'a mformula \Rightarrow bool where
eval ϑ FALSE $=$ False
| eval ϑ TRUE $=$ True
| eval $\vartheta(\operatorname{Var} x)=\vartheta x$
| eval $\vartheta($ Disj $\varphi \psi)=($ eval $\vartheta \varphi \vee$ eval $\vartheta \psi)$
| eval $\vartheta(\operatorname{Conj} \varphi \psi)=(\operatorname{eval} \vartheta \varphi \wedge \operatorname{eval} \vartheta \psi)$
lemma eval-vars: assumes $\bigwedge x . x \in$ vars $\varphi \Longrightarrow \vartheta 1 x=\vartheta 2 x$ shows eval $\vartheta 1 \varphi=$ eval $\vartheta 2 \varphi$
using assms by (induct φ, auto)

3.2 Conversion of mformulas to true-free mformulas

inductive-set $t f$-mformula :: 'a mformula set where

```
    tf-False: FALSE \intf-mformula
|f-Var:Var x t tf-mformula
|f-Disj: }\varphi\intf-mformula \Longrightarrow\psi\intf-mformula \LongrightarrowDisj \varphi\psi\intf-mformula
tf-Conj: }\varphi\intf\mathrm{ -mformula }\Longrightarrow\psi\intf-mformula \LongrightarrowConj \varphi\psi\intf-mformula
fun to-tf-formula where
    to-tf-formula (Disj phi psi) = (let phi' = to-tf-formula phi;psi' = to-tf-formula
psi
    in (if phi' = TRUE \vee psi' = TRUE then TRUE else Disj phi' psi'))
|to-tf-formula (Conj phi psi)=(let phi' = to-tf-formula phi;psi' = to-tf-formula
psi
    in (if phi' = TRUE then ps\mp@subsup{i}{}{\prime}}\mathrm{ else if psi' = TRUE then phi' else Conj phi' psi'))
| to-tf-formula phi = phi
lemma eval-to-tf-formula: eval \vartheta (to-tf-formula }\varphi)=\mathrm{ eval ७ }
    by (induct \varphi rule: to-tf-formula.induct, auto simp: Let-def)
lemma to-tf-formula: to-tf-formula }\varphi\not=TRUE\Longrightarrow to-tf-formula \varphi\intf-mformula
    by (induct \varphi, auto simp: Let-def intro: tf-mformula.intros)
lemma vars-to-tf-formula: vars (to-tf-formula }\varphi)\subseteq\mathrm{ vars }
    by (induct \varphi rule: to-tf-formula.induct, auto simp: Let-def)
lemma SUB-to-tf-formula: SUB (to-tf-formula }\varphi)\subseteqto-tf-formula 'SUB \varphi
    by (induct \varphi rule: to-tf-formula.induct, auto simp: Let-def)
lemma cs-to-tf-formula:cs (to-tf-formula }\varphi)\leqcs
proof -
    have cs (to-tf-formula \varphi) \leqcard (to-tf-formula 'SUB \varphi)
    unfolding cs-def by (rule card-mono[OF finite-imageI[OF finite-SUB] SUB-to-tf-formula])
    also have ... \leqcs \varphi unfolding cs-def
    by (rule card-image-le[OF finite-SUB])
    finally show cs (to-tf-formula \varphi) \leqcs \varphi .
qed
lemma to-tf-mformula: assumes }\neg\mathrm{ eval }\vartheta
    shows }\exists\psi\intf-mformula.(\forall\vartheta. eval \vartheta \varphi= eval \vartheta \psi)\wedge vars \psi\subseteqvars \varphi ^c
\psi
proof (intro bexI[of - to-tf-formula \varphi] conjI allI eval-to-tf-formula[symmetric]
vars-to-tf-formula to-tf-formula)
    from assms have \neg eval \vartheta (to-tf-formula \varphi) by (simp add: eval-to-tf-formula)
    thus to-tf-formula }\varphi\not=TRUE by aut
    show cs (to-tf-formula \varphi)}\leqcs \varphi by (rule cs-to-tf-formula)
qed
end
```


4 Simplied Version of Gordeev's Proof for Monotone Circuits

4.1 Setup of Global Assumptions and Proofs of Approximations

```
theory Assumptions-and-Approximations
imports
    HOL-Real-Asymp.Real-Asymp
    Stirling-Formula.Stirling-Formula
    Preliminaries
begin
locale first-assumptions =
    fixes lp k :: nat
    assumes l2: l>2
    and pl: p>l
    and kp:k>p
begin
lemma k2: k>2 using pl l2 kp by auto
lemma p:p>2 using pl l2 kp by auto
lemma k: k>l using pl l2 kp by auto
definition m = k`4
lemma km: k<m
    using power-strict-increasing-iff[of k 1 4] k2 unfolding m-def by auto
lemma lm:l + 1<m using km k by simp
lemma m2: m>2 using k2 km by auto
lemma mp: m>p using km k kp by simp
definition L = fact l * (p-1)``
lemma kml: k\leqm-l
proof -
    have k\leqk*k-k using k2 by (cases k, auto)
    also have ... \leq(k*k)*1-l using k by simp
    also have \ldots}\leq(k*k)*(k*k)-
        by (intro diff-le-mono mult-left-mono, insert k2, auto)
    also have (k*k)*(k*k)=m}\mathrm{ unfolding m-def by algebra
    finally show ?thesis.
qed
end
```

locale second-assumptions $=$ first-assumptions +

```
    assumes kl2: k=l`2
    and l8: l\geq8
begin
lemma Lm: L\geqm
proof -
    have m\leql` l
    unfolding L-def m-def
    unfolding kl2 power-mult[symmetric]
    by (intro power-increasing, insert l8, auto)
    also have ... \leq (p-1)^l
    by (rule power-mono, insert pl, auto)
    also have ... \leqfact l* (p-1)^l by simp
    also have ... \leqL unfolding L-def by simp
    finally show ?thesis.
qed
```

lemma $L p: L>p$ using $L m m p$ by auto
lemma L3: $L>3$ using $p L p$ by auto
end
definition eps $=1 /(1000::$ real $)$
lemma eps: eps >0 unfolding eps-def by simp
definition $L 0$:: nat where
$L 0=\left(S O M E l 0 . \forall l \geq l 0.1 / 3<(1+-1 / \text { real } l)^{\wedge} l\right)$
definition $M 0$:: nat where
$M 0=($ SOME $y . \forall x . x \geq y \longrightarrow($ root $8($ real $x) * \log 2($ real $x)+1) /$ real x
powr $(1 / 8+e p s) \leq 1)$
definition $L 0^{\prime}::$ nat where
$L 0^{\prime}=\left(\right.$ SOME l0. $\forall n \geq 10.6 *($ real $n) \wedge 16 *$ fact $n<$ real $\left(n^{2}\right.$ ~ 4) powr ($1 /$
$8 * \operatorname{real}\left(n^{2}\right.$ 4) powr $\left.\left.(1 / 8)\right)\right)$
definition $L 0^{\prime \prime}::$ nat where $L 0^{\prime \prime}=\left(S O M E l 0 . \forall l \geq l 0\right.$. real $l * \log 2\left(\right.$ real $\left(l^{2} \uparrow\right.$
4)) $\left.+1<\operatorname{real}\left(l^{2}\right)\right)$
lemma $L 0^{\prime \prime}$: assumes $l \geq L 0^{\prime \prime}$ shows real $l * \log 2\left(\operatorname{real}\left(l^{2}\right.\right.$ ィ 4$\left.)\right)+1<\operatorname{real}\left(l^{2}\right)$
proof -
have $\left(\lambda l::\right.$ nat. $\left(\right.$ real $l * \log 2\left(\right.$ real $\left.\left.\left.\left(l^{2} \wedge 4\right)\right)+1\right) / \operatorname{real}\left(l^{2}\right)\right) \longrightarrow 0$ by
real-asymp
from LIMSEQ-D[OF this, of 1] obtain 10
where $\forall l \geq l 0 . \mid 1+$ real $l * \log 2($ real $l \wedge 8) \mid /(\text { real } l)^{2}<1$ by (auto simp:
field-simps)
hence $\forall l \geq \max 1$ l0. real $l * \log 2\left(\right.$ real $\left.\left(l^{2} \wedge 4\right)\right)+1<\operatorname{real}\left(l^{2}\right)$
by (auto simp: field-simps)
hence $\exists l 0 . \forall l \geq l 0$. real $l * \log 2\left(\operatorname{real}\left(l^{2} \wedge 4\right)\right)+1<\operatorname{real}\left(l^{2}\right)$ by blast
from someI-ex[OF this, folded L0'1-def, rule-format, OF assms] show ?thesis.
qed
definition $M 0^{\prime}::$ nat where

$$
M 0^{\prime}=(S O M E x 0 . \forall x \geq x 0 . \text { real } x \text { powr }(2 / 3) \leq x \operatorname{powr}(3 / 4)-1)
$$

locale third-assumptions $=$ second-assumptions +
assumes pllog: $l * \log 2 m \leq p$ real $p \leq l * \log 2 m+1$
and $L 0: l \geq L 0$
and $L 0^{\prime}: l \geq L 0^{\prime}$
and $M 0^{\prime}: m \geq M 0^{\prime}$
and $M 0: m \geq M 0$
begin
lemma approximation1:
$(\operatorname{real}(k-1))^{\wedge}(m-l) * \operatorname{prod}(\lambda i . \operatorname{real}(k-1-i))\{0 . .<l\}$ $>(\text { real }(k-1))^{\wedge} m / 3$
proof -
have real $(k-1) \wedge(m-l) *\left(\prod i=0 . .<l\right.$. real $\left.(k-1-i)\right)=$ real $(k-1) へ m *$
$\left(\right.$ inverse $(\text { real }(k-1))^{\wedge} l *\left(\prod i=0 . .<l\right.$. real $\left.\left.(k-1-i)\right)\right)$
by (subst power-diff-conv-inverse, insert $k 2$ lm, auto)
also have $\ldots>(\text { real }(k-1))^{\wedge} m *(1 / 3)$
proof (rule mult-strict-left-mono)
define f where $f l=(1+(-1) / \text { real } l)^{\wedge} l$ for l
define $e 1::$ real where $e 1=\exp (-1)$
define \lim :: real where $\lim =1 / 3$
from tendsto-exp-limit-sequentially[of -1 , folded f-def]
have $f: f \longrightarrow e 1$ by (simp add: e1-def)
have $\lim <(1-1 / \text { real } 6)^{\wedge} 6$ unfolding lim-def by code-simp
also have $\ldots \leq \exp (-1)$
by (rule exp-ge-one-minus-x-over-n-power-n, auto)
finally have lim $<e 1$ unfolding $e 1$-def by auto
with f have $\exists l 0 . \forall l . l \geq l 0 \longrightarrow f l>\lim$
by (metis eventually-sequentially order-tendsto $D(1)$)
from someI-ex[OF this[unfolded f-def lim-def], folded L0-def] L0
have $f l: f l>1 / 3$ unfolding f-def by auto
define start where start $=$ inverse $(\text { real }(k-1))^{\wedge} l *\left(\prod i=0 . .<l\right.$. real $(k$
$-1-i)$)
have uminus start
$=$ uminus $(\operatorname{prod}(\lambda-$. inverse $($ real $(k-1)))\{0 . .<l\} * \operatorname{prod}(\lambda i$. real $(k-1$
$-i))\{0 . .<l\})$
by (simp add: start-def)
also have $\ldots=$ uminus $(\operatorname{prod}(\lambda$ i. inverse $(\operatorname{real}(k-1)) * \operatorname{real}(k-1-i))$
$\{0 . .<l\}$)
by (subst prod.distrib, simp)
also have $\ldots \leq$ uminus $(\operatorname{prod}(\lambda$ i. inverse $($ real $(k-1)) *$ real $(k-1-(l$

- 1))) $\{0 . .<l\}$)
unfolding neg-le-iff-le
by (intro prod-mono conjI mult-left-mono, insert k2 l2, auto intro!: diff-le-mono2) also have $\ldots=$ uminus $(($ inverse $($ real $(k-1)) *$ real $(k-l)) \wedge l)$ by simp also have inverse $($ real $(k-1)) *$ real $(k-l)=$ inverse $($ real $(k-1)) *(($ real $(k-1))-($ real $l-1))$ using $l 2 k 2 k$ by simp
also have $\ldots=1-($ real $l-1) /($ real $(k-1))$ using $12 k 2 k$ by (simp add: field-simps)
also have real $(k-1)=$ real $k-1$ using $k 2$ by simp
also have $\ldots=($ real $l-1) *($ real $l+1)$ unfolding kl2 of-nat-power by (simp add: field-simps power2-eq-square)
also have (real $l-1) / \ldots=$ inverse $($ real $l+1)$
using 12 by (smt (verit, best) divide-divide-eq-left' divide-inverse nat-1-add-1
nat-less-real-le nonzero-mult-div-cancel-left of-nat-1 of-nat-add)
also have $-\left((1-\operatorname{inverse}(\text { real } l+1))^{\wedge} l\right) \leq-\left((1-\operatorname{inverse}(\text { real } l))^{\wedge} l\right)$ unfolding neg-le-iff-le
by (intro power-mono, insert l2, auto simp: field-simps)
also have $\ldots<-(1 / 3)$ using $f l$ unfolding f-def by (auto simp: field-simps)
finally have start: start $>1 / 3$ by simp
thus inverse $(\text { real }(k-1))^{\wedge} l *\left(\prod i=0 . .<l\right.$. real $\left.(k-1-i)\right)>1 / 3$ unfolding start-def by simp
qed (insert k2, auto)
finally show ?thesis by simp
qed
lemma approximation2: fixes s :: nat
assumes m choose $k \leq s * L^{2} *(m-l-1$ choose $(k-l-1))$
shows $((m-l) / k) \uparrow l /\left(6 * L^{\wedge} 2\right)<s$
proof -
let $? r=$ real
define q where $q=\left(? r\left(L^{2}\right) * ? r(m-l-1 \operatorname{choose}(k-l-1))\right)$
have $q: q>0$ unfolding q-def
by (insert L3 km, auto)
have ? $r(m$ choose $k) \leq ? r\left(s * L^{2} *(m-l-1 \operatorname{choose}(k-l-1))\right)$
unfolding of-nat-le-iff using assms by simp
hence m choose $k \leq s * q$ unfolding q-def by simp
hence $*: s \geq$ (m choose k) / q using q by (metis mult-imp-div-pos-le)
have $\left(((m-l) / k) \wedge l /\left(L^{\wedge} 2\right)\right) / 6<((m-l) / k) ` l /\left(L^{\wedge} 2\right) / 1$
by (rule divide-strict-left-mono, insert m2 L3 $\operatorname{lm} k$, auto intro!: mult-pos-pos divide-pos-pos zero-less-power)
also have $\ldots=((m-l) / k) \wedge l /\left(L^{\wedge} 2\right)$ by simp
also have $\ldots \leq((m$ choose $k) /(m-l-1$ choose $(k-l-1))) /\left(L^{\wedge}\right.$ 2 $)$
proof (rule divide-right-mono)
define b where $b=? r(m-l-1$ choose $(k-l-1))$
define c where $c=(? r k)^{\wedge} l$
have $b 0: b>0$ unfolding b-def using $k m$ l2 by simp
have $c 0: c>0$ unfolding c-def using k by auto
define aim where aim $=\left(((m-l) / k)^{\wedge} l \leq(m\right.$ choose $k) /(m-l-1$ choose ($k-l-1$))
have $\operatorname{aim} \longleftrightarrow((m-l) / k)^{\wedge} l \leq(m$ choose $k) / b$ unfolding b-def aim-def by simp
also have $\ldots \longleftrightarrow b *((m-l) / k)^{\wedge} l \leq(m$ choose $k)$ using $b 0$
by (simp add: mult.commute pos-le-divide-eq)
also have $\ldots \longleftrightarrow b *(m-l) \uparrow l / c \leq(m$ choose $k)$
by (simp add: power-divide c-def)
also have $\ldots \longleftrightarrow b *(m-l) \uparrow l \leq(m$ choose $k) * c$ using $c 0 b 0$
by (auto simp add: mult.commute pos-divide-le-eq)
also have $(m$ choose $k)=$ fact $m /($ fact $k *$ fact $(m-k))$
by (rule binomial-fact, insert km, auto)
also have $b=$ fact $(m-l-1) /($ fact $(k-l-1) *$ fact $(m-l-1-(k-$ $l-1)$)) unfolding b-def
by (rule binomial-fact, insert $k \mathrm{~km}$, auto)
finally have $\operatorname{aim} \longleftrightarrow$

$$
\text { fact }(m-l-1) / \operatorname{fact}(k-l-1) *(m-l) \wedge l / f a c t(m-l-1-(k
$$ $-l-1))$

