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Abstract
Given a graph G with n vertices and a number s, the decision

problem Clique asks whether G contains a fully connected subgraph
with s vertices. For this NP-complete problem there exists a non-trivial
lower bound: no monotone circuit of a size that is polynomial in n can
solve Clique.

This entry provides an Isabelle/HOL formalization of a concrete
lower bound (the bound is 7

√
n

8
√
n for the fixed choice of s = 4

√
n),

following a proof by Gordeev.
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1 Introduction

In this AFP submission we verify the result, that no polynomial-sized circuit
can implement the Clique problem.
We arrived at this formalization by trying to verify an unpublished draft
of Gordeev [4], which tries to show that Clique cannot be solved by any
polynomial-sized circuit, including non-monotone ones, where the concrete
exponential lower bound is 7

√
n

8√n for graphs with n vertices and cliques of
size s = 4

√
n.

Although there are some flaws in that draft, all of these disappear if one
restricts to monotone circuits. Consequently, the claimed lower bound is
valid for monotone circuits.
We verify a simplified version of Gordeev’s proof, where those parts that
deal with negations in circuits have been eliminated from definitions and
proofs.
Gordeev’s work itself was inspired by “Razborov’s theorem” in a textbook
by Papadimitriou [5], which states that Clique cannot be encoded with a
monotone circuit of polynomial size. However the proof in the draft uses a
construction based on the sunflower lemma of Erdős and Rado [3], following
a proof in Boppana and Sipser [2]. There are further proofs on lower bounds
of monotone circuits for Clique. For instance, an early result is due to Alon
and Boppana [1], where they show a slightly different lower bound (using a
differently structured proof without the construction based on sunflowers.)

2 Preliminaries
theory Preliminaries

imports
Main
HOL.Real
HOL−Library.FuncSet

begin

lemma fact-approx-add: fact (l + n) ≤ fact l ∗ (real l + real n) ^ n
proof (induct n arbitrary: l)

case (Suc n l)
have fact (l + Suc n) = (real l + Suc n) ∗ fact (l + n) by simp
also have . . . ≤ (real l + Suc n) ∗ (fact l ∗ (real l + real n) ^ n)

by (intro mult-left-mono[OF Suc], auto)
also have . . . = fact l ∗ ((real l + Suc n) ∗ (real l + real n) ^ n) by simp
also have . . . ≤ fact l ∗ ((real l + Suc n) ∗ (real l + real (Suc n)) ^ n)

by (rule mult-left-mono, rule mult-left-mono, rule power-mono, auto)
finally show ?case by simp

qed simp
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lemma fact-approx-minus: assumes k ≥ n
shows fact k ≤ fact (k − n) ∗ (real k ^ n)

proof −
define l where l = k − n
from assms have k: k = l + n unfolding l-def by auto
show ?thesis unfolding k using fact-approx-add[of l n] by simp

qed

lemma fact-approx-upper-add: assumes al: a ≤ Suc l shows fact l ∗ real a ^ n
≤ fact (l + n)
proof (induct n)

case (Suc n)
have fact l ∗ real a ^ (Suc n) = (fact l ∗ real a ^ n) ∗ real a by simp
also have . . . ≤ fact (l + n) ∗ real a

by (rule mult-right-mono[OF Suc], auto)
also have . . . ≤ fact (l + n) ∗ real (Suc (l + n))

by (intro mult-left-mono, insert al, auto)
also have . . . = fact (Suc (l + n)) by simp
finally show ?case by simp

qed simp

lemma fact-approx-upper-minus: assumes n ≤ k and n + a ≤ Suc k
shows fact (k − n) ∗ real a ^ n ≤ fact k

proof −
define l where l = k − n
from assms have k: k = l + n unfolding l-def by auto
show ?thesis using assms unfolding k

apply simp
apply (rule fact-approx-upper-add, insert assms, auto simp: l-def )
done

qed

lemma choose-mono: n ≤ m =⇒ n choose k ≤ m choose k
unfolding binomial-def
by (rule card-mono, auto)

lemma div-mult-le: (a div b) ∗ c ≤ (a ∗ c) div (b :: nat)
by (metis div-mult2-eq div-mult-mult2 mult.commute mult-0-right times-div-less-eq-dividend)

lemma div-mult-pow-le: (a div b)^n ≤ a^n div (b :: nat)^n
proof (cases b = 0)

case True
thus ?thesis by (cases n, auto)

next
case b: False
then obtain c d where a: a = b ∗ c + d and id: c = a div b d = a mod b by

auto
have (a div b)^n = c^n unfolding id by simp
also have . . . = (b ∗ c)^n div b^n using b
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by (metis div-power dvd-triv-left nonzero-mult-div-cancel-left)
also have . . . ≤ (b ∗ c + d)^n div b^n

by (rule div-le-mono, rule power-mono, auto)
also have . . . = a^n div b^n unfolding a by simp
finally show ?thesis .

qed

lemma choose-inj-right:
assumes id: (n choose l) = (k choose l)

and n0: n choose l 6= 0
and l0: l 6= 0

shows n = k
proof (rule ccontr)

assume nk: n 6= k
define m where m = min n k
define M where M = max n k
from nk have mM : m < M unfolding m-def M-def by auto
let ?new = insert (M − 1) {0..< l − 1}
let ?m = {K ∈ Pow {0..<m}. card K = l}
let ?M = {K ∈ Pow {0..<M}. card K = l}
from id n0 have lM :l ≤ M unfolding m-def M-def by auto
from id have id: (m choose l) = (M choose l)

unfolding m-def M-def by auto
from this[unfolded binomial-def ]
have card ?M < Suc (card ?m)

by auto
also have . . . = card (insert ?new ?m)

by (rule sym, rule card-insert-disjoint, force, insert mM , auto)
also have . . . ≤ card (insert ?new ?M )

by (rule card-mono, insert mM , auto)
also have insert ?new ?M = ?M

by (insert mM lM l0, auto)
finally show False by simp

qed

end

3 Monotone Formulas

We define monotone formulas, i.e., without negation, and show that usually
the constant TRUE is not required.
theory Monotone-Formula

imports Main
begin
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3.1 Definition
datatype ′a mformula =

TRUE | FALSE | — True and False
Var ′a | — propositional variables
Conj ′a mformula ′a mformula | — conjunction
Disj ′a mformula ′a mformula — disjunction

the set of subformulas of a mformula
fun SUB :: ′a mformula ⇒ ′a mformula set where

SUB (Conj ϕ ψ) = {Conj ϕ ψ} ∪ SUB ϕ ∪ SUB ψ
| SUB (Disj ϕ ψ) = {Disj ϕ ψ} ∪ SUB ϕ ∪ SUB ψ
| SUB (Var x) = {Var x}
| SUB FALSE = {FALSE}
| SUB TRUE = {TRUE}

the variables of a mformula
fun vars :: ′a mformula ⇒ ′a set where

vars (Var x) = {x}
| vars (Conj ϕ ψ) = vars ϕ ∪ vars ψ
| vars (Disj ϕ ψ) = vars ϕ ∪ vars ψ
| vars FALSE = {}
| vars TRUE = {}

lemma finite-SUB[simp, intro]: finite (SUB ϕ)
by (induct ϕ, auto)

The circuit-size of a mformula: number of subformulas
definition cs :: ′a mformula ⇒ nat where

cs ϕ = card (SUB ϕ)

variable assignments
type-synonym ′a VAS = ′a ⇒ bool

evaluation of mformulas
fun eval :: ′a VAS ⇒ ′a mformula ⇒ bool where

eval ϑ FALSE = False
| eval ϑ TRUE = True
| eval ϑ (Var x) = ϑ x
| eval ϑ (Disj ϕ ψ) = (eval ϑ ϕ ∨ eval ϑ ψ)
| eval ϑ (Conj ϕ ψ) = (eval ϑ ϕ ∧ eval ϑ ψ)

lemma eval-vars: assumes
∧

x. x ∈ vars ϕ =⇒ ϑ1 x = ϑ2 x
shows eval ϑ1 ϕ = eval ϑ2 ϕ
using assms by (induct ϕ, auto)

3.2 Conversion of mformulas to true-free mformulas
inductive-set tf-mformula :: ′a mformula set where

5



tf-False: FALSE ∈ tf-mformula
| tf-Var : Var x ∈ tf-mformula
| tf-Disj: ϕ ∈ tf-mformula =⇒ ψ ∈ tf-mformula =⇒ Disj ϕ ψ ∈ tf-mformula
| tf-Conj: ϕ ∈ tf-mformula =⇒ ψ ∈ tf-mformula =⇒ Conj ϕ ψ ∈ tf-mformula

fun to-tf-formula where
to-tf-formula (Disj phi psi) = (let phi ′ = to-tf-formula phi; psi ′ = to-tf-formula

psi
in (if phi ′ = TRUE ∨ psi ′ = TRUE then TRUE else Disj phi ′ psi ′))

| to-tf-formula (Conj phi psi) = (let phi ′ = to-tf-formula phi; psi ′ = to-tf-formula
psi

in (if phi ′ = TRUE then psi ′ else if psi ′ = TRUE then phi ′ else Conj phi ′ psi ′))

| to-tf-formula phi = phi

lemma eval-to-tf-formula: eval ϑ (to-tf-formula ϕ) = eval ϑ ϕ
by (induct ϕ rule: to-tf-formula.induct, auto simp: Let-def )

lemma to-tf-formula: to-tf-formula ϕ 6= TRUE =⇒ to-tf-formula ϕ ∈ tf-mformula

by (induct ϕ, auto simp: Let-def intro: tf-mformula.intros)

lemma vars-to-tf-formula: vars (to-tf-formula ϕ) ⊆ vars ϕ
by (induct ϕ rule: to-tf-formula.induct, auto simp: Let-def )

lemma SUB-to-tf-formula: SUB (to-tf-formula ϕ) ⊆ to-tf-formula ‘ SUB ϕ
by (induct ϕ rule: to-tf-formula.induct, auto simp: Let-def )

lemma cs-to-tf-formula: cs (to-tf-formula ϕ) ≤ cs ϕ
proof −

have cs (to-tf-formula ϕ) ≤ card (to-tf-formula ‘ SUB ϕ)
unfolding cs-def by (rule card-mono[OF finite-imageI [OF finite-SUB] SUB-to-tf-formula])
also have . . . ≤ cs ϕ unfolding cs-def

by (rule card-image-le[OF finite-SUB])
finally show cs (to-tf-formula ϕ) ≤ cs ϕ .

qed

lemma to-tf-mformula: assumes ¬ eval ϑ ϕ
shows ∃ ψ ∈ tf-mformula. (∀ ϑ. eval ϑ ϕ = eval ϑ ψ) ∧ vars ψ ⊆ vars ϕ ∧ cs

ψ ≤ cs ϕ
proof (intro bexI [of - to-tf-formula ϕ] conjI allI eval-to-tf-formula[symmetric]
vars-to-tf-formula to-tf-formula)

from assms have ¬ eval ϑ (to-tf-formula ϕ) by (simp add: eval-to-tf-formula)
thus to-tf-formula ϕ 6= TRUE by auto
show cs (to-tf-formula ϕ) ≤ cs ϕ by (rule cs-to-tf-formula)

qed

end

6



4 Simplied Version of Gordeev’s Proof for Mono-
tone Circuits

4.1 Setup of Global Assumptions and Proofs of Approxima-
tions

theory Assumptions-and-Approximations
imports

HOL−Real-Asymp.Real-Asymp
Stirling-Formula.Stirling-Formula
Preliminaries

begin

locale first-assumptions =
fixes l p k :: nat
assumes l2: l > 2
and pl: p > l
and kp: k > p

begin

lemma k2: k > 2 using pl l2 kp by auto
lemma p: p > 2 using pl l2 kp by auto
lemma k: k > l using pl l2 kp by auto

definition m = k^4

lemma km: k < m
using power-strict-increasing-iff [of k 1 4] k2 unfolding m-def by auto

lemma lm: l + 1 < m using km k by simp

lemma m2: m > 2 using k2 km by auto

lemma mp: m > p using km k kp by simp

definition L = fact l ∗ (p − 1) ^ l

lemma kml: k ≤ m − l
proof −

have k ≤ k ∗ k − k using k2 by (cases k, auto)
also have . . . ≤ (k ∗ k) ∗ 1 − l using k by simp
also have . . . ≤ (k ∗ k) ∗ (k ∗ k) − l

by (intro diff-le-mono mult-left-mono, insert k2, auto)
also have (k ∗ k) ∗ (k ∗ k) = m unfolding m-def by algebra
finally show ?thesis .

qed
end

locale second-assumptions = first-assumptions +
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assumes kl2: k = l^2
and l8: l ≥ 8

begin

lemma Lm: L ≥ m
proof −

have m ≤ l ^ l
unfolding L-def m-def
unfolding kl2 power-mult[symmetric]
by (intro power-increasing, insert l8, auto)

also have . . . ≤ (p − 1) ^ l
by (rule power-mono, insert pl, auto)

also have . . . ≤ fact l ∗ (p − 1) ^ l by simp
also have . . . ≤ L unfolding L-def by simp
finally show ?thesis .

qed

lemma Lp: L > p using Lm mp by auto

lemma L3: L > 3 using p Lp by auto
end

definition eps = 1/(1000 :: real)
lemma eps: eps > 0 unfolding eps-def by simp

definition L0 :: nat where
L0 = (SOME l0. ∀ l≥l0. 1 / 3 < (1 + − 1 / real l) ^ l)

definition M0 :: nat where
M0 = (SOME y. ∀ x. x ≥ y −→ (root 8 (real x) ∗ log 2 (real x) + 1) / real x

powr (1 / 8 + eps) ≤ 1)

definition L0 ′ :: nat where
L0 ′ = (SOME l0. ∀ n ≥ l0. 6 ∗ (real n)^16 ∗ fact n < real (n2 ^ 4) powr (1 /

8 ∗ real (n2 ^ 4) powr (1 / 8)))

definition L0 ′′ :: nat where L0 ′′ = (SOME l0. ∀ l ≥ l0. real l ∗ log 2 (real (l2 ^
4)) + 1 < real (l2))

lemma L0 ′′: assumes l ≥ L0 ′′ shows real l ∗ log 2 (real (l2 ^ 4)) + 1 < real (l2)
proof −

have (λ l :: nat. (real l ∗ log 2 (real (l2 ^ 4)) + 1) / real (l2)) −−−−→ 0 by
real-asymp

from LIMSEQ-D[OF this, of 1] obtain l0
where ∀ l≥l0. |1 + real l ∗ log 2 (real l ^ 8)| / (real l)2 < 1 by (auto simp:

field-simps)
hence ∀ l ≥ max 1 l0. real l ∗ log 2 (real (l2 ^ 4)) + 1 < real (l2)

by (auto simp: field-simps)
hence ∃ l0. ∀ l ≥ l0. real l ∗ log 2 (real (l2 ^ 4)) + 1 < real (l2) by blast
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from someI-ex[OF this, folded L0 ′′-def , rule-format, OF assms]
show ?thesis .

qed

definition M0 ′ :: nat where
M0 ′ = (SOME x0. ∀ x ≥ x0. real x powr (2 / 3) ≤ x powr (3 / 4) − 1)

locale third-assumptions = second-assumptions +
assumes pllog: l ∗ log 2 m ≤ p real p ≤ l ∗ log 2 m + 1

and L0: l ≥ L0
and L0 ′: l ≥ L0 ′

and M0 ′: m ≥ M0 ′

and M0: m ≥ M0
begin

lemma approximation1:
(real (k − 1)) ^ (m − l) ∗ prod (λ i. real (k − 1 − i)) {0..<l}
> (real (k − 1)) ^ m / 3

proof −
have real (k − 1) ^ (m − l) ∗ (

∏
i = 0..<l. real (k − 1 − i)) =

real (k − 1) ^ m ∗
(inverse (real (k − 1)) ^ l ∗ (

∏
i = 0..<l. real (k − 1 − i)))

by (subst power-diff-conv-inverse, insert k2 lm, auto)
also have . . . > (real (k − 1)) ^ m ∗ (1/3)
proof (rule mult-strict-left-mono)

define f where f l = (1 + (−1) / real l) ^ l for l
define e1 :: real where e1 = exp (− 1)
define lim :: real where lim = 1 / 3
from tendsto-exp-limit-sequentially[of −1, folded f-def ]
have f : f −−−−→ e1 by (simp add: e1-def )
have lim < (1 − 1 / real 6) ^ 6 unfolding lim-def by code-simp
also have . . . ≤ exp (− 1)

by (rule exp-ge-one-minus-x-over-n-power-n, auto)
finally have lim < e1 unfolding e1-def by auto
with f have ∃ l0. ∀ l. l ≥ l0 −→ f l > lim

by (metis eventually-sequentially order-tendstoD(1))
from someI-ex[OF this[unfolded f-def lim-def ], folded L0-def ] L0
have fl: f l > 1/3 unfolding f-def by auto
define start where start = inverse (real (k − 1)) ^ l ∗ (

∏
i = 0..<l. real (k

− 1 − i))
have uminus start
= uminus (prod (λ -. inverse (real (k − 1))) {0..<l} ∗ prod (λ i. real (k − 1

