
Concrete bounds for Chebyshev’s prime counting
functions

Manuel Eberl

September 16, 2024

Abstract

This entry derives explicit lower and upper bounds for Chebyshev’s
prime counting functions

ψ(x) =
∑

pk≤x
k>0

log p ϑ(x) =
∑
p≤x

log p .

Concretely, the following inequalities are proven:
• ψ(x) ≥ 0.9x for x ≥ 41

• ϑ(x) ≥ 0.82x if x ≥ 97

• ϑ(x) ≤ ψ(x) ≤ 1.2x if x ≥ 0

The proofs work by careful estimation of ψ(x), with Stirling’s formula
as a starting point, to prove the bound for all x ≥ x0 with a concrete
x0, followed by brute-force approximation for all x below x0.

An easy corollary of this is Bertrand’s postulate, i.e. the fact that
for any x > 1 the interval (x, 2x) contains at least one prime (a fact
that has already been shown in the AFP using weaker bounds for ψ
and ϑ).

Contents
1 Concrete bounds for Chebyshev’s prime counting functions 2

1.1 Brute-force checking of bounds for ψ and ϑ 2
1.1.1 Computing powers of a number 2
1.1.2 Computing prime powers 4
1.1.3 A generic checking function 6
1.1.4 The ϑ function . 11
1.1.5 The ψ function . 15

1.2 Auxiliary material . 19
1.3 Bounds for the remainder in Stirling’s approximation 20
1.4 Approximating ψ . 23
1.5 Final results . 34

1

1 Concrete bounds for Chebyshev’s prime count-
ing functions

theory Chebyshev_Prime_Exhaust
imports

"HOL-Decision_Procs.Approximation"
"HOL-Library.Code_Target_Numeral"
"Prime_Number_Theorem.Prime_Counting_Functions"

begin

The well-known Prime Number Theorem states that ψ(x) ∼ θ(x) ∼ (x), i.e.
that both ψ(x) and ϑ(x) are bounded by (1 ± ε)x for sufficiently large x
for any ε > 0. However, these are asymptotic bounds without giving any
concrete information on how ψ and ϑ behave for small x, or even how big x
must be until these bound shold.
To complement this, we shall prove some concrete, non-asymptotic bounds.
Concretely:

• ψ(x) ≥ 0.9x if x ≥ 41

• θ(x) ≥ 0.82x if x ≥ 97

• θ(x) ≤ ψ(x) ≤ 1.2x if x ≥ 0

Our formalisation loosely follows a blog entry by A.W. Walker: https://
awwalker.com/2017/02/05/notes-on-the-chebyshev-theorem/

1.1 Brute-force checking of bounds for ψ and ϑ

1.1.1 Computing powers of a number
function powers_below_aux :: "nat ⇒ nat ⇒ nat ⇒ nat list" where

"powers_below_aux ub n acc = (if acc = 0 ∨ n ≤ 1 ∨ acc > ub then []
else

acc # powers_below_aux ub n (acc * n))"
by auto

termination
by (relation "Wellfounded.measure (λ(ub, n, acc). 1 + ub - acc)")

(auto intro!: diff_less_mono2)

lemmas [simp del] = powers_below_aux.simps

lemma set_powers_below_aux:
assumes "acc > 0" "n > 1"
shows "set (powers_below_aux ub n acc) = range (λi. acc * n ^ i)

∩ {..ub}"
using assms

proof (induction ub n acc rule: powers_below_aux.induct)

2

https://awwalker.com/2017/02/05/notes-on-the-chebyshev-theorem/
https://awwalker.com/2017/02/05/notes-on-the-chebyshev-theorem/

case (1 ub n acc)
show ?case
proof (cases "acc > ub")

case True
have "range (λi. acc * n ^ i) ∩ {..ub} = {}"
proof (intro equalityI subsetI)

fix k assume "k ∈ range (λi. acc * n ^ i) ∩ {..ub}"
then obtain i where "acc * n ^ i ≤ ub"

by auto
also have "ub < acc * n ^ 0"

using True by simp
finally have "n ^ i < n ^ 0"

using ‹acc > 0› by (subst (asm) mult_less_cancel1) auto
hence "i < 0"

by (subst (asm) power_strict_increasing_iff) (use ‹n > 1› in auto)
thus "k ∈ {}"

by simp
qed auto
thus ?thesis

using True by (auto simp: powers_below_aux.simps)
next

case False
have "set (powers_below_aux ub n acc) = insert acc (set (powers_below_aux

ub n (acc * n)))"
using False "1.prems" by (subst powers_below_aux.simps) auto

also have "set (powers_below_aux ub n (acc * n)) = range (λi. acc
* n ^ Suc i) ∩ {..ub}"

by (subst "1.IH") (use "1.prems" False in ‹auto simp: mult_ac›)
also have "insert acc (range (λi. acc * n ^ Suc i) ∩ {..ub}) =

range (λi. acc * n ^ i) ∩ {..ub}" (is "insert acc ?lhs
= ?rhs")

proof (intro equalityI subsetI)
fix x assume "x ∈ insert acc ?lhs"
thus "x ∈ ?rhs" using False

by (auto intro: rev_image_eqI[of 0] rev_image_eqI[of "Suc i" for
i])

next
fix x assume "x ∈ ?rhs"
then obtain i where i: "x = acc * n ^ i" and le: "acc * n ^ i

≤ ub"
by auto

show "x ∈ insert acc ?lhs"
proof (cases "i = 0")

case False
hence "x ∈ ?lhs"

by (intro IntI rev_image_eqI[of "i-1"]) (use i le in auto)
thus ?thesis

by blast
qed (use i le in auto)

3

qed
finally show ?thesis .

qed
qed

definition powers_below :: "nat ⇒ nat ⇒ nat list" where
"powers_below ub n = powers_below_aux ub n n"

lemma set_powers_below:
assumes "n > 1"
shows "set (powers_below ub n) = (λi. n ^ i) ‘ {1..} ∩ {..ub}"

proof -
have "set (powers_below ub n) = range (λi. n * n ^ i) ∩ {..ub}"

unfolding powers_below_def
by (rule set_powers_below_aux) (use assms in auto)

also have "range (λi. n * n ^ i) = (λi. n ^ i) ‘ Suc ‘ UNIV"
by (simp add: image_image o_def)

also have "bij_betw Suc UNIV {1..}"
by (rule bij_betwI[of _ _ _ "λi. i - 1"]) auto

hence "Suc ‘ UNIV = {1..}"
by (simp add: bij_betw_def)

finally show ?thesis .
qed

lemma distinct_powers_below_aux:
assumes "n > 1" "acc > 0"
shows "distinct (powers_below_aux ub n acc)"
using assms
by (induction ub n acc rule: powers_below_aux.induct; subst powers_below_aux.simps)

(auto simp: set_powers_below_aux)

lemma distinct_powers_below: "n > 1 =⇒ distinct (powers_below ub n)"
unfolding powers_below_def by (rule distinct_powers_below_aux) auto

lemma hd_powers_below_aux:
assumes "acc ≤ ub" "n > 1" "acc > 0"
shows "hd (powers_below_aux ub n acc) = acc"
by (subst powers_below_aux.simps) (use assms in auto)

lemma hd_powers_below:
assumes "n ≤ ub" "n > 1"
shows "hd (powers_below ub n) = n"
unfolding powers_below_def by (subst hd_powers_below_aux) (use assms

in auto)

1.1.2 Computing prime powers
definition prime_powers_upto :: "nat ⇒ (nat × nat) list" where

"prime_powers_upto n =

4

sort_key fst (concat (map (λp. map (λk. (k, p)) (powers_below n p))
(primes_upto n)))"

lemma map_key_sort_key: "map f (sort_key f xs) = sort (map f xs)"
proof -

have [simp]: "map f (insort_key f x xs) = insort (f x) (map f xs)" for
x xs

by (induction xs) auto
have [simp]: "map f (foldr (insort_key f) xs acc) =

foldr insort (map f xs) (map f acc)" for acc
by (induction xs arbitrary: acc) auto

show ?thesis
unfolding sort_key_def by simp

qed

lemma distinct_prime_powers_upto:
"distinct (map fst (prime_powers_upto n))"

proof -
have inj: "inj_on (powers_below n) {p. prime p ∧ p ≤ n}"
proof

fix p q assume pq: "p ∈ {p. prime p ∧ p ≤ n}" "q ∈ {p. prime p
∧ p ≤ n}"

assume eq: "powers_below n p = powers_below n q"
from eq have "hd (powers_below n p) = hd (powers_below n q)"

by simp
thus "p = q"

using pq by (simp add: hd_powers_below prime_gt_Suc_0_nat)
qed

have "distinct (concat (map (powers_below n) (primes_upto n)))"
proof (rule distinct_concat, goal_cases)

case 1
thus ?case

unfolding distinct_map using inj
by (simp add: set_primes_upto conj_commute)

next
case (2 ys)
thus ?case

by (auto simp: distinct_powers_below set_primes_upto prime_gt_Suc_0_nat)
next

case (3 ys zs)
thus ?case

by (auto simp: set_primes_upto set_powers_below prime_gt_Suc_0_nat
prime_power_inj’’)

qed
thus ?thesis

by (simp add: prime_powers_upto_def map_key_sort_key map_concat o_def)
qed

5

lemma sorted_prime_powers_upto:
"sorted (map fst (prime_powers_upto n))"
by (simp add: prime_powers_upto_def)

lemma set_prime_powers_upto:
"set (prime_powers_upto n) = {(q, aprimedivisor q) |q. primepow q ∧

q ≤ n}"
proof -

have "set (prime_powers_upto n) =
(
⋃

p∈{p. p ≤ n ∧ prime p}. (λx. (x, p)) ‘ ((λi. p ^ i) ‘ {1..}
∩ {..n}))"

by (simp add: prime_powers_upto_def set_primes_upto set_powers_below
prime_gt_Suc_0_nat)

also have " . . . = {(q, aprimedivisor q) |q. primepow q ∧ q ≤ n}"
(is "?lhs = ?rhs")

proof (intro equalityI subsetI)
fix qp assume qp: "qp ∈ ?lhs"
then obtain q p where [simp]: "qp = (q, p)"

by (cases qp)
from qp obtain i where i: "prime p" "p ≤ n" "p ^ i ≤ n" "q = p

^ i" "i ≥ 1"
by auto

show "qp ∈ ?rhs"
using i by (auto simp: aprimedivisor_prime_power)

next
fix qp assume qp: "qp ∈ ?rhs"
then obtain q p where [simp]: "qp = (q, p)"

by (cases qp)
from qp have "primepow q"

by auto
then obtain p’ i where i: "prime p’" "q = p’ ^ i" "i > 0"

by (auto simp: primepow_def)
have [simp]: "p’ = p"

using qp i by (auto simp: aprimedivisor_prime_power)
have "p ^ 1 ≤ p ^ i"

by (rule power_increasing) (use i prime_gt_0_nat[of p] in auto)
also have " . . . ≤ n"

using i qp by simp
finally have "p ≤ n"

by simp
with i qp show "qp ∈ ?lhs"

by auto
qed
finally show ?thesis .

