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Abstract

This entry derives explicit lower and upper bounds for Chebyshev’s
prime counting functions

ψ(x) =
∑

pk≤x
k>0

log p ϑ(x) =
∑
p≤x

log p .

Concretely, the following inequalities are proven:
• ψ(x) ≥ 0.9x for x ≥ 41

• ϑ(x) ≥ 0.82x if x ≥ 97

• ϑ(x) ≤ ψ(x) ≤ 1.2x if x ≥ 0

The proofs work by careful estimation of ψ(x), with Stirling’s formula
as a starting point, to prove the bound for all x ≥ x0 with a concrete
x0, followed by brute-force approximation for all x below x0.

An easy corollary of this is Bertrand’s postulate, i.e. the fact that
for any x > 1 the interval (x, 2x) contains at least one prime (a fact
that has already been shown in the AFP using weaker bounds for ψ
and ϑ).
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1 Concrete bounds for Chebyshev’s prime count-
ing functions

theory Chebyshev_Prime_Exhaust
imports

"HOL-Decision_Procs.Approximation"
"HOL-Library.Code_Target_Numeral"
"Prime_Number_Theorem.Prime_Counting_Functions"

begin

The well-known Prime Number Theorem states that ψ(x) ∼ θ(x) ∼ (x), i.e.
that both ψ(x) and ϑ(x) are bounded by (1 ± ε)x for sufficiently large x
for any ε > 0. However, these are asymptotic bounds without giving any
concrete information on how ψ and ϑ behave for small x, or even how big x
must be until these bound shold.
To complement this, we shall prove some concrete, non-asymptotic bounds.
Concretely:

• ψ(x) ≥ 0.9x if x ≥ 41

• θ(x) ≥ 0.82x if x ≥ 97

• θ(x) ≤ ψ(x) ≤ 1.2x if x ≥ 0

Our formalisation loosely follows a blog entry by A.W. Walker: https://
awwalker.com/2017/02/05/notes-on-the-chebyshev-theorem/

1.1 Brute-force checking of bounds for ψ and ϑ

1.1.1 Computing powers of a number
function powers_below_aux :: "nat ⇒ nat ⇒ nat ⇒ nat list" where

"powers_below_aux ub n acc = (if acc = 0 ∨ n ≤ 1 ∨ acc > ub then []
else

acc # powers_below_aux ub n (acc * n))"
by auto

termination
by (relation "Wellfounded.measure (λ(ub, n, acc). 1 + ub - acc)")

(auto intro!: diff_less_mono2)

lemmas [simp del] = powers_below_aux.simps

lemma set_powers_below_aux:
assumes "acc > 0" "n > 1"
shows "set (powers_below_aux ub n acc) = range (λi. acc * n ^ i)

∩ {..ub}"
using assms

proof (induction ub n acc rule: powers_below_aux.induct)
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case (1 ub n acc)
show ?case
proof (cases "acc > ub")

case True
have "range (λi. acc * n ^ i) ∩ {..ub} = {}"
proof (intro equalityI subsetI)

fix k assume "k ∈ range (λi. acc * n ^ i) ∩ {..ub}"
then obtain i where "acc * n ^ i ≤ ub"

by auto
also have "ub < acc * n ^ 0"

using True by simp
finally have "n ^ i < n ^ 0"

using ‹acc > 0› by (subst (asm) mult_less_cancel1) auto
hence "i < 0"

by (subst (asm) power_strict_increasing_iff) (use ‹n > 1› in auto)
thus "k ∈ {}"

by simp
qed auto
thus ?thesis

using True by (auto simp: powers_below_aux.simps)
next

case False
have "set (powers_below_aux ub n acc) = insert acc (set (powers_below_aux

ub n (acc * n)))"
using False "1.prems" by (subst powers_below_aux.simps) auto

also have "set (powers_below_aux ub n (acc * n)) = range (λi. acc
* n ^ Suc i) ∩ {..ub}"

by (subst "1.IH") (use "1.prems" False in ‹auto simp: mult_ac›)
also have "insert acc (range (λi. acc * n ^ Suc i) ∩ {..ub}) =

range (λi. acc * n ^ i) ∩ {..ub}" (is "insert acc ?lhs
= ?rhs")

proof (intro equalityI subsetI)
fix x assume "x ∈ insert acc ?lhs"
thus "x ∈ ?rhs" using False

by (auto intro: rev_image_eqI[of 0] rev_image_eqI[of "Suc i" for
i])

next
fix x assume "x ∈ ?rhs"
then obtain i where i: "x = acc * n ^ i" and le: "acc * n ^ i

≤ ub"
by auto

show "x ∈ insert acc ?lhs"
proof (cases "i = 0")

case False
hence "x ∈ ?lhs"

by (intro IntI rev_image_eqI[of "i-1"]) (use i le in auto)
thus ?thesis

by blast
qed (use i le in auto)
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qed
finally show ?thesis .

qed
qed

definition powers_below :: "nat ⇒ nat ⇒ nat list" where
"powers_below ub n = powers_below_aux ub n n"

lemma set_powers_below:
assumes "n > 1"
shows "set (powers_below ub n) = (λi. n ^ i) ‘ {1..} ∩ {..ub}"

proof -
have "set (powers_below ub n) = range (λi. n * n ^ i) ∩ {..ub}"

unfolding powers_below_def
by (rule set_powers_below_aux) (use assms in auto)

also have "range (λi. n * n ^ i) = (λi. n ^ i) ‘ Suc ‘ UNIV"
by (simp add: image_image o_def)

also have "bij_betw Suc UNIV {1..}"
by (rule bij_betwI[of _ _ _ "λi. i - 1"]) auto

hence "Suc ‘ UNIV = {1..}"
by (simp add: bij_betw_def)

finally show ?thesis .
qed

lemma distinct_powers_below_aux:
assumes "n > 1" "acc > 0"
shows "distinct (powers_below_aux ub n acc)"
using assms
by (induction ub n acc rule: powers_below_aux.induct; subst powers_below_aux.simps)

(auto simp: set_powers_below_aux)

lemma distinct_powers_below: "n > 1 =⇒ distinct (powers_below ub n)"
unfolding powers_below_def by (rule distinct_powers_below_aux) auto

lemma hd_powers_below_aux:
assumes "acc ≤ ub" "n > 1" "acc > 0"
shows "hd (powers_below_aux ub n acc) = acc"
by (subst powers_below_aux.simps) (use assms in auto)

lemma hd_powers_below:
assumes "n ≤ ub" "n > 1"
shows "hd (powers_below ub n) = n"
unfolding powers_below_def by (subst hd_powers_below_aux) (use assms

in auto)

1.1.2 Computing prime powers
definition prime_powers_upto :: "nat ⇒ (nat × nat) list" where

"prime_powers_upto n =
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sort_key fst (concat (map (λp. map (λk. (k, p)) (powers_below n p))
(primes_upto n)))"

lemma map_key_sort_key: "map f (sort_key f xs) = sort (map f xs)"
proof -

have [simp]: "map f (insort_key f x xs) = insort (f x) (map f xs)" for
x xs

by (induction xs) auto
have [simp]: "map f (foldr (insort_key f) xs acc) =

foldr insort (map f xs) (map f acc)" for acc
by (induction xs arbitrary: acc) auto

show ?thesis
unfolding sort_key_def by simp

qed

lemma distinct_prime_powers_upto:
"distinct (map fst (prime_powers_upto n))"

proof -
have inj: "inj_on (powers_below n) {p. prime p ∧ p ≤ n}"
proof

fix p q assume pq: "p ∈ {p. prime p ∧ p ≤ n}" "q ∈ {p. prime p
∧ p ≤ n}"

assume eq: "powers_below n p = powers_below n q"
from eq have "hd (powers_below n p) = hd (powers_below n q)"

by simp
thus "p = q"

using pq by (simp add: hd_powers_below prime_gt_Suc_0_nat)
qed

have "distinct (concat (map (powers_below n) (primes_upto n)))"
proof (rule distinct_concat, goal_cases)

case 1
thus ?case

unfolding distinct_map using inj
by (simp add: set_primes_upto conj_commute)

next
case (2 ys)
thus ?case

by (auto simp: distinct_powers_below set_primes_upto prime_gt_Suc_0_nat)
next

case (3 ys zs)
thus ?case

by (auto simp: set_primes_upto set_powers_below prime_gt_Suc_0_nat
prime_power_inj’’)

qed
thus ?thesis

by (simp add: prime_powers_upto_def map_key_sort_key map_concat o_def)
qed
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lemma sorted_prime_powers_upto:
"sorted (map fst (prime_powers_upto n))"
by (simp add: prime_powers_upto_def)

lemma set_prime_powers_upto:
"set (prime_powers_upto n) = {(q, aprimedivisor q) |q. primepow q ∧

q ≤ n}"
proof -

have "set (prime_powers_upto n) =
(
⋃

p∈{p. p ≤ n ∧ prime p}. (λx. (x, p)) ‘ ((λi. p ^ i) ‘ {1..}
∩ {..n}))"

by (simp add: prime_powers_upto_def set_primes_upto set_powers_below
prime_gt_Suc_0_nat)

also have " . . . = {(q, aprimedivisor q) |q. primepow q ∧ q ≤ n}"
(is "?lhs = ?rhs")

proof (intro equalityI subsetI)
fix qp assume qp: "qp ∈ ?lhs"
then obtain q p where [simp]: "qp = (q, p)"

by (cases qp)
from qp obtain i where i: "prime p" "p ≤ n" "p ^ i ≤ n" "q = p

^ i" "i ≥ 1"
by auto

show "qp ∈ ?rhs"
using i by (auto simp: aprimedivisor_prime_power)

next
fix qp assume qp: "qp ∈ ?rhs"
then obtain q p where [simp]: "qp = (q, p)"

by (cases qp)
from qp have "primepow q"

by auto
then obtain p’ i where i: "prime p’" "q = p’ ^ i" "i > 0"

by (auto simp: primepow_def)
have [simp]: "p’ = p"

using qp i by (auto simp: aprimedivisor_prime_power)
have "p ^ 1 ≤ p ^ i"

by (rule power_increasing) (use i prime_gt_0_nat[of p] in auto)
also have " . . . ≤ n"

using i qp by simp
finally have "p ≤ n"

by simp
with i qp show "qp ∈ ?lhs"

by auto
qed
finally show ?thesis .

