
Formalized Burrows-Wheeler Transform

Louis Cheung and Christine Rizkallah

January 17, 2025

Abstract

The Burrows-Wheeler transform (BWT) [2] is an invertible lossless
transformation that permutes input sequences into alternate sequences
of the same length that frequently contain long localized regions that
involve clusters consisting of just a few distinct symbols, and sometimes
also include long runs of same-symbol repetitions. Moreover, there is a
one-to-one correspondence between the BWT and suffix arrays [7]. As
a consequence, the BWT is widely used in data compression and as an
indexing data structure for pattern search. In this formalization [4],
we present the formal verification of both the BWT and its inverse,
building on a formalization of suffix arrays [5]. This is the artefact of
our CPP paper [3].

Contents
1 Nat Modulo Helper 3

2 Rotated Sublists 3

3 Counting 6
3.1 Count List . 6
3.2 Cardinality . 6
3.3 Sorting . 7

4 Rank Definition 7

5 Rank Properties 8
5.1 List Properties . 8
5.2 Counting Properties . 8
5.3 Bound Properties . 8
5.4 Sorted Properties . 9

6 Select Definition 10

1

7 Select Properties 10
7.1 Length Properties . 10
7.2 List Properties . 10
7.3 Bound Properties . 11
7.4 Nth Properties . 11
7.5 Sorted Properties . 11

8 Rank and Select Properties 12
8.1 Correctness of Rank and Select 12

8.1.1 Rank Correctness . 12
8.1.2 Select Correctness . 12

8.2 Rank and Select . 13
8.3 Sorted Properties . 13

9 Suffix Array Properties 13
9.1 Bijections . 13
9.2 Suffix Properties . 14
9.3 General Properties . 14
9.4 Nth Properties . 14
9.5 Valid List Properties . 15

10 Counting Properties on Suffix Arays 16
10.1 Counting Properties . 16
10.2 Ordering Properties . 17

11 Burrows-Wheeler Transform 18

12 BWT Verification 18
12.1 List Rotations . 18
12.2 Ordering . 18
12.3 BWT Equivalence . 19

13 BWT and Suffix Array Correspondence 20
13.1 BWT Using Suffix Arrays . 20
13.2 BWT Rank Properties . 22
13.3 Suffix Array and BWT Rank 22

14 Inverse Burrows-Wheeler Transform 24
14.1 Abstract Versions . 24
14.2 Concrete Versions . 24

15 List Filter 25

2

16 Verification of the Inverse Burrows-Wheeler Transform 25
16.1 LF-Mapping Simple Properties 25
16.2 LF-Mapping Correctness . 26
16.3 Backwards Inverse BWT Simple Properties 26
16.4 Backwards Inverse BWT Correctness 27
16.5 Concretization . 28
16.6 Inverse BWT Correctness . 29

theory Nat-Mod-Helper
imports Main

begin

1 Nat Modulo Helper
lemma nat-mod-add-neq-self :

[[a < (n :: nat); b < n; b 6= 0]] =⇒ (a + b) mod n 6= a
〈proof 〉

lemma nat-mod-a-pl-b-eq1 :
[[n + b ≤ a; a < (n :: nat)]] =⇒ (a + b) mod n = b − (n − a)
〈proof 〉

lemma not-mod-a-pl-b-eq2 :
[[n − a ≤ b; a < n; b < (n :: nat)]] =⇒ (a + b) mod n = b − (n − a)
〈proof 〉

end
theory Rotated-Substring

imports Nat-Mod-Helper
begin

2 Rotated Sublists
definition is-sublist :: ′a list ⇒ ′a list ⇒ bool

where
is-sublist xs ys = (∃ as bs. xs = as @ ys @ bs)

definition is-rot-sublist :: ′a list ⇒ ′a list ⇒ bool
where

is-rot-sublist xs ys = (∃n. is-sublist (rotate n xs) ys)

definition inc-one-bounded :: nat ⇒ nat list ⇒ bool
where

inc-one-bounded n xs ≡
(∀ i. Suc i < length xs −→ xs ! Suc i = Suc (xs ! i) mod n) ∧
(∀ i < length xs. xs ! i < n)

lemma inc-one-boundedD:

3

[[inc-one-bounded n xs; Suc i < length xs]] =⇒ xs ! Suc i = Suc (xs ! i) mod n
[[inc-one-bounded n xs; i < length xs]] =⇒ xs ! i < n
〈proof 〉

lemma inc-one-bounded-nth-plus:
[[inc-one-bounded n xs; i + k < length xs]] =⇒ xs ! (i + k) = (xs ! i + k) mod n
〈proof 〉

lemma inc-one-bounded-neq:
[[inc-one-bounded n xs; length xs ≤ n; i + k < length xs; k 6= 0]] =⇒ xs ! (i + k)
6= xs ! i
〈proof 〉

corollary inc-one-bounded-neq-nth:
assumes inc-one-bounded n xs
and length xs ≤ n
and i < length xs
and j < length xs
and i 6= j

shows xs ! i 6= xs ! j
〈proof 〉

lemma inc-one-bounded-distinct:
[[inc-one-bounded n xs; length xs ≤ n]] =⇒ distinct xs
〈proof 〉

lemma inc-one-bounded-subset-upt:
[[inc-one-bounded n xs; length xs ≤ n]] =⇒ set xs ⊆ {0 ..<n}
〈proof 〉

lemma inc-one-bounded-consD:
inc-one-bounded n (x # xs) =⇒ inc-one-bounded n xs
〈proof 〉

lemma inc-one-bounded-nth:
[[inc-one-bounded n xs; i < length xs]] =⇒ xs ! i = ((λx. Suc x mod n)^^i) (xs !