− i)) {0 ..< l})
by (simp add: start-def )

also have . . . = uminus (prod (λ i. inverse (real (k − 1)) ∗ real (k − 1 − i))
{0..<l})

by (subst prod.distrib, simp)
also have . . . ≤ uminus (prod (λ i. inverse (real (k − 1)) ∗ real (k − 1 − (l

− 1))) {0..<l})
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unfolding neg-le-iff-le
by (intro prod-mono conjI mult-left-mono, insert k2 l2, auto intro!: diff-le-mono2)
also have . . . = uminus ((inverse (real (k − 1)) ∗ real (k − l)) ^ l) by simp
also have inverse (real (k − 1)) ∗ real (k − l) = inverse (real (k − 1)) ∗ ((real

(k − 1)) − (real l − 1))
using l2 k2 k by simp

also have . . . = 1 − (real l − 1) / (real (k − 1)) using l2 k2 k
by (simp add: field-simps)

also have real (k − 1) = real k − 1 using k2 by simp
also have . . . = (real l − 1) ∗ (real l + 1) unfolding kl2 of-nat-power

by (simp add: field-simps power2-eq-square)
also have (real l − 1) / . . . = inverse (real l + 1)

using l2 by (smt (verit, best) divide-divide-eq-left ′ divide-inverse nat-1-add-1
nat-less-real-le nonzero-mult-div-cancel-left of-nat-1 of-nat-add)

also have − ((1 − inverse (real l + 1)) ^ l) ≤ − ((1 − inverse (real l)) ^ l)
unfolding neg-le-iff-le
by (intro power-mono, insert l2, auto simp: field-simps)

also have . . . < − (1/3) using fl unfolding f-def by (auto simp: field-simps)
finally have start: start > 1 / 3 by simp
thus inverse (real (k − 1)) ^ l ∗ (

∏
i = 0..<l. real (k − 1 − i)) > 1/3

unfolding start-def by simp
qed (insert k2, auto)
finally show ?thesis by simp

qed

lemma approximation2: fixes s :: nat
assumes m choose k ≤ s ∗ L2 ∗ (m − l − 1 choose (k − l − 1))
shows ((m − l) / k)^l / (6 ∗ L^2) < s

proof −
let ?r = real
define q where q = (?r (L2) ∗ ?r (m − l − 1 choose (k − l − 1)))
have q: q > 0 unfolding q-def

by (insert L3 km, auto)
have ?r (m choose k) ≤ ?r (s ∗ L2 ∗ (m − l − 1 choose (k − l − 1)))

unfolding of-nat-le-iff using assms by simp
hence m choose k ≤ s ∗ q unfolding q-def by simp
hence ∗: s ≥ (m choose k) / q using q by (metis mult-imp-div-pos-le)
have (((m − l) / k)^l / (L^2)) / 6 < ((m − l) / k)^l / (L^2) / 1

by (rule divide-strict-left-mono, insert m2 L3 lm k, auto intro!: mult-pos-pos
divide-pos-pos zero-less-power)

also have . . . = ((m − l) / k)^l / (L^2) by simp
also have . . . ≤ ((m choose k) / (m − l − 1 choose (k − l − 1))) / (L^2)
proof (rule divide-right-mono)

define b where b = ?r (m − l − 1 choose (k − l − 1))
define c where c = (?r k)^l
have b0: b > 0 unfolding b-def using km l2 by simp
have c0: c > 0 unfolding c-def using k by auto
define aim where aim = (((m − l) / k)^l ≤ (m choose k) / (m − l − 1 choose

(k − l − 1)))
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have aim ←→ ((m − l) / k)^l ≤ (m choose k) / b unfolding b-def aim-def
by simp

also have . . . ←→ b ∗ ((m − l) / k)^l ≤ (m choose k) using b0
by (simp add: mult.commute pos-le-divide-eq)

also have . . . ←→ b ∗ (m − l)^l / c ≤ (m choose k)
by (simp add: power-divide c-def )

also have . . . ←→ b ∗ (m − l)^l ≤ (m choose k) ∗ c using c0 b0
by (auto simp add: mult.commute pos-divide-le-eq)

also have (m choose k) = fact m / (fact k ∗ fact (m − k))
by (rule binomial-fact, insert km, auto)

also have b = fact (m − l − 1) / (fact (k − l − 1) ∗ fact (m − l − 1 − (k −
l − 1))) unfolding b-def

by (rule binomial-fact, insert k km, auto)
finally have aim ←→

fact (m − l − 1) / fact (k − l − 1) ∗ (m − l) ^ l / fact (m − l − 1 − (k
− l − 1))

≤ (fact m / fact k) ∗ (?r k)^l / fact (m − k) unfolding c-def by simp
also have m − l − 1 − (k − l − 1) = m − k using l2 k km by simp
finally have aim ←→

fact (m − l − 1) / fact (k − l − 1) ∗ ?r (m − l) ^ l
≤ fact m / fact k ∗ ?r k ^ l unfolding divide-le-cancel using km by simp

also have . . . ←→ (fact (m − (l + 1)) ∗ ?r (m − l) ^ l) ∗ fact k
≤ (fact m / k) ∗ (fact (k − (l + 1)) ∗ (?r k ∗ ?r k ^ l))

using k2
by (simp add: field-simps)

also have . . .
proof (intro mult-mono)

have fact k ≤ fact (k − (l + 1)) ∗ (?r k ^ (l + 1))
by (rule fact-approx-minus, insert k, auto)

also have . . . = (fact (k − (l + 1)) ∗ ?r k ^ l) ∗ ?r k by simp
finally show fact k ≤ fact (k − (l + 1)) ∗ (?r k ∗ ?r k ^ l) by (simp add:

field-simps)
have fact (m − (l + 1)) ∗ real (m − l) ^ l ≤ fact m / k ←→
(fact (m − (l + 1)) ∗ ?r k) ∗ real (m − l) ^ l ≤ fact m using k2 by (simp

add: field-simps)
also have . . .
proof −

have (fact (m − (l + 1)) ∗ ?r k) ∗ ?r (m − l) ^ l ≤
(fact (m − (l + 1)) ∗ ?r (m − l)) ∗ ?r (m − l) ^ l

by (intro mult-mono, insert kml, auto)
also have ((fact (m − (l + 1)) ∗ ?r (m − l)) ∗ ?r (m − l) ^ l) =

(fact (m − (l + 1)) ∗ ?r (m − l) ^ (l + 1)) by simp
also have . . . ≤ fact m

by (rule fact-approx-upper-minus, insert km k, auto)
finally show fact (m − (l + 1)) ∗ real k ∗ real (m − l) ^ l ≤ fact m .

qed
finally show fact (m − (l + 1)) ∗ real (m − l) ^ l ≤ fact m / k .

qed auto
finally show ((m − l) / k)^l ≤ (m choose k) / (m − l − 1 choose (k − l −
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1))
unfolding aim-def .

qed simp
also have . . . = (m choose k) / q

unfolding q-def by simp
also have . . . ≤ s using q ∗ by metis
finally show ((m − l) / k)^l / (6 ∗ L^2) < s by simp

qed

lemma approximation3: fixes s :: nat
assumes (k − 1)^m / 3 < (s ∗ (L2 ∗ (k − 1) ^ m)) / 2 ^ (p − 1)
shows ((m − l) / k)^l / (6 ∗ L^2) < s

proof −
define A where A = real (L2 ∗ (k − 1) ^ m)
have A0: A > 0 unfolding A-def using L3 k2 m2 by simp
from mult-strict-left-mono[OF assms, of 2 ^ (p − 1)]
have 2^(p − 1) ∗ (k − 1)^m / 3 < s ∗ A

by (simp add: A-def )
from divide-strict-right-mono[OF this, of A] A0
have 2^(p − 1) ∗ (k − 1)^m / 3 / A < s

by simp
also have 2^(p − 1) ∗ (k − 1)^m / 3 / A = 2^(p − 1) / (3 ∗ L^2)

unfolding A-def using k2 by simp
also have . . . = 2^p / (6 ∗ L^2) using p by (cases p, auto)
also have 2^p = 2 powr p

by (simp add: powr-realpow)
finally have ∗: 2 powr p / (6 ∗ L2) < s .
have m ^ l = m powr l using m2 l2 powr-realpow by auto
also have . . . = 2 powr (log 2 m ∗ l)

unfolding powr-powr [symmetric]
by (subst powr-log-cancel, insert m2, auto)

also have . . . = 2 powr (l ∗ log 2 m) by (simp add: ac-simps)
also have . . . ≤ 2 powr p

by (rule powr-mono, insert pllog, auto)
finally have m ^ l ≤ 2 powr p .
from divide-right-mono[OF this, of 6 ∗ L2] ∗
have m ^ l / (6 ∗ L2) < s by simp
moreover have ((m − l) / k)^l / (6 ∗ L^2) ≤ m^l / (6 ∗ L^2)
proof (rule divide-right-mono, unfold of-nat-power , rule power-mono)

have real (m − l) / real k ≤ real (m − l) / 1
using k2 lm by (intro divide-left-mono, auto)

also have . . . ≤ m by simp
finally show (m − l) / k ≤ m by simp

qed auto
ultimately show ?thesis by simp

qed

lemma identities: k = root 4 m l = root 8 m
proof −
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let ?r = real
have ?r k ^ 4 = ?r m unfolding m-def by simp
from arg-cong[OF this, of root 4]
show km-id: k = root 4 m by (simp add: real-root-pos2)
have ?r l ^ 8 = ?r m unfolding m-def using kl2 by simp
from arg-cong[OF this, of root 8]
show lm-id: l = root 8 m by (simp add: real-root-pos2)

qed

lemma identities2: root 4 m = m powr (1/4) root 8 m = m powr (1/8)
by (subst root-powr-inverse, insert m2, auto)+

lemma appendix-A-1: assumes x ≥ M0 ′ shows x powr (2/3) ≤ x powr (3/4) −
1
proof −

have (λ x. x powr (2/3) / (x powr (3/4) − 1)) −−−−→ 0
by real-asymp

from LIMSEQ-D[OF this, of 1, simplified] obtain x0 :: nat where
sub: x ≥ x0 =⇒ x powr (2 / 3) / |x powr (3/4) − 1| < 1 for x
by (auto simp: field-simps)

have (λ x :: real. 2 / (x powr (3/4))) −−−−→ 0
by real-asymp

from LIMSEQ-D[OF this, of 1, simplified] obtain x1 :: nat where
sub2: x ≥ x1 =⇒ 2 / x powr (3 / 4) < 1 for x by auto

{
fix x
assume x: x ≥ x0 x ≥ x1 x ≥ 1
define a where a = x powr (3/4) − 1
from sub[OF x(1)] have small: x powr (2 / 3) / |a| ≤ 1

by (simp add: a-def )
have 2: 2 ≤ x powr (3/4) using sub2[OF x(2)] x(3) by simp
hence a: a > 0 by (simp add: a-def )
from mult-left-mono[OF small, of a] a
have x powr (2 / 3) ≤ a

by (simp add: field-simps)
hence x powr (2 / 3) ≤ x powr (3 / 4) − 1 unfolding a-def by simp

}
hence ∃ x0 :: nat. ∀ x ≥ x0. x powr (2 / 3) ≤ x powr (3 / 4) − 1

by (intro exI [of - max x0 (max x1 1)], auto)
from someI-ex[OF this, folded M0 ′-def , rule-format, OF assms]
show ?thesis .

qed

lemma appendix-A-2: (p − 1)^l < m powr ((1 / 8 + eps) ∗ l)
proof −

define f where f (x :: nat) = (root 8 x ∗ log 2 x + 1) / (x powr (1/8 + eps))
for x
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have f −−−−→ 0 using eps unfolding f-def by real-asymp
from LIMSEQ-D[OF this, of 1]
have ex: ∃ x. ∀ y. y ≥ x −→ f y ≤ 1 by fastforce
have lim: root 8 m ∗ log 2 m + 1 ≤ m powr (1 / 8 + eps)

using someI-ex[OF ex[unfolded f-def ], folded M0-def , rule-format, OF M0] m2
by (simp add: field-simps)

define start where start = real (p − 1)^l
have (p − 1)^l < p ^ l

by (rule power-strict-mono, insert p l2, auto)
hence start < real (p ^ l)

using start-def of-nat-less-of-nat-power-cancel-iff by blast
also have . . . = p powr l

by (subst powr-realpow, insert p, auto)
also have . . . ≤ (l ∗ log 2 m + 1) powr l

by (rule powr-mono2, insert pllog, auto)
also have l = root 8 m unfolding identities by simp
finally have start < (root 8 m ∗ log 2 m + 1) powr root 8 m

by (simp add: identities2)
also have . . . ≤ (m powr (1 / 8 + eps)) powr root 8 m

by (rule powr-mono2[OF - - lim], insert m2, auto)
also have . . . = m powr ((1 / 8 + eps) ∗ l) unfolding powr-powr identities ..
finally show ?thesis unfolding start-def by simp

qed

lemma appendix-A-3: 6 ∗ real l^16 ∗ fact l < m powr (1 / 8 ∗ l)
proof −

define f where f = (λn. 6 ∗ (real n)^16 ∗ (sqrt (2 ∗ pi ∗ real n) ∗ (real n / exp
1) ^ n))

define g where g = (λ n. 6 ∗ (real n)^16 ∗ (sqrt (2 ∗ 4 ∗ real n) ∗ (real n / 2)
^ n))

define h where h = (λ n. ((real (n2 ^ 4) powr (1 / 8 ∗ (real (n2 ^ 4)) powr
(1/8)))))

have e: 2 ≤ (exp 1 :: real) using exp-ge-add-one-self [of 1] by simp
from fact-asymp-equiv
have 1: (λ n. 6 ∗ (real n)^16 ∗ fact n / h n) ∼[sequentially] (λ n. f n / h n)

unfolding f-def
by (intro asymp-equiv-intros)

have 2: f n ≤ g n for n unfolding f-def g-def
by (intro mult-mono power-mono divide-left-mono real-sqrt-le-mono, insert

pi-less-4 e, auto)
have 2: abs (f n / h n) ≤ abs (g n / h n) for n

unfolding abs-le-square-iff power2-eq-square
by (intro mult-mono divide-right-mono 2, auto simp: h-def f-def g-def )

have 2: abs (g n / h n) < e =⇒ abs (f n / h n) < e for n e using 2[of n] by
simp

have (λn. g n / h n) −−−−→ 0
unfolding g-def h-def by real-asymp

from LIMSEQ-D[OF this] 2
have (λn. f n / h n) −−−−→ 0
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by (intro LIMSEQ-I , fastforce)
with 1 have (λn. 6 ∗ (real n)^16 ∗ fact n / h n) −−−−→ 0

using tendsto-asymp-equiv-cong by blast
from LIMSEQ-D[OF this, of 1] obtain n0 where 3: n ≥ n0 =⇒ norm (6 ∗

(real n)^16 ∗ fact n / h n) < 1 for n by auto
{

fix n
assume n: n ≥ max 1 n0
hence hn: h n > 0 unfolding h-def by auto
from n have n ≥ n0 by simp
from 3[OF this] have 6 ∗ n ^ 16 ∗ fact n / abs (h n) < 1 by auto
with hn have 6 ∗ (real n) ^ 16 ∗ fact n < h n by simp

}
hence ∃ n0. ∀ n. n ≥ n0 −→ 6 ∗ n ^ 16 ∗ fact n < h n by blast
from someI-ex[OF this[unfolded h-def ], folded L0 ′-def , rule-format, OF L0 ′]
have 6 ∗ real l^16 ∗ fact l < real (l2 ^ 4) powr (1 / 8 ∗ real (l2 ^ 4) powr (1 /

8)) by simp
also have . . . = m powr (1 / 8 ∗ l) using identities identities2 kl2

by (metis m-def )
finally show ?thesis .