qed

1.1.3 A generic checking function
locale chebyshev_check =
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fixes f :: "nat ⇒ real"
and F :: "nat ⇒ ’a ⇒ float"
and A :: "nat set"
and plus :: "nat ⇒ float ⇒ float ⇒ float"
and rel :: "real ⇒ real ⇒ bool"
and P :: "nat ⇒ real ⇒ bool"
and num :: "’a ⇒ nat"

assumes plus: "
∧

prec. rel X x =⇒ rel Y y =⇒ rel (plus prec X Y)
(x + y)"

assumes P_rel: "
∧

x y k. P k x =⇒ rel x y =⇒ P k y"
assumes rel_0: "rel 0 0"
assumes A: "0 /∈ A"

begin

definition S where "S n = (
∑

k∈A∩{..n}. f k)"
definition S’ where "S’ n = (

∑
k∈A∩{..<n}. f k)"

context
fixes prec :: nat

begin

function check_aux :: "’a list ⇒ nat ⇒ nat ⇒ float ⇒ nat ⇒ bool"
where

"check_aux ps lb ub acc n = (if n > ub then True else
(let (acc’, ps’) =

(if ps 6= [] ∧ num (hd ps) = n then
(plus prec acc (F prec (hd ps)), tl ps)

else (acc, ps))
in (n < lb ∨ P n (real_of_float acc’)) ∧ check_aux ps’ lb ub acc’

(n+1)))"
by auto

termination
by (relation "Wellfounded.measure (λ(_, _, ub, _, n). Suc ub - n)")

(auto split: if_splits)

definition check :: "’a list ⇒ nat ⇒ nat ⇒ bool" where
"check xs lb ub =

check_aux xs lb ub 0 (if xs = [] then lb else min lb (num (hd xs)))"

lemmas [simp del] = check_aux.simps

lemma check_aux_correct:
assumes "sorted (map num ps)" "distinct (map num ps)"
assumes "

∧
p. p ≤ ub =⇒ p ∈ num ‘ set ps ←→ p ∈ A ∧ p ≥ n"

assumes "
∧

x. x ∈ set ps =⇒ rel (real_of_float (F prec x)) (f (num
x))"

assumes "rel (real_of_float acc) (S’ n)"
assumes "check_aux ps lb ub acc n"
assumes "k ∈ {max lb n..ub}"
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shows "P k (S k)"
using assms

proof (induction ps lb ub acc n rule: check_aux.induct)
case (1 ps lb ub acc n)
hence "n ≤ ub"

by auto
define ps’ where "ps’ = (if ps = [] ∨ num (hd ps) 6= n then ps else

tl ps)"
define acc’ where "acc’ = (if ps = [] ∨ num (hd ps) 6= n then acc else

plus prec acc (F prec (hd ps)))"

have acc’: "rel (real_of_float acc’) (S n)"
proof (cases "n ∈ A")

case False
hence "acc’ = acc" using "1.prems"(3)[of n] ‹n ≤ ub›

by (cases ps) (auto simp: acc’_def)
hence "rel (real_of_float acc’) (S’ n)"

using "1.prems"(5) by simp
also from False have "A ∩ {..<n} = A ∩ {..n}"

using nless_le by blast
hence "S’ n = S n"

by (simp add: S_def S’_def)
finally show ?thesis .

next
case True
hence "n ∈ num ‘ set ps" "n > 0"

using "1.prems"(3)[of n] ‹n ≤ ub› A by (auto intro: Nat.gr0I)
have *: "num p ≥ n" if "p ∈ set ps" for p

using "1.prems"(3)[of "num p"] that ‹n ≤ ub›
by (cases "num p ≤ ub") auto

from ‹n ∈ num ‘ set ps› obtain x
where ps_eq: "ps = x # ps’" "num x = n"
using ‹sorted (map num ps)› ‹distinct (map num ps)› *
by (cases ps) (fastforce simp: ps’_def)+

have "acc’ = plus prec acc (F prec x)"
using ps_eq by (auto simp: acc’_def)

also have "rel (real_of_float . . . ) (S’ n + f (num x))"
by (intro plus "1.prems" ‹n > 0›) (auto simp: ps_eq)

also have " . . . = sum f (insert n (A ∩ {..<n}))"
unfolding S’_def by (subst sum.insert) (auto simp: ps_eq)

also have "insert n (A ∩ {..<n}) = A ∩ {..n}"
using True by auto

also have "sum f . . . = S n"
by (simp add: S_def)

finally show ?thesis .
qed

show ?case
proof (cases "n = k")

8



case True
have "P k (real_of_float acc’)"

using "1.prems"(6,7)
by (subst (asm) check_aux.simps) (use True in ‹auto simp: acc’_def›)

moreover have "rel (real_of_float acc’) (S n)"
by fact

ultimately show ?thesis
using True P_rel by simp

next
case False
show ?thesis
proof (rule "1.IH"[of "(acc’, ps’)", OF _ _ refl])

show "sorted (map num ps’)"
using ‹sorted (map num ps)›
by (auto simp: ps’_def sorted_tl map_tl)

show "distinct (map num ps’)"
using ‹distinct (map num ps)›
by (auto simp: ps’_def distinct_tl map_tl)

show "(p ∈ num ‘ set ps’) = (p ∈ A ∧ n + 1 ≤ p)" if p: "p ≤ ub"
for p

proof (cases "n ∈ A")
case False
hence "n /∈ num ‘ set ps"

using "1.prems"(3)[of n] ‹n ≤ ub› by auto
hence [simp]: "ps’ = ps"

by (auto simp: ps’_def)
show ?thesis using "1.prems"(3)[of p] p False

by (cases "n = p") auto
next

case True
hence "n ∈ num ‘ set ps"

using "1.prems"(3)[of n] ‹n ≤ ub› by auto
have *: "num p ≥ n" if "p ∈ set ps" for p

using "1.prems"(3)[of "num p"] that ‹n ≤ ub›
by (cases "num p ≤ ub") auto

from ‹n ∈ num ‘ set ps› obtain x
where ps_eq: "ps = x # ps’" "num x = n"
using ‹sorted (map num ps)› ‹distinct (map num ps)› *
by (cases ps) (fastforce simp: ps’_def)+

show ?thesis
by (cases "p = n")

(use "1.prems"(3)[of p] p ‹distinct (map num ps)› in ‹auto
simp: ps_eq›)

qed
next

have "rel (real_of_float acc’) (S n)"
by fact

also have "S n = S’ (n + 1)"
unfolding S_def S’_def by (simp add: lessThan_Suc_atMost)
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finally show "rel (real_of_float acc’) (S’ (n + 1))" .
next

show "check_aux ps’ lb ub acc’ (n + 1)"
using "1.prems"(6,7)
by (subst (asm) check_aux.simps) (auto simp: acc’_def ps’_def)

next
show "k ∈ {max lb (n+1)..ub}"

using "1.prems" False by auto
next

show "rel (real_of_float (F prec x)) (f (num x))"
if "x ∈ set ps’" for x
using "1.prems"(4)[of x] that
by (cases ps) (auto simp: ps’_def split: if_splits)

qed (use ‹n ≤ ub› in ‹auto simp: acc’_def ps’_def›)
qed

qed

lemma check_correct:
assumes "sorted (map num ps)" "distinct (map num ps)"
assumes "

∧
p. p ≤ ub =⇒ p ∈ num ‘ set ps ←→ p ∈ A"

assumes "
∧

x. x ∈ set ps =⇒ rel (real_of_float (F prec x)) (f (num
x))"

assumes "check ps lb ub"
assumes "k ∈ {lb..ub}"
shows "P k (S k)"

proof (rule check_aux_correct)
define n where "n = (if ps = [] then lb else min lb (num (hd ps)))"
have "n ≤ ub"

using assms by (auto simp: n_def)
show "sorted (map num ps)" "distinct (map num ps)"

by fact+
show "check_aux ps lb ub 0 n"

using assms unfolding check_def n_def by simp
show "k ∈ {max lb n..ub}"

using assms by (auto simp: n_def)
show "p ∈ num ‘ set ps ←→ p ∈ A ∧ n ≤ p" if "p ≤ ub" for p

using assms(3)[of p] that ‹sorted (map num ps)›
by (cases ps) (auto simp: n_def)

have "A ∩ {..<n} = {}"
proof (intro equalityI subsetI)

fix p assume p: "p ∈ A ∩ {..<n}"
hence "p ∈ num ‘ set ps"

using assms(3)[of p] ‹n ≤ ub› by auto
hence False

using p ‹sorted (map num ps)› by (cases ps) (auto simp: n_def)
thus "p ∈ {}" ..

qed auto
thus "rel (real_of_float 0) (S’ n)"
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by (simp add: S’_def rel_0)
qed (use assms in auto)

end

end

1.1.4 The ϑ function
context
begin

interpretation primes_theta: chebyshev_check
"λn. ln (real n)"
"λprec n. the (lb_ln prec (Float (int n) 0))"
"{p. prime p}"
"float_plus_down"
"(≤)"
"λk x. x ≥ c * (real k + 1)"
"λn. n"
for c :: real

proof
show "real_of_float (float_plus_down prec X Y) ≤ x + y"

if "real_of_float X ≤ x" "real_of_float Y ≤ y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_down_le)

qed auto

definition check_theta_lower_aux
where "check_theta_lower_aux = primes_theta.check_aux"

definition check_theta_lower where
"check_theta_lower c prec lb ub =

primes_theta.check c prec (primes_upto ub) lb ub"

lemma check_theta_lower_aux_code [code]:
"check_theta_lower_aux c prec ps lb ub acc n =

(if ub < n then True else let (acc’, ps’) =
if ps 6= [] ∧ hd ps = n
then (float_plus_down prec acc (the (lb_ln prec (Float (int

