A framework for establishing Strong Eventual Consistency for Conflict-free Replicated Data types

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, Alastair R. Beresford

May 26, 2024

Abstract

In this work, we focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data. We develop a modular and reusable framework for verifying the correctness of CRDT algorithms. We avoid correctness issues that have dogged previous mechanised proofs in this area by including a network model in our formalisation, and proving that our theorems hold in all possible network behaviours. Our axiomatic network model is a standard abstraction that accurately reflects the behaviour of real-world computer networks. Moreover, we identify an abstract convergence theorem, a property of order relations, which provides a formal definition of strong eventual consistency. We then obtain the first machine-checked correctness theorems for three concrete CRDTs: the Replicated Growable Array, the Observed-Remove Set, and an Increment-Decrement Counter.

Contents

1 Introduction 2
2 Technical Lemmas 2
2.1 Kleisli arrow composition 3
2.2 Lemmas about sets 3
2.3 Lemmas about list 3
3 Strong Eventual Consistency 5
3.1 Concurrent operations 5
3.2 Happens-before consistency 6
3.3 Apply operations 7
3.4 Concurrent operations commute 8
3.5 Abstract convergence theorem 8
3.6 Convergence and progress 9
4 Axiomatic network models 9
4.1 Node histories 10
4.2 Asynchronous broadcast networks 11
4.3 Causal networks 13
4.4 Dummy network models 16
5 Replicated Growable Array 16
5.1 Insert and delete operations 16
5.2 Well-definedness of insert and delete 17
5.3 Preservation of element indices 17
5.4 Commutativity of concurrent operations 18
5.5 Alternative definition of insert 19
5.6 Network 20
5.7 Strong eventual consistency 24
6 Increment-Decrement Counter 24
7 Observed-Remove Set 25

1 Introduction

Strong eventual consistency (SEC) is a model that strikes a compromise between strong and eventual consistency [12]. Informally, it guarantees that whenever two nodes have received the same set of messages - possibly in a different order - their view of the shared state is identical, and any conflicting concurrent updates must be merged automatically. Large-scale deployments of SEC algorithms include datacentre-based applications using the Riak distributed database [3], and collaborative editing applications such as Google Docs [5]. Unlike strong consistency models, it is possible to implement SEC in decentralised settings without any central server or leader, and it allows local execution at each node to proceed without waiting for communication with other nodes. However, algorithms for achieving decentralised SEC are currently poorly understood: several such algorithms, published in peer-reviewed venues, were subsequently shown to violate their supposed guarantees [6, 7, 9]. Informal reasoning has repeatedly produced plausible-looking but incorrect algorithms, and there have even been examples of mechanised formal proofs of SEC algorithm correctness later being shown to be flawed. These mechanised proofs failed because, in formalising the algorithm, they made false assumptions about the execution environment.
In this work we use the Isabelle/HOL proof assistant [13] to create a framework for reliably reasoning about the correctness of a particular class of decentralised replication algorithms. We do this by formalising not only the replication algorithms, but also the network in which they execute, allowing us to prove that the algorithm's assumptions hold in all possible network behaviours. We model the network using the axioms of asynchronous unreliable causal broadcast, a well-understood abstraction that is commonly implemented by network protocols, and which can run on almost any computer network, including large-scale networks that delay, reorder, or drop messages, and in which nodes may fail.
We then use this framework to produce machine-checked proofs of correctness for three ConflictFree Replicated Data Types (CRDTs), a class of replication algorithms that ensure strong eventual consistency [11, 12]. To our knowledge, this is the first machine-checked verification of SEC algorithms that explicitly models the network and reasons about all possible network behaviours. The framework is modular and reusable, making it easy to formulate proofs for new algorithms. We provide the first mechanised proofs of the Replicated Growable Array, the operation-based Observed-Remove Set, and the operation-based counter CRDT.

2 Technical Lemmas

This section contains a list of helper definitions and lemmas about sets, lists and the option monad.

```
theory
    Util
imports
    Main
    HOL-Library.Monad-Syntax
```


begin

2．1 Kleisli arrow composition

definition kleisli $::($＇$b \Rightarrow$＇b option $) \Rightarrow(' b \Rightarrow$＇b option $) \Rightarrow\left(' b \Rightarrow '^{\prime} b\right.$ option $)(\mathbf{i n f i x r} \triangleright 65)$ where $f \triangleright g \equiv \lambda x .(f x \gg=(\lambda y \cdot g y))$
lemma kleisli－comm－cong：
assumes $x \triangleright y=y \triangleright x$
shows $z \triangleright x \triangleright y=z \triangleright y \triangleright x$
〈proof〉
lemma kleisli－assoc：
shows $(z \triangleright x) \triangleright y=z \triangleright(x \triangleright y)$
〈proof〉

2．2 Lemmas about sets

lemma distinct－set－notin［dest］： assumes distinct（ $x \# x s$ ）
shows $x \notin$ set $x s$
〈proof〉
lemma set－membership－equality－technicalD［dest］：
assumes $\{x\} \cup($ set $x s)=\{y\} \cup($ set $y s)$
shows $x=y \vee y \in$ set $x s$
〈proof〉
lemma set－equality－technical：
assumes $\{x\} \cup($ set $x s)=\{y\} \cup($ set $y s)$
and $x \notin$ set $x s$
and $y \notin$ set $y s$ and $y \in$ set $x s$
shows $\{x\} \cup($ set $x s-\{y\})=$ set $y s$
〈proof〉
lemma set－elem－nth：
assumes $x \in$ set $x s$
shows $\exists m . m<$ length $x s \wedge x s!m=x$
〈proof〉

2．3 Lemmas about list

lemma list－nil－or－snoc：
shows $x s=[] \vee(\exists y$ ys．$x s=y s @[y])$
$\langle p r o o f\rangle$
lemma suffix－eq－distinct－list：
assumes distinct xs
and $y s @ s u f 1=x s$
and $y s @ s u f 2=x s$
shows suf1 $=$ suf2
$\langle p r o o f\rangle$
lemma pre－suf－eq－distinct－list：
assumes distinct xs
and $y s \neq[]$
and pre1＠ys＠suf1＝xs

```
        and pre2@ys@suf2 = xs
    shows pre1 = pre2 ^ suf1 = suf2
\langleproof\rangle
lemma list-head-unaffected:
    assumes hd (x@ [y,z])=v
        shows hd (x@ [y ])=v
    \langleproof\rangle
lemma list-head-butlast:
    assumes hd xs =v
    and length xs > 1
    shows hd (butlast xs) =v
    <proof>
lemma list-head-length-one:
    assumes hd xs = x
    and length xs = 1
    shows xs=[x]
    <proof>
lemma list-two-at-end:
    assumes length xs > 1
    shows \existsx\mp@subsup{s}{}{\prime}xy.xs=x\mp@subsup{s}{}{\prime}@[x,y]
    <proof>
lemma list-nth-split-technical:
    assumes m<length cs
        and cs\not=[]
        shows \existsxs ys.cs =xs@(cs!m)#ys
    <proof\rangle
lemma list-nth-split:
    assumes m<length cs
        and n<m
        and 1< length cs
        shows \existsxs ys zs.cs = xs@(cs!n)#ys@(cs!m)#zs
<proof\rangle
lemma list-split-two-elems:
    assumes distinct cs
        and}x\in\mathrm{ set cs
        and}y\in\mathrm{ set cs
        and }x\not=
        shows \exists pre mid suf.cs=pre @ x # mid @ y # suf \vee cs = pre @ y # mid @ x # suf
<proof\rangle
lemma split-list-unique-prefix:
    assumes x f set xs
    shows \exists pre suf. xs = pre @ x # suf ^( }\forally\in\mathrm{ set pre. }x\not=y
<proof\rangle
lemma map-filter-append:
    shows List.map-filter P (xs @ ys)=List.map-filter P xs @ List.map-filter P ys
    <proof>
end
```


3 Strong Eventual Consistency

In this section we formalise the notion of strong eventual consistency. We do not make any assumptions about networks or data structures; instead, we use an abstract model of operations that may be reordered, and we reason about the properties that those operations must satisfy. We then provide concrete implementations of that abstract model in later sections.