qed

1.1.3 A generic checking function
locale chebyshev_check =

6

fixes f :: "nat ⇒ real"
and F :: "nat ⇒ ’a ⇒ float"
and A :: "nat set"
and plus :: "nat ⇒ float ⇒ float ⇒ float"
and rel :: "real ⇒ real ⇒ bool"
and P :: "nat ⇒ real ⇒ bool"
and num :: "’a ⇒ nat"

assumes plus: "
∧

prec. rel X x =⇒ rel Y y =⇒ rel (plus prec X Y)
(x + y)"

assumes P_rel: "
∧

x y k. P k x =⇒ rel x y =⇒ P k y"
assumes rel_0: "rel 0 0"
assumes A: "0 /∈ A"

begin

definition S where "S n = (
∑

k∈A∩{..n}. f k)"
definition S’ where "S’ n = (

∑
k∈A∩{..<n}. f k)"

context
fixes prec :: nat

begin

function check_aux :: "’a list ⇒ nat ⇒ nat ⇒ float ⇒ nat ⇒ bool"
where

"check_aux ps lb ub acc n = (if n > ub then True else
(let (acc’, ps’) =

(if ps 6= [] ∧ num (hd ps) = n then
(plus prec acc (F prec (hd ps)), tl ps)

else (acc, ps))
in (n < lb ∨ P n (real_of_float acc’)) ∧ check_aux ps’ lb ub acc’

(n+1)))"
by auto

termination
by (relation "Wellfounded.measure (λ(_, _, ub, _, n). Suc ub - n)")

(auto split: if_splits)

definition check :: "’a list ⇒ nat ⇒ nat ⇒ bool" where
"check xs lb ub =

check_aux xs lb ub 0 (if xs = [] then lb else min lb (num (hd xs)))"

lemmas [simp del] = check_aux.simps

lemma check_aux_correct:
assumes "sorted (map num ps)" "distinct (map num ps)"
assumes "

∧
p. p ≤ ub =⇒ p ∈ num ‘ set ps ←→ p ∈ A ∧ p ≥ n"

assumes "
∧

x. x ∈ set ps =⇒ rel (real_of_float (F prec x)) (f (num
x))"

assumes "rel (real_of_float acc) (S’ n)"
assumes "check_aux ps lb ub acc n"
assumes "k ∈ {max lb n..ub}"

7

shows "P k (S k)"
using assms

proof (induction ps lb ub acc n rule: check_aux.induct)
case (1 ps lb ub acc n)
hence "n ≤ ub"

by auto
define ps’ where "ps’ = (if ps = [] ∨ num (hd ps) 6= n then ps else

tl ps)"
define acc’ where "acc’ = (if ps = [] ∨ num (hd ps) 6= n then acc else

plus prec acc (F prec (hd ps)))"

have acc’: "rel (real_of_float acc’) (S n)"
proof (cases "n ∈ A")

case False
hence "acc’ = acc" using "1.prems"(3)[of n] ‹n ≤ ub›

by (cases ps) (auto simp: acc’_def)
hence "rel (real_of_float acc’) (S’ n)"

using "1.prems"(5) by simp
also from False have "A ∩ {..<n} = A ∩ {..n}"

using nless_le by blast
hence "S’ n = S n"

by (simp add: S_def S’_def)
finally show ?thesis .

next
case True
hence "n ∈ num ‘ set ps" "n > 0"

using "1.prems"(3)[of n] ‹n ≤ ub› A by (auto intro: Nat.gr0I)
have *: "num p ≥ n" if "p ∈ set ps" for p

using "1.prems"(3)[of "num p"] that ‹n ≤ ub›
by (cases "num p ≤ ub") auto

from ‹n ∈ num ‘ set ps› obtain x
where ps_eq: "ps = x # ps’" "num x = n"
using ‹sorted (map num ps)› ‹distinct (map num ps)› *
by (cases ps) (fastforce simp: ps’_def)+

have "acc’ = plus prec acc (F prec x)"
using ps_eq by (auto simp: acc’_def)

also have "rel (real_of_float . . .) (S’ n + f (num x))"
by (intro plus "1.prems" ‹n > 0›) (auto simp: ps_eq)

also have " . . . = sum f (insert n (A ∩ {..<n}))"
unfolding S’_def by (subst sum.insert) (auto simp: ps_eq)

also have "insert n (A ∩ {..<n}) = A ∩ {..n}"
using True by auto

also have "sum f . . . = S n"
by (simp add: S_def)

finally show ?thesis .
qed

show ?case
proof (cases "n = k")

8

case True
have "P k (real_of_float acc’)"

using "1.prems"(6,7)
by (subst (asm) check_aux.simps) (use True in ‹auto simp: acc’_def›)

moreover have "rel (real_of_float acc’) (S n)"
by fact

ultimately show ?thesis
using True P_rel by simp

next
case False
show ?thesis
proof (rule "1.IH"[of "(acc’, ps’)", OF _ _ refl])

show "sorted (map num ps’)"
using ‹sorted (map num ps)›
by (auto simp: ps’_def sorted_tl map_tl)

show "distinct (map num ps’)"
using ‹distinct (map num ps)›
by (auto simp: ps’_def distinct_tl map_tl)

show "(p ∈ num ‘ set ps’) = (p ∈ A ∧ n + 1 ≤ p)" if p: "p ≤ ub"
for p

proof (cases "n ∈ A")
case False
hence "n /∈ num ‘ set ps"

using "1.prems"(3)[of n] ‹n ≤ ub› by auto
hence [simp]: "ps’ = ps"

by (auto simp: ps’_def)
show ?thesis using "1.prems"(3)[of p] p False

by (cases "n = p") auto
next

case True
hence "n ∈ num ‘ set ps"

using "1.prems"(3)[of n] ‹n ≤ ub› by auto
have *: "num p ≥ n" if "p ∈ set ps" for p

using "1.prems"(3)[of "num p"] that ‹n ≤ ub›
by (cases "num p ≤ ub") auto

from ‹n ∈ num ‘ set ps› obtain x
where ps_eq: "ps = x # ps’" "num x = n"
using ‹sorted (map num ps)› ‹distinct (map num ps)› *
by (cases ps) (fastforce simp: ps’_def)+

show ?thesis
by (cases "p = n")

(use "1.prems"(3)[of p] p ‹distinct (map num ps)› in ‹auto
simp: ps_eq›)

qed
next

have "rel (real_of_float acc’) (S n)"
by fact

also have "S n = S’ (n + 1)"
unfolding S_def S’_def by (simp add: lessThan_Suc_atMost)

9

finally show "rel (real_of_float acc’) (S’ (n + 1))" .
next

show "check_aux ps’ lb ub acc’ (n + 1)"
using "1.prems"(6,7)
by (subst (asm) check_aux.simps) (auto simp: acc’_def ps’_def)

next
show "k ∈ {max lb (n+1)..ub}"

using "1.prems" False by auto
next

show "rel (real_of_float (F prec x)) (f (num x))"
if "x ∈ set ps’" for x
using "1.prems"(4)[of x] that
by (cases ps) (auto simp: ps’_def split: if_splits)

qed (use ‹n ≤ ub› in ‹auto simp: acc’_def ps’_def›)
qed

qed

lemma check_correct:
assumes "sorted (map num ps)" "distinct (map num ps)"
assumes "

∧
p. p ≤ ub =⇒ p ∈ num ‘ set ps ←→ p ∈ A"

assumes "
∧

x. x ∈ set ps =⇒ rel (real_of_float (F prec x)) (f (num
x))"

assumes "check ps lb ub"
assumes "k ∈ {lb..ub}"
shows "P k (S k)"

proof (rule check_aux_correct)
define n where "n = (if ps = [] then lb else min lb (num (hd ps)))"
have "n ≤ ub"

using assms by (auto simp: n_def)
show "sorted (map num ps)" "distinct (map num ps)"

by fact+
show "check_aux ps lb ub 0 n"

using assms unfolding check_def n_def by simp
show "k ∈ {max lb n..ub}"

using assms by (auto simp: n_def)
show "p ∈ num ‘ set ps ←→ p ∈ A ∧ n ≤ p" if "p ≤ ub" for p

using assms(3)[of p] that ‹sorted (map num ps)›
by (cases ps) (auto simp: n_def)

have "A ∩ {..<n} = {}"
proof (intro equalityI subsetI)

fix p assume p: "p ∈ A ∩ {..<n}"
hence "p ∈ num ‘ set ps"

using assms(3)[of p] ‹n ≤ ub› by auto
hence False

using p ‹sorted (map num ps)› by (cases ps) (auto simp: n_def)
thus "p ∈ {}" ..

qed auto
thus "rel (real_of_float 0) (S’ n)"

10

by (simp add: S’_def rel_0)
qed (use assms in auto)

end

end

1.1.4 The ϑ function
context
begin

interpretation primes_theta: chebyshev_check
"λn. ln (real n)"
"λprec n. the (lb_ln prec (Float (int n) 0))"
"{p. prime p}"
"float_plus_down"
"(≤)"
"λk x. x ≥ c * (real k + 1)"
"λn. n"
for c :: real

proof
show "real_of_float (float_plus_down prec X Y) ≤ x + y"

if "real_of_float X ≤ x" "real_of_float Y ≤ y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_down_le)

qed auto

definition check_theta_lower_aux
where "check_theta_lower_aux = primes_theta.check_aux"

definition check_theta_lower where
"check_theta_lower c prec lb ub =

primes_theta.check c prec (primes_upto ub) lb ub"

lemma check_theta_lower_aux_code [code]:
"check_theta_lower_aux c prec ps lb ub acc n =

