Formalized Burrows-Wheeler Transform

Louis Cheung and Christine Rizkallah

January 17, 2025

Abstract

The Burrows-Wheeler transform (BWT) [2] is an invertible lossless transformation that permutes input sequences into alternate sequences of the same length that frequently contain long localized regions that involve clusters consisting of just a few distinct symbols, and sometimes also include long runs of same-symbol repetitions. Moreover, there is a one-to-one correspondence between the BWT and suffix arrays [7]. As a consequence, the BWT is widely used in data compression and as an indexing data structure for pattern search. In this formalization [4], we present the formal verification of both the BWT and its inverse, building on a formalization of suffix arrays [5]. This is the artefact of our CPP paper [3].

Contents

1	Nat Modulo Helper	3
2	Rotated Sublists	3
3	Counting 3.1 Count List	6 6 7
4	Rank Definition	7
5	Rank Properties5.1List Properties5.2Counting Properties5.3Bound Properties5.4Sorted Properties	8 8 8 9
6	Select Definition	10

7	Sele	ect Properties	10
	7.1	Length Properties	10
	7.2	List Properties	10
	7.3	Bound Properties	11
	7.4	Nth Properties	11
	7.5	Sorted Properties	11
8	Rar	and Select Properties	12
	8.1	Correctness of Rank and Select	12
		8.1.1 Rank Correctness	12
		8.1.2 Select Correctness	12
	8.2	Rank and Select	13
	8.3	Sorted Properties	13
9		fix Array Properties	13
	9.1	Bijections	13
	9.2	Suffix Properties	14
	9.3	General Properties	14
	9.4	Nth Properties	14
	9.5	Valid List Properties	15
10		Inting Properties on Suffix Arays	16
		Counting Properties	16
	10.2	Ordering Properties	17
11	Bur	rows-Wheeler Transform	18
12	BW	T Verification	18
	12.1	List Rotations	18
		Ordering	18
	12.3	BWT Equivalence	19
13		T and Suffix Array Correspondence	20
		BWT Using Suffix Arrays	
		BWT Rank Properties	22
	13.3	Suffix Array and BWT Rank	22
14		erse Burrows-Wheeler Transform	24
		Abstract Versions	24
	14.2	Concrete Versions	24
15	List	Filter	25

16 Verification of the Inverse Burrows-Wheeler Transform	25
16.1 LF-Mapping Simple Properties	25
16.2 LF-Mapping Correctness	26
16.3 Backwards Inverse BWT Simple Properties	26
16.4 Backwards Inverse BWT Correctness	27
16.5 Concretization \ldots	28
16.6 Inverse BWT Correctness	29
theory Nat-Mod-Helper	
imports Main	

```
begin
```

1 Nat Modulo Helper

lemma nat-mod-add-neq-self: $[a < (n :: nat); b < n; b \neq 0] \implies (a + b) \mod n \neq a$

 $\langle proof \rangle$

lemma nat-mod-a-pl-b-eq1: $\begin{bmatrix} n+b \leq a; \ a < (n :: nat) \end{bmatrix} \Longrightarrow (a+b) \ mod \ n = b - (n-a)$ $\langle proof \rangle$

lemma *not-mod-a-pl-b-eq2*:

 $\llbracket n - a \leq b; \ a < n; \ b < (n :: nat) \rrbracket \Longrightarrow (a + b) \ mod \ n = b - (n - a)$ \lappa proof \lappa

\mathbf{end}

theory Rotated-Substring imports Nat-Mod-Helper begin

2 Rotated Sublists

definition is-sublist :: 'a list \Rightarrow 'a list \Rightarrow bool where is-sublist xs ys = (\exists as bs. xs = as @ ys @ bs) definition is-rot-sublist :: 'a list \Rightarrow 'a list \Rightarrow bool where is-rot-sublist xs ys = (\exists n. is-sublist (rotate n xs) ys) definition inc-one-bounded :: nat \Rightarrow nat list \Rightarrow bool where inc-one-bounded n xs \equiv

 $\begin{array}{l} (\forall \, i. \, Suc \, i < length \, xs \longrightarrow xs \mid Suc \, i = Suc \, (xs \mid i) \, mod \, n) \land \\ (\forall \, i < length \, xs. \, xs \mid i < n) \end{array}$

lemma inc-one-boundedD:

 $[[inc-one-bounded n xs; Suc i < length xs]] \implies xs ! Suc i = Suc (xs ! i) mod n \\ [[inc-one-bounded n xs; i < length xs]] \implies xs ! i < n \\ \langle proof \rangle$

lemma *inc-one-bounded-nth-plus*:

 $\llbracket inc\text{-}one\text{-}bounded \ n \ xs; \ i + k < length \ xs \rrbracket \Longrightarrow xs \ ! \ (i + k) = (xs \ ! \ i + k) \ mod \ n \ \langle proof \rangle$

lemma inc-one-bounded-neq: [[inc-one-bounded n xs; length $xs \le n$; i + k < length xs; $k \ne 0$]] $\implies xs ! (i + k)$ $\ne xs ! i$ $\langle proof \rangle$

```
corollary inc-one-bounded-neq-nth:
assumes inc-one-bounded n xs
and length xs < n
```

and i < length xsand j < length xsand $i \neq j$ shows $xs \mid i \neq xs \mid j$ $\langle proof \rangle$

lemma inc-one-bounded-distinct: \llbracket inc-one-bounded n xs; length $xs \leq n \rrbracket \implies$ distinct xs $\langle proof \rangle$

lemma inc-one-bounded-subset-upt: $[inc-one-bounded \ n \ xs; \ length \ xs \le n] \implies set \ xs \le \{0..< n\}$ $\langle proof \rangle$

lemma inc-one-bounded-consD: inc-one-bounded $n \ (x \ \# \ xs) \Longrightarrow$ inc-one-bounded $n \ xs \ \langle proof \rangle$