theory
 Convergence
 imports
 Util
 begin

The happens-before relation, as introduced by [8], captures causal dependencies between operations. It can be defined in terms of sending and receiving messages on a network. However, for now, we keep it abstract, our only restriction on the happens-before relation is that it must be a strict partial order, that is, it must be irreflexive and transitive, which implies that it is also antisymmetric. We describe the state of a node using an abstract type variable. To model state changes, we assume the existence of an interpretation function interp which lifts an operation into a state transformer - a function that either maps an old state to a new state, or fails.
locale happens-before $=$ preorder $h b$-weak $h b$
for $h b$-weak : : ' $a \Rightarrow{ }^{\prime} a \Rightarrow$ bool (infix $\left.\preceq 50\right)$
and $h b::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool (infix $\left.\prec 50\right)+$
fixes interp :: ' $a \Rightarrow$ ' $b \rightharpoonup{ }^{\prime} b(\langle-\rangle[0] 1000)$
begin

3.1 Concurrent operations

We say that two operations x and y are concurrent, written $x \| y$, whenever one does not happen before the other: $\neg(x \prec y)$ and $\neg(y \prec x)$.

```
definition concurrent \(::\) ' \(a \Rightarrow\) ' \(a \Rightarrow\) bool (infix \(\| 50\) ) where
    \(s 1 \| s 2 \equiv \neg(s 1 \prec s 2) \wedge \neg(s 2 \prec s 1)\)
lemma concurrentI [intro!]: \(\neg(s 1 \prec s 2) \Longrightarrow \neg(s 2 \prec s 1) \Longrightarrow s 1 \| s 2\)
    \(\langle p r o o f\rangle\)
lemma concurrentD1 [dest]: s1 \| s2 \(\Longrightarrow \neg(s 1 \prec s 2)\)
    \(\langle p r o o f\rangle\)
lemma concurrentD2 [dest]: s1 \| s2 \(\Longrightarrow \neg(s 2 \prec s 1)\)
    \(\langle p r o o f\rangle\)
lemma concurrent-refl [intro!, simp]: \(s \| s\)
    \(\langle p r o o f\rangle\)
lemma concurrent-comm: s1 || s2 \(\longleftrightarrow s 2 \| s 1\)
    〈proof〉
definition concurrent-set :: ' \(a \Rightarrow\) 'a list \(\Rightarrow\) bool where
    concurrent-set \(x x s \equiv \forall y \in\) set \(x s . x \| y\)
lemma concurrent-set-empty [simp, intro!]:
    concurrent-set \(x\) []
    \(\langle p r o o f\rangle\)
```

lemma concurrent-set-ConsE [elim!]:

```
assumes concurrent-set a (x#xs)
    and concurrent-set a xs \Longrightarrow concurrent x a \Longrightarrow G
    shows G
<proof>
```

lemma concurrent-set-ConsI [intro!]:
concurrent-set $a x s \Longrightarrow$ concurrent $a x \Longrightarrow$ concurrent-set $a(x \# x s)$
〈proof〉
lemma concurrent-set-appendI [intro!]:
concurrent-set a xs \Longrightarrow concurrent-set $a y s \Longrightarrow$ concurrent-set $a(x s @ y s)$
$\langle p r o o f\rangle$
lemma concurrent-set-Cons-Snoc [simp]:
concurrent-set a $(x s @[x])=$ concurrent-set a $(x \# x s)$
〈proof〉

3．2 Happens－before consistency

The purpose of the happens－before relation is to require that some operations must be applied in a particular order，while allowing concurrent operations to be reordered with respect to each other．We assume that each node applies operations in some sequential order（a standard assumption for distributed algorithms），and so we can model the execution history of a node as a list of operations．
inductive $h b$－consistent $::$＇a list \Rightarrow bool where
［intro！］：hb－consistent［］｜
［intro！］：$\llbracket h b$－consistent $x s ; \forall x \in$ set $x s . \neg y \prec x \rrbracket \Longrightarrow h b$－consistent（xs＠［y］）
As a result，whenever two operations x and y appear in a hb－consistent list，and $x \prec y$ ，then x must appear before y in the list．However，if $x \| y$ ，the operations can appear in the list in either order．

```
lemma ( }x\precy\vee\mathrm{ concurrent }xy)=(\negy\precx
    \langleproof\rangle
lemma consistentI [intro!]:
    assumes hb-consistent (xs @ ys)
    and}\quad\forallx\in\operatorname{set}(xs@ys).\negz\prec
    shows hb-consistent (xs @ ys @ [z])
    <proof>
inductive-cases hb-consistent-elim [elim]:
    hb-consistent []
    hb-consistent (xs@[y])
    hb-consistent (xs@ys)
    hb-consistent (xs@ys@[z])
inductive-cases hb-consistent-elim-gen:
    hb-consistent zs
lemma hb-consistent-append-D1 [dest]:
    assumes hb-consistent (xs @ ys)
    shows hb-consistent xs
    <proof>
lemma hb-consistent-append-D2 [dest]:
    assumes hb-consistent (xs @ ys)
    shows hb-consistent ys
```

$\langle p r o o f\rangle$

```
lemma hb-consistent-append-elim-ConsD [elim]:
    assumes hb-consistent (y#ys)
    shows hb-consistent ys
    \langleproof\rangle
lemma hb-consistent-remove1 [intro]:
    assumes hb-consistent xs
    shows hb-consistent (remove1 x xs)
    \langleproof\rangle
lemma hb-consistent-singleton [intro!]:
    shows hb-consistent [x]
    <proof\rangle
lemma hb-consistent-prefix-suffix-exists:
    assumes hb-consistent ys
    hb-consistent (xs @ [x])
    {x}\cup set xs = set ys
    distinct (x#xs)
    distinct ys
    shows \exists prefix suffix. ys = prefix @ x # suffix ^ concurrent-set x suffix
<proof>
lemma hb-consistent-append [intro!]:
    assumes hb-consistent suffix
        hb-consistent prefix
        \sp.s\in set suffix \Longrightarrowp\in set prefix \Longrightarrow\negs\precp
    shows hb-consistent (prefix @ suffix)
\langleproof\rangle
lemma hb-consistent-append-porder:
    assumes hb-consistent (xs @ ys)
    x\in set xs
    y\in set ys
    shows ᄀ y\precx
<proof\rangle
```


3．3 Apply operations

We can now define a function apply－operations that composes an arbitrary list of operations into a state transformer．We first map interp across the list to obtain a state transformer for each operation，and then collectively compose them using the Kleisli arrow composition combinator．

```
definition apply-operations :: 'a list \(\Rightarrow\) ' \(b \rightharpoonup\) ' \(b\) where
    apply-operations es \(\equiv\) foldl \((\triangleright)\) Some (map interp es)
lemma apply-operations-empty [simp]: apply-operations [] \(s=\) Some \(s\)
    〈proof〉
lemma apply-operations-Snoc [simp]:
    apply-operations \((x s @[x])=(\) apply-operations \(x s) \triangleright\langle x\rangle\)
    〈proof〉
```


3．4 Concurrent operations commute

We say that two operations x and y commute whenever $\langle x\rangle \triangleright\langle y\rangle=\langle y\rangle \triangleright\langle x\rangle$ ，i．e．when we can swap the order of the composition of their interpretations without changing the resulting state transformer．For our purposes，requiring that this property holds for all pairs of operations is too strong．Rather，the commutation property is only required to hold for operations that are concurrent．
definition concurrent－ops－commute ：：＇a list \Rightarrow bool where
concurrent－ops－commute xs \equiv $\forall x y .\{x, y\} \subseteq$ set $x s \longrightarrow$ concurrent $x y \longrightarrow\langle x\rangle \triangleright\langle y\rangle=\langle y\rangle \triangleright\langle x\rangle$
lemma concurrent－ops－commute－empty［intro！］：concurrent－ops－commute［］ $\langle p r o o f\rangle$
lemma concurrent－ops－commute－singleton［intro！］：concurrent－ops－commute $[x]$ \langle proof \rangle
lemma concurrent－ops－commute－appendD［dest］：
assumes concurrent－ops－commute（xs＠ys） shows concurrent－ops－commute xs \langle proof〉
lemma concurrent－ops－commute－rearrange：
concurrent－ops－commute $(x s @ x \# y s)=$ concurrent－ops－commute（ $x s @ y s @[x]$ ）
〈proof〉
lemma concurrent－ops－commute－concurrent－set：
assumes concurrent－ops－commute（prefix＠suffix＠［x］）
concurrent－set x suffix
distinct（prefix＠x \＃suffix）
shows apply－operations（prefix＠suffix＠$[x]$ ）＝apply－operations（prefix＠x \＃suffix）
$\langle p r o o f\rangle$