(if ub < n then True else let (acc’, ps’) =
if ps 6= [] ∧ hd ps = n
then (float_plus_down prec acc (the (lb_ln prec (Float (int

(hd ps)) 0))), tl ps)
else (acc, ps)

in (n < lb ∨ c * (real n + 1) ≤ real_of_float acc’) ∧
check_theta_lower_aux c prec ps’ lb
ub acc’ (n + 1))"

unfolding check_theta_lower_aux_def
by (rule primes_theta.check_aux.simps)

11

lemma check_theta_lower_code [code]:
"check_theta_lower c prec lb ub = (let ps = primes_upto ub in

check_theta_lower_aux c prec ps lb ub 0
(if ps = [] then lb else min lb (hd ps)))"

unfolding check_theta_lower_def primes_theta.check_def check_theta_lower_aux_def
by (simp add: Let_def)

lemma check_theta_lower_correct:
assumes "check_theta_lower c prec lb ub"
shows "∀ x∈{real lb..real ub}. primes_theta x ≥ c * x"

proof
fix x assume x: "x ∈ {real lb..real ub}"
define k where "k = nat bxc"
show "c * x ≤ primes_theta x"
proof (cases "c ≥ 0")

case False
hence "c * x ≤ 0"

using x by (auto intro: mult_nonpos_nonneg)
also have "0 ≤ primes_theta x"

by (rule ϑ_nonneg)
finally show ?thesis .

next
case True
hence "c * x ≤ c * (real k + 1)"

using x by (intro mult_left_mono) (auto simp: k_def)
also have "c * (real k + 1) ≤ primes_theta.S k"
proof (rule primes_theta.check_correct)

show "sorted (map (λn. n) (primes_upto ub))"
"distinct (map (λn. n) (primes_upto ub))"

by (simp_all add: sorted_primes_upto distinct_primes_upto)
show "k ∈ {lb..ub}"

using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)

show "primes_theta.check c prec (primes_upto ub) lb ub"
using assms by (simp add: check_theta_lower_def)

next
fix p assume "p ≤ ub"
thus "p ∈ (λn. n) ‘ set (primes_upto ub) ←→ p ∈ {p. prime p}"

by (auto simp: set_primes_upto)
next

fix n
assume n: "n ∈ set (primes_upto ub)"
hence "n > 0"

by (auto simp: set_primes_upto prime_gt_0_nat)
define x where "x = the (lb_ln prec (Float (int n) 0))"
have "lb_ln prec (Float (int n) 0) 6= None"

using ‹n > 0› by (subst lb_ln.simps) auto
hence "lb_ln prec (Float (int n) 0) = Some x"

by (cases "lb_ln prec (Float (int n) 0)") (auto simp: x_def)

12

from lb_lnD[OF this] show "real_of_float x ≤ ln (real n)"
by simp

qed
also have "primes_theta.S k = primes_theta k"

unfolding primes_theta.S_def primes_theta_def prime_sum_upto_def
by (intro sum.cong) auto

also have "primes_theta k = primes_theta x"
unfolding k_def by simp

finally show "c * x ≤ primes_theta x" .
qed

qed

end

context
begin

interpretation primes_theta: chebyshev_check
"λn. ln (real n)"
"λprec n. the (ub_ln prec (Float (int n) 0))"
"{p. prime p}"
"float_plus_up"
"(≥)"
"λk x. x ≤ c * real k"
"λn. n"
for c :: real

proof
show "real_of_float (float_plus_up prec X Y) ≥ x + y"

if "real_of_float X ≥ x" "real_of_float Y ≥ y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_up_le)

qed auto

definition check_theta_upper_aux
where "check_theta_upper_aux = primes_theta.check_aux"

definition check_theta_upper where
"check_theta_upper c prec lb ub =

primes_theta.check c prec (primes_upto ub) lb ub"

lemma check_theta_upper_aux_code [code]:
"check_theta_upper_aux c prec ps lb ub acc n =

(if ub < n then True else let (acc’, ps’) =
if ps 6= [] ∧ hd ps = n
then (float_plus_up prec acc (the (ub_ln prec (Float (int

13

(hd ps)) 0))), tl ps)
else (acc, ps)

in (n < lb ∨ c * real n ≥ real_of_float acc’) ∧
check_theta_upper_aux c prec ps’ lb
ub acc’ (n + 1))"

unfolding check_theta_upper_aux_def
by (rule primes_theta.check_aux.simps)

lemma check_theta_upper_code [code]:
"check_theta_upper c prec lb ub = (let ps = primes_upto ub in

check_theta_upper_aux c prec ps lb ub 0
(if ps = [] then lb else min lb (hd ps)))"

unfolding check_theta_upper_def primes_theta.check_def check_theta_upper_aux_def
by (simp add: Let_def)

lemma check_theta_upper_correct:
assumes "check_theta_upper c prec lb ub" "c ≥ 0"
shows "∀ x∈{real lb..real ub}. primes_theta x ≤ c * x"

proof
fix x assume x: "x ∈ {real lb..real ub}"
define k where "k = nat bxc"
have "primes_theta.S k ≤ c * real k"
proof (rule primes_theta.check_correct)

show "sorted (map (λn. n) (primes_upto ub))"
"distinct (map (λn. n) (primes_upto ub))"

by (simp_all add: sorted_primes_upto distinct_primes_upto)
show "k ∈ {lb..ub}"

using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)

show "primes_theta.check c prec (primes_upto ub) lb ub"
using assms by (simp add: check_theta_upper_def)

next
fix p assume "p ≤ ub"
thus "p ∈ (λn. n) ‘ set (primes_upto ub) ←→ p ∈ {p. prime p}"

by (auto simp: set_primes_upto)
next

fix n
assume n: "n ∈ set (primes_upto ub)"
hence "n > 0"

by (auto simp: set_primes_upto prime_gt_0_nat)
define x where "x = the (ub_ln prec (Float (int n) 0))"
have "ub_ln prec (Float (int n) 0) 6= None"

using ‹n > 0› by (subst ub_ln.simps) auto
hence "ub_ln prec (Float (int n) 0) = Some x"

by (cases "ub_ln prec (Float (int n) 0)") (auto simp: x_def)
from ub_lnD[OF this] show "real_of_float x ≥ ln (real n)"

by simp
qed
also have "primes_theta.S k = primes_theta k"

14

unfolding primes_theta.S_def primes_theta_def prime_sum_upto_def
by (intro sum.cong) auto

also have "primes_theta k = primes_theta x"
unfolding k_def by simp

also have "c * real k ≤ c * x"
using ‹c ≥ 0› x by (intro mult_left_mono) (auto simp: k_def)

finally show "primes_theta x ≤ c * x" .
qed

end

1.1.5 The ψ function
context
begin

interpretation primes_psi: chebyshev_check
"λn. ln (real (aprimedivisor n))"
"λprec x. the (lb_ln prec (Float (int (snd x)) 0))"
"{p. primepow p}"
"float_plus_down"
"(≤)"
"λk x. x ≥ c * (real k + 1)"
"fst"
for c :: real

proof
show "real_of_float (float_plus_down prec X Y) ≤ x + y"

if "real_of_float X ≤ x" "real_of_float Y ≤ y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_down_le)

qed auto

definition check_psi_lower_aux
where "check_psi_lower_aux = primes_psi.check_aux"

definition check_psi_lower where
"check_psi_lower c prec lb ub =

primes_psi.check c prec (prime_powers_upto ub) lb ub"

lemma check_psi_lower_aux_code [code]:
"check_psi_lower_aux c prec ps lb ub acc n =

(if ub < n then True else let (acc’, ps’) =
if ps 6= [] ∧ fst (hd ps) = n
then (float_plus_down prec acc (the (lb_ln prec (Float (int

(snd (hd ps))) 0))), tl ps)
else (acc, ps)

in (n < lb ∨ c * (real n + 1) ≤ real_of_float acc’) ∧
check_psi_lower_aux c prec ps’ lb

15

ub acc’ (n + 1))"
unfolding check_psi_lower_aux_def
by (rule primes_psi.check_aux.simps)

lemma check_psi_lower_code [code]:
"check_psi_lower c prec lb ub = (let ps = prime_powers_upto ub in

check_psi_lower_aux c prec ps lb ub 0
(if ps = [] then lb else min lb (fst (hd ps))))"

unfolding check_psi_lower_def primes_psi.check_def check_psi_lower_aux_def
by (simp add: Let_def)

lemma check_psi_lower_correct:
assumes "check_psi_lower c prec lb ub"
shows "∀ x∈{real lb..real ub}. primes_psi x ≥ c * x"

proof
fix x assume x: "x ∈ {real lb..real ub}"
define k where "k = nat bxc"
show "c * x ≤ primes_psi x"
proof (cases "c ≥ 0")

case False
hence "c * x ≤ 0"

using x by (auto intro: mult_nonpos_nonneg)
also have "0 ≤ primes_psi x"

by (rule ψ_nonneg)
finally show ?thesis .

next
case True
hence "c * x ≤ c * (real k + 1)"

using x by (intro mult_left_mono) (auto simp: k_def)
also have "c * (real k + 1) ≤ primes_psi.S k"
proof (rule primes_psi.check_correct)

show "sorted (map fst (prime_powers_upto ub))"
"distinct (map fst (prime_powers_upto ub))"

by (simp_all add: sorted_prime_powers_upto distinct_prime_powers_upto)
show "k ∈ {lb..ub}"

using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)

show "primes_psi.check c prec (prime_powers_upto ub) lb ub"
using assms by (simp add: check_psi_lower_def)

next
fix p assume "p ≤ ub"
thus "p ∈ fst ‘ set (prime_powers_upto ub) ←→ p ∈ {p. primepow

p}"
by (force simp: set_prime_powers_upto)

next
fix y
assume y: "y ∈ set (prime_powers_upto ub)"
hence "snd y > 0"

by (auto simp: set_prime_powers_upto intro!: aprimedivisor_pos_nat

16

primepow_gt_Suc_0)
define x where "x = the (lb_ln prec (Float (int (snd y)) 0))"
have "lb_ln prec (Float (int (snd y)) 0) 6= None"

using ‹snd y > 0› by (subst lb_ln.simps) auto
hence "lb_ln prec (Float (int (snd y)) 0) = Some x"

by (cases "lb_ln prec (Float (int (snd y)) 0)") (auto simp: x_def)
from lb_lnD[OF this] show "real_of_float x ≤ ln (real (aprimedivisor