$\leq($ fact $m /$ fact $k) *(? r k)^{\wedge} l /$ fact $(m-k)$ unfolding c-def by simp
also have $m-l-1-(k-l-1)=m-k$ using $l 2 k k m$ by simp
finally have aim \longleftrightarrow

$$
\text { fact }(m-l-1) / \operatorname{fact}(k-l-1) * ? r(m-l) \wedge l
$$

\leq fact $m /$ fact $k *$?r $k \wedge l$ unfolding divide-le-cancel using $k m$ by simp
also have $\ldots \longleftrightarrow($ fact $(m-(l+1)) * ? r(m-l) \wedge l) *$ fact k

$$
\leq(\operatorname{fact} m / k) *(\operatorname{fact}(k-(l+1)) *(? r k * ? r k \wedge l))
$$

using $k 2$
by (simp add: field-simps)
also have ...
proof (intro mult-mono)
have fact $k \leq$ fact $(k-(l+1)) *(? r k \wedge(l+1))$
by (rule fact-approx-minus, insert k, auto)
also have $\ldots=($ fact $(k-(l+1)) *$? $r k \wedge l) *$? $r k$ by simp
finally show fact $k \leq$ fact $(k-(l+1)) *\left(? r k * ? r k{ }^{\wedge} l\right)$ by (simp add: field-simps)
have fact $(m-(l+1)) *$ real $(m-l) \wedge l \leq f a c t m / k \longleftrightarrow$
$($ fact $(m-(l+1)) * ? r k) * \operatorname{real}(m-l) \wedge l \leq$ fact m using $k 2$ by (simp
add: field-simps)
also have ...
proof -
have $($ fact $(m-(l+1)) *$?r $k) * ? r(m-l) \wedge l \leq$
$($ fact $(m-(l+1)) * ? r(m-l)) * ? r(m-l) \wedge l$
by (intro mult-mono, insert kml, auto)
also have $(($ fact $(m-(l+1)) * ? r(m-l)) * ? r(m-l) \wedge l)=$
$($ fact $(m-(l+1)) * ? r(m-l) \wedge(l+1))$ by simp
also have $\ldots \leq$ fact m
by (rule fact-approx-upper-minus, insert km k, auto)
finally show fact $(m-(l+1)) *$ real $k *$ real $(m-l) \wedge l \leq f a c t ~ m$.
qed
finally show fact $(m-(l+1)) *$ real $(m-l) \wedge l \leq f a c t ~ m / k$.
qed auto
finally show $((m-l) / k)^{\wedge} l \leq(m$ choose $k) /(m-l-1$ choose $(k-l-$
1))
unfolding aim-def .
qed simp
also have $\ldots=(m$ choose $k) / q$
unfolding q-def by simp
also have $\ldots \leq s$ using $q *$ by metis
finally show $((m-l) / k) \uparrow l /(6 * L \bumpeq 2)<s$ by simp
qed
lemma approximation3: fixes s :: nat
assumes $(k-1) \uparrow m / 3<\left(s *\left(L^{2} *(k-1) \wedge m\right)\right) / 2^{\wedge}(p-1)$
shows $((m-l) / k)\urcorner l /\left(6 * L^{\wedge} 2\right)<s$
proof -
define A where $A=\operatorname{real}\left(L^{2} *(k-1){ }^{\wedge} m\right)$
have $A 0$: $A>0$ unfolding A-def using $L 3$ k2 m2 by simp
from mult-strict-left-mono[OF assms, of $\left.2{ }^{\wedge}(p-1)\right]$
have $2^{\wedge}(p-1) *(k-1) \widehat{m} / 3<s * A$
by (simp add: A-def)
from divide-strict-right-mono $[O F$ this, of $A] A 0$
have $2^{\wedge}(p-1) *(k-1) \uparrow m / 3 / A<s$
by simp
also have $\mathscr{Z}^{\wedge}(p-1) *(k-1) \uparrow m / 3 / A=\mathscr{Z}^{\wedge}(p-1) /\left(3 * L^{\wedge} 2\right)$
unfolding A-def using $k 2$ by simp
also have $\ldots=2 \widehat{ } \quad \mathrm{p} /(6 * L \wedge 2)$ using p by (cases p, auto)
also have $2 \widehat{2} p=2$ powr p
by (simp add: powr-realpow)
finally have $*$: 2 powr $p /\left(6 * L^{2}\right)<s$.
have $m \wedge ~ l=m$ powr l using $m 2$ l2 powr-realpow by auto
also have $\ldots=2$ powr $(\log 2 m * l)$
unfolding powr-powr[symmetric]
by (subst powr-log-cancel, insert m2, auto)
also have $\ldots=2$ powr $(l * \log 2 \mathrm{~m})$ by (simp add: ac-simps)
also have $\ldots \leq 2$ powr p
by (rule powr-mono, insert pllog, auto)
finally have $m^{\wedge} l \leq 2$ powr p.
from divide-right-mono[OF this, of $\left.6 * L^{2}\right] *$
have $m{ }^{\wedge} l /\left(6 * L^{2}\right)<s$ by simp
moreover have $((m-l) / k)^{\wedge} l /(6 * L \wedge 2) \leq m \uparrow l /(6 * L \wedge 2)$
proof (rule divide-right-mono, unfold of-nat-power, rule power-mono)
have real $(m-l) /$ real $k \leq \operatorname{real}(m-l) / 1$
using $k 2 l m$ by (intro divide-left-mono, auto)
also have $\ldots \leq m$ by simp
finally show $(m-l) / k \leq m$ by simp
qed auto
ultimately show?thesis by simp
qed
lemma identities: $k=$ root $4 m l=\operatorname{root} 8 \mathrm{~m}$ proof -

```
    let ?r = real
    have ?r k^ 4 = ?r m unfolding m-def by simp
    from arg-cong[OF this, of root 4]
    show km-id: k= root 4 m by (simp add: real-root-pos2)
    have ?r l^ 8= ?r m unfolding m-def using kl2 by simp
    from arg-cong[OF this, of root 8]
    show lm-id:l = root 8 m by (simp add: real-root-pos2)
qed
lemma identities2: root 4 m=m powr (1/4) root 8 m=m powr (1/8)
    by (subst root-powr-inverse, insert m2, auto)+
lemma appendix-A-1: assumes }x\geqM\mp@subsup{0}{}{\prime}\mathrm{ shows }x\mathrm{ powr (2/3) }\leqx\mathrm{ powr (3/4)-
1
proof -
    have (\lambda x. x powr (2/3) / (x powr (3/4) - 1)) \longrightarrow0
        by real-asymp
    from LIMSEQ-D[OF this, of 1, simplified] obtain x0 :: nat where
        sub: }x\geqx0\Longrightarrowx\mathrm{ powr (2 / 3) / |x powr (3/4) - 1|<1 for x
        by (auto simp: field-simps)
```



```
        by real-asymp
    from LIMSEQ-D[OF this, of 1, simplified] obtain x1 :: nat where
        sub2: x \geqx1\Longrightarrow2 / x powr (3/4)<1 for x by auto
    {
        fix }
        assume x: x \geqx0 x \geqx1 x \geq 1
        define }a\mathrm{ where }a=x\mathrm{ powr (3/4)-1
        from sub[OF x(1)] have small: x powr (2 / 3) / |a| \leq 1
            by (simp add: a-def)
        have 2: 2 \leq x powr (3/4) using sub2[OF x(2)] x(3) by simp
        hence a: a>0 by (simp add: a-def)
        from mult-left-mono[OF small, of a] a
        have x powr (2 / 3) \leqa
            by (simp add: field-simps)
        hence x powr (2 / 3) \leqx powr (3 / 4) - 1 unfolding a-def by simp
    }
    hence \existsx0 :: nat. }\forallx\geqx0.x powr (2 / 3) \leqx powr (3 / 4) - 1
    by (intro exI[of - max x0 (max x1 1)], auto)
    from someI-ex[OF this, folded M0'-def, rule-format, OF assms]
    show ?thesis.
qed
lemma appendix-A-2:(p-1)`l<m powr ((1/8+eps)*l)
proof -
    define f where f(x:: nat) =(root 8 x * log 2 x + 1)/(x powr (1/8+eps))
for }
```

have $f \longrightarrow 0$ using eps unfolding f-def by real-asymp
from LIMSEQ-D[OF this, of 1]
have ex: $\exists x . \forall y . y \geq x \longrightarrow f y \leq 1$ by fastforce
have lim: root $8 m * \log 2 m+1 \leq m$ powr $(1 / 8+e p s)$
using someI-ex[OF ex[unfolded f-def], folded M0-def, rule-format, OF M0] m2 by (simp add: field-simps)
define start where start $=\operatorname{real}(p-1)^{\wedge} l$
have $(p-1) \uparrow l<p{ }^{\wedge} l$
by (rule power-strict-mono, insert p l2, auto)
hence start < real ($p^{\wedge} l$)
using start-def of-nat-less-of-nat-power-cancel-iff by blast
also have $\ldots=p$ powr l
by (subst powr-realpow, insert p, auto)
also have $\ldots \leq(l * \log 2 m+1)$ powr l
by (rule powr-mono2, insert pllog, auto)
also have $l=$ root 8 m unfolding identities by simp
finally have start $<(\operatorname{root} 8 m * \log 2 m+1)$ powr root $8 m$
by (simp add: identities2)
also have $\ldots \leq(m$ powr $(1 / 8+$ eps $))$ powr root $8 m$
by (rule powr-mono2[OF - - lim], insert m2, auto)
also have $\ldots=m$ powr $((1 / 8+e p s) * l)$ unfolding powr-powr identities ..
finally show ?thesis unfolding start-def by simp
qed
lemma appendix- $A-3: 6 *$ real $l \wedge 16 *$ fact $l<m$ powr $(1 / 8 * l)$
proof -
define f where $f=(\lambda n .6 *($ real $n) \wedge 16 *(\operatorname{sqrt}(2 * p i *$ real $n) *($ real n / \exp 1) へ n))
define g where $g=\left(\lambda n .6 *(\text { real } n)^{\wedge} 16 *(\operatorname{sqrt}(2 * 4 *\right.$ real $n) *($ real $n / 2)$ ${ }^{\wedge} n$)
define h where $h=\left(\lambda n\right.$. (real $\left(n^{2}\right.$ - 4) powr $\left(1 / 8 *\left(\right.\right.$ real $\left.\left(n^{2} \wedge 4\right)\right)$ powr (1/8)))))
have $e: 2 \leq(\exp 1::$ real) using exp-ge-add-one-self[of 1] by simp
from fact-asymp-equiv
have 1: $\left(\lambda n .6 *(\text { real } n)^{\wedge} 16 *\right.$ fact $\left.n / h n\right) \sim[$ sequentially $](\lambda n . f n / h n)$ unfolding f-def by (intro asymp-equiv-intros)
have 2: $f n \leq g n$ for n unfolding f-def g-def
by (intro mult-mono power-mono divide-left-mono real-sqrt-le-mono, insert pi-less-4 e, auto)
have 2: $a b s(f n / h n) \leq a b s(g n / h n)$ for n unfolding abs-le-square-iff power2-eq-square
by (intro mult-mono divide-right-mono 2, auto simp: h-def f-def g-def)
have 2: abs $(g n / h n)<e \Longrightarrow a b s(f n / h n)<e$ for $n e$ using 2[of $n]$ by simp
have $(\lambda n . g n / h n) \longrightarrow 0$
unfolding g-def h-def by real-asymp
from LIMSEQ-D[OF this] 2
have $(\lambda n . f n / h n) \longrightarrow 0$

> by (intro LIMSEQ-I, fastforce)
with 1 have $(\lambda n .6 *($ real $n) \wedge 16 *$ fact $n / h n) \longrightarrow 0$
using tendsto－asymp－equiv－cong by blast
from LIMSEQ－D［OF this，of 1］obtain n0 where 3：$n \geq n 0 \Longrightarrow \operatorname{norm}(6 *$ $(\text { real } n)^{\wedge} 16 *$ fact $\left.n / h n\right)<1$ for n by auto
\｛
fix n
assume $n: n \geq \max 1 n 0$
hence $h n$ ：$h n>0$ unfolding h－def by auto
from n have $n \geq n 0$ by simp
from $3[$ OF this $]$ have $6 * n^{\wedge} 16 *$ fact $n / a b s(h n)<1$ by auto
with $h n$ have $6 *($ real $n) \wedge 16 *$ fact $n<h n$ by simp
\}
hence $\exists n 0 . \forall n . n \geq n 0 \longrightarrow 6 * n^{\wedge} 16 *$ fact $n<h n$ by blast
from someI－ex［OF this［unfolded h－def］，folded L0＇－def，rule－format，OF L0＇］
have $6 *$ real lへ16 $*$ fact $l<\operatorname{real}\left(l^{2}\right.$ へ 4）powr $\left(1 / 8 *\right.$ real（ l^{2} へ 4）powr（1／
8））by simp
also have $\ldots=m$ powr $(1 / 8 * l)$ using identities identities2 kl2
by（metis m－def）
finally show ？thesis．
qed
lemma appendix－$A-4: 12 * L^{\wedge} 2 \leq m$ powr $(m$ powr $(1 / 8) * 0.51)$
proof－
let $? r=$ real
define Lappr where Lappr $=m * m *$ fact $l * p$＾$l / 2$
have $L=\left(\right.$ fact $\left.l *(p-1)^{\wedge} l\right)$ unfolding L－def by simp
hence ？$r L \leq\left(\right.$ fact $\left.l *(p-1){ }^{\wedge} l\right)$ by linarith
also have $\ldots=(1 * ? r($ fact $l)) *(? r(p-1) \wedge l)$ by simp
also have $\ldots \leq((m * m / 2) * ? r(f a c t l)) *\left(? r(p-1)^{\wedge} l\right)$
by（intro mult－right－mono，insert m2，cases m ；cases $m-1$ ，auto）
also have $\ldots=(6 * \operatorname{real}(m * m) *$ fact $l) *\left(? r(p-1)^{\wedge} l\right) / 12$ by simp
also have real $(m * m)=$ real $l \wedge 16$ unfolding m－def unfolding $k l 2$ by simp
also have $(6 *$ real $l \wedge 16 *$ fact $l) *(? r(p-1) \wedge l) / 12$
$\leq(m$ powr $(1 / 8 * l) *(m \operatorname{powr}((1 / 8+e p s) * l))) / 12$
by（intro divide－right－mono mult－mono，insert appendix－A－2 appendix－A－3，auto）
also have $\ldots=(m$ powr $(1 / 8 * l+(1 / 8+e p s) * l)) / 12$
by（simp add：powr－add）
also have $1 / 8 * l+(1 / 8+$ eps $) * l=l *(1 / 4+$ eps $)$ by（simp add：
field－simps）
also have $l=m$ powr $(1 / 8)$ unfolding identities identities2 ．．
finally have $L L$ ：？$r ~ L \leq m$ powr $(m$ powr $(1 / 8) *(1 / 4+e p s)) / 12$ ．
from power－mono［OF this，of 2］
have L＾2 $\leq(m \text { powr }(m \text { powr }(1 / 8) *(1 / 4+e p s)) / 12)^{\wedge} 2$
by simp
also have $\ldots=(m \text { powr }(m \text { powr }(1 / 8) *(1 / 4+e p s)))^{\wedge} 2 / 144$
by（simp add：power2－eq－square）
also have $\ldots=(m$ powr $(m$ powr $(1 / 8) *(1 / 4+e p s) * 2)) / 144$
by (subst powr-realpow[symmetric], (use m2 in force), unfold powr-powr, simp)
also have $\ldots=(m$ powr $(m$ powr $(1 / 8) *(1 / 2+2 * e p s))) / 144$
by (simp add: algebra-simps)
also have $\ldots \leq(m$ powr (m powr $(1 / 8) * 0.51)$) / 144
by (intro divide-right-mono powr-mono mult-left-mono, insert m2, auto simp: eps-def)
finally have $L^{\wedge} 2 \leq m$ powr $(m$ powr $(1 / 8) * 0.51) / 144$ by simp
from mult-left-mono[OF this, of 12]
have $12 * L \wedge 2 \leq 12 * m$ powr $(m$ powr $(1 / 8) * 0.51) / 144$ by simp
also have $\ldots=m$ powr $(m$ powr $(1 / 8) * 0.51) / 12$ by simp
also have $\ldots \leq m$ powr $(m$ powr $(1 / 8) * 0.51) / 1$
by (rule divide-left-mono, auto)
finally show ?thesis by simp
qed
lemma approximation4: fixes $s::$ nat
assumes $s>((m-l) / k)^{\wedge} l /\left(6 * L^{\wedge} 2\right)$
shows $s>2 * k$ powr $(4 / 7 *$ sqrt $k)$
proof -
let $? r=$ real
have diff: ?r $(m-l)=$? $m-$?r l using $l m$ by simp
have m powr $(2 / 3) \leq m$ powr $(3 / 4)-1$ using appendix- $A-1[O F$ M0] by auto
also have $\ldots \leq(m-m$ powr $(1 / 8)) / m$ powr $(1 / 4)$
unfolding diff-divide-distrib
by (rule diff-mono, insert m2, auto simp: divide-powr-uminus powr-mult-base powr-add[symmetric],
auto simp: powr-minus-divide intro!: ge-one-powr-ge-zero)
also have $\ldots=(m-\operatorname{root} 8 \mathrm{~m}) /$ root 4 m using $m 2$
by (simp add: root-powr-inverse)
also have $\ldots=(m-l) / k$ unfolding identities diff by simp
finally have m powr $(2 / 3) \leq(m-l) / k$ by simp
from power-mono[OF this, of l]
have ineq1: (m powr (2/3) $)^{\wedge} l \leq((m-l) / k)^{\wedge} l$ using $m 2$ by auto
have $(m$ powr $(l / 7)) \leq(m \operatorname{powr}(2 / 3 * l-l * 0.51))$
by (intro powr-mono, insert m2, auto)
also have $\ldots=(m$ powr $(2 / 3))$ powr $l /(m$ powr $(m$ powr $(1 / 8) * 0.51))$
unfolding powr-diff powr-powr identities identities2 by simp
also have $\ldots=(m \text { powr }(2 / 3))^{\wedge} l /(m$ powr $(m$ powr $(1 / 8) * 0.51))$
by (subst powr-realpow, insert m2, auto)
also have $\ldots \leq(m \text { powr }(2 / 3))^{\wedge} l /\left(12 * L^{2}\right)$
by (rule divide-left-mono[OF appendix-A-4], insert L3 m2, auto intro!: mult-pos-pos)
also have $\ldots=(m \text { powr }(2 / 3))^{\wedge} l /\left(\right.$?r $\left.12 * L^{2}\right)$ by simp
also have $\ldots \leq((m-l) / k) \wedge l /\left(\right.$?r $\left.12 * L^{2}\right)$
by (rule divide-right-mono[OF ineq1], insert L3, auto)
also have $\ldots<s / 2$ using assms by simp
finally have $2 * m$ powr (real $l / 7$) $<s$ by simp
also have m powr (real $l / 7)=m$ powr (root $8 \mathrm{~m} / 7$)
unfolding identities by simp
finally have $s>2 * m$ powr (root $8 \mathrm{~m} / 7$) by simp

```
    also have root 8 m= root 2 k using m2
    by (metis identities(2) kl2 of-nat-0-le-iff of-nat-power pos2 real-root-power-cancel)
    also have ?r m=k powr & unfolding m-def by simp
    also have (k powr 4) powr ((root 2 k) / 7)
    =k powr (4* (root 2 k) / 7) unfolding powr-powr by simp
    also have \ldots=k powr (4/7* sqrt k) unfolding sqrt-def by simp
    finally show }s>2*k\mathrm{ powr (4/7* sqrt k).
qed
end
end
theory Clique-Large-Monotone-Circuits
    imports
    Sunflowers.Erdos-Rado-Sunflower
    Preliminaries
    Assumptions-and-Approximations
    Monotone-Formula
begin
disable list-syntax
no-syntax -list :: args }=>\mathrm{ 'a list ([(-)])
no-syntax --listcompr :: args => 'a list ([(-)])
hide-const (open) Sigma-Algebra.measure
```