0)
〈proof 〉

lemma inc-one-bounded-nth-le:
[[inc-one-bounded n xs; i < length xs; (xs ! 0) + i < n]] =⇒
xs ! i = (xs ! 0) + i
〈proof 〉

lemma inc-one-bounded-upt1 :
assumes inc-one-bounded n xs
and length xs = Suc k
and Suc k ≤ n
and (xs ! 0) + k < n

4

shows xs = [xs ! 0 ..<(xs ! 0) + Suc k]
〈proof 〉

lemma inc-one-bounded-upt2 :
assumes inc-one-bounded n xs
and length xs = Suc k
and Suc k ≤ n
and n ≤ (xs ! 0) + k

shows xs = [xs ! 0 ..<n] @ [0 ..<(xs ! 0) + Suc k − n]
〈proof 〉

lemmas inc-one-bounded-upt = inc-one-bounded-upt1 inc-one-bounded-upt2

lemma is-rot-sublist-nil:
is-rot-sublist xs []
〈proof 〉

lemma rotate-upt:
m ≤ n =⇒ rotate m [0 ..<n] = [m..<n] @ [0 ..<m]
〈proof 〉

lemma inc-one-bounded-is-rot-sublist:
assumes inc-one-bounded n xs length xs ≤ n
shows is-rot-sublist [0 ..<n] xs
〈proof 〉

lemma is-rot-sublist-idx:
is-rot-sublist [0 ..<length xs] ys =⇒ is-rot-sublist xs (map ((!) xs) ys)
〈proof 〉

lemma is-rot-sublist-upt-eq-upt-hd:
[[is-rot-sublist [0 ..<Suc n] ys; length ys = Suc n; ys ! 0 = 0]] =⇒ ys = [0 ..<Suc

n]
〈proof 〉

lemma is-rot-sublist-upt-eq-upt-last:
[[is-rot-sublist [0 ..<Suc n] ys; length ys = Suc n; ys ! n = n]] =⇒ ys = [0 ..<Suc

n]
〈proof 〉

end
theory Count-Util

imports HOL−Library.Multiset
HOL−Combinatorics.List-Permutation
SuffixArray.List-Util
SuffixArray.List-Slice

begin

5

3 Counting
3.1 Count List
lemma count-in:

x ∈ set xs =⇒ count-list xs x > 0
〈proof 〉

lemma in-count:
count-list xs x > 0 =⇒ x ∈ set xs
〈proof 〉

lemma notin-count:
count-list xs x = 0 =⇒ x /∈ set xs
〈proof 〉

lemma count-list-eq-count:
count-list xs x = count (mset xs) x
〈proof 〉

lemma count-list-perm:
xs <∼∼> ys =⇒ count-list xs x = count-list ys x
〈proof 〉

lemma in-count-nth-ex:
count-list xs x > 0 =⇒ ∃ i < length xs. xs ! i = x
〈proof 〉

lemma in-count-list-slice-nth-ex:
count-list (list-slice xs i j) x > 0 =⇒ ∃ k < length xs. i ≤ k ∧ k < j ∧ xs ! k = x
〈proof 〉

3.2 Cardinality
lemma count-list-card:

count-list xs x = card {j. j < length xs ∧ xs ! j = x}
〈proof 〉

lemma card-le-eq-card-less-pl-count-list:
fixes s :: ′a :: linorder list
shows card {k. k < length s ∧ s ! k ≤ a} = card {k. k < length s ∧ s ! k < a}

+ count-list s a
〈proof 〉

lemma card-less-idx-upper-strict:
fixes s :: ′a :: linorder list
assumes a ∈ set s
shows card {k. k < length s ∧ s ! k < a} < length s
〈proof 〉

6

lemma card-less-idx-upper :
shows card {k. k < length s ∧ s ! k < a} ≤ length s
〈proof 〉

lemma card-pl-count-list-strict-upper :
fixes s :: ′a :: linorder list
shows card {i. i < length s ∧ s ! i < a} + count-list s a ≤ length s
〈proof 〉

3.3 Sorting
lemma sorted-nth-le:

assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} < length xs

shows c ≤ xs ! card {k. k < length xs ∧ xs ! k < c}
〈proof 〉

lemma sorted-nth-le-gen:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} + i < length xs

shows c ≤ xs ! (card {k. k < length xs ∧ xs ! k < c} + i)
〈proof 〉

lemma sorted-nth-less-gen:
assumes sorted xs
and i < card {k. k < length xs ∧ xs ! k < c}

shows xs ! i < c
〈proof 〉

lemma sorted-nth-gr-gen:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} + i < length xs
and count-list xs c ≤ i

shows xs ! (card {k. k < length xs ∧ xs ! k < c} + i) > c
〈proof 〉

end
theory Rank-Util

imports HOL−Library.Multiset
Count-Util
SuffixArray.Prefix

begin

4 Rank Definition
Count how many occurrences of an element are in a certain index in the list

Definition 3.7 from [3]: Rank
definition rank :: ′a list ⇒ ′a ⇒ nat ⇒ nat

7

where
rank s x i ≡ count-list (take i s) x

5 Rank Properties
5.1 List Properties
lemma rank-cons-same:

rank (x # xs) x (Suc i) = Suc (rank xs x i)
〈proof 〉

lemma rank-cons-diff :
a 6= x =⇒ rank (a # xs) x (Suc i) = rank xs x i
〈proof 〉

5.2 Counting Properties
lemma rank-length:

rank xs x (length xs) = count-list xs x
〈proof 〉

lemma rank-gre-length:
length xs ≤ n =⇒ rank xs x n = count-list xs x
〈proof 〉

lemma rank-not-in:
x /∈ set xs =⇒ rank xs x i = 0
〈proof 〉

lemma rank-0 :
rank xs x 0 = 0
〈proof 〉

Theorem 3.11 from [3]: Rank Equivalence
lemma rank-card-spec:

rank xs x i = card {j. j < length xs ∧ j < i ∧ xs ! j = x}
〈proof 〉

lemma le-rank-plus-card:
i ≤ j =⇒
rank xs x j = rank xs x i + card {k. k < length xs ∧ i ≤ k ∧ k < j ∧ xs ! k =

x}
〈proof 〉

5.3 Bound Properties
lemma rank-lower-bound:

assumes k < rank xs x i

8

shows k < i
〈proof 〉

corollary rank-Suc-ex:
assumes k < rank xs x i
shows ∃ l. i = Suc l
〈proof 〉

lemma rank-upper-bound:
[[i < length xs; xs ! i = x]] =⇒ rank xs x i < count-list xs x
〈proof 〉

lemma rank-idx-mono:
i ≤ j =⇒ rank xs x i ≤ rank xs x j
〈proof 〉

lemma rank-less:
[[i < length xs; i < j; xs ! i = x]] =⇒ rank xs x i < rank xs x j
〈proof 〉

lemma rank-upper-bound-gen:
rank xs x i ≤ count-list xs x
〈proof 〉

5.4 Sorted Properties
lemma sorted-card-rank-idx:

assumes sorted xs
and i < length xs

shows i = card {j. j < length xs ∧ xs ! j < xs ! i} + rank xs (xs ! i) i
〈proof 〉

lemma sorted-rank:
assumes sorted xs
and i < length xs
and xs ! i = a

shows rank xs a i = i − card {k. k < length xs ∧ xs ! k < a}
〈proof 〉

lemma sorted-rank-less:
assumes sorted xs
and i < length xs
and xs ! i < a

shows rank xs a i = 0
〈proof 〉

lemma sorted-rank-greater :
assumes sorted xs
and i < length xs

9

and xs ! i > a
shows rank xs a i = count-list xs a
〈proof 〉

end
theory Select-Util

imports Count-Util
SuffixArray.Sorting-Util

begin

6 Select Definition
Find nth occurrence of an element in a list

Definition 3.8 from [3]: Select
fun select :: ′a list ⇒ ′a ⇒ nat ⇒ nat

where
select [] - - = 0 |
select (a#xs) x 0 = (if x = a then 0 else Suc (select xs x 0)) |
select (a#xs) x (Suc i)= (if x = a then Suc (select xs x i) else Suc (select xs x
(Suc i)))

7 Select Properties
7.1 Length Properties
lemma notin-imp-select-length:

x /∈ set xs =⇒ select xs x i = length xs
〈proof 〉

lemma select-length-imp-count-list-less:
select xs x i = length xs =⇒ count-list xs x ≤ i
〈proof 〉

lemma select-Suc-length:
select xs x i = length xs =⇒ select xs x (Suc i) = length xs
〈proof 〉

7.2 List Properties
lemma select-cons-neq:

[[select xs x i = j; x 6= a]] =⇒ select (a # xs) x i= Suc j
〈proof 〉

lemma cons-neq-select:
[[select (a # xs) x i = Suc j; x 6= a]] =⇒ select xs x i = j
〈proof 〉

10

lemma cons-eq-select:
select (x # xs) x (Suc i) = Suc j =⇒ select xs x i = j
〈proof 〉

lemma select-cons-eq:
select xs x i = j =⇒ select (x # xs) x (Suc i) = Suc j
〈proof 〉

7.3 Bound Properties
lemma select-max:

select xs x i ≤ length xs
〈proof 〉

7.4 Nth Properties
lemma nth-select:

[[j < length xs; count-list (take (Suc j) xs) x = Suc i; xs ! j = x]]
=⇒ select xs x i = j

〈proof 〉

lemma nth-select-alt:
[[j < length xs; count-list (take j xs) x = i; xs ! j = x]]

=⇒ select xs x i = j
〈proof 〉

lemma select-nth:
[[select xs x i = j; j < length xs]]

=⇒ count-list (take (Suc j) xs) x = Suc i ∧ xs ! j = x
〈proof 〉

lemma select-nth-alt:
[[select xs x i = j; j < length xs]]

=⇒ count-list (take j xs) x = i ∧ xs ! j = x
〈proof 〉

lemma select-less-0-nth:
assumes i < length xs
and i < select xs x 0

shows xs ! i 6= x
〈proof 〉

7.5 Sorted Properties
Theorem 3.10 from [3]: Select Sorted Equivalence
lemma sorted-select:

assumes sorted xs
and i < count-list xs x

shows select xs x i = card {j. j < length xs ∧ xs ! j < x} + i

11

〈proof 〉

corollary sorted-select-0-plus:
assumes sorted xs
and i < count-list xs x

shows select xs x i = select xs x 0 + i
〈proof 〉

corollary select-sorted-0 :
assumes sorted xs
and 0 < count-list xs x

shows select xs x 0 = card {j. j < length xs ∧ xs ! j < x}
〈proof 〉

end
theory Rank-Select

imports Main
Rank-Util
Select-Util

begin

8 Rank and Select Properties
8.1 Correctness of Rank and Select
Correctness theorem statements based on [1].

8.1.1 Rank Correctness
lemma rank-spec:

rank s x i = count (mset (take i s)) x
〈proof 〉

8.1.2 Select Correctness
lemma select-spec:

select s x i = j
=⇒ (j < length s ∧ rank s x j = i) ∨ (j = length s ∧ count-list s x ≤ i)
〈proof 〉