(fst y)))"
using y by (auto simp: set_prime_powers_upto)

qed
also have "primes_psi.S k = primes_psi k"

unfolding primes_psi.S_def primes_psi_def sum_upto_def
by (intro sum.mono_neutral_cong_left) (auto simp: primepow_gt_0_nat

mangoldt_def)
also have "primes_psi k = primes_psi x"

unfolding k_def by simp
finally show "c * x ≤ primes_psi x" .

qed
qed

end

context
begin

interpretation primes_psi: chebyshev_check
"λn. ln (real (aprimedivisor n))"
"λprec x. the (ub_ln prec (Float (int (snd x)) 0))"
"{p. primepow p}"
"float_plus_up"
"(≥)"
"λk x. x ≤ c * real k"
"fst"
for c :: real

proof
show "real_of_float (float_plus_up prec X Y) ≥ x + y"

if "real_of_float X ≥ x" "real_of_float Y ≥ y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_up_le)

qed auto

definition check_psi_upper_aux
where "check_psi_upper_aux = primes_psi.check_aux"

definition check_psi_upper where
"check_psi_upper c prec lb ub =

primes_psi.check c prec (prime_powers_upto ub) lb ub"

17

lemma check_psi_upper_aux_code [code]:
"check_psi_upper_aux c prec ps lb ub acc n =

(if ub < n then True else let (acc’, ps’) =
if ps 6= [] ∧ fst (hd ps) = n
then (float_plus_up prec acc (the (ub_ln prec (Float (int

(snd (hd ps))) 0))), tl ps)
else (acc, ps)

in (n < lb ∨ c * real n ≥ real_of_float acc’) ∧
check_psi_upper_aux c prec ps’ lb
ub acc’ (n + 1))"

unfolding check_psi_upper_aux_def
by (rule primes_psi.check_aux.simps)

lemma check_psi_upper_code [code]:
"check_psi_upper c prec lb ub = (let ps = prime_powers_upto ub in

check_psi_upper_aux c prec ps lb ub 0
(if ps = [] then lb else min lb (fst (hd ps))))"

unfolding check_psi_upper_def primes_psi.check_def check_psi_upper_aux_def
by (simp add: Let_def)

lemma check_psi_upper_correct:
assumes "check_psi_upper c prec lb ub" "c ≥ 0"
shows "∀ x∈{real lb..real ub}. primes_psi x ≤ c * x"

proof
fix x assume x: "x ∈ {real lb..real ub}"
define k where "k = nat bxc"
have "primes_psi.S k ≤ c * real k"
proof (rule primes_psi.check_correct)

show "sorted (map fst (prime_powers_upto ub))"
"distinct (map fst (prime_powers_upto ub))"

by (simp_all add: sorted_prime_powers_upto distinct_prime_powers_upto)
show "k ∈ {lb..ub}"

using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)

show "primes_psi.check c prec (prime_powers_upto ub) lb ub"
using assms by (simp add: check_psi_upper_def)

next
fix p assume "p ≤ ub"
thus "p ∈ fst ‘ set (prime_powers_upto ub) ←→ p ∈ {p. primepow p}"

by (force simp: set_prime_powers_upto)
next

fix y
assume y: "y ∈ set (prime_powers_upto ub)"
hence "snd y > 0"

by (auto simp: set_prime_powers_upto intro!: aprimedivisor_pos_nat
primepow_gt_Suc_0)

define x where "x = the (ub_ln prec (Float (int (snd y)) 0))"
have "ub_ln prec (Float (int (snd y)) 0) 6= None"

18

using ‹snd y > 0› by (subst ub_ln.simps) auto
hence "ub_ln prec (Float (int (snd y)) 0) = Some x"

by (cases "ub_ln prec (Float (int (snd y)) 0)") (auto simp: x_def)
from ub_lnD[OF this] show "real_of_float x ≥ ln (real (aprimedivisor

(fst y)))"
using y by (auto simp: set_prime_powers_upto)

qed
also have "primes_psi.S k = primes_psi k"

unfolding primes_psi.S_def primes_psi_def sum_upto_def
by (intro sum.mono_neutral_cong_left) (auto simp: primepow_gt_0_nat

mangoldt_def)
also have "primes_psi k = primes_psi x"

unfolding k_def by simp
also have "c * real k ≤ c * x"

using x assms by (intro mult_left_mono) (auto simp: k_def)
finally show "primes_psi x ≤ c * x" .

qed

end

end
theory Chebyshev_Prime_Bounds
imports

"Prime_Number_Theorem.Prime_Counting_Functions"
"Prime_Distribution_Elementary.Prime_Distribution_Elementary_Library"
"Prime_Distribution_Elementary.Primorial"
"HOL-Decision_Procs.Approximation"
"HOL-Library.Code_Target_Numeral"
Chebyshev_Prime_Exhaust

begin

1.2 Auxiliary material
context comm_monoid_set
begin

lemma union_disjoint’:
assumes "finite C" "A ∪ B = C" "A ∩ B = {}"
shows "f (F g A) (F g B) = F g C"
using union_disjoint[of A B g] assms by auto

end

lemma sum_mset_nonneg:
fixes X :: "’a :: ordered_comm_monoid_add multiset"
shows "(

∧
x. x ∈# X =⇒ x ≥ 0) =⇒ sum_mset X ≥ 0"

by (induction X) (auto)

lemma of_int_sum_mset: "of_int (sum_mset M) = sum_mset (image_mset of_int

19

M)"
by (induction M) auto

lemma sum_sum_mset: "(
∑

x∈A.
∑

y∈#B. f x y) = (
∑

y∈#B.
∑

x∈A. f x
y)"

by (induction B) (auto simp: algebra_simps sum.distrib)

lemma sum_mset_diff_distrib:
fixes f g :: "’a ⇒ ’b :: ab_group_add"
shows "(

∑
x∈#A. f x - g x) = (

∑
x∈#A. f x) - (

∑
x∈#A. g x)"

by (induction A) (auto simp: algebra_simps)

lemma sum_mset_neg_distrib:
fixes f :: "’a ⇒ ’b :: ab_group_add"
shows "(

∑
x∈#A. -f x) = -(

∑
x∈#A. f x)"

by (induction A) (auto simp: algebra_simps)

1.3 Bounds for the remainder in Stirling’s approximation
definition ln_fact_remainder :: "real ⇒ real" where

"ln_fact_remainder x = ln (fact (nat bxc)) - (x * ln x - x)"

lemma ln_fact_remainder_bounds:
assumes x: "x ≥ 3"
shows "ln_fact_remainder x ≤ ln x / 2 + ln (2 * pi) / 2 + 1 / (12

* bxc)"
and "ln_fact_remainder x ≥ -ln x / 2 + ln (2 * pi) / 2 - 1 / (2 *

x)"
proof -

define n where "n = nat bxc"
define f where "f = (λt. t * (ln t - 1) + ln t / 2 :: real)"

have "ln bxc ≥ 1"
proof -

have "1 ≤ ln (3 :: real)"
by (approximation 10)

also have "ln 3 ≤ ln bxc"
using assms by simp

finally show ?thesis .
qed

have n: "n ≥ 1"
using x by (auto simp: n_def le_nat_iff)

have "ln_fact_remainder x = ln (fact n) + ln x / 2 - f x"
by (simp add: ln_fact_remainder_def n_def f_def algebra_simps)

also have "ln (fact n) ≤ ln (2 * pi) / 2 + f n + 1 / (12 * n)"
using ln_fact_bounds(2)[of n] n by (auto simp: f_def ln_mult add_divide_distrib

algebra_simps)
also have " . . . + ln x / 2 - f x = ln x / 2 + (f n - f x) + ln (2 * pi)

20

/ 2 + 1 / (12 * n)"
using n by (simp add: algebra_simps ln_mult)

also have "f n ≤ f x"
unfolding f_def using assms ‹ln bxc ≥ 1›
by (intro add_mono mult_mono) (auto simp: n_def)

finally show "ln_fact_remainder x ≤ ln x / 2 + ln (2 * pi) / 2 + 1 /
(12 * bxc)"

using assms by (simp add: n_def)

define f’ :: "real ⇒ real" where "f’ = (λx. ln x + 1 / (2 * x))"
have f’_mono: "f’ x ≤ f’ y" if "x ≤ y" "x ≥ 1 / 2" for x y :: real

using that(1)
proof (rule DERIV_nonneg_imp_nondecreasing)

fix t assume t: "t ≥ x" "t ≤ y"
hence "t > 0"

using ‹x ≥ 1 / 2› by auto
have "(t - 1 / 2) / t ^ 2 ≥ 0"

using t that by auto
have "(f’ has_field_derivative (1 / t - 1 / (2 * t ^ 2))) (at t)"

using ‹t > 0› by (auto simp: f’_def power2_eq_square intro!: derivative_eq_intros)
also have "1 / t - 1 / (2 * t ^ 2) = (t - 1 / 2) / t ^ 2"

using ‹t > 0› by (simp add: field_simps eval_nat_numeral del: div_diff)
finally show "∃ y. (f’ has_real_derivative y) (at t) ∧ 0 ≤ y"

using ‹(t - 1 / 2) / t ^ 2 ≥ 0› by blast
qed

have f’_nonneg: "f’ t ≥ 0" if "t ≥ 3" for t
proof -

have "0 ≤ f’ 3"
unfolding f’_def by (approximation 10)

also have "f’ 3 ≤ f’ t"
by (rule f’_mono) (use that in auto)

finally show ?thesis .
qed

have "f x - f n ≤ f’ x * frac x"
proof (cases "n < x")

case False
hence "x = n"

using assms unfolding n_def by linarith
thus ?thesis using f’_nonneg[of x] assms

by (simp add: n_def)
next

case True
have "∃ z::real. z > n ∧ z < x ∧ f x - f n = (x - n) * f’ z"

using True assms n
by (intro MVT2) (auto intro!: derivative_eq_intros simp: f_def f’_def)

then obtain z :: real where z: "z > n" "z < x" "f x - f n = (x -
n) * f’ z"