${\bf lemma} \ inc\ one\ bounded\ nth:$

 $\llbracket inc\text{-}one\text{-}bounded \ n \ xs; \ i < length \ xs \rrbracket \implies xs \ ! \ i = ((\lambda x. \ Suc \ x \ mod \ n) \widehat{\ i)} \ (xs \ ! \ 0) \\ \langle proof \rangle$

lemma inc-one-bounded-nth-le: $\begin{bmatrix} inc-one-bounded \ n \ xs; \ i < length \ xs; \ (xs \ ! \ 0) + i < n \end{bmatrix} \implies xs \ ! \ i = (xs \ ! \ 0) + i$ $\langle proof \rangle$

lemma *inc-one-bounded-upt1*: **assumes** *inc-one-bounded n xs*

and length xs = Suc kand $Suc k \le n$ and (xs ! 0) + k < n

```
shows xs = [xs ! 0 .. < (xs ! 0) + Suc k]
\langle proof \rangle
lemma inc-one-bounded-upt2:
    assumes inc-one-bounded n xs
                               length xs = Suc k
    and
    and
                               Suc \ k \leq n
                               n \le (xs ! 0) + k
    and
shows xs = [xs ! 0 .. < n] @ [0 .. < (xs ! 0) + Suc k - n]
\langle proof \rangle
lemmas inc-one-bounded-upt = inc-one-bounded-upt1 inc-one-bounded-upt2
lemma is-rot-sublist-nil:
     is-rot-sublist xs []
      \langle proof \rangle
lemma rotate-upt:
     m \leq n \implies rotate \ m \ [0..< n] = [m..< n] \ @ \ [0..< m]
     \langle proof \rangle
{\bf lemma} \ inc\ one\ bounded\ is\ rot\ sublist:
     assumes inc-one-bounded n xs length xs \leq n
    shows is-rot-sublist [0..< n] xs
     \langle proof \rangle
lemma is-rot-sublist-idx:
      is-rot-sublist [0..< length xs] ys \implies is-rot-sublist xs (map ((!) xs) ys)
      \langle proof \rangle
lemma is-rot-sublist-upt-eq-upt-hd:
     \llbracket is\text{-rot-sublist} \ [0..<Suc \ n] \ ys; \ length \ ys = Suc \ n; \ ys \ ! \ 0 = 0 \rrbracket \Longrightarrow ys = [0..<Suc \ n]
n
      \langle proof \rangle
lemma is-rot-sublist-upt-eq-upt-last:
     \llbracket is\text{-rot-sublist} \ [0..<\!Suc \ n] \ ys; \ length \ ys = Suc \ n; \ ys \ ! \ n = n \rrbracket \Longrightarrow ys = [0..<\!Suc \ n] \ sublists \ sublists \ [0..<\!Suc \ n] \ sublists \ [0..<\!Sublists \ n] \ sublists \ [0..<\!Sublists \ n] \ sublists \ subl
n
      \langle proof \rangle
\mathbf{end}
theory Count-Util
    imports HOL-Library.Multiset
                          HOL-Combinatorics. List-Permutation
```

```
SuffixArray.List-Util
SuffixArray.List-Slice
```

```
\mathbf{begin}
```

3 Counting

3.1 Count List

lemma *count-in*: $x \in set \ xs \Longrightarrow count-list \ xs \ x > 0$ $\langle proof \rangle$ lemma *in-count*: count-list $xs \ x > 0 \implies x \in set \ xs$ $\langle proof \rangle$ lemma notin-count: count-list $xs \ x = 0 \implies x \notin set \ xs$ $\langle proof \rangle$ **lemma** *count-list-eq-count*: count-list $xs \ x = count \ (mset \ xs) \ x$ $\langle proof \rangle$ **lemma** *count-list-perm*: $xs < \sim > ys \Longrightarrow count-list xs x = count-list ys x$ $\langle proof \rangle$ **lemma** *in-count-nth-ex*:

 $\begin{array}{l} \textit{count-list xs } x > 0 \implies \exists \, i < \textit{length xs. xs } ! \, i = x \\ \langle \textit{proof} \rangle \end{array}$

lemma in-count-list-slice-nth-ex: count-list (list-slice xs i j) $x > 0 \implies \exists k < length xs. i \le k \land k < j \land xs ! k = x \langle proof \rangle$

3.2 Cardinality

lemma count-list-card: count-list $xs \ x = card \ \{j. \ j < length \ xs \land xs \ ! \ j = x\}$ $\langle proof \rangle$ **lemma** card-le-eq-card-less-pl-count-list: **fixes** $s :: \ 'a :: linorder \ list$ **shows** card $\{k. \ k < length \ s \land s \ ! \ k \le a\} = card \ \{k. \ k < length \ s \land s \ ! \ k < a\}$ $+ \ count-list \ s \ a$ $\langle proof \rangle$

lemma card-less-idx-upper-strict: **fixes** s :: 'a :: linorder list **assumes** $a \in set s$ **shows** card $\{k. \ k < length \ s \land s \ l \ k < a\} < length \ s$ $\langle proof \rangle$ **lemma** card-less-idx-upper: **shows** card $\{k. \ k < length \ s \land s \ ! \ k < a\} \leq length \ s$ $\langle proof \rangle$

lemma card-pl-count-list-strict-upper: **fixes** s :: 'a :: linorder list **shows** card {i. i < length $s \land s ! i < a$ } + count-list $s a \leq length s$ $\langle proof \rangle$

3.3 Sorting

```
lemma sorted-nth-le:
 assumes sorted xs
 and
          card {k. k < length xs \land xs ! k < c} < length xs
shows c \leq xs \mid card \{k. k < length xs \land xs \mid k < c\}
  \langle proof \rangle
lemma sorted-nth-le-gen:
 assumes sorted xs
          card {k. k < length xs \land xs ! k < c} + i < length xs
 and
shows c \leq xs \mid (card \{k. k < length xs \land xs \mid k < c\} + i)
\langle proof \rangle
lemma sorted-nth-less-gen:
 assumes sorted xs
           i < card \{k. k < length xs \land xs \mid k < c\}
 and
           xs \mid i < c
shows
\langle proof \rangle
lemma sorted-nth-gr-gen:
 assumes sorted xs
           card {k. k < length xs \land xs ! k < c} + i < length xs
 and
 and
           count-list xs c \leq i
shows
           xs ! (card \{k. k < length xs \land xs ! k < c\} + i) > c
\langle proof \rangle
\mathbf{end}
theory Rank-Util
 {\bf imports} \ HOL-Library. Multiset
         Count-Util
```