Theorem 3.9 from [3]: Correctness of Select
lemma select-correct:

select s x i ≤ length s ∧
(select s x i < length s −→ rank s x (select s x i) = i) ∧
(select s x i = length s −→ count-list s x ≤ i)

〈proof 〉

12

8.2 Rank and Select
lemma rank-select:

select xs x i < length xs =⇒ rank xs x (select xs x i) = i
〈proof 〉

lemma select-upper-bound:
i < rank xs x j =⇒ select xs x i < length xs
〈proof 〉

lemma select-out-of-range:
assumes count-list xs a ≤ i
and mset xs = mset ys

shows select ys a i = length ys
〈proof 〉

8.3 Sorted Properties
lemma sorted-nth-gen:

assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} < length xs
and count-list xs c > i

shows xs ! (card {k. k < length xs ∧ xs ! k < c} + i) = c
〈proof 〉

lemma sorted-nth-gen-alt:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < a} ≤ i
and i < card {k. k < length xs ∧ xs ! k < a} + card {k. k < length xs ∧ xs

! k = a}
shows xs ! i = a
〈proof 〉

end
theory SA-Util

imports SuffixArray.Suffix-Array-Properties
SuffixArray.Simple-SACA-Verification
../counting/Rank-Select

begin

9 Suffix Array Properties
9.1 Bijections
lemma bij-betw-empty:

bij-betw f {} {}
〈proof 〉

lemma bij-betw-sort-idx-ex:
assumes xs = sort ys

13

shows ∃ f . bij-betw f {j. j < length ys ∧ ys ! j < x} {j. j < length xs ∧ xs ! j <
x}
〈proof 〉

9.2 Suffix Properties
lemma suffix-hd-set-eq:
{k. k < length s ∧ s ! k = c } = {k. k < length s ∧ (∃ xs. suffix s k = c # xs)}
〈proof 〉

lemma suffix-hd-set-less:
{k. k < length s ∧ s ! k < c } = {k. k < length s ∧ suffix s k < [c]}
〈proof 〉

lemma select-nth-suffix-start1 :
assumes i < card {k. k < length s ∧ (∃ as. suffix s k = a # as)}
and xs = sort s

shows select xs a i = card {k. k < length s ∧ suffix s k < [a]} + i
〈proof 〉

lemma select-nth-suffix-start2 :
assumes card {k. k < length s ∧ (∃ as. suffix s k = a # as)} ≤ i
and xs = sort s

shows select xs a i = length xs
〈proof 〉

context Suffix-Array-General begin

9.3 General Properties
lemma sa-subset-upt:

set (sa s) ⊆ {0 ..< length s}
〈proof 〉

lemma sa-suffix-sorted:
sorted (map (suffix s) (sa s))
〈proof 〉

9.4 Nth Properties
lemma sa-nth-suc-le:

assumes j < length s
and i < j
and s ! (sa s ! i) = s ! (sa s ! j)
and Suc (sa s ! i) < length s
and Suc (sa s ! j) < length s

shows s ! Suc (sa s ! i) ≤ s ! (Suc (sa s ! j))
〈proof 〉

lemma sa-nth-suc-le-ex:

14

assumes j < length s
and i < j
and s ! (sa s ! i) = s ! (sa s ! j)
and Suc (sa s ! i) < length s
and Suc (sa s ! j) < length s

shows ∃ k l. k < l ∧ sa s ! k = Suc (sa s ! i) ∧ sa s ! l = Suc (sa s ! j)
〈proof 〉

lemma sorted-map-nths-sa:
sorted (map (nth s) (sa s))
〈proof 〉

lemma perm-map-nths-sa:
s <∼∼> map (nth s) (sa s)
〈proof 〉

lemma sort-eq-map-nths-sa:
sort s = map (nth s) (sa s)
〈proof 〉

lemma sort-sa-nth:
i < length s =⇒ sort s ! i = s ! (sa s ! i)
〈proof 〉

lemma inj-on-nth-sa-upt:
assumes j ≤ length s l ≤ length s

shows inj-on (nth (sa s)) ({i..<j} ∪ {k..<l})
〈proof 〉

lemma nth-sa-upt-set:
nth (sa s) ‘ {0 ..<length s} = {0 ..<length s}
〈proof 〉

9.5 Valid List Properties
lemma valid-list-sa-hd:

assumes valid-list s
shows ∃n. length s = Suc n ∧ sa s ! 0 = n
〈proof 〉

lemma valid-list-not-last:
assumes valid-list s
and i < length s
and j < length s
and i 6= j
and s ! i = s ! j

shows i < length s − 1 ∧ j < length s − 1
〈proof 〉

15

end

lemma Suffix-Array-General-ex:
∃ sa. Suffix-Array-General sa
〈proof 〉

end
theory SA-Count

imports Rank-Select
../util/SA-Util

begin

10 Counting Properties on Suffix Arays
context Suffix-Array-General begin

10.1 Counting Properties
lemma sa-card-index:

assumes i < length s
shows i = card {j. j < length s ∧ suffix s (sa s ! j) < suffix s (sa s ! i)}