4.2 Plain Graphs

definition binprod $::$ 'a set \Rightarrow 'a set \Rightarrow 'a set set (infixl - 60) where $X \cdot Y=\{\{x, y\} \mid x y . x \in X \wedge y \in Y \wedge x \neq y\}$
abbreviation sameprod $::$ 'a set \Rightarrow 'a set set ((-)^2) where
$X^{\wedge} \mathbf{2} \equiv X \cdot X$
lemma sameprod-altdef: $X^{\wedge} \mathbf{2}=\{Y . Y \subseteq X \wedge$ card $Y=2\}$
unfolding binprod-def by (auto simp: card-2-iff)
definition numbers :: nat \Rightarrow nat set $([(-)])$ where
$[n] \equiv\{. .<n\}$
lemma card-sameprod: finite $X \Longrightarrow$ card $\left(X^{\wedge}\right)=$ card X choose 2
unfolding sameprod-altdef
by (subst n-subsets, auto)
lemma sameprod-mono: $X \subseteq Y \Longrightarrow X^{\wedge} \subseteq Y^{\wedge} \mathbf{2}$
unfolding sameprod-altdef by auto
lemma sameprod-finite: finite $X \Longrightarrow$ finite $\left(X^{\wedge} \mathbf{2}\right)$
unfolding sameprod-altdef by simp

```
lemma numbers2-mono: }x\leqy\Longrightarrow[x]`2\subseteq[y]`
    by (rule sameprod-mono, auto simp: numbers-def)
lemma card-numbers[simp]: card [n]=n
    by (simp add: numbers-def)
lemma card-numbers2[simp]: card ([n]`2)=n choose 2
    by (subst card-sameprod, auto simp: numbers-def)
type-synonym vertex = nat
type-synonym graph = vertex set set
definition Graphs :: vertex set }=>\mathrm{ graph set where
    Graphs V={G.G\subseteqV`2 }
definition Clique :: vertex set }=>\mathrm{ nat }=>\mathrm{ graph set where
    Clique Vk={G.G\inGraphs V^(\existsC\subseteqV.C`\mathbf{2}\subseteqG\wedge card C=k)}
context first-assumptions
begin
abbreviation \mathcal{G where \mathcal{G}}\equiv\mathrm{ (Graphs [m]}
lemmas \mathcal{G-def = Graphs-def[of [m]]}]
lemma empty-\mathcal{G}[simp]:{}\in\mathcal{G}\mathrm{ unfolding }\mathcal{G}\mathrm{ -def by auto}
definition v :: graph }=>\mathrm{ vertex set where
    vG={x.\existsy.{x,y}\inG}
lemma v-union: v (G\cupH)=vG\cupvH
    unfolding v-def by auto
definition \mathcal{K :: graph set where}
    K}={K.K\in\mathcal{G}\wedge\operatorname{card}(vK)=k\wedgeK=(vK)`\mathbf{2}
lemma v-\mathcal{G}:G\in\mathcal{G}\LongrightarrowvG\subseteq[m]
    unfolding v-def \mathcal{G}}\mathrm{ -def sameprod-altdef by auto
lemma v-mono: }G\subseteqH\LongrightarrowvG\subseteqvH\mathrm{ unfolding v-def by auto
lemma v-sameprod[simp]: assumes card X \geq2
    shows v( ( ``) = X
proof -
    from obtain-subset-with-card-n[OF assms] obtain Y where Y}\subseteq
        and Y: card Y=2 by auto
    then obtain x y where }x\inXy\inX\mathrm{ and }x\not=
```

```
    by (auto simp: card-2-iff)
    thus ?thesis unfolding sameprod-altdef v-def
    by (auto simp: card-2-iff doubleton-eq-iff) blast
qed
lemma v-mem-sub: assumes card e = 2 e\inG shows }e\subseteqv
proof -
    obtain x y where e:e={x,y} and xy: x\not=y using assms
    by (auto simp: card-2-iff)
    from assms(2) have x: x\inv G unfolding e
        by (auto simp: v-def)
    from e have e: e={y,x} unfolding e by auto
    from assms(2) have y: y\invG unfolding e
    by (auto simp: v-def)
    show e\subseteqvG using x y unfolding e by auto
qed
lemma v-\mathcal{G}-2: assumes }G\in\mathcal{G}\mathrm{ shows }G\subseteq(vG)`
proof
    fix }
    assume eG: e\inG
    with assms[unfolded \mathcal{G}}\mathrm{ -def binprod-def] obtain x y where e: e={x,y} and xy:
x\not=y by auto
    from eG e xy have x: x\inv G by (auto simp: v-def)
    from e have e: e={y,x} unfolding e by auto
    from eG e xy have y:y\inv G by (auto simp: v-def)
    from x y xy show e\in(vG)`2 unfolding binprod-def e by auto
qed
lemma v-numbers2[simp]: x \geq2 \Longrightarrow v([x]`2) = [x]
    by (rule v-sameprod, auto)
lemma sameprod-\mathcal{G}:\mathrm{ assumes }X\subseteq[m] card X\geq2
    shows X`2 \in\mathcal{G}
    unfolding \mathcal{G}}\mathrm{ -def using assms(2) sameprod-mono[OF assms(1)]
    by auto
lemma finite-numbers[simp,intro]: finite [n]
    unfolding numbers-def by auto
lemma finite-numbers2[simp,intro]: finite ([n]`2)
    unfolding sameprod-altdef using finite-subset[of-[m]] by auto
lemma finite-members-\mathcal{G: }}G\in\mathcal{G}\Longrightarrow\mathrm{ finite }
    unfolding \mathcal{G}}\mathrm{ -def using finite-subset[of G [m]`2] by auto
lemma finite-\mathcal{G}[simp,intro]: finite \mathcal{G}
    unfolding \mathcal{G}}\mathrm{ -def by simp
```

```
lemma finite-vG: assumes }G\in\mathcal{G
    shows finite (v G)
proof -
    from finite-members-\mathcal{G}[OF assms]
    show ?thesis
    proof (induct rule: finite-induct)
        case (insert xy F)
        show ?case
        proof (cases \exists x y. xy ={x,y})
            case False
            hence v(insert xy F)=v F unfolding v-def by auto
            thus ?thesis using insert by auto
        next
            case True
            then obtain x y where xy: xy ={x,y} by auto
            hence v(insert xy F)= insert x (insert y (vF))
                unfolding v-def by auto
            thus ?thesis using insert by auto
        qed
    qed (auto simp: v-def)
qed
lemma v-empty[simp]:v{}={} unfolding v-def by auto
lemma v-card2: assumes }G\in\mathcal{G}G\not={
    shows 2 \leq card (vG)
proof -
    from assms[unfolded \mathcal{G}}\boldsymbol{-def] obtain edge where *: edge }\inG\mathrm{ edge }\in[m]`\mathbf{2}\mathrm{ by
auto
    then obtain x y where edge: edge ={x,y} x\not=y unfolding binprod-def by
auto
    with * have sub: {x,y}\subseteqvG unfolding v-def
        by (smt (verit, best) insert-commute insert-compr mem-Collect-eq singleton-iff
subsetI)
    from assms finite-vG have finite (vG) by auto
    from sub <x\not=y` this show 2 \leq card (v G)
        by (metis card-2-iff card-mono)
qed
lemma K
    (is - = ?R)
proof -
    {
        fix }
        assume K\in\mathcal{K}
        hence }K:K\in\mathcal{G}\mathrm{ and card:card (v K) =k and KvK:K=(v K)`2
            unfolding }\mathcal{K}\mathrm{ -def by auto
```

```
    from v-\mathcal{G}[OF K] card KvK have K}\in\mathrm{ ?R by auto
}
moreover
{
    fix V
    assume 1:V\subseteq[m] and card V=k
    hence }\mp@subsup{V}{}{`}2\in\mathcal{K}\mathrm{ unfolding }\mathcal{K}\mathrm{ -def using k2 sameprod-G[OF 1]
    by auto
    }
    ultimately show ?thesis by auto
qed
lemma K}\mathcal{K}\mathcal{G}:\mathcal{K}\subseteq\mathcal{G
    unfolding }\mathcal{K}\mathrm{ -def by auto
definition CLIQUE :: graph set where
    CLIQUE ={G.G\in\mathcal{G}^(\existsK\in\mathcal{K}.K\subseteqG)}
```

lemma empty-CLIQUE[simp]: $\} \notin C L I Q U E$ unfolding CLIQUE-def \mathcal{K}-def using $k 2$ by (auto simp: v-def)

4.3 Test Graphs

Positive test graphs are precisely the cliques of size k.
abbreviation $P O S \equiv \mathcal{K}$
lemma $P O S-\mathcal{G}: P O S \subseteq \mathcal{G}$ by $($ rule $\mathcal{K}-\mathcal{G})$
Negative tests are coloring-functions of vertices that encode graphs which have cliques of size at most $k-1$.
type-synonym colorf $=$ vertex \Rightarrow nat
definition \mathcal{F} :: colorf set where

$$
\mathcal{F}=[m] \rightarrow_{E}[k-1]
$$

lemma finite- \mathcal{F} : finite \mathcal{F}
unfolding \mathcal{F}-def numbers-def
by (meson finite-PiE finite-lessThan)
definition $C::$ colorf \Rightarrow graph where
$C f=\{\{x, y\} \mid x y .\{x, y\} \in[m] \frown 2 \wedge f x \neq f y\}$
definition $N E G$:: graph set where
$N E G=C \cdot \mathcal{F}$

Lemma 1 lemma CLIQUE-NEG: CLIQUE $\cap N E G=\{ \}$
proof -
\{
fix G
assume $G C: G \in C L I Q U E$ and $G N: G \in N E G$
from $G C[$ unfolded $C L I Q U E-d e f]$ obtain K where
$K: K \in \mathcal{K}$ and $G: G \in \mathcal{G}$ and $K s u b G: K \subseteq G$ by auto
from $G N[$ unfolded $N E G$-def] obtain f where $f F: f \in \mathcal{F}$ and $G C f: G=C f$ by auto
from K [unfolded \mathcal{K}-def] have $K G: K \in \mathcal{G}$ and
$K v K: K=v K^{\curvearrowright} 2$ and card1: card $(v K)=k$ by auto
from $k 2$ card1 have ineq: card $(v K)>$ card $[k-1]$ by auto
from v - $\mathcal{G}[O F K G]$ have $v K m: v K \subseteq[m]$ by auto
from $f F[$ unfolded \mathcal{F}-def] $v K m$ have $f: f \in v K \rightarrow[k-1]$
by auto
from card-inj[OF f] ineq
have $\neg \operatorname{inj}$-on $f(v K)$ by auto
then obtain $x y$ where $*: x \in v K y \in v K x \neq y$ and ineq: $f x=f y$ unfolding inj-on-def by auto
have $\{x, y\} \notin G$ unfolding $G C f C$-def using ineq
by (auto simp: doubleton-eq-iff)
with $K s u b G K v K$ have $\{x, y\} \notin v K \curvearrowright 2$ by auto
with $*$ have False unfolding binprod-def by auto
\}
thus ?thesis by auto
qed
lemma $N E G-\mathcal{G}: N E G \subseteq \mathcal{G}$
proof -
\{
fix f
assume $f \in \mathcal{F}$
hence $C f \in \mathcal{G}$
unfolding NEG-def C-def \mathcal{G}-def
by (auto simp: sameprod-altdef)
\}
thus $N E G \subseteq \mathcal{G}$ unfolding $N E G$-def by auto
qed
lemma finite-POS-NEG: finite $(P O S \cup N E G)$ using POS-G NEG-G
by (intro finite-subset[OF - finite-G], auto)
lemma POS-sub-CLIQUE: POS $\subseteq C L I Q U E$
unfolding CLIQUE-def using $\mathcal{K}-\mathcal{G}$ by auto
lemma POS-CLIQUE: POS $\subset C L I Q U E$
proof -
have $[k+1]^{\wedge} \mathbf{2} \in \operatorname{CLIQUE}$
unfolding CLIQUE-def
proof (standard, intro conjI bexI [of - [k] 2])
show $[k] \curvearrowright 2 \subseteq[k+1] \curvearrowright 2$

```
        by (rule numbers2-mono, auto)
```



```
        by (auto intro!: exI[of - [k]], auto simp: numbers-def)
        show [k+1]` 2 \in\mathcal{G using km k2}
            by (intro sameprod-\mathcal{G}, auto simp: numbers-def)
    qed
```



```
k2
    by auto
    ultimately show ?thesis using POS-sub-CLIQUE by blast
qed
lemma card-POS: card POS = m choose k
proof -
    have m choose k=
        card {B.B\subseteq[m]^ card B=k} (is - = card ?A)
        by (subst n-subsets[of [m] k], auto simp: numbers-def)
    also have ... = card (sameprod'?A)
    proof (rule card-image[symmetric])
        {
        fix }
            assume A\in?A
            hence v(sameprod A)=A using k2
            by (subst v-sameprod, auto)
        }
        thus inj-on sameprod ?A by (rule inj-on-inverseI)
    qed
    also have sameprod ' {B. B\subseteq[m]^card B=k}=POS
    unfolding \mathcal{K}\mathrm{ -altdef by auto}
    finally show ?thesis by simp
qed
```


4.4 Basic operations on sets of graphs

definition odot :: graph set \Rightarrow graph set \Rightarrow graph set (infixl $\odot 65$) where $X \odot Y=\{D \cup E \mid D E . D \in X \wedge E \in Y\}$
lemma union-G [intro]: $G \in \mathcal{G} \Longrightarrow H \in \mathcal{G} \Longrightarrow G \cup H \in \mathcal{G}$ unfolding \mathcal{G}-def by auto
lemma odot-G: $X \subseteq \mathcal{G} \Longrightarrow Y \subseteq \mathcal{G} \Longrightarrow X \odot Y \subseteq \mathcal{G}$
unfolding odot-def by auto

4.5 Acceptability

Definition 2
definition accepts :: graph set \Rightarrow graph \Rightarrow bool (infixl $\Vdash 55$) where $(X \Vdash G)=(\exists D \in X . D \subseteq G)$

```
lemma acceptsI[intro]: \(D \subseteq G \Longrightarrow D \in X \Longrightarrow X \Vdash G\)
    unfolding accepts-def by auto
definition \(A C C::\) graph set \(\Rightarrow\) graph set where
\(A C C X=\{G . G \in \mathcal{G} \wedge X \Vdash G\}\)
definition \(A C C\)-cf :: graph set \(\Rightarrow\) colorf set where
    \(A C C-c f X=\{F . F \in \mathcal{F} \wedge X \Vdash C F\}\)
lemma \(A C C-c f-\mathcal{F}: A C C-c f X \subseteq \mathcal{F}\)
    unfolding \(A C C\)-cf-def by auto
lemma finite- \(A C C[\) intro,simp \(]\) : finite ( \(A C C-c f X)\)
    by (rule finite-subset[OF ACC-cf-F finite-F])
lemma \(A C C-I[\) intro]: \(G \in \mathcal{G} \Longrightarrow X \Vdash G \Longrightarrow G \in A C C X\)
    unfolding \(A C C\)-def by auto
lemma \(A C C-c f-I[\) intro]: \(F \in \mathcal{F} \Longrightarrow X \Vdash C F \Longrightarrow F \in A C C\)-cf \(X\)
    unfolding \(A C C\)-cf-def by auto
lemma \(A C C\)-cf-mono: \(X \subseteq Y \Longrightarrow A C C-c f X \subseteq A C C-c f Y\)
    unfolding \(A C C\)-cf-def accepts-def by auto
Lemma 3
lemma \(A C C\)-cf-empty: \(A C C-c f\{ \}=\{ \}\)
    unfolding \(A C C\)-cf-def accepts-def by auto
lemma \(A C C\)-empty[simp]: \(A C C\}=\{ \}\)
    unfolding \(A C C\)-def accepts-def by auto
lemma ACC-cf-union: \(A C C\)-cf \((X \cup Y)=A C C-c f X \cup A C C\)-cf \(Y\)
    unfolding \(A C C\)-cf-def accepts-def by blast
lemma ACC-union: \(A C C(X \cup Y)=A C C X \cup A C C Y\)
    unfolding \(A C C\)-def accepts-def by blast
lemma ACC-odot: ACC \((X \odot Y)=A C C X \cap A C C Y\)
proof -
    \{
        fix \(G\)
        assume \(G \in A C C(X \odot Y)\)
        from this[unfolded ACC-def accepts-def]
        obtain \(D E F::\) graph where \(*: D \in X E \in Y G \in \mathcal{G} D \cup E \subseteq G\)
            by (force simp: odot-def)
    hence \(G \in A C C X \cap A C C Y\)
            unfolding ACC-def accepts-def by auto
    \}
```

```
    moreover
    {
    fix }
    assume G\inACC X\capACC Y
    from this[unfolded ACC-def accepts-def]
    obtain DE where *:D\inXE\inYG\in\mathcal{G D\subseteqGE\subseteqG}
        by auto
    let ?F = D\cupE
    from * have ?F \inX\odot Y unfolding odot-def using * by blast
    moreover have ? F\subseteqG using * by auto
    ultimately have G\inACC ( }X\odotY)\mathrm{ using *
        unfolding ACC-def accepts-def by blast
    }
    ultimately show ?thesis by blast
qed
lemma ACC-cf-odot:ACC-cf (X\odotY) = ACC-cf X \capACC-cf Y
proof -
    {
        fix }
        assume G\inACC-cf (X\odotY)
        from this[unfolded ACC-cf-def accepts-def]
        obtain D E:: graph where *: D\inXE\inYG\in\mathcal{F}D\cupE\subseteqCG
            by (force simp: odot-def)
    hence G\inACC-cf X \cap ACC-cf Y
            unfolding ACC-cf-def accepts-def by auto
    }
    moreover
    {
        fix }
        assume F \inACC-cf X\capACC-cf Y
        from this[unfolded ACC-cf-def accepts-def]
        obtain DE where *:D D X E\inYF\in\mathcal{F}D\subseteqCFE\subseteqCF
            by auto
    let ?F=D\cupE
    from * have ?F \inX \odot Y unfolding odot-def using * by blast
    moreover have ?F\subseteqC }\subseteqC\mathrm{ using * by auto
    ultimately have F\inACC-cf ( }X\odotY)\mathrm{ using *
        unfolding ACC-cf-def accepts-def by blast
    }
    ultimately show ?thesis by blast
qed
```