$Suffix Array. Prefix \\ \textbf{begin}$

4 Rank Definition

Count how many occurrences of an element are in a certain index in the list

Definition 3.7 from [3]: Rank

definition rank :: 'a list \Rightarrow 'a \Rightarrow nat \Rightarrow nat

where rank s x i \equiv count-list (take i s) x

5 Rank Properties

5.1 List Properties

lemma rank-cons-same: rank (x # xs) x (Suc i) = Suc (rank xs x i) $<math>\langle proof \rangle$

lemma rank-cons-diff: $a \neq x \Longrightarrow$ rank (a # xs) x (Suc i) = rank xs x i $\langle proof \rangle$

5.2 Counting Properties

```
lemma rank-length:
rank xs x (length xs) = count-list xs x
\langle proof \rangle
```

lemma rank-gre-length: length $xs \le n \Longrightarrow$ rank $xs \ x \ n =$ count-list $xs \ x \ \langle proof \rangle$

lemma rank-0:

 $\begin{array}{l} \operatorname{rank} xs \ x \ 0 \ = \ 0 \\ \langle \operatorname{proof} \rangle \end{array}$

Theorem 3.11 from [3]: Rank Equivalence

lemma rank-card-spec: rank xs x i = card {j. j < length $xs \land j < i \land xs ! j = x$ } $\langle proof \rangle$

lemma *le-rank-plus-card*:

 $i \leq j \Longrightarrow$ rank xs x j = rank xs x i + card {k. k < length xs $\land i \leq k \land k < j \land xs ! k = x$ } \{proof}

5.3 Bound Properties

lemma rank-lower-bound: assumes k < rank xs x i

```
shows k < i
\langle proof \rangle
corollary rank-Suc-ex:
  assumes k < rank xs x i
  shows \exists l. i = Suc l
  \langle proof \rangle
lemma rank-upper-bound:
  \llbracket i < length xs; xs ! i = x \rrbracket \implies rank xs x i < count-list xs x
\langle proof \rangle
lemma rank-idx-mono:
  i \leq j \Longrightarrow rank \ xs \ x \ i \leq rank \ xs \ x \ j
\langle proof \rangle
lemma rank-less:
  \llbracket i < length xs; i < j; xs ! i = x \rrbracket \implies rank xs x i < rank xs x j
\langle proof \rangle
lemma rank-upper-bound-gen:
```

rank xs x $i \leq count-list xs x$ $\langle proof \rangle$

5.4 Sorted Properties

```
lemma sorted-card-rank-idx:
 assumes sorted xs
 and
          i < length xs
shows i = card \{j, j < length xs \land xs \mid j < xs \mid i\} + rank xs (xs \mid i) i
\langle proof \rangle
lemma sorted-rank:
 assumes sorted xs
 and
        i < length xs
 and
          xs ! i = a
shows rank xs a i = i - card \{k. k < length xs \land xs \mid k < a\}
 \langle proof \rangle
lemma sorted-rank-less:
 assumes sorted xs
 and
         i < length xs
 and
          xs \mid i < a
shows rank xs \ a \ i = 0
\langle proof \rangle
lemma sorted-rank-greater:
 assumes sorted xs
 and i < length xs
```

```
and xs ! i > a
shows rank xs a i = count-list xs a
⟨proof⟩
end
theory Select-Util
imports Count-Util
SuffixArray.Sorting-Util
```

begin

6 Select Definition

Find nth occurrence of an element in a list

Definition 3.8 from [3]: Select

fun select :: 'a list \Rightarrow 'a \Rightarrow nat \Rightarrow nat where select [] - - = 0 |select $(a\#xs) \times 0 = (if x = a \text{ then } 0 \text{ else } Suc (select xs \times 0)) |$ select $(a\#xs) \times (Suc i) = (if x = a \text{ then } Suc (select xs \times i) \text{ else } Suc (select xs \times i) (Suc i)))$

7 Select Properties

7.1 Length Properties

lemma notin-imp-select-length: $x \notin set \ xs \implies select \ xs \ x \ i = length \ xs$ $\langle proof \rangle$

lemma select-length-imp-count-list-less: select $xs \ x \ i = length \ xs \Longrightarrow count-list \ xs \ x \le i$ $\langle proof \rangle$

lemma select-Suc-length: select xs x $i = \text{length } xs \implies \text{select } xs \ x \ (Suc \ i) = \text{length } xs \ \langle \text{proof} \rangle$

7.2 List Properties

lemma select-cons-neq: $[select xs x i = j; x \neq a] \implies select (a \# xs) x i = Suc j \land proof \rangle$

lemma cons-neq-select:

 $\llbracket select \ (a \ \# \ xs) \ x \ i = Suc \ j; \ x \neq a \rrbracket \Longrightarrow select \ xs \ x \ i = j \ \langle proof \rangle$

lemma cons-eq-select:

select $(x \# xs) x (Suc i) = Suc j \Longrightarrow select xs x i = j \langle proof \rangle$

lemma *select-cons-eq*:

select $xs \ x \ i = j \Longrightarrow$ select $(x \ \# \ xs) \ x \ (Suc \ i) = Suc \ j \ \langle proof \rangle$

7.3 Bound Properties

lemma select-max: select xs x $i \leq length xs$ $\langle proof \rangle$

7.4 Nth Properties

lemma nth-select-alt: [j < length xs; count-list (take j xs) x = i; xs ! j = x]] $\implies select xs x i = j$ $\langle proof \rangle$

7.5 Sorted Properties

Theorem 3.10 from [3]: Select Sorted Equivalence

```
lemma sorted-select:

assumes sorted xs

and i < count-list xs x

shows select xs x i = card \{j, j < length xs \land xs \mid j < x\} + i
```

 $\langle proof \rangle$

```
corollary sorted-select-0-plus:

assumes sorted xs

and i < count-list xs x

shows select xs x i = select xs x 0 + i

\langle proof \rangle

corollary select-sorted-0:

assumes sorted xs

and 0 < count-list xs x

shows select xs x 0 = card \{j. j < length xs \land xs ! j < x\}

\langle proof \rangle
```

end theory Rank-Select imports Main Rank-Util Select-Util

 \mathbf{begin}

8 Rank and Select Properties

8.1 Correctness of Rank and Select

Correctness theorem statements based on [1].