(hd ps)) 0))), tl ps)
else (acc, ps)

in (n < lb ∨ c * (real n + 1) ≤ real_of_float acc’) ∧
check_theta_lower_aux c prec ps’ lb
ub acc’ (n + 1))"

unfolding check_theta_lower_aux_def
by (rule primes_theta.check_aux.simps)
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lemma check_theta_lower_code [code]:
"check_theta_lower c prec lb ub = (let ps = primes_upto ub in

check_theta_lower_aux c prec ps lb ub 0
(if ps = [] then lb else min lb (hd ps)))"

unfolding check_theta_lower_def primes_theta.check_def check_theta_lower_aux_def
by (simp add: Let_def)

lemma check_theta_lower_correct:
assumes "check_theta_lower c prec lb ub"
shows "∀ x∈{real lb..real ub}. primes_theta x ≥ c * x"

proof
fix x assume x: "x ∈ {real lb..real ub}"
define k where "k = nat bxc"
show "c * x ≤ primes_theta x"
proof (cases "c ≥ 0")

case False
hence "c * x ≤ 0"

using x by (auto intro: mult_nonpos_nonneg)
also have "0 ≤ primes_theta x"

by (rule ϑ_nonneg)
finally show ?thesis .

next
case True
hence "c * x ≤ c * (real k + 1)"

using x by (intro mult_left_mono) (auto simp: k_def)
also have "c * (real k + 1) ≤ primes_theta.S k"
proof (rule primes_theta.check_correct)

show "sorted (map (λn. n) (primes_upto ub))"
"distinct (map (λn. n) (primes_upto ub))"

by (simp_all add: sorted_primes_upto distinct_primes_upto)
show "k ∈ {lb..ub}"

using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)

show "primes_theta.check c prec (primes_upto ub) lb ub"
using assms by (simp add: check_theta_lower_def)

next
fix p assume "p ≤ ub"
thus "p ∈ (λn. n) ‘ set (primes_upto ub) ←→ p ∈ {p. prime p}"

by (auto simp: set_primes_upto)
next

fix n
assume n: "n ∈ set (primes_upto ub)"
hence "n > 0"

by (auto simp: set_primes_upto prime_gt_0_nat)
define x where "x = the (lb_ln prec (Float (int n) 0))"
have "lb_ln prec (Float (int n) 0) 6= None"

using ‹n > 0› by (subst lb_ln.simps) auto
hence "lb_ln prec (Float (int n) 0) = Some x"

by (cases "lb_ln prec (Float (int n) 0)") (auto simp: x_def)
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from lb_lnD[OF this] show "real_of_float x ≤ ln (real n)"
by simp

qed
also have "primes_theta.S k = primes_theta k"

unfolding primes_theta.S_def primes_theta_def prime_sum_upto_def
by (intro sum.cong) auto

also have "primes_theta k = primes_theta x"
unfolding k_def by simp

finally show "c * x ≤ primes_theta x" .
qed

qed

end

context
begin

interpretation primes_theta: chebyshev_check
"λn. ln (real n)"
"λprec n. the (ub_ln prec (Float (int n) 0))"
"{p. prime p}"
"float_plus_up"
"(≥)"
"λk x. x ≤ c * real k"
"λn. n"
for c :: real

proof
show "real_of_float (float_plus_up prec X Y) ≥ x + y"

if "real_of_float X ≥ x" "real_of_float Y ≥ y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_up_le)

qed auto

definition check_theta_upper_aux
where "check_theta_upper_aux = primes_theta.check_aux"

definition check_theta_upper where
"check_theta_upper c prec lb ub =

primes_theta.check c prec (primes_upto ub) lb ub"

lemma check_theta_upper_aux_code [code]:
"check_theta_upper_aux c prec ps lb ub acc n =

(if ub < n then True else let (acc’, ps’) =
if ps 6= [] ∧ hd ps = n
then (float_plus_up prec acc (the (ub_ln prec (Float (int
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(hd ps)) 0))), tl ps)
else (acc, ps)

in (n < lb ∨ c * real n ≥ real_of_float acc’) ∧
check_theta_upper_aux c prec ps’ lb
ub acc’ (n + 1))"

unfolding check_theta_upper_aux_def
by (rule primes_theta.check_aux.simps)

lemma check_theta_upper_code [code]:
"check_theta_upper c prec lb ub = (let ps = primes_upto ub in

check_theta_upper_aux c prec ps lb ub 0
(if ps = [] then lb else min lb (hd ps)))"

unfolding check_theta_upper_def primes_theta.check_def check_theta_upper_aux_def
by (simp add: Let_def)

lemma check_theta_upper_correct:
assumes "check_theta_upper c prec lb ub" "c ≥ 0"
shows "∀ x∈{real lb..real ub}. primes_theta x ≤ c * x"

proof
fix x assume x: "x ∈ {real lb..real ub}"
define k where "k = nat bxc"
have "primes_theta.S k ≤ c * real k"
proof (rule primes_theta.check_correct)

show "sorted (map (λn. n) (primes_upto ub))"
"distinct (map (λn. n) (primes_upto ub))"

by (simp_all add: sorted_primes_upto distinct_primes_upto)
show "k ∈ {lb..ub}"

using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)

show "primes_theta.check c prec (primes_upto ub) lb ub"
using assms by (simp add: check_theta_upper_def)

next
fix p assume "p ≤ ub"
thus "p ∈ (λn. n) ‘ set (primes_upto ub) ←→ p ∈ {p. prime p}"

by (auto simp: set_primes_upto)
next

fix n
assume n: "n ∈ set (primes_upto ub)"
hence "n > 0"

by (auto simp: set_primes_upto prime_gt_0_nat)
define x where "x = the (ub_ln prec (Float (int n) 0))"
have "ub_ln prec (Float (int n) 0) 6= None"

using ‹n > 0› by (subst ub_ln.simps) auto
hence "ub_ln prec (Float (int n) 0) = Some x"

by (cases "ub_ln prec (Float (int n) 0)") (auto simp: x_def)
from ub_lnD[OF this] show "real_of_float x ≥ ln (real n)"

by simp
qed
also have "primes_theta.S k = primes_theta k"
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unfolding primes_theta.S_def primes_theta_def prime_sum_upto_def
by (intro sum.cong) auto

also have "primes_theta k = primes_theta x"
unfolding k_def by simp

also have "c * real k ≤ c * x"
using ‹c ≥ 0› x by (intro mult_left_mono) (auto simp: k_def)

finally show "primes_theta x ≤ c * x" .
qed

end

1.1.5 The ψ function
context
begin

interpretation primes_psi: chebyshev_check
"λn. ln (real (aprimedivisor n))"
"λprec x. the (lb_ln prec (Float (int (snd x)) 0))"
"{p. primepow p}"
"float_plus_down"
"(≤)"
"λk x. x ≥ c * (real k + 1)"
"fst"
for c :: real

proof
show "real_of_float (float_plus_down prec X Y) ≤ x + y"

if "real_of_float X ≤ x" "real_of_float Y ≤ y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_down_le)

qed auto

definition check_psi_lower_aux
where "check_psi_lower_aux = primes_psi.check_aux"

definition check_psi_lower where
"check_psi_lower c prec lb ub =

primes_psi.check c prec (prime_powers_upto ub) lb ub"

lemma check_psi_lower_aux_code [code]:
"check_psi_lower_aux c prec ps lb ub acc n =

(if ub < n then True else let (acc’, ps’) =
if ps 6= [] ∧ fst (hd ps) = n
then (float_plus_down prec acc (the (lb_ln prec (Float (int

(snd (hd ps))) 0))), tl ps)
else (acc, ps)

in (n < lb ∨ c * (real n + 1) ≤ real_of_float acc’) ∧
check_psi_lower_aux c prec ps’ lb
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ub acc’ (n + 1))"
unfolding check_psi_lower_aux_def
by (rule primes_psi.check_aux.simps)

lemma check_psi_lower_code [code]:
"check_psi_lower c prec lb ub = (let ps = prime_powers_upto ub in

check_psi_lower_aux c prec ps lb ub 0
(if ps = [] then lb else min lb (fst (hd ps))))"

unfolding check_psi_lower_def primes_psi.check_def check_psi_lower_aux_def
by (simp add: Let_def)

lemma check_psi_lower_correct:
assumes "check_psi_lower c prec lb ub"
shows "∀ x∈{real lb..real ub}. primes_psi x ≥ c * x"

proof
fix x assume x: "x ∈ {real lb..real ub}"
define k where "k = nat bxc"
show "c * x ≤ primes_psi x"
proof (cases "c ≥ 0")

case False
hence "c * x ≤ 0"

using x by (auto intro: mult_nonpos_nonneg)
also have "0 ≤ primes_psi x"

by (rule ψ_nonneg)
finally show ?thesis .

next
case True
hence "c * x ≤ c * (real k + 1)"

using x by (intro mult_left_mono) (auto simp: k_def)
also have "c * (real k + 1) ≤ primes_psi.S k"
proof (rule primes_psi.check_correct)

show "sorted (map fst (prime_powers_upto ub))"
"distinct (map fst (prime_powers_upto ub))"

by (simp_all add: sorted_prime_powers_upto distinct_prime_powers_upto)
show "k ∈ {lb..ub}"

using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)

show "primes_psi.check c prec (prime_powers_upto ub) lb ub"
using assms by (simp add: check_psi_lower_def)

next
fix p assume "p ≤ ub"
thus "p ∈ fst ‘ set (prime_powers_upto ub) ←→ p ∈ {p. primepow

p}"
by (force simp: set_prime_powers_upto)

next
fix y
assume y: "y ∈ set (prime_powers_upto ub)"
hence "snd y > 0"

by (auto simp: set_prime_powers_upto intro!: aprimedivisor_pos_nat
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primepow_gt_Suc_0)
define x where "x = the (lb_ln prec (Float (int (snd y)) 0))"
have "lb_ln prec (Float (int (snd y)) 0) 6= None"

using ‹snd y > 0› by (subst lb_ln.simps) auto
hence "lb_ln prec (Float (int (snd y)) 0) = Some x"

by (cases "lb_ln prec (Float (int (snd y)) 0)") (auto simp: x_def)
from lb_lnD[OF this] show "real_of_float x ≤ ln (real (aprimedivisor