4.6 Approximations and deviations

```
definition \(\mathcal{G l}\) :: graph set where
\[
\mathcal{G} l=\{G . G \in \mathcal{G} \wedge \operatorname{card}(v G) \leq l\}
\]
definition \(v\)-gs :: graph set \(\Rightarrow\) vertex set set where
```

```
    v-gs X = v`X
lemma v-gs-empty[simp]:v-gs {}={}
    unfolding v-gs-def by auto
lemma v-gs-union: v-gs (X\cupY) = v-gs X \cupv-gs Y
    unfolding v-gs-def by auto
lemma v-gs-mono: }X\subseteqY\Longrightarrowv\mathrm{ -gs X }\subseteqv\mathrm{ v-gs }
    using v-gs-def by auto
lemma finite-v-gs: assumes }X\subseteq\mathcal{G
    shows finite (v-gs X)
proof -
    have v-gs X\subseteqv'\mathcal{G}
        using assms unfolding v-gs-def by force
    moreover have finite \mathcal{G using finite-\mathcal{G by auto}}\mathbf{ b}
    ultimately show ?thesis by (metis finite-surj)
qed
lemma finite-v-gs-Gl: assumes }X\subseteq\mathcal{G}
    shows finite (v-gs X)
    by (rule finite-v-gs, insert assms, auto simp: Gl-def)
definition }\mathcal{PLGl}l:: graph set set wher
    P}L\mathcal{G}l={X.X\subseteq\mathcal{Gl}^\operatorname{card}(v-gs X)\leqL
definition odotl :: graph set }=>\mathrm{ graph set }=>\mathrm{ graph set (infixl }\odotl65) wher
    X\odotl Y = (X\odotY)\cap\mathcal{Gl}
lemma joinl-join: X \odotlY\subseteqX\odot Y
    unfolding odot-def odotl-def by blast
lemma card-v-gs-join: assumes X:X\subseteq\mathcal{G}\mathrm{ and Y:Y}\subseteq\mathcal{G}
    and Z:Z\subseteqX\odotY
    shows card (v-gs Z)\leqcard (v-gs X)* card (v-gs Y)
proof -
    note fin = finite-v-gs[OF X] finite-v-gs[OF Y]
    have card (v-gs Z)\leqcard ((\lambda (A,B).A\cupB)'(v-gs X 矢 v-gs Y))
    proof (rule card-mono[OF finite-imageI])
    show finite (v-gs X }\timesv\mathrm{ v-gs Y)
        using fin by auto
    have v-gs Z\subseteqv-gs ( }X\odotY
        using v-gs-mono[OF Z].
    also have .. \subseteq ( }\lambda(x,y).x\cupy)'(v-gs X \times v-gs Y) (is ?L\subseteq?R
        unfolding odot-def v-gs-def by (force split: if-splits simp: v-union)
    finally show v-gs Z\subseteq(\lambda(x,y). }\\cupy)'(v-gsX\timesv-gs Y)
```

```
    qed
    also have ... \leqcard (v-gs X }\timesv\mathrm{ v-gs Y)
    by (rule card-image-le, insert fin, auto)
    also have ... = card (v-gs X)*\operatorname{card}(v-gs Y)
    by (rule card-cartesian-product)
    finally show ?thesis.
qed
Definition 6 - elementary plucking step
definition plucking-step :: graph set }=>\mathrm{ graph set where
    plucking-step }X=(\mathrm{ let vXp = v-gs X;
        S=(SOME S.S\subseteqvXp^ sunflower S ^ card S=p);
        U ={E\inX.vE\inS};
        Vs=\bigcapS;
        Gs=Vs`2
    in X-U\cup{Gs})
end
context second-assumptions
begin
Lemma 9 - for elementary plucking step
lemma \(v\)-sameprod-subset: \(v(V s ` \mathbf{2}) \subseteq V s\) unfolding binprod-def \(v\)-def
by (auto simp: doubleton-eq-iff)
lemma plucking-step: assumes \(X: X \subseteq \mathcal{G} l\)
and \(L\) : card \((v\)-gs \(X)>L\)
and \(Y: Y=\) plucking-step \(X\)
shows \(\operatorname{card}(v\)-gs \(Y) \leq \operatorname{card}(v\)-gs \(X)-p+1\)
\(Y \subseteq \mathcal{G l}\)
\(P O S \cap A C C X \subseteq A C C Y\)
2 へ \(p * \operatorname{card}(A C C-c f Y-A C C-c f X) \leq(k-1) \wedge m\)
\(Y \neq\{ \}\)
proof -
let ? \(v X p=v\)-gs \(X\)
have sf-precond: \(\forall A \in\) ?vXp. finite \(A \wedge\) card \(A \leq l\)
using \(X\) unfolding \(\mathcal{G} l\)-def \(\mathcal{G} l\)-def \(v\)-gs-def by (auto intro: finite-v \(G\) intro!: v-G
\(v\)-card2)
note sunflower \(=\) Erdos-Rado-sunflower[OF sf-precond]
from \(p\) have \(p 0: p \neq 0\) by auto
have \((p-1) \wedge l *\) fact \(l<\) card ? \(v X p\) using \(L[\) unfolded \(L\)-def]
by (simp add: ac-simps)
note sunflower \(=\) sunflower \([\) OF this]
define \(S\) where \(S=(S O M E S . S \subseteq ? v X p \wedge\) sunflower \(S \wedge\) card \(S=p)\)
define \(U\) where \(U=\{E \in X . v E \in S\}\)
define \(V s\) where \(V s=\bigcap S\)
define \(G s\) where \(G s=V s \imath 2\)
let ? \(U=U\)
let ?New = Gs :: graph
```

```
have Y: Y=X - U \cup{?New}
    using Y[unfolded plucking-step-def Let-def, folded S-def, folded U-def,
        folded Vs-def, folded Gs-def] .
    have}U:U\subseteq\mathcal{Gl}\mathrm{ using }X\mathrm{ unfolding }U\mathrm{ -def by auto
    hence }U\subseteq\mathcal{G}\mathrm{ unfolding }\mathcal{Gl-def by auto
    from sunflower
    have \existsS.S\subseteq?vXp\wedge sunflower S}^\mathrm{ card S=p by auto
    from someI-ex[OF this, folded S-def]
    have S:S\subseteq ?vXp sunflower S card S = p by (auto simp:Vs-def)
    have fin1: finite ?vXp using finite-v-gs-Gl[OF X].
    from }X\mathrm{ have finX: finite }X\mathrm{ unfolding Gl-def
    using finite-subset[of X,OF - finite-\mathcal{G}] by auto
from fin1 S have finS: finite S by (metis finite-subset)
from finite-subset[OF-finX] have finU: finite U unfolding }U\mathrm{ -def by auto
from S p have Snempty:S\not={} by auto
have UX:U\subseteqX unfolding U-def by auto
{
    from Snempty obtain s}\mathrm{ where sS:s}\inS\mathrm{ by auto
    with }S\mathrm{ have }s\inv-gsX by aut
    then obtain Sp where Sp\inX and sSp:s=vSp
        unfolding v-gs-def by auto
    hence *:Sp\inU using <s\inS` unfolding U-def by auto
    from * X UX have le:card (v Sp) \leql finite (v Sp)Sp\in\mathcal{G}
        unfolding \mathcal{Gl-def \mathcal{Gl-def using finite-vG[of Sp] by auto}}\mathbf{|}\mathrm{ - b}
    hence m:vSp\subseteq[m] by (intro v-\mathcal{G})
    have Vs\subseteqvSp using sS sSp unfolding Vs-def by auto
    with card-mono[OF〈finite (v Sp)〉 this] finite-subset[OF this <finite (v Sp)>] le
* m
    have card Vs\leqlU\not={} finite Vs Vs\subseteq[m] by auto
}
hence card-Vs:card Vs }\leql\mathrm{ and Unempty: }U\not={
    and fin-Vs: finite Vs and Vsm:Vs\subseteq[m] by auto
    have vGs:v Gs\subseteqVs unfolding Gs-def by (rule v-sameprod-subset)
    have GsG:Gs\in\mathcal{G}\mathrm{ unfolding Gs-def G-def}
    by (intro CollectI Inter-subset sameprod-mono Vsm)
```



```
vGs]
    by (simp add: fin-Vs)
hence DsDl: ?New \in\mathcal{Gl using UX}
    unfolding \mathcal{Gl-def \mathcal{G}}\mathrm{ -def Gl-def G-def by auto}
with }XU\mathrm{ show }Y\subseteq\mathcal{Gl}\mathrm{ unfolding }Y\mathrm{ by auto
from X have XD:X\subseteq\mathcal{G}\mathrm{ unfolding Gl-def by auto}
have vplus-dsU:v-gs U=S using S(1)
    unfolding v-gs-def U-def by force
have vplus-dsXU:v-gs (X - U)=v-gs X - v-gs U
    unfolding v-gs-def U-def by auto
have card (v-gs Y) = card (v-gs (X - U\cup{?New}))
    unfolding Y by simp
also have v-gs}(X-U\cup{?New})=v-gs(X-U)\cupv-gs({?New}
```

unfolding v-gs-union ..
also have v-gs $(\{$?New $\})=\{v(G s)\}$ unfolding v-gs-def image-comp o-def by simp
also have card $(v-g s(X-U) \cup \ldots) \leq \operatorname{card}(v-g s(X-U))+\operatorname{card} \ldots$
by (rule card-Un-le)
also have $\ldots \leq \operatorname{card}(v$-gs $(X-U))+1$ by auto
also have v-gs $(X-U)=v$-gs $X-v$-gs U by fact
also have card $\ldots=$ card $(v$-gs $X)-\operatorname{card}(v$-gs $U)$
by (rule card-Diff-subset, force simp: vplus-dsU finS, insert UX, auto simp: v-gs-def)
also have card $(v-g s U)=$ card S unfolding vplus-ds U..
finally show card $(v$-gs $Y) \leq \operatorname{card}(v$-gs $X)-p+1$
using S by auto
show $Y \neq\{ \}$ unfolding Y using Unempty by auto
\{
fix G
assume $G \in A C C X$ and $G P O S: G \in P O S$
from this[unfolded ACC-def] POS-G have $G: G \in \mathcal{G} X \Vdash G$ by auto
from this[unfolded accepts-def] obtain $D::$ graph where
$D: D \in X D \subseteq G$ by auto
have $G \in A C C Y$
proof (cases $D \in Y$)
case True
with $D G$ show ?thesis unfolding accepts-def ACC-def by auto
next
case False
with D have $D U: D \in U$ unfolding Y by auto
from GPOS[unfolded POS-def \mathcal{K}-def] obtain K where $G K: G=(v K) \imath \mathbf{2}$
card $(v K)=k$ by auto
from $D U[$ unfolded U-def] have $v D \in S$ by auto
hence $V s \subseteq v D$ unfolding $V s$-def by auto
also have $\ldots \subseteq v G$
by (intro v-mono D)
also have $\ldots=v K$ unfolding $G K$
by (rule v-sameprod, unfold GK, insert $k 2$, auto)
finally have $G s \subseteq G$ unfolding $G s$-def $G K$
by (intro sameprod-mono)
with $D D U$ have $D \in ? U$?New $\subseteq G$ by (auto)
hence $Y \Vdash G$ unfolding accepts-def Y by auto
thus ?thesis using G by auto
qed
\}
thus $P O S \cap A C C X \subseteq A C C Y$ by auto

```
from ex-bij-betw-nat-finite[OF finS, unfolded «card S=p`]
obtain Si where Si: bij-betw Si {0 ..< p} S by auto
define G where G}=(\lambdai.SOME Gb.Gb\inX\wedgevGb=Si i
{
    fix }
```

```
    assume i<p
    with Si have SiS: Si i }\inS\mathrm{ unfolding bij-betw-def by auto
    with S have Si i\inv-gs X by auto
    hence }\existsG.G\inX\wedgevG=Si 
        unfolding v-gs-def by auto
    from someI-ex[OF this]
    have (Gi)\inX\wedgev(Gi)=Si i
        unfolding G-def by blast
    hence Gi\inXv(Gi)=Si i
        Gi\inUv(Gi)\inS using SiS unfolding U-def
    by auto
} note G=this
have SvG:S=v'G`{{0..<p} unfolding Si[unfolded bij-betw-def,
            THEN conjunct2, symmetric] image-comp o-def using G(2) by auto
have injG: inj-on G {0 ..< p}
proof (standard, goal-cases)
    case (1 i j)
    hence Si i = Si j using G[of i] G[of j] by simp
    with 1(1,2) Si show i=j
        by (metis Si bij-betw-iff-bijections)
qed
define r where r= card U
have rq: r\geqp unfolding r-def <card S = p〉[symmetric] vplus-dsU[symmetric]
    unfolding v-gs-def
    by (rule card-image-le[OF finU])
let ?Vi=\lambdai.v(Gi)
let ?Vis = \lambda i. ?Vi i - Vs
define s}\mathrm{ where s=card Vs
define si where si i=card (?Vi i) for i
define ti where ti i=card (?Vis i) for i
{
    fix }
    assume i:i<p
    have Vs-Vi:Vs\subseteq?Vi i using i unfolding Vs-def
        using G[OF i] unfolding SvG by auto
    have finVi: finite (?Vi i)
        using G(4)[OF i] S(1) sf-precond
        by (meson finite-numbers finite-subset subset-eq)
    from S(1) have Gi\in\mathcal{G}\mathrm{ using G(1)[OF i] X unfolding Gl-def G-def Gl-def}
by auto
    hence finGi: finite (G i)
        using finite-members-\mathcal{G by auto}
    have ti: ti i=si i-s unfolding ti-def si-def s-def
        by (rule card-Diff-subset[OF fin-Vs Vs-Vi])
    have size1:s\leqsi i unfolding s-def si-def
        by (intro card-mono finVi Vs-Vi)
    have size2: si i\leql unfolding si-def using G(4)[OF i] S(1) sf-precond by
auto
```

```
    note Vs-Vi finVi ti size1 size2 finGi\langleGi\in\mathcal{G}>
} note i-props = this
define fstt where fstt e=(SOME x. x\ine^x\not\inVs) for e
define sndd where sndd e=(SOME x. x fe^^x\not=fstt e) for e
{
    fix e :: nat set
    assume *: card e=2 \nege\subseteqVs
    from *(1) obtain xy where e:e={x,y} x\not=y
        by (meson card-2-iff)
    with * have \exists x. x \ine^x\not\inVs by auto
    from someI-ex[OF this, folded fstt-def]
    have fst: fstt e \ine fstt e &Vs by auto
    with *e have \existsx. x\ine^x\not= fstt e
    by (metis insertCI)
    from someI-ex[OF this, folded sndd-def] have snd: sndd e e e sndd e\not=fstt e
by auto
    from fst snd e have {fstt e, sndd e} = e fstt e\not\inVs fstt e\not= sndd e by auto
    } note fstt= this
{
    fix f
    assume f}\inACC-cfY-ACC-cf X
        hence fake: f}\inACC-cf {?New} - ACC-cf U unfolding Y ACC-cf-def
accepts-def
    Diff-iff U-def Un-iff mem-Collect-eq by blast
    hence f:f\in\mathcal{F}\mathrm{ using ACC-cf-F by auto}
    hence Cf\inNEG unfolding NEG-def by auto
    with NEG-\mathcal{G have Cf:C f}\in\mathcal{G}\mathrm{ by auto}
    from fake have f\inACC-cf {?New} by auto
    from this[unfolded ACC-cf-def accepts-def] Cf
    have GsCf:Gs\subseteqCf and Cf:Cf\in\mathcal{G by auto}
    from fake have f}\not\inACC-cf U by aut
    from this[unfolded ACC-cf-def] Cf f have }\neg(U\VdashCf) by aut
    from this[unfolded accepts-def]
    have UCf:D }\inU\Longrightarrow\negD\subseteqCf\mathrm{ for D by auto
    let ?prop = \lambda i e.fstt e e\inv(Gi)-Vs^
            sndd e \inv (Gi)^e\inGi\cap([m]`2)
            \wedgef(fstt e) =f(sndd e) ^f(sndd e) \in[k-1]^{fstt e, sndd e} =e
    define pair where pair i=(if i< p then (SOME pair. ?prop i pair) else
undefined) for }
    define }u\mathrm{ where ui=fstt (pair i) for i
    define w}\mathrm{ where wi=sndd (pair i) for i
    {
        fix }
        assume i: i<p
        from i have ?Vi i }\inS\mathrm{ unfolding SvG by auto
        hence Vs\subseteq? Vi i unfolding Vs-def by auto
        from sameprod-mono[OF this, folded Gs-def]
    have *:Gs\subseteqv(Gi)`2.
    from i have Gi:G i \inU using G[OF i] by auto
```

from $U C f[O F G i] i$-props $[O F i]$ have $\neg G i \subseteq C f$ and $G i: G i \in \mathcal{G}$ by auto then obtain edge where
edgep: edge $\in G i$ and edgen: edge $\notin C f$ by auto
from edgep $G i$ obtain $x y$ where edge: edge $=\{x, y\}$
and $x y:\{x, y\} \in[m] \mathfrak{2}\{x, y\} \subseteq[m]$ card $\{x, y\}=2$ unfolding \mathcal{G}-def binprod-def
by force
define a where $a=f$ stt edge
define b where $b=$ sndd edge
from edgen[unfolded C-def edge] $x y$ have id: $f x=f y$ by simp
from edgen GsCf edge have edgen: $\{x, y\} \notin G s$ by auto
from edgen[unfolded Gs-def sameprod-altdef] xy have $\neg\{x, y\} \subseteq V s$ by auto
from $f s t t[O F<\operatorname{card}\{x, y\}=2\rangle$ this, folded edge, folded a-def b-def] edge
have $a: a \notin V s$ and $i d-a b:\{x, y\}=\{a, b\}$ by auto
from $i d$-ab id have $i d$: $f a=f b$ by (auto simp: doubleton-eq-iff)
let ?pair $=(a, b)$
note $a b=x y[$ unfolded $i d$ - $a b]$
from $f[$ unfolded \mathcal{F}-def] $a b$ have $f b: f b \in[k-1]$ by auto
note edge $=$ edge[unfolded id-ab]
from edgep[unfolded edge] v-mem-sub[OF <card $\{a, b\}=2\rangle$, of $G i] i d$
have ?prop i edge using edge $a b$ a fb unfolding a-def b-def by auto
from someI[of ?prop i, OF this] have ?prop i (pair i) using i unfolding pair-def by auto
from this[folded u-def w-def] edgep
have $u i \in v(G i)-V s w i \in v(G i)$ pair $i \in G i \cap[m] \curvearrowright 2$
$f(u i)=f(w i) f(w i) \in[k-1]$ pair $i=\{u i, w i\}$
by auto
\} note $u w=$ this
from $u w(3)$ have Pi: pair $\in P i_{E}\{0 . .<p\} G$ unfolding pair-def by auto
define $U s$ where $U s=u$ ' $\{0 . .<p\}$
define $W s$ where $W s=[m]-U s$
\{
fix i
assume i : $i<p$
note $u w i=u w[$ OF this]
from uwi have ex: $\exists x \in[k-1] . f^{\prime}\{u i, w i\}=\{x\}$ by auto
from uwi have $*: u i \in[m] w i \in[m]\{u i, w i\} \in G i$ by (auto simp: sameprod-altdef)
have $w i \notin U s$
proof
assume $w i \in U s$
then obtain j where $j: j<p$ and wij: $w i=u j$ unfolding Us-def by
auto
with uwi have $i j: i \neq j$ unfolding binprod-def by auto
note $u w j=u w[O F j]$
from ij ij Si[unfolded bij-betw-def]
have diff: $v(G i) \neq v(G j)$ unfolding $G(2)[O F i] G(2)[O F j]$ inj-on-def by auto
from uwi wij have $u j: u j \in v(G i)$ by auto
with \langle sunflower $S\rangle[$ unfolded sunflower-def, rule-format $] G(4)[O F i] G(4)[O F$ j] uwj(1) diff
have $u j \in \bigcap S$ by blast
with uwj(1)[unfolded Vs-def] show False by simp
qed
with * have wi: wi $i \in W s$ unfolding $W s$-def by auto
from uwi have wi2: $w i \in v(G i)$ by auto
define W where $W=W s \cap v(G i)$
from $G(1)[O F i] X[$ unfolded $\mathcal{G l}$-def $\mathcal{G} l$-def] i-props $[O F i]$
have finite $(v(G i))$ card $(v(G i)) \leq l$ by auto
with card-mono $[$ OF this(1), of W] have
W : finite W card $W \leq l W \subseteq[m]-U s$ unfolding W-def $W s$-def by auto
from wi wi2 have wi: $w i \in W$ unfolding W-def by auto
from wi ex $W *$ have $\{u i, w i\} \in G i \wedge u i \in[m] \wedge w i \in[m]-U s \wedge f(u$ $i)=f(w i)$ by force
\} note $u w 1=$ this
have inj: inj-on $u\{0 . .<p\}$
proof -
\{
fix $i j$
assume i : $i<p$ and $j: j<p$
and $i d: u i=u j$ and $i j: i \neq j$
from ij ijSi[unfolded bij-betw-def]
have diff: $v(G i) \neq v(G j)$ unfolding $G(2)[O F i] G(2)[O F j]$ inj-on-def by auto
from $u w[O F i]$ have $u i: u i \in v(G i)-V s$ by auto
from $u w[O F j$, folded $i d]$ have $u j: u i \in v(G j)$ by auto
with <sunflower $S\rangle$ [unfolded sunflower-def, rule-format $] G(4)[O F i] G(4)[O F$
j] $u w[O F i]$ diff
have $u i \in \bigcap S$ by blast
with $u i$ have False unfolding Vs-def by auto
\}
thus ?thesis unfolding inj-on-def by fastforce
qed
have card: card $([m]-U s)=m-p$
proof (subst card-Diff-subset)
show finite Us unfolding Us-def by auto
show $U s \subseteq[m]$ unfolding $U s$-def using uw1 by auto
have card Us $=p$ unfolding $U s$-def using inj
by (simp add: card-image)
thus card $[m]-$ card $U s=m-p$ by simp
qed
hence $(\forall i<p$. pair $i \in G i) \wedge$ inj-on $u\{0 . .<p\} \wedge(\forall i<p$. wi $i \in[m]-u$
' $\{0 . .<p\} \wedge f(u i)=f(w i))$
using inj uw1 uw unfolding $U s$-def by auto
from this[unfolded u-def w-def] Pi card[unfolded Us-def u-def w-def]
have $\exists e \in P i_{E}\{0 . .<p\}$ G. $(\forall i<p . e i \in G i) \wedge$

$$
\operatorname{card}([m]-(\lambda i . f s t t(e i)) \cdot\{0 . .<p\})=m-p \wedge
$$