8.1.1 Rank Correctness

lemma rank-spec: rank s x i = count (mset (take i s)) x (proof)

8.1.2 Select Correctness

```
lemma select-spec:
select s \ x \ i = j
\implies (j < length \ s \land rank \ s \ x \ j = i) \lor (j = length \ s \land count-list \ s \ x \le i)
\langle proof \rangle
```

Theorem 3.9 from [3]: Correctness of Select

8.2 Rank and Select

```
lemma rank-select:
```

select xs x i < length xs \implies rank xs x (select xs x i) = i $\langle proof \rangle$

lemma *select-upper-bound*:

 $i < rank xs x j \Longrightarrow select xs x i < length xs$ $\langle proof \rangle$

8.3 Sorted Properties

\mathbf{end}

theory SA-Util imports SuffixArray.Suffix-Array-Properties SuffixArray.Simple-SACA-Verification ../counting/Rank-Select begin

9 Suffix Array Properties

9.1 Bijections

```
lemma bij-betw-empty:
bij-betw f \{\} \{\}
\langle proof \rangle
```

lemma bij-betw-sort-idx-ex: assumes xs = sort ys **shows** $\exists f. \ bij-betw \ f \ \{j. \ j < length \ ys \land ys \ ! \ j < x\} \ \{j. \ j < length \ xs \land xs \ ! \ j < x\} \ \langle proof \rangle$

9.2 Suffix Properties

lemma *suffix-hd-set-eq*: $\{k. \ k < length \ s \land s \ ! \ k = c \} = \{k. \ k < length \ s \land (\exists xs. \ suffix \ s \ k = c \ \# \ xs)\}$ $\langle proof \rangle$ **lemma** *suffix-hd-set-less*: $\{k. \ k < length \ s \land s \ ! \ k < c \ \} = \{k. \ k < length \ s \land suffix \ s \ k < [c]\}$ $\langle proof \rangle$ **lemma** *select-nth-suffix-start1*: assumes $i < card \{k. k < length s \land (\exists as. suffix s k = a \# as)\}$ xs = sort sand shows select xs a $i = card \{k, k < length s \land suffix s k < [a]\} + i$ $\langle proof \rangle$ **lemma** *select-nth-suffix-start2*: assumes card $\{k. \ k < length \ s \land (\exists as. suffix \ s \ k = a \ \# \ as)\} \leq i$ and xs = sort s**shows** select xs a i = length xs $\langle proof \rangle$

context Suffix-Array-General begin

9.3 General Properties

lemma sa-suffix-sorted: sorted (map (suffix s) (sa s)) $\langle proof \rangle$

9.4 Nth Properties

lemma *sa-nth-suc-le-ex*:

```
assumes j < length s
  and
            i < j
             s ! (sa \ s ! \ i) = s ! (sa \ s ! \ j)
  and
  and
             Suc (sa \ s \ ! \ i) < length \ s
  and
             Suc (sa \ s \ j) < length \ s
shows \exists k \ l. \ k < l \land sa \ s \ l \ k = Suc \ (sa \ s \ l \ i) \land sa \ s \ l \ l = Suc \ (sa \ s \ l \ j)
\langle proof \rangle
lemma sorted-map-nths-sa:
  sorted (map (nth s) (sa s))
\langle proof \rangle
lemma perm-map-nths-sa:
  s < \sim \sim > map (nth s) (sa s)
  \langle proof \rangle
lemma sort-eq-map-nths-sa:
  sort s = map (nth s) (sa s)
  \langle proof \rangle
lemma sort-sa-nth:
  i < length \ s \Longrightarrow sort \ s \ i = s \ i \ (sa \ s \ i)
  \langle proof \rangle
lemma inj-on-nth-sa-upt:
  assumes j \leq length \ s \ l \leq length \ s
shows inj-on (nth (sa s)) (\{i..< j\} \cup \{k..< l\})
\langle proof \rangle
lemma nth-sa-upt-set:
```

 $\begin{array}{l} \text{nth } (sa~s) & (\{0..< length~s\} \} = \{0..< length~s\} \\ \langle proof \rangle \end{array}$

9.5 Valid List Properties

```
\mathbf{end}
```

```
lemma Suffix-Array-General-ex:
\exists sa. Suffix-Array-General sa \langle proof \rangle
```

end theory SA-Count imports Rank-Select ../util/SA-Util begin

10 Counting Properties on Suffix Arays

 ${\bf context} \ {\it Suffix-Array-General} \ {\bf begin}$

10.1 Counting Properties

lemma *sa-card-index*: **assumes** i < length sshows $i = card \{j, j < length s \land suffix s (sa s ! j) < suffix s (sa s ! i)\}$ (is i = card ?A) $\langle proof \rangle$ **corollary** *sa-card-s-index*: **assumes** i < length s**shows** $i = card \{j, j < length s \land suffix s j < suffix s (sa s ! i)\}$ (is i = card ?A) $\langle proof \rangle$ **lemma** *sa-card-s-idx*: **assumes** i < length sshows $i = card \{j, j < length s \land s \mid j < s \mid (sa s \mid i)\} +$ card {j. $j < length \ s \land s \mid j = s \mid (sa \ s \mid i) \land suffix \ s \ j < suffix \ s \ (sa \ s \mid i)$ $i)\}$ $\langle proof \rangle$ **lemma** *sa-card-index-lower-bound*: **assumes** i < length s**shows** card $\{j. \ j < length \ s \land s \ ! \ (sa \ s \ ! \ j) < s \ ! \ (sa \ s \ ! \ i)\} \le i$ (is card $?A \leq i$) $\langle proof \rangle$ **lemma** *sa-card-rank-idx*: **assumes** i < length sshows $i = card \{j, j < length s \land s \mid (sa s \mid j) < s \mid (sa s \mid i)\}$ + rank (sort s) (s ! (sa s ! i)) i $\langle proof \rangle$