21

by blast
have "f’ z ≤ f’ x"

by (rule f’_mono) (use z assms n in auto)

have "f x - f n = (x - n) * f’ z"
by fact

also have " . . . ≤ (x - n) * f’ x"
using ‹f’ z ≤ f’ x› True by (intro mult_left_mono) auto

also have "x - n = frac x"
using assms by (simp add: n_def frac_def)

finally show ?thesis
by (simp add: mult_ac)

qed

also have " . . . ≤ f’ x * 1"
using frac_lt_1[of x] f’_nonneg[of x] assms
by (intro mult_left_mono) auto

finally have "f n - f x ≥ -1 / (2 * x) - ln x"
by (simp add: f’_def)

have "-ln x / 2 - 1 / (2 * x) + ln (2 * pi) / 2 =
ln x / 2 + (-1 / (2 * x) - ln x) + ln (2 * pi) / 2"

by (simp add: algebra_simps)
also have "-1 / (2 * x) - ln x ≤ f n - f x"

by fact
also have "ln x / 2 + (f n - f x) + ln (2 * pi) / 2 =

ln (2 * pi) / 2 + f n + ln x / 2 - f x"
by (simp add: algebra_simps)

also have "ln (2 * pi) / 2 + f n ≤ ln (fact n)"
using ln_fact_bounds(1)[of n] n by (auto simp: f_def ln_mult add_divide_distrib

algebra_simps)
also have "ln (fact n) + ln x / 2 - f x = ln_fact_remainder x"

by (simp add: ln_fact_remainder_def f_def n_def algebra_simps)
finally show "ln_fact_remainder x ≥ -ln x / 2 + ln (2 * pi) / 2 - 1

/ (2 * x)"
by simp

qed

lemma abs_ln_fact_remainder_bounds:
assumes x: "x ≥ 3"
shows " |ln_fact_remainder x | < ln x / 2 + 1"

proof -
have "ln_fact_remainder x ≤ ln x / 2 + (ln (2 * pi) / 2 + 1 / (12 *

bxc))"
using ln_fact_remainder_bounds(1)[of x] assms by (simp add: algebra_simps)

also have "1 / (12 * bxc) ≤ 1 / 36"
using assms by auto

also have "ln (2 * pi) / 2 + 1 / 36 < 1"
by (approximation 10)

22

finally have less: "ln_fact_remainder x < ln x / 2 + 1"
by simp

have "-(ln x / 2 + 1) = -ln x / 2 + (-1)"
by simp

also have "-1 < 0 - 1 / (2 * x)"
using assms by simp

also have "0 ≤ ln (2 * pi) / 2"
using pi_gt3 by simp

also have "-ln x / 2 + (ln (2 * pi) / 2 - 1 / (2 * x)) ≤ ln_fact_remainder
x"

using ln_fact_remainder_bounds(2)[of x] assms by (simp add: algebra_simps)
finally have "- (ln x / 2 + 1) < ln_fact_remainder x" by - simp_all
with less show ?thesis

by linarith
qed

1.4 Approximating ψ

unbundle prime_counting_notation

lemma primes_psi_lower_rec:
fixes f :: "real ⇒ real"
assumes "

∧
x. x ≥ x0 =⇒ f x ≤ f (x / c) + h x"

assumes "x0 > 0" "x * c ≥ x0 * c ^ n" "c ≥ 1"
shows "f x ≤ f (x / c ^ n) + (

∑
k<n. h (x / c ^ k))"

using assms(2-)
proof (induction n arbitrary: x)

case 0
thus ?case by auto

next
case (Suc n)
have "0 < x0 * c ^ n"

using Suc.prems by auto
also have " . . . ≤ x"

using Suc.prems by auto
finally have "x > 0" .

have "x0 * c ^ n ≤ 1 * x"
using Suc.prems by simp

also have "1 * x ≤ c * x"
by (rule mult_right_mono) (use Suc.prems ‹x > 0› in auto)

finally have "f x ≤ f (x / c ^ n) + (
∑

k<n. h (x / c ^ k))"
by (intro Suc.IH) (use Suc.prems in ‹auto simp: mult_ac›)

also have "f (x / c ^ n) ≤ f (x / c ^ n / c) + h (x / c ^ n)"
by (rule assms(1)) (use Suc.prems ‹x > 0› in ‹auto simp: field_simps

less_imp_le›)
finally show ?case

by (simp add: mult_ac add_ac)

23

qed

locale chebyshev_multiset =
fixes L :: "int multiset"
assumes L_nonzero: "0 /∈# L"

begin

definition chi_L :: "real ⇒ int" ("χL")
where "chi_L t = (

∑
l∈#L. sgn l * bt / |l |c)"

definition psi_L :: "real ⇒ real" ("ψL")
where "psi_L x = sum_upto (λd. mangoldt d * chi_L (x / d)) x"

definition alpha_L :: real ("αL")
where "alpha_L = -(

∑
l∈#L. ln |l | / l)"

definition period :: nat
where "period = nat (Lcm (set_mset L))"

lemma period_pos: "period > 0"
proof -

have "Lcm (set_mset L) 6= 0"
using L_nonzero unfolding period_def by (subst Lcm_0_iff) auto

moreover have "Lcm (set_mset L) ≥ 0"
by auto

ultimately have "Lcm (set_mset L) > 0"
by linarith

thus ?thesis
by (simp add: period_def)

qed

lemma dvd_period: "l ∈# L =⇒ l dvd period"
unfolding period_def by auto

lemma chi_L_decompose:
"χL (x + of_int (m * int period)) = χL x + m * int period * (

∑
l∈#L.

1 / l)"
proof -

have "real_of_int (χL (x + of_int (m * int period))) =
(
∑

l∈#L. of_int (sgn l * b(x + of_int m * real period) / real_of_int
|l |c))"

by (simp add: chi_L_def of_int_sum_mset multiset.map_comp o_def)
also have " . . . = (

∑
l∈#L. real_of_int (sgn l * (bx / of_int |l |c)) +

m * period / l)"
proof (intro arg_cong[of _ _ sum_mset] image_mset_cong, goal_cases)

case (1 l)
with L_nonzero have [simp]: "l 6= 0"

by auto

24

have "(x + of_int m * real period) / real_of_int |l | =
x / of_int |l | + of_int (m * period div |l |)"

using dvd_period[of l] 1 by (subst real_of_int_div) (auto simp:
field_simps)

also have "floor . . . = bx / of_int |l | :: realc + m * period div |l |"
by (subst floor_add_int) auto

also have "real_of_int . . . = bx / of_int |l |c + m * period / |l |"
using dvd_period[of l] 1 by (simp add: real_of_int_div)

also have "sgn l * . . . = sgn l * bx / of_int |l |c + m * period / l"
by (simp add: sgn_if)

finally show ?case
by simp

qed
also have " . . . = of_int (χL x) + (

∑
l∈#L. m * period / l)"

by (subst sum_mset.distrib)
(auto simp: chi_L_def of_int_sum_mset multiset.map_comp o_def)

also have "(
∑

l∈#L. m * period / l) = m * period * (
∑

l∈#L. 1 / l)"
by (simp add: sum_mset_distrib_left)

finally show ?thesis
by simp

qed

lemma chi_L_floor: "chi_L (floor x) = chi_L x"
unfolding chi_L_def

proof (intro arg_cong[of _ _ sum_mset] image_mset_cong, goal_cases)
case (1 l)
thus ?case

using floor_divide_real_eq_div[of " |l |" x] floor_divide_of_int_eq[of
"bxc" " |l |"]

by auto
qed

end

locale balanced_chebyshev_multiset = chebyshev_multiset +
assumes balanced: "(

∑
l∈#L. 1 / l) = 0"

begin

lemma chi_L_mod: "χL (of_int (a mod int period)) = χL (of_int a)"
proof -

have a: "a = a mod period + period * (a div period)"
by simp

have "of_int a = real_of_int (a mod int period) +
real_of_int (a div int period * int period)"

by (subst a, unfold of_int_add) auto
also have "real_of_int (χL . . .) = real_of_int (χL (real_of_int (a mod

int period)))"
using balanced by (subst chi_L_decompose) auto

25

finally show ?thesis
by linarith

qed

sublocale chi: periodic_fun_simple chi_L "of_int period"
proof

fix x :: real
have "χL (x + real_of_int (int period)) = χL (of_int (bx + real_of_int

(int period)c mod int period))"
unfolding chi_L_mod chi_L_floor ..

also have "bx + real_of_int (int period)c mod int period = bxc mod int
period"

by simp
also have "χL . . . = χL x"

by (simp add: chi_L_mod chi_L_floor)
finally show "χL (x + real_of_int (int period)) = χL x" .

qed

definition psi_L_remainder where
"psi_L_remainder x = (

∑
l∈#L. sgn l * ln_fact_remainder (x / |l |))"

lemma abs_sum_mset_le:
fixes f :: "’a ⇒ ’b :: ordered_ab_group_add_abs"
shows " |

∑
x∈#A. f x | ≤ (

∑
x∈#A. |f x |)"

by (induction A) (auto intro: order.trans[OF abs_triangle_ineq])

lemma psi_L_remainder_bounds:
fixes x :: real
assumes x: "x ≥ 3" "

∧
l. l ∈# L =⇒ x ≥ 3 * |l |"

shows " |psi_L_remainder x | ≤
ln x * size L / 2 - 1/2 * (

∑
l∈#L. ln |l |) + size L"

proof -
have nonzero: "l 6= 0" if "l ∈# L" for l

using L_nonzero that by auto
have "psi_L_remainder x = (

∑
l∈#L. sgn l * ln_fact_remainder (x / |l |))"

by (simp add: psi_L_remainder_def)
also have " |. . . | ≤ (

∑
l∈#L. |sgn l * ln_fact_remainder (x / |l |)|)"

by (rule abs_sum_mset_le)
also have " . . . = (

∑
l∈#L. |ln_fact_remainder (x / |l |)|)"

by (intro arg_cong[of _ _ sum_mset] image_mset_cong)
(auto simp: nonzero abs_mult simp flip: of_int_abs)

also have " . . . ≤ (
∑

l∈#L. ln (x / |l |) / 2 + 1)"
using x
by (intro sum_mset_mono less_imp_le[OF abs_ln_fact_remainder_bounds])