$(\forall i<p . s n d d(e i) \in[m]-(\lambda i . f s t t(e i)) \cdot\{0 . .<p\} \wedge f(f s t t(e i))=f(s n d d$

```
(e i)))
        by blast
    } note fMem= this
    define Pi2 where PiQ W = Pi 
    define merge where merge =
        (\lambda e (g :: nat => nat) v. if v\in(\lambda i.fstt (e i))'{0 ..< p} then g (sndd (e
(SOME i. i<p\wedgev=fstt (e i)))) else g v)
    let ?W = \lambdae.(\lambdai.fstt (e i))'{0..<p}
    have ACC-cf Y-ACC-cf X\subseteq{merge e g| e g.e e Pi 
([m]-?We) =m-p^g\inPi2 (?We)}
    (is - \subseteq?R)
    proof
        fix f
        assume mem: f\inACC-cf Y-ACC-cf X
        with ACC-cf-\mathcal{F}}\mathrm{ have }f\in\mathcal{F}\mathrm{ by auto
        hence f:f\in[m] ->}\mp@subsup{E}{E}{[k-1] unfolding \mathcal{F}
        from fMem[OF mem] obtain e where e: e \in Pi i E {0..<p}G
        \ i . i < p \Longrightarrow e i \in G i
        card ([m]- ?W e)=m-p
        \i.i<p\Longrightarrowsndd (e i) \in[m] - ?W e ^f(fstt (ei))=f(sndd (e i)) by auto
        define W where W=?W e
        note e=e[folded W-def]
        let ? g = restrict f ([m] - W)
        let ?h = merge e ?g
        have f\in?R
        proof (intro CollectI exI[of-e] exI[of - ?g], unfold W-def[symmetric], intro
conjI e)
        show ?g \in Pi2 W unfolding Pi2-def using f by auto
        {
            fix v :: nat
            have ?h v=fv
            proof (cases v\inW)
            case False
            thus ?thesis using f unfolding merge-def unfolding W-def[symmetric]
by auto
        next
            case True
            from this[unfolded W-def] obtain i where i:i<p and v:v=fstt (e i)
by auto
    define j where j=(SOME j.j<p^v=fstt (e j))
    from iv have }\existsj.j<p\wedgev=fstt (e j) by aut
    from someI-ex[OF this, folded j-def] have j: j<p and v:v=fstt (e j)
by auto
    have ?h v = restrict f ([m] - W) (sndd (e j))
                            unfolding merge-def unfolding W-def[symmetric] j-def using True by
auto
    also have \ldots. =f(sndd (e j)) using e(4)[OF j] by auto
    also have \ldots. =f(fstt (e j)) using e(4)[OF j] by auto
    also have \ldots=fv using v by simp
```

```
                    finally show ?thesis.
            qed
        }
        thus f=?h by auto
        qed
        thus f}\in?R\mathrm{ by auto
    qed
    also have \ldots\subseteq(\lambda(e,g).(merge e g))'(Sigma (Pi 
- ?We) =m-p})(\lambdae.Pi2 (?We)))
        (is - \subseteq?f`?R)
        by auto
    finally have sub: ACC-cf Y - ACC-cf X\subseteq?f '?R .
    have fin[simp,intro]: finite [m] finite [k-Suc 0] unfolding numbers-def by auto
    have finPie[simp, intro]: finite (Pi ( }{0..<p}G
    by (intro finite-PiE, auto intro: i-props)
    have finR: finite?R unfolding Pi2-def
    by (intro finite-SigmaI finite-Int allI finite-PiE i-props, auto)
    have card (ACC-cf Y - ACC-cf X) \leqcard (?f'?R)
    by (rule card-mono[OF finite-imageI [OF finR] sub])
    also have ... \leqcard ?R
    by (rule card-image-le[OF finR])
    also have ... =( \sume\in(P\mp@subsup{i}{E}{}{0..<p} G\cap{e.card ([m]-?We)=m-p}).
card (Pi2 (?W e)))
    by (rule card-SigmaI, unfold Pi2-def,
    (intro finite-SigmaI allI finite-Int finite-PiE i-props, auto)+)
    also have ... = (\sume\inP\mp@subsup{i}{E}{}{0..<p} G\cap{e.card ([m] - ?We) =m-p}. (k
- 1) ^ (card ([m] - ?W We)))
    by (rule sum.cong[OF refl], unfold Pi2-def, subst card-PiE, auto)
    also have ... = (\sume\inP\mp@subsup{i}{E}{}{0..<p}G\cap{e.card ([m] - ?We) =m-p}. (k
- 1) ^}(m-p)
    by (rule sum.cong[OF refl], rule arg-cong[of - - \lambda n. (k - 1)^n], auto)
    also have ... \leq (\sume\inP\mp@subsup{i}{E}{}{0..<p}G. (k-1)^(m-p))
    by (rule sum-mono2, auto)
    also have ... = card (Pi\mp@subsup{i}{E}{}{0..<p}G)* (k-1)^ (m-p) by simp
    also have ... = (\prodi=0..<p.card (Gi))*(k-1)^(m-p)
    by (subst card-PiE, auto)
    also have ... \leq (\Pii=0..<p.(k-1) div 2)*(k-1)^(m-p)
    proof -
    {
        fix }
        assume i:i<p
        from G[OF i] X
        have GiG:Gi\in\mathcal{G}
            unfolding \mathcal{Gl-def \mathcal{G}}\mathrm{ -def }\mathcal{G}\mathrm{ -def sameprod-altdef by force}
            from i-props[OF i] have finGi: finite (G i) by auto
            have finvGi: finite (v (Gi)) by (rule finite-vG, insert i-props[OF i], auto)
            have card (Gi)\leqcard ((v (Gi))`2)
            by (intro card-mono[OF sameprod-finite], rule finvGi, rule v-\mathcal{G-2[OF GiG])}
            also have ... \leql choose 2
```

```
    proof (subst card-sameprod[OF finvGi], rule choose-mono)
    show card (v (G i)) \leql using i-props[OF i] unfolding ti-def si-def by
simp
    qed
    also have l choose 2 = l * (l-1) div 2 unfolding choose-two by simp
    also have l* (l-1)=k-l unfolding kl2 power2-eq-square by (simp add:
algebra-simps)
    also have ... div 2 }\leq(k-1) div 2.
    by (rule div-le-mono, insert l2, auto)
    finally have card (Gi)\leq(k-1) div 2 .
    }
    thus ?thesis by (intro mult-right-mono prod-mono, auto)
    qed
    also have ... = ((k-1) div 2) ^ p*(k-1)^(m-p)
    by simp
    also have ... \leq ((k-1)^p div (2^p))* (k-1)^ (m-p)
    by (rule mult-right-mono; auto simp: div-mult-pow-le)
    also have .. \leq ((k-1)^p* (k-1)^(m-p)) div 2^p
    by (rule div-mult-le)
    also have ... = (k-1)`m div 2`p
    proof -
        have }p+(m-p)=m\mathrm{ using mp by simp
    thus ?thesis by (subst power-add[symmetric], simp)
    qed
    finally have card (ACC-cf Y - ACC-cf X) \leq (k-1) ^m div 2 ^p .
    hence 2 ^p * card (ACC-cf Y - ACC-cf X) \leq 2`p * ((k-1) ^m div 2 ^p)
by simp
    also have ... \leq (k-1)`m}\mathrm{ by simp
    finally show 2\widehat{p}*\mathrm{ card (ACC-cf Y - ACC-cf X) s (k-1)^m.}
qed
Definition 6
function \(P L U\)-main \(::\) graph set \(\Rightarrow\) graph set \(\times\) nat where
\(P L U\)-main \(X=(\) if \(X \subseteq \mathcal{G} l \wedge L<\operatorname{card}(v\)-gs \(X)\) then map-prod id Suc (PLU-main (plucking-step X)) else ( \(X, 0\) ) )
by pat-completeness auto
```


termination

```
proof (relation measure ( \(\lambda\) X. card (v-gs \(X\) )), force, goal-cases)
case (1 X)
hence \(X \subseteq \mathcal{G l}\) and \(L L: L<\operatorname{card}(v-g s X)\) by auto
from plucking-step (1)[OF this refl]
have card \((v\)-gs \((\) plucking-step \(X)) \leq \operatorname{card}(v\)-gs \(X)-p+1\).
also have \(\ldots<\operatorname{card}(v-g s X)\) using \(p L 3 L L\)
by auto
finally show? case by simp
qed
```

declare PLU-main.simps[simp del]
definition $P L U$:: graph set \Rightarrow graph set where
PLU $X=f s t(P L U$-main $X)$
Lemma 7
lemma PLU-main- n : assumes $X \subseteq \mathcal{G l}$ and PLU-main $X=(Z, n)$
shows $n *(p-1) \leq \operatorname{card}(v$-gs $X)$
using assms
proof (induct X arbitrary: $Z n$ rule: PLU-main.induct)
case ($1 \times Z n$)
note $[$ simp $]=P L U$-main.simps $[$ of $X]$
show ? case
proof (cases card $(v-g s X) \leq L)$
case True
thus ?thesis using 1 by auto
next
case False
define Y where $Y=$ plucking-step X
obtain q where $P L U: P L U$-main $Y=(Z, q)$ and $n: n=S u c q$
using $\langle P L U$-main $X=(Z, n)\rangle[$ unfolded $P L U$-main.simps $[$ of $X]$, folded Y-def]
using False 1(2) by (cases PLU-main Y, auto)
from False have L : card $(v$-gs $X)>L$ by auto
note step $=$ plucking-step $[O F$ 1(2) this Y-def]
from False 1 have $X \subseteq \mathcal{G l} \wedge L<\operatorname{card}(v-g s X)$ by auto
note $I H=1(1)[$ folded Y-def, OF this step(2) PLU]
have $n *(p-1)=(p-1)+q *(p-1)$ unfolding n by simp
also have $\ldots \leq(p-1)+$ card $(v$-gs $Y)$ using $I H$ by simp
also have $\ldots \leq p-1+(\operatorname{card}(v-g s X)-p+1)$ using step (1) by simp also have $\ldots=\operatorname{card}(v-g s X)$ using $L L p p$ by simp
finally show ?thesis.
qed
qed
Definition 8
definition sqcup :: graph set \Rightarrow graph set \Rightarrow graph set (infixl $\sqcup 65$) where $X \sqcup Y=P L U(X \cup Y)$
definition sqcap :: graph set \Rightarrow graph set \Rightarrow graph set (infixl $\sqcap 65$) where
$X \sqcap Y=P L U(X \odot l Y)$
definition deviate-pos-cup :: graph set \Rightarrow graph set \Rightarrow graph set ($\partial \sqcup P o s$) where $\partial \sqcup \operatorname{Pos} X Y=P O S \cap A C C(X \cup Y)-A C C(X \sqcup Y)$
definition deviate-pos-cap $::$ graph set \Rightarrow graph set \Rightarrow graph set $(\partial \sqcap P o s)$ where $\partial \sqcap \operatorname{Pos} X Y=P O S \cap A C C(X \odot Y)-A C C(X \sqcap Y)$
definition deviate-neg-cup $::$ graph set \Rightarrow graph set \Rightarrow colorf set $(\partial \sqcup N e g)$ where $\partial \sqcup N e g X Y=A C C-c f(X \sqcup Y)-A C C-c f(X \cup Y)$
definition deviate-neg-cap :: graph set \Rightarrow graph set \Rightarrow colorf set $(\partial \sqcap N e g)$ where $\partial \sqcap N e g X Y=A C C-c f(X \sqcap Y)-A C C-c f(X \odot Y)$

Lemma 9 - without applying Lemma 7
lemma $P L U$-main: assumes $X \subseteq \mathcal{G} l$
and $P L U$-main $X=(Z, n)$
shows $Z \in \mathcal{P} L \mathcal{G} l$
$\wedge(Z=\{ \} \longleftrightarrow X=\{ \})$
$\wedge P O S \cap A C C X \subseteq A C C Z$
$\wedge \mathcal{Z}^{\wedge} p * \operatorname{card}(A C C-c f Z-A C C-c f X) \leq(k-1) \wedge m * n$
using assms
proof (induct X arbitrary: $Z n$ rule: PLU-main.induct)
case ($1 \times Z n$)
note $[$ simp $]=P L U$-main.simps $[$ of $X]$
show ?case
proof (cases card $(v$-gs $X) \leq L)$
case True
from True show ?thesis using 1 by (auto simp: id $\mathcal{P} L \mathcal{G} l$-def)
next
case False
define Y where $Y=$ plucking-step X
obtain q where $P L U$: PLU-main $Y=(Z, q)$ and $n: n=S u c q$
using $\langle P L U$-main $X=(Z, n)\rangle[$ unfolded $P L U$-main.simps[of $X]$, folded Y-def]
using False 1(2) by (cases PLU-main Y, auto)
from False have card $(v$-gs $X)>L$ by auto
note step $=$ plucking-step $[O F 1(2)$ this Y-def $]$
from False 1 have $X \subseteq \mathcal{G l} \wedge L<\operatorname{card}(v-g s X)$ by auto
note $I H=1(1)[$ folded Y-def, OF this step (2) $P L U]\langle Y \neq\{ \}\rangle$
let ?Diff $=\lambda X Y$. ACC-cf $X-A C C-c f Y$
have finNEG: finite $N E G$
using $N E G-\mathcal{G}$ infinite-super by blast
have ?Diff $Z X \subseteq$?Diff $Z Y \cup$?Diff $Y X$ by auto
from card-mono[OF finite-subset[OF - finite-F] this] ACC-cf-F
have $2^{\wedge} p * \operatorname{card}($?Diff $Z X) \leq 2 へ p * \operatorname{card}($?Diff $Z Y \cup$?Diff $Y X)$ by auto
also have $\ldots \leq$ 2 $^{\wedge} p *(\operatorname{card}($?Diff $Z Y)+\operatorname{card}(? D i f f Y X))$ by (rule mult-left-mono, rule card-Un-le, simp)
also have $\ldots=\mathcal{2}^{\wedge} p * \operatorname{card}($?Diff $Z Y)+\boldsymbol{2}^{\wedge} p * \operatorname{card}($?Diff $Y X)$ by (simp add: algebra-simps)
also have $\ldots \leq\left((k-1)^{\wedge} m\right) * q+(k-1)^{\wedge} m$ using IH step by auto
also have $\ldots=\left((k-1)^{\wedge} m\right) * \operatorname{Suc} q$ by (simp add: ac-simps)
finally have $c: 2^{\wedge} p * \operatorname{card}(A C C-c f Z-A C C-c f X) \leq((k-1) \wedge m) * S u c$
q by simp
from False have $X \neq\{ \}$ by auto
thus ?thesis unfolding n using $I H$ step c by auto
qed
qed
Lemma 9
lemma assumes $X: X \in \mathcal{P} L \mathcal{G} l$ and $Y: Y \in \mathcal{P} L \mathcal{G} l$
shows PLU-union: $P L U(X \cup Y) \in \mathcal{P} L \mathcal{G} l$ and
sqcup: $X \sqcup Y \in \mathcal{P} L \mathcal{G} l$ and
sqcup-sub: $P O S \cap A C C(X \cup Y) \subseteq A C C(X \sqcup Y)$ and
deviate-pos-cup: $\partial \sqcup$ Pos $X Y=\{ \}$ and
deviate-neg-cup: card $(\partial \sqcup N e g X Y)<(k-1) \uparrow m * L / 2 へ(p-1)$
proof -
obtain $Z n$ where res: PLU-main $(X \cup Y)=(Z, n)$ by force
hence $P L U: P L U(X \cup Y)=Z$ unfolding $P L U$-def by simp
from $X Y$ have $X Y: X \cup Y \subseteq \mathcal{G} l$ unfolding $\mathcal{P} L \mathcal{G} l$-def by auto
note main $=P L U$-main $[O F$ this(1) res]
from main show $P L U(X \cup Y) \in \mathcal{P} L \mathcal{G} l$ unfolding $P L U$ by simp
thus $X \sqcup Y \in \mathcal{P} L \mathcal{G} l$ unfolding sqcup-def.
from main show POS $\cap A C C(X \cup Y) \subseteq A C C(X \sqcup Y)$ unfolding sqcup-def PLU by simp
thus $\partial \sqcup P o s X Y=\{ \}$ unfolding deviate-pos-cup-def PLU sqcup-def by auto
have card $(v$-gs $(X \cup Y)) \leq \operatorname{card}(v$-gs $X)+\operatorname{card}(v$-gs $Y)$
unfolding v-gs-union by (rule card-Un-le)
also have $\ldots \leq L+L$ using $X Y$ unfolding $\mathcal{P} L \mathcal{G} l$-def by simp
finally have card $(v$-gs $(X \cup Y)) \leq 2 * L$ by simp
with PLU-main-n[OF XY(1) res] have $n *(p-1) \leq 2 * L$ by simp
with $p L m m 2$ have $n: n<2 * L$ by (cases n, auto, cases $p-1$, auto)
let ? $r=$ real
have $*$: $(k-1)^{\wedge} m>0$ using $k l 2$ by simp
have $\mathcal{Z}^{\wedge} p * \operatorname{card}(\partial \sqcup N e g X Y) \leq 2{ }^{\wedge} p * \operatorname{card}(A C C-c f Z-A C C-c f(X \cup Y))$
unfolding deviate-neg-cup-def PLU sqcup-def
by (rule mult-left-mono, rule card-mono[OF finite-subset $[O F-$ finite- $\mathcal{F}]]$, insert ACC-cf-F , force, auto)
also have $\ldots \leq(k-1)^{\wedge} m * n$ using main by simp
also have $\ldots<(k-1)^{\wedge} m *(2 * L)$ unfolding mult-less-cancel1 using $n *$
by simp
also have $\ldots=2 *\left((k-1){ }^{\wedge} m * L\right)$ by simp
finally have 2* (2^(p-1)*card $(\partial \sqcup N e g X Y))<2 *((k-1) \wedge m * L)$
using p by (cases p, auto)
hence $\mathcal{2}^{\wedge}(p-1) *$ card $(\partial \sqcup N e g X Y)<(k-1) \widehat{ } m * L$ by simp
hence ? $r\left({ }^{\wedge}{ }^{\wedge}(p-1) *\right.$ card $\left.(\partial \sqcup N e g X Y)\right)<? r((k-1) \uparrow m * L)$ by linarith
thus card $(\partial \sqcup N e g X Y)<(k-1) \uparrow m * L / 2^{\wedge}(p-1)$ by (simp add: field-simps)
qed
Lemma 10
lemma assumes $X: X \in \mathcal{P} L \mathcal{G} l$ and $Y: Y \in \mathcal{P} L \mathcal{G} l$
shows PLU-joinl: $P L U(X \odot l Y) \in \mathcal{P} L \mathcal{G} l$ and sqcap: $X \sqcap Y \in \mathcal{P} L \mathcal{G} l$ and deviate-neg-cap: card $(\partial \sqcap N e g X Y)<(k-1) \wedge m * L \wedge 2 / 2 \smile(p-1)$ and deviate-pos-cap: card $(\partial \sqcap \operatorname{Pos} X Y) \leq((m-l-1)$ choose $(k-l-1)) * L^{\wedge} 2$ proof -
obtain $Z n$ where res: PLU-main $(X \odot l Y)=(Z, n)$ by force
hence $P L U: P L U(X \odot l Y)=Z$ unfolding PLU-def by simp
from $X Y$ have $X Y: X \subseteq \mathcal{G} l Y \subseteq \mathcal{G} l X \subseteq \mathcal{G} Y \subseteq \mathcal{G}$ unfolding \mathcal{P} LG l l-def $\mathcal{G} l$-def
by auto
have sub: $X \odot l Y \subseteq \mathcal{G} l$ unfolding odotl-def using $X Y$
by (auto split: option.splits)
note main $=P L U$-main $[O F$ sub res $]$
note $\operatorname{fin} V=$ finite-v-gs-Gl[OF $X Y(1)]$ finite-v-gs-Gl[OF XY(2)]
have $X \odot Y \subseteq \mathcal{G}$ by (rule odot-G. insert $X Y$, auto simp: $\mathcal{G} l$-def)
hence $X Y D: X \odot Y \subseteq \mathcal{G}$ by auto
have finvXY: finite (v-gs $(X \odot Y)$) by (rule finite-v-gs $[O F X Y D])$
have card $(v$-gs $(X \odot Y)) \leq \operatorname{card}(v-g s X) *$ card $(v$-gs $Y)$
using $X Y(1-2)$ by (intro card-v-gs-join, auto simp: Gl-def)
also have $\ldots \leq L * L$ using $X Y$ unfolding $\mathcal{P} L \mathcal{G} l$-def
by (intro mult-mono, auto)
also have $\ldots=L^{\wedge} 2$ by algebra
finally have card-join: card $(v-g s(X \odot Y)) \leq L^{\wedge}$ 2 .
with card-mono[OF finvXY v-gs-mono[OF joinl-join]]
have card: card $(v-g s(X \odot l Y)) \leq L \wedge 2$ by simp
with PLU-main- $n\left[\right.$ OF sub res] have $n *(p-1) \leq L^{\wedge} 2$ by simp
with $p L m m 2$ have $n: n<2 * L \wedge 2$ by (cases n, auto, cases $p-1$, auto)
have $*:(k-1)^{\wedge} m>0$ using $k l 2$ by simp
show $P L U(X \odot l Y) \in \mathcal{P} L \mathcal{G} l$ unfolding $P L U$ using main by auto
thus $X \sqcap Y \in \mathcal{P} L \mathcal{G} l$ unfolding sqcap-def.
let $? r=$ real
have $2 \widehat{2} p * \operatorname{card}(\partial \sqcap N e g X Y) \leq \mathcal{Z}^{\wedge} p * \operatorname{card}(A C C-c f Z-A C C-c f(X \odot l Y))$
unfolding deviate-neg-cap-def PLU sqcap-def
by (rule mult-left-mono, rule card-mono[OF finite-subset[OF - finite- $\mathcal{F}]$], insert ACC-cf-F , force,
insert ACC-cf-mono[OF joinl-join, of X Y], auto)
also have $\ldots \leq(k-1) \wedge m * n$ using main by simp
also have $\ldots<(k-1) \wedge m *(2 * L \wedge 2)$ unfolding mult-less-cancel1 using n