(fst y)))"
using y by (auto simp: set_prime_powers_upto)

qed
also have "primes_psi.S k = primes_psi k"

unfolding primes_psi.S_def primes_psi_def sum_upto_def
by (intro sum.mono_neutral_cong_left) (auto simp: primepow_gt_0_nat

mangoldt_def)
also have "primes_psi k = primes_psi x"

unfolding k_def by simp
finally show "c * x ≤ primes_psi x" .

qed
qed

end

context
begin

interpretation primes_psi: chebyshev_check
"λn. ln (real (aprimedivisor n))"
"λprec x. the (ub_ln prec (Float (int (snd x)) 0))"
"{p. primepow p}"
"float_plus_up"
"(≥)"
"λk x. x ≤ c * real k"
"fst"
for c :: real

proof
show "real_of_float (float_plus_up prec X Y) ≥ x + y"

if "real_of_float X ≥ x" "real_of_float Y ≥ y"
for x y :: real and X Y :: float and prec :: nat
using that by (simp add: float_plus_up_le)

qed auto

definition check_psi_upper_aux
where "check_psi_upper_aux = primes_psi.check_aux"

definition check_psi_upper where
"check_psi_upper c prec lb ub =

primes_psi.check c prec (prime_powers_upto ub) lb ub"
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lemma check_psi_upper_aux_code [code]:
"check_psi_upper_aux c prec ps lb ub acc n =

(if ub < n then True else let (acc’, ps’) =
if ps 6= [] ∧ fst (hd ps) = n
then (float_plus_up prec acc (the (ub_ln prec (Float (int

(snd (hd ps))) 0))), tl ps)
else (acc, ps)

in (n < lb ∨ c * real n ≥ real_of_float acc’) ∧
check_psi_upper_aux c prec ps’ lb
ub acc’ (n + 1))"

unfolding check_psi_upper_aux_def
by (rule primes_psi.check_aux.simps)

lemma check_psi_upper_code [code]:
"check_psi_upper c prec lb ub = (let ps = prime_powers_upto ub in

check_psi_upper_aux c prec ps lb ub 0
(if ps = [] then lb else min lb (fst (hd ps))))"

unfolding check_psi_upper_def primes_psi.check_def check_psi_upper_aux_def
by (simp add: Let_def)

lemma check_psi_upper_correct:
assumes "check_psi_upper c prec lb ub" "c ≥ 0"
shows "∀ x∈{real lb..real ub}. primes_psi x ≤ c * x"

proof
fix x assume x: "x ∈ {real lb..real ub}"
define k where "k = nat bxc"
have "primes_psi.S k ≤ c * real k"
proof (rule primes_psi.check_correct)

show "sorted (map fst (prime_powers_upto ub))"
"distinct (map fst (prime_powers_upto ub))"

by (simp_all add: sorted_prime_powers_upto distinct_prime_powers_upto)
show "k ∈ {lb..ub}"

using x by (auto simp: k_def le_nat_iff le_floor_iff nat_le_iff
floor_le_iff)

show "primes_psi.check c prec (prime_powers_upto ub) lb ub"
using assms by (simp add: check_psi_upper_def)

next
fix p assume "p ≤ ub"
thus "p ∈ fst ‘ set (prime_powers_upto ub) ←→ p ∈ {p. primepow p}"

by (force simp: set_prime_powers_upto)
next

fix y
assume y: "y ∈ set (prime_powers_upto ub)"
hence "snd y > 0"

by (auto simp: set_prime_powers_upto intro!: aprimedivisor_pos_nat
primepow_gt_Suc_0)

define x where "x = the (ub_ln prec (Float (int (snd y)) 0))"
have "ub_ln prec (Float (int (snd y)) 0) 6= None"
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using ‹snd y > 0› by (subst ub_ln.simps) auto
hence "ub_ln prec (Float (int (snd y)) 0) = Some x"

by (cases "ub_ln prec (Float (int (snd y)) 0)") (auto simp: x_def)
from ub_lnD[OF this] show "real_of_float x ≥ ln (real (aprimedivisor

(fst y)))"
using y by (auto simp: set_prime_powers_upto)

qed
also have "primes_psi.S k = primes_psi k"

unfolding primes_psi.S_def primes_psi_def sum_upto_def
by (intro sum.mono_neutral_cong_left) (auto simp: primepow_gt_0_nat

mangoldt_def)
also have "primes_psi k = primes_psi x"

unfolding k_def by simp
also have "c * real k ≤ c * x"

using x assms by (intro mult_left_mono) (auto simp: k_def)
finally show "primes_psi x ≤ c * x" .

qed

end

end
theory Chebyshev_Prime_Bounds
imports

"Prime_Number_Theorem.Prime_Counting_Functions"
"Prime_Distribution_Elementary.Prime_Distribution_Elementary_Library"
"Prime_Distribution_Elementary.Primorial"
"HOL-Decision_Procs.Approximation"
"HOL-Library.Code_Target_Numeral"
Chebyshev_Prime_Exhaust

begin

1.2 Auxiliary material
context comm_monoid_set
begin

lemma union_disjoint’:
assumes "finite C" "A ∪ B = C" "A ∩ B = {}"
shows "f (F g A) (F g B) = F g C"
using union_disjoint[of A B g] assms by auto

end

lemma sum_mset_nonneg:
fixes X :: "’a :: ordered_comm_monoid_add multiset"
shows "(

∧
x. x ∈# X =⇒ x ≥ 0) =⇒ sum_mset X ≥ 0"

by (induction X) (auto)

lemma of_int_sum_mset: "of_int (sum_mset M) = sum_mset (image_mset of_int
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M)"
by (induction M) auto

lemma sum_sum_mset: "(
∑

x∈A.
∑

y∈#B. f x y) = (
∑

y∈#B.
∑

x∈A. f x
y)"

by (induction B) (auto simp: algebra_simps sum.distrib)

lemma sum_mset_diff_distrib:
fixes f g :: "’a ⇒ ’b :: ab_group_add"
shows "(

∑
x∈#A. f x - g x) = (

∑
x∈#A. f x) - (

∑
x∈#A. g x)"

by (induction A) (auto simp: algebra_simps)

lemma sum_mset_neg_distrib:
fixes f :: "’a ⇒ ’b :: ab_group_add"
shows "(

∑
x∈#A. -f x) = -(

∑
x∈#A. f x)"

by (induction A) (auto simp: algebra_simps)

1.3 Bounds for the remainder in Stirling’s approximation
definition ln_fact_remainder :: "real ⇒ real" where

"ln_fact_remainder x = ln (fact (nat bxc)) - (x * ln x - x)"

lemma ln_fact_remainder_bounds:
assumes x: "x ≥ 3"
shows "ln_fact_remainder x ≤ ln x / 2 + ln (2 * pi) / 2 + 1 / (12

* bxc)"
and "ln_fact_remainder x ≥ -ln x / 2 + ln (2 * pi) / 2 - 1 / (2 *

x)"
proof -

define n where "n = nat bxc"
define f where "f = (λt. t * (ln t - 1) + ln t / 2 :: real)"

have "ln bxc ≥ 1"
proof -

have "1 ≤ ln (3 :: real)"
by (approximation 10)

also have "ln 3 ≤ ln bxc"
using assms by simp

finally show ?thesis .
qed

have n: "n ≥ 1"
using x by (auto simp: n_def le_nat_iff)

have "ln_fact_remainder x = ln (fact n) + ln x / 2 - f x"
by (simp add: ln_fact_remainder_def n_def f_def algebra_simps)

also have "ln (fact n) ≤ ln (2 * pi) / 2 + f n + 1 / (12 * n)"
using ln_fact_bounds(2)[of n] n by (auto simp: f_def ln_mult add_divide_distrib

algebra_simps)
also have " . . . + ln x / 2 - f x = ln x / 2 + (f n - f x) + ln (2 * pi)
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/ 2 + 1 / (12 * n)"
using n by (simp add: algebra_simps ln_mult)

also have "f n ≤ f x"
unfolding f_def using assms ‹ln bxc ≥ 1›
by (intro add_mono mult_mono) (auto simp: n_def)

finally show "ln_fact_remainder x ≤ ln x / 2 + ln (2 * pi) / 2 + 1 /
(12 * bxc)"

using assms by (simp add: n_def)

define f’ :: "real ⇒ real" where "f’ = (λx. ln x + 1 / (2 * x))"
have f’_mono: "f’ x ≤ f’ y" if "x ≤ y" "x ≥ 1 / 2" for x y :: real

using that(1)
proof (rule DERIV_nonneg_imp_nondecreasing)

fix t assume t: "t ≥ x" "t ≤ y"
hence "t > 0"

using ‹x ≥ 1 / 2› by auto
have "(t - 1 / 2) / t ^ 2 ≥ 0"

using t that by auto
have "(f’ has_field_derivative (1 / t - 1 / (2 * t ^ 2))) (at t)"

using ‹t > 0› by (auto simp: f’_def power2_eq_square intro!: derivative_eq_intros)
also have "1 / t - 1 / (2 * t ^ 2) = (t - 1 / 2) / t ^ 2"

using ‹t > 0› by (simp add: field_simps eval_nat_numeral del: div_diff)
finally show "∃ y. (f’ has_real_derivative y) (at t) ∧ 0 ≤ y"

using ‹(t - 1 / 2) / t ^ 2 ≥ 0› by blast
qed

have f’_nonneg: "f’ t ≥ 0" if "t ≥ 3" for t
proof -

have "0 ≤ f’ 3"
unfolding f’_def by (approximation 10)

also have "f’ 3 ≤ f’ t"
by (rule f’_mono) (use that in auto)

finally show ?thesis .
qed

have "f x - f n ≤ f’ x * frac x"
proof (cases "n < x")

case False
hence "x = n"

using assms unfolding n_def by linarith
thus ?thesis using f’_nonneg[of x] assms

by (simp add: n_def)
next

case True
have "∃ z::real. z > n ∧ z < x ∧ f x - f n = (x - n) * f’ z"

using True assms n
by (intro MVT2) (auto intro!: derivative_eq_intros simp: f_def f’_def)

then obtain z :: real where z: "z > n" "z < x" "f x - f n = (x -
n) * f’ z"
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by blast
have "f’ z ≤ f’ x"

