
Clique is not solvable by monotone circuits of
polynomial size∗

René Thiemann
University of Innsbruck

May 26, 2024

Abstract
Given a graph G with n vertices and a number s, the decision

problem Clique asks whether G contains a fully connected subgraph
with s vertices. For this NP-complete problem there exists a non-trivial
lower bound: no monotone circuit of a size that is polynomial in n can
solve Clique.

This entry provides an Isabelle/HOL formalization of a concrete
lower bound (the bound is 7

√
n

8
√
n for the fixed choice of s = 4

√
n),

following a proof by Gordeev.

Contents
1 Introduction 2

2 Preliminaries 2

3 Monotone Formulas 4
3.1 Definition . 5
3.2 Conversion of mformulas to true-free mformulas 5

4 Simplied Version of Gordeev’s Proof for Monotone Circuits 7
4.1 Setup of Global Assumptions and Proofs of Approximations . 7
4.2 Plain Graphs . 17
4.3 Test Graphs . 21
4.4 Basic operations on sets of graphs 23
4.5 Acceptability . 23
4.6 Approximations and deviations 25
4.7 Formalism . 43
4.8 Conclusion . 53

∗We thank Lev Gordeev for several clarification regarding his proof, for his explana-
tion of the history of the underlying proof idea, and for a lively and ongoing interesting
discussion on how his draft can be repaired.

1

1 Introduction

In this AFP submission we verify the result, that no polynomial-sized circuit
can implement the Clique problem.
We arrived at this formalization by trying to verify an unpublished draft
of Gordeev [4], which tries to show that Clique cannot be solved by any
polynomial-sized circuit, including non-monotone ones, where the concrete
exponential lower bound is 7

√
n

8√n for graphs with n vertices and cliques of
size s = 4

√
n.

Although there are some flaws in that draft, all of these disappear if one
restricts to monotone circuits. Consequently, the claimed lower bound is
valid for monotone circuits.
We verify a simplified version of Gordeev’s proof, where those parts that
deal with negations in circuits have been eliminated from definitions and
proofs.
Gordeev’s work itself was inspired by “Razborov’s theorem” in a textbook
by Papadimitriou [5], which states that Clique cannot be encoded with a
monotone circuit of polynomial size. However the proof in the draft uses a
construction based on the sunflower lemma of Erdős and Rado [3], following
a proof in Boppana and Sipser [2]. There are further proofs on lower bounds
of monotone circuits for Clique. For instance, an early result is due to Alon
and Boppana [1], where they show a slightly different lower bound (using a
differently structured proof without the construction based on sunflowers.)

2 Preliminaries
theory Preliminaries

imports
Main
HOL.Real
HOL−Library.FuncSet

begin

lemma fact-approx-add: fact (l + n) ≤ fact l ∗ (real l + real n) ^ n
proof (induct n arbitrary: l)

case (Suc n l)
have fact (l + Suc n) = (real l + Suc n) ∗ fact (l + n) by simp
also have . . . ≤ (real l + Suc n) ∗ (fact l ∗ (real l + real n) ^ n)

by (intro mult-left-mono[OF Suc], auto)
also have . . . = fact l ∗ ((real l + Suc n) ∗ (real l + real n) ^ n) by simp
also have . . . ≤ fact l ∗ ((real l + Suc n) ∗ (real l + real (Suc n)) ^ n)

by (rule mult-left-mono, rule mult-left-mono, rule power-mono, auto)
finally show ?case by simp

qed simp

2

lemma fact-approx-minus: assumes k ≥ n
shows fact k ≤ fact (k − n) ∗ (real k ^ n)

proof −
define l where l = k − n
from assms have k: k = l + n unfolding l-def by auto
show ?thesis unfolding k using fact-approx-add[of l n] by simp

qed

lemma fact-approx-upper-add: assumes al: a ≤ Suc l shows fact l ∗ real a ^ n
≤ fact (l + n)
proof (induct n)

case (Suc n)
have fact l ∗ real a ^ (Suc n) = (fact l ∗ real a ^ n) ∗ real a by simp
also have . . . ≤ fact (l + n) ∗ real a

by (rule mult-right-mono[OF Suc], auto)
also have . . . ≤ fact (l + n) ∗ real (Suc (l + n))

by (intro mult-left-mono, insert al, auto)
also have . . . = fact (Suc (l + n)) by simp
finally show ?case by simp

qed simp

lemma fact-approx-upper-minus: assumes n ≤ k and n + a ≤ Suc k
shows fact (k − n) ∗ real a ^ n ≤ fact k

proof −
define l where l = k − n
from assms have k: k = l + n unfolding l-def by auto
show ?thesis using assms unfolding k

apply simp
apply (rule fact-approx-upper-add, insert assms, auto simp: l-def)
done

qed

lemma choose-mono: n ≤ m =⇒ n choose k ≤ m choose k
unfolding binomial-def
by (rule card-mono, auto)

lemma div-mult-le: (a div b) ∗ c ≤ (a ∗ c) div (b :: nat)
by (metis div-mult2-eq div-mult-mult2 mult.commute mult-0-right times-div-less-eq-dividend)

lemma div-mult-pow-le: (a div b)^n ≤ a^n div (b :: nat)^n
proof (cases b = 0)

case True
thus ?thesis by (cases n, auto)

next
case b: False
then obtain c d where a: a = b ∗ c + d and id: c = a div b d = a mod b by

auto
have (a div b)^n = c^n unfolding id by simp
also have . . . = (b ∗ c)^n div b^n using b

3

by (metis div-power dvd-triv-left nonzero-mult-div-cancel-left)
also have . . . ≤ (b ∗ c + d)^n div b^n

by (rule div-le-mono, rule power-mono, auto)
also have . . . = a^n div b^n unfolding a by simp
finally show ?thesis .

qed

lemma choose-inj-right:
assumes id: (n choose l) = (k choose l)

and n0: n choose l 6= 0
and l0: l 6= 0

shows n = k
proof (rule ccontr)

assume nk: n 6= k
define m where m = min n k
define M where M = max n k
from nk have mM : m < M unfolding m-def M-def by auto
let ?new = insert (M − 1) {0..< l − 1}
let ?m = {K ∈ Pow {0..<m}. card K = l}
let ?M = {K ∈ Pow {0..<M}. card K = l}
from id n0 have lM :l ≤ M unfolding m-def M-def by auto
from id have id: (m choose l) = (M choose l)

unfolding m-def M-def by auto
from this[unfolded binomial-def]
have card ?M < Suc (card ?m)

by auto
also have . . . = card (insert ?new ?m)

by (rule sym, rule card-insert-disjoint, force, insert mM , auto)
also have . . . ≤ card (insert ?new ?M)

by (rule card-mono, insert mM , auto)
also have insert ?new ?M = ?M

by (insert mM lM l0, auto)
finally show False by simp

qed

end

3 Monotone Formulas

We define monotone formulas, i.e., without negation, and show that usually
the constant TRUE is not required.
theory Monotone-Formula

imports Main
begin

4

3.1 Definition
datatype ′a mformula =

TRUE | FALSE | — True and False
Var ′a | — propositional variables
Conj ′a mformula ′a mformula | — conjunction
Disj ′a mformula ′a mformula — disjunction

the set of subformulas of a mformula
fun SUB :: ′a mformula ⇒ ′a mformula set where

SUB (Conj ϕ ψ) = {Conj ϕ ψ} ∪ SUB ϕ ∪ SUB ψ
| SUB (Disj ϕ ψ) = {Disj ϕ ψ} ∪ SUB ϕ ∪ SUB ψ
| SUB (Var x) = {Var x}
| SUB FALSE = {FALSE}
| SUB TRUE = {TRUE}

the variables of a mformula
fun vars :: ′a mformula ⇒ ′a set where

vars (Var x) = {x}
| vars (Conj ϕ ψ) = vars ϕ ∪ vars ψ
| vars (Disj ϕ ψ) = vars ϕ ∪ vars ψ
| vars FALSE = {}
| vars TRUE = {}

lemma finite-SUB[simp, intro]: finite (SUB ϕ)
by (induct ϕ, auto)

The circuit-size of a mformula: number of subformulas
definition cs :: ′a mformula ⇒ nat where

cs ϕ = card (SUB ϕ)

variable assignments
type-synonym ′a VAS = ′a ⇒ bool

evaluation of mformulas
fun eval :: ′a VAS ⇒ ′a mformula ⇒ bool where

eval ϑ FALSE = False
| eval ϑ TRUE = True
| eval ϑ (Var x) = ϑ x
| eval ϑ (Disj ϕ ψ) = (eval ϑ ϕ ∨ eval ϑ ψ)
| eval ϑ (Conj ϕ ψ) = (eval ϑ ϕ ∧ eval ϑ ψ)

lemma eval-vars: assumes
∧

x. x ∈ vars ϕ =⇒ ϑ1 x = ϑ2 x
shows eval ϑ1 ϕ = eval ϑ2 ϕ
using assms by (induct ϕ, auto)

3.2 Conversion of mformulas to true-free mformulas
inductive-set tf-mformula :: ′a mformula set where

5

tf-False: FALSE ∈ tf-mformula
| tf-Var : Var x ∈ tf-mformula
| tf-Disj: ϕ ∈ tf-mformula =⇒ ψ ∈ tf-mformula =⇒ Disj ϕ ψ ∈ tf-mformula
| tf-Conj: ϕ ∈ tf-mformula =⇒ ψ ∈ tf-mformula =⇒ Conj ϕ ψ ∈ tf-mformula

fun to-tf-formula where
to-tf-formula (Disj phi psi) = (let phi ′ = to-tf-formula phi; psi ′ = to-tf-formula

psi
in (if phi ′ = TRUE ∨ psi ′ = TRUE then TRUE else Disj phi ′ psi ′))

| to-tf-formula (Conj phi psi) = (let phi ′ = to-tf-formula phi; psi ′ = to-tf-formula
psi

in (if phi ′ = TRUE then psi ′ else if psi ′ = TRUE then phi ′ else Conj phi ′ psi ′))

| to-tf-formula phi = phi

lemma eval-to-tf-formula: eval ϑ (to-tf-formula ϕ) = eval ϑ ϕ
by (induct ϕ rule: to-tf-formula.induct, auto simp: Let-def)

lemma to-tf-formula: to-tf-formula ϕ 6= TRUE =⇒ to-tf-formula ϕ ∈ tf-mformula

by (induct ϕ, auto simp: Let-def intro: tf-mformula.intros)

lemma vars-to-tf-formula: vars (to-tf-formula ϕ) ⊆ vars ϕ
by (induct ϕ rule: to-tf-formula.induct, auto simp: Let-def)

lemma SUB-to-tf-formula: SUB (to-tf-formula ϕ) ⊆ to-tf-formula ‘ SUB ϕ
by (induct ϕ rule: to-tf-formula.induct, auto simp: Let-def)

lemma cs-to-tf-formula: cs (to-tf-formula ϕ) ≤ cs ϕ
proof −

have cs (to-tf-formula ϕ) ≤ card (to-tf-formula ‘ SUB ϕ)
unfolding cs-def by (rule card-mono[OF finite-imageI [OF finite-SUB] SUB-to-tf-formula])
also have . . . ≤ cs ϕ unfolding cs-def

by (rule card-image-le[OF finite-SUB])
finally show cs (to-tf-formula ϕ) ≤ cs ϕ .

qed

lemma to-tf-mformula: assumes ¬ eval ϑ ϕ
shows ∃ ψ ∈ tf-mformula. (∀ ϑ. eval ϑ ϕ = eval ϑ ψ) ∧ vars ψ ⊆ vars ϕ ∧ cs

ψ ≤ cs ϕ
proof (intro bexI [of - to-tf-formula ϕ] conjI allI eval-to-tf-formula[symmetric]
vars-to-tf-formula to-tf-formula)

from assms have ¬ eval ϑ (to-tf-formula ϕ) by (simp add: eval-to-tf-formula)
thus to-tf-formula ϕ 6= TRUE by auto
show cs (to-tf-formula ϕ) ≤ cs ϕ by (rule cs-to-tf-formula)

qed

end

6

4 Simplied Version of Gordeev’s Proof for Mono-
tone Circuits

4.1 Setup of Global Assumptions and Proofs of Approxima-
tions

theory Assumptions-and-Approximations
imports

HOL−Real-Asymp.Real-Asymp
Stirling-Formula.Stirling-Formula
Preliminaries

begin

locale first-assumptions =
fixes l p k :: nat
assumes l2: l > 2
and pl: p > l
and kp: k > p

begin

lemma k2: k > 2 using pl l2 kp by auto
lemma p: p > 2 using pl l2 kp by auto
lemma k: k > l using pl l2 kp by auto

definition m = k^4

lemma km: k < m
using power-strict-increasing-iff [of k 1 4] k2 unfolding m-def by auto

lemma lm: l + 1 < m using km k by simp

lemma m2: m > 2 using k2 km by auto

lemma mp: m > p using km k kp by simp

definition L = fact l ∗ (p − 1) ^ l

lemma kml: k ≤ m − l
proof −

have k ≤ k ∗ k − k using k2 by (cases k, auto)
also have . . . ≤ (k ∗ k) ∗ 1 − l using k by simp
also have . . . ≤ (k ∗ k) ∗ (k ∗ k) − l

by (intro diff-le-mono mult-left-mono, insert k2, auto)
also have (k ∗ k) ∗ (k ∗ k) = m unfolding m-def by algebra
finally show ?thesis .

qed
end

locale second-assumptions = first-assumptions +

7

assumes kl2: k = l^2
and l8: l ≥ 8

begin

lemma Lm: L ≥ m
proof −

have m ≤ l ^ l
unfolding L-def m-def
unfolding kl2 power-mult[symmetric]
by (intro power-increasing, insert l8, auto)

also have . . . ≤ (p − 1) ^ l
by (rule power-mono, insert pl, auto)

also have . . . ≤ fact l ∗ (p − 1) ^ l by simp
also have . . . ≤ L unfolding L-def by simp
finally show ?thesis .

qed

lemma Lp: L > p using Lm mp by auto

lemma L3: L > 3 using p Lp by auto
end

definition eps = 1/(1000 :: real)
lemma eps: eps > 0 unfolding eps-def by simp

definition L0 :: nat where
L0 = (SOME l0. ∀ l≥l0. 1 / 3 < (1 + − 1 / real l) ^ l)

definition M0 :: nat where
M0 = (SOME y. ∀ x. x ≥ y −→ (root 8 (real x) ∗ log 2 (real x) + 1) / real x

powr (1 / 8 + eps) ≤ 1)

definition L0 ′ :: nat where
L0 ′ = (SOME l0. ∀ n ≥ l0. 6 ∗ (real n)^16 ∗ fact n < real (n2 ^ 4) powr (1 /

8 ∗ real (n2 ^ 4) powr (1 / 8)))

definition L0 ′′ :: nat where L0 ′′ = (SOME l0. ∀ l ≥ l0. real l ∗ log 2 (real (l2 ^
4)) + 1 < real (l2))

lemma L0 ′′: assumes l ≥ L0 ′′ shows real l ∗ log 2 (real (l2 ^ 4)) + 1 < real (l2)
proof −

have (λ l :: nat. (real l ∗ log 2 (real (l2 ^ 4)) + 1) / real (l2)) −−−−→ 0 by
real-asymp

from LIMSEQ-D[OF this, of 1] obtain l0
where ∀ l≥l0. |1 + real l ∗ log 2 (real l ^ 8)| / (real l)2 < 1 by (auto simp:

field-simps)
hence ∀ l ≥ max 1 l0. real l ∗ log 2 (real (l2 ^ 4)) + 1 < real (l2)

by (auto simp: field-simps)
hence ∃ l0. ∀ l ≥ l0. real l ∗ log 2 (real (l2 ^ 4)) + 1 < real (l2) by blast

8

from someI-ex[OF this, folded L0 ′′-def , rule-format, OF assms]
show ?thesis .

qed

definition M0 ′ :: nat where
M0 ′ = (SOME x0. ∀ x ≥ x0. real x powr (2 / 3) ≤ x powr (3 / 4) − 1)

locale third-assumptions = second-assumptions +
assumes pllog: l ∗ log 2 m ≤ p real p ≤ l ∗ log 2 m + 1

and L0: l ≥ L0
and L0 ′: l ≥ L0 ′

and M0 ′: m ≥ M0 ′

and M0: m ≥ M0
begin

lemma approximation1:
(real (k − 1)) ^ (m − l) ∗ prod (λ i. real (k − 1 − i)) {0..<l}
> (real (k − 1)) ^ m / 3

proof −
have real (k − 1) ^ (m − l) ∗ (

∏
i = 0..<l. real (k − 1 − i)) =

real (k − 1) ^ m ∗
(inverse (real (k − 1)) ^ l ∗ (

∏
i = 0..<l. real (k − 1 − i)))

by (subst power-diff-conv-inverse, insert k2 lm, auto)
also have . . . > (real (k − 1)) ^ m ∗ (1/3)
proof (rule mult-strict-left-mono)

define f where f l = (1 + (−1) / real l) ^ l for l
define e1 :: real where e1 = exp (− 1)
define lim :: real where lim = 1 / 3
from tendsto-exp-limit-sequentially[of −1, folded f-def]
have f : f −−−−→ e1 by (simp add: e1-def)
have lim < (1 − 1 / real 6) ^ 6 unfolding lim-def by code-simp
also have . . . ≤ exp (− 1)

by (rule exp-ge-one-minus-x-over-n-power-n, auto)
finally have lim < e1 unfolding e1-def by auto
with f have ∃ l0. ∀ l. l ≥ l0 −→ f l > lim

by (metis eventually-sequentially order-tendstoD(1))
from someI-ex[OF this[unfolded f-def lim-def], folded L0-def] L0
have fl: f l > 1/3 unfolding f-def by auto
define start where start = inverse (real (k − 1)) ^ l ∗ (