qed

lemma appendix-A-4: 12 ∗ L^2 ≤ m powr (m powr (1 / 8) ∗ 0.51)
proof −

let ?r = real
define Lappr where Lappr = m ∗ m ∗ fact l ∗ p ^ l / 2
have L = (fact l ∗ (p − 1) ^ l) unfolding L-def by simp
hence ?r L ≤ (fact l ∗ (p − 1) ^ l) by linarith
also have . . . = (1 ∗ ?r (fact l)) ∗ (?r (p − 1) ^ l) by simp
also have . . . ≤ ((m ∗ m / 2) ∗ ?r (fact l)) ∗ (?r (p − 1) ^ l)

by (intro mult-right-mono, insert m2, cases m; cases m − 1, auto)
also have . . . = (6 ∗ real (m ∗ m) ∗ fact l) ∗ (?r (p − 1) ^ l) / 12 by simp
also have real (m ∗ m) = real l^16 unfolding m-def unfolding kl2 by simp
also have (6 ∗ real l^16 ∗ fact l) ∗ (?r (p − 1) ^ l) / 12
≤ (m powr (1 / 8 ∗ l) ∗ (m powr ((1 / 8 + eps) ∗ l))) / 12

by (intro divide-right-mono mult-mono, insert appendix-A-2 appendix-A-3, auto)

also have . . . = (m powr (1 / 8 ∗ l + (1 / 8 + eps) ∗ l)) / 12
by (simp add: powr-add)

also have 1 / 8 ∗ l + (1 / 8 + eps) ∗ l = l ∗ (1/4 + eps) by (simp add:
field-simps)

also have l = m powr (1/8) unfolding identities identities2 ..
finally have LL: ?r L ≤ m powr (m powr (1 / 8) ∗ (1 / 4 + eps)) / 12 .
from power-mono[OF this, of 2]
have L^2 ≤ (m powr (m powr (1 / 8) ∗ (1 / 4 + eps)) / 12)^2

by simp
also have . . . = (m powr (m powr (1 / 8) ∗ (1 / 4 + eps)))^2 / 144

by (simp add: power2-eq-square)
also have . . . = (m powr (m powr (1 / 8) ∗ (1 / 4 + eps) ∗ 2)) / 144
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by (subst powr-realpow[symmetric], (use m2 in force), unfold powr-powr , simp)
also have . . . = (m powr (m powr (1 / 8) ∗ (1 / 2 + 2 ∗ eps))) / 144

by (simp add: algebra-simps)
also have . . . ≤ (m powr (m powr (1 / 8) ∗ 0.51)) / 144

by (intro divide-right-mono powr-mono mult-left-mono, insert m2, auto simp:
eps-def )

finally have L^2 ≤ m powr (m powr (1 / 8) ∗ 0.51) / 144 by simp
from mult-left-mono[OF this, of 12]
have 12 ∗ L^2 ≤ 12 ∗ m powr (m powr (1 / 8) ∗ 0.51) / 144 by simp
also have . . . = m powr (m powr (1 / 8) ∗ 0.51) / 12 by simp
also have . . . ≤ m powr (m powr (1 / 8) ∗ 0.51) / 1

by (rule divide-left-mono, auto)
finally show ?thesis by simp

qed

lemma approximation4: fixes s :: nat
assumes s > ((m − l) / k)^l / (6 ∗ L^2)
shows s > 2 ∗ k powr (4 / 7 ∗ sqrt k)

proof −
let ?r = real
have diff : ?r (m − l) = ?r m − ?r l using lm by simp
have m powr (2/3) ≤ m powr (3/4) − 1 using appendix-A-1[OF M0 ′] by auto
also have . . . ≤ (m − m powr (1/8)) / m powr (1/4)

unfolding diff-divide-distrib
by (rule diff-mono, insert m2, auto simp: divide-powr-uminus powr-mult-base

powr-add[symmetric],
auto simp: powr-minus-divide intro!: ge-one-powr-ge-zero)

also have . . . = (m − root 8 m) / root 4 m using m2
by (simp add: root-powr-inverse)

also have . . . = (m − l) / k unfolding identities diff by simp
finally have m powr (2/3) ≤ (m − l) / k by simp
from power-mono[OF this, of l]
have ineq1: (m powr (2 / 3)) ^ l ≤ ((m − l) / k) ^ l using m2 by auto
have (m powr (l / 7 )) ≤ (m powr (2 / 3 ∗ l − l ∗ 0.51))

by (intro powr-mono, insert m2, auto)
also have . . . = (m powr (2 / 3)) powr l / (m powr (m powr (1 / 8) ∗ 0.51))

unfolding powr-diff powr-powr identities identities2 by simp
also have . . . = (m powr (2 / 3)) ^ l / (m powr (m powr (1 / 8) ∗ 0.51))

by (subst powr-realpow, insert m2, auto)
also have . . . ≤ (m powr (2 / 3)) ^ l / (12 ∗ L2)
by (rule divide-left-mono[OF appendix-A-4], insert L3 m2, auto intro!: mult-pos-pos)
also have . . . = (m powr (2 / 3)) ^ l / (?r 12 ∗ L2) by simp
also have . . . ≤ ((m − l) / k) ^ l / (?r 12 ∗ L2)

by (rule divide-right-mono[OF ineq1], insert L3, auto)
also have . . . < s / 2 using assms by simp
finally have 2 ∗ m powr (real l / 7 ) < s by simp
also have m powr (real l / 7 ) = m powr (root 8 m / 7 )

unfolding identities by simp
finally have s > 2 ∗ m powr (root 8 m / 7 ) by simp
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also have root 8 m = root 2 k using m2
by (metis identities(2) kl2 of-nat-0-le-iff of-nat-power pos2 real-root-power-cancel)
also have ?r m = k powr 4 unfolding m-def by simp
also have (k powr 4) powr ((root 2 k) / 7 )

= k powr (4 ∗ (root 2 k) / 7 ) unfolding powr-powr by simp
also have . . . = k powr (4 / 7 ∗ sqrt k) unfolding sqrt-def by simp
finally show s > 2 ∗ k powr (4 / 7 ∗ sqrt k) .

qed

end

end
theory Clique-Large-Monotone-Circuits

imports
Sunflowers.Erdos-Rado-Sunflower
Preliminaries
Assumptions-and-Approximations
Monotone-Formula

begin

disable list-syntax
no-syntax -list :: args ⇒ ′a list ([(-)])
no-syntax --listcompr :: args ⇒ ′a list ([(-)])

hide-const (open) Sigma-Algebra.measure

4.2 Plain Graphs
definition binprod :: ′a set ⇒ ′a set ⇒ ′a set set (infixl · 60) where

X · Y = {{x,y} | x y. x ∈ X ∧ y ∈ Y ∧ x 6= y}

abbreviation sameprod :: ′a set ⇒ ′a set set ((-)^2) where
X^2 ≡ X · X

lemma sameprod-altdef : X^2 = {Y . Y ⊆ X ∧ card Y = 2}
unfolding binprod-def by (auto simp: card-2-iff )

definition numbers :: nat ⇒ nat set ([(-)]) where
[n] ≡ {..<n}

lemma card-sameprod: finite X =⇒ card (X^2) = card X choose 2
unfolding sameprod-altdef
by (subst n-subsets, auto)

lemma sameprod-mono: X ⊆ Y =⇒ X^2 ⊆ Y^2
unfolding sameprod-altdef by auto

lemma sameprod-finite: finite X =⇒ finite (X^2)
unfolding sameprod-altdef by simp
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lemma numbers2-mono: x ≤ y =⇒ [x]^2 ⊆ [y]^2
by (rule sameprod-mono, auto simp: numbers-def )

lemma card-numbers[simp]: card [n] = n
by (simp add: numbers-def )

lemma card-numbers2[simp]: card ([n]^2) = n choose 2
by (subst card-sameprod, auto simp: numbers-def )

type-synonym vertex = nat
type-synonym graph = vertex set set

definition Graphs :: vertex set ⇒ graph set where
Graphs V = { G. G ⊆ V^2 }

definition Clique :: vertex set ⇒ nat ⇒ graph set where
Clique V k = { G. G ∈ Graphs V ∧ (∃ C ⊆ V . C^2 ⊆ G ∧ card C = k) }

context first-assumptions
begin

abbreviation G where G ≡ Graphs [m]

lemmas G-def = Graphs-def [of [m]]

lemma empty-G[simp]: {} ∈ G unfolding G-def by auto

definition v :: graph ⇒ vertex set where
v G = { x . ∃ y. {x,y} ∈ G}

lemma v-union: v (G ∪ H ) = v G ∪ v H
unfolding v-def by auto

definition K :: graph set where
K = { K . K ∈ G ∧ card (v K) = k ∧ K = (v K)^2 }

lemma v-G: G ∈ G =⇒ v G ⊆ [m]
unfolding v-def G-def sameprod-altdef by auto

lemma v-mono: G ⊆ H =⇒ v G ⊆ v H unfolding v-def by auto

lemma v-sameprod[simp]: assumes card X ≥ 2
shows v (X^2) = X

proof −
from obtain-subset-with-card-n[OF assms] obtain Y where Y ⊆ X

and Y : card Y = 2 by auto
then obtain x y where x ∈ X y ∈ X and x 6= y
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by (auto simp: card-2-iff )
thus ?thesis unfolding sameprod-altdef v-def

by (auto simp: card-2-iff doubleton-eq-iff ) blast
qed

lemma v-mem-sub: assumes card e = 2 e ∈ G shows e ⊆ v G
proof −

obtain x y where e: e = {x,y} and xy: x 6= y using assms
by (auto simp: card-2-iff )

from assms(2) have x: x ∈ v G unfolding e
by (auto simp: v-def )

from e have e: e = {y,x} unfolding e by auto
from assms(2) have y: y ∈ v G unfolding e

by (auto simp: v-def )
show e ⊆ v G using x y unfolding e by auto

qed

lemma v-G-2: assumes G ∈ G shows G ⊆ (v G)^2
proof

fix e
assume eG: e ∈ G
with assms[unfolded G-def binprod-def ] obtain x y where e: e = {x,y} and xy:

x 6= y by auto
from eG e xy have x: x ∈ v G by (auto simp: v-def )
from e have e: e = {y,x} unfolding e by auto
from eG e xy have y: y ∈ v G by (auto simp: v-def )
from x y xy show e ∈ (v G)^2 unfolding binprod-def e by auto

qed

lemma v-numbers2[simp]: x ≥ 2 =⇒ v ([x]^2) = [x]
by (rule v-sameprod, auto)

lemma sameprod-G: assumes X ⊆ [m] card X ≥ 2
shows X^2 ∈ G
unfolding G-def using assms(2) sameprod-mono[OF assms(1)]
by auto

lemma finite-numbers[simp,intro]: finite [n]
unfolding numbers-def by auto

lemma finite-numbers2[simp,intro]: finite ([n]^2)
unfolding sameprod-altdef using finite-subset[of - [m]] by auto

lemma finite-members-G: G ∈ G =⇒ finite G
unfolding G-def using finite-subset[of G [m]^2] by auto

lemma finite-G[simp,intro]: finite G
unfolding G-def by simp
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lemma finite-vG: assumes G ∈ G
shows finite (v G)

proof −
from finite-members-G[OF assms]
show ?thesis
proof (induct rule: finite-induct)

case (insert xy F)
show ?case
proof (cases ∃ x y. xy = {x,y})

case False
hence v (insert xy F) = v F unfolding v-def by auto
thus ?thesis using insert by auto

next
case True
then obtain x y where xy: xy = {x,y} by auto
hence v (insert xy F) = insert x (insert y (v F))

unfolding v-def by auto
thus ?thesis using insert by auto

qed
qed (auto simp: v-def )

qed

lemma v-empty[simp]: v {} = {} unfolding v-def by auto

lemma v-card2: assumes G ∈ G G 6= {}
shows 2 ≤ card (v G)

proof −
from assms[unfolded G-def ] obtain edge where ∗: edge ∈ G edge ∈ [m]^2 by

auto
then obtain x y where edge: edge = {x,y} x 6= y unfolding binprod-def by

auto
with ∗ have sub: {x,y} ⊆ v G unfolding v-def

by (smt (verit, best) insert-commute insert-compr mem-Collect-eq singleton-iff
subsetI )

from assms finite-vG have finite (v G) by auto
from sub ‹x 6= y› this show 2 ≤ card (v G)

by (metis card-2-iff card-mono)
qed

lemma K-altdef : K = {V^2 | V . V ⊆ [m] ∧ card V = k}
(is - = ?R)

proof −
{

fix K
assume K ∈ K
hence K : K ∈ G and card: card (v K) = k and KvK : K = (v K)^2

unfolding K-def by auto
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from v-G[OF K ] card KvK have K ∈ ?R by auto
}
moreover
{

fix V
assume 1: V ⊆ [m] and card V = k
hence V^2 ∈ K unfolding K-def using k2 sameprod-G[OF 1]

by auto
}
ultimately show ?thesis by auto

qed

lemma K-G: K ⊆ G
unfolding K-def by auto

definition CLIQUE :: graph set where
CLIQUE = { G. G ∈ G ∧ (∃ K ∈ K. K ⊆ G) }

lemma empty-CLIQUE [simp]: {} /∈ CLIQUE unfolding CLIQUE-def K-def us-
ing k2 by (auto simp: v-def )

4.3 Test Graphs

Positive test graphs are precisely the cliques of size k.
abbreviation POS ≡ K

lemma POS-G: POS ⊆ G by (rule K-G)

Negative tests are coloring-functions of vertices that encode graphs which
have cliques of size at most k − 1.
type-synonym colorf = vertex ⇒ nat

definition F :: colorf set where
F = [m] →E [k − 1]

lemma finite-F : finite F
unfolding F-def numbers-def
by (meson finite-PiE finite-lessThan)

definition C :: colorf ⇒ graph where
C f = { {x, y} | x y . {x,y} ∈ [m]^2 ∧ f x 6= f y}

definition NEG :: graph set where
NEG = C ‘ F

Lemma 1 lemma CLIQUE-NEG: CLIQUE ∩ NEG = {}
proof −

{
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fix G
assume GC : G ∈ CLIQUE and GN : G ∈ NEG
from GC [unfolded CLIQUE-def ] obtain K where

K : K ∈ K and G: G ∈ G and KsubG: K ⊆ G by auto
from GN [unfolded NEG-def ] obtain f where fF : f ∈ F and

GCf : G = C f by auto
from K [unfolded K-def ] have KG: K ∈ G and

KvK : K = v K^2 and card1: card (v K) = k by auto
from k2 card1 have ineq: card (v K) > card [k − 1] by auto
from v-G[OF KG] have vKm: v K ⊆ [m] by auto
from fF [unfolded F-def ] vKm have f : f ∈ v K → [k − 1]

by auto
from card-inj[OF f ] ineq
have ¬ inj-on f (v K) by auto
then obtain x y where ∗: x ∈ v K y ∈ v K x 6= y and ineq: f x = f y

unfolding inj-on-def by auto
have {x,y} /∈ G unfolding GCf C-def using ineq

by (auto simp: doubleton-eq-iff )
with KsubG KvK have {x,y} /∈ v K^2 by auto
with ∗ have False unfolding binprod-def by auto

}
thus ?thesis by auto

qed

lemma NEG-G: NEG ⊆ G
proof −

{
fix f
assume f ∈ F
hence C f ∈ G

unfolding NEG-def C-def G-def
by (auto simp: sameprod-altdef )

}
thus NEG ⊆ G unfolding NEG-def by auto

qed

lemma finite-POS-NEG: finite (POS ∪ NEG)
using POS-G NEG-G
by (intro finite-subset[OF - finite-G], auto)

lemma POS-sub-CLIQUE : POS ⊆ CLIQUE
unfolding CLIQUE-def using K-G by auto

lemma POS-CLIQUE : POS ⊂ CLIQUE
proof −

have [k+1]^2 ∈ CLIQUE
unfolding CLIQUE-def

proof (standard, intro conjI bexI [of - [k]^2])
show [k]^2 ⊆ [k+1]^2
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by (rule numbers2-mono, auto)
show [k]^2 ∈ K unfolding K-altdef using km

by (auto intro!: exI [of - [k]], auto simp: numbers-def )
show [k+1]^2 ∈ G using km k2

by (intro sameprod-G, auto simp: numbers-def )
qed
moreover have [k+1]^2 /∈ POS unfolding K-def using v-numbers2[of k + 1]

k2
by auto

ultimately show ?thesis using POS-sub-CLIQUE by blast
qed

lemma card-POS : card POS = m choose k
proof −

have m choose k =
card {B. B ⊆ [m] ∧ card B = k} (is - = card ?A)
by (subst n-subsets[of [m] k], auto simp: numbers-def )

also have . . . = card (sameprod ‘ ?A)
proof (rule card-image[symmetric])

{
fix A
assume A ∈ ?A
hence v (sameprod A) = A using k2

by (subst v-sameprod, auto)
}
thus inj-on sameprod ?A by (rule inj-on-inverseI )

qed
also have sameprod ‘ {B. B ⊆ [m] ∧ card B = k} = POS

unfolding K-altdef by auto
finally show ?thesis by simp

qed

4.4 Basic operations on sets of graphs
definition odot :: graph set ⇒ graph set ⇒ graph set (infixl � 65) where

X � Y = { D ∪ E | D E . D ∈ X ∧ E ∈ Y }

lemma union-G[intro]: G ∈ G =⇒ H ∈ G =⇒ G ∪ H ∈ G
unfolding G-def by auto

lemma odot-G: X ⊆ G =⇒ Y ⊆ G =⇒ X � Y ⊆ G
unfolding odot-def by auto

4.5 Acceptability

Definition 2
definition accepts :: graph set ⇒ graph ⇒ bool (infixl `̀ 55) where
(X `̀ G) = (∃ D ∈ X . D ⊆ G)
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lemma acceptsI [intro]: D ⊆ G =⇒ D ∈ X =⇒ X `̀ G
unfolding accepts-def by auto

definition ACC :: graph set ⇒ graph set where
ACC X = { G. G ∈ G ∧ X `̀ G}

definition ACC-cf :: graph set ⇒ colorf set where
ACC-cf X = { F . F ∈ F ∧ X `̀ C F}

lemma ACC-cf-F : ACC-cf X ⊆ F
unfolding ACC-cf-def by auto

lemma finite-ACC [intro,simp]: finite (ACC-cf X)
by (rule finite-subset[OF ACC-cf-F finite-F ])

lemma ACC-I [intro]: G ∈ G =⇒ X `̀ G =⇒ G ∈ ACC X
unfolding ACC-def by auto

lemma ACC-cf-I [intro]: F ∈ F =⇒ X `̀ C F =⇒ F ∈ ACC-cf X
unfolding ACC-cf-def by auto

lemma ACC-cf-mono: X ⊆ Y =⇒ ACC-cf X ⊆ ACC-cf Y
unfolding ACC-cf-def accepts-def by auto