(is i = card ?A)
〈proof 〉

corollary sa-card-s-index:
assumes i < length s
shows i = card {j. j < length s ∧ suffix s j < suffix s (sa s ! i)}

(is i = card ?A)
〈proof 〉

lemma sa-card-s-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! j < s ! (sa s ! i)} +

card {j. j < length s ∧ s ! j = s ! (sa s ! i) ∧ suffix s j < suffix s (sa s !
i)}
〈proof 〉

lemma sa-card-index-lower-bound:
assumes i < length s
shows card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)} ≤ i
(is card ?A ≤ i)
〈proof 〉

lemma sa-card-rank-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}

+ rank (sort s) (s ! (sa s ! i)) i
〈proof 〉

16

corollary sa-card-rank-s-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! j < s ! (sa s ! i)}

+ rank (sort s) (s ! (sa s ! i)) i
〈proof 〉

lemma sa-rank-nth:
assumes i < length s
shows rank (sort s) (s ! (sa s ! i)) i =

card {j. j < length s ∧ s ! j = s ! (sa s ! i) ∧
suffix s j < suffix s (sa s ! i)}

〈proof 〉

lemma sa-suffix-nth:
assumes card {k. k < length s ∧ s ! k < c } + i < length s
and i < count-list s c

shows ∃ as. suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i)) = c # as
〈proof 〉

10.2 Ordering Properties
lemma sa-suffix-order-le:

assumes card {k. k < length s ∧ s ! k < c } < length s
shows [c] ≤ suffix s (sa s ! (card {k. k < length s ∧ s ! k < c}))
〈proof 〉

lemma sa-suffix-order-le-gen:
assumes card {k. k < length s ∧ s ! k < c } + i < length s
shows [c] ≤ suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i))
〈proof 〉

lemma sa-suffix-nth-less:
assumes i < card {k. k < length s ∧ s ! k < c}
shows ∀ as. suffix s (sa s ! i) < c # as
〈proof 〉

lemma sa-suffix-nth-gr :
assumes card {k. k < length s ∧ s ! k < c} + i < length s
and count-list s c ≤ i

shows ∀ as. c # as < suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i))
〈proof 〉

end

end
theory BWT

imports ../../util/SA-Util

begin

17

11 Burrows-Wheeler Transform
Based on [2]

Definition 3.3 from [3]: Canonical BWT
definition bwt-canon :: (′a :: {linorder , order-bot}) list ⇒ ′a list

where
bwt-canon s = map last (sort (map (λx. rotate x s) [0 ..<length s]))

context Suffix-Array-General begin

Definition 3.4 from [3]: Suffix Array Version of the BWT
definition bwt-sa :: (′a :: {linorder , order-bot}) list ⇒ ′a list

where
bwt-sa s = map (λi. s ! ((i + length s − Suc 0) mod (length s))) (sa s)

end

12 BWT Verification
12.1 List Rotations
lemma rotate-suffix-prefix:

assumes i < length xs
shows rotate i xs = suffix xs i @ prefix xs i
〈proof 〉

lemma rotate-last:
assumes i < length xs
shows last (rotate i xs) = xs ! ((i + length xs − Suc 0) mod (length xs))
〈proof 〉

lemma (in Suffix-Array-General) map-last-rotations:
map last (map (λi. rotate i s) (sa s)) = bwt-sa s
〈proof 〉

lemma distinct-rotations:
assumes valid-list s
and i < length s
and j < length s
and i 6= j

shows rotate i s 6= rotate j s
〈proof 〉

12.2 Ordering
lemma list-less-suffix-app-prefix-1 :

assumes valid-list xs
and i < length xs

18

and j < length xs
and suffix xs i < suffix xs j

shows suffix xs i @ prefix xs i < suffix xs j @ prefix xs j
〈proof 〉

lemma list-less-suffix-app-prefix-2 :
assumes valid-list xs
and i < length xs
and j < length xs
and suffix xs i @ prefix xs i < suffix xs j @ prefix xs j

shows suffix xs i < suffix xs j
〈proof 〉

corollary list-less-suffix-app-prefix:
assumes valid-list xs
and i < length xs
and j < length xs

shows suffix xs i < suffix xs j ←→
suffix xs i @ prefix xs i < suffix xs j @ prefix xs j

〈proof 〉

Theorem 3.5 from [3]: Same Suffix and Rotation Order
lemma list-less-suffix-rotate:

assumes valid-list xs
and i < length xs
and j < length xs

shows suffix xs i < suffix xs j ←→ rotate i xs < rotate j xs
〈proof 〉

lemma (in Suffix-Array-General) sorted-rotations:
assumes valid-list s
shows strict-sorted (map (λi. rotate i s) (sa s))
〈proof 〉

12.3 BWT Equivalence
Theorem 3.6 from [3]: BWT and Suffix Array Correspondence Canoncial
BWT and BWT via Suffix Array Correspondence
theorem (in Suffix-Array-General) bwt-canon-eq-bwt-sa:

assumes valid-list s
shows bwt-canon s = bwt-sa s
〈proof 〉

end
theory BWT-SA-Corres

imports BWT
../../counting/SA-Count
../../util/Rotated-Substring

begin

19

13 BWT and Suffix Array Correspondence
context Suffix-Array-General begin

Definition 3.12 from [3]: BWT Permutation
definition bwt-perm :: (′a :: {linorder , order-bot}) list ⇒ nat list

where
bwt-perm s = map (λi. (i + length s − Suc 0) mod (length s)) (sa s)