∏
i = 0..<l. real (k

− 1 − i))
have uminus start
= uminus (prod (λ -. inverse (real (k − 1))) {0..<l} ∗ prod (λ i. real (k − 1

− i)) {0 ..< l})
by (simp add: start-def)

also have . . . = uminus (prod (λ i. inverse (real (k − 1)) ∗ real (k − 1 − i))
{0..<l})

by (subst prod.distrib, simp)
also have . . . ≤ uminus (prod (λ i. inverse (real (k − 1)) ∗ real (k − 1 − (l

− 1))) {0..<l})

9

unfolding neg-le-iff-le
by (intro prod-mono conjI mult-left-mono, insert k2 l2, auto intro!: diff-le-mono2)
also have . . . = uminus ((inverse (real (k − 1)) ∗ real (k − l)) ^ l) by simp
also have inverse (real (k − 1)) ∗ real (k − l) = inverse (real (k − 1)) ∗ ((real

(k − 1)) − (real l − 1))
using l2 k2 k by simp

also have . . . = 1 − (real l − 1) / (real (k − 1)) using l2 k2 k
by (simp add: field-simps)

also have real (k − 1) = real k − 1 using k2 by simp
also have . . . = (real l − 1) ∗ (real l + 1) unfolding kl2 of-nat-power

by (simp add: field-simps power2-eq-square)
also have (real l − 1) / . . . = inverse (real l + 1)

using l2 by (smt (verit, best) divide-divide-eq-left ′ divide-inverse nat-1-add-1
nat-less-real-le nonzero-mult-div-cancel-left of-nat-1 of-nat-add)

also have − ((1 − inverse (real l + 1)) ^ l) ≤ − ((1 − inverse (real l)) ^ l)
unfolding neg-le-iff-le
by (intro power-mono, insert l2, auto simp: field-simps)

also have . . . < − (1/3) using fl unfolding f-def by (auto simp: field-simps)
finally have start: start > 1 / 3 by simp
thus inverse (real (k − 1)) ^ l ∗ (

∏
i = 0..<l. real (k − 1 − i)) > 1/3

unfolding start-def by simp
qed (insert k2, auto)
finally show ?thesis by simp

qed

lemma approximation2: fixes s :: nat
assumes m choose k ≤ s ∗ L2 ∗ (m − l − 1 choose (k − l − 1))
shows ((m − l) / k)^l / (6 ∗ L^2) < s

proof −
let ?r = real
define q where q = (?r (L2) ∗ ?r (m − l − 1 choose (k − l − 1)))
have q: q > 0 unfolding q-def

by (insert L3 km, auto)
have ?r (m choose k) ≤ ?r (s ∗ L2 ∗ (m − l − 1 choose (k − l − 1)))

unfolding of-nat-le-iff using assms by simp
hence m choose k ≤ s ∗ q unfolding q-def by simp
hence ∗: s ≥ (m choose k) / q using q by (metis mult-imp-div-pos-le)
have (((m − l) / k)^l / (L^2)) / 6 < ((m − l) / k)^l / (L^2) / 1

by (rule divide-strict-left-mono, insert m2 L3 lm k, auto intro!: mult-pos-pos
divide-pos-pos zero-less-power)

also have . . . = ((m − l) / k)^l / (L^2) by simp
also have . . . ≤ ((m choose k) / (m − l − 1 choose (k − l − 1))) / (L^2)
proof (rule divide-right-mono)

define b where b = ?r (m − l − 1 choose (k − l − 1))
define c where c = (?r k)^l
have b0: b > 0 unfolding b-def using km l2 by simp
have c0: c > 0 unfolding c-def using k by auto
define aim where aim = (((m − l) / k)^l ≤ (m choose k) / (m − l − 1 choose

(k − l − 1)))

10

have aim ←→ ((m − l) / k)^l ≤ (m choose k) / b unfolding b-def aim-def
by simp

also have . . . ←→ b ∗ ((m − l) / k)^l ≤ (m choose k) using b0
by (simp add: mult.commute pos-le-divide-eq)

also have . . . ←→ b ∗ (m − l)^l / c ≤ (m choose k)
by (simp add: power-divide c-def)

also have . . . ←→ b ∗ (m − l)^l ≤ (m choose k) ∗ c using c0 b0
by (auto simp add: mult.commute pos-divide-le-eq)

also have (m choose k) = fact m / (fact k ∗ fact (m − k))
by (rule binomial-fact, insert km, auto)

also have b = fact (m − l − 1) / (fact (k − l − 1) ∗ fact (m − l − 1 − (k −
l − 1))) unfolding b-def

by (rule binomial-fact, insert k km, auto)
finally have aim ←→

fact (m − l − 1) / fact (k − l − 1) ∗ (m − l) ^ l / fact (m − l − 1 − (k
− l − 1))

≤ (fact m / fact k) ∗ (?r k)^l / fact (m − k) unfolding c-def by simp
also have m − l − 1 − (k − l − 1) = m − k using l2 k km by simp
finally have aim ←→

fact (m − l − 1) / fact (k − l − 1) ∗ ?r (m − l) ^ l
≤ fact m / fact k ∗ ?r k ^ l unfolding divide-le-cancel using km by simp

also have . . . ←→ (fact (m − (l + 1)) ∗ ?r (m − l) ^ l) ∗ fact k
≤ (fact m / k) ∗ (fact (k − (l + 1)) ∗ (?r k ∗ ?r k ^ l))

using k2
by (simp add: field-simps)

also have . . .
proof (intro mult-mono)

have fact k ≤ fact (k − (l + 1)) ∗ (?r k ^ (l + 1))
by (rule fact-approx-minus, insert k, auto)

also have . . . = (fact (k − (l + 1)) ∗ ?r k ^ l) ∗ ?r k by simp
finally show fact k ≤ fact (k − (l + 1)) ∗ (?r k ∗ ?r k ^ l) by (simp add:

field-simps)
have fact (m − (l + 1)) ∗ real (m − l) ^ l ≤ fact m / k ←→
(fact (m − (l + 1)) ∗ ?r k) ∗ real (m − l) ^ l ≤ fact m using k2 by (simp

add: field-simps)
also have . . .
proof −

have (fact (m − (l + 1)) ∗ ?r k) ∗ ?r (m − l) ^ l ≤
(fact (m − (l + 1)) ∗ ?r (m − l)) ∗ ?r (m − l) ^ l

by (intro mult-mono, insert kml, auto)
also have ((fact (m − (l + 1)) ∗ ?r (m − l)) ∗ ?r (m − l) ^ l) =

(fact (m − (l + 1)) ∗ ?r (m − l) ^ (l + 1)) by simp
also have . . . ≤ fact m

by (rule fact-approx-upper-minus, insert km k, auto)
finally show fact (m − (l + 1)) ∗ real k ∗ real (m − l) ^ l ≤ fact m .

qed
finally show fact (m − (l + 1)) ∗ real (m − l) ^ l ≤ fact m / k .

qed auto
finally show ((m − l) / k)^l ≤ (m choose k) / (m − l − 1 choose (k − l −

11

1))
unfolding aim-def .

qed simp
also have . . . = (m choose k) / q

unfolding q-def by simp
also have . . . ≤ s using q ∗ by metis
finally show ((m − l) / k)^l / (6 ∗ L^2) < s by simp

qed

lemma approximation3: fixes s :: nat
assumes (k − 1)^m / 3 < (s ∗ (L2 ∗ (k − 1) ^ m)) / 2 ^ (p − 1)
shows ((m − l) / k)^l / (6 ∗ L^2) < s

proof −
define A where A = real (L2 ∗ (k − 1) ^ m)
have A0: A > 0 unfolding A-def using L3 k2 m2 by simp
from mult-strict-left-mono[OF assms, of 2 ^ (p − 1)]
have 2^(p − 1) ∗ (k − 1)^m / 3 < s ∗ A

by (simp add: A-def)
from divide-strict-right-mono[OF this, of A] A0
have 2^(p − 1) ∗ (k − 1)^m / 3 / A < s

by simp
also have 2^(p − 1) ∗ (k − 1)^m / 3 / A = 2^(p − 1) / (3 ∗ L^2)

unfolding A-def using k2 by simp
also have . . . = 2^p / (6 ∗ L^2) using p by (cases p, auto)
also have 2^p = 2 powr p

by (simp add: powr-realpow)
finally have ∗: 2 powr p / (6 ∗ L2) < s .
have m ^ l = m powr l using m2 l2 powr-realpow by auto
also have . . . = 2 powr (log 2 m ∗ l)

unfolding powr-powr [symmetric]
by (subst powr-log-cancel, insert m2, auto)

also have . . . = 2 powr (l ∗ log 2 m) by (simp add: ac-simps)
also have . . . ≤ 2 powr p

by (rule powr-mono, insert pllog, auto)
finally have m ^ l ≤ 2 powr p .
from divide-right-mono[OF this, of 6 ∗ L2] ∗
have m ^ l / (6 ∗ L2) < s by simp
moreover have ((m − l) / k)^l / (6 ∗ L^2) ≤ m^l / (6 ∗ L^2)
proof (rule divide-right-mono, unfold of-nat-power , rule power-mono)

have real (m − l) / real k ≤ real (m − l) / 1
using k2 lm by (intro divide-left-mono, auto)

also have . . . ≤ m by simp
finally show (m − l) / k ≤ m by simp

qed auto
ultimately show ?thesis by simp

qed

lemma identities: k = root 4 m l = root 8 m
proof −

12

let ?r = real
have ?r k ^ 4 = ?r m unfolding m-def by simp
from arg-cong[OF this, of root 4]
show km-id: k = root 4 m by (simp add: real-root-pos2)
have ?r l ^ 8 = ?r m unfolding m-def using kl2 by simp
from arg-cong[OF this, of root 8]
show lm-id: l = root 8 m by (simp add: real-root-pos2)

qed

lemma identities2: root 4 m = m powr (1/4) root 8 m = m powr (1/8)
by (subst root-powr-inverse, insert m2, auto)+

lemma appendix-A-1: assumes x ≥ M0 ′ shows x powr (2/3) ≤ x powr (3/4) −
1
proof −

have (λ x. x powr (2/3) / (x powr (3/4) − 1)) −−−−→ 0
by real-asymp

from LIMSEQ-D[OF this, of 1, simplified] obtain x0 :: nat where
sub: x ≥ x0 =⇒ x powr (2 / 3) / |x powr (3/4) − 1| < 1 for x
by (auto simp: field-simps)

have (λ x :: real. 2 / (x powr (3/4))) −−−−→ 0
by real-asymp

from LIMSEQ-D[OF this, of 1, simplified] obtain x1 :: nat where
sub2: x ≥ x1 =⇒ 2 / x powr (3 / 4) < 1 for x by auto

{
fix x
assume x: x ≥ x0 x ≥ x1 x ≥ 1
define a where a = x powr (3/4) − 1
from sub[OF x(1)] have small: x powr (2 / 3) / |a| ≤ 1

by (simp add: a-def)
have 2: 2 ≤ x powr (3/4) using sub2[OF x(2)] x(3) by simp
hence a: a > 0 by (simp add: a-def)
from mult-left-mono[OF small, of a] a
have x powr (2 / 3) ≤ a

by (simp add: field-simps)
hence x powr (2 / 3) ≤ x powr (3 / 4) − 1 unfolding a-def by simp

}
hence ∃ x0 :: nat. ∀ x ≥ x0. x powr (2 / 3) ≤ x powr (3 / 4) − 1

by (intro exI [of - max x0 (max x1 1)], auto)
from someI-ex[OF this, folded M0 ′-def , rule-format, OF assms]
show ?thesis .

qed

lemma appendix-A-2: (p − 1)^l < m powr ((1 / 8 + eps) ∗ l)
proof −

define f where f (x :: nat) = (root 8 x ∗ log 2 x + 1) / (x powr (1/8 + eps))
for x

13

have f −−−−→ 0 using eps unfolding f-def by real-asymp
from LIMSEQ-D[OF this, of 1]
have ex: ∃ x. ∀ y. y ≥ x −→ f y ≤ 1 by fastforce
have lim: root 8 m ∗ log 2 m + 1 ≤ m powr (1 / 8 + eps)

using someI-ex[OF ex[unfolded f-def], folded M0-def , rule-format, OF M0] m2
by (simp add: field-simps)

define start where start = real (p − 1)^l
have (p − 1)^l < p ^ l

by (rule power-strict-mono, insert p l2, auto)
hence start < real (p ^ l)

using start-def of-nat-less-of-nat-power-cancel-iff by blast
also have . . . = p powr l

by (subst powr-realpow, insert p, auto)
also have . . . ≤ (l ∗ log 2 m + 1) powr l

by (rule powr-mono2, insert pllog, auto)
also have l = root 8 m unfolding identities by simp
finally have start < (root 8 m ∗ log 2 m + 1) powr root 8 m

by (simp add: identities2)
also have . . . ≤ (m powr (1 / 8 + eps)) powr root 8 m

by (rule powr-mono2[OF - - lim], insert m2, auto)
also have . . . = m powr ((1 / 8 + eps) ∗ l) unfolding powr-powr identities ..
finally show ?thesis unfolding start-def by simp

qed

lemma appendix-A-3: 6 ∗ real l^16 ∗ fact l < m powr (1 / 8 ∗ l)
proof −

define f where f = (λn. 6 ∗ (real n)^16 ∗ (sqrt (2 ∗ pi ∗ real n) ∗ (real n / exp
1) ^ n))

define g where g = (λ n. 6 ∗ (real n)^16 ∗ (sqrt (2 ∗ 4 ∗ real n) ∗ (real n / 2)
^ n))

define h where h = (λ n. ((real (n2 ^ 4) powr (1 / 8 ∗ (real (n2 ^ 4)) powr
(1/8)))))

have e: 2 ≤ (exp 1 :: real) using exp-ge-add-one-self [of 1] by simp
from fact-asymp-equiv
have 1: (λ n. 6 ∗ (real n)^16 ∗ fact n / h n) ∼[sequentially] (λ n. f n / h n)

unfolding f-def
by (intro asymp-equiv-intros)

have 2: f n ≤ g n for n unfolding f-def g-def
by (intro mult-mono power-mono divide-left-mono real-sqrt-le-mono, insert

pi-less-4 e, auto)
have 2: abs (f n / h n) ≤ abs (g n / h n) for n

unfolding abs-le-square-iff power2-eq-square
by (intro mult-mono divide-right-mono 2, auto simp: h-def f-def g-def)

have 2: abs (g n / h n) < e =⇒ abs (f n / h n) < e for n e using 2[of n] by
simp

have (λn. g n / h n) −−−−→ 0
unfolding g-def h-def by real-asymp

from LIMSEQ-D[OF this] 2
have (λn. f n / h n) −−−−→ 0

14

by (intro LIMSEQ-I , fastforce)
with 1 have (λn. 6 ∗ (real n)^16 ∗ fact n / h n) −−−−→ 0

using tendsto-asymp-equiv-cong by blast
from LIMSEQ-D[OF this, of 1] obtain n0 where 3: n ≥ n0 =⇒ norm (6 ∗

(real n)^16 ∗ fact n / h n) < 1 for n by auto
{

fix n
assume n: n ≥ max 1 n0
hence hn: h n > 0 unfolding h-def by auto
from n have n ≥ n0 by simp
from 3[OF this] have 6 ∗ n ^ 16 ∗ fact n / abs (h n) < 1 by auto
with hn have 6 ∗ (real n) ^ 16 ∗ fact n < h n by simp

}
hence ∃ n0. ∀ n. n ≥ n0 −→ 6 ∗ n ^ 16 ∗ fact n < h n by blast
from someI-ex[OF this[unfolded h-def], folded L0 ′-def , rule-format, OF L0 ′]
have 6 ∗ real l^16 ∗ fact l < real (l2 ^ 4) powr (1 / 8 ∗ real (l2 ^ 4) powr (1 /

8)) by simp
also have . . . = m powr (1 / 8 ∗ l) using identities identities2 kl2

by (metis m-def)
finally show ?thesis .