3．5 Abstract convergence theorem

We can now state and prove our main theorem，convergence．This theorem states that two hb－consistent lists of distinct operations，which are permutations of each other and in which concurrent operations commute，have the same interpretation．

```
theorem convergence:
    assumes set xs = set ys
    concurrent-ops-commute xs
    concurrent-ops-commute ys
    distinct xs
    distinct ys
    hb-consistent xs
    hb-consistent ys
    shows apply-operations xs = apply-operations ys
\langleproof\rangle
corollary convergence-ext:
    assumes set xs = set ys
    concurrent-ops-commute xs
    concurrent-ops-commute ys
    distinct xs
    distinct ys
    hb-consistent xs
```

```
        hb-consistent ys
    shows apply-operations xs s = apply-operations ys s
    <proof>
end
```


3.6 Convergence and progress

Besides convergence, another required property of SEC is progress: if a valid operation was issued on one node, then applying that operation on other nodes must also succeed-that is, the execution must not become stuck in an error state. Although the type signature of the interpretation function allows operations to fail, we need to prove that in all hb-consistent network behaviours such failure never actually occurs. We capture the combined requirements in the strong-eventual-consistency locale, which extends happens-before.

```
locale strong-eventual-consistency \(=\) happens-before +
    fixes op-history :: 'a list \(\Rightarrow\) bool
        and initial-state \(::\) ' \(b\)
    assumes causality: op-history \(x s \Longrightarrow h b\)-consistent \(x s\)
    assumes distinctness: op-history \(x s \Longrightarrow\) distinct \(x s\)
    assumes commutativity: op-history \(x s \Longrightarrow\) concurrent-ops-commute xs
    assumes no-failure: op-history \((x s @[x]) \Longrightarrow\) apply-operations xs initial-state \(=\) Some state \(\Longrightarrow\langle x\rangle\)
state \(\neq\) None
    assumes trunc-history: op-history \((x s @[x]) \Longrightarrow\) op-history xs
begin
theorem sec-convergence:
    assumes set \(x s=\) set \(y s\)
        op-history xs
        op-history ys
    shows apply-operations \(x s=\) apply-operations ys
    〈proof〉
theorem sec-progress:
    assumes op-history xs
    shows apply-operations xs initial-state \(\neq\) None
\(\langle p r o o f\rangle\)
```

end
end

4 Axiomatic network models

In this section we develop a formal definition of an asynchronous unreliable causal broadcast network. We choose this model because it satisfies the causal delivery requirements of many operation-based CRDTs [1, 2]. Moreover, it is suitable for use in decentralised settings, as motivated in the introduction, since it does not require waiting for communication with a central server or a quorum of nodes.

```
theory
    Network
imports
    Convergence
begin
```


4.1 Node histories

We model a distributed system as an unbounded number of communicating nodes. We assume nothing about the communication pattern of nodes - we assume only that each node is uniquely identified by a natural number, and that the flow of execution at each node consists of a finite, totally ordered sequence of execution steps (events). We call that sequence of events at node i the history of that node. For convenience, we assume that every event or execution step is unique within a node's history.

```
locale node-histories =
    fixes history :: nat }=>\mathrm{ ' 'evt list
    assumes histories-distinct [intro!, simp]: distinct (history i)
lemma (in node-histories) history-finite:
    shows finite (set (history i))
<proof\rangle
```

definition (in node-histories) history-order :: 'evt \Rightarrow nat $\Rightarrow{ }^{\prime}$ 'evt \Rightarrow bool (-/ $\left.\sqsubset^{-} /-[50,1000,50] 50\right)$
where
$x \sqsubset^{i} z \equiv \exists x s$ ys zs. xs@x\#ys@z\#zs=history i
lemma (in node-histories) node-total-order-trans:
assumes e1 $\sqsubset^{i} e 2$
and $e 2 \sqsubset^{i} e 3$
shows e1 $\sqsubset^{i} e 3$
$\langle p r o o f\rangle$
lemma (in node-histories) local-order-carrier-closed:
assumes e1 $\sqsubset^{i} e 2$
shows $\{e 1, e 2\} \subseteq \operatorname{set}($ history $i)$
$\langle p r o o f\rangle$
lemma (in node-histories) node-total-order-irrefl:
shows $\neg\left(e \sqsubset^{i} e\right)$
$\langle p r o o f\rangle$
lemma (in node-histories) node-total-order-antisym:
assumes $e 1 \sqsubset^{i} e 2$
and $e 2 \sqsubset^{i} e 1$
shows False
$\langle p r o o f\rangle$
lemma (in node-histories) node-order-is-total:
assumes e1 $\in \operatorname{set}$ (history i)
and $e \mathcal{Z} \in$ set (history i)
and $e 1 \neq e 2$
shows $e 1 \sqsubset^{i} e 2 \vee e 2 \sqsubset^{i} e 1$
$\langle p r o o f\rangle$
definition (in node-histories) prefix-of-node-history :: 'evt list \Rightarrow nat \Rightarrow bool (infix prefix of 50) where
xs prefix of $i \equiv \exists y s . x s @ y s=$ history i
lemma (in node-histories) carriers-head-lt:
assumes $y \# y s=$ history i
shows $\neg\left(x \sqsubset^{i} y\right)$
$\langle p r o o f\rangle$
lemma (in node-histories) prefix-of-ConsD [dest]:

```
assumes x # xs prefix of i
    shows [x] prefix of i
<proof\rangle
lemma (in node-histories) prefix-of-appendD [dest]:
    assumes xs @ ys prefix of i
        shows xs prefix of i
    <proof>
lemma (in node-histories) prefix-distinct:
    assumes xs prefix of i
        shows distinct xs
<proof>
lemma (in node-histories) prefix-to-carriers [intro]:
    assumes xs prefix of i
        shows set xs \subseteq set (history i)
<proof>
lemma (in node-histories) prefix-elem-to-carriers:
    assumes xs prefix of i
        and}x\in\mathrm{ set xs
    shows }x\in\mathrm{ set (history i)
<proof>
lemma (in node-histories) local-order-prefix-closed:
    assumes }x\mp@subsup{\sqsubset}{}{i}
        and xs prefix of i
        and }y\in\mathrm{ set xs
    shows }x\in\mathrm{ set xs
\langleproof\rangle
lemma (in node-histories) local-order-prefix-closed-last:
    assumes x \sqsubset}\mp@subsup{\sqsubset}{}{i}
        and }xs@[y] prefix of 
        shows }x\in\mathrm{ set xs
\langleproof\rangle
lemma (in node-histories) events-before-exist:
    assumes x fet (history i)
    shows \exists pre. pre @ [x] prefix of i
\langleproof\rangle
```

```
lemma (in node-histories) events-in-local-order:
```

lemma (in node-histories) events-in-local-order:
assumes pre @ [e2] prefix of i
assumes pre @ [e2] prefix of i
and e1 \in set pre
and e1 \in set pre
shows e1 ᄃ [e2
shows e1 ᄃ [e2
<proof>

```
    <proof>
```


4.2 Asynchronous broadcast networks

We define a new locale network containing three axioms that define how broadcast and deliver events may interact, with these axioms defining the properties of our network model.

```
datatype 'msg event
    = Broadcast 'msg
    | Deliver 'msg
```

```
locale network \(=\) node-histories history for history \(::\) nat \(\Rightarrow\) 'msg event list +
    fixes \(m s g-i d ~:: ~ ' m s g ~ \Rightarrow ~ ' m s g i d ~\)
    assumes delivery-has-a-cause: \(\llbracket\) Deliver \(m \in \operatorname{set}(\) history \(i) \rrbracket \Longrightarrow\)
    \(\exists j\). Broadcast \(m \in\) set (history \(j\) )
        and deliver-locally: \(\llbracket\) Broadcast \(m \in\) set (history \(i) \rrbracket \Longrightarrow\)
                            Broadcast \(m \sqsubset^{i}\) Deliver \(m\)
        and msg-id-unique: \(\llbracket\) Broadcast \(m 1 \in\) set (history \(i\) );
            Broadcast m2 \(\in\) set (history j);
            \(m s g-i d m 1=m s g-i d m 2 \rrbracket \Longrightarrow i=j \wedge m 1=m 2\)
```