by (rule f’_mono) (use z assms n in auto)

have "f x - f n = (x - n) * f’ z"
by fact

also have " . . . ≤ (x - n) * f’ x"
using ‹f’ z ≤ f’ x› True by (intro mult_left_mono ) auto

also have "x - n = frac x"
using assms by (simp add: n_def frac_def)

finally show ?thesis
by (simp add: mult_ac)

qed

also have " . . . ≤ f’ x * 1"
using frac_lt_1[of x] f’_nonneg[of x] assms
by (intro mult_left_mono) auto

finally have "f n - f x ≥ -1 / (2 * x) - ln x"
by (simp add: f’_def)

have "-ln x / 2 - 1 / (2 * x) + ln (2 * pi) / 2 =
ln x / 2 + (-1 / (2 * x) - ln x) + ln (2 * pi) / 2"

by (simp add: algebra_simps)
also have "-1 / (2 * x) - ln x ≤ f n - f x"

by fact
also have "ln x / 2 + (f n - f x) + ln (2 * pi) / 2 =

ln (2 * pi) / 2 + f n + ln x / 2 - f x"
by (simp add: algebra_simps)

also have "ln (2 * pi) / 2 + f n ≤ ln (fact n)"
using ln_fact_bounds(1)[of n] n by (auto simp: f_def ln_mult add_divide_distrib

algebra_simps)
also have "ln (fact n) + ln x / 2 - f x = ln_fact_remainder x"

by (simp add: ln_fact_remainder_def f_def n_def algebra_simps)
finally show "ln_fact_remainder x ≥ -ln x / 2 + ln (2 * pi) / 2 - 1

/ (2 * x)"
by simp

qed

lemma abs_ln_fact_remainder_bounds:
assumes x: "x ≥ 3"
shows " |ln_fact_remainder x | < ln x / 2 + 1"

proof -
have "ln_fact_remainder x ≤ ln x / 2 + (ln (2 * pi) / 2 + 1 / (12 *

bxc))"
using ln_fact_remainder_bounds(1)[of x] assms by (simp add: algebra_simps)

also have "1 / (12 * bxc) ≤ 1 / 36"
using assms by auto

also have "ln (2 * pi) / 2 + 1 / 36 < 1"
by (approximation 10)
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finally have less: "ln_fact_remainder x < ln x / 2 + 1"
by simp

have "-(ln x / 2 + 1) = -ln x / 2 + (-1)"
by simp

also have "-1 < 0 - 1 / (2 * x)"
using assms by simp

also have "0 ≤ ln (2 * pi) / 2"
using pi_gt3 by simp

also have "-ln x / 2 + (ln (2 * pi) / 2 - 1 / (2 * x)) ≤ ln_fact_remainder
x"

using ln_fact_remainder_bounds(2)[of x] assms by (simp add: algebra_simps)
finally have "- (ln x / 2 + 1) < ln_fact_remainder x" by - simp_all
with less show ?thesis

by linarith
qed

1.4 Approximating ψ

unbundle prime_counting_notation

lemma primes_psi_lower_rec:
fixes f :: "real ⇒ real"
assumes "

∧
x. x ≥ x0 =⇒ f x ≤ f (x / c) + h x"

assumes "x0 > 0" "x * c ≥ x0 * c ^ n" "c ≥ 1"
shows "f x ≤ f (x / c ^ n) + (

∑
k<n. h (x / c ^ k))"

using assms(2-)
proof (induction n arbitrary: x)

case 0
thus ?case by auto

next
case (Suc n)
have "0 < x0 * c ^ n"

using Suc.prems by auto
also have " . . . ≤ x"

using Suc.prems by auto
finally have "x > 0" .

have "x0 * c ^ n ≤ 1 * x"
using Suc.prems by simp

also have "1 * x ≤ c * x"
by (rule mult_right_mono) (use Suc.prems ‹x > 0› in auto)

finally have "f x ≤ f (x / c ^ n) + (
∑

k<n. h (x / c ^ k))"
by (intro Suc.IH) (use Suc.prems in ‹auto simp: mult_ac›)

also have "f (x / c ^ n) ≤ f (x / c ^ n / c) + h (x / c ^ n)"
by (rule assms(1)) (use Suc.prems ‹x > 0› in ‹auto simp: field_simps

less_imp_le›)
finally show ?case

by (simp add: mult_ac add_ac)
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qed

locale chebyshev_multiset =
fixes L :: "int multiset"
assumes L_nonzero: "0 /∈# L"

begin

definition chi_L :: "real ⇒ int" ("χL")
where "chi_L t = (

∑
l∈#L. sgn l * bt / |l |c)"

definition psi_L :: "real ⇒ real" ("ψL")
where "psi_L x = sum_upto (λd. mangoldt d * chi_L (x / d)) x"

definition alpha_L :: real ("αL")
where "alpha_L = -(

∑
l∈#L. ln |l | / l)"

definition period :: nat
where "period = nat (Lcm (set_mset L))"

lemma period_pos: "period > 0"
proof -

have "Lcm (set_mset L) 6= 0"
using L_nonzero unfolding period_def by (subst Lcm_0_iff) auto

moreover have "Lcm (set_mset L) ≥ 0"
by auto

ultimately have "Lcm (set_mset L) > 0"
by linarith

thus ?thesis
by (simp add: period_def)

qed

lemma dvd_period: "l ∈# L =⇒ l dvd period"
unfolding period_def by auto

lemma chi_L_decompose:
"χL (x + of_int (m * int period)) = χL x + m * int period * (

∑
l∈#L.

1 / l)"
proof -

have "real_of_int (χL (x + of_int (m * int period))) =
(
∑

l∈#L. of_int (sgn l * b(x + of_int m * real period) / real_of_int
|l |c))"

by (simp add: chi_L_def of_int_sum_mset multiset.map_comp o_def)
also have " . . . = (

∑
l∈#L. real_of_int (sgn l * (bx / of_int |l |c)) +

m * period / l)"
proof (intro arg_cong[of _ _ sum_mset] image_mset_cong, goal_cases)

case (1 l)
with L_nonzero have [simp]: "l 6= 0"

by auto
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have "(x + of_int m * real period) / real_of_int |l | =
x / of_int |l | + of_int (m * period div |l |)"

using dvd_period[of l] 1 by (subst real_of_int_div) (auto simp:
field_simps)

also have "floor . . . = bx / of_int |l | :: realc + m * period div |l |"
by (subst floor_add_int) auto

also have "real_of_int . . . = bx / of_int |l |c + m * period / |l |"
using dvd_period[of l] 1 by (simp add: real_of_int_div)

also have "sgn l * . . . = sgn l * bx / of_int |l |c + m * period / l"
by (simp add: sgn_if)

finally show ?case
by simp

qed
also have " . . . = of_int (χL x) + (

∑
l∈#L. m * period / l)"

by (subst sum_mset.distrib)
(auto simp: chi_L_def of_int_sum_mset multiset.map_comp o_def)

also have "(
∑

l∈#L. m * period / l) = m * period * (
∑

l∈#L. 1 / l)"
by (simp add: sum_mset_distrib_left)

finally show ?thesis
by simp

qed

lemma chi_L_floor: "chi_L (floor x) = chi_L x"
unfolding chi_L_def

proof (intro arg_cong[of _ _ sum_mset] image_mset_cong, goal_cases)
case (1 l)
thus ?case

using floor_divide_real_eq_div[of " |l |" x] floor_divide_of_int_eq[of
"bxc" " |l |"]

by auto
qed

end

locale balanced_chebyshev_multiset = chebyshev_multiset +
assumes balanced: "(

∑
l∈#L. 1 / l) = 0"

begin

lemma chi_L_mod: "χL (of_int (a mod int period)) = χL (of_int a)"
proof -

have a: "a = a mod period + period * (a div period)"
by simp

have "of_int a = real_of_int (a mod int period) +
real_of_int (a div int period * int period)"

by (subst a, unfold of_int_add) auto
also have "real_of_int (χL . . . ) = real_of_int (χL (real_of_int (a mod

int period)))"
using balanced by (subst chi_L_decompose) auto

25



finally show ?thesis
by linarith

qed

sublocale chi: periodic_fun_simple chi_L "of_int period"
proof

fix x :: real
have "χL (x + real_of_int (int period)) = χL (of_int (bx + real_of_int

(int period)c mod int period))"
unfolding chi_L_mod chi_L_floor ..

also have "bx + real_of_int (int period)c mod int period = bxc mod int
period"

by simp
also have "χL . . . = χL x"

by (simp add: chi_L_mod chi_L_floor)
finally show "χL (x + real_of_int (int period)) = χL x" .

qed

definition psi_L_remainder where
"psi_L_remainder x = (

∑
l∈#L. sgn l * ln_fact_remainder (x / |l |))"

lemma abs_sum_mset_le:
fixes f :: "’a ⇒ ’b :: ordered_ab_group_add_abs"
shows " |

∑
x∈#A. f x | ≤ (

∑
x∈#A. |f x |)"

by (induction A) (auto intro: order.trans[OF abs_triangle_ineq])

lemma psi_L_remainder_bounds:
fixes x :: real
assumes x: "x ≥ 3" "

∧
l. l ∈# L =⇒ x ≥ 3 * |l |"

shows " |psi_L_remainder x | ≤
ln x * size L / 2 - 1/2 * (

∑
l∈#L. ln |l |) + size L"

proof -
have nonzero: "l 6= 0" if "l ∈# L" for l

using L_nonzero that by auto
have "psi_L_remainder x = (

∑
l∈#L. sgn l * ln_fact_remainder (x / |l |))"

by (simp add: psi_L_remainder_def)
also have " |. . . | ≤ (

∑
l∈#L. |sgn l * ln_fact_remainder (x / |l |)|)"

by (rule abs_sum_mset_le)
also have " . . . = (

∑
l∈#L. |ln_fact_remainder (x / |l |)|)"

by (intro arg_cong[of _ _ sum_mset] image_mset_cong)
(auto simp: nonzero abs_mult simp flip: of_int_abs)

also have " . . . ≤ (
∑

l∈#L. ln (x / |l |) / 2 + 1)"
using x
by (intro sum_mset_mono less_imp_le[OF abs_ln_fact_remainder_bounds])