qed

lemma appendix-A-4: 12 ∗ L^2 ≤ m powr (m powr (1 / 8) ∗ 0.51)
proof −

let ?r = real
define Lappr where Lappr = m ∗ m ∗ fact l ∗ p ^ l / 2
have L = (fact l ∗ (p − 1) ^ l) unfolding L-def by simp
hence ?r L ≤ (fact l ∗ (p − 1) ^ l) by linarith
also have . . . = (1 ∗ ?r (fact l)) ∗ (?r (p − 1) ^ l) by simp
also have . . . ≤ ((m ∗ m / 2) ∗ ?r (fact l)) ∗ (?r (p − 1) ^ l)

by (intro mult-right-mono, insert m2, cases m; cases m − 1, auto)
also have . . . = (6 ∗ real (m ∗ m) ∗ fact l) ∗ (?r (p − 1) ^ l) / 12 by simp
also have real (m ∗ m) = real l^16 unfolding m-def unfolding kl2 by simp
also have (6 ∗ real l^16 ∗ fact l) ∗ (?r (p − 1) ^ l) / 12
≤ (m powr (1 / 8 ∗ l) ∗ (m powr ((1 / 8 + eps) ∗ l))) / 12

by (intro divide-right-mono mult-mono, insert appendix-A-2 appendix-A-3, auto)

also have . . . = (m powr (1 / 8 ∗ l + (1 / 8 + eps) ∗ l)) / 12
by (simp add: powr-add)

also have 1 / 8 ∗ l + (1 / 8 + eps) ∗ l = l ∗ (1/4 + eps) by (simp add:
field-simps)

also have l = m powr (1/8) unfolding identities identities2 ..
finally have LL: ?r L ≤ m powr (m powr (1 / 8) ∗ (1 / 4 + eps)) / 12 .
from power-mono[OF this, of 2]
have L^2 ≤ (m powr (m powr (1 / 8) ∗ (1 / 4 + eps)) / 12)^2

by simp
also have . . . = (m powr (m powr (1 / 8) ∗ (1 / 4 + eps)))^2 / 144

by (simp add: power2-eq-square)
also have . . . = (m powr (m powr (1 / 8) ∗ (1 / 4 + eps) ∗ 2)) / 144

15

by (subst powr-realpow[symmetric], (use m2 in force), unfold powr-powr , simp)
also have . . . = (m powr (m powr (1 / 8) ∗ (1 / 2 + 2 ∗ eps))) / 144

by (simp add: algebra-simps)
also have . . . ≤ (m powr (m powr (1 / 8) ∗ 0.51)) / 144

by (intro divide-right-mono powr-mono mult-left-mono, insert m2, auto simp:
eps-def)

finally have L^2 ≤ m powr (m powr (1 / 8) ∗ 0.51) / 144 by simp
from mult-left-mono[OF this, of 12]
have 12 ∗ L^2 ≤ 12 ∗ m powr (m powr (1 / 8) ∗ 0.51) / 144 by simp
also have . . . = m powr (m powr (1 / 8) ∗ 0.51) / 12 by simp
also have . . . ≤ m powr (m powr (1 / 8) ∗ 0.51) / 1

by (rule divide-left-mono, auto)
finally show ?thesis by simp

qed

lemma approximation4: fixes s :: nat
assumes s > ((m − l) / k)^l / (6 ∗ L^2)
shows s > 2 ∗ k powr (4 / 7 ∗ sqrt k)

proof −
let ?r = real
have diff : ?r (m − l) = ?r m − ?r l using lm by simp
have m powr (2/3) ≤ m powr (3/4) − 1 using appendix-A-1[OF M0 ′] by auto
also have . . . ≤ (m − m powr (1/8)) / m powr (1/4)

unfolding diff-divide-distrib
by (rule diff-mono, insert m2, auto simp: divide-powr-uminus powr-mult-base

powr-add[symmetric],
auto simp: powr-minus-divide intro!: ge-one-powr-ge-zero)

also have . . . = (m − root 8 m) / root 4 m using m2
by (simp add: root-powr-inverse)

also have . . . = (m − l) / k unfolding identities diff by simp
finally have m powr (2/3) ≤ (m − l) / k by simp
from power-mono[OF this, of l]
have ineq1: (m powr (2 / 3)) ^ l ≤ ((m − l) / k) ^ l using m2 by auto
have (m powr (l / 7)) ≤ (m powr (2 / 3 ∗ l − l ∗ 0.51))

by (intro powr-mono, insert m2, auto)
also have . . . = (m powr (2 / 3)) powr l / (m powr (m powr (1 / 8) ∗ 0.51))

unfolding powr-diff powr-powr identities identities2 by simp
also have . . . = (m powr (2 / 3)) ^ l / (m powr (m powr (1 / 8) ∗ 0.51))

by (subst powr-realpow, insert m2, auto)
also have . . . ≤ (m powr (2 / 3)) ^ l / (12 ∗ L2)
by (rule divide-left-mono[OF appendix-A-4], insert L3 m2, auto intro!: mult-pos-pos)
also have . . . = (m powr (2 / 3)) ^ l / (?r 12 ∗ L2) by simp
also have . . . ≤ ((m − l) / k) ^ l / (?r 12 ∗ L2)

by (rule divide-right-mono[OF ineq1], insert L3, auto)
also have . . . < s / 2 using assms by simp
finally have 2 ∗ m powr (real l / 7) < s by simp
also have m powr (real l / 7) = m powr (root 8 m / 7)

unfolding identities by simp
finally have s > 2 ∗ m powr (root 8 m / 7) by simp

16

also have root 8 m = root 2 k using m2
by (metis identities(2) kl2 of-nat-0-le-iff of-nat-power pos2 real-root-power-cancel)
also have ?r m = k powr 4 unfolding m-def by simp
also have (k powr 4) powr ((root 2 k) / 7)

= k powr (4 ∗ (root 2 k) / 7) unfolding powr-powr by simp
also have . . . = k powr (4 / 7 ∗ sqrt k) unfolding sqrt-def by simp
finally show s > 2 ∗ k powr (4 / 7 ∗ sqrt k) .

qed

end

end
theory Clique-Large-Monotone-Circuits

imports
Sunflowers.Erdos-Rado-Sunflower
Preliminaries
Assumptions-and-Approximations
Monotone-Formula

begin

disable list-syntax
no-syntax -list :: args ⇒ ′a list ([(-)])
no-syntax --listcompr :: args ⇒ ′a list ([(-)])

hide-const (open) Sigma-Algebra.measure

4.2 Plain Graphs
definition binprod :: ′a set ⇒ ′a set ⇒ ′a set set (infixl · 60) where

X · Y = {{x,y} | x y. x ∈ X ∧ y ∈ Y ∧ x 6= y}

abbreviation sameprod :: ′a set ⇒ ′a set set ((-)^2) where
X^2 ≡ X · X

lemma sameprod-altdef : X^2 = {Y . Y ⊆ X ∧ card Y = 2}
unfolding binprod-def by (auto simp: card-2-iff)

definition numbers :: nat ⇒ nat set ([(-)]) where
[n] ≡ {..<n}

lemma card-sameprod: finite X =⇒ card (X^2) = card X choose 2
unfolding sameprod-altdef
by (subst n-subsets, auto)

lemma sameprod-mono: X ⊆ Y =⇒ X^2 ⊆ Y^2
unfolding sameprod-altdef by auto

lemma sameprod-finite: finite X =⇒ finite (X^2)
unfolding sameprod-altdef by simp

17

lemma numbers2-mono: x ≤ y =⇒ [x]^2 ⊆ [y]^2
by (rule sameprod-mono, auto simp: numbers-def)

lemma card-numbers[simp]: card [n] = n
by (simp add: numbers-def)

lemma card-numbers2[simp]: card ([n]^2) = n choose 2
by (subst card-sameprod, auto simp: numbers-def)

type-synonym vertex = nat
type-synonym graph = vertex set set

definition Graphs :: vertex set ⇒ graph set where
Graphs V = { G. G ⊆ V^2 }

definition Clique :: vertex set ⇒ nat ⇒ graph set where
Clique V k = { G. G ∈ Graphs V ∧ (∃ C ⊆ V . C^2 ⊆ G ∧ card C = k) }

context first-assumptions
begin

abbreviation G where G ≡ Graphs [m]

lemmas G-def = Graphs-def [of [m]]

lemma empty-G[simp]: {} ∈ G unfolding G-def by auto

definition v :: graph ⇒ vertex set where
v G = { x . ∃ y. {x,y} ∈ G}

lemma v-union: v (G ∪ H) = v G ∪ v H
unfolding v-def by auto

definition K :: graph set where
K = { K . K ∈ G ∧ card (v K) = k ∧ K = (v K)^2 }

lemma v-G: G ∈ G =⇒ v G ⊆ [m]
unfolding v-def G-def sameprod-altdef by auto

lemma v-mono: G ⊆ H =⇒ v G ⊆ v H unfolding v-def by auto

lemma v-sameprod[simp]: assumes card X ≥ 2
shows v (X^2) = X

proof −
from obtain-subset-with-card-n[OF assms] obtain Y where Y ⊆ X

and Y : card Y = 2 by auto
then obtain x y where x ∈ X y ∈ X and x 6= y

18

by (auto simp: card-2-iff)
thus ?thesis unfolding sameprod-altdef v-def

by (auto simp: card-2-iff doubleton-eq-iff) blast
qed

lemma v-mem-sub: assumes card e = 2 e ∈ G shows e ⊆ v G
proof −

obtain x y where e: e = {x,y} and xy: x 6= y using assms
by (auto simp: card-2-iff)

from assms(2) have x: x ∈ v G unfolding e
by (auto simp: v-def)

from e have e: e = {y,x} unfolding e by auto
from assms(2) have y: y ∈ v G unfolding e

by (auto simp: v-def)
show e ⊆ v G using x y unfolding e by auto

qed

lemma v-G-2: assumes G ∈ G shows G ⊆ (v G)^2
proof

fix e
assume eG: e ∈ G
with assms[unfolded G-def binprod-def] obtain x y where e: e = {x,y} and xy:

x 6= y by auto
from eG e xy have x: x ∈ v G by (auto simp: v-def)
from e have e: e = {y,x} unfolding e by auto
from eG e xy have y: y ∈ v G by (auto simp: v-def)
from x y xy show e ∈ (v G)^2 unfolding binprod-def e by auto

qed

lemma v-numbers2[simp]: x ≥ 2 =⇒ v ([x]^2) = [x]
by (rule v-sameprod, auto)

lemma sameprod-G: assumes X ⊆ [m] card X ≥ 2
shows X^2 ∈ G
unfolding G-def using assms(2) sameprod-mono[OF assms(1)]
by auto

lemma finite-numbers[simp,intro]: finite [n]
unfolding numbers-def by auto

lemma finite-numbers2[simp,intro]: finite ([n]^2)
unfolding sameprod-altdef using finite-subset[of - [m]] by auto

lemma finite-members-G: G ∈ G =⇒ finite G
unfolding G-def using finite-subset[of G [m]^2] by auto

lemma finite-G[simp,intro]: finite G
unfolding G-def by simp

19

lemma finite-vG: assumes G ∈ G
shows finite (v G)

proof −
from finite-members-G[OF assms]
show ?thesis
proof (induct rule: finite-induct)

case (insert xy F)
show ?case
proof (cases ∃ x y. xy = {x,y})

case False
hence v (insert xy F) = v F unfolding v-def by auto
thus ?thesis using insert by auto

next
case True
then obtain x y where xy: xy = {x,y} by auto
hence v (insert xy F) = insert x (insert y (v F))

unfolding v-def by auto
thus ?thesis using insert by auto

qed
qed (auto simp: v-def)

qed

lemma v-empty[simp]: v {} = {} unfolding v-def by auto

lemma v-card2: assumes G ∈ G G 6= {}
shows 2 ≤ card (v G)

proof −
from assms[unfolded G-def] obtain edge where ∗: edge ∈ G edge ∈ [m]^2 by

auto
then obtain x y where edge: edge = {x,y} x 6= y unfolding binprod-def by

auto
with ∗ have sub: {x,y} ⊆ v G unfolding v-def

by (smt (verit, best) insert-commute insert-compr mem-Collect-eq singleton-iff
subsetI)

from assms finite-vG have finite (v G) by auto
from sub ‹x 6= y› this show 2 ≤ card (v G)

by (metis card-2-iff card-mono)
qed

lemma K-altdef : K = {V^2 | V . V ⊆ [m] ∧ card V = k}
(is - = ?R)

proof −
{

fix K
assume K ∈ K
hence K : K ∈ G and card: card (v K) = k and KvK : K = (v K)^2

unfolding K-def by auto

20

from v-G[OF K] card KvK have K ∈ ?R by auto
}
moreover
{

fix V
assume 1: V ⊆ [m] and card V = k
hence V^2 ∈ K unfolding K-def using k2 sameprod-G[OF 1]

by auto
}
ultimately show ?thesis by auto

qed

lemma K-G: K ⊆ G
unfolding K-def by auto

definition CLIQUE :: graph set where
CLIQUE = { G. G ∈ G ∧ (∃ K ∈ K. K ⊆ G) }

lemma empty-CLIQUE [simp]: {} /∈ CLIQUE unfolding CLIQUE-def K-def us-
ing k2 by (auto simp: v-def)

4.3 Test Graphs

Positive test graphs are precisely the cliques of size k.
abbreviation POS ≡ K

lemma POS-G: POS ⊆ G by (rule K-G)

Negative tests are coloring-functions of vertices that encode graphs which
have cliques of size at most k − 1.
type-synonym colorf = vertex ⇒ nat

definition F :: colorf set where
F = [m] →E [k − 1]

lemma finite-F : finite F
unfolding F-def numbers-def
by (meson finite-PiE finite-lessThan)

definition C :: colorf ⇒ graph where
C f = { {x, y} | x y . {x,y} ∈ [m]^2 ∧ f x 6= f y}

definition NEG :: graph set where
NEG = C ‘ F

Lemma 1 lemma CLIQUE-NEG: CLIQUE ∩ NEG = {}
proof −

{

21

fix G
assume GC : G ∈ CLIQUE and GN : G ∈ NEG
from GC [unfolded CLIQUE-def] obtain K where

K : K ∈ K and G: G ∈ G and KsubG: K ⊆ G by auto
from GN [unfolded NEG-def] obtain f where fF : f ∈ F and

GCf : G = C f by auto
from K [unfolded K-def] have KG: K ∈ G and

KvK : K = v K^2 and card1: card (v K) = k by auto
from k2 card1 have ineq: card (v K) > card [k − 1] by auto
from v-G[OF KG] have vKm: v K ⊆ [m] by auto
from fF [unfolded F-def] vKm have f : f ∈ v K → [k − 1]

by auto
from card-inj[OF f] ineq
have ¬ inj-on f (v K) by auto
then obtain x y where ∗: x ∈ v K y ∈ v K x 6= y and ineq: f x = f y

unfolding inj-on-def by auto
have {x,y} /∈ G unfolding GCf C-def using ineq

by (auto simp: doubleton-eq-iff)
with KsubG KvK have {x,y} /∈ v K^2 by auto
with ∗ have False unfolding binprod-def by auto

}
thus ?thesis by auto

qed

lemma NEG-G: NEG ⊆ G
proof −

{
fix f
assume f ∈ F
hence C f ∈ G

unfolding NEG-def C-def G-def
by (auto simp: sameprod-altdef)

}
thus NEG ⊆ G unfolding NEG-def by auto

qed

lemma finite-POS-NEG: finite (POS ∪ NEG)
using POS-G NEG-G
by (intro finite-subset[OF - finite-G], auto)

lemma POS-sub-CLIQUE : POS ⊆ CLIQUE
unfolding CLIQUE-def using K-G by auto

lemma POS-CLIQUE : POS ⊂ CLIQUE
proof −

have [k+1]^2 ∈ CLIQUE
unfolding CLIQUE-def

proof (standard, intro conjI bexI [of - [k]^2])
show [k]^2 ⊆ [k+1]^2

22

by (rule numbers2-mono, auto)
show [k]^2 ∈ K unfolding K-altdef using km

by (auto intro!: exI [of - [k]], auto simp: numbers-def)
show [k+1]^2 ∈ G using km k2

by (intro sameprod-G, auto simp: numbers-def)
qed
moreover have [k+1]^2 /∈ POS unfolding K-def using v-numbers2[of k + 1]

k2
by auto

ultimately show ?thesis using POS-sub-CLIQUE by blast
qed

lemma card-POS : card POS = m choose k
proof −

have m choose k =
card {B. B ⊆ [m] ∧ card B = k} (is - = card ?A)
by (subst n-subsets[of [m] k], auto simp: numbers-def)

also have . . . = card (sameprod ‘ ?A)
proof (rule card-image[symmetric])

{
fix A
assume A ∈ ?A
hence v (sameprod A) = A using k2

by (subst v-sameprod, auto)
}
thus inj-on sameprod ?A by (rule inj-on-inverseI)

qed
also have sameprod ‘ {B. B ⊆ [m] ∧ card B = k} = POS

unfolding K-altdef by auto
finally show ?thesis by simp

qed

4.4 Basic operations on sets of graphs
definition odot :: graph set ⇒ graph set ⇒ graph set (infixl � 65) where

X � Y = { D ∪ E | D E . D ∈ X ∧ E ∈ Y }

lemma union-G[intro]: G ∈ G =⇒ H ∈ G =⇒ G ∪ H ∈ G
unfolding G-def by auto

lemma odot-G: X ⊆ G =⇒ Y ⊆ G =⇒ X � Y ⊆ G
unfolding odot-def by auto

4.5 Acceptability

Definition 2
definition accepts :: graph set ⇒ graph ⇒ bool (infixl `̀ 55) where
(X `̀ G) = (∃ D ∈ X . D ⊆ G)