corollary sa-card-rank-s-idx: **assumes** i < length s **shows** $i = card \{j. j < length <math>s \land s \mid j < s \mid (sa \ s \mid i)\}$ $+ rank (sort s) (s \mid (sa \ s \mid i)) i$ $\langle proof \rangle$

lemma sa-suffix-nth: **assumes** card {k. $k < length \ s \land s \ l \ k < c$ } + i < length s **and** i < count-list s c **shows** \exists as. suffix s (sa s ! (card {k. $k < length \ s \land s \ l \ k < c$ } + i)) = c # as $\langle proof \rangle$

10.2 Ordering Properties

 $\begin{array}{l} \textbf{lemma } sa-suffix-order-le:\\ \textbf{assumes } card \ \{k. \ k < length \ s \land s \ ! \ k < c \ \} < length \ s\\ \textbf{shows } [c] \leq suffix \ s \ (sa \ s \ ! \ (card \ \{k. \ k < length \ s \land s \ ! \ k < c\}))\\ \langle proof \rangle \end{array}$

 $\begin{array}{l} \textbf{lemma } sa-suffix-order-le-gen:\\ \textbf{assumes } card \ \{k. \ k < length \ s \land s \ ! \ k < c \ \} + i < length \ s\\ \textbf{shows } [c] \leq suffix \ s \ (sa \ s \ ! \ (card \ \{k. \ k < length \ s \land s \ ! \ k < c \} + i))\\ \langle proof \rangle \end{array}$

```
lemma sa-suffix-nth-less:

assumes i < card \{k. \ k < length \ s \land s \ ! \ k < c\}

shows \forall as. suffix s \ (sa \ s \ ! \ i) < c \ \# \ as

\langle proof \rangle
```

 $\begin{array}{l} \textbf{lemma sa-suffix-nth-gr:}\\ \textbf{assumes card } \{k. \ k < length \ s \land s \ ! \ k < c\} + i < length \ s\\ \textbf{and} \quad count-list \ s \ c \leq i\\ \textbf{shows} \ \forall \ as. \ c \ \# \ as < suffix \ s \ (sa \ s \ ! \ (card \ \{k. \ k < length \ s \land s \ ! \ k < c\} + i))\\ \langle proof \rangle \end{array}$

```
\mathbf{end}
```

end theory BWT imports ../../util/SA-Util

begin

11 Burrows-Wheeler Transform

Based on [2]

Definition 3.3 from [3]: Canonical BWT

definition *bwt-canon* :: ('a :: {*linorder*, *order-bot*}) *list* \Rightarrow 'a *list* where

bwt-canon $s = map \ last \ (sort \ (map \ (\lambda x. \ rotate \ x \ s) \ [0..< length \ s]))$

context Suffix-Array-General begin

Definition 3.4 from [3]: Suffix Array Version of the BWT

definition bwt-sa :: ('a :: {linorder, order-bot}) list \Rightarrow 'a list **where** bwt-sa s = map (λi . s ! ((i + length s - Suc 0) mod (length s))) (sa s)

end

12 BWT Verification

12.1 List Rotations

lemma rotate-suffix-prefix: **assumes** i < length xs **shows** rotate i xs = suffix xs i @ prefix xs i $\langle proof \rangle$

lemma rotate-last: **assumes** i < length xs **shows** last (rotate i xs) = xs ! ((i + length xs - Suc 0) mod (length xs)) $\langle proof \rangle$

lemma (in Suffix-Array-General) map-last-rotations: map last (map (λi . rotate i s) (sa s)) = bwt-sa s (proof)

lemma distinct-rotations: assumes valid-list s and i < length sand j < length sand $i \neq j$ shows rotate $i s \neq rotate j s$ $\langle proof \rangle$

12.2 Ordering

```
and
           j < length xs
 and
           suffix xs i < suffix xs j
shows suffix xs \ i \ @ prefix xs \ i < suffix \ xs \ j \ @ prefix xs \ j
\langle proof \rangle
lemma list-less-suffix-app-prefix-2:
 assumes valid-list xs
          i < length xs
 and
 and
           j < length xs
 and
           suffix xs i @ prefix xs i < suffix xs j @ prefix xs j
shows suffix xs \ i < suffix \ xs \ j
  \langle proof \rangle
corollary list-less-suffix-app-prefix:
 assumes valid-list xs
 and
          i < length xs
           j < length xs
 and
shows suffix xs \ i < suffix \ xs \ j \iff
      suffix xs i @ prefix xs i < suffix xs j @ prefix xs j
  \langle proof \rangle
    Theorem 3.5 from [3]: Same Suffix and Rotation Order
lemma list-less-suffix-rotate:
  assumes valid-list xs
 and
           i < length xs
 and
           j < length xs
shows suffix xs \ i < suffix \ xs \ j \leftrightarrow rotate \ i \ xs < rotate \ j \ xs
  \langle proof \rangle
```

lemma (in Suffix-Array-General) sorted-rotations: assumes valid-list s shows strict-sorted (map (λi . rotate i s) (sa s)) $\langle proof \rangle$

12.3 BWT Equivalence

Theorem 3.6 from [3]: BWT and Suffix Array Correspondence Canoncial BWT and BWT via Suffix Array Correspondence

```
theorem (in Suffix-Array-General) bwt-canon-eq-bwt-sa:
  assumes valid-list s
  shows bwt-canon s = bwt-sa s
  ⟨proof⟩
end
theory BWT-SA-Corres
  imports BWT
      ../../counting/SA-Count
      ../../util/Rotated-Substring
begin
```