(auto simp: nonzero field_simps)
also have " . . . = (

∑
l∈#L. 1 / 2 * (ln x - ln |l |) + 1)"

using assms
by (intro arg_cong[of _ _ sum_mset] image_mset_cong) (auto simp: algebra_simps
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ln_div nonzero)
also have " . . . = ln x / 2 * size L + (-1/2) * (

∑
l∈#L. ln |l |) + size

L"
unfolding sum_mset_distrib_left of_int_sum_mset
by (simp add: sum_mset.distrib sum_mset_diff_distrib diff_divide_distrib

sum_mset_neg_distrib)
finally show ?thesis

using assms by (simp add: mult_left_mono divide_right_mono add_mono)
qed

lemma psi_L_eq:
assumes "x > 0"
shows "psi_L x = αL * x + psi_L_remainder x"

proof -
have "psi_L x = (

∑
l∈#L. sgn l *

sum_upto (λd. mangoldt d * bx / (d * |l |)c) x)"
by (simp add: psi_L_def chi_L_def sum_upto_def sum_mset_distrib_left

of_int_sum_mset
multiset.map_comp o_def sum_sum_mset algebra_simps sum_distrib_left

sum_distrib_right)
also have " . . . = (

∑
l∈#L. sgn l *

sum_upto (λd. mangoldt d * bx / (d * |l |)c) (x / |l |))"
proof (intro arg_cong[of _ _ sum_mset] image_mset_cong, goal_cases)

case (1 l)
have "l 6= 0"

using 1 L_nonzero by auto

have "sum_upto (λd. mangoldt d * real_of_int bx / real_of_int (int
d * |l |)c) (x / real_of_int |l |) =

sum_upto (λd. mangoldt d * real_of_int bx / real_of_int (int
d * |l |)c) x"

unfolding sum_upto_def
proof (intro sum.mono_neutral_left subsetI ballI, goal_cases)

case (2 d)
hence "real d ≤ x / |real_of_int l |"

by auto
also have " . . . ≤ x / 1"

using ‹l 6= 0› and assms by (intro divide_left_mono) auto
finally show ?case

using 2 by auto
next

case (3 d)
hence "x < d * |l |" and "d > 0"

using ‹l 6= 0› and assms by (auto simp: field_simps)
hence "x / real_of_int (int d * |l |) ≥ 0" and "x / real_of_int

(int d * |l |) < 1"
using assms by auto

hence "bx / real_of_int (int d * |l |)c = 0"
by linarith
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thus ?case
by simp

qed auto
thus ?case

by simp
qed

also have " . . . = (
∑

l∈#L. sgn l * ln (fact (nat bx/|l |c)))"
by (subst ln_fact_conv_sum_mangoldt [symmetric]) (auto simp: mult_ac)

also have " . . . = (
∑

l∈#L. x / l * ln x - x * ln |l | / l - x / l + sgn
l * ln_fact_remainder (x / |l |))"

proof (intro arg_cong[of _ _ sum_mset] image_mset_cong, goal_cases)
case (1 l)
hence [simp]: "l 6= 0"

using L_nonzero by auto
have "ln (fact (nat bx/|l |c)) = x / |l | * ln (x / |l |) - x / |l | + ln_fact_remainder

(x / |l |)"
by (simp add: ln_fact_remainder_def)

also have "real_of_int (sgn l) * . . . = x / l * ln x - x * ln |l | /
l - x / l + sgn l * ln_fact_remainder (x / |l |)"

using assms by (auto simp: sgn_if ln_div diff_divide_distrib algebra_simps)
finally show ?case .

qed
also have " . . . = (x * ln x - x) * (

∑
l∈#L. 1 / l) - x * (

∑
l∈#L. ln

|l | / l) + (
∑

l∈#L. sgn l * ln_fact_remainder (x / |l |))"
by (simp add: sum_mset.distrib sum_mset_diff_distrib sum_mset_distrib_left

diff_divide_distrib)
also have " . . . = αL * x + psi_L_remainder x"

by (subst balanced) (auto simp: alpha_L_def psi_L_remainder_def)
finally show ?thesis .

qed

lemma primes_psi_lower_bound:
fixes x C :: real
defines "x0 ≡ Max (insert 3 ((λl. 3 * |l |) ‘ set_mset L))"
assumes x: "x ≥ x0"
assumes chi_le1: "

∧
n. n ∈ {0..<period} =⇒ χL (real n) ≤ 1"

defines "C ≡ 1 / 2 * (
∑

l∈#L. ln |l |) - size L"
shows "ψ x ≥ αL * x - ln x * size L / 2 + C"

proof -
have chi_le1’: "χL x ≤ 1" for x

proof -
have "χL x = χL (floor x mod period)"

by (simp add: chi_L_mod chi_L_floor)
also have "floor x mod period = real (nat (floor x mod period))"

using period_pos by auto
also have "χL . . . ≤ 1"

by (rule chi_le1) (use period_pos in ‹auto simp: nat_less_iff›)
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finally show ?thesis .
qed

have x0: "x0 ≥ 3" "
∧

l. l ∈# L =⇒ x0 ≥ 3 * |l |"
unfolding x0_def by auto

have *: "x * y ≤ x" if "y ≤ 1" "x ≥ 0" for x y :: real
using mult_left_mono[OF that] by auto

have " |psi_L_remainder x | ≤ ln x * real (size L) / 2 -
1 / 2 * (

∑
l∈#L. ln (real_of_int |l |)) + real (size L)"

by (rule psi_L_remainder_bounds)
(use x x0 in ‹force simp flip: of_int_abs›)+

hence " |psi_L_remainder x | ≤ ln x * size L / 2 - C"
by (simp add: C_def algebra_simps)

hence "αL * x - ln x * size L / 2 + C ≤ αL * x + psi_L_remainder x"
by linarith

also have "αL * x + psi_L_remainder x = ψL x"
using x x0(1) by (subst psi_L_eq) auto

also have "ψL x ≤ ψ x"
unfolding psi_L_def primes_psi_def sum_upto_def
by (intro sum_mono *) (auto simp: mangoldt_nonneg chi_le1’)

finally show ?thesis
by (simp add: C_def)

qed

end

lemma psi_lower_bound_precise:
assumes x: "x ≥ 90"
shows "ψ x ≥ 0.92128 * x - 2.5 * ln x - 1.6"

proof -
interpret balanced_chebyshev_multiset "{#1, -2, -3, -5, 30#}"

by unfold_locales auto

define C :: real where "C = ((ln 2 + (ln 3 + (ln 5 + ln 30))) / 2 -
5)"

have "alpha_L = ln 2 / 2 - (ln 30 / 30 - ln 5 / 5 - ln 3 / 3)"
by (simp add: alpha_L_def)

also have " . . . ≥ 0.92128"
by (approximation 30)

finally have "alpha_L ≥ 0.92128" .
have "C ≥ -1.6"

unfolding C_def by (approximation 20)

have "0.92128 * x - ln x * 5 / 2 + (-1.6) ≤ alpha_L * x - ln x * 5
/ 2 + C"

using ‹alpha_L ≥ _› ‹C ≥ _› x by (intro diff_mono add_mono mult_right_mono)
auto
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also have "chi_L k ≤ 1" if "k ∈ {..<30}" for k :: nat
using that unfolding lessThan_nat_numeral pred_numeral_simps arith_simps
by (elim insertE) (auto simp: chi_L_def)

hence "alpha_L * x - ln x * 5 / 2 + C ≤ ψ x"
using primes_psi_lower_bound[of x] x by (simp add: C_def period_def)

finally show ?thesis
by (simp add: mult_ac)

qed

context balanced_chebyshev_multiset
begin

lemma psi_upper_bound:
fixes x c C :: real
defines "x0 ≡ Max ({3, 55 * c} ∪ {3 * |l | |l. l ∈# L})"
assumes x: "x ≥ x0"
assumes chi_nonneg: "

∧
n. n ∈ {0..<period} =⇒ χL (real n) ≥ 0"

assumes chi_ge1: "
∧

n. real n ∈ {1..<c} =⇒ χL (real n) ≥ 1"
assumes c: "c > 1" "c ≤ period"
assumes "αL ≥ 0"
shows "ψ x ≤ c / (c - 1) * αL * x + (3 * size L) / (4 * ln c) * ln

x ^ 2 + ψ x0"
proof -

have L_nonzero’: "l 6= 0" if "l ∈# L" for l
using that L_nonzero by auto

have chi_nonneg: "χL x ≥ 0" for x
proof -
have "χL x = χL (floor x mod period)"

by (simp add: chi_L_mod chi_L_floor)
also have "floor x mod period = real (nat (floor x mod period))"

using period_pos by auto
also have "χL . . . ≥ 0"

by (rule chi_nonneg) (use period_pos in ‹auto simp: nat_less_iff›)
finally show ?thesis .

qed

have chi_ge1: "χL x ≥ 1" if "x ≥ 1" "x < c" for x
proof -
have "χL x = χL (floor x mod period)"

by (simp add: chi_L_mod chi_L_floor)
also have "floor x mod period = real (nat (floor x mod period))"

using period_pos by auto
also have "χL . . . ≥ 1"
proof (rule chi_ge1)

have "real_of_int bxc < c"
using that by linarith

hence "real_of_int (bxc mod int period) < c"
using that period_pos c by simp
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moreover have "1 ≤ bxc mod int period"
by (use period_pos c that in ‹auto simp: floor_less_iff›)

ultimately show "real (nat (bxc mod int period)) ∈ {1..<c}"
by auto

qed
finally show ?thesis .

qed

have "finite {3 * l |l. l ∈# L}"
by auto

have x1: "x0 ≥ 3" "x0 ≥ 55 * c"
unfolding x0_def by (rule Max_ge; simp)+

have x2: "3 * |l | ≤ x0" if "l ∈# L" for l
unfolding x0_def by (rule Max_ge) (use that in auto)

define C where "C = 1/2 * (
∑

l∈#L. ln |l |) - size L"
have *: "x ≤ x * y" if "y ≥ 1" "x ≥ 0" for x y :: real

using mult_left_mono[of 1 y x] that by simp

have rec: "ψ x ≤ ψ (x / c) + αL * x + ln x * size L / 2 - C" if x:
"x ≥ x0" for x :: real

proof -
have "x / c ≤ x"

using c using divide_left_mono[of 1 c x] ‹x0 ≥ 3› x by auto
have "ψ x = ψ (x / c) + (