23

lemma acceptsI [intro]: D ⊆ G =⇒ D ∈ X =⇒ X `̀ G
unfolding accepts-def by auto

definition ACC :: graph set ⇒ graph set where
ACC X = { G. G ∈ G ∧ X `̀ G}

definition ACC-cf :: graph set ⇒ colorf set where
ACC-cf X = { F . F ∈ F ∧ X `̀ C F}

lemma ACC-cf-F : ACC-cf X ⊆ F
unfolding ACC-cf-def by auto

lemma finite-ACC [intro,simp]: finite (ACC-cf X)
by (rule finite-subset[OF ACC-cf-F finite-F])

lemma ACC-I [intro]: G ∈ G =⇒ X `̀ G =⇒ G ∈ ACC X
unfolding ACC-def by auto

lemma ACC-cf-I [intro]: F ∈ F =⇒ X `̀ C F =⇒ F ∈ ACC-cf X
unfolding ACC-cf-def by auto

lemma ACC-cf-mono: X ⊆ Y =⇒ ACC-cf X ⊆ ACC-cf Y
unfolding ACC-cf-def accepts-def by auto

Lemma 3
lemma ACC-cf-empty: ACC-cf {} = {}

unfolding ACC-cf-def accepts-def by auto

lemma ACC-empty[simp]: ACC {} = {}
unfolding ACC-def accepts-def by auto

lemma ACC-cf-union: ACC-cf (X ∪ Y) = ACC-cf X ∪ ACC-cf Y
unfolding ACC-cf-def accepts-def by blast

lemma ACC-union: ACC (X ∪ Y) = ACC X ∪ ACC Y
unfolding ACC-def accepts-def by blast

lemma ACC-odot: ACC (X � Y) = ACC X ∩ ACC Y
proof −

{
fix G
assume G ∈ ACC (X � Y)
from this[unfolded ACC-def accepts-def]
obtain D E F :: graph where ∗: D ∈ X E ∈ Y G ∈ G D ∪ E ⊆ G

by (force simp: odot-def)
hence G ∈ ACC X ∩ ACC Y

unfolding ACC-def accepts-def by auto
}

24

moreover
{

fix G
assume G ∈ ACC X ∩ ACC Y
from this[unfolded ACC-def accepts-def]
obtain D E where ∗: D ∈ X E ∈ Y G ∈ G D ⊆ G E ⊆ G

by auto
let ?F = D ∪ E
from ∗ have ?F ∈ X � Y unfolding odot-def using ∗ by blast
moreover have ?F ⊆ G using ∗ by auto
ultimately have G ∈ ACC (X � Y) using ∗

unfolding ACC-def accepts-def by blast
}
ultimately show ?thesis by blast

qed

lemma ACC-cf-odot: ACC-cf (X � Y) = ACC-cf X ∩ ACC-cf Y
proof −

{
fix G
assume G ∈ ACC-cf (X � Y)
from this[unfolded ACC-cf-def accepts-def]
obtain D E :: graph where ∗: D ∈ X E ∈ Y G ∈ F D ∪ E ⊆ C G

by (force simp: odot-def)
hence G ∈ ACC-cf X ∩ ACC-cf Y

unfolding ACC-cf-def accepts-def by auto
}
moreover
{

fix F
assume F ∈ ACC-cf X ∩ ACC-cf Y
from this[unfolded ACC-cf-def accepts-def]
obtain D E where ∗: D ∈ X E ∈ Y F ∈ F D ⊆ C F E ⊆ C F

by auto
let ?F = D ∪ E
from ∗ have ?F ∈ X � Y unfolding odot-def using ∗ by blast
moreover have ?F ⊆ C F using ∗ by auto
ultimately have F ∈ ACC-cf (X � Y) using ∗

unfolding ACC-cf-def accepts-def by blast
}
ultimately show ?thesis by blast

qed

4.6 Approximations and deviations
definition Gl :: graph set where
Gl = { G. G ∈ G ∧ card (v G) ≤ l }

definition v-gs :: graph set ⇒ vertex set set where

25

v-gs X = v ‘ X

lemma v-gs-empty[simp]: v-gs {} = {}
unfolding v-gs-def by auto

lemma v-gs-union: v-gs (X ∪ Y) = v-gs X ∪ v-gs Y
unfolding v-gs-def by auto

lemma v-gs-mono: X ⊆ Y =⇒ v-gs X ⊆ v-gs Y
using v-gs-def by auto

lemma finite-v-gs: assumes X ⊆ G
shows finite (v-gs X)

proof −
have v-gs X ⊆ v ‘ G

using assms unfolding v-gs-def by force
moreover have finite G using finite-G by auto
ultimately show ?thesis by (metis finite-surj)

qed

lemma finite-v-gs-Gl: assumes X ⊆ Gl
shows finite (v-gs X)
by (rule finite-v-gs, insert assms, auto simp: Gl-def)

definition PLGl :: graph set set where
PLGl = { X . X ⊆ Gl ∧ card (v-gs X) ≤ L}

definition odotl :: graph set ⇒ graph set ⇒ graph set (infixl �l 65) where
X �l Y = (X � Y) ∩ Gl

lemma joinl-join: X �l Y ⊆ X � Y
unfolding odot-def odotl-def by blast

lemma card-v-gs-join: assumes X : X ⊆ G and Y : Y ⊆ G
and Z : Z ⊆ X � Y
shows card (v-gs Z) ≤ card (v-gs X) ∗ card (v-gs Y)

proof −
note fin = finite-v-gs[OF X] finite-v-gs[OF Y]
have card (v-gs Z) ≤ card ((λ (A, B). A ∪ B) ‘ (v-gs X × v-gs Y))
proof (rule card-mono[OF finite-imageI])

show finite (v-gs X × v-gs Y)
using fin by auto

have v-gs Z ⊆ v-gs (X � Y)
using v-gs-mono[OF Z] .

also have . . . ⊆ (λ(x, y). x ∪ y) ‘ (v-gs X × v-gs Y) (is ?L ⊆ ?R)
unfolding odot-def v-gs-def by (force split: if-splits simp: v-union)

finally show v-gs Z ⊆ (λ(x, y). x ∪ y) ‘ (v-gs X × v-gs Y) .

26

qed
also have . . . ≤ card (v-gs X × v-gs Y)

by (rule card-image-le, insert fin, auto)
also have . . . = card (v-gs X) ∗ card (v-gs Y)

by (rule card-cartesian-product)
finally show ?thesis .

qed

Definition 6 – elementary plucking step
definition plucking-step :: graph set ⇒ graph set where

plucking-step X = (let vXp = v-gs X ;
S = (SOME S . S ⊆ vXp ∧ sunflower S ∧ card S = p);
U = {E ∈ X . v E ∈ S};
Vs =

⋂
S ;

Gs = Vs^2
in X − U ∪ {Gs})

end

context second-assumptions
begin

Lemma 9 – for elementary plucking step
lemma v-sameprod-subset: v (Vs^2) ⊆ Vs unfolding binprod-def v-def

by (auto simp: doubleton-eq-iff)

lemma plucking-step: assumes X : X ⊆ Gl
and L: card (v-gs X) > L
and Y : Y = plucking-step X

shows card (v-gs Y) ≤ card (v-gs X) − p + 1
Y ⊆ Gl
POS ∩ ACC X ⊆ ACC Y
2 ^ p ∗ card (ACC-cf Y − ACC-cf X) ≤ (k − 1) ^ m
Y 6= {}

proof −
let ?vXp = v-gs X
have sf-precond: ∀A∈ ?vXp. finite A ∧ card A ≤ l

using X unfolding Gl-def Gl-def v-gs-def by (auto intro: finite-vG intro!: v-G
v-card2)

note sunflower = Erdos-Rado-sunflower [OF sf-precond]
from p have p0: p 6= 0 by auto
have (p − 1) ^ l ∗ fact l < card ?vXp using L[unfolded L-def]

by (simp add: ac-simps)
note sunflower = sunflower [OF this]
define S where S = (SOME S . S ⊆ ?vXp ∧ sunflower S ∧ card S = p)
define U where U = {E ∈ X . v E ∈ S}
define Vs where Vs =

⋂
S

define Gs where Gs = Vs^2
let ?U = U
let ?New = Gs :: graph

27

have Y : Y = X − U ∪ {?New}
using Y [unfolded plucking-step-def Let-def , folded S-def , folded U-def ,

folded Vs-def , folded Gs-def] .
have U : U ⊆ Gl using X unfolding U-def by auto
hence U ⊆ G unfolding Gl-def by auto
from sunflower
have ∃ S . S ⊆ ?vXp ∧ sunflower S ∧ card S = p by auto
from someI-ex[OF this, folded S-def]
have S : S ⊆ ?vXp sunflower S card S = p by (auto simp: Vs-def)
have fin1: finite ?vXp using finite-v-gs-Gl[OF X] .
from X have finX : finite X unfolding Gl-def

using finite-subset[of X , OF - finite-G] by auto
from fin1 S have finS : finite S by (metis finite-subset)
from finite-subset[OF - finX] have finU : finite U unfolding U-def by auto
from S p have Snempty: S 6= {} by auto
have UX : U ⊆ X unfolding U-def by auto
{

from Snempty obtain s where sS : s ∈ S by auto
with S have s ∈ v-gs X by auto
then obtain Sp where Sp ∈ X and sSp: s = v Sp

unfolding v-gs-def by auto
hence ∗: Sp ∈ U using ‹s ∈ S› unfolding U-def by auto
from ∗ X UX have le: card (v Sp) ≤ l finite (v Sp) Sp ∈ G

unfolding Gl-def Gl-def using finite-vG[of Sp] by auto
hence m: v Sp ⊆ [m] by (intro v-G)
have Vs ⊆ v Sp using sS sSp unfolding Vs-def by auto
with card-mono[OF ‹finite (v Sp)› this] finite-subset[OF this ‹finite (v Sp)›] le

∗ m
have card Vs ≤ l U 6= {} finite Vs Vs ⊆ [m] by auto

}
hence card-Vs: card Vs ≤ l and Unempty: U 6= {}

and fin-Vs: finite Vs and Vsm: Vs ⊆ [m] by auto
have vGs: v Gs ⊆ Vs unfolding Gs-def by (rule v-sameprod-subset)
have GsG: Gs ∈ G unfolding Gs-def G-def

by (intro CollectI Inter-subset sameprod-mono Vsm)
have GsGl: Gs ∈ Gl unfolding Gl-def using GsG vGs card-Vs card-mono[OF -

vGs]
by (simp add: fin-Vs)

hence DsDl: ?New ∈ Gl using UX
unfolding Gl-def G-def Gl-def G-def by auto

with X U show Y ⊆ Gl unfolding Y by auto
from X have XD: X ⊆ G unfolding Gl-def by auto
have vplus-dsU : v-gs U = S using S(1)

unfolding v-gs-def U-def by force
have vplus-dsXU : v-gs (X − U) = v-gs X − v-gs U

unfolding v-gs-def U-def by auto
have card (v-gs Y) = card (v-gs (X − U ∪ {?New}))

unfolding Y by simp
also have v-gs (X − U ∪ {?New}) = v-gs (X − U) ∪ v-gs ({?New})

28

unfolding v-gs-union ..
also have v-gs ({?New}) = {v (Gs)} unfolding v-gs-def image-comp o-def by

simp
also have card (v-gs (X − U) ∪ . . .) ≤ card (v-gs (X − U)) + card . . .

by (rule card-Un-le)
also have . . . ≤ card (v-gs (X − U)) + 1 by auto
also have v-gs (X − U) = v-gs X − v-gs U by fact
also have card . . . = card (v-gs X) − card (v-gs U)

by (rule card-Diff-subset, force simp: vplus-dsU finS ,
insert UX , auto simp: v-gs-def)

also have card (v-gs U) = card S unfolding vplus-dsU ..
finally show card (v-gs Y) ≤ card (v-gs X) − p + 1

using S by auto
show Y 6= {} unfolding Y using Unempty by auto
{

fix G
assume G ∈ ACC X and GPOS : G ∈ POS
from this[unfolded ACC-def] POS-G have G: G ∈ G X `̀ G by auto
from this[unfolded accepts-def] obtain D :: graph where

D: D ∈ X D ⊆ G by auto
have G ∈ ACC Y
proof (cases D ∈ Y)

case True
with D G show ?thesis unfolding accepts-def ACC-def by auto

next
case False
with D have DU : D ∈ U unfolding Y by auto
from GPOS [unfolded POS-def K-def] obtain K where GK : G = (v K)^2

card (v K) = k by auto
from DU [unfolded U-def] have v D ∈ S by auto
hence Vs ⊆ v D unfolding Vs-def by auto
also have . . . ⊆ v G

by (intro v-mono D)
also have . . . = v K unfolding GK

by (rule v-sameprod, unfold GK , insert k2, auto)
finally have Gs ⊆ G unfolding Gs-def GK

by (intro sameprod-mono)
with D DU have D ∈ ?U ?New ⊆ G by (auto)
hence Y `̀ G unfolding accepts-def Y by auto
thus ?thesis using G by auto

qed
}
thus POS ∩ ACC X ⊆ ACC Y by auto

from ex-bij-betw-nat-finite[OF finS , unfolded ‹card S = p›]
obtain Si where Si: bij-betw Si {0 ..< p} S by auto
define G where G = (λ i. SOME Gb. Gb ∈ X ∧ v Gb = Si i)
{

fix i

29

assume i < p
with Si have SiS : Si i ∈ S unfolding bij-betw-def by auto
with S have Si i ∈ v-gs X by auto
hence ∃ G. G ∈ X ∧ v G = Si i

unfolding v-gs-def by auto
from someI-ex[OF this]
have (G i) ∈ X ∧ v (G i) = Si i

unfolding G-def by blast
hence G i ∈ X v (G i) = Si i

G i ∈ U v (G i) ∈ S using SiS unfolding U-def
by auto

} note G = this
have SvG: S = v ‘ G ‘ {0 ..< p} unfolding Si[unfolded bij-betw-def ,

THEN conjunct2, symmetric] image-comp o-def using G(2) by auto
have injG: inj-on G {0 ..< p}
proof (standard, goal-cases)

case (1 i j)
hence Si i = Si j using G[of i] G[of j] by simp
with 1(1,2) Si show i = j

by (metis Si bij-betw-iff-bijections)
qed
define r where r = card U
have rq: r ≥ p unfolding r-def ‹card S = p›[symmetric] vplus-dsU [symmetric]

unfolding v-gs-def
by (rule card-image-le[OF finU])

let ?Vi = λ i. v (G i)
let ?Vis = λ i. ?Vi i − Vs
define s where s = card Vs
define si where si i = card (?Vi i) for i
define ti where ti i = card (?Vis i) for i
{

fix i
assume i: i < p
have Vs-Vi: Vs ⊆ ?Vi i using i unfolding Vs-def

using G[OF i] unfolding SvG by auto
have finVi: finite (?Vi i)

using G(4)[OF i] S(1) sf-precond
by (meson finite-numbers finite-subset subset-eq)

from S(1) have G i ∈ G using G(1)[OF i] X unfolding Gl-def G-def Gl-def
by auto

hence finGi: finite (G i)
using finite-members-G by auto

have ti: ti i = si i − s unfolding ti-def si-def s-def
by (rule card-Diff-subset[OF fin-Vs Vs-Vi])

have size1: s ≤ si i unfolding s-def si-def
by (intro card-mono finVi Vs-Vi)

have size2: si i ≤ l unfolding si-def using G(4)[OF i] S(1) sf-precond by
auto

30

note Vs-Vi finVi ti size1 size2 finGi ‹G i ∈ G›
} note i-props = this
define fstt where fstt e = (SOME x. x ∈ e ∧ x /∈ Vs) for e
define sndd where sndd e = (SOME x. x ∈ e ∧ x 6= fstt e) for e
{

fix e :: nat set
assume ∗: card e = 2 ¬ e ⊆ Vs
from ∗(1) obtain x y where e: e = {x,y} x 6= y

by (meson card-2-iff)
with ∗ have ∃ x. x ∈ e ∧ x /∈ Vs by auto
from someI-ex[OF this, folded fstt-def]
have fst: fstt e ∈ e fstt e /∈ Vs by auto
with ∗ e have ∃ x. x ∈ e ∧ x 6= fstt e

by (metis insertCI)
from someI-ex[OF this, folded sndd-def] have snd: sndd e ∈ e sndd e 6= fstt e

by auto
from fst snd e have {fstt e, sndd e} = e fstt e /∈ Vs fstt e 6= sndd e by auto

} note fstt = this
{

fix f
assume f ∈ ACC-cf Y − ACC-cf X

hence fake: f ∈ ACC-cf {?New} − ACC-cf U unfolding Y ACC-cf-def
accepts-def

Diff-iff U-def Un-iff mem-Collect-eq by blast
hence f : f ∈ F using ACC-cf-F by auto
hence C f ∈ NEG unfolding NEG-def by auto
with NEG-G have Cf : C f ∈ G by auto
from fake have f ∈ ACC-cf {?New} by auto
from this[unfolded ACC-cf-def accepts-def] Cf
have GsCf : Gs ⊆ C f and Cf : C f ∈ G by auto
from fake have f /∈ ACC-cf U by auto
from this[unfolded ACC-cf-def] Cf f have ¬ (U `̀ C f) by auto
from this[unfolded accepts-def]
have UCf : D ∈ U =⇒ ¬ D ⊆ C f for D by auto
let ?prop = λ i e. fstt e ∈ v (G i) − Vs ∧

sndd e ∈ v (G i) ∧ e ∈ G i ∩ ([m]^2)
∧ f (fstt e) = f (sndd e) ∧ f (sndd e) ∈ [k − 1] ∧ {fstt e, sndd e} = e

define pair where pair i = (if i < p then (SOME pair . ?prop i pair) else
undefined) for i

define u where u i = fstt (pair i) for i
define w where w i = sndd (pair i) for i
{

fix i
assume i: i < p
from i have ?Vi i ∈ S unfolding SvG by auto
hence Vs ⊆ ?Vi i unfolding Vs-def by auto
from sameprod-mono[OF this, folded Gs-def]
have ∗: Gs ⊆ v (G i)^2 .
from i have Gi: G i ∈ U using G[OF i] by auto