The axioms can be understood as follows：
delivery－has－a－cause：If some message m was delivered at some node，then there exists some node on which m was broadcast．With this axiom，we assert that messages are not created ＂out of thin air＂by the network itself，and that the only source of messages are the nodes．
deliver－locally：If a node broadcasts some message m ，then the same node must subsequently also deliver m to itself．Since m does not actually travel over the network，this local delivery is always possible，even if the network is interrupted．Local delivery may seem redundant，since the effect of the delivery could also be implemented by the broadcast event itself；however，it is standard practice in the description of broadcast protocols that the sender of a message also sends it to itself，since this property simplifies the definition of algorithms built on top of the broadcast abstraction［4］．
msg－id－unique：We do not assume that the message type＇msg has any particular structure； we only assume the existence of a function $m s g-i d:: ' m s g \Rightarrow$＇msgid that maps every message to some globally unique identifier of type＇msgid．We assert this uniqueness by stating that if $m 1$ and $m 2$ are any two messages broadcast by any two nodes，and their $m s g$－$i d s$ are the same，then they were in fact broadcast by the same node and the two messages are identical．In practice，these globally unique IDs can by implemented using unique node identifiers，sequence numbers or timestamps．

```
lemma (in network) broadcast-before-delivery:
    assumes Deliver m}\in\mathrm{ set (history i)
    shows }\existsj\mathrm{ . Broadcast m }\mp@subsup{\sqsubset}{}{j}\mathrm{ Deliver m
    <proof\rangle
```

lemma (in network) broadcasts-unique:
assumes $i \neq j$
and Broadcast $m \in$ set (history i)
shows Broadcast $m \notin$ set (history j)
〈proof〉

Based on the well－known definition by［8］，we say that $m 1 \prec m 2$ if any of the following is true：
1．$m 1$ and $m 2$ were broadcast by the same node，and $m 1$ was broadcast before $m 2$ ．
2．The node that broadcast $m 2$ had delivered $m 1$ before it broadcast m2．
3．There exists some operation $m 3$ such that $m 1 \prec m 3$ and $m 3 \prec m 2$ ．
inductive（in network）$h b::$＇$m s g \Rightarrow$＇$m s g \Rightarrow$ bool where
hb－broadcast：【 Broadcast m1 \sqsubset^{i} Broadcast m2 】 $\Longrightarrow h b m 1 \mathrm{m2} \mid$
hb－deliver：【 Deliver m1 ᄃi Broadcast m2 】 $\Longrightarrow h b m 1 \mathrm{m2} \mid$
hb－trans：$\quad \llbracket h b m 1 \mathrm{m2}$ ；hb m2 m3 】 $\Longrightarrow h b \mathrm{~m} 1 \mathrm{~m} 3$

```
inductive-cases (in network) hb-elim: hb x y
definition (in network) weak-hb :: 'msg = 'msg => bool where
    weak-hb m1 m2 \equivhb m1 m2 \vee m1 = m2
locale causal-network = network +
    assumes causal-delivery: Deliver m2 }\in\mathrm{ set (history j) # hb m1 m2 # Deliver m1 ᄃ}\mp@subsup{}{}{j}\mathrm{ Deliver m2
lemma (in causal-network) causal-broadcast:
    assumes Deliver m2 \in set (history j)
        and Deliver m1 ■i Broadcast m2
        shows Deliver m1 \sqsubset}\mp@subsup{\sqsubset}{}{j}\mathrm{ Deliver m2
    <proof\rangle
lemma (in network) hb-broadcast-exists1:
    assumes hb m1 m2
    shows }\existsi\mathrm{ . Broadcast m1 }\in\mathrm{ set (history i)
    \langleproof\rangle
lemma (in network) hb-broadcast-exists2:
    assumes hb m1 m2
    shows \existsi. Broadcast m2 \in set (history i)
    \langleproof\rangle
```


4.3 Causal networks

```
lemma (in causal-network) hb-has-a-reason:
    assumes hb m1 m2
        and Broadcast m2 \in set (history i)
    shows Deliver m1 \in set (history i) \vee Broadcast m1 \in set (history i)
    <proof\rangle
lemma (in causal-network) hb-cross-node-delivery:
    assumes hb m1 m2
        and Broadcast m1 \in set (history i)
        and Broadcast m2 \in set (history j)
        and i\not=j
    shows Deliver m1 \in set (history j)
    \langleproof\rangle
lemma (in causal-network) hb-irrefl:
    assumes hb m1 m2
    shows m1 f= m2
<proof>
lemma (in causal-network) hb-broadcast-broadcast-order:
    assumes hb m1 m2
        and Broadcast m1 \in set (history i)
        and Broadcast m2 \in set (history i)
    shows Broadcast m1 \sqsubset}\mp@subsup{}{}{i}\mathrm{ Broadcast m2
<proof>
lemma (in causal-network) hb-antisym:
    assumes hb x y
        and hb y x
    shows False
<proof\rangle
```

```
definition (in network) node-deliver-messages :: 'msg event list }=>\mathrm{ 'msg list where
    node-deliver-messages cs \equivList.map-filter (\lambdae.case e of Deliver m = Some m|-=>None)cs
lemma (in network) node-deliver-messages-empty [simp]:
    shows node-deliver-messages [] = []
    <proof\rangle
lemma (in network) node-deliver-messages-Cons:
    shows node-deliver-messages (x#xs) = (node-deliver-messages [x])@(node-deliver-messages xs)
    <proof>
lemma (in network) node-deliver-messages-append:
    shows node-deliver-messages (xs@ys)=(node-deliver-messages xs)@(node-deliver-messages ys)
    <proof\rangle
lemma (in network) node-deliver-messages-Broadcast [simp]:
    shows node-deliver-messages [Broadcast m]= []
    <proof\rangle
lemma (in network) node-deliver-messages-Deliver [simp]:
    shows node-deliver-messages [Deliver m] = [m]
    \langleproof\rangle
lemma (in network) prefix-msg-in-history:
    assumes es prefix of i
        and m}\in\mathrm{ set (node-deliver-messages es)
        shows Deliver m set (history i)
<proof>
lemma (in network) prefix-contains-msg:
    assumes es prefix of i
    and m}\in\mathrm{ set (node-deliver-messages es)
    shows Deliver m}\in\mathrm{ set es
    <proof\rangle
lemma (in network) node-deliver-messages-distinct:
    assumes xs prefix of i
    shows distinct (node-deliver-messages xs)
<proof>
lemma (in network) drop-last-message:
    assumes evts prefix of i
    and node-deliver-messages evts = msgs @ [last-msg]
    shows }\exists\mathrm{ pre. pre prefix of i}\wedge node-deliver-messages pre =msg
<proof\rangle
locale network-with-ops = causal-network history fst
    for history :: nat }=>\mathrm{ ('msgid }\times\mathrm{ 'op) event list +
    fixes interp :: 'op => 'state }- 'stat
    and initial-state :: 'state
context network-with-ops begin
definition interp-msg :: 'msgid }\times\mathrm{ 'op }=>\mathrm{ 'state }-\mathrm{ 'state where
    interp-msg msg state }\equiv\mathrm{ interp (snd msg) state
sublocale hb: happens-before weak-hb hb interp-msg
<proof\rangle
```