13 BWT and Suffix Array Correspondence

context Suffix-Array-General begin

Definition 3.12 from [3]: BWT Permutation

definition bwt-perm :: ('a :: {linorder, order-bot}) list \Rightarrow nat list where bwt-perm s = map (λi . (i + length s - Suc 0) mod (length s)) (sa s)

13.1 BWT Using Suffix Arrays

```
lemma map-bwt-indexes:
  fixes s :: ('a :: \{linorder, order-bot\}) list
 shows bwt-sa s = map \ (\lambda i. \ s \ ! \ i) \ (bwt-perm \ s)
  \langle proof \rangle
lemma map-bwt-indexes-perm:
  fixes s :: ('a :: \{linorder, order-bot\}) list
 shows but-perm s <^{\sim} > [0..< length s]
\langle proof \rangle
lemma bwt-sa-perm:
  fixes s :: ('a :: \{linorder, order-bot\}) list
  shows bwt-sa s <^{\sim}> s
  \langle proof \rangle
lemma bwt-sa-nth:
  fixes s :: ('a :: \{linorder, order-bot\}) list
  fixes i :: nat
  assumes i < length s
 shows bwt-sa s \mid i = s \mid (((sa \mid i) + length \mid s - 1) \mod (length \mid s))
  \langle proof \rangle
lemma bwt-perm-nth:
  fixes s :: ('a :: \{linorder, order-bot\}) list
  fixes i :: nat
 assumes i < length s
 shows bwt-perm s \mid i = ((sa \ s \mid i) + length \ s - 1) \mod (length \ s)
  \langle proof \rangle
lemma bwt-perm-s-nth:
  fixes s :: ('a :: \{linorder, order-bot\}) list
  fixes i :: nat
  assumes i < length s
 shows bwt-sa s \mid i = s \mid (bwt-perm \ s \mid i)
  \langle proof \rangle
lemma bwt-sa-length:
  fixes s :: ('a :: \{linorder, order-bot\}) list
```

```
shows length (bwt-sa s) = length s
```

 $\langle proof \rangle$

```
lemma bwt-perm-length:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 shows length (bwt-perm s) = length s
  \langle proof \rangle
lemma ex-bwt-perm-nth:
  fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes k :: nat
 assumes k < length s
 shows \exists i < length s. bwt-perm s ! i = k
  \langle proof \rangle
lemma valid-list-sa-index-helper:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i j :: nat
 assumes valid-list s
        i < length s
 and
 and
          j < length s
 and
          i \neq j
 and
           s ! (bwt-perm \ s ! \ i) = s ! (bwt-perm \ s ! \ j)
shows sa s ! i \neq 0
```

 $\langle proof \rangle$

Theorem 3.13 from [3]: Suffix Relative Order Preservation Relative order of the suffixes is maintained by the BWT permutation

```
lemma bwt-relative-order:

fixes s :: ('a :: \{linorder, order-bot\}) list

fixes i j :: nat

assumes valid-list s

and i < j

and j < length s

and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)

shows suffix s (bwt-perm s ! i) < suffix s (bwt-perm s ! j)

\langle proof \rangle

lemma bwt-sa-card-s-idx:

fixes s :: ('a :: \{linorder, order-bot\}) list

fixes i :: nat
```

```
fixes i :: nat

assumes valid-list s

and i < length s

shows i = card \{j. j < length <math>s \land j < i \land bwt\text{-sa } s \mid j \neq bwt\text{-sa } s \mid i\} + card \{j. j < length <math>s \land s \mid j = bwt\text{-sa } s \mid i \land suffix \ s \ j < suffix \ s \ j < suffix \ s \ (bwt\text{-perm } s \mid i)\}

\langle proof \rangle
```

lemma *bwt-perm-to-sa-idx*:

```
\begin{array}{l} \textbf{assumes valid-list s} \\ \textbf{and} \quad i < length s \\ \textbf{shows} \ \exists \ k < length \ s. \ sa \ s \ ! \ k = \ bwt\ perm \ s \ ! \ i \land \\ k = \ card \ \{j. \ j < length \ s \land s \ ! \ j < \ bwt\ sa \ s \ ! \ i \land \\ suffix \ s \ j < suffix \ s \ (bwt\ perm \ s \ ! \ i) \} \\ \langle proof \rangle \end{array}
```

```
\begin{array}{l} \textbf{corollary } \textit{bwt-perm-eq:} \\ \textbf{fixes } s :: ('a :: \{\textit{linorder, order-bot}\}) \textit{list} \\ \textbf{fixes } i :: nat \\ \textbf{assumes } \textit{valid-list } s \\ \textbf{and} \quad i < \textit{length } s \\ \textbf{shows } \textit{bwt-perm } s \; ! \; i = \\ sa \; s \; ! \; (\textit{card } \{j. \; j < \textit{length } s \land s \; ! \; j < \textit{bwt-sa } s \; ! \; i \} + \\ & card \; \{j. \; j < \textit{length } s \land s \; ! \; j = \textit{bwt-sa } s \; ! \; i \land \\ & suffix \; s \; j < suffix \; s \; (\textit{bwt-perm } s \; ! \; i)\}) \\ \langle \textit{proof} \rangle \end{array}
```

13.2 BWT Rank Properties

lemma bwt-perm-rank-nth: **fixes** $s :: ('a :: \{linorder, order-bot\})$ list **fixes** i :: nat **assumes** valid-list s **and** i < length s **shows** rank (bwt-sa s) (bwt-sa s ! i) i = $card \{j. j < length s \land s ! j = bwt-sa s ! i \land$ $suffix s j < suffix s (bwt-perm s ! i)\}$

```
\langle proof \rangle
```