31

from UCf [OF Gi] i-props[OF i] have ¬ G i ⊆ C f and Gi: G i ∈ G by auto
then obtain edge where

edgep: edge ∈ G i and edgen: edge /∈ C f by auto
from edgep Gi obtain x y where edge: edge = {x,y}

and xy: {x,y} ∈ [m]^2 {x,y} ⊆ [m] card {x,y} = 2 unfolding G-def
binprod-def

by force
define a where a = fstt edge
define b where b = sndd edge
from edgen[unfolded C-def edge] xy have id: f x = f y by simp
from edgen GsCf edge have edgen: {x,y} /∈ Gs by auto
from edgen[unfolded Gs-def sameprod-altdef] xy have ¬ {x,y} ⊆ Vs by auto
from fstt[OF ‹card {x,y} = 2› this, folded edge, folded a-def b-def] edge
have a: a /∈ Vs and id-ab: {x,y} = {a,b} by auto
from id-ab id have id: f a = f b by (auto simp: doubleton-eq-iff)
let ?pair = (a,b)
note ab = xy[unfolded id-ab]
from f [unfolded F-def] ab have fb: f b ∈ [k − 1] by auto
note edge = edge[unfolded id-ab]
from edgep[unfolded edge] v-mem-sub[OF ‹card {a,b} = 2›, of G i] id
have ?prop i edge using edge ab a fb unfolding a-def b-def by auto
from someI [of ?prop i, OF this] have ?prop i (pair i) using i unfolding

pair-def by auto
from this[folded u-def w-def] edgep
have u i ∈ v (G i) − Vs w i ∈ v (G i) pair i ∈ G i ∩ [m]^2

f (u i) = f (w i) f (w i) ∈ [k − 1] pair i = {u i, w i}
by auto

} note uw = this
from uw(3) have Pi: pair ∈ PiE {0 ..< p} G unfolding pair-def by auto
define Us where Us = u ‘ {0 ..< p}
define Ws where Ws = [m] − Us
{

fix i
assume i: i < p
note uwi = uw[OF this]
from uwi have ex: ∃ x ∈ [k − 1]. f ‘ {u i, w i} = {x} by auto
from uwi have ∗: u i ∈ [m] w i ∈ [m] {u i, w i} ∈ G i by (auto simp:

sameprod-altdef)
have w i /∈ Us
proof

assume w i ∈ Us
then obtain j where j: j < p and wij: w i = u j unfolding Us-def by

auto
with uwi have ij: i 6= j unfolding binprod-def by auto
note uwj = uw[OF j]
from ij i j Si[unfolded bij-betw-def]
have diff : v (G i) 6= v (G j) unfolding G(2)[OF i] G(2)[OF j] inj-on-def

by auto
from uwi wij have uj: u j ∈ v (G i) by auto

32

with ‹sunflower S›[unfolded sunflower-def , rule-format] G(4)[OF i] G(4)[OF
j] uwj(1) diff

have u j ∈
⋂

S by blast
with uwj(1)[unfolded Vs-def] show False by simp

qed
with ∗ have wi: w i ∈ Ws unfolding Ws-def by auto
from uwi have wi2: w i ∈ v (G i) by auto
define W where W = Ws ∩ v (G i)
from G(1)[OF i] X [unfolded Gl-def Gl-def] i-props[OF i]
have finite (v (G i)) card (v (G i)) ≤ l by auto
with card-mono[OF this(1), of W] have

W : finite W card W ≤ l W ⊆ [m] − Us unfolding W-def Ws-def by auto
from wi wi2 have wi: w i ∈ W unfolding W-def by auto
from wi ex W ∗ have {u i, w i} ∈ G i ∧ u i ∈ [m] ∧ w i ∈ [m] − Us ∧ f (u

i) = f (w i) by force
} note uw1 = this
have inj: inj-on u {0 ..< p}
proof −

{
fix i j
assume i: i < p and j: j < p

and id: u i = u j and ij: i 6= j
from ij i j Si[unfolded bij-betw-def]
have diff : v (G i) 6= v (G j) unfolding G(2)[OF i] G(2)[OF j] inj-on-def

by auto
from uw[OF i] have ui: u i ∈ v (G i) − Vs by auto
from uw[OF j, folded id] have uj: u i ∈ v (G j) by auto

with ‹sunflower S›[unfolded sunflower-def , rule-format] G(4)[OF i] G(4)[OF
j] uw[OF i] diff

have u i ∈
⋂

S by blast
with ui have False unfolding Vs-def by auto

}
thus ?thesis unfolding inj-on-def by fastforce

qed
have card: card ([m] − Us) = m − p
proof (subst card-Diff-subset)

show finite Us unfolding Us-def by auto
show Us ⊆ [m] unfolding Us-def using uw1 by auto
have card Us = p unfolding Us-def using inj

by (simp add: card-image)
thus card [m] − card Us = m − p by simp

qed
hence (∀ i < p. pair i ∈ G i) ∧ inj-on u {0 ..< p} ∧ (∀ i < p. w i ∈ [m] − u

‘ {0 ..< p} ∧ f (u i) = f (w i))
using inj uw1 uw unfolding Us-def by auto

from this[unfolded u-def w-def] Pi card[unfolded Us-def u-def w-def]
have ∃ e ∈ PiE {0..<p} G. (∀ i<p. e i ∈ G i) ∧

card ([m] − (λi. fstt (e i)) ‘ {0..<p}) = m − p ∧
(∀ i<p. sndd (e i) ∈ [m] − (λi. fstt (e i)) ‘ {0..<p} ∧ f (fstt (e i)) = f (sndd

33

(e i)))
by blast

} note fMem = this
define Pi2 where Pi2 W = PiE ([m] − W) (λ -. [k − 1]) for W
define merge where merge =
(λ e (g :: nat ⇒ nat) v. if v ∈ (λ i. fstt (e i)) ‘ {0 ..< p} then g (sndd (e

(SOME i. i < p ∧ v = fstt (e i)))) else g v)
let ?W = λ e. (λ i. fstt (e i)) ‘ {0..<p}
have ACC-cf Y − ACC-cf X ⊆ { merge e g | e g. e ∈ PiE {0..<p} G ∧ card

([m] − ?W e) = m − p ∧ g ∈ Pi2 (?W e)}
(is - ⊆ ?R)

proof
fix f
assume mem: f ∈ ACC-cf Y − ACC-cf X
with ACC-cf-F have f ∈ F by auto
hence f : f ∈ [m] →E [k − 1] unfolding F-def .
from fMem[OF mem] obtain e where e: e ∈ PiE {0..<p} G∧

i. i<p =⇒ e i ∈ G i
card ([m] − ?W e) = m − p∧

i. i<p =⇒ sndd (e i) ∈ [m] − ?W e ∧ f (fstt (e i)) = f (sndd (e i)) by auto
define W where W = ?W e
note e = e[folded W-def]
let ?g = restrict f ([m] − W)
let ?h = merge e ?g
have f ∈ ?R
proof (intro CollectI exI [of - e] exI [of - ?g], unfold W-def [symmetric], intro

conjI e)
show ?g ∈ Pi2 W unfolding Pi2-def using f by auto
{

fix v :: nat
have ?h v = f v
proof (cases v ∈ W)

case False
thus ?thesis using f unfolding merge-def unfolding W-def [symmetric]

by auto
next

case True
from this[unfolded W-def] obtain i where i: i < p and v: v = fstt (e i)

by auto
define j where j = (SOME j. j < p ∧ v = fstt (e j))
from i v have ∃ j. j < p ∧ v = fstt (e j) by auto
from someI-ex[OF this, folded j-def] have j: j < p and v: v = fstt (e j)

by auto
have ?h v = restrict f ([m] − W) (sndd (e j))
unfolding merge-def unfolding W-def [symmetric] j-def using True by

auto
also have . . . = f (sndd (e j)) using e(4)[OF j] by auto
also have . . . = f (fstt (e j)) using e(4)[OF j] by auto
also have . . . = f v using v by simp

34

finally show ?thesis .
qed

}
thus f = ?h by auto

qed
thus f ∈ ?R by auto

qed
also have . . . ⊆ (λ (e,g). (merge e g)) ‘ (Sigma (PiE {0..<p} G ∩ {e. card ([m]
− ?W e) = m − p}) (λ e. Pi2 (?W e)))

(is - ⊆ ?f ‘ ?R)
by auto

finally have sub: ACC-cf Y − ACC-cf X ⊆ ?f ‘ ?R .
have fin[simp,intro]: finite [m] finite [k − Suc 0] unfolding numbers-def by auto
have finPie[simp, intro]: finite (PiE {0..<p} G)

by (intro finite-PiE , auto intro: i-props)
have finR: finite ?R unfolding Pi2-def

by (intro finite-SigmaI finite-Int allI finite-PiE i-props, auto)
have card (ACC-cf Y − ACC-cf X) ≤ card (?f ‘ ?R)

by (rule card-mono[OF finite-imageI [OF finR] sub])
also have . . . ≤ card ?R

by (rule card-image-le[OF finR])
also have . . . = (

∑
e∈(PiE {0..<p} G ∩ {e. card ([m] − ?W e) = m − p}).

card (Pi2 (?W e)))
by (rule card-SigmaI , unfold Pi2-def ,
(intro finite-SigmaI allI finite-Int finite-PiE i-props, auto)+)

also have . . . = (
∑

e∈PiE {0..<p} G ∩ {e. card ([m] − ?W e) = m − p}. (k
− 1) ^ (card ([m] − ?W e)))

by (rule sum.cong[OF refl], unfold Pi2-def , subst card-PiE , auto)
also have . . . = (

∑
e∈PiE {0..<p} G ∩ {e. card ([m] − ?W e) = m − p}. (k

− 1) ^ (m − p))
by (rule sum.cong[OF refl], rule arg-cong[of - - λ n. (k − 1)^n], auto)

also have . . . ≤ (
∑

e∈PiE {0..<p} G. (k − 1) ^ (m − p))
by (rule sum-mono2, auto)

also have . . . = card (PiE {0..<p} G) ∗ (k − 1) ^ (m − p) by simp
also have . . . = (

∏
i = 0..<p. card (G i)) ∗ (k − 1) ^ (m − p)

by (subst card-PiE , auto)
also have . . . ≤ (

∏
i = 0..<p. (k − 1) div 2) ∗ (k − 1) ^ (m − p)

proof −
{

fix i
assume i: i < p
from G[OF i] X
have GiG: G i ∈ G

unfolding Gl-def G-def G-def sameprod-altdef by force
from i-props[OF i] have finGi: finite (G i) by auto
have finvGi: finite (v (G i)) by (rule finite-vG, insert i-props[OF i], auto)
have card (G i) ≤ card ((v (G i))^2)

by (intro card-mono[OF sameprod-finite], rule finvGi, rule v-G-2[OF GiG])
also have . . . ≤ l choose 2

35

proof (subst card-sameprod[OF finvGi], rule choose-mono)
show card (v (G i)) ≤ l using i-props[OF i] unfolding ti-def si-def by

simp
qed
also have l choose 2 = l ∗ (l − 1) div 2 unfolding choose-two by simp
also have l ∗ (l − 1) = k − l unfolding kl2 power2-eq-square by (simp add:

algebra-simps)
also have . . . div 2 ≤ (k − 1) div 2

by (rule div-le-mono, insert l2, auto)
finally have card (G i) ≤ (k − 1) div 2 .

}
thus ?thesis by (intro mult-right-mono prod-mono, auto)

qed
also have . . . = ((k − 1) div 2) ^ p ∗ (k − 1) ^ (m − p)

by simp
also have . . . ≤ ((k − 1) ^ p div (2^p)) ∗ (k − 1) ^ (m − p)

by (rule mult-right-mono; auto simp: div-mult-pow-le)
also have . . . ≤ ((k − 1) ^ p ∗ (k − 1) ^ (m − p)) div 2^p

by (rule div-mult-le)
also have . . . = (k − 1)^m div 2^p
proof −

have p + (m − p) = m using mp by simp
thus ?thesis by (subst power-add[symmetric], simp)

qed
finally have card (ACC-cf Y − ACC-cf X) ≤ (k − 1) ^ m div 2 ^ p .
hence 2 ^ p ∗ card (ACC-cf Y − ACC-cf X) ≤ 2^p ∗ ((k − 1) ^ m div 2 ^ p)

by simp
also have . . . ≤ (k − 1)^m by simp
finally show 2^p ∗ card (ACC-cf Y − ACC-cf X) ≤ (k − 1) ^ m .

qed

Definition 6
function PLU-main :: graph set ⇒ graph set × nat where

PLU-main X = (if X ⊆ Gl ∧ L < card (v-gs X) then
map-prod id Suc (PLU-main (plucking-step X)) else
(X , 0))

by pat-completeness auto

termination
proof (relation measure (λ X . card (v-gs X)), force, goal-cases)

case (1 X)
hence X ⊆ Gl and LL: L < card (v-gs X) by auto
from plucking-step(1)[OF this refl]
have card (v-gs (plucking-step X)) ≤ card (v-gs X) − p + 1 .
also have . . . < card (v-gs X) using p L3 LL

by auto
finally show ?case by simp

qed

36

declare PLU-main.simps[simp del]

definition PLU :: graph set ⇒ graph set where
PLU X = fst (PLU-main X)

Lemma 7
lemma PLU-main-n: assumes X ⊆ Gl and PLU-main X = (Z , n)

shows n ∗ (p − 1) ≤ card (v-gs X)
using assms

proof (induct X arbitrary: Z n rule: PLU-main.induct)
case (1 X Z n)
note [simp] = PLU-main.simps[of X]
show ?case
proof (cases card (v-gs X) ≤ L)

case True
thus ?thesis using 1 by auto

next
case False
define Y where Y = plucking-step X
obtain q where PLU : PLU-main Y = (Z , q) and n: n = Suc q

using ‹PLU-main X = (Z ,n)›[unfolded PLU-main.simps[of X], folded Y-def]
using False 1(2) by (cases PLU-main Y , auto)

from False have L: card (v-gs X) > L by auto
note step = plucking-step[OF 1(2) this Y-def]
from False 1 have X ⊆ Gl ∧ L < card (v-gs X) by auto
note IH = 1(1)[folded Y-def , OF this step(2) PLU]
have n ∗ (p − 1) = (p − 1) + q ∗ (p − 1) unfolding n by simp
also have . . . ≤ (p − 1) + card (v-gs Y) using IH by simp
also have . . . ≤ p − 1 + (card (v-gs X) − p + 1) using step(1) by simp
also have . . . = card (v-gs X) using L Lp p by simp
finally show ?thesis .

qed
qed

Definition 8
definition sqcup :: graph set ⇒ graph set ⇒ graph set (infixl t 65) where

X t Y = PLU (X ∪ Y)

definition sqcap :: graph set ⇒ graph set ⇒ graph set (infixl u 65) where
X u Y = PLU (X �l Y)

definition deviate-pos-cup :: graph set ⇒ graph set ⇒ graph set (∂tPos) where
∂tPos X Y = POS ∩ ACC (X ∪ Y) − ACC (X t Y)

definition deviate-pos-cap :: graph set ⇒ graph set ⇒ graph set (∂uPos) where
∂uPos X Y = POS ∩ ACC (X � Y) − ACC (X u Y)

definition deviate-neg-cup :: graph set ⇒ graph set ⇒ colorf set (∂tNeg) where
∂tNeg X Y = ACC-cf (X t Y) − ACC-cf (X ∪ Y)

37

definition deviate-neg-cap :: graph set ⇒ graph set ⇒ colorf set (∂uNeg) where
∂uNeg X Y = ACC-cf (X u Y) − ACC-cf (X � Y)