∑
d | d > 0 ∧ real d ∈ {x/c<..x}. mangoldt

d)"
unfolding ψ_def sum_upto_def
by (rule sum.union_disjoint’ [symmetric])

(use c ‹x / c ≤ x› in auto)
also have "(

∑
d | d > 0 ∧ real d ∈ {x/c<..x}. mangoldt d) ≤

(
∑

d | d > 0 ∧ real d ∈ {x/c<..x}. mangoldt d * χL (x
/ d))"

using c by (intro sum_mono * mangoldt_nonneg) (auto intro!: chi_ge1
simp: field_simps)

also have " . . . ≤ (
∑

d | d > 0 ∧ real d ≤ x. mangoldt d * χL (x /
d))"

by (intro sum_mono2) (auto intro!: mult_nonneg_nonneg mangoldt_nonneg
chi_nonneg)

also have " . . . = ψL x"
by (simp add: psi_L_def sum_upto_def)

finally have "ψ x ≤ ψ (x / c) + ψL x"
by - simp_all

have L: "3 * |real_of_int l | ≤ x" if "l ∈# L" for l
using x2[OF that] x by linarith

have "ψ x ≤ ψ (x / c) + ψL x"
by fact

also have "ψL x = αL * x + psi_L_remainder x"
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using ‹x0 ≥ 3› x by (subst psi_L_eq) auto
also have " |psi_L_remainder x | ≤ ln x * size L / 2 - C"

using psi_L_remainder_bounds[of x] ‹x0 ≥ 3› x L by (simp add: C_def)
hence "psi_L_remainder x ≤ ln x * size L / 2 - C"

by linarith
finally show "ψ x ≤ ψ (x / c) + αL * x + ln x * size L / 2 - C"

by (simp add: algebra_simps)
qed

define m where "m = nat dlog c (x / x0)e"
have "x > 0"

using x x1 by simp

have "ψ x ≤ ψ x0 + (
∑

k<m. αL * x / c ^ k + ln (x / c ^ k) * size
L / 2 - C)"

proof -
have "ψ x ≤ ψ (x / c ^ m) + (

∑
k<m. αL * (x / c ^ k) + ln (x / c

^ k) * size L / 2 - C)"
proof (rule primes_psi_lower_rec)

fix x :: real assume "x ≥ x0"
thus "ψ x ≤ ψ (x / c) + (αL * x + ln x * size L / 2 - C)"

using rec[of x] by (simp add: algebra_simps)
next

have "c ^ m = c powr real m"
using c by (simp add: powr_realpow)

also have " . . . ≤ c powr (log c (x / x0) + 1)"
using c x ‹x0 ≥ 3› by (intro powr_mono) (auto simp: m_def)

also have " . . . = c * x / x0"
using c x ‹x0 ≥ 3› by (auto simp: powr_add)

finally show "x0 * c ^ m ≤ x * c"
using ‹x0 ≥ 3› by (simp add: field_simps)

qed (use x1 c in auto)
also have "ψ (x / c ^ m) ≤ ψ x0"
proof (rule ψ_mono)

have "x / x0 = c powr log c (x / x0)"
using c x ‹x0 ≥ 3› by simp

also have " . . . ≤ c powr m"
unfolding m_def using c ‹x0 ≥ 3› x by (intro powr_mono) auto

also have " . . . = c ^ m"
using c by (simp add: powr_realpow)

finally show "x / c ^ m ≤ x0"
using ‹x0 ≥ 3› c by (simp add: field_simps)

qed
finally show ?thesis

by simp
qed
also have " . . . = ψ x0 + (

∑
k<m. αL * x / c ^ k + (ln x - k * ln c)

* size L / 2 - C)"
using x(1) ‹x0 ≥ 3› c by (simp add: ln_div ln_realpow)
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also have " . . . = ψ x0 + αL * x * (
∑

k<m. 1 / c ^ k) + ln x * m * size
L / 2 - real (

∑
k<m. k) * ln c * size L / 2 - C * m"

by (simp add: sum_diff_distrib sum_subtractf sum.distrib sum_distrib_left
sum_distrib_right algebra_simps diff_divide_distrib sum_divide_distrib)

also have "(
∑

k<m. 1 / c ^ k) = (1 - (1 / c) ^ m) / (1 - 1 / c)"
using sum_gp_strict[of "1/c" m] c by (simp add: field_simps)

also have " . . . ≤ 1 / (1 - 1 / c)"
using c by (intro divide_right_mono) auto

also have "1 / (1 - 1/c) = c / (c - 1)"
using c by (simp add: field_simps)

also have "(
∑

k<m. k) = real m * (real m - 1) / 2"
by (induction m) (auto simp: field_simps)

finally have "ψ x ≤ ψ x0 + c / (c - 1) * αL * x +
ln x * m * size L / 2 -
real m * (real m - 1) / 2 * ln c * size L / 2 - C *

m"
using ‹αL ≥ 0› ‹x > 0› x1 by (simp add: mult_left_mono mult_right_mono

mult_ac)
also have " . . . = ψ x0 + c / (c - 1) * αL * x + m/2 * (size L * (ln x

- (real m - 1)/2 * ln c + 2) - (
∑

l∈#L. ln |l |))"
by (simp add: algebra_simps C_def)

also have "m/2 * (size L * (ln x - (real m - 1)/2 * ln c + 2) - (
∑

l∈#L.
ln |l |)) ≤

m/2 * (size L * (3/2 * ln x) - 0)"
proof (intro mult_left_mono diff_mono)

have "real m ≥ log c (x / x0)"
using c ‹x0 ≥ 3› x unfolding m_def by auto

hence "ln x - (real m - 1)/2 * ln c + 2 ≤
ln x - (log c (x / x0) - 1)/2 * ln c + 2"

using c by (intro diff_mono add_mono mult_right_mono divide_right_mono)
auto

also have " . . . = (ln x + ln x0 + (ln c + 4)) / 2"
using c x ‹x0 ≥ 3› by (simp add: log_def ln_div field_simps)

also have "ln x0 ≤ ln x"
using x x1 by simp

also have "ln c + 4 ≤ ln x"
proof -

have "exp (4 :: real) ≤ 55"
by (approximation 10)

hence "exp 4 * c ≤ 55 * c"
using c by (intro mult_right_mono) auto

also have "55 * c ≤ x0"
by fact

also have " . . . ≤ x"
by fact

finally have "exp (ln c + 4) ≤ exp (ln x)"
unfolding exp_add using c x1 x by (simp add: mult_ac)

thus ?thesis
by (simp only: exp_le_cancel_iff)
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qed
also have "(ln x + ln x + ln x) / 2 = 3 / 2 * ln x"

by simp
finally show "ln x - (real m - 1) / 2 * ln c + 2 ≤ 3 / 2 * ln x"

by - simp
qed (auto intro!: sum_mset_nonneg simp: L_nonzero’ Ints_nonzero_abs_ge1)
also have "m / 2 * (size L * (3/2 * ln x) - 0) = 3 / 4 * m * size L

* ln x"
by simp

also have " . . . ≤ 3 / 4 * (ln x / ln c) * size L * ln x"
proof (intro mult_left_mono mult_right_mono)

have "real m ≤ log c (x / x0) + 1"
unfolding m_def using c x ‹x0 ≥ 3› by auto

also have " . . . / 2 = (ln x / ln c + (1 - log c x0)) / 2"
using ‹x0 ≥ 3› ‹x ≥ x0› c
by (simp add: log_def ln_div field_simps)

also have "1 - log c x0 ≤ 0"
using x1 c by simp

finally show "real m ≤ ln x / ln c" by - simp_all
qed (use x x1 in auto)
also have " . . . = (3 * size L) / (4 * ln c) * ln x ^ 2"

by (simp add: power2_eq_square)
finally show "ψ x ≤ c / (c - 1) * αL * x + (3 * size L) / (4 * ln c)

* ln x ^ 2 + ψ x0"
by (simp add: algebra_simps)

qed

end

1.5 Final results
theorem psi_lower_ge_9:

assumes x: "x ≥ 41"
shows "ψ x ≥ 0.9 * x"

proof (cases "x ≥ 900")
case False
have "∀ x∈{real 41..real 900}. primes_psi x ≥ 0.9 * x"

by (rule check_psi_lower_correct[where prec = 16]) eval
from bspec[OF this, of x] show ?thesis

using assms False by simp
next

case x: True
define f :: "real ⇒ real"

where "f = (λx. 0.02128 * x - 2.5 * ln x - 1.6)"
have "0 ≤ f 900"

unfolding f_def by (approximation 10)
also have "f 900 ≤ f x"

using x
proof (rule DERIV_nonneg_imp_nondecreasing, goal_cases)
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case (1 t)
have "(f has_real_derivative (0.02128 - 2.5 / t)) (at t)"

unfolding f_def using 1 by (auto intro!: derivative_eq_intros)
moreover have "0.02128 - 2.5 / t ≥ 0"

using 1 by (auto simp: field_simps)
ultimately show ?case

by blast
qed
finally have "0.9 * x ≤ 0.9 * x + f x"

by linarith
also have " . . . = 0.92128 * x - 2.5 * ln x - 1.6"

by (simp add: f_def)
also have " . . . ≤ ψ x"

by (rule psi_lower_bound_precise) (use x in auto)
finally show ?thesis .