Lemma 3
lemma ACC-cf-empty: ACC-cf {} = {}

unfolding ACC-cf-def accepts-def by auto

lemma ACC-empty[simp]: ACC {} = {}
unfolding ACC-def accepts-def by auto

lemma ACC-cf-union: ACC-cf (X ∪ Y ) = ACC-cf X ∪ ACC-cf Y
unfolding ACC-cf-def accepts-def by blast

lemma ACC-union: ACC (X ∪ Y ) = ACC X ∪ ACC Y
unfolding ACC-def accepts-def by blast

lemma ACC-odot: ACC (X � Y ) = ACC X ∩ ACC Y
proof −

{
fix G
assume G ∈ ACC (X � Y )
from this[unfolded ACC-def accepts-def ]
obtain D E F :: graph where ∗: D ∈ X E ∈ Y G ∈ G D ∪ E ⊆ G

by (force simp: odot-def )
hence G ∈ ACC X ∩ ACC Y

unfolding ACC-def accepts-def by auto
}
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moreover
{

fix G
assume G ∈ ACC X ∩ ACC Y
from this[unfolded ACC-def accepts-def ]
obtain D E where ∗: D ∈ X E ∈ Y G ∈ G D ⊆ G E ⊆ G

by auto
let ?F = D ∪ E
from ∗ have ?F ∈ X � Y unfolding odot-def using ∗ by blast
moreover have ?F ⊆ G using ∗ by auto
ultimately have G ∈ ACC (X � Y ) using ∗

unfolding ACC-def accepts-def by blast
}
ultimately show ?thesis by blast

qed

lemma ACC-cf-odot: ACC-cf (X � Y ) = ACC-cf X ∩ ACC-cf Y
proof −

{
fix G
assume G ∈ ACC-cf (X � Y )
from this[unfolded ACC-cf-def accepts-def ]
obtain D E :: graph where ∗: D ∈ X E ∈ Y G ∈ F D ∪ E ⊆ C G

by (force simp: odot-def )
hence G ∈ ACC-cf X ∩ ACC-cf Y

unfolding ACC-cf-def accepts-def by auto
}
moreover
{

fix F
assume F ∈ ACC-cf X ∩ ACC-cf Y
from this[unfolded ACC-cf-def accepts-def ]
obtain D E where ∗: D ∈ X E ∈ Y F ∈ F D ⊆ C F E ⊆ C F

by auto
let ?F = D ∪ E
from ∗ have ?F ∈ X � Y unfolding odot-def using ∗ by blast
moreover have ?F ⊆ C F using ∗ by auto
ultimately have F ∈ ACC-cf (X � Y ) using ∗

unfolding ACC-cf-def accepts-def by blast
}
ultimately show ?thesis by blast

qed

4.6 Approximations and deviations
definition Gl :: graph set where
Gl = { G. G ∈ G ∧ card (v G) ≤ l }

definition v-gs :: graph set ⇒ vertex set set where
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v-gs X = v ‘ X

lemma v-gs-empty[simp]: v-gs {} = {}
unfolding v-gs-def by auto

lemma v-gs-union: v-gs (X ∪ Y ) = v-gs X ∪ v-gs Y
unfolding v-gs-def by auto

lemma v-gs-mono: X ⊆ Y =⇒ v-gs X ⊆ v-gs Y
using v-gs-def by auto

lemma finite-v-gs: assumes X ⊆ G
shows finite (v-gs X)

proof −
have v-gs X ⊆ v ‘ G

using assms unfolding v-gs-def by force
moreover have finite G using finite-G by auto
ultimately show ?thesis by (metis finite-surj)

qed

lemma finite-v-gs-Gl: assumes X ⊆ Gl
shows finite (v-gs X)
by (rule finite-v-gs, insert assms, auto simp: Gl-def )

definition PLGl :: graph set set where
PLGl = { X . X ⊆ Gl ∧ card (v-gs X) ≤ L}

definition odotl :: graph set ⇒ graph set ⇒ graph set (infixl �l 65) where
X �l Y = (X � Y ) ∩ Gl

lemma joinl-join: X �l Y ⊆ X � Y
unfolding odot-def odotl-def by blast

lemma card-v-gs-join: assumes X : X ⊆ G and Y : Y ⊆ G
and Z : Z ⊆ X � Y
shows card (v-gs Z) ≤ card (v-gs X) ∗ card (v-gs Y )

proof −
note fin = finite-v-gs[OF X ] finite-v-gs[OF Y ]
have card (v-gs Z) ≤ card ((λ (A, B). A ∪ B) ‘ (v-gs X × v-gs Y ))
proof (rule card-mono[OF finite-imageI ])

show finite (v-gs X × v-gs Y )
using fin by auto

have v-gs Z ⊆ v-gs (X � Y )
using v-gs-mono[OF Z ] .

also have . . . ⊆ (λ(x, y). x ∪ y) ‘ (v-gs X × v-gs Y ) (is ?L ⊆ ?R)
unfolding odot-def v-gs-def by (force split: if-splits simp: v-union)

finally show v-gs Z ⊆ (λ(x, y). x ∪ y) ‘ (v-gs X × v-gs Y ) .
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qed
also have . . . ≤ card (v-gs X × v-gs Y )

by (rule card-image-le, insert fin, auto)
also have . . . = card (v-gs X) ∗ card (v-gs Y )

by (rule card-cartesian-product)
finally show ?thesis .

qed

Definition 6 – elementary plucking step
definition plucking-step :: graph set ⇒ graph set where

plucking-step X = (let vXp = v-gs X ;
S = (SOME S . S ⊆ vXp ∧ sunflower S ∧ card S = p);
U = {E ∈ X . v E ∈ S};
Vs =

⋂
S ;

Gs = Vs^2
in X − U ∪ {Gs})

end

context second-assumptions
begin

Lemma 9 – for elementary plucking step
lemma v-sameprod-subset: v (Vs^2) ⊆ Vs unfolding binprod-def v-def

by (auto simp: doubleton-eq-iff )

lemma plucking-step: assumes X : X ⊆ Gl
and L: card (v-gs X) > L
and Y : Y = plucking-step X

shows card (v-gs Y ) ≤ card (v-gs X) − p + 1
Y ⊆ Gl
POS ∩ ACC X ⊆ ACC Y
2 ^ p ∗ card (ACC-cf Y − ACC-cf X) ≤ (k − 1) ^ m
Y 6= {}

proof −
let ?vXp = v-gs X
have sf-precond: ∀A∈ ?vXp. finite A ∧ card A ≤ l

using X unfolding Gl-def Gl-def v-gs-def by (auto intro: finite-vG intro!: v-G
v-card2)

note sunflower = Erdos-Rado-sunflower [OF sf-precond]
from p have p0: p 6= 0 by auto
have (p − 1) ^ l ∗ fact l < card ?vXp using L[unfolded L-def ]

by (simp add: ac-simps)
note sunflower = sunflower [OF this]
define S where S = (SOME S . S ⊆ ?vXp ∧ sunflower S ∧ card S = p)
define U where U = {E ∈ X . v E ∈ S}
define Vs where Vs =

⋂
S

define Gs where Gs = Vs^2
let ?U = U
let ?New = Gs :: graph
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have Y : Y = X − U ∪ {?New}
using Y [unfolded plucking-step-def Let-def , folded S-def , folded U-def ,

folded Vs-def , folded Gs-def ] .
have U : U ⊆ Gl using X unfolding U-def by auto
hence U ⊆ G unfolding Gl-def by auto
from sunflower
have ∃ S . S ⊆ ?vXp ∧ sunflower S ∧ card S = p by auto
from someI-ex[OF this, folded S-def ]
have S : S ⊆ ?vXp sunflower S card S = p by (auto simp: Vs-def )
have fin1: finite ?vXp using finite-v-gs-Gl[OF X ] .
from X have finX : finite X unfolding Gl-def

using finite-subset[of X , OF - finite-G] by auto
from fin1 S have finS : finite S by (metis finite-subset)
from finite-subset[OF - finX ] have finU : finite U unfolding U-def by auto
from S p have Snempty: S 6= {} by auto
have UX : U ⊆ X unfolding U-def by auto
{

from Snempty obtain s where sS : s ∈ S by auto
with S have s ∈ v-gs X by auto
then obtain Sp where Sp ∈ X and sSp: s = v Sp

unfolding v-gs-def by auto
hence ∗: Sp ∈ U using ‹s ∈ S› unfolding U-def by auto
from ∗ X UX have le: card (v Sp) ≤ l finite (v Sp) Sp ∈ G

unfolding Gl-def Gl-def using finite-vG[of Sp] by auto
hence m: v Sp ⊆ [m] by (intro v-G)
have Vs ⊆ v Sp using sS sSp unfolding Vs-def by auto
with card-mono[OF ‹finite (v Sp)› this] finite-subset[OF this ‹finite (v Sp)›] le

∗ m
have card Vs ≤ l U 6= {} finite Vs Vs ⊆ [m] by auto

}
hence card-Vs: card Vs ≤ l and Unempty: U 6= {}

and fin-Vs: finite Vs and Vsm: Vs ⊆ [m] by auto
have vGs: v Gs ⊆ Vs unfolding Gs-def by (rule v-sameprod-subset)
have GsG: Gs ∈ G unfolding Gs-def G-def

by (intro CollectI Inter-subset sameprod-mono Vsm)
have GsGl: Gs ∈ Gl unfolding Gl-def using GsG vGs card-Vs card-mono[OF -

vGs]
by (simp add: fin-Vs)

hence DsDl: ?New ∈ Gl using UX
unfolding Gl-def G-def Gl-def G-def by auto

with X U show Y ⊆ Gl unfolding Y by auto
from X have XD: X ⊆ G unfolding Gl-def by auto
have vplus-dsU : v-gs U = S using S(1)

unfolding v-gs-def U-def by force
have vplus-dsXU : v-gs (X − U ) = v-gs X − v-gs U

unfolding v-gs-def U-def by auto
have card (v-gs Y ) = card (v-gs (X − U ∪ {?New}))

unfolding Y by simp
also have v-gs (X − U ∪ {?New}) = v-gs (X − U ) ∪ v-gs ({?New})
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unfolding v-gs-union ..
also have v-gs ({?New}) = {v (Gs)} unfolding v-gs-def image-comp o-def by

simp
also have card (v-gs (X − U ) ∪ . . . ) ≤ card (v-gs (X − U )) + card . . .

by (rule card-Un-le)
also have . . . ≤ card (v-gs (X − U )) + 1 by auto
also have v-gs (X − U ) = v-gs X − v-gs U by fact
also have card . . . = card (v-gs X) − card (v-gs U )

by (rule card-Diff-subset, force simp: vplus-dsU finS ,
insert UX , auto simp: v-gs-def )

also have card (v-gs U ) = card S unfolding vplus-dsU ..
finally show card (v-gs Y ) ≤ card (v-gs X) − p + 1

using S by auto
show Y 6= {} unfolding Y using Unempty by auto
{

fix G
assume G ∈ ACC X and GPOS : G ∈ POS
from this[unfolded ACC-def ] POS-G have G: G ∈ G X `̀ G by auto
from this[unfolded accepts-def ] obtain D :: graph where

D: D ∈ X D ⊆ G by auto
have G ∈ ACC Y
proof (cases D ∈ Y )

case True
with D G show ?thesis unfolding accepts-def ACC-def by auto

next
case False
with D have DU : D ∈ U unfolding Y by auto
from GPOS [unfolded POS-def K-def ] obtain K where GK : G = (v K)^2

card (v K) = k by auto
from DU [unfolded U-def ] have v D ∈ S by auto
hence Vs ⊆ v D unfolding Vs-def by auto
also have . . . ⊆ v G

by (intro v-mono D)
also have . . . = v K unfolding GK

by (rule v-sameprod, unfold GK , insert k2, auto)
finally have Gs ⊆ G unfolding Gs-def GK

by (intro sameprod-mono)
with D DU have D ∈ ?U ?New ⊆ G by (auto)
hence Y `̀ G unfolding accepts-def Y by auto
thus ?thesis using G by auto

qed
}
thus POS ∩ ACC X ⊆ ACC Y by auto

from ex-bij-betw-nat-finite[OF finS , unfolded ‹card S = p›]
obtain Si where Si: bij-betw Si {0 ..< p} S by auto
define G where G = (λ i. SOME Gb. Gb ∈ X ∧ v Gb = Si i)
{

fix i
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assume i < p
with Si have SiS : Si i ∈ S unfolding bij-betw-def by auto
with S have Si i ∈ v-gs X by auto
hence ∃ G. G ∈ X ∧ v G = Si i

unfolding v-gs-def by auto
from someI-ex[OF this]
have (G i) ∈ X ∧ v (G i) = Si i

unfolding G-def by blast
hence G i ∈ X v (G i) = Si i

G i ∈ U v (G i) ∈ S using SiS unfolding U-def
by auto

} note G = this
have SvG: S = v ‘ G ‘ {0 ..< p} unfolding Si[unfolded bij-betw-def ,

THEN conjunct2, symmetric] image-comp o-def using G(2) by auto
have injG: inj-on G {0 ..< p}
proof (standard, goal-cases)

case (1 i j)
hence Si i = Si j using G[of i] G[of j] by simp
with 1(1,2) Si show i = j

by (metis Si bij-betw-iff-bijections)
qed
define r where r = card U
have rq: r ≥ p unfolding r-def ‹card S = p›[symmetric] vplus-dsU [symmetric]

unfolding v-gs-def
by (rule card-image-le[OF finU ])

let ?Vi = λ i. v (G i)
let ?Vis = λ i. ?Vi i − Vs
define s where s = card Vs
define si where si i = card (?Vi i) for i
define ti where ti i = card (?Vis i) for i
{

fix i
assume i: i < p
have Vs-Vi: Vs ⊆ ?Vi i using i unfolding Vs-def

using G[OF i] unfolding SvG by auto
have finVi: finite (?Vi i)

using G(4)[OF i] S(1) sf-precond
by (meson finite-numbers finite-subset subset-eq)

from S(1) have G i ∈ G using G(1)[OF i] X unfolding Gl-def G-def Gl-def
by auto

hence finGi: finite (G i)
using finite-members-G by auto

have ti: ti i = si i − s unfolding ti-def si-def s-def
by (rule card-Diff-subset[OF fin-Vs Vs-Vi])

have size1: s ≤ si i unfolding s-def si-def
by (intro card-mono finVi Vs-Vi)

have size2: si i ≤ l unfolding si-def using G(4)[OF i] S(1) sf-precond by
auto
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note Vs-Vi finVi ti size1 size2 finGi ‹G i ∈ G›
} note i-props = this
define fstt where fstt e = (SOME x. x ∈ e ∧ x /∈ Vs) for e
define sndd where sndd e = (SOME x. x ∈ e ∧ x 6= fstt e) for e
{

fix e :: nat set
assume ∗: card e = 2 ¬ e ⊆ Vs
from ∗(1) obtain x y where e: e = {x,y} x 6= y

by (meson card-2-iff )
with ∗ have ∃ x. x ∈ e ∧ x /∈ Vs by auto
from someI-ex[OF this, folded fstt-def ]
have fst: fstt e ∈ e fstt e /∈ Vs by auto
with ∗ e have ∃ x. x ∈ e ∧ x 6= fstt e

by (metis insertCI )
from someI-ex[OF this, folded sndd-def ] have snd: sndd e ∈ e sndd e 6= fstt e

by auto
from fst snd e have {fstt e, sndd e} = e fstt e /∈ Vs fstt e 6= sndd e by auto