(auto simp: nonzero field_simps)
also have " . . . = (

∑
l∈#L. 1 / 2 * (ln x - ln |l |) + 1)"

using assms
by (intro arg_cong[of _ _ sum_mset] image_mset_cong) (auto simp: algebra_simps

26

ln_div nonzero)
also have " . . . = ln x / 2 * size L + (-1/2) * (

∑
l∈#L. ln |l |) + size

L"
unfolding sum_mset_distrib_left of_int_sum_mset
by (simp add: sum_mset.distrib sum_mset_diff_distrib diff_divide_distrib

sum_mset_neg_distrib)
finally show ?thesis

using assms by (simp add: mult_left_mono divide_right_mono add_mono)
qed

lemma psi_L_eq:
assumes "x > 0"
shows "psi_L x = αL * x + psi_L_remainder x"

proof -
have "psi_L x = (

∑
l∈#L. sgn l *

sum_upto (λd. mangoldt d * bx / (d * |l |)c) x)"
by (simp add: psi_L_def chi_L_def sum_upto_def sum_mset_distrib_left

of_int_sum_mset
multiset.map_comp o_def sum_sum_mset algebra_simps sum_distrib_left

sum_distrib_right)
also have " . . . = (

∑
l∈#L. sgn l *

sum_upto (λd. mangoldt d * bx / (d * |l |)c) (x / |l |))"
proof (intro arg_cong[of _ _ sum_mset] image_mset_cong, goal_cases)

case (1 l)
have "l 6= 0"

using 1 L_nonzero by auto

have "sum_upto (λd. mangoldt d * real_of_int bx / real_of_int (int
d * |l |)c) (x / real_of_int |l |) =

sum_upto (λd. mangoldt d * real_of_int bx / real_of_int (int
d * |l |)c) x"

unfolding sum_upto_def
proof (intro sum.mono_neutral_left subsetI ballI, goal_cases)

case (2 d)
hence "real d ≤ x / |real_of_int l |"

by auto
also have " . . . ≤ x / 1"

using ‹l 6= 0› and assms by (intro divide_left_mono) auto
finally show ?case

using 2 by auto
next

case (3 d)
hence "x < d * |l |" and "d > 0"

using ‹l 6= 0› and assms by (auto simp: field_simps)
hence "x / real_of_int (int d * |l |) ≥ 0" and "x / real_of_int

(int d * |l |) < 1"
using assms by auto

hence "bx / real_of_int (int d * |l |)c = 0"
by linarith

27

thus ?case
by simp

qed auto
thus ?case

by simp
qed

also have " . . . = (
∑

l∈#L. sgn l * ln (fact (nat bx/|l |c)))"
by (subst ln_fact_conv_sum_mangoldt [symmetric]) (auto simp: mult_ac)

also have " . . . = (
∑

l∈#L. x / l * ln x - x * ln |l | / l - x / l + sgn
l * ln_fact_remainder (x / |l |))"

proof (intro arg_cong[of _ _ sum_mset] image_mset_cong, goal_cases)
case (1 l)
hence [simp]: "l 6= 0"

using L_nonzero by auto
have "ln (fact (nat bx/|l |c)) = x / |l | * ln (x / |l |) - x / |l | + ln_fact_remainder

(x / |l |)"
by (simp add: ln_fact_remainder_def)

also have "real_of_int (sgn l) * . . . = x / l * ln x - x * ln |l | /
l - x / l + sgn l * ln_fact_remainder (x / |l |)"

using assms by (auto simp: sgn_if ln_div diff_divide_distrib algebra_simps)
finally show ?case .

qed
also have " . . . = (x * ln x - x) * (

∑
l∈#L. 1 / l) - x * (

∑
l∈#L. ln

|l | / l) + (
∑

l∈#L. sgn l * ln_fact_remainder (x / |l |))"
by (simp add: sum_mset.distrib sum_mset_diff_distrib sum_mset_distrib_left

diff_divide_distrib)
also have " . . . = αL * x + psi_L_remainder x"

by (subst balanced) (auto simp: alpha_L_def psi_L_remainder_def)
finally show ?thesis .

qed

lemma primes_psi_lower_bound:
fixes x C :: real
defines "x0 ≡ Max (insert 3 ((λl. 3 * |l |) ‘ set_mset L))"
assumes x: "x ≥ x0"
assumes chi_le1: "

∧
n. n ∈ {0..<period} =⇒ χL (real n) ≤ 1"

defines "C ≡ 1 / 2 * (
∑

l∈#L. ln |l |) - size L"
shows "ψ x ≥ αL * x - ln x * size L / 2 + C"

proof -
have chi_le1’: "χL x ≤ 1" for x

proof -
have "χL x = χL (floor x mod period)"

by (simp add: chi_L_mod chi_L_floor)
also have "floor x mod period = real (nat (floor x mod period))"

using period_pos by auto
also have "χL . . . ≤ 1"

by (rule chi_le1) (use period_pos in ‹auto simp: nat_less_iff›)

28

finally show ?thesis .
qed

have x0: "x0 ≥ 3" "
∧

l. l ∈# L =⇒ x0 ≥ 3 * |l |"
unfolding x0_def by auto

have *: "x * y ≤ x" if "y ≤ 1" "x ≥ 0" for x y :: real
using mult_left_mono[OF that] by auto

have " |psi_L_remainder x | ≤ ln x * real (size L) / 2 -
1 / 2 * (

∑
l∈#L. ln (real_of_int |l |)) + real (size L)"

by (rule psi_L_remainder_bounds)
(use x x0 in ‹force simp flip: of_int_abs›)+

hence " |psi_L_remainder x | ≤ ln x * size L / 2 - C"
by (simp add: C_def algebra_simps)

hence "αL * x - ln x * size L / 2 + C ≤ αL * x + psi_L_remainder x"
by linarith

also have "αL * x + psi_L_remainder x = ψL x"
using x x0(1) by (subst psi_L_eq) auto

also have "ψL x ≤ ψ x"
unfolding psi_L_def primes_psi_def sum_upto_def
by (intro sum_mono *) (auto simp: mangoldt_nonneg chi_le1’)

finally show ?thesis
by (simp add: C_def)

qed

end

lemma psi_lower_bound_precise:
assumes x: "x ≥ 90"
shows "ψ x ≥ 0.92128 * x - 2.5 * ln x - 1.6"

proof -
interpret balanced_chebyshev_multiset "{#1, -2, -3, -5, 30#}"

by unfold_locales auto

define C :: real where "C = ((ln 2 + (ln 3 + (ln 5 + ln 30))) / 2 -
5)"

have "alpha_L = ln 2 / 2 - (ln 30 / 30 - ln 5 / 5 - ln 3 / 3)"
by (simp add: alpha_L_def)

also have " . . . ≥ 0.92128"
by (approximation 30)

finally have "alpha_L ≥ 0.92128" .
have "C ≥ -1.6"

unfolding C_def by (approximation 20)

have "0.92128 * x - ln x * 5 / 2 + (-1.6) ≤ alpha_L * x - ln x * 5
/ 2 + C"

using ‹alpha_L ≥ _› ‹C ≥ _› x by (intro diff_mono add_mono mult_right_mono)
auto

29

also have "chi_L k ≤ 1" if "k ∈ {..<30}" for k :: nat
using that unfolding lessThan_nat_numeral pred_numeral_simps arith_simps
by (elim insertE) (auto simp: chi_L_def)

hence "alpha_L * x - ln x * 5 / 2 + C ≤ ψ x"
using primes_psi_lower_bound[of x] x by (simp add: C_def period_def)

finally show ?thesis
by (simp add: mult_ac)

qed

context balanced_chebyshev_multiset
begin

lemma psi_upper_bound:
fixes x c C :: real
defines "x0 ≡ Max ({3, 55 * c} ∪ {3 * |l | |l. l ∈# L})"
assumes x: "x ≥ x0"
assumes chi_nonneg: "

∧
n. n ∈ {0..<period} =⇒ χL (real n) ≥ 0"

assumes chi_ge1: "
∧

n. real n ∈ {1..<c} =⇒ χL (real n) ≥ 1"
assumes c: "c > 1" "c ≤ period"
assumes "αL ≥ 0"
shows "ψ x ≤ c / (c - 1) * αL * x + (3 * size L) / (4 * ln c) * ln

x ^ 2 + ψ x0"
proof -

have L_nonzero’: "l 6= 0" if "l ∈# L" for l
using that L_nonzero by auto

have chi_nonneg: "χL x ≥ 0" for x
proof -
have "χL x = χL (floor x mod period)"

by (simp add: chi_L_mod chi_L_floor)
also have "floor x mod period = real (nat (floor x mod period))"

using period_pos by auto
also have "χL . . . ≥ 0"

by (rule chi_nonneg) (use period_pos in ‹auto simp: nat_less_iff›)
finally show ?thesis .

qed

have chi_ge1: "χL x ≥ 1" if "x ≥ 1" "x < c" for x
proof -
have "χL x = χL (floor x mod period)"

by (simp add: chi_L_mod chi_L_floor)
also have "floor x mod period = real (nat (floor x mod period))"

using period_pos by auto
also have "χL . . . ≥ 1"
proof (rule chi_ge1)

have "real_of_int bxc < c"
using that by linarith

hence "real_of_int (bxc mod int period) < c"
using that period_pos c by simp

30

moreover have "1 ≤ bxc mod int period"
by (use period_pos c that in ‹auto simp: floor_less_iff›)

ultimately show "real (nat (bxc mod int period)) ∈ {1..<c}"
by auto

qed
finally show ?thesis .

qed

have "finite {3 * l |l. l ∈# L}"
by auto

have x1: "x0 ≥ 3" "x0 ≥ 55 * c"
unfolding x0_def by (rule Max_ge; simp)+

have x2: "3 * |l | ≤ x0" if "l ∈# L" for l
unfolding x0_def by (rule Max_ge) (use that in auto)

define C where "C = 1/2 * (
∑

l∈#L. ln |l |) - size L"
have *: "x ≤ x * y" if "y ≥ 1" "x ≥ 0" for x y :: real

using mult_left_mono[of 1 y x] that by simp

have rec: "ψ x ≤ ψ (x / c) + αL * x + ln x * size L / 2 - C" if x:
"x ≥ x0" for x :: real

proof -
have "x / c ≤ x"

using c using divide_left_mono[of 1 c x] ‹x0 ≥ 3› x by auto
have "ψ x = ψ (x / c) + (