13.1 BWT Using Suffix Arrays
lemma map-bwt-indexes:

fixes s :: (′a :: {linorder , order-bot}) list
shows bwt-sa s = map (λi. s ! i) (bwt-perm s)
〈proof 〉

lemma map-bwt-indexes-perm:
fixes s :: (′a :: {linorder , order-bot}) list
shows bwt-perm s <∼∼> [0 ..<length s]
〈proof 〉

lemma bwt-sa-perm:
fixes s :: (′a :: {linorder , order-bot}) list
shows bwt-sa s <∼∼> s
〈proof 〉

lemma bwt-sa-nth:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-sa s ! i = s ! (((sa s ! i) + length s − 1) mod (length s))
〈proof 〉

lemma bwt-perm-nth:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-perm s ! i = ((sa s ! i) + length s − 1) mod (length s)
〈proof 〉

lemma bwt-perm-s-nth:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-sa s ! i = s ! (bwt-perm s ! i)
〈proof 〉

lemma bwt-sa-length:
fixes s :: (′a :: {linorder , order-bot}) list
shows length (bwt-sa s) = length s

20

〈proof 〉

lemma bwt-perm-length:
fixes s :: (′a :: {linorder , order-bot}) list
shows length (bwt-perm s) = length s
〈proof 〉

lemma ex-bwt-perm-nth:
fixes s :: (′a :: {linorder , order-bot}) list
fixes k :: nat
assumes k < length s
shows ∃ i < length s. bwt-perm s ! i = k
〈proof 〉

lemma valid-list-sa-index-helper :
fixes s :: (′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < length s
and j < length s
and i 6= j
and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)

shows sa s ! i 6= 0
〈proof 〉

Theorem 3.13 from [3]: Suffix Relative Order Preservation Relative order
of the suffixes is maintained by the BWT permutation
lemma bwt-relative-order :

fixes s :: (′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < j
and j < length s
and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)

shows suffix s (bwt-perm s ! i) < suffix s (bwt-perm s ! j)
〈proof 〉

lemma bwt-sa-card-s-idx:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s
shows i = card {j. j < length s ∧ j < i ∧ bwt-sa s ! j 6= bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)}

〈proof 〉

lemma bwt-perm-to-sa-idx:

21

assumes valid-list s
and i < length s

shows ∃ k < length s. sa s ! k = bwt-perm s ! i ∧
k = card {j. j < length s ∧ s ! j < bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)}

〈proof 〉

corollary bwt-perm-eq:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows bwt-perm s ! i =
sa s ! (card {j. j < length s ∧ s ! j < bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)})

〈proof 〉

13.2 BWT Rank Properties
lemma bwt-perm-rank-nth:

fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows rank (bwt-sa s) (bwt-sa s ! i) i =
card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧

suffix s j < suffix s (bwt-perm s ! i)}
〈proof 〉

lemma bwt-sa-card-rank-s-idx:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows i = card {j. j < length s ∧ j < i ∧ bwt-sa s ! j 6= bwt-sa s ! i} +
rank (bwt-sa s) (bwt-sa s ! i) i

〈proof 〉

13.3 Suffix Array and BWT Rank
lemma sa-bwt-perm-same-rank:

fixes s :: (′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < length s
and j < length s
and sa s ! i = bwt-perm s ! j

shows rank (sort s) (s ! (sa s ! i)) i = rank (bwt-sa s) (bwt-sa s ! j) j

22

〈proof 〉

Theorem 3.17 from [3]: Same Rank Rank for each symbol is the same in
the BWT and suffix array
lemma rank-same-sa-bwt-perm:

fixes s :: (′a :: {linorder , order-bot}) list
fixes i j :: nat
fixes v :: ′a
assumes valid-list s
and i < length s
and j < length s
and s ! (sa s ! i) = v
and bwt-sa s ! j = v
and rank (sort s) v i = rank (bwt-sa s) v j

shows sa s ! i = bwt-perm s ! j
〈proof 〉

lemma rank-bwt-card-suffix:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
fixes a :: ′a
assumes i < length s
shows rank (bwt-sa s) a i =

card {k. k < length s ∧ k < i ∧ bwt-sa s ! k = a ∧
a # suffix s (sa s ! k) < a # suffix s (sa s ! i)}

〈proof 〉

lemma sa-to-bwt-perm-idx:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows sa s ! i =
bwt-perm s ! (select (bwt-sa s) (s ! (sa s ! i)) (rank (sort s) (s ! (sa s ! i)) i))

〈proof 〉

lemma suffix-bwt-perm-sa:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s
and bwt-sa s ! i 6= bot

shows suffix s (bwt-perm s ! i) = bwt-sa s ! i # suffix s (sa s ! i)
〈proof 〉

end

end
theory IBWT

23

imports BWT-SA-Corres
begin

14 Inverse Burrows-Wheeler Transform
Inverse BWT algorithm obtained from [6]

14.1 Abstract Versions
context Suffix-Array-General begin

These are abstract because they use additional information about the
original string and its suffix array.

Definition 3.15 from [3]: Abstract LF-Mapping
fun lf-map-abs :: ′a list ⇒ nat ⇒ nat
where
lf-map-abs s i = select (sort s) (bwt-sa s ! i) (rank (bwt-sa s) (bwt-sa s ! i) i)

Definition 3.16 from [3]: Inverse BWT Permutation
fun ibwt-perm-abs :: nat ⇒ ′a list ⇒ nat ⇒ nat list
where
ibwt-perm-abs 0 - - = [] |
ibwt-perm-abs (Suc n) s i = ibwt-perm-abs n s (lf-map-abs s i) @ [i]

end

14.2 Concrete Versions
These are concrete because they only rely on the BWT-transformed sequence
without any additional information.