* by simp
finally have $2 *(2 \wedge(p-1) * \operatorname{card}(\partial \sqcap N e g X Y))<2 *\left((k-1){ }^{\wedge} m * L\right.$ ^2 $)$
using p by (cases p, auto)
hence 2 ${ }^{\wedge}(p-1) * \operatorname{card}(\partial \sqcap N e g X Y)<(k-1) \uparrow m * L \wedge 2$ by simp
hence ?r $\left({ }^{\wedge} \wedge(p-1) * \operatorname{card}(\partial \sqcap N e g X Y)\right)<(k-1) \uparrow m * L \wedge 2$ by linarith
thus card $(\partial \sqcap N e g X Y)<(k-1) \wedge m * L \wedge 2 / \mathscr{Z}(p-1)$ by (simp add: field-simps)
define $V s$ where $V s=v-g s(X \odot Y) \cap\{V . V \subseteq[m] \wedge$ card $V \geq S u c l\}$
define C where C (V :: nat set) $=(S O M E C . C \subseteq V \wedge$ card $C=S u c l)$ for V
define K where $K C=\{W . W \subseteq[m]-C \wedge \operatorname{card} W=k-S u c l\}$ for C
define merge where merge $C V=(C \cup V) \curvearrowright \mathbf{2}$ for $C V$:: nat set
define $G S$ where $G S=\{\operatorname{merge}(C V) W \mid V W . V \in V s \wedge W \in K(C V)\}$
\{
fix V
assume $V: V \in V s$
hence card: card $V \geq S u c l$ and $V m: V \subseteq[m]$ unfolding $V s$-def by auto
from card obtain D where $C: D \subseteq V$ and card V : card $D=S u c l$
by (rule obtain-subset-with-card-n)
hence $\exists C . C \subseteq V \wedge$ card $C=S u c l$ by blast
from someI-ex[OF this, folded C-def $]$ have $*: C V \subseteq V \operatorname{card}(C V)=S u c l$

```
        by blast+
    with Vm have sub: C V\subseteq[m] by auto
    from finite-subset[OF this] have finCV: finite (C V) unfolding numbers-def
by simp
    have card (K (C V)) = (m-Suc l) choose (k-Suc l) unfolding K-def
    proof (subst n-subsets, (rule finite-subset[of - [m]], auto)[1], rule arg-cong[of -
- \lambda x. x choose -])
    show card ([m]-C V)=m-Sucl
        by (subst card-Diff-subset, insert sub * finCV, auto)
    qed
    note * finCV sub this
} note Vs-C = this
have finK: finite (K V) for V unfolding K-def by auto
{
    fix }
    assume G: G\inPOS\capACC (X\odotY)
    have G\inACC (X\odotlY)\cupGS
    proof (rule ccontr)
        assume \neg ?thesis
        with G have G:G\inPOS G\inACC (X\odotY)G\not\inACC (X\odotl Y)
            and contra: G\not\inGS by auto
```



```
\in\mathcal{G}
        by auto
    hence vGk: card (vG)=k(vG)`2=G by auto
    from G0 have vm:v G\subseteq[m] by (rule v-\mathcal{G})
    from G(2-3)[unfolded ACC-def accepts-def] obtain H
        where H:H\inX\odot YH\not\inX\odotl Y
            and HG:H\subseteqG by auto
    from v-mono[OF HG] have vHG:vH\subseteqvG}\mathrm{ by auto
    {
        from H(1)[unfolded odot-def] obtain D E where D:D\inX and E: E\in
Y and HDE: H=D\cupE
            by force
        from DEX Y have Dl: D\in\mathcal{Gl E \in\mathcal{Gl unfolding P}\mathcal{P}\mathcal{Gl-def by auto}}\mathbf{D}\mathrm{ b}
        have Dp:D\in\mathcal{G}\mathrm{ using Dl by (auto simp: Gl-def)}
        have Ep: E\in\mathcal{G}}\mathrm{ using Dl by (auto simp: Gl-def)
        from Dl HDE have HD:H\in\mathcal{G}\mathrm{ unfolding }\mathcal{Gl-def by auto}
        have HGO: H G\mathcal{G}}\mathrm{ using Dp Ep unfolding HDE by auto
        have HDL:H\not\in\mathcal{Gl}
        proof
            assume H}\in\mathcal{Gl
            hence H\inX\odotlY
                unfolding odotl-def HDE odot-def using D E by blast
            thus False using H by auto
qed
    from HDL HD have HGl: H\not\in\mathcal{Gl unfolding \mathcal{Gl-def by auto}}\mathbf{}\mathrm{ ( }
    have vm: v H\subseteq[m] using HG0 by (rule v-G)
    have lower:l < card (v H) using HGl HGO unfolding \mathcal{Gl-def by auto}
```

have $v H \in V s$ unfolding $V s$-def using lower vm H unfolding v-gs-def by auto
$\}$ note $i n-V s=$ this
note $C=V s-C[$ OF this $]$
let ? $C=C(v H)$
from $C v H G$ have $C G$: ? $C \subseteq v G$ by auto
hence $i d: v G=$? $C \cup(v G-$? $C)$ by auto
from arg-cong[OF this, of card $] v G k(1) C$
have card $(v G-? C)=k-S u c l$
by (metis CG card-Diff-subset)
hence $v G-? C \in K$? C unfolding K-def using $v m$ by auto
hence merge ? $C(v G-? C) \in G S$ unfolding GS-def using in-Vs by auto
also have merge ? $C(v G-$? $C)=v G \curvearrowright 2$ unfolding merge-def
by (rule arg-cong[of - -sameprod], insert id, auto)
also have $\ldots=G$ by fact
finally have $G \in G S$.
with contra show False ..
qed
\}
hence $\partial \sqcap \operatorname{Pos} X Y \subseteq(P O S \cap A C C(X \odot l Y)-A C C(X \sqcap Y)) \cup G S$
unfolding deviate-pos-cap-def by auto
also have $P O S \cap A C C(X \odot l Y)-A C C(X \sqcap Y)=\{ \}$
proof -
have POS - ACC $(X \sqcap Y) \subseteq U N I V-A C C(X \odot l Y)$
unfolding sqcap-def using PLU main by auto
thus ?thesis by auto
qed
finally have sub: $\partial \sqcap \operatorname{Pos} X Y \subseteq G S$ by auto
have finVs: finite Vs unfolding $V s$-def numbers-def by simp
let ?Sig $=$ Sigma Vs $(\lambda V . K(C V))$
have GS-def: $G S=(\lambda(V, W)$. merge $(C V) W)$ '?Sig unfolding GS-def by auto
have finSig: finite ?Sig using finVs finK by simp
have finGS: finite $G S$ unfolding $G S$-def
by (rule finite-imageI $[$ OF finSig] $)$
have card $(\partial \sqcap P o s X Y) \leq$ card $G S$ by (rule card-mono[OF finGS sub])
also have $\ldots \leq$ card ? Sig unfolding GS-def
by (rule card-image-le[OF finSig])
also have $\ldots=\left(\sum a \in \operatorname{Vs}\right.$. card $\left.(K(C a))\right)$
by (rule card-SigmaI[OF finVs], auto simp: finK)
also have $\ldots=\left(\sum a \in V s .(m-S u c l)\right.$ choose $\left.(k-S u c l)\right)$ using $V s-C$
by (intro sum.cong, auto)
also have $\ldots=((m-S u c l)$ choose $(k-S u c l)) *$ card Vs
by simp
also have $\ldots \leq((m-$ Suc $l)$ choose $(k-$ Suc $l)) * L^{\wedge} 2$
proof (rule mult-left-mono)
have card Vs $\leq \operatorname{card}(v-g s(X \odot Y))$
by (rule card-mono[OF finvXY], auto simp: Vs-def)
also have $\ldots \leq L^{\wedge}$ の by fact

```
    finally show card Vs \leqL^2.
    qed simp
    finally show card (\partial\sqcapPos X Y) \leq((m-l-1) choose (k-l-1))*L^2
    by simp
qed
end
```


4.7 Formalism

Fix a variable set of cardinality m over 2 .
locale forth-assumptions $=$ third-assumptions +
fixes $\mathcal{V}::{ }^{\prime} a$ set and $\pi::{ }^{\prime} a \Rightarrow$ vertex set
assumes $c V$: card $\mathcal{V}=(m$ choose 2$)$
and bij-betw- π : bij-betw $\pi \mathcal{V}\left([m]^{\wedge} \mathbf{2}\right)$
begin
definition n where $n=(m$ choose 2)
the formulas over the fixed variable set

```
definition \(\mathcal{A}\) :: 'a mformula set where
    \(\mathcal{A}=\{\varphi\). vars \(\varphi \subseteq \mathcal{V}\}\)
lemma \(\mathcal{A}\)-simps[simp]:
    \(F A L S E \in \mathcal{A}\)
    \((\) Var \(x \in \mathcal{A})=(x \in \mathcal{V})\)
    \((\operatorname{Conj} \varphi \psi \in \mathcal{A})=(\varphi \in \mathcal{A} \wedge \psi \in \mathcal{A})\)
    \((\operatorname{Disj} \varphi \psi \in \mathcal{A})=(\varphi \in \mathcal{A} \wedge \psi \in \mathcal{A})\)
    by (auto simp: \(\mathcal{A}\)-def)
lemma inj-on- \(\pi\) : inj-on \(\pi \mathcal{V}\)
    using bij-betw- \(\pi\) by (metis bij-betw-imp-inj-on)
lemma \(\pi m 2[\) simp, intro \(]: x \in \mathcal{V} \Longrightarrow \pi x \in[m]\) \(\mathbf{2}\)
    using bij-betw- \(\pi\) by (rule bij-betw-apply)
lemma card- \(v-\pi[\) simp, intro \(]\) : assumes \(x \in \mathcal{V}\)
    shows card \((v\{\pi x\})=2\)
proof -
    from \(\pi m 2[O F\) assms \(]\) have mem: \(\pi x \in[m] \curvearrowright 2\) by auto
    from this[unfolded binprod-def] obtain \(a b\) where \(\pi: \pi x=\{a, b\}\) and diff: \(a \neq\)
b
        by auto
    hence \(v\{\pi x\}=\{a, b\}\) unfolding \(v\)-def by auto
    thus ?thesis using diff by simp
qed
lemma \(\pi\)-singleton[simp,intro]: assumes \(x \in \mathcal{V}\)
    shows \(\{\pi x\} \in \mathcal{G}\)
        \(\{\{\pi x\}\} \in \mathcal{P} L \mathcal{G} l\)
```

```
using assms L3 l2
by (auto simp: \mathcal{G-def P}L\mathcal{Gl-def v-gs-def \mathcal{Gl-def)}}\mathbf{~}\mathrm{ )}
lemma empty-\mathcal{P}L\mathcal{Gl[simp,intro]: {}\in\mathcal{P}L\mathcal{G}l}\{\mp@code{l}
    by (auto simp: \mathcal{G-def }\mathcal{PLGGl-def v-gs-def \mathcal{Gl-def)}}\mathbf{(})=
fun SET :: 'a mformula }=>\mathrm{ graph set where
    SET FALSE = {}
|SET (Var x ) = {{\pix}}
| SET (Disj \varphi \psi) = SET \varphi \cupSET \psi
|ET (Conj \varphi \psi) = SET \varphi \odot SET \psi
lemma ACC-cf-SET[simp]:
    ACC-cf (SET (Var x)) ={f\in\mathcal{F}.\pix\inCf}
    ACC-cf (SET FALSE) = {}
    ACC-cf (SET (Disj \varphi \psi)) = ACC-cf (SET \varphi) \cup ACC-cf (SET \psi)
    ACC-cf (SET (Conj \varphi \psi)) = ACC-cf (SET \varphi) \cap ACC-cf (SET \psi)
    using ACC-cf-odot
    by (auto simp: ACC-cf-union ACC-cf-empty, auto simp: ACC-cf-def accepts-def)
lemma ACC-SET[simp]:
    ACC (SET (Var x)) = {G\in\mathcal{G. }\pix\inG}
    ACC (SET FALSE) = {}
    ACC (SET (Disj \varphi \psi)) = ACC (SET \varphi) \cup ACC (SET \psi)
    ACC (SET (Conj \varphi \psi)) = ACC (SET \varphi) \cap ACC (SET \psi)
    by (auto simp: ACC-union ACC-odot, auto simp: ACC-def accepts-def)
lemma SET-G: }\varphi\intf-mformula \Longrightarrow\varphi\in\mathcal{A \LongrightarrowSET \varphi\subseteq\mathcal{G}
proof (induct \varphi rule: tf-mformula.induct)
    case (tf-Conj \varphi\psi)
    hence SET \varphi\subseteq\mathcal{G SET }\psi\subseteq\mathcal{G}\mathrm{ by auto}
    from odot-G[OF this] show ?case by simp
qed auto
fun APR :: 'a mformula => graph set where
    APR FALSE = {}
| APR (Var x) ={{\pix}}
| APR (Disj \varphi\psi)=APR \varphi \sqcupAPR \psi
| APR (Conj \varphi\psi) = APR \varphi ПAPR \psi
lemma APR: }\varphi\int\mathrm{ -mformula }\Longrightarrow\varphi\in\mathcal{A \LongrightarrowAPR }\varphi\in\mathcal{P}L\mathcal{G}
    by (induct \varphi rule: tf-mformula.induct, auto intro!: sqcup sqcap)
definition ACC-cf-mf :: 'a mformula }=>\mathrm{ colorf set where
    ACC-cf-mf \varphi = ACC-cf (SET \varphi)
definition ACC-mf :: 'a mformula }=>\mathrm{ graph set where
    ACC-mf \varphi = ACC (SET \varphi)
```

definition deviate-pos :: 'a mformula \Rightarrow graph set (∂ Pos) where
$\partial \operatorname{Pos} \varphi=P O S \cap A C C-m f \varphi-A C C(A P R \varphi)$
definition deviate-neg :: 'a mformula \Rightarrow colorf set ($\partial N e g$) where $\partial N e g \varphi=A C C-c f(A P R \varphi)-A C C-c f-m f \varphi$

Lemma 11.1

lemma deviate-subset-Disj:
∂ Pos $(\operatorname{Disj} \varphi \psi) \subseteq \partial \sqcup \operatorname{Pos}(A P R \varphi)(A P R \psi) \cup \partial \operatorname{Pos} \varphi \cup \partial$ Pos ψ $\partial N e g(\operatorname{Disj} \varphi \psi) \subseteq \partial \sqcup N e g(A P R \varphi)(A P R \psi) \cup \partial N e g \varphi \cup \partial N e g \psi$ unfolding

> deviate-pos-def deviate-pos-cup-def
deviate-neg-def deviate-neg-cup-def
ACC-cf-mf-def ACC-cf-SET ACC-cf-union
ACC-mf-def ACC-SET ACC-union
by auto

Lemma 11.2

lemma deviate-subset-Conj:

```
\partialPos (Conj \varphi\psi)\subseteq\partial\sqcapPos (APR \varphi) (APR \psi)\cup\partialPos \varphi \cup \partialPos \psi
\partialNeg (Conj \varphi\psi)\subseteq\partial\sqcapNeg (APR \varphi) (APR \psi)\cup\partialNeg \varphi\cup\partialNeg \psi
    unfolding
        deviate-pos-def deviate-pos-cap-def
        ACC-mf-def ACC-SET ACC-odot
        deviate-neg-def deviate-neg-cap-def
        ACC-cf-mf-def ACC-cf-SET ACC-cf-odot
    by auto
```

lemmas deviate-subset $=$ deviate-subset-Disj deviate-subset-Conj
lemma deviate-finite:
finite (∂ Pos φ)
finite $(\partial N e g \varphi)$
finite $(\partial \sqcup$ Pos $A B$)
finite $(\partial \sqcup N e g A B)$
finite $(\partial \sqcap \operatorname{Pos} A B)$
finite $(\partial \sqcap N e g A B)$
unfolding
deviate-pos-def deviate-pos-cup-def deviate-pos-cap-def
deviate-neg-def deviate-neg-cup-def deviate-neg-cap-def
by (intro finite-subset $[O F-$ finite-POS-NEG], auto) +
Lemma 12
lemma no-deviation [simp]:
∂ Pos FALSE $=\{ \}$
∂ Neg $F A L S E=\{ \}$
∂ Pos $(\operatorname{Var} x)=\{ \}$
$\partial \operatorname{Neg}(\operatorname{Var} x)=\{ \}$
unfolding deviate-pos-def deviate-neg-def

```
by (auto simp add: ACC-cf-mf-def ACC-mf-def)
```