Lemma 9 – without applying Lemma 7
lemma PLU-main: assumes X ⊆ Gl

and PLU-main X = (Z , n)
shows Z ∈ PLGl
∧ (Z = {} ←→ X = {})
∧ POS ∩ ACC X ⊆ ACC Z
∧ 2 ^ p ∗ card (ACC-cf Z − ACC-cf X) ≤ (k − 1) ^ m ∗ n
using assms

proof (induct X arbitrary: Z n rule: PLU-main.induct)
case (1 X Z n)
note [simp] = PLU-main.simps[of X]
show ?case
proof (cases card (v-gs X) ≤ L)

case True
from True show ?thesis using 1 by (auto simp: id PLGl-def)

next
case False
define Y where Y = plucking-step X
obtain q where PLU : PLU-main Y = (Z , q) and n: n = Suc q

using ‹PLU-main X = (Z ,n)›[unfolded PLU-main.simps[of X], folded Y-def]
using False 1(2) by (cases PLU-main Y , auto)

from False have card (v-gs X) > L by auto
note step = plucking-step[OF 1(2) this Y-def]
from False 1 have X ⊆ Gl ∧ L < card (v-gs X) by auto
note IH = 1(1)[folded Y-def , OF this step(2) PLU] ‹Y 6= {}›
let ?Diff = λ X Y . ACC-cf X − ACC-cf Y
have finNEG: finite NEG

using NEG-G infinite-super by blast
have ?Diff Z X ⊆ ?Diff Z Y ∪ ?Diff Y X by auto
from card-mono[OF finite-subset[OF - finite-F] this] ACC-cf-F
have 2 ^ p ∗ card (?Diff Z X) ≤ 2 ^ p ∗ card (?Diff Z Y ∪ ?Diff Y X) by auto
also have . . . ≤ 2 ^ p ∗ (card (?Diff Z Y) + card (?Diff Y X))

by (rule mult-left-mono, rule card-Un-le, simp)
also have . . . = 2 ^ p ∗ card (?Diff Z Y) + 2 ^ p ∗ card (?Diff Y X)

by (simp add: algebra-simps)
also have . . . ≤ ((k − 1) ^ m) ∗ q + (k − 1) ^ m using IH step by auto
also have . . . = ((k − 1) ^ m) ∗ Suc q by (simp add: ac-simps)
finally have c: 2 ^ p ∗ card (ACC-cf Z − ACC-cf X) ≤ ((k − 1) ^ m) ∗ Suc

q by simp
from False have X 6= {} by auto
thus ?thesis unfolding n using IH step c by auto

qed
qed

Lemma 9

38

lemma assumes X : X ∈ PLGl and Y : Y ∈ PLGl
shows PLU-union: PLU (X ∪ Y) ∈ PLGl and
sqcup: X t Y ∈ PLGl and
sqcup-sub: POS ∩ ACC (X ∪ Y) ⊆ ACC (X t Y) and
deviate-pos-cup: ∂tPos X Y = {} and
deviate-neg-cup: card (∂tNeg X Y) < (k − 1)^m ∗ L / 2^(p − 1)

proof −
obtain Z n where res: PLU-main (X ∪ Y) = (Z , n) by force
hence PLU : PLU (X ∪ Y) = Z unfolding PLU-def by simp
from X Y have XY : X ∪ Y ⊆ Gl unfolding PLGl-def by auto
note main = PLU-main[OF this(1) res]
from main show PLU (X ∪ Y) ∈ PLGl unfolding PLU by simp
thus X t Y ∈ PLGl unfolding sqcup-def .
from main show POS ∩ ACC (X ∪ Y) ⊆ ACC (X t Y)

unfolding sqcup-def PLU by simp
thus ∂tPos X Y = {} unfolding deviate-pos-cup-def PLU sqcup-def by auto
have card (v-gs (X ∪ Y)) ≤ card (v-gs X) + card (v-gs Y)

unfolding v-gs-union by (rule card-Un-le)
also have . . . ≤ L + L using X Y unfolding PLGl-def by simp
finally have card (v-gs (X ∪ Y)) ≤ 2 ∗ L by simp
with PLU-main-n[OF XY (1) res] have n ∗ (p − 1) ≤ 2 ∗ L by simp
with p Lm m2 have n: n < 2 ∗ L by (cases n, auto, cases p − 1, auto)
let ?r = real
have ∗: (k − 1) ^ m > 0 using k l2 by simp
have 2 ^ p ∗ card (∂tNeg X Y) ≤ 2 ^ p ∗ card (ACC-cf Z − ACC-cf (X ∪ Y))

unfolding deviate-neg-cup-def PLU sqcup-def
by (rule mult-left-mono, rule card-mono[OF finite-subset[OF - finite-F]], insert

ACC-cf-F , force, auto)
also have . . . ≤ (k − 1) ^ m ∗ n using main by simp
also have . . . < (k − 1) ^ m ∗ (2 ∗ L) unfolding mult-less-cancel1 using n ∗

by simp
also have . . . = 2 ∗ ((k − 1) ^ m ∗ L) by simp
finally have 2 ∗ (2^(p − 1) ∗ card (∂tNeg X Y)) < 2 ∗ ((k − 1) ^ m ∗ L)

using p by (cases p, auto)
hence 2 ^ (p − 1) ∗ card (∂tNeg X Y) < (k − 1)^m ∗ L by simp
hence ?r (2 ^ (p − 1) ∗ card (∂tNeg X Y)) < ?r ((k − 1)^m ∗ L) by linarith
thus card (∂tNeg X Y) < (k − 1)^m ∗ L / 2^(p − 1) by (simp add: field-simps)

qed

Lemma 10
lemma assumes X : X ∈ PLGl and Y : Y ∈ PLGl

shows PLU-joinl: PLU (X �l Y) ∈ PLGl and
sqcap: X u Y ∈ PLGl and
deviate-neg-cap: card (∂uNeg X Y) < (k − 1)^m ∗ L^2 / 2^(p − 1) and
deviate-pos-cap: card (∂uPos X Y) ≤ ((m − l − 1) choose (k − l − 1)) ∗ L^2

proof −
obtain Z n where res: PLU-main (X �l Y) = (Z , n) by force
hence PLU : PLU (X �l Y) = Z unfolding PLU-def by simp
from X Y have XY : X ⊆ Gl Y ⊆ Gl X ⊆ G Y ⊆ G unfolding PLGl-def Gl-def

39

by auto
have sub: X �l Y ⊆ Gl unfolding odotl-def using XY

by (auto split: option.splits)
note main = PLU-main[OF sub res]
note finV = finite-v-gs-Gl[OF XY (1)] finite-v-gs-Gl[OF XY (2)]
have X � Y ⊆ G by (rule odot-G, insert XY , auto simp: Gl-def)
hence XYD: X � Y ⊆ G by auto
have finvXY : finite (v-gs (X � Y)) by (rule finite-v-gs[OF XYD])
have card (v-gs (X � Y)) ≤ card (v-gs X) ∗ card (v-gs Y)

using XY (1−2) by (intro card-v-gs-join, auto simp: Gl-def)
also have . . . ≤ L ∗ L using X Y unfolding PLGl-def

by (intro mult-mono, auto)
also have . . . = L^2 by algebra
finally have card-join: card (v-gs (X � Y)) ≤ L^2 .
with card-mono[OF finvXY v-gs-mono[OF joinl-join]]
have card: card (v-gs (X �l Y)) ≤ L^2 by simp
with PLU-main-n[OF sub res] have n ∗ (p − 1) ≤ L^2 by simp
with p Lm m2 have n: n < 2 ∗ L^2 by (cases n, auto, cases p − 1, auto)
have ∗: (k − 1) ^ m > 0 using k l2 by simp
show PLU (X �l Y) ∈ PLGl unfolding PLU using main by auto
thus X u Y ∈ PLGl unfolding sqcap-def .
let ?r = real
have 2^p ∗ card (∂uNeg X Y) ≤ 2 ^ p ∗ card (ACC-cf Z − ACC-cf (X �l Y))

unfolding deviate-neg-cap-def PLU sqcap-def
by (rule mult-left-mono, rule card-mono[OF finite-subset[OF - finite-F]], insert

ACC-cf-F , force,
insert ACC-cf-mono[OF joinl-join, of X Y], auto)

also have . . . ≤ (k − 1) ^ m ∗ n using main by simp
also have . . . < (k − 1) ^ m ∗ (2 ∗ L^2) unfolding mult-less-cancel1 using n
∗ by simp

finally have 2 ∗ (2^(p − 1) ∗ card (∂uNeg X Y)) < 2 ∗ ((k − 1) ^ m ∗ L^2)
using p by (cases p, auto)

hence 2 ^ (p − 1) ∗ card (∂uNeg X Y) < (k − 1)^m ∗ L^2 by simp
hence ?r (2 ^ (p − 1) ∗ card (∂uNeg X Y)) < (k − 1)^m ∗ L^2 by linarith
thus card (∂uNeg X Y) < (k − 1)^m ∗ L^2 / 2^(p − 1) by (simp add: field-simps)

define Vs where Vs = v-gs (X � Y) ∩ {V . V ⊆ [m] ∧ card V ≥ Suc l}
define C where C (V :: nat set) = (SOME C . C ⊆ V ∧ card C = Suc l) for V
define K where K C = { W . W ⊆ [m] − C ∧ card W = k − Suc l } for C
define merge where merge C V = (C ∪ V)^2 for C V :: nat set
define GS where GS = { merge (C V) W | V W . V ∈ Vs ∧ W ∈ K (C V)}
{

fix V
assume V : V ∈ Vs
hence card: card V ≥ Suc l and Vm: V ⊆ [m] unfolding Vs-def by auto
from card obtain D where C : D ⊆ V and cardV : card D = Suc l

by (rule obtain-subset-with-card-n)
hence ∃ C . C ⊆ V ∧ card C = Suc l by blast
from someI-ex[OF this, folded C-def] have ∗: C V ⊆ V card (C V) = Suc l

40

by blast+
with Vm have sub: C V ⊆ [m] by auto
from finite-subset[OF this] have finCV : finite (C V) unfolding numbers-def

by simp
have card (K (C V)) = (m − Suc l) choose (k − Suc l) unfolding K-def
proof (subst n-subsets, (rule finite-subset[of - [m]], auto)[1], rule arg-cong[of -

- λ x. x choose -])
show card ([m] − C V) = m − Suc l

by (subst card-Diff-subset, insert sub ∗ finCV , auto)
qed
note ∗ finCV sub this

} note Vs-C = this
have finK : finite (K V) for V unfolding K-def by auto
{

fix G
assume G: G ∈ POS ∩ ACC (X � Y)
have G ∈ ACC (X �l Y) ∪ GS
proof (rule ccontr)

assume ¬ ?thesis
with G have G: G ∈ POS G ∈ ACC (X � Y) G /∈ ACC (X �l Y)

and contra: G /∈ GS by auto
from G(1)[unfolded K-def] have card (v G) = k ∧ (v G)^2 = G and G0: G

∈ G
by auto

hence vGk: card (v G) = k (v G)^2 = G by auto
from G0 have vm: v G ⊆ [m] by (rule v-G)
from G(2−3)[unfolded ACC-def accepts-def] obtain H

where H : H ∈ X � Y H /∈ X �l Y
and HG: H ⊆ G by auto

from v-mono[OF HG] have vHG: v H ⊆ v G by auto
{

from H (1)[unfolded odot-def] obtain D E where D: D ∈ X and E : E ∈
Y and HDE : H = D ∪ E

by force
from D E X Y have Dl: D ∈ Gl E ∈ Gl unfolding PLGl-def by auto
have Dp: D ∈ G using Dl by (auto simp: Gl-def)
have Ep: E ∈ G using Dl by (auto simp: Gl-def)
from Dl HDE have HD: H ∈ G unfolding Gl-def by auto
have HG0: H ∈ G using Dp Ep unfolding HDE by auto
have HDL: H /∈ Gl
proof

assume H ∈ Gl
hence H ∈ X �l Y

unfolding odotl-def HDE odot-def using D E by blast
thus False using H by auto

qed
from HDL HD have HGl: H /∈ Gl unfolding Gl-def by auto
have vm: v H ⊆ [m] using HG0 by (rule v-G)
have lower : l < card (v H) using HGl HG0 unfolding Gl-def by auto

41

have v H ∈ Vs unfolding Vs-def using lower vm H unfolding v-gs-def
by auto

} note in-Vs = this
note C = Vs-C [OF this]
let ?C = C (v H)
from C vHG have CG: ?C ⊆ v G by auto
hence id: v G = ?C ∪ (v G − ?C) by auto
from arg-cong[OF this, of card] vGk(1) C
have card (v G − ?C) = k − Suc l

by (metis CG card-Diff-subset)
hence v G − ?C ∈ K ?C unfolding K-def using vm by auto
hence merge ?C (v G − ?C) ∈ GS unfolding GS-def using in-Vs by auto
also have merge ?C (v G − ?C) = v G^2 unfolding merge-def

by (rule arg-cong[of - - sameprod], insert id, auto)
also have . . . = G by fact
finally have G ∈ GS .
with contra show False ..

qed
}
hence ∂uPos X Y ⊆ (POS ∩ ACC (X �l Y) − ACC (X u Y)) ∪ GS

unfolding deviate-pos-cap-def by auto
also have POS ∩ ACC (X �l Y) − ACC (X u Y) = {}
proof −

have POS − ACC (X u Y) ⊆ UNIV − ACC (X �l Y)
unfolding sqcap-def using PLU main by auto

thus ?thesis by auto
qed
finally have sub: ∂uPos X Y ⊆ GS by auto
have finVs: finite Vs unfolding Vs-def numbers-def by simp
let ?Sig = Sigma Vs (λ V . K (C V))
have GS-def : GS = (λ (V ,W). merge (C V) W) ‘ ?Sig unfolding GS-def

by auto
have finSig: finite ?Sig using finVs finK by simp
have finGS : finite GS unfolding GS-def

by (rule finite-imageI [OF finSig])
have card (∂uPos X Y) ≤ card GS by (rule card-mono[OF finGS sub])
also have . . . ≤ card ?Sig unfolding GS-def

by (rule card-image-le[OF finSig])
also have . . . = (

∑
a∈Vs. card (K (C a)))

by (rule card-SigmaI [OF finVs], auto simp: finK)
also have . . . = (

∑
a∈Vs. (m − Suc l) choose (k − Suc l)) using Vs-C

by (intro sum.cong, auto)
also have . . . = ((m − Suc l) choose (k − Suc l)) ∗ card Vs

by simp
also have . . . ≤ ((m − Suc l) choose (k − Suc l)) ∗ L^2
proof (rule mult-left-mono)

have card Vs ≤ card (v-gs (X � Y))
by (rule card-mono[OF finvXY], auto simp: Vs-def)

also have . . . ≤ L^2 by fact

42

finally show card Vs ≤ L^2 .
qed simp
finally show card (∂uPos X Y) ≤ ((m − l − 1) choose (k − l − 1)) ∗ L^2

by simp
qed
end

4.7 Formalism

Fix a variable set of cardinality m over 2.
locale forth-assumptions = third-assumptions +

fixes V :: ′a set and π :: ′a ⇒ vertex set
assumes cV : card V = (m choose 2)
and bij-betw-π: bij-betw π V ([m]^2)

begin

definition n where n = (m choose 2)

the formulas over the fixed variable set
definition A :: ′a mformula set where
A = { ϕ. vars ϕ ⊆ V}

lemma A-simps[simp]:
FALSE ∈ A
(Var x ∈ A) = (x ∈ V)
(Conj ϕ ψ ∈ A) = (ϕ ∈ A ∧ ψ ∈ A)
(Disj ϕ ψ ∈ A) = (ϕ ∈ A ∧ ψ ∈ A)
by (auto simp: A-def)

lemma inj-on-π: inj-on π V
using bij-betw-π by (metis bij-betw-imp-inj-on)

lemma πm2[simp,intro]: x ∈ V =⇒ π x ∈ [m]^2
using bij-betw-π by (rule bij-betw-apply)

lemma card-v-π[simp,intro]: assumes x ∈ V
shows card (v {π x}) = 2

proof −
from πm2[OF assms] have mem: π x ∈ [m]^2 by auto
from this[unfolded binprod-def] obtain a b where π: π x = {a,b} and diff : a 6=

b
by auto

hence v {π x} = {a,b} unfolding v-def by auto
thus ?thesis using diff by simp

qed

lemma π-singleton[simp,intro]: assumes x ∈ V
shows {π x} ∈ G
{{π x}} ∈ PLGl

43

using assms L3 l2
by (auto simp: G-def PLGl-def v-gs-def Gl-def)

lemma empty-PLGl[simp,intro]: {} ∈ PLGl
by (auto simp: G-def PLGl-def v-gs-def Gl-def)

fun SET :: ′a mformula ⇒ graph set where
SET FALSE = {}
| SET (Var x) = {{π x}}
| SET (Disj ϕ ψ) = SET ϕ ∪ SET ψ
| SET (Conj ϕ ψ) = SET ϕ � SET ψ

lemma ACC-cf-SET [simp]:
ACC-cf (SET (Var x)) = {f ∈ F . π x ∈ C f }
ACC-cf (SET FALSE) = {}
ACC-cf (SET (Disj ϕ ψ)) = ACC-cf (SET ϕ) ∪ ACC-cf (SET ψ)
ACC-cf (SET (Conj ϕ ψ)) = ACC-cf (SET ϕ) ∩ ACC-cf (SET ψ)
using ACC-cf-odot
by (auto simp: ACC-cf-union ACC-cf-empty, auto simp: ACC-cf-def accepts-def)

lemma ACC-SET [simp]:
ACC (SET (Var x)) = {G ∈ G. π x ∈ G}
ACC (SET FALSE) = {}
ACC (SET (Disj ϕ ψ)) = ACC (SET ϕ) ∪ ACC (SET ψ)
ACC (SET (Conj ϕ ψ)) = ACC (SET ϕ) ∩ ACC (SET ψ)
by (auto simp: ACC-union ACC-odot, auto simp: ACC-def accepts-def)

lemma SET-G: ϕ ∈ tf-mformula =⇒ ϕ ∈ A =⇒ SET ϕ ⊆ G
proof (induct ϕ rule: tf-mformula.induct)

case (tf-Conj ϕ ψ)
hence SET ϕ ⊆ G SET ψ ⊆ G by auto
from odot-G[OF this] show ?case by simp

qed auto

fun APR :: ′a mformula ⇒ graph set where
APR FALSE = {}
| APR (Var x) = {{π x}}
| APR (Disj ϕ ψ) = APR ϕ t APR ψ
| APR (Conj ϕ ψ) = APR ϕ u APR ψ

lemma APR: ϕ ∈ tf-mformula =⇒ ϕ ∈ A =⇒ APR ϕ ∈ PLGl
by (induct ϕ rule: tf-mformula.induct, auto intro!: sqcup sqcap)

definition ACC-cf-mf :: ′a mformula ⇒ colorf set where
ACC-cf-mf ϕ = ACC-cf (SET ϕ)

definition ACC-mf :: ′a mformula ⇒ graph set where
ACC-mf ϕ = ACC (SET ϕ)