end
definition（in network－with－ops）apply－operations ：：（＇msgid \times＇op）event list \rightharpoonup＇state where apply－operations es \equiv hb．apply－operations（node－deliver－messages es）initial－state
definition（in network－with－ops）node－deliver－ops ：：（＇msgid \times＇op）event list \Rightarrow＇op list where node－deliver－ops cs \equiv map snd（node－deliver－messages cs）
lemma（in network－with－ops）apply－operations－empty［simp］： shows apply－operations［］＝Some initial－state $\langle p r o o f\rangle$
lemma（in network－with－ops）apply－operations－Broadcast［simp］： shows apply－operations（xs＠［Broadcast m］）＝apply－operations xs〈proof〉
lemma（in network－with－ops）apply－operations－Deliver［simp］：
shows apply－operations（xs＠［Deliver m］）＝（apply－operations xs＞interp－msg m）
$\langle p r o o f\rangle$
lemma（in network－with－ops）hb－consistent－technical：
assumes $\bigwedge m n . m<$ length $c s \Longrightarrow n<m \Longrightarrow c s!n \sqsubset^{i} c s!m$
shows hb．hb－consistent（node－deliver－messages cs）
$\langle p r o o f\rangle$
corollary（in network－with－ops）
shows hb．hb－consistent（node－deliver－messages（history i））
$\langle p r o o f\rangle$
lemma（in network－with－ops）hb－consistent－prefix：
assumes xs prefix of i
shows hb．hb－consistent（node－deliver－messages xs）
〈proof〉
locale network－with－constrained－ops $=$ network－with－ops +
fixes valid－msg ：：＇$c \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} b\right) \Rightarrow$ bool
assumes broadcast－only－valid－msgs：pre＠［Broadcast m］prefix of $i \Longrightarrow$
\exists state．apply－operations pre $=$ Some state \wedge valid－msg state m
lemma（in network－with－constrained－ops）broadcast－is－valid：
assumes Broadcast $m \in$ set（history i）
shows \exists state．valid－msg state m
〈proof〉
lemma（in network－with－constrained－ops）deliver－is－valid：
assumes Deliver $m \in$ set（history i）
shows $\exists j$ pre state．pre＠［Broadcast m］prefix of $j \wedge$ apply－operations pre $=$ Some state \wedge valid－msg state m
$\langle p r o o f\rangle$
lemma（in network－with－constrained－ops）deliver－in－prefix－is－valid：
assumes xs prefix of i
and Deliver $m \in$ set xs
shows \exists state．valid－msg state m
$\langle p r o o f\rangle$

```
4.4 Dummy network models
interpretation trivial-node-histories: node-histories \lambdam. []
    <proof\rangle
interpretation trivial-network: network \lambdam. [] id
    <proof>
interpretation trivial-causal-network: causal-network \lambdam. [] id
    <proof\rangle
interpretation trivial-network-with-ops: network-with-ops \lambdam. [] (\lambdax y. Some y) 0
    <proof>
```

interpretation trivial-network-with-constrained-ops: network-with-constrained-ops λm. [] (λx y. Some y) $0 \lambda x y$. True〈proof〉
end

5 Replicated Growable Array

The RGA, introduced by [10], is a replicated ordered list (sequence) datatype that supports insert and delete operations.

```
theory
    Ordered-List
imports
    Util
begin
type-synonym ('id,'v) elt = 'id \times 'v }\times\mathrm{ bool
```


5.1 Insert and delete operations

Insertion operations place the new element after an existing list element with a given ID, or at the head of the list if no ID is given. Deletion operations refer to the ID of the list element that is to be deleted. However, it is not safe for a deletion operation to completely remove a list element, because then a concurrent insertion after the deleted element would not be able to locate the insertion position. Instead, the list retains so-called tombstones: a deletion operation merely sets a flag on a list element to mark it as deleted, but the element actually remains in the list. A separate garbage collection process can be used to eventually purge tombstones [10], but we do not consider tombstone removal here.
hide-const insert
fun insert-body :: ('id::\{linorder $\left.\},{ }^{\prime} v\right)$ elt list $\Rightarrow\left(' i d,{ }^{\prime} v\right)$ elt $\Rightarrow\left(' i d,{ }^{\prime} v\right)$ elt list where
insert-body [] $\quad e=[e] \mid$
insert-body $(x \# x s) e=$
(if fst $x<f s t$ e then $e \# x \# x s$
else $x \#$ insert-body xs e)
fun insert :: ('id::\{linorder\}, 'v) elt list $\Rightarrow\left({ }^{\prime} i d,,^{\prime} v\right)$ elt $\Rightarrow{ }^{\prime}$ id option $\Rightarrow\left({ }^{\prime} i d,{ }^{\prime} v\right)$ elt list option where insert xs e None = Some (insert-body xs e) | insert [] $\quad e($ Some $i)=$ None
insert $(x \# x s)$ e (Some $i)=$
(if fst $x=i$ then

```
    Some (x#insert-body xs e)
else
    insert xs e (Some i)>> (\lambdat. Some (x#t)))
```

fun delete :: ('id:: $\{$ linorder $\left.\},{ }^{\prime} v\right)$ elt list $\Rightarrow{ }^{\prime} i d \Rightarrow(' i d, ' v)$ elt list option where
delete [] $\quad i=$ None
delete $\left(\left(i^{\prime}, v\right.\right.$, flag $\left.) \# x s\right) i=$
(if $i^{\prime}=i$ then
Some ($\left(i^{\prime}, v\right.$, True $\left.) \# x s\right)$
else
delete xs $i \gg\left(\lambda t\right.$. Some $\left(\left(i^{\prime}, v\right.\right.$, flag $\left.\left.\left.) \# t\right)\right)\right)$

5.2 Well-definedness of insert and delete

```
lemma insert-no-failure:
    assumes i=None\vee (\exists\mp@subsup{i}{}{\prime}.i=Some i'^ 汶\infst'set xs)
    shows \existsxs'. insert xs e i=Some xs'
<proof>
```

lemma insert-None-index-neq-None [dest]:
assumes insert xs e $i=$ None
shows $i \neq$ None
$\langle p r o o f\rangle$
lemma insert-Some-None-index-not-in [dest]:
assumes insert xs e (Some i) $=$ None
shows $i \notin f s t$ 'set $x s$
$\langle p r o o f\rangle$
lemma index-not-in-insert-Some-None [simp]:
assumes $i \notin f s t$ ' set $x s$
shows insert xs e (Some i) $=$ None
$\langle p r o o f\rangle$
lemma delete-no-failure:
assumes $i \in f s t$ ' set xs
shows $\exists x s^{\prime}$. delete xs $i=$ Some $x s^{\prime}$
$\langle p r o o f\rangle$
lemma delete-None-index-not-in [dest]:
assumes delete xs $i=$ None
shows $i \notin f s t$ 'set $x s$
\langle proof〉
lemma index-not-in-delete-None [simp]:
assumes $i \notin f s t$ ' set $x s$
shows delete xs $i=$ None
$\langle p r o o f\rangle$

5.3 Preservation of element indices

```
lemma insert-body-preserve-indices [simp]:
    shows fst'set (insert-body xs e)=fst'set xs U{fst e}
<proof\rangle
lemma insert-preserve-indices:
    assumes \existsys. insert xs e i=Some ys
    shows fst'set (the (insert xs e i))=fst 'set xs \cup{fst e}
```

$\langle p r o o f\rangle$

```
corollary insert-preserve-indices':
    assumes insert xs e i=Some ys
    shows fst'set (the (insert xs e i)) = fst'set xs U{fst e}
<proof>
lemma delete-preserve-indices:
    assumes delete xs i = Some ys
    shows fst'set xs =fst' set ys
<proof>
```


5.4 Commutativity of concurrent operations

```
lemma insert-body-commutes:
    assumes fst e1 }\not=f\mathrm{ fst e2
    shows insert-body (insert-body xs e1) e2 = insert-body (insert-body xs e2) e1
<proof\rangle
lemma insert-insert-body:
    assumes fst e1 }\not=f\mathrm{ fst e2
        and i2 \not= Some (fst e1)
    shows insert (insert-body xs e1) e2 i2 = insert xs e2 i2 >> (\lambdays. Some (insert-body ys e1))
<proof\rangle
lemma insert-Nil-None:
    assumes fst e1 }\not=f\mathrm{ fst e2
        and i\not= fst e2
        and i2 \not= Some (fst e1)
    shows insert [] e2 i2 >> (\lambdays. insert ys e1 (Some i)) = None
<proof\rangle
lemma insert-insert-body-commute:
    assumes i\not=fst e1
    and fst e1 }=\mathrm{ fst e2
    shows insert (insert-body xs e1) e2 (Some i)=
        insert xs e2 (Some i) >>( }\lambda\mathrm{ y. Some (insert-body y e1))
<proof\rangle
lemma insert-commutes:
    assumes fst e1 = fst e2
        i1 = None \vee i1 f= Some (fst e2)
        i2 = None \vee i2 F=Some (fst e1)
    shows insert xs e1 i1>> (\lambdays. insert ys e2 i2) =
        insert xs e2 i2 >> (\lambdays. insert ys e1 i1)
<proof\rangle
lemma delete-commutes:
    shows delete xs i1 >> (\lambdays.delete ys i2) = delete xs i2 >> ( }\lambda\mathrm{ ys. delete ys i1)
<proof\rangle
lemma insert-body-delete-commute:
    assumes i2 #f fst e
    shows delete (insert-body xs e) i2 >> (\lambdat. Some (x#t)) =
        delete xs i2 >> ( }\lambday\mathrm{ . Some (x#insert-body y e))
<proof\rangle
```

lemma insert-delete-commute:
assumes $i 2 \neq f s t e$
shows insert xs e i1 $\gg(\lambda y s$. delete ys i2 $)=$ delete xs $i 2 \gg(\lambda y s$. insert ys e i1)
$\langle p r o o f\rangle$