Lemma 12.1-2
fun approx-pos where
approx-pos $($ Conj phi psi $)=\partial \sqcap \operatorname{Pos}(A P R$ phi $)(A P R ~ p s i)$
| approx-pos $-=\{ \}$
fun approx-neg where
approx-neg $($ Conj phi psi $)=\partial \sqcap N e g(A P R ~ p h i)(A P R ~ p s i)$
| approx-neg (Disj phi psi) $=\partial \sqcup N e g(A P R ~ p h i)(A P R ~ p s i)$
| approx-neg $-=\{ \}$
lemma finite-approx-pos: finite (approx-pos φ)
by (cases φ, auto intro: deviate-finite)
lemma finite-approx-neg: finite (approx-neg φ)
by (cases φ, auto intro: deviate-finite)
lemma card-deviate-Pos: assumes phi: $\varphi \in$ tf-mformula $\varphi \in \mathcal{A}$
shows card $(\partial \operatorname{Pos} \varphi) \leq c s \varphi * L^{2} *((m-l-1)$ choose $(k-l-1))$
proof -
let ?Pos $=\lambda \varphi$. \bigcup (approx-pos'SUB φ)
have ∂ Pos $\varphi \subseteq$?Pos φ
using $p h i$
proof (induct φ rule: tf-mformula.induct)
case ($t f$-Disj $\varphi \psi$)
from t - -Disj have $*: \varphi \in t f$-mformula $\psi \in t$-mformula $\varphi \in \mathcal{A} \psi \in \mathcal{A}$ by auto
note $I H=t f$-Disj(2)[OF *(3)] $t f$-Disj(4)[OF *(4)]
have ∂ Pos $($ Disj $\varphi \psi) \subseteq \partial \sqcup \operatorname{Pos}(A P R \varphi)(A P R \psi) \cup \partial$ Pos $\varphi \cup \partial$ Pos ψ by (rule deviate-subset)
also have $\partial \sqcup \operatorname{Pos}(A P R \varphi)(A P R \psi)=\{ \}$
by (rule deviate-pos-cup; intro APR*)
also have $\ldots \cup \partial$ Pos $\varphi \cup \partial$ Pos $\psi \subseteq$? Pos $\varphi \cup$?Pos ψ using $I H$ by auto
also have $\ldots \subseteq$? Pos $(\operatorname{Disj} \varphi \psi) \cup ?$ Pos $(\operatorname{Disj} \varphi \psi)$
by (intro Un-mono, auto)
finally show? case by simp
next
case $(t f-\operatorname{Conj} \varphi \psi)$
from t-Conj have $*: \varphi \in \mathcal{A} \psi \in \mathcal{A}$
by (auto intro: tf-mformula.intros)
note $I H=t f-\operatorname{Conj}(2)[O F *(1)] t f-\operatorname{Conj}(4)[O F *(2)]$
have ∂ Pos $(\operatorname{Conj} \varphi \psi) \subseteq \partial \sqcap \operatorname{Pos}(A P R \varphi)(A P R \psi) \cup \partial \operatorname{Pos} \varphi \cup \partial$ Pos ψ by (rule deviate-subset)
also have $\ldots \subseteq \partial \sqcap \operatorname{Pos}(A P R \varphi)(A P R \psi) \cup$?Pos $\varphi \cup$?Pos ψ using $I H$ by auto
also have $\ldots \subseteq$? Pos $(\operatorname{Conj} \varphi \psi) \cup ?$ Pos $(\operatorname{Conj} \varphi \psi) \cup ? P o s(\operatorname{Conj} \varphi \psi)$
by (intro Un-mono, insert *, auto)
finally show ? case by simp
qed auto

```
    from card-mono[OF finite-UN-I[OF finite-SUB finite-approx-pos] this]
    have card (\partialPos \varphi)\leqcard (U (approx-pos'SUB \varphi)) by simp
    also have ... \leq(\sumi\inSUB \varphi. card (approx-pos i))
    by (rule card-UN-le[OF finite-SUB])
    also have \ldots. \leq (\sumi\inSUB \varphi. L' L* ( (m-l-1) choose (k-l-1)))
    proof (rule sum-mono, goal-cases)
    case (1 psi)
    from phi 1 have psi:psi\intf-mformula psi }\in\mathcal{A
        by (induct \varphi rule: tf-mformula.induct, auto intro: tf-mformula.intros)
    show ?case
    proof (cases psi)
        case (Conj phi1 phiQ)
        from psi this have *: phi1 \intf-mformula phi1 \in\mathcal{A phi2 }\intf-mformula phi2
\in\mathcal{A}
            by (cases rule: tf-mformula.cases, auto)+
            from deviate-pos-cap[OF APR[OF *(1-2)] APR[OF *(3-4)]]
            show ?thesis unfolding Conj by (simp add: ac-simps)
    qed auto
    qed
    also have ... css \varphi* L' * ((m-l-1) choose (k-l-1)) unfolding cs-def
by simp
    finally show card (\partialPos \varphi) \leqcs \varphi* L' (m (m-l-1 choose (k-l-1)) by
simp
qed
lemma card-deviate-Neg: assumes phi: }\varphi\intf\mathrm{ -mformula }\varphi\in\mathcal{A
    shows card (\partialNeg \varphi) \leqcs \varphi* L'2* (k-1)^m/ 2^(p-1)
proof -
    let ?r = real
    let ?Neg=\lambda \varphi. U (approx-neg'SUB \varphi)
    have \partialNeg \varphi\subseteq?Neg \varphi
        using phi
    proof (induct \varphi rule: tf-mformula.induct)
    case (tf-Disj \varphi \psi)
    from tf-Disj have *: }\varphi\intf\mathrm{ -mformula }\psi\intf\mathrm{ -mformula }\varphi\in\mathcal{A}\psi\in\mathcal{A}\mathrm{ by auto
    note IH=tf-Disj(2)[OF*(3)]tf-Disj(4)[OF*(4)]
    have \partialNeg (Disj \varphi\psi)\subseteq\partial\sqcupNeg (APR \varphi) (APR \psi)\cup\partialNeg \varphi\cup\partialNeg \psi
            by (rule deviate-subset)
    also have \ldots\subseteq\partial\sqcupNeg (APR \varphi) (APR \psi)\cup?Neg \varphi \cup?Neg \psi using IH by
auto
    also have \ldots\subseteq?Neg (Disj \varphi\psi)\cup?Neg (Disj \varphi\psi)\cup?Neg (Disj \varphi\psi)
        by (intro Un-mono, auto)
    finally show ?case by simp
    next
    case (tf-Conj \varphi \psi)
    from tf-Conj have *: \varphi\in\mathcal{A}\psi\in\mathcal{A}
            by (auto intro: tf-mformula.intros)
    note IH =tf-Conj(2)[OF *(1)] tf-Conj(4)[OF *(2)]
    have \partialNeg (Conj \varphi\psi)\subseteq\partial\sqcapNeg (APR \varphi) (APR \psi)\cup\partialNeg \varphi \cup\partialNeg \psi
```

```
        by (rule deviate-subset)
    also have .. \subseteq}\subseteq\partial\sqcapNeg(APR\varphi)(APR\psi)\cup?Neg \varphi\cup?Neg \psi using IH by
auto
    also have ...\subseteq?Neg (Conj \varphi\psi)\cup?Neg (Conj \varphi\psi) \cup?Neg (Conj \varphi \psi)
        by (intro Un-mono, auto)
    finally show ?case by simp
    qed auto
    hence }\partialNeg\varphi\subseteq\bigcup\mathrm{ (approx-neg'SUB }\varphi\mathrm{ ) by auto
    from card-mono[OF finite-UN-I[OF finite-SUB finite-approx-neg] this]
    have card (\partialNeg \varphi) \leq card (U (approx-neg'SUB \varphi)).
    also have ... \leq(\sumi\inSUB \varphi. card (approx-neg i))
    by (rule card-UN-le[OF finite-SUB])
finally have ?r (card (\partialNeg \varphi)) \leq(\sumi\inSUB \varphi. card (approx-neg i)) by linarith
    also have \ldots=( \sumi\inSUB \varphi. ?r (card (approx-neg i))) by simp
    also have ... \leq (\sumi\inSUB \varphi. L^2 * (k-1)^m / 2`(p-1))
    proof (rule sum-mono, goal-cases)
    case (1 psi)
    from phi 1 have psi:psi\intf-mformula psi }\in\mathcal{A
        by (induct \varphi rule: tf-mformula.induct, auto intro: tf-mformula.intros)
    show ?case
    proof (cases psi)
        case (Conj phi1 phi2)
        from psi this have *: phi1 \intf-mformula phi1 \in\mathcal{A phi2 }\intf-mformula phi2
\in\mathcal{A}
            by (cases rule: tf-mformula.cases, auto)+
        from deviate-neg-cap[OF APR[OF *(1-2)] APR[OF *(3-4)]]
        show ?thesis unfolding Conj by (simp add: ac-simps)
    next
        case (Disj phi1 phi2)
        from psi this have *: phi1 \intf-mformula phi1 \in\mathcal{A phi2 }\intf-mformula phi2
\in\mathcal{A}
            by (cases rule: tf-mformula.cases, auto)+
    from deviate-neg-cup[OF APR[OF *(1-2)] APR[OF *(3-4)]]
    have card (approx-neg psi)\leq((L*1)* (k-1)^m)/ 2^(p-1)
            unfolding Disj by (simp add: ac-simps)
            also have .. \leq ((L*L)* (k-1)^m) / 2^ (p-1)
            by (intro divide-right-mono, unfold of-nat-le-iff, intro mult-mono, insert L3,
auto)
            finally show ?thesis unfolding power2-eq-square by simp
            qed auto
    qed
    also have ... = cs \varphi*L^2* (k-1)^m / 2^(p-1) unfolding cs-def by simp
    finally show card (\partialNeg \varphi) \leqcs \varphi* L' ( * (k-1)`m / 2`(p-1).
qed
```

Lemma 12.3
lemma $A C C$-cf-non-empty-approx: assumes phi: $\varphi \in t$-mformula $\varphi \in \mathcal{A}$
and $n e: A P R \varphi \neq\{ \}$
shows $\operatorname{card}(A C C-c f(A P R \varphi))>(k-1) \uparrow m / 3$

```
proof -
    from ne obtain E :: graph where Ephi: E \inAPR \varphi
    by (auto simp: ACC-def accepts-def)
    from APR[OF phi, unfolded \mathcal{PLGl-def] Ephi}
    have EDl: E G\mathcal{Gl by auto}
    hence vEl: card (vE)\leql and ED: E \in\mathcal{G}
        unfolding \mathcal{Gl-def \mathcal{Gl-def by auto}}\mathbf{}\mathrm{ b}
    have E:E\in\mathcal{G}}\mathrm{ using ED[unfolded Gl-def] by auto
    have sub:vE\subseteq[m] by (rule v-G[OF E])
    have l \leqcard [m] using lm by auto
    from exists-subset-between[OF vEl this sub finite-numbers]
    obtain V where V:v E\subseteqVV\subseteq[m] card V=l by auto
    from finite-subset[OF V(2)] have finV: finite V by auto
    have finPart: finite A if }A\subseteq{P\mathrm{ . partition-on [n] P} for n A
    by (rule finite-subset[OF that finitely-many-partition-on], simp)
    have finmv: finite ([m] - V) using finite-numbers[of m] by auto
    have finK: finite [k-1] unfolding numbers-def by auto
    define F where F}={f\in[m]\mp@subsup{->}{E}{}[k-1].\operatorname{inj-on f V }
    have FF:F\subseteq\mathcal{F}\mathrm{ unfolding }\mathcal{F}\mathrm{ -def F-def by auto}
{
    fix f
    assume f:f}f\in
    {
        from this[unfolded F-def]
        have f:f\in[m] ->}\mp@subsup{\mp@code{E}}{[}{[k-1] and inj: inj-on f V by auto
        from V l2 have 2: card V\geq2 by auto
        then obtain }x\mathrm{ where }x:x\inV\mathrm{ by (cases V={}, auto)
        have card V = card (V-{x})+1 using x finV
            by (metis One-nat-def add.right-neutral add-Suc-right card-Suc-Diff1)
        with 2 have card (V-{x})>0 by auto
        hence }V-{x}\not={}\mathrm{ by fastforce
        then obtain }y\mathrm{ where }y:y\inV\mathrm{ and diff: }x\not=y\mathrm{ by auto
        from inj diff }xy\mathrm{ have neq: fx}\not=fy\mathrm{ by (auto simp: inj-on-def)
        from x y diff V have {x,y}\in[m]`2 unfolding sameprod-altdef by auto
        with neq have {x,y}\inCf unfolding C-def by auto
        hence Cf}\not={}\mathrm{ by auto
}
with NEG-G FF f have CfG:Cf\in\mathcal{G Cf}\not={} by (auto simp: NEG-def)
have E\subseteqCf
proof
    fix e
    assume eE: e\inE
    with E[unfolded \mathcal{G-def] have em: }e\in[m]`2}\mathrm{ by auto
    then obtain x y where e:e={x,y} x\not=y{x,y}\subseteq[m]
        and card: card e=2
        unfolding binprod-def by auto
    from v-mem-sub[OF card eE]
    have {x,y}\subseteqvE using e by auto
    hence {x,y}\subseteqV using V by auto
```

```
            hence fx\not=fy using e(2) f[unfolded F-def] by (auto simp: inj-on-def)
            thus e\inCf unfolding C-def using em e by auto
    qed
    with Ephi CfG have APR \varphi\VdashCf
        unfolding accepts-def by auto
    hence f\inACC-cf (APR \varphi) using CfG f FF unfolding ACC-cf-def by auto
}
with FF have sub: F\subseteqACC-cf (APR \varphi) by auto
    from card-mono[OF finite-subset[OF - finite-ACC] this]
    have approx: card F \leq card (ACC-cf (APR \varphi)) by auto
    from card-inj-on-subset-funcset[OF finite-numbers finK V (2), unfolded card-numbers
V(3),
        folded F-def]
    have real (card F) =(real (k-1)) ^(m-l)* prod (\lambdai.real (k-1-i))
{0..<l}
        by simp
    also have ...> (real (k-1))^ m / 3
        by (rule approximation1)
    finally have cardF: card F> (k-1)^m/3 by simp
    with approx show?thesis by simp
qed
Theorem 13
lemma theorem-13: assumes phi: \(\varphi \in t\)-mformula \(\varphi \in \mathcal{A}\)
and sub: POS \(\subseteq A C C-m f \varphi\) ACC-cf-mf \(\varphi=\{ \}\)
shows cs \(\varphi>k\) powr (4/7*sqrt \(k\) )
proof -
let \(?\) r \(=\) real \(::\) nat \(\Rightarrow\) real
have cs \(\varphi>((m-l) / k) \wedge / /\left(6 * L^{\wedge} 2\right)\)
proof (cases POS \(\cap A C C(A P R \varphi)=\{ \})\)
case empty: True
have \(\partial\) Pos \(\varphi=P O S \cap A C C-m f \varphi-A C C(A P R \varphi)\) unfolding deviate-pos-def
by auto
also have \(\ldots=P O S-A C C(A P R \varphi)\) using sub by blast
also have \(\ldots=P O S\) using empty by auto
finally have \(i d\) : \(\partial \operatorname{Pos} \varphi=P O S\) by \(\operatorname{simp}\)
have \(m\) choose \(k=\) card POS by (simp add: card-POS)
also have \(\ldots=\operatorname{card}(\partial \operatorname{Pos} \varphi)\) unfolding id by simp
also have \(\ldots \leq c s \varphi * L^{2} *(m-l-1 \operatorname{choose}(k-l-1))\) using
card-deviate-Pos[OF phi] by auto
finally have \(m\) choose \(k \leq c s \varphi * L^{2} *(m-l-1\) choose \((k-l-1))\)
by simp
from approximation2[OF this]
show \(((m-l) / k) \uparrow l /\left(6 * L^{\wedge} 2\right)<c s \varphi\) by \(\operatorname{simp}\)
next
case False
have \(P O S \cap A C C(A P R \varphi) \neq\{ \}\) by fact
hence nempty: \(A P R \varphi \neq\{ \}\) by auto
have card \((\partial N e g \varphi)=\operatorname{card}(A C C-c f(A P R \varphi)-A C C-c f-m f \varphi)\) unfolding
```

deviate-neg-def by auto
also have $\ldots=\operatorname{card}(A C C-c f(A P R \varphi))$ using sub by auto also have $\ldots>(k-1) \uparrow m / 3$ using ACC-cf-non-empty-approx[OF phi nempty] .
finally have $(k-1) \uparrow m / 3<\operatorname{card}(\partial N e g \varphi)$.
also have $\ldots \leq c s \varphi * L^{2} *(k-1) \wedge m / 2^{\wedge}(p-1)$
using card-deviate-Neg[OF phi] sub by auto
finally have $(k-1)^{\wedge} m / 3<\left(\operatorname{cs} \varphi *\left(L^{2} *(k-1)^{\wedge} m\right)\right) / 2^{\wedge}(p-1)$ by simp
from approximation3[OF this] show ?thesis .
qed
hence part1: cs $\varphi>((m-l) / k){ }^{\prime} l /\left(6 * L \wedge^{\wedge}\right)$.
from approximation $4[$ OF this $]$ show ?thesis using $k 2$ by simp qed

Definition 14
definition eval-g :: 'a VAS \Rightarrow graph \Rightarrow bool where
eval-g $\vartheta G=(\forall v \in \mathcal{V} .(\pi v \in G \longrightarrow \vartheta v))$
definition eval-gs :: 'a VAS \Rightarrow graph set \Rightarrow bool where
eval-gs $\vartheta X=(\exists G \in X$. eval-g $\vartheta G)$
lemmas eval-simps $=$ eval- g-def eval-gs-def eval.simps
lemma eval-gs-union:
eval-gs $\vartheta(X \cup Y)=($ eval-gs $\vartheta X \vee$ eval-gs $\vartheta Y)$
by (auto simp: eval-gs-def)
lemma eval-gs-odot: assumes $X \subseteq \mathcal{G} Y \subseteq \mathcal{G}$
shows eval-gs $\vartheta(X \odot Y)=($ eval-gs $\vartheta X \wedge$ eval-gs $\vartheta Y)$
proof
assume eval-gs $\vartheta(X \odot Y)$
from this[unfolded eval-gs-def] obtain $D E$ where $D E: D E \in X \odot Y$ and eval: eval-g ϑ DE by auto
from $D E[$ unfolded odot-def] obtain $D E$ where $i d: D E=D \cup E$ and $D E: D$
$\in X E \in Y$
by auto
from eval have eval-g ϑD eval-g ϑE unfolding id eval-g-def
by auto
with $D E$ show eval-gs $\vartheta X \wedge$ eval-gs ϑY unfolding eval-gs-def by auto
next
assume eval-gs $\vartheta X \wedge$ eval-gs ϑY
then obtain $D E$ where $D E: D \in X E \in Y$ and eval: eval-g ϑD eval-g ϑE unfolding eval-gs-def by auto
from $D E$ assms have $D: D \in \mathcal{G} E \in \mathcal{G}$ by auto
let ? $U=D \cup E$
from eval have eval: eval-g ϑ ? U
unfolding eval-g-def by auto

```
    from DE have 1:?U \inX\odot Y unfolding odot-def by auto
    with 1 eval show eval-gs \vartheta ( }X\odotY)\mathrm{ unfolding eval-gs-def by auto
qed
Lemma }1
lemma eval-set: assumes phi: \varphi\intf-mformula }\varphi\in\mathcal{A
    shows eval \vartheta \varphi= eval-gs \vartheta (SET \varphi)
    using phi
proof (induct \varphi rule:tf-mformula.induct)
    case tf-False
    then show ?case unfolding eval-simps by simp
next
    case (tf-Var x)
    then show ?case using inj-on-\pi unfolding eval-simps
    by (auto simp add: inj-on-def)
next
    case (tf-Disj \varphi1 \varphi2)
    thus ?case by (auto simp: eval-gs-union)
next
    case (tf-Conj \varphi1 \varphi2)
    thus ?case by (simp, intro eval-gs-odot[symmetric]; intro SET-G, auto)
qed
definition }\mp@subsup{\vartheta}{g}{}:: graph => 'a VAS wher
    \varthetagg}Gx=(x\in\mathcal{V}\wedge\pix\inG
```