} note fstt = this
{

fix f
assume f ∈ ACC-cf Y − ACC-cf X

hence fake: f ∈ ACC-cf {?New} − ACC-cf U unfolding Y ACC-cf-def
accepts-def

Diff-iff U-def Un-iff mem-Collect-eq by blast
hence f : f ∈ F using ACC-cf-F by auto
hence C f ∈ NEG unfolding NEG-def by auto
with NEG-G have Cf : C f ∈ G by auto
from fake have f ∈ ACC-cf {?New} by auto
from this[unfolded ACC-cf-def accepts-def ] Cf
have GsCf : Gs ⊆ C f and Cf : C f ∈ G by auto
from fake have f /∈ ACC-cf U by auto
from this[unfolded ACC-cf-def ] Cf f have ¬ (U `̀ C f ) by auto
from this[unfolded accepts-def ]
have UCf : D ∈ U =⇒ ¬ D ⊆ C f for D by auto
let ?prop = λ i e. fstt e ∈ v (G i) − Vs ∧

sndd e ∈ v (G i) ∧ e ∈ G i ∩ ([m]^2)
∧ f (fstt e) = f (sndd e) ∧ f (sndd e) ∈ [k − 1] ∧ {fstt e, sndd e} = e

define pair where pair i = (if i < p then (SOME pair . ?prop i pair) else
undefined) for i

define u where u i = fstt (pair i) for i
define w where w i = sndd (pair i) for i
{

fix i
assume i: i < p
from i have ?Vi i ∈ S unfolding SvG by auto
hence Vs ⊆ ?Vi i unfolding Vs-def by auto
from sameprod-mono[OF this, folded Gs-def ]
have ∗: Gs ⊆ v (G i)^2 .
from i have Gi: G i ∈ U using G[OF i] by auto
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from UCf [OF Gi] i-props[OF i] have ¬ G i ⊆ C f and Gi: G i ∈ G by auto
then obtain edge where

edgep: edge ∈ G i and edgen: edge /∈ C f by auto
from edgep Gi obtain x y where edge: edge = {x,y}

and xy: {x,y} ∈ [m]^2 {x,y} ⊆ [m] card {x,y} = 2 unfolding G-def
binprod-def

by force
define a where a = fstt edge
define b where b = sndd edge
from edgen[unfolded C-def edge] xy have id: f x = f y by simp
from edgen GsCf edge have edgen: {x,y} /∈ Gs by auto
from edgen[unfolded Gs-def sameprod-altdef ] xy have ¬ {x,y} ⊆ Vs by auto
from fstt[OF ‹card {x,y} = 2› this, folded edge, folded a-def b-def ] edge
have a: a /∈ Vs and id-ab: {x,y} = {a,b} by auto
from id-ab id have id: f a = f b by (auto simp: doubleton-eq-iff )
let ?pair = (a,b)
note ab = xy[unfolded id-ab]
from f [unfolded F-def ] ab have fb: f b ∈ [k − 1] by auto
note edge = edge[unfolded id-ab]
from edgep[unfolded edge] v-mem-sub[OF ‹card {a,b} = 2›, of G i] id
have ?prop i edge using edge ab a fb unfolding a-def b-def by auto
from someI [of ?prop i, OF this] have ?prop i (pair i) using i unfolding

pair-def by auto
from this[folded u-def w-def ] edgep
have u i ∈ v (G i) − Vs w i ∈ v (G i) pair i ∈ G i ∩ [m]^2

f (u i) = f (w i) f (w i) ∈ [k − 1] pair i = {u i, w i}
by auto

} note uw = this
from uw(3) have Pi: pair ∈ PiE {0 ..< p} G unfolding pair-def by auto
define Us where Us = u ‘ {0 ..< p}
define Ws where Ws = [m] − Us
{

fix i
assume i: i < p
note uwi = uw[OF this]
from uwi have ex: ∃ x ∈ [k − 1]. f ‘ {u i, w i} = {x} by auto
from uwi have ∗: u i ∈ [m] w i ∈ [m] {u i, w i} ∈ G i by (auto simp:

sameprod-altdef )
have w i /∈ Us
proof

assume w i ∈ Us
then obtain j where j: j < p and wij: w i = u j unfolding Us-def by

auto
with uwi have ij: i 6= j unfolding binprod-def by auto
note uwj = uw[OF j]
from ij i j Si[unfolded bij-betw-def ]
have diff : v (G i) 6= v (G j) unfolding G(2)[OF i] G(2)[OF j] inj-on-def

by auto
from uwi wij have uj: u j ∈ v (G i) by auto
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with ‹sunflower S›[unfolded sunflower-def , rule-format] G(4)[OF i] G(4)[OF
j] uwj(1) diff

have u j ∈
⋂

S by blast
with uwj(1)[unfolded Vs-def ] show False by simp

qed
with ∗ have wi: w i ∈ Ws unfolding Ws-def by auto
from uwi have wi2: w i ∈ v (G i) by auto
define W where W = Ws ∩ v (G i)
from G(1)[OF i] X [unfolded Gl-def Gl-def ] i-props[OF i]
have finite (v (G i)) card (v (G i)) ≤ l by auto
with card-mono[OF this(1), of W ] have

W : finite W card W ≤ l W ⊆ [m] − Us unfolding W-def Ws-def by auto
from wi wi2 have wi: w i ∈ W unfolding W-def by auto
from wi ex W ∗ have {u i, w i} ∈ G i ∧ u i ∈ [m] ∧ w i ∈ [m] − Us ∧ f (u

i) = f (w i) by force
} note uw1 = this
have inj: inj-on u {0 ..< p}
proof −

{
fix i j
assume i: i < p and j: j < p

and id: u i = u j and ij: i 6= j
from ij i j Si[unfolded bij-betw-def ]
have diff : v (G i) 6= v (G j) unfolding G(2)[OF i] G(2)[OF j] inj-on-def

by auto
from uw[OF i] have ui: u i ∈ v (G i) − Vs by auto
from uw[OF j, folded id] have uj: u i ∈ v (G j) by auto

with ‹sunflower S›[unfolded sunflower-def , rule-format] G(4)[OF i] G(4)[OF
j] uw[OF i] diff

have u i ∈
⋂

S by blast
with ui have False unfolding Vs-def by auto

}
thus ?thesis unfolding inj-on-def by fastforce

qed
have card: card ([m] − Us) = m − p
proof (subst card-Diff-subset)

show finite Us unfolding Us-def by auto
show Us ⊆ [m] unfolding Us-def using uw1 by auto
have card Us = p unfolding Us-def using inj

by (simp add: card-image)
thus card [m] − card Us = m − p by simp

qed
hence (∀ i < p. pair i ∈ G i) ∧ inj-on u {0 ..< p} ∧ (∀ i < p. w i ∈ [m] − u

‘ {0 ..< p} ∧ f (u i) = f (w i))
using inj uw1 uw unfolding Us-def by auto

from this[unfolded u-def w-def ] Pi card[unfolded Us-def u-def w-def ]
have ∃ e ∈ PiE {0..<p} G. (∀ i<p. e i ∈ G i) ∧

card ([m] − (λi. fstt (e i)) ‘ {0..<p}) = m − p ∧
(∀ i<p. sndd (e i) ∈ [m] − (λi. fstt (e i)) ‘ {0..<p} ∧ f (fstt (e i)) = f (sndd
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(e i)))
by blast

} note fMem = this
define Pi2 where Pi2 W = PiE ([m] − W ) (λ -. [k − 1]) for W
define merge where merge =
(λ e (g :: nat ⇒ nat) v. if v ∈ (λ i. fstt (e i)) ‘ {0 ..< p} then g (sndd (e

(SOME i. i < p ∧ v = fstt (e i)))) else g v)
let ?W = λ e. (λ i. fstt (e i)) ‘ {0..<p}
have ACC-cf Y − ACC-cf X ⊆ { merge e g | e g. e ∈ PiE {0..<p} G ∧ card

([m] − ?W e) = m − p ∧ g ∈ Pi2 (?W e)}
(is - ⊆ ?R)

proof
fix f
assume mem: f ∈ ACC-cf Y − ACC-cf X
with ACC-cf-F have f ∈ F by auto
hence f : f ∈ [m] →E [k − 1] unfolding F-def .
from fMem[OF mem] obtain e where e: e ∈ PiE {0..<p} G∧

i. i<p =⇒ e i ∈ G i
card ([m] − ?W e) = m − p∧

i. i<p =⇒ sndd (e i) ∈ [m] − ?W e ∧ f (fstt (e i)) = f (sndd (e i)) by auto
define W where W = ?W e
note e = e[folded W-def ]
let ?g = restrict f ([m] − W )
let ?h = merge e ?g
have f ∈ ?R
proof (intro CollectI exI [of - e] exI [of - ?g], unfold W-def [symmetric], intro

conjI e)
show ?g ∈ Pi2 W unfolding Pi2-def using f by auto
{

fix v :: nat
have ?h v = f v
proof (cases v ∈ W )

case False
thus ?thesis using f unfolding merge-def unfolding W-def [symmetric]

by auto
next

case True
from this[unfolded W-def ] obtain i where i: i < p and v: v = fstt (e i)

by auto
define j where j = (SOME j. j < p ∧ v = fstt (e j))
from i v have ∃ j. j < p ∧ v = fstt (e j) by auto
from someI-ex[OF this, folded j-def ] have j: j < p and v: v = fstt (e j)

by auto
have ?h v = restrict f ([m] − W ) (sndd (e j))
unfolding merge-def unfolding W-def [symmetric] j-def using True by

auto
also have . . . = f (sndd (e j)) using e(4)[OF j] by auto
also have . . . = f (fstt (e j)) using e(4)[OF j] by auto
also have . . . = f v using v by simp
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finally show ?thesis .
qed

}
thus f = ?h by auto

qed
thus f ∈ ?R by auto

qed
also have . . . ⊆ (λ (e,g). (merge e g)) ‘ (Sigma (PiE {0..<p} G ∩ {e. card ([m]
− ?W e) = m − p}) (λ e. Pi2 (?W e)))

(is - ⊆ ?f ‘ ?R)
by auto

finally have sub: ACC-cf Y − ACC-cf X ⊆ ?f ‘ ?R .
have fin[simp,intro]: finite [m] finite [k − Suc 0] unfolding numbers-def by auto
have finPie[simp, intro]: finite (PiE {0..<p} G)

by (intro finite-PiE , auto intro: i-props)
have finR: finite ?R unfolding Pi2-def

by (intro finite-SigmaI finite-Int allI finite-PiE i-props, auto)
have card (ACC-cf Y − ACC-cf X) ≤ card (?f ‘ ?R)

by (rule card-mono[OF finite-imageI [OF finR] sub])
also have . . . ≤ card ?R

by (rule card-image-le[OF finR])
also have . . . = (

∑
e∈(PiE {0..<p} G ∩ {e. card ([m] − ?W e) = m − p}).

card (Pi2 (?W e)))
by (rule card-SigmaI , unfold Pi2-def ,
(intro finite-SigmaI allI finite-Int finite-PiE i-props, auto)+)

also have . . . = (
∑

e∈PiE {0..<p} G ∩ {e. card ([m] − ?W e) = m − p}. (k
− 1) ^ (card ([m] − ?W e)))

by (rule sum.cong[OF refl], unfold Pi2-def , subst card-PiE , auto)
also have . . . = (

∑
e∈PiE {0..<p} G ∩ {e. card ([m] − ?W e) = m − p}. (k

− 1) ^ (m − p))
by (rule sum.cong[OF refl], rule arg-cong[of - - λ n. (k − 1)^n], auto)

also have . . . ≤ (
∑

e∈PiE {0..<p} G. (k − 1) ^ (m − p))
by (rule sum-mono2, auto)

also have . . . = card (PiE {0..<p} G) ∗ (k − 1) ^ (m − p) by simp
also have . . . = (

∏
i = 0..<p. card (G i)) ∗ (k − 1) ^ (m − p)

by (subst card-PiE , auto)
also have . . . ≤ (

∏
i = 0..<p. (k − 1) div 2) ∗ (k − 1) ^ (m − p)

proof −
{

fix i
assume i: i < p
from G[OF i] X
have GiG: G i ∈ G

unfolding Gl-def G-def G-def sameprod-altdef by force
from i-props[OF i] have finGi: finite (G i) by auto
have finvGi: finite (v (G i)) by (rule finite-vG, insert i-props[OF i], auto)
have card (G i) ≤ card ((v (G i))^2)

by (intro card-mono[OF sameprod-finite], rule finvGi, rule v-G-2[OF GiG])
also have . . . ≤ l choose 2

35



proof (subst card-sameprod[OF finvGi], rule choose-mono)
show card (v (G i)) ≤ l using i-props[OF i] unfolding ti-def si-def by

simp
qed
also have l choose 2 = l ∗ (l − 1) div 2 unfolding choose-two by simp
also have l ∗ (l − 1) = k − l unfolding kl2 power2-eq-square by (simp add:

algebra-simps)
also have . . . div 2 ≤ (k − 1) div 2

by (rule div-le-mono, insert l2, auto)
finally have card (G i) ≤ (k − 1) div 2 .

}
thus ?thesis by (intro mult-right-mono prod-mono, auto)

qed
also have . . . = ((k − 1) div 2) ^ p ∗ (k − 1) ^ (m − p)

by simp
also have . . . ≤ ((k − 1) ^ p div (2^p)) ∗ (k − 1) ^ (m − p)

by (rule mult-right-mono; auto simp: div-mult-pow-le)
also have . . . ≤ ((k − 1) ^ p ∗ (k − 1) ^ (m − p)) div 2^p

by (rule div-mult-le)
also have . . . = (k − 1)^m div 2^p
proof −

have p + (m − p) = m using mp by simp
thus ?thesis by (subst power-add[symmetric], simp)

qed
finally have card (ACC-cf Y − ACC-cf X) ≤ (k − 1) ^ m div 2 ^ p .
hence 2 ^ p ∗ card (ACC-cf Y − ACC-cf X) ≤ 2^p ∗ ((k − 1) ^ m div 2 ^ p)

by simp
also have . . . ≤ (k − 1)^m by simp
finally show 2^p ∗ card (ACC-cf Y − ACC-cf X) ≤ (k − 1) ^ m .

qed

Definition 6
function PLU-main :: graph set ⇒ graph set × nat where

PLU-main X = (if X ⊆ Gl ∧ L < card (v-gs X) then
map-prod id Suc (PLU-main (plucking-step X)) else
(X , 0))

by pat-completeness auto

termination
proof (relation measure (λ X . card (v-gs X)), force, goal-cases)

case (1 X)
hence X ⊆ Gl and LL: L < card (v-gs X) by auto
from plucking-step(1)[OF this refl]
have card (v-gs (plucking-step X)) ≤ card (v-gs X) − p + 1 .
also have . . . < card (v-gs X) using p L3 LL

by auto
finally show ?case by simp

qed
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declare PLU-main.simps[simp del]

definition PLU :: graph set ⇒ graph set where
PLU X = fst (PLU-main X)

Lemma 7
lemma PLU-main-n: assumes X ⊆ Gl and PLU-main X = (Z , n)

shows n ∗ (p − 1) ≤ card (v-gs X)
using assms

proof (induct X arbitrary: Z n rule: PLU-main.induct)
case (1 X Z n)
note [simp] = PLU-main.simps[of X ]
show ?case
proof (cases card (v-gs X) ≤ L)

case True
thus ?thesis using 1 by auto

next
case False
define Y where Y = plucking-step X
obtain q where PLU : PLU-main Y = (Z , q) and n: n = Suc q

using ‹PLU-main X = (Z ,n)›[unfolded PLU-main.simps[of X ], folded Y-def ]
using False 1(2) by (cases PLU-main Y , auto)

from False have L: card (v-gs X) > L by auto
note step = plucking-step[OF 1(2) this Y-def ]
from False 1 have X ⊆ Gl ∧ L < card (v-gs X) by auto
note IH = 1(1)[folded Y-def , OF this step(2) PLU ]
have n ∗ (p − 1) = (p − 1) + q ∗ (p − 1) unfolding n by simp
also have . . . ≤ (p − 1) + card (v-gs Y ) using IH by simp
also have . . . ≤ p − 1 + (card (v-gs X) − p + 1) using step(1) by simp
also have . . . = card (v-gs X) using L Lp p by simp
finally show ?thesis .

qed
qed

Definition 8
definition sqcup :: graph set ⇒ graph set ⇒ graph set (infixl t 65) where

X t Y = PLU (X ∪ Y )

definition sqcap :: graph set ⇒ graph set ⇒ graph set (infixl u 65) where
X u Y = PLU (X �l Y )

definition deviate-pos-cup :: graph set ⇒ graph set ⇒ graph set (∂tPos) where
∂tPos X Y = POS ∩ ACC (X ∪ Y ) − ACC (X t Y )

definition deviate-pos-cap :: graph set ⇒ graph set ⇒ graph set (∂uPos) where
∂uPos X Y = POS ∩ ACC (X � Y ) − ACC (X u Y )

definition deviate-neg-cup :: graph set ⇒ graph set ⇒ colorf set (∂tNeg) where
∂tNeg X Y = ACC-cf (X t Y ) − ACC-cf (X ∪ Y )
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definition deviate-neg-cap :: graph set ⇒ graph set ⇒ colorf set (∂uNeg) where
∂uNeg X Y = ACC-cf (X u Y ) − ACC-cf (X � Y )