Definition 3.14 from [3]: Inverse BWT - LF-mapping
fun lf-map-conc :: (′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒ nat

where
lf-map-conc ss bs i = (select ss (bs ! i) 0) + (rank bs (bs ! i) i)

fun ibwt-perm-conc :: nat ⇒ (′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒
nat list

where
ibwt-perm-conc 0 - - - = [] |
ibwt-perm-conc (Suc n) ss bs i = ibwt-perm-conc n ss bs (lf-map-conc ss bs i)

@ [i]

Definition 3.14 from [3]: Inverse BWT - Inverse BWT Rotated Subse-
quence
fun ibwtn :: nat ⇒ (′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒ ′a list

24

where
ibwtn 0 - - - = [] |
ibwtn (Suc n) ss bs i = ibwtn n ss bs (lf-map-conc ss bs i) @ [bs ! i]

Definition 3.14 from [3]: Inverse BWT
fun ibwt :: (′a :: {linorder , order-bot}) list ⇒ ′a list

where
ibwt bs = ibwtn (length bs) (sort bs) bs (select bs bot 0)

15 List Filter
lemma filter-nth-app-upt:

filter (λi. P (xs ! i)) [0 ..<length xs] = filter (λi. P ((xs @ ys) ! i)) [0 ..<length
xs]
〈proof 〉

lemma filter-eq-nth-upt:
filter P xs = map (λi. xs ! i) (filter (λi. P (xs ! i)) [0 ..<length xs])
〈proof 〉

lemma distinct-filter-nth-upt:
distinct (filter (λi. P (xs ! i)) [0 ..<length xs])
〈proof 〉

lemma filter-nth-upt-set:
set (filter (λi. P (xs ! i)) [0 ..<length xs]) = {i. i < length xs ∧ P (xs ! i)}
〈proof 〉

lemma filter-length-upt:
length (filter (λi. P (xs ! i)) [0 ..<length xs]) = card {i. i < length xs ∧ P (xs !

i)}
〈proof 〉

lemma perm-filter-length:
xs <∼∼> ys =⇒
length (filter (λi. P (xs ! i)) [0 ..<length xs])
= length (filter (λi. P (ys ! i)) [0 ..<length ys])
〈proof 〉

16 Verification of the Inverse Burrows-Wheeler Trans-
form

context Suffix-Array-General begin

16.1 LF-Mapping Simple Properties
lemma lf-map-abs-less-length:

fixes s :: ′a list

25

fixes i j :: nat
assumes i < length s

shows lf-map-abs s i < length s
〈proof 〉

corollary lf-map-abs-less-length-funpow:
fixes s :: ′a list
fixes i j :: nat
assumes i < length s

shows ((lf-map-abs s)^^k) i < length s
〈proof 〉

lemma lf-map-abs-equiv:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i r :: nat
fixes v :: ′a
assumes i < length (bwt-sa s)
and v = bwt-sa s ! i
and r = rank (bwt-sa s) v i

shows lf-map-abs s i = card {j. j < length (bwt-sa s) ∧ bwt-sa s ! j < v} + r
〈proof 〉

16.2 LF-Mapping Correctness
lemma sa-lf-map-abs:

assumes valid-list s
and i < length s

shows sa s ! (lf-map-abs s i) = (sa s ! i + length s − Suc 0) mod (length s)
〈proof 〉

Theorem 3.18 from [3]: Abstract LF-Mapping Correctness
corollary bwt-perm-lf-map-abs:

fixes s :: (′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows bwt-perm s ! (lf-map-abs s i) = (bwt-perm s ! i + length s − Suc 0) mod
(length s)
〈proof 〉

16.3 Backwards Inverse BWT Simple Properties
lemma ibwt-perm-abs-length:

fixes s :: ′a list
fixes n i :: nat
shows length (ibwt-perm-abs n s i) = n
〈proof 〉

lemma ibwt-perm-abs-nth:
fixes s :: ′a list

26

fixes k n i :: nat
assumes k ≤ n
shows (ibwt-perm-abs (Suc n) s i) ! k = ((lf-map-abs s)^^(n−k)) i
〈proof 〉

corollary ibwt-perm-abs-alt-nth:
fixes s :: ′a list
fixes n i k :: nat
assumes k < n
shows (ibwt-perm-abs n s i) ! k = ((lf-map-abs s)^^(n − Suc k)) i
〈proof 〉

lemma ibwt-perm-abs-nth-le-length:
fixes s :: ′a list
fixes n i k :: nat
assumes i < length s
assumes k < n
shows (ibwt-perm-abs n s i) ! k < length s
〈proof 〉

lemma ibwt-perm-abs-map-ver :
ibwt-perm-abs n s i = map (λx. ((lf-map-abs s)^^x) i) (rev [0 ..<n])
〈proof 〉

16.4 Backwards Inverse BWT Correctness
lemma inc-one-bounded-sa-ibwt-perm-abs:

fixes s :: (′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s

shows inc-one-bounded (length s) (map ((!) (sa s)) (ibwt-perm-abs n s i))
(is inc-one-bounded ?n ?xs)