From here on we deviate from Gordeev's paper as we do not use positive bases, but a more direct approach.

```
lemma eval-ACC: assumes phi: }\varphi\int\mathrm{ -mformula }\varphi\in\mathcal{A
    and }G:G\in\mathcal{G
shows eval (\varthetag G) \varphi = (G\inACC-mf \varphi)
    using phi unfolding ACC-mf-def
proof (induct \varphi rule: tf-mformula.induct)
    case (tf-Var x)
    thus ?case by (auto simp: ACC-def G accepts-def }\mp@subsup{\vartheta}{g}{}\mathrm{ -def)
next
    case (tf-Disj phi psi)
    thus ?case by (auto simp: ACC-union)
next
    case (tf-Conj phi psi)
    thus ?case by (auto simp: ACC-odot)
qed simp
lemma CLIQUE-solution-imp-POS-sub-ACC: assumes solution: }\forallG\in\mathcal{G}.G
CLIQUE \longleftrightarrow eval (\varthetag G) 
    and tf:\varphi\intf-mformula
    and phi: }\varphi\in\mathcal{A
    shows POS\subseteqACC-mf \varphi
proof
```

fix G
assume $P O S: G \in P O S$
with $P O S-\mathcal{G}$ have $G: G \in \mathcal{G}$ by auto
with POS solution POS-CLIQUE
have eval $\left(\vartheta_{g} G\right) \varphi$ by auto
thus $G \in A C C-m f \varphi$ unfolding eval-ACC[OF tf phi $G]$.
qed
lemma CLIQUE-solution-imp-ACC-cf-empty: assumes solution: $\forall G \in \mathcal{G} . G \in$
CLIQUE $\longleftrightarrow \operatorname{eval}\left(\vartheta_{g} G\right) \varphi$
and $t f: \varphi \in t f$-mformula
and $p h i: \varphi \in \mathcal{A}$
shows $A C C-c f-m f \varphi=\{ \}$
proof (rule ccontr)
assume \neg ?thesis
from this[unfolded ACC-cf-mf-def ACC-cf-def]
obtain F where $F: F \in \mathcal{F} S E T \varphi \Vdash C F$ by auto
define G where $G=C F$
have $N E G: G \in N E G$ unfolding $N E G$-def G-def using F by auto
hence $G \notin C L I Q U E$ using CLIQUE-NEG by auto
have $G G: G \in \mathcal{G}$ unfolding G-def using F
using G-def $N E G$ NEG-G by blast
have GAcc: SET $\varphi \Vdash G$ using $F[$ folded G-def] by auto
then obtain $D::$ graph where
$D: D \in S E T \varphi$ and sub: $D \subseteq G$
unfolding accepts-def by blast
from SET-G[OF tf phi] D
have $D G: D \in \mathcal{G}$ by auto
have eval: eval $\left(\vartheta_{g} D\right) \varphi$ unfolding eval-set $[O F$ tf phi] eval-gs-def
by (intro bex $\left[[O F-D]\right.$, unfold eval- g-def, insert $D G$, auto simp: ϑ_{g}-def)
hence $D \in C L I Q U E$ using solution[rule-format, OF $D G]$ by auto
hence $G \in$ CLIQUE using GG sub unfolding CLIQUE-def by blast
with $\langle G \notin C L I Q U E\rangle$ show False by auto
qed

4.8 Conclusion

Theorem 22
We first consider monotone formulas without TRUE.
theorem Clique-not-solvable-by-small-tf-mformula: assumes solution: $\forall G \in \mathcal{G}$.
$G \in C L I Q U E \longleftrightarrow \operatorname{eval}\left(\vartheta_{g} G\right) \varphi$
and $t f: \varphi \in t f$-mformula
and phi: $\varphi \in \mathcal{A}$
shows cs $\varphi>k$ powr $(4 / 7 *$ sqrt k)
proof -
from CLIQUE-solution-imp-POS-sub-ACC[OF solution tf phi] have POS: POS
$\subseteq A C C-m f \varphi$.
from CLIQUE-solution-imp-ACC-cf-empty[OF solution tf phi] have $C F$: ACC-cf-mf

```
\(\varphi=\{ \}\).
    from theorem-13[OF tf phi POS CF]
    show ?thesis by auto
qed
```

Next we consider general monotone formulas.
theorem Clique-not-solvable-by-poly-mono: assumes solution: $\forall G \in \mathcal{G} . G \in$ $C L I Q U E \longleftrightarrow \operatorname{eval}\left(\vartheta_{g} G\right) \varphi$
and phi: $\varphi \in \mathcal{A}$
shows cs $\varphi>k$ powr $(4 / 7 *$ sqrt k)
proof -
note vars $=$ phi[unfolded \mathcal{A}-def $]$
have CL: CLIQUE $=$ Clique $[k$ 亿 4 $] k \mathcal{G}=$ Graphs $[k$ ^4]
unfolding CLIQUE-def \mathcal{K}-altdef m-def Clique-def by auto
with empty-CLIQUE have $\left\} \notin\right.$ Clique $\left[k^{\wedge} 4\right] k$ by simp
with solution[rule-format, of \{\}]
have $\neg \operatorname{eval}\left(\vartheta_{g}\{ \}\right) \varphi$ by (auto simp: Graphs-def)
from to-tf-mformula[OF this]
obtain ψ where $*: \psi \in t$-mformula
$(\forall \vartheta$. eval $\vartheta \varphi=\operatorname{eval} \vartheta \psi)$ vars $\psi \subseteq \operatorname{vars} \varphi$ cs $\psi \leq c s \varphi$ by auto
with phi solution have psi: $\psi \in \mathcal{A}$
and solution: $\forall G \in \mathcal{G}$. $(G \in C L I Q U E)=\operatorname{eval}\left(\vartheta_{g} G\right) \psi$ unfolding \mathcal{A}-def by auto
from Clique-not-solvable-by-small-tf-mformula[OF solution *(1) psi]
show ?thesis using *(4) by auto
qed
We next expand all abbreviations and definitions of the locale, but stay within the locale
theorem Clique-not-solvable-by-small-monotone-circuit-in-locale: assumes phi-solves-clique:

```
    \forallG\inGraphs [k^4]. G Clique [k^4] k\longleftrightarrow eval (\lambdax.\pix\inG)\varphi
    and vars: vars }\varphi\subseteq\mathcal{V
shows cs \varphi>k powr (4/7* sqrt k)
proof -
    {
    fix }
    assume G:G\in\mathcal{G}
    have eval ( }\lambdax.\pix\inG)\varphi=\operatorname{eval}(\mp@subsup{\vartheta}{g}{}G)\varphi\mathrm{ using vars
        by (intro eval-vars, auto simp: \varthetag-def)
}
have CL: CLIQUE = Clique [k^4] k G = Graphs [k^4]
    unfolding CLIQUE-def \mathcal{K}
{
    fix }
    assume G: G\in\mathcal{G}
    have eval ( }\lambdax.\pix\inG)\varphi=\operatorname{eval}(\mp@subsup{\vartheta}{g}{}G)\varphi\mathrm{ using vars
        by (intro eval-vars, auto simp: \vartheta
}
```

with phi-solves-clique $C L$ have solves: $\forall G \in \mathcal{G} . G \in C L I Q U E \longleftrightarrow$ eval $\left(\vartheta_{g}\right.$ G) φ
by auto
from vars have inA: $\varphi \in \mathcal{A}$ by (auto simp: \mathcal{A}-def)
from Clique-not-solvable-by-poly-mono[OF solves inA]
show ?thesis by auto
qed
end
Let us now move the theorem outside the locale
definition Large-Number where Large-Number $=\operatorname{Max}\left\{64, L 0^{\prime \prime}{ }^{\prime}\right.$ 2, LO^2, L0 $0^{\prime \wedge}$ 2, MO, MO'\}

```
theorem Clique-not-solvable-by-small-monotone-circuit-squared:
    fixes \varphi :: 'a mformula
    assumes k: \existsl.k=l`2
    and LARGE:k\geqLarge-Number
    and \pi: bij-betw \pi V [k^4]`2
```



```
\varphi
    and vars: vars }\varphi\subseteq
    shows cs \varphi>k powr (4/7* sqrt k)
proof -
    from k obtain l where kk: k=l`2 by auto
    note LARGE = LARGE[unfolded Large-Number-def]
    have k8: k\geq 8^2 using LARGE by auto
    from this[unfolded kk powerD-nat-le-eq-le]
    have l8: l\geq8.
    define p where p = nat (ceiling ( l* log 2 (k^4)))
    have tedious: l* log 2 ( }k^4)\geq0\mathrm{ using l8 k8 by auto
    have int p=ceiling ( l * log 2 (k^ 4)) unfolding p-def
        by (rule nat-0-le, insert tedious, auto)
    from arg-cong[OF this, of real-of-int]
    have rp: real p= ceiling ( l * log 2 (k^ 4)) by simp
    have one: real l * log 2 (k^4) \leqp unfolding rp by simp
    have two: p\leqreal l* log 2 (k^4)+1 unfolding rp by simp
    have real l< real l+1 by simp
    also have ... \leq real l + real l using l8 by simp
    also have \ldots. = real l*2 by simp
    also have ... = real l * log 2 (2`2)
    by (subst log-pow-cancel, auto)
    also have ... \leq real l* log 2 (k^ 4)
    proof (intro mult-left-mono, subst log-le-cancel-iff)
    have (4 :: real)\leq2^4 by simp
    also have ... \leq real k^4
        by (rule power-mono, insert k8, auto)
    finally show }\mp@subsup{\mathscr{2}}{}{2}\leq\operatorname{real}(\mp@subsup{k}{}{\wedge}4)\mathrm{ by simp
qed (insert k8,auto)
also have ... \leqp by fact
```

```
finally have \(l p: l<p\) by auto
interpret second-assumptions \(l p k\)
proof (unfold-locales)
    show \(2<l\) using \(l 8\) by auto
    show \(8 \leq l\) by fact
    show \(k=l\)-2 by fact
    show \(l<p\) by fact
    from \(L A R G E\) have \(L 0^{\prime \prime \sim 2} \leq k\) by auto
    from this[unfolded kk power2-nat-le-eq-le]
    have \(L 0^{\prime \prime} l\) : \(L O^{\prime \prime} \leq l\).
    have \(p \leq \operatorname{real} l * \log 2\left(k^{\wedge} 4\right)+1\) by fact
    also have \(\ldots<k\) unfolding \(k k\)
        by (intro \(L 0^{\prime \prime} L 0^{\prime \prime} l\) )
    finally show \(p<k\) by simp
qed
interpret third-assumptions lpk
proof
    show real \(l * \log 2(\) real \(m) \leq p\) using one unfolding \(m\)-def.
    show \(p \leq\) real \(l * \log 2(\) real \(m)+1\) using two unfolding \(m\)-def .
    from \(L A R G E\) have \(L 0^{\wedge} 2 \leq k\) by auto
    from this[unfolded kk power2-nat-le-eq-le]
    show \(L 0 \leq l\).
    from \(L A R G E\) have \(L 0^{\prime \wedge} 2 \leq k\) by auto
    from this[unfolded kk power2-nat-le-eq-le]
    show \(L 0^{\prime} \leq l\).
    show \(M 0^{\prime} \leq m\) using \(k m\) LARGE by simp
    show \(M O \leq m\) using \(k m L A R G E\) by simp
qed
interpret forth-assumptions \(l p k V \pi\)
    by (standard, insert \(\pi\) m-def, auto simp: bij-betw-same-card \([O F \pi]\) )
from Clique-not-solvable-by-small-monotone-circuit-in-locale[OF solution vars]
show ?thesis.
qed
```

A variant where we get rid of the $k=l^{2}$-assumption by just taking squares everywhere.
theorem Clique-not-solvable-by-small-monotone-circuit:
fixes φ :: 'a mformula
assumes LARGE: $k \geq$ Large-Number
and π : bij-betw $\pi V[k \wedge 8] \curvearrowright 2$
and solution: $\forall G \in$ Graphs $[k \wedge 8] .(G \in$ Clique $[k \wedge 8](k \wedge 2))=\operatorname{eval}(\lambda x . \pi x$
$\in G) \varphi$
and vars: vars $\varphi \subseteq V$
shows cs $\varphi>k$ powr $(8 / 7 * k)$
proof -
from $L A R G E$ have $L A R G E$: Large-Number $\leq k^{2}$
by (simp add: power2-nat-le-imp-le)
have $i d: k^{2}$ ^ $4=k \wedge 8 \operatorname{sqrt}(k \wedge 2)=k$ by auto
from Clique-not-solvable-by-small-monotone-circuit-squared[of $k \wedge 2$, unfolded id,

```
OF - LARGE \pi solution vars]
    have cs \varphi>( }k\mathrm{ ^2) powr (4/7* / ) by auto
    also have (k^2) powr (4/7 % k) =k powr (8/7*k)
    unfolding of-nat-power using powr-powr[of real k 2] by simp
    finally show ?thesis.
qed
definition large-number where large-number = Large-Number^8
Finally a variant, where the size is formulated depending on \(n\), the number of vertices.
```

```
theorem Clique-with-n-nodes-not-solvable-by-small-monotone-circuit:
```

theorem Clique-with-n-nodes-not-solvable-by-small-monotone-circuit:
fixes φ :: 'a mformula
fixes φ :: 'a mformula
assumes large: $n \geq$ large-number
assumes large: $n \geq$ large-number
and $k n: \exists k . n=k \wedge 8$
and $k n: \exists k . n=k \wedge 8$
and π : bij-betw $\pi V[n] \curvearrowright 2$
and π : bij-betw $\pi V[n] \curvearrowright 2$
and $s: s=$ root $4 n$
and $s: s=$ root $4 n$
and solution: $\forall G \in$ Graphs $[n] .(G \in$ Clique $[n] s)=\operatorname{eval}(\lambda x . \pi x \in G) \varphi$
and solution: $\forall G \in$ Graphs $[n] .(G \in$ Clique $[n] s)=\operatorname{eval}(\lambda x . \pi x \in G) \varphi$
and vars: vars $\varphi \subseteq V$
and vars: vars $\varphi \subseteq V$
shows cs $\varphi>($ root $7 n)$ powr (root $8 n$)
shows cs $\varphi>($ root $7 n)$ powr (root $8 n$)
proof -
proof -
from $k n$ obtain k where $n k: n=k \wedge 8$ by auto
from $k n$ obtain k where $n k: n=k \wedge 8$ by auto
have $k n$: $k=$ root $8 n$ unfolding $n k$ of-nat-power
have $k n$: $k=$ root $8 n$ unfolding $n k$ of-nat-power
by (subst real-root-pos2, auto)
by (subst real-root-pos2, auto)
have root $4 n=\operatorname{root} 4\left((\operatorname{real}(k \wedge 2))^{\wedge} 4\right)$ unfolding $n k$ by simp
have root $4 n=\operatorname{root} 4\left((\operatorname{real}(k \wedge 2))^{\wedge} 4\right)$ unfolding $n k$ by simp
also have $\ldots=k^{\wedge} 2$ by (simp add: real-root-pos-unique)
also have $\ldots=k^{\wedge} 2$ by (simp add: real-root-pos-unique)
finally have r_{4} : root $4 n=k^{\wedge} 2$ by simp
finally have r_{4} : root $4 n=k^{\wedge} 2$ by simp
have $s: s=k^{\wedge} 2$ using s unfolding $r 4$ by simp
have $s: s=k^{\wedge} 2$ using s unfolding $r 4$ by simp
from large [unfolded $n k$ large-number-def] have Large: $k \geq$ Large-Number by
from large [unfolded $n k$ large-number-def] have Large: $k \geq$ Large-Number by
simp
simp
have $0<$ Large-Number unfolding Large-Number-def by simp
have $0<$ Large-Number unfolding Large-Number-def by simp
with Large have $k 0: k>0$ by auto
with Large have $k 0: k>0$ by auto
hence $n 0: n>0$ using $n k$ by simp
hence $n 0: n>0$ using $n k$ by simp
from Clique-not-solvable-by-small-monotone-circuit[OF Large $\pi[$ unfolded $n k]$ -
from Clique-not-solvable-by-small-monotone-circuit[OF Large $\pi[$ unfolded $n k]$ -
vars]
vars]
solution[unfolded s] $n k$
solution[unfolded s] $n k$
have real k powr $(8 / 7 *$ real $k)<c s \varphi$ by auto
have real k powr $(8 / 7 *$ real $k)<c s \varphi$ by auto
also have real k powr $(8 / 7 *$ real $k)=$ root $8 n \operatorname{powr}(8 / 7 *$ root $8 n)$
also have real k powr $(8 / 7 *$ real $k)=$ root $8 n \operatorname{powr}(8 / 7 *$ root $8 n)$
unfolding $k n$ by simp
unfolding $k n$ by simp
also have $\ldots=((\operatorname{root} 8 n) \operatorname{powr}(8 / 7))$ powr (root $8 n)$
also have $\ldots=((\operatorname{root} 8 n) \operatorname{powr}(8 / 7))$ powr (root $8 n)$
unfolding powr-powr by simp
unfolding powr-powr by simp
also have (root $8 n$) powr ($8 / 7$) $=$ root $7 n$ using n0
also have (root $8 n$) powr ($8 / 7$) $=$ root $7 n$ using n0
by (simp add: root-powr-inverse powr-powr)
by (simp add: root-powr-inverse powr-powr)
finally show ?thesis.
finally show ?thesis.
qed
qed
end

```
end
```


References

[1] N. Alon and R. B. Boppana. The monotone circuit complexity of Boolean functions. Combinatorica, 7(1):1-22, 1987.
[2] R. B. Boppana and M. Sipser. The complexity of finite functions. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, pages 757-804. Elsevier and MIT Press, 1990.
[3] P. Erdős and R. Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, 35:85-90, 1960.
[4] L. Gordeev. On P versus NP. Avaible at http://arxiv.org/abs/2005. 00809 v 3 .
[5] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[^0]: *We thank Lev Gordeev for several clarification regarding his proof, for his explanation of the history of the underlying proof idea, and for a lively and ongoing interesting discussion on how his draft can be repaired.