5.5 Alternative definition of insert

fun insert' $::(' i d::\{l i n o r d e r\}, ' v)$ elt list $\Rightarrow(' i d, ' v)$ elt \Rightarrow 'id option $\rightharpoonup\left(' i d::\{l i n o r d e r\},{ }^{\prime} v\right)$ elt list where

```
insert' [] e None = Some [e] |
insert \({ }^{\prime}[] e \quad(\) Some \(i)=\) None \(\mid\)
insert' \((x \# x s)\) e None \(=\)
        (if fst \(x<\) fst \(e\) then
            Some (e\#x\#xs)
            else
                    case insert' xs e None of
                    None \(\Rightarrow\) None
            \(\mid\) Some \(t \Rightarrow\) Some \((x \# t)) \mid\)
insert' \((x \# x s)\) e (Some \(i)=\)
            (if fst \(x=i\) then
                case insert' xs e None of
                    None \(\Rightarrow\) None
            |Some \(t \Rightarrow\) Some \((x \# t)\)
            else
                case insert' xs e (Some i) of
                    None \(\Rightarrow\) None
                    |Some \(t \Rightarrow\) Some \((x \# t)\) )
```

lemma [elim!, dest]:
assumes insert' xs e None $=$ None
shows False
\langle proof \rangle
lemma insert-body-insert':
shows insert' xs e None $=$ Some (insert-body xs e)
$\langle p r o o f\rangle$
lemma insert-insert':
shows insert xs e $i=$ insert $^{\prime}$ xs e i
$\langle p r o o f\rangle$
lemma insert-body-stop-iteration:
assumes fst $e>f s t x$
shows insert-body (x\#xs) e=e\#x\#xs
<proof〉
lemma insert-body-contains-new-elem:
shows $\exists p$ s. $x s=p @ s \wedge$ insert-body $x s e=p @ e \# s$
$\langle p r o o f\rangle$
lemma insert-between-elements:
assumes $x s=p r e @ r e f \# s u f$
and distinct (map fst xs)
and $\bigwedge i^{\prime} . i^{\prime} \in f s t$ ' set $x s \Longrightarrow i^{\prime}<f s t e$
shows insert xs e (Some (fst ref)) = Some (pre @ ref \#e\# suf)
$\langle p r o o f\rangle$
lemma insert-position-element-technical:
assumes $\forall x \in$ set as. $a \neq$ fst x
and insert-body (cs@ds) e=cs@e\#ds
shows insert (as@ (a, aa, b) \#cs@ds)e(Some a)=Some (as @ (a, aa, b) \#cs@e\#ds) $\langle p r o o f\rangle$
lemma split-tuple-list-by-id:
assumes $(a, b, c) \in$ set $x s$
and distinct (map fst xs)
shows \exists pre suf. $x s=$ pre @ $(a, b, c) \#$ suf $\wedge(\forall y \in$ set pre. fst $y \neq a)$
$\langle p r o o f\rangle$

```
lemma insert-preserves-order:
    assumes i=None \vee (\existsi'. i=Some i'^ i'\infst'set xs)
            and distinct (map fst xs)
        shows \exists pre suf.xs= pre@suf ^ insert xs e i=Some (pre@ e# suf)
    <proof>
end
```