Lemma 9 – without applying Lemma 7
lemma PLU-main: assumes X ⊆ Gl

and PLU-main X = (Z , n)
shows Z ∈ PLGl
∧ (Z = {} ←→ X = {})
∧ POS ∩ ACC X ⊆ ACC Z
∧ 2 ^ p ∗ card (ACC-cf Z − ACC-cf X) ≤ (k − 1) ^ m ∗ n
using assms

proof (induct X arbitrary: Z n rule: PLU-main.induct)
case (1 X Z n)
note [simp] = PLU-main.simps[of X ]
show ?case
proof (cases card (v-gs X) ≤ L)

case True
from True show ?thesis using 1 by (auto simp: id PLGl-def )

next
case False
define Y where Y = plucking-step X
obtain q where PLU : PLU-main Y = (Z , q) and n: n = Suc q

using ‹PLU-main X = (Z ,n)›[unfolded PLU-main.simps[of X ], folded Y-def ]
using False 1(2) by (cases PLU-main Y , auto)

from False have card (v-gs X) > L by auto
note step = plucking-step[OF 1(2) this Y-def ]
from False 1 have X ⊆ Gl ∧ L < card (v-gs X) by auto
note IH = 1(1)[folded Y-def , OF this step(2) PLU ] ‹Y 6= {}›
let ?Diff = λ X Y . ACC-cf X − ACC-cf Y
have finNEG: finite NEG

using NEG-G infinite-super by blast
have ?Diff Z X ⊆ ?Diff Z Y ∪ ?Diff Y X by auto
from card-mono[OF finite-subset[OF - finite-F ] this] ACC-cf-F
have 2 ^ p ∗ card (?Diff Z X) ≤ 2 ^ p ∗ card (?Diff Z Y ∪ ?Diff Y X) by auto
also have . . . ≤ 2 ^ p ∗ (card (?Diff Z Y ) + card (?Diff Y X))

by (rule mult-left-mono, rule card-Un-le, simp)
also have . . . = 2 ^ p ∗ card (?Diff Z Y ) + 2 ^ p ∗ card (?Diff Y X)

by (simp add: algebra-simps)
also have . . . ≤ ((k − 1) ^ m) ∗ q + (k − 1) ^ m using IH step by auto
also have . . . = ((k − 1) ^ m) ∗ Suc q by (simp add: ac-simps)
finally have c: 2 ^ p ∗ card (ACC-cf Z − ACC-cf X) ≤ ((k − 1) ^ m) ∗ Suc

q by simp
from False have X 6= {} by auto
thus ?thesis unfolding n using IH step c by auto

qed
qed

Lemma 9
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lemma assumes X : X ∈ PLGl and Y : Y ∈ PLGl
shows PLU-union: PLU (X ∪ Y ) ∈ PLGl and
sqcup: X t Y ∈ PLGl and
sqcup-sub: POS ∩ ACC (X ∪ Y ) ⊆ ACC (X t Y ) and
deviate-pos-cup: ∂tPos X Y = {} and
deviate-neg-cup: card (∂tNeg X Y ) < (k − 1)^m ∗ L / 2^(p − 1)

proof −
obtain Z n where res: PLU-main (X ∪ Y ) = (Z , n) by force
hence PLU : PLU (X ∪ Y ) = Z unfolding PLU-def by simp
from X Y have XY : X ∪ Y ⊆ Gl unfolding PLGl-def by auto
note main = PLU-main[OF this(1) res]
from main show PLU (X ∪ Y ) ∈ PLGl unfolding PLU by simp
thus X t Y ∈ PLGl unfolding sqcup-def .
from main show POS ∩ ACC (X ∪ Y ) ⊆ ACC (X t Y )

unfolding sqcup-def PLU by simp
thus ∂tPos X Y = {} unfolding deviate-pos-cup-def PLU sqcup-def by auto
have card (v-gs (X ∪ Y )) ≤ card (v-gs X) + card (v-gs Y )

unfolding v-gs-union by (rule card-Un-le)
also have . . . ≤ L + L using X Y unfolding PLGl-def by simp
finally have card (v-gs (X ∪ Y )) ≤ 2 ∗ L by simp
with PLU-main-n[OF XY (1) res] have n ∗ (p − 1) ≤ 2 ∗ L by simp
with p Lm m2 have n: n < 2 ∗ L by (cases n, auto, cases p − 1, auto)
let ?r = real
have ∗: (k − 1) ^ m > 0 using k l2 by simp
have 2 ^ p ∗ card (∂tNeg X Y ) ≤ 2 ^ p ∗ card (ACC-cf Z − ACC-cf (X ∪ Y ))

unfolding deviate-neg-cup-def PLU sqcup-def
by (rule mult-left-mono, rule card-mono[OF finite-subset[OF - finite-F ]], insert

ACC-cf-F , force, auto)
also have . . . ≤ (k − 1) ^ m ∗ n using main by simp
also have . . . < (k − 1) ^ m ∗ (2 ∗ L) unfolding mult-less-cancel1 using n ∗

by simp
also have . . . = 2 ∗ ((k − 1) ^ m ∗ L) by simp
finally have 2 ∗ (2^(p − 1) ∗ card (∂tNeg X Y )) < 2 ∗ ((k − 1) ^ m ∗ L)

using p by (cases p, auto)
hence 2 ^ (p − 1) ∗ card (∂tNeg X Y ) < (k − 1)^m ∗ L by simp
hence ?r (2 ^ (p − 1) ∗ card (∂tNeg X Y )) < ?r ((k − 1)^m ∗ L) by linarith
thus card (∂tNeg X Y ) < (k − 1)^m ∗ L / 2^(p − 1) by (simp add: field-simps)

qed

Lemma 10
lemma assumes X : X ∈ PLGl and Y : Y ∈ PLGl

shows PLU-joinl: PLU (X �l Y ) ∈ PLGl and
sqcap: X u Y ∈ PLGl and
deviate-neg-cap: card (∂uNeg X Y ) < (k − 1)^m ∗ L^2 / 2^(p − 1) and
deviate-pos-cap: card (∂uPos X Y ) ≤ ((m − l − 1) choose (k − l − 1)) ∗ L^2

proof −
obtain Z n where res: PLU-main (X �l Y ) = (Z , n) by force
hence PLU : PLU (X �l Y ) = Z unfolding PLU-def by simp
from X Y have XY : X ⊆ Gl Y ⊆ Gl X ⊆ G Y ⊆ G unfolding PLGl-def Gl-def
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by auto
have sub: X �l Y ⊆ Gl unfolding odotl-def using XY

by (auto split: option.splits)
note main = PLU-main[OF sub res]
note finV = finite-v-gs-Gl[OF XY (1)] finite-v-gs-Gl[OF XY (2)]
have X � Y ⊆ G by (rule odot-G, insert XY , auto simp: Gl-def )
hence XYD: X � Y ⊆ G by auto
have finvXY : finite (v-gs (X � Y )) by (rule finite-v-gs[OF XYD])
have card (v-gs (X � Y )) ≤ card (v-gs X) ∗ card (v-gs Y )

using XY (1−2) by (intro card-v-gs-join, auto simp: Gl-def )
also have . . . ≤ L ∗ L using X Y unfolding PLGl-def

by (intro mult-mono, auto)
also have . . . = L^2 by algebra
finally have card-join: card (v-gs (X � Y )) ≤ L^2 .
with card-mono[OF finvXY v-gs-mono[OF joinl-join]]
have card: card (v-gs (X �l Y )) ≤ L^2 by simp
with PLU-main-n[OF sub res] have n ∗ (p − 1) ≤ L^2 by simp
with p Lm m2 have n: n < 2 ∗ L^2 by (cases n, auto, cases p − 1, auto)
have ∗: (k − 1) ^ m > 0 using k l2 by simp
show PLU (X �l Y ) ∈ PLGl unfolding PLU using main by auto
thus X u Y ∈ PLGl unfolding sqcap-def .
let ?r = real
have 2^p ∗ card (∂uNeg X Y ) ≤ 2 ^ p ∗ card (ACC-cf Z − ACC-cf (X �l Y ))

unfolding deviate-neg-cap-def PLU sqcap-def
by (rule mult-left-mono, rule card-mono[OF finite-subset[OF - finite-F ]], insert

ACC-cf-F , force,
insert ACC-cf-mono[OF joinl-join, of X Y ], auto)

also have . . . ≤ (k − 1) ^ m ∗ n using main by simp
also have . . . < (k − 1) ^ m ∗ (2 ∗ L^2) unfolding mult-less-cancel1 using n
∗ by simp

finally have 2 ∗ (2^(p − 1) ∗ card (∂uNeg X Y )) < 2 ∗ ((k − 1) ^ m ∗ L^2)
using p by (cases p, auto)

hence 2 ^ (p − 1) ∗ card (∂uNeg X Y ) < (k − 1)^m ∗ L^2 by simp
hence ?r (2 ^ (p − 1) ∗ card (∂uNeg X Y )) < (k − 1)^m ∗ L^2 by linarith
thus card (∂uNeg X Y ) < (k − 1)^m ∗ L^2 / 2^(p − 1) by (simp add: field-simps)

define Vs where Vs = v-gs (X � Y ) ∩ {V . V ⊆ [m] ∧ card V ≥ Suc l}
define C where C (V :: nat set) = (SOME C . C ⊆ V ∧ card C = Suc l) for V
define K where K C = { W . W ⊆ [m] − C ∧ card W = k − Suc l } for C
define merge where merge C V = (C ∪ V )^2 for C V :: nat set
define GS where GS = { merge (C V ) W | V W . V ∈ Vs ∧ W ∈ K (C V )}
{

fix V
assume V : V ∈ Vs
hence card: card V ≥ Suc l and Vm: V ⊆ [m] unfolding Vs-def by auto
from card obtain D where C : D ⊆ V and cardV : card D = Suc l

by (rule obtain-subset-with-card-n)
hence ∃ C . C ⊆ V ∧ card C = Suc l by blast
from someI-ex[OF this, folded C-def ] have ∗: C V ⊆ V card (C V ) = Suc l

40



by blast+
with Vm have sub: C V ⊆ [m] by auto
from finite-subset[OF this] have finCV : finite (C V ) unfolding numbers-def

by simp
have card (K (C V )) = (m − Suc l) choose (k − Suc l) unfolding K-def
proof (subst n-subsets, (rule finite-subset[of - [m]], auto)[1], rule arg-cong[of -

- λ x. x choose -])
show card ([m] − C V ) = m − Suc l

by (subst card-Diff-subset, insert sub ∗ finCV , auto)
qed
note ∗ finCV sub this

} note Vs-C = this
have finK : finite (K V ) for V unfolding K-def by auto
{

fix G
assume G: G ∈ POS ∩ ACC (X � Y )
have G ∈ ACC (X �l Y ) ∪ GS
proof (rule ccontr)

assume ¬ ?thesis
with G have G: G ∈ POS G ∈ ACC (X � Y ) G /∈ ACC (X �l Y )

and contra: G /∈ GS by auto
from G(1)[unfolded K-def ] have card (v G) = k ∧ (v G)^2 = G and G0: G

∈ G
by auto

hence vGk: card (v G) = k (v G)^2 = G by auto
from G0 have vm: v G ⊆ [m] by (rule v-G)
from G(2−3)[unfolded ACC-def accepts-def ] obtain H

where H : H ∈ X � Y H /∈ X �l Y
and HG: H ⊆ G by auto

from v-mono[OF HG] have vHG: v H ⊆ v G by auto
{

from H (1)[unfolded odot-def ] obtain D E where D: D ∈ X and E : E ∈
Y and HDE : H = D ∪ E

by force
from D E X Y have Dl: D ∈ Gl E ∈ Gl unfolding PLGl-def by auto
have Dp: D ∈ G using Dl by (auto simp: Gl-def )
have Ep: E ∈ G using Dl by (auto simp: Gl-def )
from Dl HDE have HD: H ∈ G unfolding Gl-def by auto
have HG0: H ∈ G using Dp Ep unfolding HDE by auto
have HDL: H /∈ Gl
proof

assume H ∈ Gl
hence H ∈ X �l Y

unfolding odotl-def HDE odot-def using D E by blast
thus False using H by auto

qed
from HDL HD have HGl: H /∈ Gl unfolding Gl-def by auto
have vm: v H ⊆ [m] using HG0 by (rule v-G)
have lower : l < card (v H ) using HGl HG0 unfolding Gl-def by auto
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have v H ∈ Vs unfolding Vs-def using lower vm H unfolding v-gs-def
by auto

} note in-Vs = this
note C = Vs-C [OF this]
let ?C = C (v H )
from C vHG have CG: ?C ⊆ v G by auto
hence id: v G = ?C ∪ (v G − ?C) by auto
from arg-cong[OF this, of card] vGk(1) C
have card (v G − ?C) = k − Suc l

by (metis CG card-Diff-subset)
hence v G − ?C ∈ K ?C unfolding K-def using vm by auto
hence merge ?C (v G − ?C) ∈ GS unfolding GS-def using in-Vs by auto
also have merge ?C (v G − ?C) = v G^2 unfolding merge-def

by (rule arg-cong[of - - sameprod], insert id, auto)
also have . . . = G by fact
finally have G ∈ GS .
with contra show False ..

qed
}
hence ∂uPos X Y ⊆ (POS ∩ ACC (X �l Y ) − ACC (X u Y )) ∪ GS

unfolding deviate-pos-cap-def by auto
also have POS ∩ ACC (X �l Y ) − ACC (X u Y ) = {}
proof −

have POS − ACC (X u Y ) ⊆ UNIV − ACC (X �l Y )
unfolding sqcap-def using PLU main by auto

thus ?thesis by auto
qed
finally have sub: ∂uPos X Y ⊆ GS by auto
have finVs: finite Vs unfolding Vs-def numbers-def by simp
let ?Sig = Sigma Vs (λ V . K (C V ))
have GS-def : GS = (λ (V ,W ). merge (C V ) W ) ‘ ?Sig unfolding GS-def

by auto
have finSig: finite ?Sig using finVs finK by simp
have finGS : finite GS unfolding GS-def

by (rule finite-imageI [OF finSig])
have card (∂uPos X Y ) ≤ card GS by (rule card-mono[OF finGS sub])
also have . . . ≤ card ?Sig unfolding GS-def

by (rule card-image-le[OF finSig])
also have . . . = (

∑
a∈Vs. card (K (C a)))

by (rule card-SigmaI [OF finVs], auto simp: finK)
also have . . . = (

∑
a∈Vs. (m − Suc l) choose (k − Suc l)) using Vs-C

by (intro sum.cong, auto)
also have . . . = ((m − Suc l) choose (k − Suc l)) ∗ card Vs

by simp
also have . . . ≤ ((m − Suc l) choose (k − Suc l)) ∗ L^2
proof (rule mult-left-mono)

have card Vs ≤ card (v-gs (X � Y ))
by (rule card-mono[OF finvXY ], auto simp: Vs-def )

also have . . . ≤ L^2 by fact
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finally show card Vs ≤ L^2 .
qed simp
finally show card (∂uPos X Y ) ≤ ((m − l − 1) choose (k − l − 1)) ∗ L^2

by simp
qed
end

4.7 Formalism

Fix a variable set of cardinality m over 2.
locale forth-assumptions = third-assumptions +

fixes V :: ′a set and π :: ′a ⇒ vertex set
assumes cV : card V = (m choose 2)
and bij-betw-π: bij-betw π V ([m]^2)

begin

definition n where n = (m choose 2)

the formulas over the fixed variable set
definition A :: ′a mformula set where
A = { ϕ. vars ϕ ⊆ V}

lemma A-simps[simp]:
FALSE ∈ A
(Var x ∈ A) = (x ∈ V)
(Conj ϕ ψ ∈ A) = (ϕ ∈ A ∧ ψ ∈ A)
(Disj ϕ ψ ∈ A) = (ϕ ∈ A ∧ ψ ∈ A)
by (auto simp: A-def )

lemma inj-on-π: inj-on π V
using bij-betw-π by (metis bij-betw-imp-inj-on)

lemma πm2[simp,intro]: x ∈ V =⇒ π x ∈ [m]^2
using bij-betw-π by (rule bij-betw-apply)

lemma card-v-π[simp,intro]: assumes x ∈ V
shows card (v {π x}) = 2

proof −
from πm2[OF assms] have mem: π x ∈ [m]^2 by auto
from this[unfolded binprod-def ] obtain a b where π: π x = {a,b} and diff : a 6=

b
by auto

hence v {π x} = {a,b} unfolding v-def by auto
thus ?thesis using diff by simp

qed

lemma π-singleton[simp,intro]: assumes x ∈ V
shows {π x} ∈ G
{{π x}} ∈ PLGl
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using assms L3 l2
by (auto simp: G-def PLGl-def v-gs-def Gl-def )

lemma empty-PLGl[simp,intro]: {} ∈ PLGl
by (auto simp: G-def PLGl-def v-gs-def Gl-def )

fun SET :: ′a mformula ⇒ graph set where
SET FALSE = {}
| SET (Var x) = {{π x}}
| SET (Disj ϕ ψ) = SET ϕ ∪ SET ψ
| SET (Conj ϕ ψ) = SET ϕ � SET ψ

lemma ACC-cf-SET [simp]:
ACC-cf (SET (Var x)) = {f ∈ F . π x ∈ C f }
ACC-cf (SET FALSE) = {}
ACC-cf (SET (Disj ϕ ψ)) = ACC-cf (SET ϕ) ∪ ACC-cf (SET ψ)
ACC-cf (SET (Conj ϕ ψ)) = ACC-cf (SET ϕ) ∩ ACC-cf (SET ψ)
using ACC-cf-odot
by (auto simp: ACC-cf-union ACC-cf-empty, auto simp: ACC-cf-def accepts-def )

lemma ACC-SET [simp]:
ACC (SET (Var x)) = {G ∈ G. π x ∈ G}
ACC (SET FALSE) = {}
ACC (SET (Disj ϕ ψ)) = ACC (SET ϕ) ∪ ACC (SET ψ)
ACC (SET (Conj ϕ ψ)) = ACC (SET ϕ) ∩ ACC (SET ψ)
by (auto simp: ACC-union ACC-odot, auto simp: ACC-def accepts-def )

lemma SET-G: ϕ ∈ tf-mformula =⇒ ϕ ∈ A =⇒ SET ϕ ⊆ G
proof (induct ϕ rule: tf-mformula.induct)

case (tf-Conj ϕ ψ)
hence SET ϕ ⊆ G SET ψ ⊆ G by auto
from odot-G[OF this] show ?case by simp

qed auto

fun APR :: ′a mformula ⇒ graph set where
APR FALSE = {}
| APR (Var x) = {{π x}}
| APR (Disj ϕ ψ) = APR ϕ t APR ψ
| APR (Conj ϕ ψ) = APR ϕ u APR ψ

lemma APR: ϕ ∈ tf-mformula =⇒ ϕ ∈ A =⇒ APR ϕ ∈ PLGl
by (induct ϕ rule: tf-mformula.induct, auto intro!: sqcup sqcap)

definition ACC-cf-mf :: ′a mformula ⇒ colorf set where
ACC-cf-mf ϕ = ACC-cf (SET ϕ)

definition ACC-mf :: ′a mformula ⇒ graph set where
ACC-mf ϕ = ACC (SET ϕ)
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definition deviate-pos :: ′a mformula ⇒ graph set (∂Pos) where
∂Pos ϕ = POS ∩ ACC-mf ϕ − ACC (APR ϕ)

definition deviate-neg :: ′a mformula ⇒ colorf set (∂Neg) where
∂Neg ϕ = ACC-cf (APR ϕ) − ACC-cf-mf ϕ