∑
d | d > 0 ∧ real d ∈ {x/c<..x}. mangoldt

d)"
unfolding ψ_def sum_upto_def
by (rule sum.union_disjoint’ [symmetric])

(use c ‹x / c ≤ x› in auto)
also have "(

∑
d | d > 0 ∧ real d ∈ {x/c<..x}. mangoldt d) ≤

(
∑

d | d > 0 ∧ real d ∈ {x/c<..x}. mangoldt d * χL (x
/ d))"

using c by (intro sum_mono * mangoldt_nonneg) (auto intro!: chi_ge1
simp: field_simps)

also have " . . . ≤ (
∑

d | d > 0 ∧ real d ≤ x. mangoldt d * χL (x /
d))"

by (intro sum_mono2) (auto intro!: mult_nonneg_nonneg mangoldt_nonneg
chi_nonneg)

also have " . . . = ψL x"
by (simp add: psi_L_def sum_upto_def)

finally have "ψ x ≤ ψ (x / c) + ψL x"
by - simp_all

have L: "3 * |real_of_int l | ≤ x" if "l ∈# L" for l
using x2[OF that] x by linarith

have "ψ x ≤ ψ (x / c) + ψL x"
by fact

also have "ψL x = αL * x + psi_L_remainder x"

31

using ‹x0 ≥ 3› x by (subst psi_L_eq) auto
also have " |psi_L_remainder x | ≤ ln x * size L / 2 - C"

using psi_L_remainder_bounds[of x] ‹x0 ≥ 3› x L by (simp add: C_def)
hence "psi_L_remainder x ≤ ln x * size L / 2 - C"

by linarith
finally show "ψ x ≤ ψ (x / c) + αL * x + ln x * size L / 2 - C"

by (simp add: algebra_simps)
qed

define m where "m = nat dlog c (x / x0)e"
have "x > 0"

using x x1 by simp

have "ψ x ≤ ψ x0 + (
∑

k<m. αL * x / c ^ k + ln (x / c ^ k) * size
L / 2 - C)"

proof -
have "ψ x ≤ ψ (x / c ^ m) + (

∑
k<m. αL * (x / c ^ k) + ln (x / c

^ k) * size L / 2 - C)"
proof (rule primes_psi_lower_rec)

fix x :: real assume "x ≥ x0"
thus "ψ x ≤ ψ (x / c) + (αL * x + ln x * size L / 2 - C)"

using rec[of x] by (simp add: algebra_simps)
next

have "c ^ m = c powr real m"
using c by (simp add: powr_realpow)

also have " . . . ≤ c powr (log c (x / x0) + 1)"
using c x ‹x0 ≥ 3› by (intro powr_mono) (auto simp: m_def)

also have " . . . = c * x / x0"
using c x ‹x0 ≥ 3› by (auto simp: powr_add)

finally show "x0 * c ^ m ≤ x * c"
using ‹x0 ≥ 3› by (simp add: field_simps)

qed (use x1 c in auto)
also have "ψ (x / c ^ m) ≤ ψ x0"
proof (rule ψ_mono)

have "x / x0 = c powr log c (x / x0)"
using c x ‹x0 ≥ 3› by simp

also have " . . . ≤ c powr m"
unfolding m_def using c ‹x0 ≥ 3› x by (intro powr_mono) auto

also have " . . . = c ^ m"
using c by (simp add: powr_realpow)

finally show "x / c ^ m ≤ x0"
using ‹x0 ≥ 3› c by (simp add: field_simps)

qed
finally show ?thesis

by simp
qed
also have " . . . = ψ x0 + (

∑
k<m. αL * x / c ^ k + (ln x - k * ln c)

* size L / 2 - C)"
using x(1) ‹x0 ≥ 3› c by (simp add: ln_div ln_realpow)

32

also have " . . . = ψ x0 + αL * x * (
∑

k<m. 1 / c ^ k) + ln x * m * size
L / 2 - real (

∑
k<m. k) * ln c * size L / 2 - C * m"

by (simp add: sum_diff_distrib sum_subtractf sum.distrib sum_distrib_left
sum_distrib_right algebra_simps diff_divide_distrib sum_divide_distrib)

also have "(
∑

k<m. 1 / c ^ k) = (1 - (1 / c) ^ m) / (1 - 1 / c)"
using sum_gp_strict[of "1/c" m] c by (simp add: field_simps)

also have " . . . ≤ 1 / (1 - 1 / c)"
using c by (intro divide_right_mono) auto

also have "1 / (1 - 1/c) = c / (c - 1)"
using c by (simp add: field_simps)

also have "(
∑

k<m. k) = real m * (real m - 1) / 2"
by (induction m) (auto simp: field_simps)

finally have "ψ x ≤ ψ x0 + c / (c - 1) * αL * x +
ln x * m * size L / 2 -
real m * (real m - 1) / 2 * ln c * size L / 2 - C *

m"
using ‹αL ≥ 0› ‹x > 0› x1 by (simp add: mult_left_mono mult_right_mono

mult_ac)
also have " . . . = ψ x0 + c / (c - 1) * αL * x + m/2 * (size L * (ln x

- (real m - 1)/2 * ln c + 2) - (
∑

l∈#L. ln |l |))"
by (simp add: algebra_simps C_def)

also have "m/2 * (size L * (ln x - (real m - 1)/2 * ln c + 2) - (
∑

l∈#L.
ln |l |)) ≤

m/2 * (size L * (3/2 * ln x) - 0)"
proof (intro mult_left_mono diff_mono)

have "real m ≥ log c (x / x0)"
using c ‹x0 ≥ 3› x unfolding m_def by auto

hence "ln x - (real m - 1)/2 * ln c + 2 ≤
ln x - (log c (x / x0) - 1)/2 * ln c + 2"

using c by (intro diff_mono add_mono mult_right_mono divide_right_mono)
auto

also have " . . . = (ln x + ln x0 + (ln c + 4)) / 2"
using c x ‹x0 ≥ 3› by (simp add: log_def ln_div field_simps)

also have "ln x0 ≤ ln x"
using x x1 by simp

also have "ln c + 4 ≤ ln x"
proof -

have "exp (4 :: real) ≤ 55"
by (approximation 10)

hence "exp 4 * c ≤ 55 * c"
using c by (intro mult_right_mono) auto

also have "55 * c ≤ x0"
by fact

also have " . . . ≤ x"
by fact

finally have "exp (ln c + 4) ≤ exp (ln x)"
unfolding exp_add using c x1 x by (simp add: mult_ac)

thus ?thesis
by (simp only: exp_le_cancel_iff)

33

qed
also have "(ln x + ln x + ln x) / 2 = 3 / 2 * ln x"

by simp
finally show "ln x - (real m - 1) / 2 * ln c + 2 ≤ 3 / 2 * ln x"

by - simp
qed (auto intro!: sum_mset_nonneg simp: L_nonzero’ Ints_nonzero_abs_ge1)
also have "m / 2 * (size L * (3/2 * ln x) - 0) = 3 / 4 * m * size L

* ln x"
by simp

also have " . . . ≤ 3 / 4 * (ln x / ln c) * size L * ln x"
proof (intro mult_left_mono mult_right_mono)

have "real m ≤ log c (x / x0) + 1"
unfolding m_def using c x ‹x0 ≥ 3› by auto

also have " . . . / 2 = (ln x / ln c + (1 - log c x0)) / 2"
using ‹x0 ≥ 3› ‹x ≥ x0› c
by (simp add: log_def ln_div field_simps)

also have "1 - log c x0 ≤ 0"
using x1 c by simp

finally show "real m ≤ ln x / ln c" by - simp_all
qed (use x x1 in auto)
also have " . . . = (3 * size L) / (4 * ln c) * ln x ^ 2"

by (simp add: power2_eq_square)
finally show "ψ x ≤ c / (c - 1) * αL * x + (3 * size L) / (4 * ln c)

* ln x ^ 2 + ψ x0"
by (simp add: algebra_simps)

qed

end

1.5 Final results
theorem psi_lower_ge_9:

assumes x: "x ≥ 41"
shows "ψ x ≥ 0.9 * x"

proof (cases "x ≥ 900")
case False
have "∀ x∈{real 41..real 900}. primes_psi x ≥ 0.9 * x"

by (rule check_psi_lower_correct[where prec = 16]) eval
from bspec[OF this, of x] show ?thesis

using assms False by simp
next

case x: True
define f :: "real ⇒ real"

where "f = (λx. 0.02128 * x - 2.5 * ln x - 1.6)"
have "0 ≤ f 900"

unfolding f_def by (approximation 10)
also have "f 900 ≤ f x"

using x
proof (rule DERIV_nonneg_imp_nondecreasing, goal_cases)

34

case (1 t)
have "(f has_real_derivative (0.02128 - 2.5 / t)) (at t)"

unfolding f_def using 1 by (auto intro!: derivative_eq_intros)
moreover have "0.02128 - 2.5 / t ≥ 0"

using 1 by (auto simp: field_simps)
ultimately show ?case

by blast
qed
finally have "0.9 * x ≤ 0.9 * x + f x"

by linarith
also have " . . . = 0.92128 * x - 2.5 * ln x - 1.6"

by (simp add: f_def)
also have " . . . ≤ ψ x"

by (rule psi_lower_bound_precise) (use x in auto)
finally show ?thesis .