5.6 Network

theory
$R G A$
imports
Network
Ordered-List
begin
datatype $(' i d, ' v)$ operation $=$
Insert ('id, 'v) elt 'id option |
Delete 'id
fun interpret-opers :: ('id::linorder, $\left.{ }^{\prime} v\right)$ operation $\Rightarrow\left(' i d,{ }^{\prime} v\right)$ elt list $\rightharpoonup\left({ }^{\prime} i d,{ }^{\prime} v\right)$ elt list $(\langle-\rangle[0] 1000)$ where
interpret-opers (Insert e n) xs $=$ insert xs e $n \mid$
interpret-opers (Delete n) xs $=$ delete xs n
definition element-ids :: ('id, 'v) elt list \Rightarrow 'id set where
element-ids list \equiv set (map fst list)
definition valid-rga-msg :: ('id, 'v) elt list \Rightarrow 'id $\times\left({ }^{\prime} i d:: l i n o r d e r, ~ ' v\right)$ operation \Rightarrow bool where valid-rga-msg list msg \equiv case msg of
$(i$, Insert e None $) \Rightarrow$ fst $e=i \mid$
(i, Insert $e($ Some pos $)) \Rightarrow$ fst $e=i \wedge$ pos \in element-ids list \mid
(i, Delete \quad pos $) \Rightarrow$ pos \in element-ids list
locale rga $=$ network-with-constrained-ops - interpret-opers [] valid-rga-msg
definition indices :: ('id $\times\left({ }^{\prime} i d,{ }^{\prime} v\right)$ operation) event list \Rightarrow 'id list where
indices $x s \equiv$ List.map-filter $(\lambda x$. case x of Deliver (i, Insert e $n) \Rightarrow$ Some $(f s t e) \mid-\Rightarrow$ None $)$ xs
lemma indices-Nil [simp]:
shows indices []$=[]$
$\langle p r o o f\rangle$
lemma indices-append [simp]:
shows indices (xs@ys) = indices xs @ indices ys
$\langle p r o o f\rangle$

```
lemma indices-Broadcast-singleton [simp]:
    shows indices [Broadcast b] = []
<proof>
lemma indices-Deliver-Insert [simp]:
    shows indices [Deliver (i, Insert e n)] = [fst e]
<proof\rangle
lemma indices-Deliver-Delete [simp]:
    shows indices [Deliver (i, Delete n)] = []
<proof>
lemma (in rga) idx-in-elem-inserted [intro]:
    assumes Deliver ( }i\mathrm{ , Insert e n) G set xs
    shows fst e e set (indices xs)
<proof\rangle
lemma (in rga) apply-opers-idx-elems:
    assumes es prefix of i
    and apply-operations es = Some xs
    shows element-ids xs = set (indices es)
<proof>
lemma (in rga) delete-does-not-change-element-ids:
    assumes es @ [Deliver ( i,Delete n)] prefix of j
    and apply-operations es = Some xs1
    and apply-operations (es @ [Deliver (i,Delete n)])= Some xs2
    shows element-ids xs1 = element-ids xs2
<proof\rangle
lemma (in rga) someone-inserted-id:
    assumes es @ [Deliver (i,Insert (k,v,f)n)] prefix of j
    and apply-operations es = Some xs1
    and apply-operations (es @ [Deliver (i,Insert (k,v,f)n)]) = Some xs2
    and a \in element-ids xs2
    and a\not=k
    shows a \in element-ids xs1
<proof>
lemma (in rga) deliver-insert-exists:
    assumes es prefix of j
        and apply-operations es =Some xs
        and a\in element-ids xs
    shows \existsivfn. Deliver (i, Insert (a,v,f)n)\in set es
<proof\rangle
lemma (in rga) insert-in-apply-set:
    assumes es @ [Deliver (i,Insert e (Some a))] prefix of j
            and Deliver ( }\mp@subsup{i}{}{\prime}\mathrm{ , Insert e' }n)\in\mathrm{ set es
            and apply-operations es = Some s
    shows fst e' }\in\mathrm{ element-ids s
<proof\rangle
lemma (in rga) insert-msg-id:
    assumes Broadcast (i, Insert e n) \in set (history j)
    shows fst e = i
<proof\rangle
```

```
lemma (in rga) allowed-insert:
    assumes Broadcast (i, Insert e n) \in set (history j)
    shows n=None \vee (\exists\mp@subsup{i}{}{\prime}\mp@subsup{e}{}{\prime}\mp@subsup{n}{}{\prime}.n=Some (fst e')})\wedge\operatorname{Deliver ( }\mp@subsup{i}{}{\prime},\mathrm{ Insert e' n') ■
e n))
<proof\rangle
lemma (in rga) allowed-delete:
    assumes Broadcast (i, Delete x) \in set (history j)
    shows }\exists\mp@subsup{i}{}{\prime}\mp@subsup{n}{}{\prime}vb.Deliver (i', Insert (x,v,b) n') \sqsubset'j Broadcast (i,Delete x
<proof\rangle
lemma (in rga) insert-id-unique:
    assumes fst e1 = fst e2
    and Broadcast (i1, Insert e1 n1) \in set (history i)
    and Broadcast (i2, Insert e2 n2) \in set (history j)
    shows Insert e1 n1 = Insert e2 n2
<proof>
lemma (in rga) allowed-delete-deliver:
    assumes Deliver (i, Delete x) \in set (history j)
    shows \existsi\mp@subsup{i}{}{\prime}\mp@subsup{n}{}{\prime}vb.Deliver ( }\mp@subsup{i}{}{\prime},\mathrm{ Insert (x,v,b) n') }\mp@subsup{\sqsubset}{}{j}\mathrm{ Deliver (i,Delete x)
    <proof\rangle
lemma (in rga) allowed-delete-deliver-in-set:
    assumes (es@[Deliver (i,Delete m)]) prefix of j
    shows }\exists\mp@subsup{i}{}{\prime}nvb\mathrm{ . Deliver ( }\mp@subsup{i}{}{\prime},\mathrm{ Insert (m,v,b)n) & set es
<proof>
lemma (in rga) allowed-insert-deliver:
    assumes Deliver (i, Insert e n) \in set (history j)
    shows }n=None\vee(\exists\mp@subsup{i}{}{\prime}\mp@subsup{n}{}{\prime}\mp@subsup{n}{}{\prime\prime}vb.n=Some n'^ Deliver ( i', Insert ( n',v,b) n'\prime) \sqsubset'j Deliver ( i
Insert e n))
<proof\rangle
lemma (in rga) allowed-insert-deliver-in-set:
    assumes(es@[Deliver (i,Insert e m)]) prefix of j
    shows m=None\vee(\exists\mp@subsup{i}{}{\prime}\mp@subsup{m}{}{\prime}nvb.m=Some m'^ Deliver ( }\mp@subsup{i}{}{\prime},\mathrm{ Insert ( m', v,b)n) & set es)
<proof>
lemma (in rga) Insert-no-failure:
    assumes es @ [Deliver (i,Insert e n)] prefix of j
    and apply-operations es = Some s
    shows \existsys. insert s e n=Some ys
<proof\rangle
lemma (in rga) delete-no-failure:
    assumes es @ [Deliver (i,Delete n)] prefix of j
        and apply-operations es = Some s
    shows \existsys. delete s n=Some ys
<proof\rangle
lemma (in rga) Insert-equal:
    assumes fst e1 = fst e2
            and Broadcast (i1, Insert e1 n1) \in set (history i)
            and Broadcast (i2, Insert e2 n2) \in set (history j)
    shows Insert e1 n1 = Insert e2 n2
<proof\rangle
```

```
lemma (in rga) same-insert:
    assumes fst e1 = fst e2
        and xs prefix of i
        and (i1, Insert e1 n1) \in set (node-deliver-messages xs)
    and (i2, Insert e2 n2) \in set (node-deliver-messages xs)
    shows Insert e1 n1 = Insert e2 n2
\langleproof\rangle
lemma (in rga) insert-commute-assms:
    assumes {Deliver (i, Insert e n), Deliver ( }\mp@subsup{i}{}{\prime},\mathrm{ Insert e' n}\mp@subsup{}{}{\prime})}\subseteq\mathrm{ set (history j)
            and hb.concurrent (i, Insert e n) ( }\mp@subsup{i}{}{\prime}\mathrm{ , Insert e' n')
    shows n=None \veen\not=Some (fst e')
<proof\rangle
lemma subset-reorder:
    assumes {a,b}\subseteqc
    shows {b,a}\subseteqc
<proof\rangle
lemma (in rga) Insert-Insert-concurrent:
    assumes {Deliver (i,Insert e k), Deliver ( }\mp@subsup{i}{}{\prime},\mathrm{ ,Insert e' (Some m))} }\subseteq\mathrm{ set (history j)
            and hb.concurrent (i, Insert e k) (i', Insert e'(Some m))
        shows fst e}
    <proof\rangle
lemma (in rga) insert-valid-assms:
assumes Deliver (i, Insert e n) \in set (history j)
    shows n=None \vee n}=\mathrm{ Some (fst e)
    <proof\rangle
lemma (in rga) Insert-Delete-concurrent:
    assumes {Deliver (i, Insert e n), Deliver ( }\mp@subsup{i}{}{\prime},\mathrm{ Delete n')}}\subseteq\mathrm{ set (history j)
            and hb.concurrent (i, Insert e n) ( }\mp@subsup{i}{}{\prime}\mathrm{ , Delete n')
        shows }\mp@subsup{n}{}{\prime}\not=fst
<proof\rangle
lemma (in rga) concurrent-operations-commute:
    assumes xs prefix of i
    shows hb.concurrent-ops-commute (node-deliver-messages xs)
<proof>
corollary (in rga) concurrent-operations-commute':
    shows hb.concurrent-ops-commute (node-deliver-messages (history i))
<proof>
lemma (in rga) apply-operations-never-fails:
    assumes xs prefix of i
    shows apply-operations xs }\not=\mathrm{ None
<proof\rangle
lemma (in rga) apply-operations-never-fails':
    shows apply-operations (history i) }=\mathrm{ None
<proof\rangle
corollary (in rga) rga-convergence:
    assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
    and xs prefix of i
```

and ys prefix of j
shows apply-operations xs $=$ apply-operations ys $\langle p r o o f\rangle$

5.7 Strong eventual consistency

context rga begin
sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
$\lambda o p s . \exists$ xs i. xs prefix of $i \wedge$ node-deliver-messages xs $=$ ops []
\langle proof \rangle
end
interpretation trivial-rga-implementation: rga λx. []
〈proof〉
end

6 Increment-Decrement Counter

The Increment-Decrement Counter is perhaps the simplest CRDT, and a paradigmatic example of a replicated data structure with commutative operations.

```
theory
    Counter
imports
    Network
begin
datatype operation = Increment | Decrement
fun counter-op :: operation }=>\mathrm{ int }\rightharpoonup\mathrm{ int where
    counter-op Increment x = Some (x+1)|
    counter-op Decrement x = Some (x-1)
locale counter = network-with-ops - counter-op 0
lemma (in counter) counter-op x }\triangleright\mathrm{ counter-op y=counter-op y }\triangleright\mathrm{ counter-op x
    <proof>
lemma (in counter) concurrent-operations-commute:
    assumes xs prefix of i
    shows hb.concurrent-ops-commute (node-deliver-messages xs)
    <proof>
corollary (in counter) counter-convergence:
    assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
        and xs prefix of i
        and ys prefix of j
        shows apply-operations xs = apply-operations ys
    <proof>
context counter begin
sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
    \lambdaops. \existsxs i. xs prefix of i}\wedge node-deliver-messages xs = ops 0
    <proof>
```