qed

theorem primes_theta_ge_82:
assumes "x ≥ 97"
shows "ϑ x ≥ 0.82 * x"

proof (cases "x ≥ 46000")
case False
have "∀ x∈{real 97..real 46000}. ϑ x ≥ 0.82 * x"

by (rule check_theta_lower_correct[where prec = 20]) eval
from bspec[OF this, of x] show ?thesis

using False assms by simp
next

case True
with assms have x: "x ≥ 46000"

by auto
define f :: "real ⇒ real"

where "f = (λx. 0.10128 * x - 2.5 * ln x - 2 * ln x * sqrt x - 1.6)"
have "0 ≤ f 46000"

unfolding f_def by (approximation 30)
also have "f 46000 ≤ f x"

using x
proof (rule DERIV_nonneg_imp_nondecreasing, goal_cases)

case (1 t)
define D where "D = 0.10128 - 2.5 / t - 2 * sqrt t / t - ln t / sqrt

t"
have deriv: "(f has_real_derivative D) (at t)"

unfolding f_def
by (rule derivative_eq_intros refl | use 1 in force)+

(simp add: field_simps D_def)
have "0.10128 - D = 2.5 / t + 2 / sqrt t + ln t / sqrt t"

using 1 by (simp add: D_def field_simps del: div_add div_diff div_mult_self1
div_mult_self2 div_mult_self3 div_mult_self4)

also have " . . . ≤ 2.5 / 46000 + 2 / 214 + ln t / sqrt t"
using 1 by (intro add_mono) (auto simp: real_le_rsqrt)
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also have "ln t / sqrt t ≤ ln 46000 / sqrt 46000"
using 1(1)

proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)
case (1 u)
have "((λt. ln t / sqrt t) has_real_derivative ((2 - ln u) / (2

* u * sqrt u))) (at u)"
by (rule derivative_eq_intros refl | use 1 in force)+

(use 1 in ‹simp add: field_simps›)
moreover {

have "2 ≤ ln (10::real)"
by (approximation 30)

also have " . . . ≤ ln u"
using 1 by simp

finally have "ln u ≥ 2" .
}
hence "((2 - ln u) / (2 * u * sqrt u)) ≤ 0"

using 1 by (intro divide_nonpos_nonneg) auto
ultimately show ?case

by blast
qed
also have " . . . ≤ 0.0501"

by (approximation 30)
also have "2.5 / 46000 + 2 / 214 + 0.0501 ≤ (0.10128 :: real)"

by simp
finally have "D ≥ 0"

by simp
with deriv show ?case by blast

qed

finally have "0.82 * x ≤ 0.82 * x + f x"
by linarith

also have " . . . = 0.92128 * x - 2.5 * ln x - 2 * ln x * sqrt x - 1.6"
by (simp add: f_def)

also have " . . . ≤ 0.92128 * x - 2.5 * ln x - 1.6 + ϑ x - ψ x"
using ψ_minus_ϑ_bound[of x] x by simp

also have "0.92128 * x - 2.5 * ln x - 1.6 ≤ ψ x"
by (rule psi_lower_bound_precise) (use x in auto)

finally show ?thesis by simp
qed

corollary primorial_ge_exp_82:
assumes "x ≥ 97"
shows "primorial x ≥ exp (0.82 * x)"

proof -
have "primorial x = exp (ϑ x)"

using ln_primorial[of x] primorial_pos[of x]
by (metis exp_ln of_nat_0_less_iff)

also have " . . . ≥ exp (0.82 * x)"
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using primes_theta_ge_82[OF assms] by simp
finally show ?thesis .

qed

theorem primes_psi_le_111:
assumes "x ≥ 0"
shows "ψ x ≤ 1.11 * x"

proof -
have "∀ x∈{real 0..real 146000}. primes_psi x ≤ 1.04 * x"
proof (rule check_psi_upper_correct[where prec = 16])

show "check_psi_upper (104 / 102) 16 0 146000"
by eval

qed auto
hence initial: "primes_psi x ≤ 1.04 * x" if "x ∈ {0..146000}" for x

using that by auto

show ?thesis
proof (cases "x ≥ 146000")

case False
thus ?thesis

using initial[of x] assms by simp
next

case x: True
define L :: "int multiset" where "L = {#1, -2, -3, -5, 30#}"
have [simp]: "set_mset L = {1, -2, -3, -5, 30}" "size L = 5"

by (simp_all add: L_def)
interpret balanced_chebyshev_multiset L

by unfold_locales (auto simp: L_def)
define x0 :: real where "x0 = Max ({3, 55 * 6} ∪ {3 * |real_of_int

l | |l. l ∈# L})"

have x0: "x0 = 330"
proof -

have "x0 = Max ({3, 55 * 6} ∪ {3 * |real_of_int l | |l. l ∈# L})"
unfolding x0_def ..

also have "{3 * |real_of_int l | |l. l ∈# L} = (λl. 3 * |of_int l |)
‘ set_mset L"

by blast
finally show ?thesis

by simp
qed

define f :: "real ⇒ real"
where "f = (λt. 2.093 * ln t ^ 2 + 343.2 - 0.0044 * t)"

have alpha_L: "alpha_L = ln 2 / 2 - (ln 30 / 30 - ln 5 / 5 - ln 3
/ 3)"

unfolding alpha_L_def by (simp add: L_def)
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have "alpha_L ≥ 0"
unfolding alpha_L by (approximation 10)

have period: "period = 30"
by (simp add: period_def)

have "ψ x ≤ 6 / (6 - 1) * alpha_L * x + (3 * size L) / (4 * ln 6)
* ln x ^ 2 + ψ x0"

unfolding x0_def
proof (rule psi_upper_bound; (unfold period)?)

show "chi_L (real n) ≥ 0" if "n ∈ {0..<30}" for n
unfolding chi_L_def
using that unfolding atLeastLessThan_nat_numeral pred_numeral_simps

arith_simps
by (auto simp: L_def)

next
show "chi_L (real n) ≥ 1" if "real n ∈ {1..<6}" for n
proof -

have "n ∈ {1..<6}"
using that by auto

also have "{1..<6} = {1,2,3,4,5::nat}"
by auto

finally show ?thesis
unfolding chi_L_def by (elim insertE) (auto simp: L_def)

qed
qed (use ‹alpha_L ≥ 0› x in auto)

also have " . . . = 6/5 * alpha_L * x + 15 / (4 * ln 6) * (ln x)2 + ψ
x0"

by simp
also have "ψ x0 ≤ 343.2"

using initial[of x0] by (simp add: x0)
also have "6/5 * alpha_L ≤ 1.1056"

unfolding alpha_L by (approximation 30)
also have "15 / (4 * ln 6 :: real) ≤ 2.093"

by (approximation 20)
finally have "ψ x ≤ 1.1056 * x + 2.093 * ln x ^ 2 + 343.2"

using x by - simp_all
also have " . . . = 1.11 * x + f x"

by (simp add: algebra_simps f_def)
also have "f x ≤ f 146000"

using x
proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)

case (1 t)
define f’ :: "real ⇒ real"

where "f’ = (λt. 4.186 * ln t / t - 0.0044)"
have "(f has_field_derivative f’ t) (at t)"

using 1 unfolding f_def f’_def
by (auto intro!: derivative_eq_intros)

moreover {
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have "f’ t ≤ f’ 146000"
using 1(1)

proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases)
case (1 u)
have "(f’ has_field_derivative (4.186 * (1 - ln u) / u ^ 2))

(at u)"
using 1 unfolding f’_def
by (auto intro!: derivative_eq_intros simp: field_simps power2_eq_square)

moreover have "4.186 * (1 - ln u) / u ^ 2 ≤ 0"
using 1 exp_le by (auto intro!: divide_nonpos_nonneg simp:

ln_ge_iff)
ultimately show ?case

by blast
qed
also have " . . . ≤ 0"

unfolding f’_def by (approximation 10)
finally have "f’ t ≤ 0" .

}
ultimately show ?case

by blast
qed
also have "f 146000 ≤ 0"

unfolding f_def by (approximation 10)
finally show ?thesis

by - simp_all
qed

qed

corollary primes_theta_le_111:
assumes "x ≥ 0"
shows "ϑ x ≤ 1.11 * x"
using primes_psi_le_111[OF assms] ϑ_le_ψ[of x]
by linarith

As an easy corollary, we obtain Bertrand’s postulate: For any real number
x > 1, the interval (x, 2x) contains at least one prime.
corollary bertrands_postulate:

assumes "x > 1"
shows "∃ p. prime p ∧ real p ∈ {x<..<2*x}"

proof (cases "x ≥ 7")
case False
consider "x ∈ {1<..<2}" | "x ∈ {2..<3}" | "x ∈ {3..<5}" | "x ∈ {5..<7}"

using False assms by force
thus ?thesis
proof cases

case 1
thus ?thesis by (intro exI[of _ 2]; simp)

next
case 2
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thus ?thesis by (intro exI[of _ 3]; simp)
next

case 3
thus ?thesis by (intro exI[of _ 5]; simp)

next
case 4
thus ?thesis by (intro exI[of _ 7]; simp)

qed
next

case x: True
have fin: "finite {p. prime p ∧ real p ≤ 1.999 * x}"

by (rule finite_subset[of _ "{..nat b2*xc}"])
(use x in ‹auto simp: le_nat_iff le_floor_iff›)

have "ϑ (1.999 * x) > 1.11 * x"
proof (cases "x ≥ 49")

case False
have "∀ x∈{real 11..real 100}. ϑ x ≥ 0.556 * x"

by (rule check_theta_lower_correct[where prec = 10]) eval
from bspec[OF this, of "1.999*x"] show ?thesis

using False x by simp
next

case True
thus ?thesis

using primes_theta_ge_82[of "1.999*x"] True by auto
qed

have "ϑ x ≤ 1.11 * x"
by (rule primes_theta_le_111) (use x in auto)

also have " . . . < ϑ (1.999 * x)"
by fact

finally have "ϑ (1.999 * x) > ϑ x" .

have "{p. prime p ∧ real p ∈ {x<..1.999*x}} 6= {}"
proof

assume eq: "{p. prime p ∧ real p ∈ {x<..1.999*x}} = {}"
have "ϑ (1.999 * x) = ϑ x + (

∑
p | prime p ∧ real p ∈ {x<..1.999*x}.

ln p)"
unfolding primes_theta_def prime_sum_upto_def
by (rule sum.union_disjoint’ [symmetric]) (use fin in auto)

also note eq
finally show False

using ‹ϑ (1.999 * x) > ϑ x› by simp
qed
thus ?thesis

by auto
qed

unbundle no_prime_counting_notation
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