44

definition deviate-pos :: ′a mformula ⇒ graph set (∂Pos) where
∂Pos ϕ = POS ∩ ACC-mf ϕ − ACC (APR ϕ)

definition deviate-neg :: ′a mformula ⇒ colorf set (∂Neg) where
∂Neg ϕ = ACC-cf (APR ϕ) − ACC-cf-mf ϕ

Lemma 11.1
lemma deviate-subset-Disj:
∂Pos (Disj ϕ ψ) ⊆ ∂tPos (APR ϕ) (APR ψ) ∪ ∂Pos ϕ ∪ ∂Pos ψ
∂Neg (Disj ϕ ψ) ⊆ ∂tNeg (APR ϕ) (APR ψ) ∪ ∂Neg ϕ ∪ ∂Neg ψ
unfolding

deviate-pos-def deviate-pos-cup-def
deviate-neg-def deviate-neg-cup-def
ACC-cf-mf-def ACC-cf-SET ACC-cf-union
ACC-mf-def ACC-SET ACC-union

by auto

Lemma 11.2
lemma deviate-subset-Conj:
∂Pos (Conj ϕ ψ) ⊆ ∂uPos (APR ϕ) (APR ψ) ∪ ∂Pos ϕ ∪ ∂Pos ψ
∂Neg (Conj ϕ ψ) ⊆ ∂uNeg (APR ϕ) (APR ψ) ∪ ∂Neg ϕ ∪ ∂Neg ψ
unfolding
deviate-pos-def deviate-pos-cap-def
ACC-mf-def ACC-SET ACC-odot
deviate-neg-def deviate-neg-cap-def
ACC-cf-mf-def ACC-cf-SET ACC-cf-odot

by auto

lemmas deviate-subset = deviate-subset-Disj deviate-subset-Conj

lemma deviate-finite:
finite (∂Pos ϕ)
finite (∂Neg ϕ)
finite (∂tPos A B)
finite (∂tNeg A B)
finite (∂uPos A B)
finite (∂uNeg A B)
unfolding

deviate-pos-def deviate-pos-cup-def deviate-pos-cap-def
deviate-neg-def deviate-neg-cup-def deviate-neg-cap-def

by (intro finite-subset[OF - finite-POS-NEG], auto)+

Lemma 12
lemma no-deviation[simp]:
∂Pos FALSE = {}
∂Neg FALSE = {}
∂Pos (Var x) = {}
∂Neg (Var x) = {}
unfolding deviate-pos-def deviate-neg-def

45

by (auto simp add: ACC-cf-mf-def ACC-mf-def)

Lemma 12.1-2
fun approx-pos where

approx-pos (Conj phi psi) = ∂uPos (APR phi) (APR psi)
| approx-pos - = {}

fun approx-neg where
approx-neg (Conj phi psi) = ∂uNeg (APR phi) (APR psi)
| approx-neg (Disj phi psi) = ∂tNeg (APR phi) (APR psi)
| approx-neg - = {}

lemma finite-approx-pos: finite (approx-pos ϕ)
by (cases ϕ, auto intro: deviate-finite)

lemma finite-approx-neg: finite (approx-neg ϕ)
by (cases ϕ, auto intro: deviate-finite)

lemma card-deviate-Pos: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A
shows card (∂Pos ϕ) ≤ cs ϕ ∗ L2 ∗ ((m − l − 1) choose (k − l − 1))

proof −
let ?Pos = λ ϕ.

⋃
(approx-pos ‘ SUB ϕ)

have ∂Pos ϕ ⊆ ?Pos ϕ
using phi

proof (induct ϕ rule: tf-mformula.induct)
case (tf-Disj ϕ ψ)
from tf-Disj have ∗: ϕ ∈ tf-mformula ψ ∈ tf-mformula ϕ ∈ A ψ ∈ A by auto
note IH = tf-Disj(2)[OF ∗(3)] tf-Disj(4)[OF ∗(4)]
have ∂Pos (Disj ϕ ψ) ⊆ ∂tPos (APR ϕ) (APR ψ) ∪ ∂Pos ϕ ∪ ∂Pos ψ

by (rule deviate-subset)
also have ∂tPos (APR ϕ) (APR ψ) = {}

by (rule deviate-pos-cup; intro APR ∗)
also have . . . ∪ ∂Pos ϕ ∪ ∂Pos ψ ⊆ ?Pos ϕ ∪ ?Pos ψ using IH by auto
also have . . . ⊆ ?Pos (Disj ϕ ψ) ∪ ?Pos (Disj ϕ ψ)

by (intro Un-mono, auto)
finally show ?case by simp

next
case (tf-Conj ϕ ψ)
from tf-Conj have ∗: ϕ ∈ A ψ ∈ A

by (auto intro: tf-mformula.intros)
note IH = tf-Conj(2)[OF ∗(1)] tf-Conj(4)[OF ∗(2)]
have ∂Pos (Conj ϕ ψ) ⊆ ∂uPos (APR ϕ) (APR ψ) ∪ ∂Pos ϕ ∪ ∂Pos ψ

by (rule deviate-subset)
also have . . . ⊆ ∂uPos (APR ϕ) (APR ψ) ∪ ?Pos ϕ ∪ ?Pos ψ using IH by

auto
also have . . . ⊆ ?Pos (Conj ϕ ψ) ∪ ?Pos (Conj ϕ ψ) ∪ ?Pos (Conj ϕ ψ)

by (intro Un-mono, insert ∗, auto)
finally show ?case by simp

qed auto

46

from card-mono[OF finite-UN-I [OF finite-SUB finite-approx-pos] this]
have card (∂Pos ϕ) ≤ card (

⋃
(approx-pos ‘ SUB ϕ)) by simp

also have . . . ≤ (
∑

i∈SUB ϕ. card (approx-pos i))
by (rule card-UN-le[OF finite-SUB])

also have . . . ≤ (
∑

i∈SUB ϕ. L2 ∗ ((m − l − 1) choose (k − l − 1)))
proof (rule sum-mono, goal-cases)

case (1 psi)
from phi 1 have psi: psi ∈ tf-mformula psi ∈ A

by (induct ϕ rule: tf-mformula.induct, auto intro: tf-mformula.intros)
show ?case
proof (cases psi)

case (Conj phi1 phi2)
from psi this have ∗: phi1 ∈ tf-mformula phi1 ∈ A phi2 ∈ tf-mformula phi2

∈ A
by (cases rule: tf-mformula.cases, auto)+

from deviate-pos-cap[OF APR[OF ∗(1−2)] APR[OF ∗(3−4)]]
show ?thesis unfolding Conj by (simp add: ac-simps)

qed auto
qed
also have . . . = cs ϕ ∗ L2 ∗ ((m − l − 1) choose (k − l − 1)) unfolding cs-def

by simp
finally show card (∂Pos ϕ) ≤ cs ϕ ∗ L2 ∗ (m − l − 1 choose (k − l − 1)) by

simp
qed

lemma card-deviate-Neg: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A
shows card (∂Neg ϕ) ≤ cs ϕ ∗ L2 ∗ (k − 1)^m / 2^(p − 1)

proof −
let ?r = real
let ?Neg = λ ϕ.

⋃
(approx-neg ‘ SUB ϕ)

have ∂Neg ϕ ⊆ ?Neg ϕ
using phi

proof (induct ϕ rule: tf-mformula.induct)
case (tf-Disj ϕ ψ)
from tf-Disj have ∗: ϕ ∈ tf-mformula ψ ∈ tf-mformula ϕ ∈ A ψ ∈ A by auto
note IH = tf-Disj(2)[OF ∗(3)] tf-Disj(4)[OF ∗(4)]
have ∂Neg (Disj ϕ ψ) ⊆ ∂tNeg (APR ϕ) (APR ψ) ∪ ∂Neg ϕ ∪ ∂Neg ψ

by (rule deviate-subset)
also have . . . ⊆ ∂tNeg (APR ϕ) (APR ψ) ∪ ?Neg ϕ ∪ ?Neg ψ using IH by

auto
also have . . . ⊆ ?Neg (Disj ϕ ψ) ∪ ?Neg (Disj ϕ ψ) ∪ ?Neg (Disj ϕ ψ)

by (intro Un-mono, auto)
finally show ?case by simp

next
case (tf-Conj ϕ ψ)
from tf-Conj have ∗: ϕ ∈ A ψ ∈ A

by (auto intro: tf-mformula.intros)
note IH = tf-Conj(2)[OF ∗(1)] tf-Conj(4)[OF ∗(2)]
have ∂Neg (Conj ϕ ψ) ⊆ ∂uNeg (APR ϕ) (APR ψ) ∪ ∂Neg ϕ ∪ ∂Neg ψ

47

by (rule deviate-subset)
also have . . . ⊆ ∂uNeg (APR ϕ) (APR ψ) ∪ ?Neg ϕ ∪ ?Neg ψ using IH by

auto
also have . . . ⊆ ?Neg (Conj ϕ ψ) ∪ ?Neg (Conj ϕ ψ) ∪ ?Neg (Conj ϕ ψ)

by (intro Un-mono, auto)
finally show ?case by simp

qed auto
hence ∂Neg ϕ ⊆

⋃
(approx-neg ‘ SUB ϕ) by auto

from card-mono[OF finite-UN-I [OF finite-SUB finite-approx-neg] this]
have card (∂Neg ϕ) ≤ card (

⋃
(approx-neg ‘ SUB ϕ)) .

also have . . . ≤ (
∑

i∈SUB ϕ. card (approx-neg i))
by (rule card-UN-le[OF finite-SUB])

finally have ?r (card (∂Neg ϕ)) ≤ (
∑

i∈SUB ϕ. card (approx-neg i)) by linarith
also have . . . = (

∑
i∈SUB ϕ. ?r (card (approx-neg i))) by simp

also have . . . ≤ (
∑

i∈SUB ϕ. L^2 ∗ (k − 1)^m / 2^(p − 1))
proof (rule sum-mono, goal-cases)

case (1 psi)
from phi 1 have psi: psi ∈ tf-mformula psi ∈ A

by (induct ϕ rule: tf-mformula.induct, auto intro: tf-mformula.intros)
show ?case
proof (cases psi)

case (Conj phi1 phi2)
from psi this have ∗: phi1 ∈ tf-mformula phi1 ∈ A phi2 ∈ tf-mformula phi2

∈ A
by (cases rule: tf-mformula.cases, auto)+

from deviate-neg-cap[OF APR[OF ∗(1−2)] APR[OF ∗(3−4)]]
show ?thesis unfolding Conj by (simp add: ac-simps)

next
case (Disj phi1 phi2)
from psi this have ∗: phi1 ∈ tf-mformula phi1 ∈ A phi2 ∈ tf-mformula phi2

∈ A
by (cases rule: tf-mformula.cases, auto)+

from deviate-neg-cup[OF APR[OF ∗(1−2)] APR[OF ∗(3−4)]]
have card (approx-neg psi) ≤ ((L ∗ 1) ∗ (k − 1) ^ m) / 2 ^ (p − 1)

unfolding Disj by (simp add: ac-simps)
also have . . . ≤ ((L ∗ L) ∗ (k − 1) ^ m) / 2 ^ (p − 1)
by (intro divide-right-mono, unfold of-nat-le-iff , intro mult-mono, insert L3,

auto)
finally show ?thesis unfolding power2-eq-square by simp

qed auto
qed
also have . . . = cs ϕ ∗ L^2 ∗ (k − 1)^m / 2^(p − 1) unfolding cs-def by simp
finally show card (∂Neg ϕ) ≤ cs ϕ ∗ L2 ∗ (k − 1)^m / 2^(p − 1) .

qed

Lemma 12.3
lemma ACC-cf-non-empty-approx: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A

and ne: APR ϕ 6= {}
shows card (ACC-cf (APR ϕ)) > (k − 1)^m / 3

48

proof −
from ne obtain E :: graph where Ephi: E ∈ APR ϕ

by (auto simp: ACC-def accepts-def)
from APR[OF phi, unfolded PLGl-def] Ephi
have EDl: E ∈ Gl by auto
hence vEl: card (v E) ≤ l and ED: E ∈ G

unfolding Gl-def Gl-def by auto
have E : E ∈ G using ED[unfolded Gl-def] by auto
have sub: v E ⊆ [m] by (rule v-G[OF E])
have l ≤ card [m] using lm by auto
from exists-subset-between[OF vEl this sub finite-numbers]
obtain V where V : v E ⊆ V V ⊆ [m] card V = l by auto
from finite-subset[OF V (2)] have finV : finite V by auto
have finPart: finite A if A ⊆ {P. partition-on [n] P} for n A

by (rule finite-subset[OF that finitely-many-partition-on], simp)
have finmv: finite ([m] − V) using finite-numbers[of m] by auto
have finK : finite [k − 1] unfolding numbers-def by auto
define F where F = {f ∈ [m] →E [k − 1]. inj-on f V}
have FF : F ⊆ F unfolding F-def F-def by auto
{

fix f
assume f : f ∈ F
{

from this[unfolded F-def]
have f : f ∈ [m] →E [k − 1] and inj: inj-on f V by auto
from V l2 have 2: card V ≥ 2 by auto
then obtain x where x: x ∈ V by (cases V = {}, auto)
have card V = card (V − {x}) + 1 using x finV

by (metis One-nat-def add.right-neutral add-Suc-right card-Suc-Diff1)
with 2 have card (V − {x}) > 0 by auto
hence V − {x} 6= {} by fastforce
then obtain y where y: y ∈ V and diff : x 6= y by auto
from inj diff x y have neq: f x 6= f y by (auto simp: inj-on-def)
from x y diff V have {x, y} ∈ [m]^2 unfolding sameprod-altdef by auto
with neq have {x,y} ∈ C f unfolding C-def by auto
hence C f 6= {} by auto

}
with NEG-G FF f have CfG: C f ∈ G C f 6= {} by (auto simp: NEG-def)
have E ⊆ C f
proof

fix e
assume eE : e ∈ E
with E [unfolded G-def] have em: e ∈ [m]^2 by auto
then obtain x y where e: e = {x,y} x 6= y {x,y} ⊆ [m]

and card: card e = 2
unfolding binprod-def by auto

from v-mem-sub[OF card eE]
have {x,y} ⊆ v E using e by auto
hence {x,y} ⊆ V using V by auto

49

hence f x 6= f y using e(2) f [unfolded F-def] by (auto simp: inj-on-def)
thus e ∈ C f unfolding C-def using em e by auto

qed
with Ephi CfG have APR ϕ `̀ C f

unfolding accepts-def by auto
hence f ∈ ACC-cf (APR ϕ) using CfG f FF unfolding ACC-cf-def by auto

}
with FF have sub: F ⊆ ACC-cf (APR ϕ) by auto
from card-mono[OF finite-subset[OF - finite-ACC] this]
have approx: card F ≤ card (ACC-cf (APR ϕ)) by auto
from card-inj-on-subset-funcset[OF finite-numbers finK V (2), unfolded card-numbers

V (3),
folded F-def]

have real (card F) = (real (k − 1)) ^ (m − l) ∗ prod (λ i. real (k − 1 − i))
{0..<l}

by simp
also have . . . > (real (k − 1)) ^ m / 3

by (rule approximation1)
finally have cardF : card F > (k − 1) ^ m / 3 by simp
with approx show ?thesis by simp

qed

Theorem 13
lemma theorem-13: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A

and sub: POS ⊆ ACC-mf ϕ ACC-cf-mf ϕ = {}
shows cs ϕ > k powr (4 / 7 ∗ sqrt k)
proof −

let ?r = real :: nat ⇒ real
have cs ϕ > ((m − l) / k)^l / (6 ∗ L^2)
proof (cases POS ∩ ACC (APR ϕ) = {})

case empty: True
have ∂Pos ϕ = POS ∩ ACC-mf ϕ − ACC (APR ϕ) unfolding deviate-pos-def

by auto
also have . . . = POS − ACC (APR ϕ) using sub by blast
also have . . . = POS using empty by auto
finally have id: ∂Pos ϕ = POS by simp
have m choose k = card POS by (simp add: card-POS)
also have . . . = card (∂Pos ϕ) unfolding id by simp

also have . . . ≤ cs ϕ ∗ L2 ∗ (m − l − 1 choose (k − l − 1)) using
card-deviate-Pos[OF phi] by auto

finally have m choose k ≤ cs ϕ ∗ L2 ∗ (m − l − 1 choose (k − l − 1))
by simp

from approximation2[OF this]
show ((m − l) / k)^l / (6 ∗ L^2) < cs ϕ by simp

next
case False
have POS ∩ ACC (APR ϕ) 6= {} by fact
hence nempty: APR ϕ 6= {} by auto
have card (∂Neg ϕ) = card (ACC-cf (APR ϕ) − ACC-cf-mf ϕ) unfolding