end
end

7 Observed-Remove Set

The ORSet is a well-known CRDT for implementing replicated sets, supporting two operations: the insertion and deletion of an arbitrary element in the shared set.

```
theory
    ORSet
imports
    Network
begin
datatype ('id, 'a) operation \(=\operatorname{Add}{ }^{\prime} i d{ }^{\prime} a \mid \operatorname{Rem}{ }^{\prime}\) id set \({ }^{\prime} a\)
type-synonym ('id, 'a) state \(={ }^{\prime} a \Rightarrow\) 'id set
definition op-elem :: ('id, 'a) operation \(\Rightarrow\) ' \(a\) where
    op-elem oper \(\equiv\) case oper of Add ie \(\Rightarrow e \mid\) Rem is \(e \Rightarrow e\)
definition interpret-op :: ('id, 'a) operation \(\Rightarrow\left(' i d,{ }^{\prime} a\right)\) state \(\rightharpoonup\left(' i d,{ }^{\prime} a\right)\) state ( \(\langle-\rangle[0] 1000\) ) where
    interpret-op oper state \(\equiv\)
        let before \(=\) state (op-elem oper);
        after \(=\) case oper of Add i e \(\Rightarrow\) before \(\cup\{i\} \mid\) Rem is \(e \Rightarrow\) before - is
        in Some (state ((op-elem oper) \(:=\) after \()\) )
definition valid-behaviours :: ('id, 'a) state \(\Rightarrow{ }^{\prime} i d \times\left({ }^{\prime} i d,{ }^{\prime} a\right)\) operation \(\Rightarrow\) bool where
    valid-behaviours state msg \(\equiv\)
        case msg of
            \((i, \operatorname{Add} j e) \Rightarrow i=j \mid\)
            \((i\), Rem is \(e) \Rightarrow i s=\) state \(e\)
```

locale orset $=$ network-with-constrained-ops - interpret-op $\lambda x .\{ \}$ valid-behaviours
lemma (in orset) add-add-commute:
shows \langle Add i1 e1 $\rangle \triangleright\langle\operatorname{Add}$ i2 e2 $\rangle=\langle$ Add i2 e2 $\rangle \triangleright\langle\operatorname{Add}$ i1 e1 \rangle
〈proof〉
lemma (in orset) add-rem-commute:
assumes $i \notin$ is
shows \langle Add ie1 $\rangle \triangleright\langle\operatorname{Rem}$ is e2 $\rangle=\langle\operatorname{Rem}$ is e2 $\rangle \triangleright\langle$ Add i e1 \rangle
$\langle p r o o f\rangle$
lemma (in orset) apply-operations-never-fails:
assumes xs prefix of i
shows apply-operations $x s \neq$ None
\langle proof \rangle
lemma (in orset) add-id-valid:
assumes xs prefix of j
and Deliver (i1, Add i2 e) \in set xs
shows $i 1=i 2$
\langle proof \rangle
definition (in orset) added-ids :: ('id \times ('id, 'b) operation) event list $\Rightarrow{ }^{\prime} b \Rightarrow$ 'id list where
added-ids es $p \equiv$ List.map-filter (λx. case x of Deliver $(i, A d d j e) \Rightarrow$ if $e=p$ then Some j else None

```
|- = None) es
lemma (in orset) [simp]:
    shows added-ids [] e= []
    <proof>
lemma (in orset) [simp]:
    shows added-ids (xs @ ys) e = added-ids xs e @ added-ids ys e
        \langleproof\rangle
lemma (in orset) added-ids-Broadcast-collapse [simp]:
    shows added-ids ([Broadcast e]) e' = []
    \langleproof\rangle
lemma (in orset) added-ids-Deliver-Rem-collapse [simp]:
    shows added-ids ([Deliver (i,Rem is e)]) e' = []
    <proof\rangle
lemma (in orset) added-ids-Deliver-Add-diff-collapse [simp]:
    shows e\not= e' \Longrightarrowadded-ids ([Deliver (i, Add j e)]) e' = []
    <proof>
lemma (in orset) added-ids-Deliver-Add-same-collapse [simp]:
    shows added-ids ([Deliver (i, Add j e)]) e= [j]
    <proof>
lemma (in orset) added-id-not-in-set:
    assumes i1 & set (added-ids [Deliver (i, Add i2 e)] e)
    shows i1 \not= i2
    <proof>
lemma (in orset) apply-operations-added-ids:
    assumes es prefix of j
        and apply-operations es =Some f
    shows fx\subseteq set (added-ids es x)
<proof\rangle
lemma (in orset) Deliver-added-ids:
    assumes xs prefix of j
        and i\in set (added-ids xs e)
    shows Deliver (i, Add i e) \in set xs
\langleproof\rangle
lemma (in orset) Broadcast-Deliver-prefix-closed:
    assumes xs @ [Broadcast (r,Rem ix e)] prefix of j
        and i\inix
    shows Deliver (i, Add i e) \in set xs
\langleproof\rangle
lemma (in orset) Broadcast-Deliver-prefix-closed2:
    assumes xs prefix of j
        and Broadcast (r, Rem ix e) \in set xs
        and i\inix
    shows Deliver (i, Add i e) \in set xs
<proof\rangle
lemma (in orset) concurrent-add-remove-independent-technical:
    assumes i\in is
```

```
    and xs prefix of j
    and (i, Add i e) \in set (node-deliver-messages xs) and (ir, Rem is e) \in set (node-deliver-messages
xs
    shows hb (i, Add i e)(ir, Rem is e)
<proof\rangle
lemma (in orset) Deliver-Add-same-id-same-message:
    assumes Deliver (i, Add i e1) \in set (history j) and Deliver (i, Add i e2) \in set (history j)
    shows e1 = e2
\langleproof\rangle
lemma (in orset) ids-imply-messages-same:
    assumes i\in is
    and xs prefix of j
    and (i, Add i e1) Get (node-deliver-messages xs) and (ir, Rem is e2) \in set (node-deliver-messages
xs)
    shows e1 = e2
<proof\rangle
corollary (in orset) concurrent-add-remove-independent:
    assumes \neghb (i, Add i e1) (ir, Rem is e2) and \neghb (ir, Rem is e2) (i, Add i e1)
        and xs prefix of j
    and (i, Add i e1) \in set (node-deliver-messages xs) and (ir, Rem is e2) \in set (node-deliver-messages
xs)
shows i\not\inis
    \langleproof\rangle
lemma (in orset) rem-rem-commute:
    shows }\langle\mathrm{ Rem i1 e1}\rangle\triangleright\langle\mathrm{ Rem i2 e2 }\rangle=\langle\mathrm{ Rem i2 e2 }\rangle\triangleright\langle\mathrm{ Rem i1 e1
    <proof>
lemma (in orset) concurrent-operations-commute:
    assumes xs prefix of i
    shows hb.concurrent-ops-commute (node-deliver-messages xs)
<proof\rangle
theorem (in orset) convergence:
    assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)
    and xs prefix of i and ys prefix of j
    shows apply-operations xs = apply-operations ys
\langleproof\rangle
context orset begin
sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
    \lambdaops.\existsxs i. xs prefix of i}\wedge node-deliver-messages xs =ops \lambdax.{
    \langleproof\rangle
end
end
```


References

[1] P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based CRDTs by delta-mutation. In International Conference on Networked Systems (NETYS), May 2015.
[2] C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based CRDTs operation-
based. In 14 th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS), pages 126-140, June 2014.
[3] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott. Riak DT map: a composable, convergent replicated dictionary. In 1st Workshop on Principles and Practice of Eventual Consistency (PaPEC), Apr. 2014.
[4] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed Programming. Springer, second edition, Feb. 2011.
[5] J. Day-Richter. What's different about the new Google Docs: Making collaboration fast, Sept. 2010.
[6] A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctness of transformation functions in real-time groupware. In 8th European Conference on Computer-Supported Cooperative Work (ECSCW), pages 277-293, Sept. 2003.
[7] A. Imine, M. Rusinowitch, G. Oster, and P. Molli. Formal design and verification of operational transformation algorithms for copies convergence. Theoretical Computer Science, 351(2):167-183, Feb. 2006.
[8] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558-565, July 1978.
[9] G. Oster, P. Urso, P. Molli, and A. Imine. Proving correctness of transformation functions in collaborative editing systems. Technical Report RR-5795, Dec. 2005.
[10] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract data types: Building blocks for collaborative applications. Journal of Parallel and Distributed Computing, 71(3):354-368, 2011.
[11] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of convergent and commutative replicated data types. Technical Report 7506, INRIA, 2011.
[12] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data types. In 13th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pages 386-400, Oct. 2011.
[13] M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings, pages 33-38, 2008.