13.3 Suffix Array and BWT Rank

lemma sa-bwt-perm-same-rank: **fixes** $s :: ('a :: \{linorder, order-bot\})$ list **fixes** i j :: nat **assumes** valid-list s **and** i < length s **and** j < length s **and** sa s ! i = bwt-perm s ! j**shows** rank (sort s) (s ! (sa s ! i)) i = rank (bwt-sa s) (bwt-sa s ! j) j $\langle proof \rangle$

Theorem 3.17 from [3]: Same Rank Rank for each symbol is the same in the BWT and suffix array

lemma rank-same-sa-bwt-perm:

```
fixes s :: ('a :: \{linorder, order-bot\}) list
  fixes i j :: nat
  fixes v :: 'a
  assumes valid-list s
           i < length s
 and
           j < length s
  and
  and
           s \mid (sa \ s \mid i) = v
  and
           bwt-sa s \mid j = v
  and
           rank (sort s) v i = rank (bwt-sa s) v j
shows sa s \mid i = bwt-perm s \mid j
\langle proof \rangle
lemma rank-bwt-card-suffix:
  fixes s :: ('a :: \{linorder, order-bot\}) list
  fixes i :: nat
 fixes a :: 'a
 assumes i < length s
 shows rank (bwt-sa s) a i =
        card {k. k < length \ s \land k < i \land bwt\text{-sa } s \ ! \ k = a \land
                 a \# suffix \ s \ (sa \ s \ ! \ k) < a \# suffix \ s \ (sa \ s \ ! \ i) \}
\langle proof \rangle
lemma sa-to-bwt-perm-idx:
 fixes s :: ('a :: \{linorder, order-bot\}) list
  fixes i :: nat
 assumes valid-list s
           i < length s
  and
shows sa \ s \ i =
       bwt-perm s ! (select (bwt-sa s) (s ! (sa s ! i)) (rank (sort s) (s ! (sa s ! i)) i))
\langle proof \rangle
lemma suffix-bwt-perm-sa:
  fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i :: nat
 assumes valid-list s
```

```
assumes value-list s

and i < length s

and bwt-sa s \mid i \neq bot

shows suffix s (bwt-perm s \mid i) = bwt-sa s \mid i \# suffix s (sa s \mid i)

\langle proof \rangle
```

end

end theory *IBWT* imports BWT-SA-Corres
begin

14 Inverse Burrows-Wheeler Transform

Inverse BWT algorithm obtained from [6]

14.1 Abstract Versions

context Suffix-Array-General begin

These are abstract because they use additional information about the original string and its suffix array.

Definition 3.15 from [3]: Abstract LF-Mapping

Definition 3.16 from [3]: Inverse BWT Permutation

fun *ibwt-perm-abs* :: $nat \Rightarrow 'a \ list \Rightarrow nat \Rightarrow nat \ list$ **where** *ibwt-perm-abs* 0 - - = [] |*ibwt-perm-abs* $(Suc \ n) \ s \ i = ibwt-perm-abs \ n \ s \ (lf-map-abs \ s \ i) @ [i]$

 \mathbf{end}

14.2 Concrete Versions

These are concrete because they only rely on the BWT-transformed sequence without any additional information.

Definition 3.14 from [3]: Inverse BWT - LF-mapping

fun *lf-map-conc* :: ('a :: {*linorder*, *order-bot*}) *list* \Rightarrow 'a *list* \Rightarrow *nat* \Rightarrow *nat* **where**

lf-map-conc ss bs i = (select ss (bs ! i) 0) + (rank bs (bs ! i) i)

fun *ibwt-perm-conc* :: *nat* \Rightarrow (*'a* ::: {*linorder*, *order-bot*}) *list* \Rightarrow *'a list* \Rightarrow *nat* \Rightarrow *nat list*

where

ibwt-perm-conc 0 - - - = [] |

ibwt-perm-conc (Suc n) ss b
si=ibwt-perm-conc n ss bs (lf-map-conc ss bs i)
 $@\ [i]$

Definition 3.14 from [3]: Inverse BWT - Inverse BWT Rotated Subsequence

fun *ibwtn* :: *nat* \Rightarrow (*'a* :: {*linorder*, *order-bot*}) *list* \Rightarrow *'a list* \Rightarrow *nat* \Rightarrow *'a list*

where

 $ibwtn \ 0 - - - = [] \mid$ $ibwtn \ (Suc \ n) \ ss \ bs \ i = ibwtn \ n \ ss \ bs \ (lf-map-conc \ ss \ bs \ i) \ @ \ [bs ! \ i]$ Definition 3.14 from [3]: Inverse BWT fun $ibwt :: ('a \ :: \{linorder, \ order-bot\}) \ list \Rightarrow 'a \ list$ where $ibwt \ bs = ibwtn \ (length \ bs) \ (sort \ bs) \ bs \ (select \ bs \ bot \ 0)$

15 List Filter

lemma filter-nth-app-upt: filter (λi . P ($xs \mid i$)) [0..<length xs] = filter (λi . P (($xs @ ys \mid i$)) [0..<length xs] $\langle proof \rangle$

lemma filter-eq-nth-upt: filter $P xs = map (\lambda i. xs ! i)$ (filter $(\lambda i. P (xs ! i)) [0..<length xs]) (proof)$

```
lemma distinct-filter-nth-upt:
distinct (filter (\lambda i. P (xs ! i)) [0..<length xs])
\langle proof \rangle
```

lemma filter-nth-upt-set: set (filter (λi . P ($xs \mid i$)) [0..<length xs]) = {i. $i < length <math>xs \land P$ ($xs \mid i$)} $\langle proof \rangle$

lemma filter-length-upt: length (filter (λi . P (xs ! i)) [0..<length xs]) = card {i. i < length xs \wedge P (xs ! i)} i)} $\langle proof \rangle$

lemma perm-filter-length:

 $\begin{array}{l} xs <^{\sim \sim} > ys \Longrightarrow \\ length \ (filter \ (\lambda i. \ P \ (xs \ ! \ i)) \ [0... < length \ xs]) \\ = \ length \ (filter \ (\lambda i. \ P \ (ys \ ! \ i)) \ [0... < length \ ys]) \\ \langle proof \rangle \end{array}$