Lemma 11.1
lemma deviate-subset-Disj:
∂Pos (Disj ϕ ψ) ⊆ ∂tPos (APR ϕ) (APR ψ) ∪ ∂Pos ϕ ∪ ∂Pos ψ
∂Neg (Disj ϕ ψ) ⊆ ∂tNeg (APR ϕ) (APR ψ) ∪ ∂Neg ϕ ∪ ∂Neg ψ
unfolding

deviate-pos-def deviate-pos-cup-def
deviate-neg-def deviate-neg-cup-def
ACC-cf-mf-def ACC-cf-SET ACC-cf-union
ACC-mf-def ACC-SET ACC-union

by auto

Lemma 11.2
lemma deviate-subset-Conj:
∂Pos (Conj ϕ ψ) ⊆ ∂uPos (APR ϕ) (APR ψ) ∪ ∂Pos ϕ ∪ ∂Pos ψ
∂Neg (Conj ϕ ψ) ⊆ ∂uNeg (APR ϕ) (APR ψ) ∪ ∂Neg ϕ ∪ ∂Neg ψ
unfolding
deviate-pos-def deviate-pos-cap-def
ACC-mf-def ACC-SET ACC-odot
deviate-neg-def deviate-neg-cap-def
ACC-cf-mf-def ACC-cf-SET ACC-cf-odot

by auto

lemmas deviate-subset = deviate-subset-Disj deviate-subset-Conj

lemma deviate-finite:
finite (∂Pos ϕ)
finite (∂Neg ϕ)
finite (∂tPos A B)
finite (∂tNeg A B)
finite (∂uPos A B)
finite (∂uNeg A B)
unfolding

deviate-pos-def deviate-pos-cup-def deviate-pos-cap-def
deviate-neg-def deviate-neg-cup-def deviate-neg-cap-def

by (intro finite-subset[OF - finite-POS-NEG], auto)+

Lemma 12
lemma no-deviation[simp]:
∂Pos FALSE = {}
∂Neg FALSE = {}
∂Pos (Var x) = {}
∂Neg (Var x) = {}
unfolding deviate-pos-def deviate-neg-def
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by (auto simp add: ACC-cf-mf-def ACC-mf-def )

Lemma 12.1-2
fun approx-pos where

approx-pos (Conj phi psi) = ∂uPos (APR phi) (APR psi)
| approx-pos - = {}

fun approx-neg where
approx-neg (Conj phi psi) = ∂uNeg (APR phi) (APR psi)
| approx-neg (Disj phi psi) = ∂tNeg (APR phi) (APR psi)
| approx-neg - = {}

lemma finite-approx-pos: finite (approx-pos ϕ)
by (cases ϕ, auto intro: deviate-finite)

lemma finite-approx-neg: finite (approx-neg ϕ)
by (cases ϕ, auto intro: deviate-finite)

lemma card-deviate-Pos: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A
shows card (∂Pos ϕ) ≤ cs ϕ ∗ L2 ∗ ( (m − l − 1) choose (k − l − 1))

proof −
let ?Pos = λ ϕ.

⋃
(approx-pos ‘ SUB ϕ)

have ∂Pos ϕ ⊆ ?Pos ϕ
using phi

proof (induct ϕ rule: tf-mformula.induct)
case (tf-Disj ϕ ψ)
from tf-Disj have ∗: ϕ ∈ tf-mformula ψ ∈ tf-mformula ϕ ∈ A ψ ∈ A by auto
note IH = tf-Disj(2)[OF ∗(3)] tf-Disj(4)[OF ∗(4)]
have ∂Pos (Disj ϕ ψ) ⊆ ∂tPos (APR ϕ) (APR ψ) ∪ ∂Pos ϕ ∪ ∂Pos ψ

by (rule deviate-subset)
also have ∂tPos (APR ϕ) (APR ψ) = {}

by (rule deviate-pos-cup; intro APR ∗ )
also have . . . ∪ ∂Pos ϕ ∪ ∂Pos ψ ⊆ ?Pos ϕ ∪ ?Pos ψ using IH by auto
also have . . . ⊆ ?Pos (Disj ϕ ψ) ∪ ?Pos (Disj ϕ ψ)

by (intro Un-mono, auto)
finally show ?case by simp

next
case (tf-Conj ϕ ψ)
from tf-Conj have ∗: ϕ ∈ A ψ ∈ A

by (auto intro: tf-mformula.intros)
note IH = tf-Conj(2)[OF ∗(1)] tf-Conj(4)[OF ∗(2)]
have ∂Pos (Conj ϕ ψ) ⊆ ∂uPos (APR ϕ) (APR ψ) ∪ ∂Pos ϕ ∪ ∂Pos ψ

by (rule deviate-subset)
also have . . . ⊆ ∂uPos (APR ϕ) (APR ψ) ∪ ?Pos ϕ ∪ ?Pos ψ using IH by

auto
also have . . . ⊆ ?Pos (Conj ϕ ψ) ∪ ?Pos (Conj ϕ ψ) ∪ ?Pos (Conj ϕ ψ)

by (intro Un-mono, insert ∗, auto)
finally show ?case by simp

qed auto
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from card-mono[OF finite-UN-I [OF finite-SUB finite-approx-pos] this]
have card (∂Pos ϕ) ≤ card (

⋃
(approx-pos ‘ SUB ϕ)) by simp

also have . . . ≤ (
∑

i∈SUB ϕ. card (approx-pos i))
by (rule card-UN-le[OF finite-SUB])

also have . . . ≤ (
∑

i∈SUB ϕ. L2 ∗ ( (m − l − 1) choose (k − l − 1)))
proof (rule sum-mono, goal-cases)

case (1 psi)
from phi 1 have psi: psi ∈ tf-mformula psi ∈ A

by (induct ϕ rule: tf-mformula.induct, auto intro: tf-mformula.intros)
show ?case
proof (cases psi)

case (Conj phi1 phi2)
from psi this have ∗: phi1 ∈ tf-mformula phi1 ∈ A phi2 ∈ tf-mformula phi2

∈ A
by (cases rule: tf-mformula.cases, auto)+

from deviate-pos-cap[OF APR[OF ∗(1−2)] APR[OF ∗(3−4)]]
show ?thesis unfolding Conj by (simp add: ac-simps)

qed auto
qed
also have . . . = cs ϕ ∗ L2 ∗ ( (m − l − 1) choose (k − l − 1)) unfolding cs-def

by simp
finally show card (∂Pos ϕ) ≤ cs ϕ ∗ L2 ∗ (m − l − 1 choose (k − l − 1)) by

simp
qed

lemma card-deviate-Neg: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A
shows card (∂Neg ϕ) ≤ cs ϕ ∗ L2 ∗ (k − 1)^m / 2^(p − 1)

proof −
let ?r = real
let ?Neg = λ ϕ.

⋃
(approx-neg ‘ SUB ϕ)

have ∂Neg ϕ ⊆ ?Neg ϕ
using phi

proof (induct ϕ rule: tf-mformula.induct)
case (tf-Disj ϕ ψ)
from tf-Disj have ∗: ϕ ∈ tf-mformula ψ ∈ tf-mformula ϕ ∈ A ψ ∈ A by auto
note IH = tf-Disj(2)[OF ∗(3)] tf-Disj(4)[OF ∗(4)]
have ∂Neg (Disj ϕ ψ) ⊆ ∂tNeg (APR ϕ) (APR ψ) ∪ ∂Neg ϕ ∪ ∂Neg ψ

by (rule deviate-subset)
also have . . . ⊆ ∂tNeg (APR ϕ) (APR ψ) ∪ ?Neg ϕ ∪ ?Neg ψ using IH by

auto
also have . . . ⊆ ?Neg (Disj ϕ ψ) ∪ ?Neg (Disj ϕ ψ) ∪ ?Neg (Disj ϕ ψ)

by (intro Un-mono, auto)
finally show ?case by simp

next
case (tf-Conj ϕ ψ)
from tf-Conj have ∗: ϕ ∈ A ψ ∈ A

by (auto intro: tf-mformula.intros)
note IH = tf-Conj(2)[OF ∗(1)] tf-Conj(4)[OF ∗(2)]
have ∂Neg (Conj ϕ ψ) ⊆ ∂uNeg (APR ϕ) (APR ψ) ∪ ∂Neg ϕ ∪ ∂Neg ψ
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by (rule deviate-subset)
also have . . . ⊆ ∂uNeg (APR ϕ) (APR ψ) ∪ ?Neg ϕ ∪ ?Neg ψ using IH by

auto
also have . . . ⊆ ?Neg (Conj ϕ ψ) ∪ ?Neg (Conj ϕ ψ) ∪ ?Neg (Conj ϕ ψ)

by (intro Un-mono, auto)
finally show ?case by simp

qed auto
hence ∂Neg ϕ ⊆

⋃
(approx-neg ‘ SUB ϕ) by auto

from card-mono[OF finite-UN-I [OF finite-SUB finite-approx-neg] this]
have card (∂Neg ϕ) ≤ card (

⋃
(approx-neg ‘ SUB ϕ)) .

also have . . . ≤ (
∑

i∈SUB ϕ. card (approx-neg i))
by (rule card-UN-le[OF finite-SUB])

finally have ?r (card (∂Neg ϕ)) ≤ (
∑

i∈SUB ϕ. card (approx-neg i)) by linarith
also have . . . = (

∑
i∈SUB ϕ. ?r (card (approx-neg i))) by simp

also have . . . ≤ (
∑

i∈SUB ϕ. L^2 ∗ (k − 1)^m / 2^(p − 1))
proof (rule sum-mono, goal-cases)

case (1 psi)
from phi 1 have psi: psi ∈ tf-mformula psi ∈ A

by (induct ϕ rule: tf-mformula.induct, auto intro: tf-mformula.intros)
show ?case
proof (cases psi)

case (Conj phi1 phi2)
from psi this have ∗: phi1 ∈ tf-mformula phi1 ∈ A phi2 ∈ tf-mformula phi2

∈ A
by (cases rule: tf-mformula.cases, auto)+

from deviate-neg-cap[OF APR[OF ∗(1−2)] APR[OF ∗(3−4)]]
show ?thesis unfolding Conj by (simp add: ac-simps)

next
case (Disj phi1 phi2)
from psi this have ∗: phi1 ∈ tf-mformula phi1 ∈ A phi2 ∈ tf-mformula phi2

∈ A
by (cases rule: tf-mformula.cases, auto)+

from deviate-neg-cup[OF APR[OF ∗(1−2)] APR[OF ∗(3−4)]]
have card (approx-neg psi) ≤ ((L ∗ 1) ∗ (k − 1) ^ m) / 2 ^ (p − 1)

unfolding Disj by (simp add: ac-simps)
also have . . . ≤ ((L ∗ L) ∗ (k − 1) ^ m) / 2 ^ (p − 1)
by (intro divide-right-mono, unfold of-nat-le-iff , intro mult-mono, insert L3,

auto)
finally show ?thesis unfolding power2-eq-square by simp

qed auto
qed
also have . . . = cs ϕ ∗ L^2 ∗ (k − 1)^m / 2^(p − 1) unfolding cs-def by simp
finally show card (∂Neg ϕ) ≤ cs ϕ ∗ L2 ∗ (k − 1)^m / 2^(p − 1) .

qed

Lemma 12.3
lemma ACC-cf-non-empty-approx: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A

and ne: APR ϕ 6= {}
shows card (ACC-cf (APR ϕ)) > (k − 1)^m / 3
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proof −
from ne obtain E :: graph where Ephi: E ∈ APR ϕ

by (auto simp: ACC-def accepts-def )
from APR[OF phi, unfolded PLGl-def ] Ephi
have EDl: E ∈ Gl by auto
hence vEl: card (v E) ≤ l and ED: E ∈ G

unfolding Gl-def Gl-def by auto
have E : E ∈ G using ED[unfolded Gl-def ] by auto
have sub: v E ⊆ [m] by (rule v-G[OF E ])
have l ≤ card [m] using lm by auto
from exists-subset-between[OF vEl this sub finite-numbers]
obtain V where V : v E ⊆ V V ⊆ [m] card V = l by auto
from finite-subset[OF V (2)] have finV : finite V by auto
have finPart: finite A if A ⊆ {P. partition-on [n] P} for n A

by (rule finite-subset[OF that finitely-many-partition-on], simp)
have finmv: finite ([m] − V ) using finite-numbers[of m] by auto
have finK : finite [k − 1] unfolding numbers-def by auto
define F where F = {f ∈ [m] →E [k − 1]. inj-on f V}
have FF : F ⊆ F unfolding F-def F-def by auto
{

fix f
assume f : f ∈ F
{

from this[unfolded F-def ]
have f : f ∈ [m] →E [k − 1] and inj: inj-on f V by auto
from V l2 have 2: card V ≥ 2 by auto
then obtain x where x: x ∈ V by (cases V = {}, auto)
have card V = card (V − {x}) + 1 using x finV

by (metis One-nat-def add.right-neutral add-Suc-right card-Suc-Diff1)
with 2 have card (V − {x}) > 0 by auto
hence V − {x} 6= {} by fastforce
then obtain y where y: y ∈ V and diff : x 6= y by auto
from inj diff x y have neq: f x 6= f y by (auto simp: inj-on-def )
from x y diff V have {x, y} ∈ [m]^2 unfolding sameprod-altdef by auto
with neq have {x,y} ∈ C f unfolding C-def by auto
hence C f 6= {} by auto

}
with NEG-G FF f have CfG: C f ∈ G C f 6= {} by (auto simp: NEG-def )
have E ⊆ C f
proof

fix e
assume eE : e ∈ E
with E [unfolded G-def ] have em: e ∈ [m]^2 by auto
then obtain x y where e: e = {x,y} x 6= y {x,y} ⊆ [m]

and card: card e = 2
unfolding binprod-def by auto

from v-mem-sub[OF card eE ]
have {x,y} ⊆ v E using e by auto
hence {x,y} ⊆ V using V by auto
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hence f x 6= f y using e(2) f [unfolded F-def ] by (auto simp: inj-on-def )
thus e ∈ C f unfolding C-def using em e by auto

qed
with Ephi CfG have APR ϕ `̀ C f

unfolding accepts-def by auto
hence f ∈ ACC-cf (APR ϕ) using CfG f FF unfolding ACC-cf-def by auto

}
with FF have sub: F ⊆ ACC-cf (APR ϕ) by auto
from card-mono[OF finite-subset[OF - finite-ACC ] this]
have approx: card F ≤ card (ACC-cf (APR ϕ)) by auto
from card-inj-on-subset-funcset[OF finite-numbers finK V (2), unfolded card-numbers