〈proof 〉

corollary is-rot-sublist-sa-ibwt-perm-abs:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s
and n ≤ length s

shows is-rot-sublist [0 ..<length s] (map ((!) (sa s)) (ibwt-perm-abs n s i))
〈proof 〉

lemma inc-one-bounded-bwt-perm-ibwt-perm-abs:
fixes s :: (′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s

27

shows inc-one-bounded (length s) (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
〈proof 〉

Theorem 3.19 from [3]: Abstract Inverse BWT Permutation Rotated
Sub-list
corollary is-rot-sublist-bwt-perm-ibwt-perm-abs:

fixes s :: (′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s
and n ≤ length s
shows is-rot-sublist [0 ..<length s] (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
〈proof 〉

lemma bwt-ibwt-perm-sa-lookup-idx:
assumes valid-list s
shows map ((!) (bwt-perm s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot

0))
= [0 ..<length s]

〈proof 〉

lemma map-bwt-sa-bwt-perm:
∀ x ∈ set xs. x < length s =⇒
map ((!) (bwt-sa s)) xs = map ((!) s) (map ((!) (bwt-perm s)) xs)
〈proof 〉

theorem ibwt-perm-abs-bwt-sa-lookup-correct:
fixes s :: (′a :: {linorder , order-bot}) list
assumes valid-list s
shows map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0))

= s
〈proof 〉

16.5 Concretization
lemma lf-map-abs-eq-conc:

i < length s =⇒ lf-map-abs s i = lf-map-conc (sort (bwt-sa s)) (bwt-sa s) i
〈proof 〉

lemma ibwt-perm-abs-conc-eq:
i < length s =⇒ ibwt-perm-abs n s i = ibwt-perm-conc n (sort (bwt-sa s)) (bwt-sa

s) i
〈proof 〉

theorem ibwtn-bwt-sa-lookup-correct:
fixes s xs ys :: (′a :: {linorder , order-bot}) list
assumes valid-list s
and xs = sort (bwt-sa s)
and ys = bwt-sa s

28

shows map ((!) ys) (ibwt-perm-conc (length ys) xs ys (select ys bot 0)) = s
〈proof 〉

lemma ibwtn-eq-map-ibwt-perm-conc:
shows ibwtn n ss bs i = map ((!) bs) (ibwt-perm-conc n ss bs i)
〈proof 〉

theorem ibwtn-correct:
fixes s xs ys :: (′a :: {linorder , order-bot}) list
assumes valid-list s
and xs = sort (bwt-sa s)
and ys = bwt-sa s

shows ibwtn (length ys) xs ys (select ys bot 0) = s
〈proof 〉

16.6 Inverse BWT Correctness
BWT (suffix array version) is invertible
theorem ibwt-correct:

fixes s :: (′a :: {linorder , order-bot}) list
assumes valid-list s
shows ibwt (bwt-sa s) = s
〈proof 〉

end

Theorem 3.20 from [3]: Correctness of the Inverse BWT
theorem ibwt-correct-canon:

fixes s :: (′a :: {linorder , order-bot}) list
assumes valid-list s
shows ibwt (bwt-canon s) = s
〈proof 〉

end

References
[1] R. Affeldt, J. Garrigue, X. Qi, and K. Tanaka. Proving tree algorithms

for succinct data structures. In Proc. Interactive Theorem Proving, vol-
ume 141 of LIPIcs, pages 5:1–5:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[2] M. Burrows and D. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, Digital SRC Research Report, 1994.

[3] L. Cheung, A. Moffat, and C. Rizkallah. Formalized Burrows-Wheeler
Transform. In Proc. Ceritifed Programs and Proofs. ACM, 2025. To
appear.

29

[4] L. Cheung and C. Rizkallah. Formalized Burrows-Wheeler Transform
(artefact), December 2024.

[5] L. Cheung and C. Rizkallah. Formally verified suffix array construction.
Archive of Formal Proofs, September 2024. https://isa-afp.org/entries/
SuffixArray.html, Formal proof development.

[6] P. Ferragina and G. Manzini. Opportunistic data structures with ap-
plications. In Foundations of Computer Science, pages 390–398. IEEE
Computer Society, 2000.

[7] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

30

https://isa-afp.org/entries/SuffixArray.html
https://isa-afp.org/entries/SuffixArray.html

	Nat Modulo Helper
	Rotated Sublists
	Counting
	Count List
	Cardinality
	Sorting

	Rank Definition
	Rank Properties
	List Properties
	Counting Properties
	Bound Properties
	Sorted Properties

	Select Definition
	Select Properties
	Length Properties
	List Properties
	Bound Properties
	Nth Properties
	Sorted Properties

	Rank and Select Properties
	Correctness of Rank and Select
	Rank Correctness
	Select Correctness

	Rank and Select
	Sorted Properties

	Suffix Array Properties
	Bijections
	Suffix Properties
	General Properties
	Nth Properties
	Valid List Properties

	Counting Properties on Suffix Arays
	Counting Properties
	Ordering Properties

	Burrows-Wheeler Transform
	BWT Verification
	List Rotations
	Ordering
	BWT Equivalence

	BWT and Suffix Array Correspondence
	BWT Using Suffix Arrays
	BWT Rank Properties
	Suffix Array and BWT Rank

	Inverse Burrows-Wheeler Transform
	Abstract Versions
	Concrete Versions

	List Filter
	Verification of the Inverse Burrows-Wheeler Transform
	LF-Mapping Simple Properties
	LF-Mapping Correctness
	Backwards Inverse BWT Simple Properties
	Backwards Inverse BWT Correctness
	Concretization
	Inverse BWT Correctness