50

deviate-neg-def by auto
also have . . . = card (ACC-cf (APR ϕ)) using sub by auto
also have . . . > (k − 1)^m / 3 using ACC-cf-non-empty-approx[OF phi

nempty] .
finally have (k − 1)^m / 3 < card (∂Neg ϕ) .
also have . . . ≤ cs ϕ ∗ L2 ∗ (k − 1) ^ m / 2 ^ (p − 1)

using card-deviate-Neg[OF phi] sub by auto
finally have (k − 1)^m / 3 < (cs ϕ ∗ (L2 ∗ (k − 1) ^ m)) / 2 ^ (p − 1) by

simp
from approximation3[OF this] show ?thesis .

qed
hence part1: cs ϕ > ((m − l) / k)^l / (6 ∗ L^2) .
from approximation4[OF this] show ?thesis using k2 by simp

qed

Definition 14
definition eval-g :: ′a VAS ⇒ graph ⇒ bool where

eval-g ϑ G = (∀ v ∈ V. (π v ∈ G −→ ϑ v))

definition eval-gs :: ′a VAS ⇒ graph set ⇒ bool where
eval-gs ϑ X = (∃ G ∈ X . eval-g ϑ G)

lemmas eval-simps = eval-g-def eval-gs-def eval.simps

lemma eval-gs-union:
eval-gs ϑ (X ∪ Y) = (eval-gs ϑ X ∨ eval-gs ϑ Y)
by (auto simp: eval-gs-def)

lemma eval-gs-odot: assumes X ⊆ G Y ⊆ G
shows eval-gs ϑ (X � Y) = (eval-gs ϑ X ∧ eval-gs ϑ Y)

proof
assume eval-gs ϑ (X � Y)
from this[unfolded eval-gs-def] obtain DE where DE : DE ∈ X � Y

and eval: eval-g ϑ DE by auto
from DE [unfolded odot-def] obtain D E where id: DE = D ∪ E and DE : D
∈ X E ∈ Y

by auto
from eval have eval-g ϑ D eval-g ϑ E unfolding id eval-g-def

by auto
with DE show eval-gs ϑ X ∧ eval-gs ϑ Y unfolding eval-gs-def by auto

next
assume eval-gs ϑ X ∧ eval-gs ϑ Y
then obtain D E where DE : D ∈ X E ∈ Y and eval: eval-g ϑ D eval-g ϑ E

unfolding eval-gs-def by auto
from DE assms have D: D ∈ G E ∈ G by auto
let ?U = D ∪ E
from eval have eval: eval-g ϑ ?U

unfolding eval-g-def by auto

51

from DE have 1: ?U ∈ X � Y unfolding odot-def by auto
with 1 eval show eval-gs ϑ (X � Y) unfolding eval-gs-def by auto

qed

Lemma 15
lemma eval-set: assumes phi: ϕ ∈ tf-mformula ϕ ∈ A

shows eval ϑ ϕ = eval-gs ϑ (SET ϕ)
using phi

proof (induct ϕ rule: tf-mformula.induct)
case tf-False
then show ?case unfolding eval-simps by simp

next
case (tf-Var x)
then show ?case using inj-on-π unfolding eval-simps

by (auto simp add: inj-on-def)
next

case (tf-Disj ϕ1 ϕ2)
thus ?case by (auto simp: eval-gs-union)

next
case (tf-Conj ϕ1 ϕ2)
thus ?case by (simp, intro eval-gs-odot[symmetric]; intro SET-G, auto)

qed

definition ϑg :: graph ⇒ ′a VAS where
ϑg G x = (x ∈ V ∧ π x ∈ G)

From here on we deviate from Gordeev’s paper as we do not use positive
bases, but a more direct approach.
lemma eval-ACC : assumes phi: ϕ ∈ tf-mformula ϕ ∈ A

and G: G ∈ G
shows eval (ϑg G) ϕ = (G ∈ ACC-mf ϕ)

using phi unfolding ACC-mf-def
proof (induct ϕ rule: tf-mformula.induct)

case (tf-Var x)
thus ?case by (auto simp: ACC-def G accepts-def ϑg-def)

next
case (tf-Disj phi psi)
thus ?case by (auto simp: ACC-union)

next
case (tf-Conj phi psi)
thus ?case by (auto simp: ACC-odot)

qed simp

lemma CLIQUE-solution-imp-POS-sub-ACC : assumes solution: ∀ G ∈ G. G ∈
CLIQUE ←→ eval (ϑg G) ϕ

and tf : ϕ ∈ tf-mformula
and phi: ϕ ∈ A

shows POS ⊆ ACC-mf ϕ
proof

52

fix G
assume POS : G ∈ POS
with POS-G have G: G ∈ G by auto
with POS solution POS-CLIQUE
have eval (ϑg G) ϕ by auto
thus G ∈ ACC-mf ϕ unfolding eval-ACC [OF tf phi G] .

qed

lemma CLIQUE-solution-imp-ACC-cf-empty: assumes solution: ∀ G ∈ G. G ∈
CLIQUE ←→ eval (ϑg G) ϕ

and tf : ϕ ∈ tf-mformula
and phi: ϕ ∈ A

shows ACC-cf-mf ϕ = {}
proof (rule ccontr)

assume ¬ ?thesis
from this[unfolded ACC-cf-mf-def ACC-cf-def]
obtain F where F : F ∈ F SET ϕ `̀ C F by auto
define G where G = C F
have NEG: G ∈ NEG unfolding NEG-def G-def using F by auto
hence G /∈ CLIQUE using CLIQUE-NEG by auto
have GG: G ∈ G unfolding G-def using F

using G-def NEG NEG-G by blast
have GAcc: SET ϕ `̀ G using F [folded G-def] by auto
then obtain D :: graph where

D: D ∈ SET ϕ and sub: D ⊆ G
unfolding accepts-def by blast

from SET-G[OF tf phi] D
have DG: D ∈ G by auto
have eval: eval (ϑg D) ϕ unfolding eval-set[OF tf phi] eval-gs-def

by (intro bexI [OF - D], unfold eval-g-def , insert DG, auto simp: ϑg-def)
hence D ∈ CLIQUE using solution[rule-format, OF DG] by auto
hence G ∈ CLIQUE using GG sub unfolding CLIQUE-def by blast
with ‹G /∈ CLIQUE› show False by auto

qed

4.8 Conclusion

Theorem 22

We first consider monotone formulas without TRUE.
theorem Clique-not-solvable-by-small-tf-mformula: assumes solution: ∀ G ∈ G.
G ∈ CLIQUE ←→ eval (ϑg G) ϕ

and tf : ϕ ∈ tf-mformula
and phi: ϕ ∈ A

shows cs ϕ > k powr (4 / 7 ∗ sqrt k)
proof −

from CLIQUE-solution-imp-POS-sub-ACC [OF solution tf phi] have POS : POS
⊆ ACC-mf ϕ .
from CLIQUE-solution-imp-ACC-cf-empty[OF solution tf phi] have CF : ACC-cf-mf

53

ϕ = {} .
from theorem-13[OF tf phi POS CF]
show ?thesis by auto

qed

Next we consider general monotone formulas.
theorem Clique-not-solvable-by-poly-mono: assumes solution: ∀ G ∈ G. G ∈
CLIQUE ←→ eval (ϑg G) ϕ

and phi: ϕ ∈ A
shows cs ϕ > k powr (4 / 7 ∗ sqrt k)
proof −

note vars = phi[unfolded A-def]
have CL: CLIQUE = Clique [k^4] k G = Graphs [k^4]

unfolding CLIQUE-def K-altdef m-def Clique-def by auto
with empty-CLIQUE have {} /∈ Clique [k^4] k by simp
with solution[rule-format, of {}]
have ¬ eval (ϑg {}) ϕ by (auto simp: Graphs-def)
from to-tf-mformula[OF this]
obtain ψ where ∗: ψ ∈ tf-mformula
(∀ϑ. eval ϑ ϕ = eval ϑ ψ) vars ψ ⊆ vars ϕ cs ψ ≤ cs ϕ by auto

with phi solution have psi: ψ ∈ A
and solution: ∀G∈G. (G ∈ CLIQUE) = eval (ϑg G) ψ unfolding A-def by

auto
from Clique-not-solvable-by-small-tf-mformula[OF solution ∗(1) psi]
show ?thesis using ∗(4) by auto

qed

We next expand all abbreviations and definitions of the locale, but stay
within the locale
theorem Clique-not-solvable-by-small-monotone-circuit-in-locale: assumes phi-solves-clique:

∀ G ∈ Graphs [k^4]. G ∈ Clique [k^4] k ←→ eval (λ x. π x ∈ G) ϕ
and vars: vars ϕ ⊆ V

shows cs ϕ > k powr (4 / 7 ∗ sqrt k)
proof −

{
fix G
assume G: G ∈ G
have eval (λ x. π x ∈ G) ϕ = eval (ϑg G) ϕ using vars

by (intro eval-vars, auto simp: ϑg-def)
}
have CL: CLIQUE = Clique [k^4] k G = Graphs [k^4]

unfolding CLIQUE-def K-altdef m-def Clique-def by auto
{

fix G
assume G: G ∈ G
have eval (λ x. π x ∈ G) ϕ = eval (ϑg G) ϕ using vars

by (intro eval-vars, auto simp: ϑg-def)
}

54

with phi-solves-clique CL have solves: ∀ G ∈ G. G ∈ CLIQUE ←→ eval (ϑg
G) ϕ

by auto
from vars have inA: ϕ ∈ A by (auto simp: A-def)
from Clique-not-solvable-by-poly-mono[OF solves inA]
show ?thesis by auto

qed
end

Let us now move the theorem outside the locale
definition Large-Number where Large-Number = Max {64, L0 ′′̂ 2, L0^2, L0 ′̂ 2,
M0, M0 ′}

theorem Clique-not-solvable-by-small-monotone-circuit-squared:
fixes ϕ :: ′a mformula
assumes k: ∃ l. k = l^2
and LARGE : k ≥ Large-Number
and π: bij-betw π V [k^4]^2
and solution: ∀G∈Graphs [k ^ 4]. (G ∈ Clique [k ^ 4] k) = eval (λ x. π x ∈ G)

ϕ
and vars: vars ϕ ⊆ V
shows cs ϕ > k powr (4 / 7 ∗ sqrt k)

proof −
from k obtain l where kk: k = l^2 by auto
note LARGE = LARGE [unfolded Large-Number-def]
have k8: k ≥ 8^2 using LARGE by auto
from this[unfolded kk power2-nat-le-eq-le]
have l8: l ≥ 8 .
define p where p = nat (ceiling (l ∗ log 2 (k^4)))
have tedious: l ∗ log 2 (k ^ 4) ≥ 0 using l8 k8 by auto
have int p = ceiling (l ∗ log 2 (k ^ 4)) unfolding p-def

by (rule nat-0-le, insert tedious, auto)
from arg-cong[OF this, of real-of-int]
have rp: real p = ceiling (l ∗ log 2 (k ^ 4)) by simp
have one: real l ∗ log 2 (k ^ 4) ≤ p unfolding rp by simp
have two: p ≤ real l ∗ log 2 (k ^ 4) + 1 unfolding rp by simp
have real l < real l + 1 by simp
also have . . . ≤ real l + real l using l8 by simp
also have . . . = real l ∗ 2 by simp
also have . . . = real l ∗ log 2 (2^2)

by (subst log-pow-cancel, auto)
also have . . . ≤ real l ∗ log 2 (k ^ 4)
proof (intro mult-left-mono, subst log-le-cancel-iff)

have (4 :: real) ≤ 2^4 by simp
also have . . . ≤ real k^4

by (rule power-mono, insert k8, auto)
finally show 22 ≤ real (k ^ 4) by simp

qed (insert k8, auto)
also have . . . ≤ p by fact

55

finally have lp: l < p by auto
interpret second-assumptions l p k
proof (unfold-locales)

show 2 < l using l8 by auto
show 8 ≤ l by fact
show k = l^2 by fact
show l < p by fact
from LARGE have L0 ′′̂ 2 ≤ k by auto
from this[unfolded kk power2-nat-le-eq-le]
have L0 ′′l: L0 ′′ ≤ l .
have p ≤ real l ∗ log 2 (k ^ 4) + 1 by fact
also have . . . < k unfolding kk

by (intro L0 ′′ L0 ′′l)
finally show p < k by simp

qed
interpret third-assumptions l p k
proof

show real l ∗ log 2 (real m) ≤ p using one unfolding m-def .
show p ≤ real l ∗ log 2 (real m) + 1 using two unfolding m-def .
from LARGE have L0^2 ≤ k by auto
from this[unfolded kk power2-nat-le-eq-le]
show L0 ≤ l .
from LARGE have L0 ′̂ 2 ≤ k by auto
from this[unfolded kk power2-nat-le-eq-le]
show L0 ′ ≤ l .
show M0 ′ ≤ m using km LARGE by simp
show M0 ≤ m using km LARGE by simp

qed
interpret forth-assumptions l p k V π

by (standard, insert π m-def , auto simp: bij-betw-same-card[OF π])
from Clique-not-solvable-by-small-monotone-circuit-in-locale[OF solution vars]
show ?thesis .

qed

A variant where we get rid of the k = l2-assumption by just taking squares
everywhere.
theorem Clique-not-solvable-by-small-monotone-circuit:

fixes ϕ :: ′a mformula
assumes LARGE : k ≥ Large-Number
and π: bij-betw π V [k^8]^2
and solution: ∀G∈Graphs [k ^ 8]. (G ∈ Clique [k ^ 8] (k^2)) = eval (λ x. π x
∈ G) ϕ

and vars: vars ϕ ⊆ V
shows cs ϕ > k powr (8 / 7 ∗ k)
proof −

from LARGE have LARGE : Large-Number ≤ k2

by (simp add: power2-nat-le-imp-le)
have id: k2 ^ 4 = k^8 sqrt (k^2) = k by auto
from Clique-not-solvable-by-small-monotone-circuit-squared[of k^2, unfolded id,

56

OF - LARGE π solution vars]
have cs ϕ > (k^2) powr (4 / 7 ∗ k) by auto
also have (k^2) powr (4 / 7 ∗ k) = k powr (8 / 7 ∗ k)

unfolding of-nat-power using powr-powr [of real k 2] by simp
finally show ?thesis .

qed

definition large-number where large-number = Large-Number^8

Finally a variant, where the size is formulated depending on n, the number
of vertices.
theorem Clique-with-n-nodes-not-solvable-by-small-monotone-circuit:

fixes ϕ :: ′a mformula
assumes large: n ≥ large-number
and kn: ∃ k. n = k^8
and π: bij-betw π V [n]^2
and s: s = root 4 n
and solution: ∀G∈Graphs [n]. (G ∈ Clique [n] s) = eval (λ x. π x ∈ G) ϕ
and vars: vars ϕ ⊆ V

shows cs ϕ > (root 7 n) powr (root 8 n)
proof −

from kn obtain k where nk: n = k^8 by auto
have kn: k = root 8 n unfolding nk of-nat-power

by (subst real-root-pos2, auto)
have root 4 n = root 4 ((real (k^2))^4) unfolding nk by simp
also have . . . = k^2 by (simp add: real-root-pos-unique)
finally have r4: root 4 n = k^2 by simp
have s: s = k^2 using s unfolding r4 by simp
from large[unfolded nk large-number-def] have Large: k ≥ Large-Number by

simp
have 0 < Large-Number unfolding Large-Number-def by simp
with Large have k0: k > 0 by auto
hence n0: n > 0 using nk by simp
from Clique-not-solvable-by-small-monotone-circuit[OF Large π[unfolded nk] -

vars]
solution[unfolded s] nk

have real k powr (8 / 7 ∗ real k) < cs ϕ by auto
also have real k powr (8 / 7 ∗ real k) = root 8 n powr (8 / 7 ∗ root 8 n)

unfolding kn by simp
also have . . . = ((root 8 n) powr (8 / 7)) powr (root 8 n)

unfolding powr-powr by simp
also have (root 8 n) powr (8 / 7) = root 7 n using n0

by (simp add: root-powr-inverse powr-powr)
finally show ?thesis .

qed

end

57

References

[1] N. Alon and R. B. Boppana. The monotone circuit complexity of Boolean
functions. Combinatorica, 7(1):1–22, 1987.

[2] R. B. Boppana and M. Sipser. The complexity of finite functions. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Vol-
ume A: Algorithms and Complexity, pages 757–804. Elsevier and MIT
Press, 1990.

[3] P. Erdős and R. Rado. Intersection theorems for systems of sets. Journal
of the London Mathematical Society, 35:85–90, 1960.

[4] L. Gordeev. On P versus NP. Avaible at http://arxiv.org/abs/2005.
00809v3.

[5] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

58

http://arxiv.org/abs/2005.00809v3
http://arxiv.org/abs/2005.00809v3

	Introduction
	Preliminaries
	Monotone Formulas
	Definition
	Conversion of mformulas to true-free mformulas

	Simplied Version of Gordeev's Proof for Monotone Circuits
	Setup of Global Assumptions and Proofs of Approximations
	Plain Graphs
	Test Graphs
	Basic operations on sets of graphs
	Acceptability
	Approximations and deviations
	Formalism
	Conclusion