V (3),
folded F-def ]

have real (card F) = (real (k − 1)) ^ (m − l) ∗ prod (λ i. real (k − 1 − i))
{0..<l}

by simp
also have . . . > (real (k − 1)) ^ m / 3

by (rule approximation1)
finally have cardF : card F > (k − 1) ^ m / 3 by simp
with approx show ?thesis by simp

qed

Theorem 13
lemma theorem-13: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A

and sub: POS ⊆ ACC-mf ϕ ACC-cf-mf ϕ = {}
shows cs ϕ > k powr (4 / 7 ∗ sqrt k)
proof −

let ?r = real :: nat ⇒ real
have cs ϕ > ((m − l) / k)^l / (6 ∗ L^2)
proof (cases POS ∩ ACC (APR ϕ) = {})

case empty: True
have ∂Pos ϕ = POS ∩ ACC-mf ϕ − ACC (APR ϕ) unfolding deviate-pos-def

by auto
also have . . . = POS − ACC (APR ϕ) using sub by blast
also have . . . = POS using empty by auto
finally have id: ∂Pos ϕ = POS by simp
have m choose k = card POS by (simp add: card-POS)
also have . . . = card (∂Pos ϕ) unfolding id by simp

also have . . . ≤ cs ϕ ∗ L2 ∗ (m − l − 1 choose (k − l − 1)) using
card-deviate-Pos[OF phi] by auto

finally have m choose k ≤ cs ϕ ∗ L2 ∗ (m − l − 1 choose (k − l − 1))
by simp

from approximation2[OF this]
show ((m − l) / k)^l / (6 ∗ L^2) < cs ϕ by simp

next
case False
have POS ∩ ACC (APR ϕ) 6= {} by fact
hence nempty: APR ϕ 6= {} by auto
have card (∂Neg ϕ) = card (ACC-cf (APR ϕ) − ACC-cf-mf ϕ) unfolding
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deviate-neg-def by auto
also have . . . = card (ACC-cf (APR ϕ)) using sub by auto
also have . . . > (k − 1)^m / 3 using ACC-cf-non-empty-approx[OF phi

nempty] .
finally have (k − 1)^m / 3 < card (∂Neg ϕ) .
also have . . . ≤ cs ϕ ∗ L2 ∗ (k − 1) ^ m / 2 ^ (p − 1)

using card-deviate-Neg[OF phi] sub by auto
finally have (k − 1)^m / 3 < (cs ϕ ∗ (L2 ∗ (k − 1) ^ m)) / 2 ^ (p − 1) by

simp
from approximation3[OF this] show ?thesis .

qed
hence part1: cs ϕ > ((m − l) / k)^l / (6 ∗ L^2) .
from approximation4[OF this] show ?thesis using k2 by simp

qed

Definition 14
definition eval-g :: ′a VAS ⇒ graph ⇒ bool where

eval-g ϑ G = (∀ v ∈ V. (π v ∈ G −→ ϑ v))

definition eval-gs :: ′a VAS ⇒ graph set ⇒ bool where
eval-gs ϑ X = (∃ G ∈ X . eval-g ϑ G)

lemmas eval-simps = eval-g-def eval-gs-def eval.simps

lemma eval-gs-union:
eval-gs ϑ (X ∪ Y ) = (eval-gs ϑ X ∨ eval-gs ϑ Y )
by (auto simp: eval-gs-def )

lemma eval-gs-odot: assumes X ⊆ G Y ⊆ G
shows eval-gs ϑ (X � Y ) = (eval-gs ϑ X ∧ eval-gs ϑ Y )

proof
assume eval-gs ϑ (X � Y )
from this[unfolded eval-gs-def ] obtain DE where DE : DE ∈ X � Y

and eval: eval-g ϑ DE by auto
from DE [unfolded odot-def ] obtain D E where id: DE = D ∪ E and DE : D
∈ X E ∈ Y

by auto
from eval have eval-g ϑ D eval-g ϑ E unfolding id eval-g-def

by auto
with DE show eval-gs ϑ X ∧ eval-gs ϑ Y unfolding eval-gs-def by auto

next
assume eval-gs ϑ X ∧ eval-gs ϑ Y
then obtain D E where DE : D ∈ X E ∈ Y and eval: eval-g ϑ D eval-g ϑ E

unfolding eval-gs-def by auto
from DE assms have D: D ∈ G E ∈ G by auto
let ?U = D ∪ E
from eval have eval: eval-g ϑ ?U

unfolding eval-g-def by auto
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from DE have 1: ?U ∈ X � Y unfolding odot-def by auto
with 1 eval show eval-gs ϑ (X � Y ) unfolding eval-gs-def by auto

qed

Lemma 15
lemma eval-set: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A

shows eval ϑ ϕ = eval-gs ϑ (SET ϕ)
using phi

proof (induct ϕ rule: tf-mformula.induct)
case tf-False
then show ?case unfolding eval-simps by simp

next
case (tf-Var x)
then show ?case using inj-on-π unfolding eval-simps

by (auto simp add: inj-on-def )
next

case (tf-Disj ϕ1 ϕ2)
thus ?case by (auto simp: eval-gs-union)

next
case (tf-Conj ϕ1 ϕ2)
thus ?case by (simp, intro eval-gs-odot[symmetric]; intro SET-G, auto)

qed

definition ϑg :: graph ⇒ ′a VAS where
ϑg G x = (x ∈ V ∧ π x ∈ G)

From here on we deviate from Gordeev’s paper as we do not use positive
bases, but a more direct approach.
lemma eval-ACC : assumes phi: ϕ ∈ tf-mformula ϕ ∈ A

and G: G ∈ G
shows eval (ϑg G) ϕ = (G ∈ ACC-mf ϕ)

using phi unfolding ACC-mf-def
proof (induct ϕ rule: tf-mformula.induct)

case (tf-Var x)
thus ?case by (auto simp: ACC-def G accepts-def ϑg-def )

next
case (tf-Disj phi psi)
thus ?case by (auto simp: ACC-union)

next
case (tf-Conj phi psi)
thus ?case by (auto simp: ACC-odot)

qed simp

lemma CLIQUE-solution-imp-POS-sub-ACC : assumes solution: ∀ G ∈ G. G ∈
CLIQUE ←→ eval (ϑg G) ϕ

and tf : ϕ ∈ tf-mformula
and phi: ϕ ∈ A

shows POS ⊆ ACC-mf ϕ
proof
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fix G
assume POS : G ∈ POS
with POS-G have G: G ∈ G by auto
with POS solution POS-CLIQUE
have eval (ϑg G) ϕ by auto
thus G ∈ ACC-mf ϕ unfolding eval-ACC [OF tf phi G] .

qed

lemma CLIQUE-solution-imp-ACC-cf-empty: assumes solution: ∀ G ∈ G. G ∈
CLIQUE ←→ eval (ϑg G) ϕ

and tf : ϕ ∈ tf-mformula
and phi: ϕ ∈ A

shows ACC-cf-mf ϕ = {}
proof (rule ccontr)

assume ¬ ?thesis
from this[unfolded ACC-cf-mf-def ACC-cf-def ]
obtain F where F : F ∈ F SET ϕ `̀ C F by auto
define G where G = C F
have NEG: G ∈ NEG unfolding NEG-def G-def using F by auto
hence G /∈ CLIQUE using CLIQUE-NEG by auto
have GG: G ∈ G unfolding G-def using F

using G-def NEG NEG-G by blast
have GAcc: SET ϕ `̀ G using F [folded G-def ] by auto
then obtain D :: graph where

D: D ∈ SET ϕ and sub: D ⊆ G
unfolding accepts-def by blast

from SET-G[OF tf phi] D
have DG: D ∈ G by auto
have eval: eval (ϑg D) ϕ unfolding eval-set[OF tf phi] eval-gs-def

by (intro bexI [OF - D], unfold eval-g-def , insert DG, auto simp: ϑg-def )
hence D ∈ CLIQUE using solution[rule-format, OF DG] by auto
hence G ∈ CLIQUE using GG sub unfolding CLIQUE-def by blast
with ‹G /∈ CLIQUE› show False by auto

qed

4.8 Conclusion

Theorem 22

We first consider monotone formulas without TRUE.
theorem Clique-not-solvable-by-small-tf-mformula: assumes solution: ∀ G ∈ G.
G ∈ CLIQUE ←→ eval (ϑg G) ϕ

and tf : ϕ ∈ tf-mformula
and phi: ϕ ∈ A

shows cs ϕ > k powr (4 / 7 ∗ sqrt k)
proof −

from CLIQUE-solution-imp-POS-sub-ACC [OF solution tf phi] have POS : POS
⊆ ACC-mf ϕ .
from CLIQUE-solution-imp-ACC-cf-empty[OF solution tf phi] have CF : ACC-cf-mf
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ϕ = {} .
from theorem-13[OF tf phi POS CF ]
show ?thesis by auto

qed

Next we consider general monotone formulas.
theorem Clique-not-solvable-by-poly-mono: assumes solution: ∀ G ∈ G. G ∈
CLIQUE ←→ eval (ϑg G) ϕ

and phi: ϕ ∈ A
shows cs ϕ > k powr (4 / 7 ∗ sqrt k)
proof −

note vars = phi[unfolded A-def ]
have CL: CLIQUE = Clique [k^4] k G = Graphs [k^4]

unfolding CLIQUE-def K-altdef m-def Clique-def by auto
with empty-CLIQUE have {} /∈ Clique [k^4] k by simp
with solution[rule-format, of {}]
have ¬ eval (ϑg {}) ϕ by (auto simp: Graphs-def )
from to-tf-mformula[OF this]
obtain ψ where ∗: ψ ∈ tf-mformula
(∀ϑ. eval ϑ ϕ = eval ϑ ψ) vars ψ ⊆ vars ϕ cs ψ ≤ cs ϕ by auto

with phi solution have psi: ψ ∈ A
and solution: ∀G∈G. (G ∈ CLIQUE) = eval (ϑg G) ψ unfolding A-def by

auto
from Clique-not-solvable-by-small-tf-mformula[OF solution ∗(1) psi]
show ?thesis using ∗(4) by auto

qed

We next expand all abbreviations and definitions of the locale, but stay
within the locale
theorem Clique-not-solvable-by-small-monotone-circuit-in-locale: assumes phi-solves-clique:

∀ G ∈ Graphs [k^4]. G ∈ Clique [k^4] k ←→ eval (λ x. π x ∈ G) ϕ
and vars: vars ϕ ⊆ V

shows cs ϕ > k powr (4 / 7 ∗ sqrt k)
proof −

{
fix G
assume G: G ∈ G
have eval (λ x. π x ∈ G) ϕ = eval (ϑg G) ϕ using vars

by (intro eval-vars, auto simp: ϑg-def )
}
have CL: CLIQUE = Clique [k^4] k G = Graphs [k^4]

unfolding CLIQUE-def K-altdef m-def Clique-def by auto
{

fix G
assume G: G ∈ G
have eval (λ x. π x ∈ G) ϕ = eval (ϑg G) ϕ using vars

by (intro eval-vars, auto simp: ϑg-def )
}
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with phi-solves-clique CL have solves: ∀ G ∈ G. G ∈ CLIQUE ←→ eval (ϑg
G) ϕ

by auto
from vars have inA: ϕ ∈ A by (auto simp: A-def )
from Clique-not-solvable-by-poly-mono[OF solves inA]
show ?thesis by auto

qed
end

Let us now move the theorem outside the locale
definition Large-Number where Large-Number = Max {64, L0 ′′̂ 2, L0^2, L0 ′̂ 2,
M0, M0 ′}

theorem Clique-not-solvable-by-small-monotone-circuit-squared:
fixes ϕ :: ′a mformula
assumes k: ∃ l. k = l^2
and LARGE : k ≥ Large-Number
and π: bij-betw π V [k^4]^2
and solution: ∀G∈Graphs [k ^ 4]. (G ∈ Clique [k ^ 4] k) = eval (λ x. π x ∈ G)

ϕ
and vars: vars ϕ ⊆ V
shows cs ϕ > k powr (4 / 7 ∗ sqrt k)

proof −
from k obtain l where kk: k = l^2 by auto
note LARGE = LARGE [unfolded Large-Number-def ]
have k8: k ≥ 8^2 using LARGE by auto
from this[unfolded kk power2-nat-le-eq-le]
have l8: l ≥ 8 .
define p where p = nat (ceiling (l ∗ log 2 (k^4)))
have tedious: l ∗ log 2 (k ^ 4) ≥ 0 using l8 k8 by auto
have int p = ceiling (l ∗ log 2 (k ^ 4)) unfolding p-def

by (rule nat-0-le, insert tedious, auto)
from arg-cong[OF this, of real-of-int]
have rp: real p = ceiling (l ∗ log 2 (k ^ 4)) by simp
have one: real l ∗ log 2 (k ^ 4) ≤ p unfolding rp by simp
have two: p ≤ real l ∗ log 2 (k ^ 4) + 1 unfolding rp by simp
have real l < real l + 1 by simp
also have . . . ≤ real l + real l using l8 by simp
also have . . . = real l ∗ 2 by simp
also have . . . = real l ∗ log 2 (2^2)

by (subst log-pow-cancel, auto)
also have . . . ≤ real l ∗ log 2 (k ^ 4)
proof (intro mult-left-mono, subst log-le-cancel-iff )

have (4 :: real) ≤ 2^4 by simp
also have . . . ≤ real k^4

by (rule power-mono, insert k8, auto)
finally show 22 ≤ real (k ^ 4) by simp

qed (insert k8, auto)
also have . . . ≤ p by fact
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finally have lp: l < p by auto
interpret second-assumptions l p k
proof (unfold-locales)

show 2 < l using l8 by auto
show 8 ≤ l by fact
show k = l^2 by fact
show l < p by fact
from LARGE have L0 ′′̂ 2 ≤ k by auto
from this[unfolded kk power2-nat-le-eq-le]
have L0 ′′l: L0 ′′ ≤ l .
have p ≤ real l ∗ log 2 (k ^ 4) + 1 by fact
also have . . . < k unfolding kk

by (intro L0 ′′ L0 ′′l)
finally show p < k by simp

qed
interpret third-assumptions l p k
proof

show real l ∗ log 2 (real m) ≤ p using one unfolding m-def .
show p ≤ real l ∗ log 2 (real m) + 1 using two unfolding m-def .
from LARGE have L0^2 ≤ k by auto
from this[unfolded kk power2-nat-le-eq-le]
show L0 ≤ l .
from LARGE have L0 ′̂ 2 ≤ k by auto
from this[unfolded kk power2-nat-le-eq-le]
show L0 ′ ≤ l .
show M0 ′ ≤ m using km LARGE by simp
show M0 ≤ m using km LARGE by simp

qed
interpret forth-assumptions l p k V π

by (standard, insert π m-def , auto simp: bij-betw-same-card[OF π])
from Clique-not-solvable-by-small-monotone-circuit-in-locale[OF solution vars]
show ?thesis .

qed

A variant where we get rid of the k = l2-assumption by just taking squares
everywhere.
theorem Clique-not-solvable-by-small-monotone-circuit:

fixes ϕ :: ′a mformula
assumes LARGE : k ≥ Large-Number
and π: bij-betw π V [k^8]^2
and solution: ∀G∈Graphs [k ^ 8]. (G ∈ Clique [k ^ 8] (k^2)) = eval (λ x. π x
∈ G) ϕ

and vars: vars ϕ ⊆ V
shows cs ϕ > k powr (8 / 7 ∗ k)
proof −

from LARGE have LARGE : Large-Number ≤ k2

by (simp add: power2-nat-le-imp-le)
have id: k2 ^ 4 = k^8 sqrt (k^2) = k by auto
from Clique-not-solvable-by-small-monotone-circuit-squared[of k^2, unfolded id,
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OF - LARGE π solution vars]
have cs ϕ > (k^2) powr (4 / 7 ∗ k) by auto
also have (k^2) powr (4 / 7 ∗ k) = k powr (8 / 7 ∗ k)

unfolding of-nat-power using powr-powr [of real k 2] by simp
finally show ?thesis .

qed

definition large-number where large-number = Large-Number^8

Finally a variant, where the size is formulated depending on n, the number
of vertices.
theorem Clique-with-n-nodes-not-solvable-by-small-monotone-circuit:

fixes ϕ :: ′a mformula
assumes large: n ≥ large-number
and kn: ∃ k. n = k^8
and π: bij-betw π V [n]^2
and s: s = root 4 n
and solution: ∀G∈Graphs [n]. (G ∈ Clique [n] s) = eval (λ x. π x ∈ G) ϕ
and vars: vars ϕ ⊆ V

shows cs ϕ > (root 7 n) powr (root 8 n)
proof −

from kn obtain k where nk: n = k^8 by auto
have kn: k = root 8 n unfolding nk of-nat-power

by (subst real-root-pos2, auto)
have root 4 n = root 4 ((real (k^2))^4) unfolding nk by simp
also have . . . = k^2 by (simp add: real-root-pos-unique)
finally have r4: root 4 n = k^2 by simp
have s: s = k^2 using s unfolding r4 by simp
from large[unfolded nk large-number-def ] have Large: k ≥ Large-Number by

simp
have 0 < Large-Number unfolding Large-Number-def by simp
with Large have k0: k > 0 by auto
hence n0: n > 0 using nk by simp
from Clique-not-solvable-by-small-monotone-circuit[OF Large π[unfolded nk] -

vars]
solution[unfolded s] nk

have real k powr (8 / 7 ∗ real k) < cs ϕ by auto
also have real k powr (8 / 7 ∗ real k) = root 8 n powr (8 / 7 ∗ root 8 n)

unfolding kn by simp
also have . . . = ((root 8 n) powr (8 / 7 )) powr (root 8 n)

unfolding powr-powr by simp
also have (root 8 n) powr (8 / 7 ) = root 7 n using n0

by (simp add: root-powr-inverse powr-powr)
finally show ?thesis .

qed

end
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