qed

theorem primes_theta_ge_82:
assumes "x ≥ 97"
shows "ϑ x ≥ 0.82 * x"

proof (cases "x ≥ 46000")
case False
have "∀ x∈{real 97..real 46000}. ϑ x ≥ 0.82 * x"

by (rule check_theta_lower_correct[where prec = 20]) eval
from bspec[OF this, of x] show ?thesis

using False assms by simp
next

case True
with assms have x: "x ≥ 46000"

by auto
define f :: "real ⇒ real"

where "f = (λx. 0.10128 * x - 2.5 * ln x - 2 * ln x * sqrt x - 1.6)"
have "0 ≤ f 46000"

unfolding f_def by (approximation 30)
also have "f 46000 ≤ f x"

using x
proof (rule DERIV_nonneg_imp_nondecreasing, goal_cases)

case (1 t)
define D where "D = 0.10128 - 2.5 / t - 2 * sqrt t / t - ln t / sqrt

t"
have deriv: "(f has_real_derivative D) (at t)"

unfolding f_def
by (rule derivative_eq_intros refl | use 1 in force)+

(simp add: field_simps D_def)
have "0.10128 - D = 2.5 / t + 2 / sqrt t + ln t / sqrt t"

using 1 by (simp add: D_def field_simps del: div_add div_diff div_mult_self1
div_mult_self2 div_mult_self3 div_mult_self4)

also have " . . . ≤ 2.5 / 46000 + 2 / 214 + ln t / sqrt t"
using 1 by (intro add_mono) (auto simp: real_le_rsqrt)

35

also have "ln t / sqrt t ≤ ln 46000 / sqrt 46000"
using 1(1)

proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)
case (1 u)
have "((λt. ln t / sqrt t) has_real_derivative ((2 - ln u) / (2

* u * sqrt u))) (at u)"
by (rule derivative_eq_intros refl | use 1 in force)+

(use 1 in ‹simp add: field_simps›)
moreover {

have "2 ≤ ln (10::real)"
by (approximation 30)

also have " . . . ≤ ln u"
using 1 by simp

finally have "ln u ≥ 2" .
}
hence "((2 - ln u) / (2 * u * sqrt u)) ≤ 0"

using 1 by (intro divide_nonpos_nonneg) auto
ultimately show ?case

by blast
qed
also have " . . . ≤ 0.0501"

by (approximation 30)
also have "2.5 / 46000 + 2 / 214 + 0.0501 ≤ (0.10128 :: real)"

by simp
finally have "D ≥ 0"

by simp
with deriv show ?case by blast

qed

finally have "0.82 * x ≤ 0.82 * x + f x"
by linarith

also have " . . . = 0.92128 * x - 2.5 * ln x - 2 * ln x * sqrt x - 1.6"
by (simp add: f_def)

also have " . . . ≤ 0.92128 * x - 2.5 * ln x - 1.6 + ϑ x - ψ x"
using ψ_minus_ϑ_bound[of x] x by simp

also have "0.92128 * x - 2.5 * ln x - 1.6 ≤ ψ x"
by (rule psi_lower_bound_precise) (use x in auto)

finally show ?thesis by simp
qed

corollary primorial_ge_exp_82:
assumes "x ≥ 97"
shows "primorial x ≥ exp (0.82 * x)"

proof -
have "primorial x = exp (ϑ x)"

using ln_primorial[of x] primorial_pos[of x]
by (metis exp_ln of_nat_0_less_iff)

also have " . . . ≥ exp (0.82 * x)"

36

using primes_theta_ge_82[OF assms] by simp
finally show ?thesis .

qed

theorem primes_psi_le_111:
assumes "x ≥ 0"
shows "ψ x ≤ 1.11 * x"

proof -
have "∀ x∈{real 0..real 146000}. primes_psi x ≤ 1.04 * x"
proof (rule check_psi_upper_correct[where prec = 16])

show "check_psi_upper (104 / 102) 16 0 146000"
by eval

qed auto
hence initial: "primes_psi x ≤ 1.04 * x" if "x ∈ {0..146000}" for x

using that by auto

show ?thesis
proof (cases "x ≥ 146000")

case False
thus ?thesis

using initial[of x] assms by simp
next

case x: True
define L :: "int multiset" where "L = {#1, -2, -3, -5, 30#}"
have [simp]: "set_mset L = {1, -2, -3, -5, 30}" "size L = 5"

by (simp_all add: L_def)
interpret balanced_chebyshev_multiset L

by unfold_locales (auto simp: L_def)
define x0 :: real where "x0 = Max ({3, 55 * 6} ∪ {3 * |real_of_int

l | |l. l ∈# L})"

have x0: "x0 = 330"
proof -

have "x0 = Max ({3, 55 * 6} ∪ {3 * |real_of_int l | |l. l ∈# L})"
unfolding x0_def ..

also have "{3 * |real_of_int l | |l. l ∈# L} = (λl. 3 * |of_int l |)
‘ set_mset L"

by blast
finally show ?thesis

by simp
qed

define f :: "real ⇒ real"
where "f = (λt. 2.093 * ln t ^ 2 + 343.2 - 0.0044 * t)"

have alpha_L: "alpha_L = ln 2 / 2 - (ln 30 / 30 - ln 5 / 5 - ln 3
/ 3)"

unfolding alpha_L_def by (simp add: L_def)

37

have "alpha_L ≥ 0"
unfolding alpha_L by (approximation 10)

have period: "period = 30"
by (simp add: period_def)

have "ψ x ≤ 6 / (6 - 1) * alpha_L * x + (3 * size L) / (4 * ln 6)
* ln x ^ 2 + ψ x0"

unfolding x0_def
proof (rule psi_upper_bound; (unfold period)?)

show "chi_L (real n) ≥ 0" if "n ∈ {0..<30}" for n
unfolding chi_L_def
using that unfolding atLeastLessThan_nat_numeral pred_numeral_simps

arith_simps
by (auto simp: L_def)

next
show "chi_L (real n) ≥ 1" if "real n ∈ {1..<6}" for n
proof -

have "n ∈ {1..<6}"
using that by auto

also have "{1..<6} = {1,2,3,4,5::nat}"
by auto

finally show ?thesis
unfolding chi_L_def by (elim insertE) (auto simp: L_def)

qed
qed (use ‹alpha_L ≥ 0› x in auto)

also have " . . . = 6/5 * alpha_L * x + 15 / (4 * ln 6) * (ln x)2 + ψ
x0"

by simp
also have "ψ x0 ≤ 343.2"

using initial[of x0] by (simp add: x0)
also have "6/5 * alpha_L ≤ 1.1056"

unfolding alpha_L by (approximation 30)
also have "15 / (4 * ln 6 :: real) ≤ 2.093"

by (approximation 20)
finally have "ψ x ≤ 1.1056 * x + 2.093 * ln x ^ 2 + 343.2"

using x by - simp_all
also have " . . . = 1.11 * x + f x"

by (simp add: algebra_simps f_def)
also have "f x ≤ f 146000"

using x
proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)

case (1 t)
define f’ :: "real ⇒ real"

where "f’ = (λt. 4.186 * ln t / t - 0.0044)"
have "(f has_field_derivative f’ t) (at t)"

using 1 unfolding f_def f’_def
by (auto intro!: derivative_eq_intros)

moreover {

38

have "f’ t ≤ f’ 146000"
using 1(1)

proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)
case (1 u)
have "(f’ has_field_derivative (4.186 * (1 - ln u) / u ^ 2))

(at u)"
using 1 unfolding f’_def
by (auto intro!: derivative_eq_intros simp: field_simps power2_eq_square)

moreover have "4.186 * (1 - ln u) / u ^ 2 ≤ 0"
using 1 exp_le by (auto intro!: divide_nonpos_nonneg simp:

ln_ge_iff)
ultimately show ?case

by blast
qed
also have " . . . ≤ 0"

unfolding f’_def by (approximation 10)
finally have "f’ t ≤ 0" .

}
ultimately show ?case

by blast
qed
also have "f 146000 ≤ 0"

unfolding f_def by (approximation 10)
finally show ?thesis

by - simp_all
qed

qed

corollary primes_theta_le_111:
assumes "x ≥ 0"
shows "ϑ x ≤ 1.11 * x"
using primes_psi_le_111[OF assms] ϑ_le_ψ[of x]
by linarith

As an easy corollary, we obtain Bertrand’s postulate: For any real number
x > 1, the interval (x, 2x) contains at least one prime.
corollary bertrands_postulate:

assumes "x > 1"
shows "∃ p. prime p ∧ real p ∈ {x<..<2*x}"

proof (cases "x ≥ 7")
case False
consider "x ∈ {1<..<2}" | "x ∈ {2..<3}" | "x ∈ {3..<5}" | "x ∈ {5..<7}"

using False assms by force
thus ?thesis
proof cases

case 1
thus ?thesis by (intro exI[of _ 2]; simp)

next
case 2

39

thus ?thesis by (intro exI[of _ 3]; simp)
next

case 3
thus ?thesis by (intro exI[of _ 5]; simp)

next
case 4
thus ?thesis by (intro exI[of _ 7]; simp)

qed
next

case x: True
have fin: "finite {p. prime p ∧ real p ≤ 1.999 * x}"

by (rule finite_subset[of _ "{..nat b2*xc}"])
(use x in ‹auto simp: le_nat_iff le_floor_iff›)

have "ϑ (1.999 * x) > 1.11 * x"
proof (cases "x ≥ 49")

case False
have "∀ x∈{real 11..real 100}. ϑ x ≥ 0.556 * x"

by (rule check_theta_lower_correct[where prec = 10]) eval
from bspec[OF this, of "1.999*x"] show ?thesis

using False x by simp
next

case True
thus ?thesis

using primes_theta_ge_82[of "1.999*x"] True by auto
qed

have "ϑ x ≤ 1.11 * x"
by (rule primes_theta_le_111) (use x in auto)

also have " . . . < ϑ (1.999 * x)"
by fact

finally have "ϑ (1.999 * x) > ϑ x" .

have "{p. prime p ∧ real p ∈ {x<..1.999*x}} 6= {}"
proof

assume eq: "{p. prime p ∧ real p ∈ {x<..1.999*x}} = {}"
have "ϑ (1.999 * x) = ϑ x + (

∑
p | prime p ∧ real p ∈ {x<..1.999*x}.

ln p)"
unfolding primes_theta_def prime_sum_upto_def
by (rule sum.union_disjoint’ [symmetric]) (use fin in auto)

also note eq
finally show False

using ‹ϑ (1.999 * x) > ϑ x› by simp
qed
thus ?thesis

by auto
qed

unbundle no_prime_counting_notation

40

end

41

	Concrete bounds for Chebyshev's prime counting functions
	Brute-force checking of bounds for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Computing powers of a number
	Computing prime powers
	A generic checking function
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 function
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 function

	Auxiliary material
	Bounds for the remainder in Stirling's approximation
	Approximating 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Final results