16 Verification of the Inverse Burrows-Wheeler Transform

context Suffix-Array-General begin

16.1 LF-Mapping Simple Properties

lemma *lf-map-abs-less-length*: fixes s :: 'a list

```
fixes i j :: nat
 assumes i < length s
shows lf-map-abs s \ i < length \ s
\langle proof \rangle
corollary lf-map-abs-less-length-funpow:
 fixes s :: 'a \ list
 fixes i j :: nat
 assumes i < length s
shows ((lf-map-abs \ s)^{k}) \ i < length \ s
\langle proof \rangle
lemma lf-map-abs-equiv:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i r :: nat
 fixes v :: 'a
 assumes i < length (bwt-sa s)
        v = bwt-sa s ! i
 and
 and
           r = rank (bwt-sa s) v i
shows lf-map-abs s \ i = card \ \{j, j < length \ (bwt-sa \ s) \land bwt-sa \ s \ j < v\} + r
\langle proof \rangle
```

16.2 LF-Mapping Correctness

Theorem 3.18 from [3]: Abstract LF-Mapping Correctness

corollary bwt-perm-lf-map-abs: **fixes** $s :: ('a :: \{linorder, order-bot\})$ list **fixes** i :: nat **assumes** valid-list s **and** i < length s **shows** bwt-perm s ! (lf-map-abs s i) = (bwt-perm s ! i + length s - Suc 0) mod(length s) $\langle proof \rangle$

16.3 Backwards Inverse BWT Simple Properties

lemma *ibwt-perm-abs-length*: **fixes** $s :: 'a \ list$ **fixes** $n \ i :: nat$ **shows** *length* (*ibwt-perm-abs* $n \ s \ i$) = n $\langle proof \rangle$

lemma *ibwt-perm-abs-nth*: fixes s :: 'a list

```
fixes k n i :: nat

assumes k \le n

shows (ibwt-perm-abs (Suc n) s i) ! k = ((lf\text{-map-abs s})^{(n-k)}) i

\langle proof \rangle

corollary ibwt-perm-abs-alt-nth:

fixes s :: 'a \text{ list}

fixes n \ i \ k :: nat

assumes k < n

shows (ibwt-perm-abs n s i) ! k = ((lf\text{-map-abs s})^{(n-suc k)}) i

\langle proof \rangle

lemma ibwt-perm-abs-nth-le-length:
```

```
fixes s :: 'a \ list
fixes n \ i \ k :: nat
assumes i < length \ s
assumes k < n
shows (ibwt-perm-abs n \ s \ i) ! k < length \ s
\langle proof \rangle
```

lemma *ibwt-perm-abs-map-ver*: *ibwt-perm-abs* $n \ s \ i = map \ (\lambda x. \ ((lf-map-abs \ s) \ x) \ i) \ (rev \ [0..< n]) \ (proof)$

16.4 Backwards Inverse BWT Correctness

```
lemma inc-one-bounded-sa-ibwt-perm-abs:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i n :: nat
 assumes valid-list s
 and
          i < length s
shows inc-one-bounded (length s) (map ((!) (sa s)) (ibwt-perm-abs n s i))
     (is inc-one-bounded ?n ?xs)
  \langle proof \rangle
corollary is-rot-sublist-sa-ibwt-perm-abs:
 fixes s :: ('a :: \{linorder, order-bot\}) list
 fixes i n :: nat
 assumes valid-list s
 and
          i < length s
          n \leq length s
 and
shows is-rot-sublist [0..< length s] (map ((!) (sa s)) (ibwt-perm-abs n s i))
  \langle proof \rangle
lemma inc-one-bounded-bwt-perm-ibwt-perm-abs:
```

```
fixes s :: ('a :: \{linorder, order-bot\}) list
fixes i n :: nat
assumes valid-list s
and i < length s
```

shows inc-one-bounded (length s) (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i)) $\langle proof \rangle$

Theorem 3.19 from [3]: Abstract Inverse BWT Permutation Rotated Sub-list

corollary is-rot-sublist-bwt-perm-ibwt-perm-abs:

fixes $s :: ('a :: \{linorder, order-bot\})$ list fixes i n :: natassumes valid-list sand i < length sand $n \leq length s$ shows is-rot-sublist [0..<length s] (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i)) $\langle proof \rangle$

lemma bwt-ibwt-perm-sa-lookup-idx:

assumes valid-list s shows map ((!) (bwt-perm s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0)) = [0..<length s]

 $\langle proof \rangle$

lemma map-bwt-sa-bwt-perm: $\forall x \in set xs. x < length s \implies$ map ((!) (bwt-sa s)) xs = map ((!) s) (map ((!) (bwt-perm s)) xs) $\langle proof \rangle$

theorem ibwt-perm-abs-bwt-sa-lookup-correct:
fixes s :: ('a :: {linorder, order-bot}) list
assumes valid-list s
shows map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0))
= s
{proof}

16.5 Concretization

lemma *lf-map-abs-eq-conc*: $i < \text{length } s \implies \text{lf-map-abs } s \ i = \text{lf-map-conc } (\text{sort } (\text{bwt-sa } s)) \ (\text{bwt-sa } s) \ i \ (\text{proof})$

lemma *ibwt-perm-abs-conc-eq*:

 $i < length s \Longrightarrow ibwt$ -perm-abs $n \ s \ i = ibwt$ -perm-conc $n \ (sort \ (bwt$ -sa $s)) \ (bwt$ -sa $s) \ i \ (proof)$

theorem ibwtn-bwt-sa-lookup-correct: fixes $s xs ys :: ('a :: \{linorder, order-bot\})$ list assumes valid-list sand xs = sort (bwt-sa s)and ys = bwt-sa s **shows** map ((!) ys) (*ibwt-perm-conc* (*length* ys) xs ys (*select* ys bot 0)) = s $\langle proof \rangle$

lemma *ibwtn-eq-map-ibwt-perm-conc*: **shows** *ibwtn* n *ss bs* i = map ((!) *bs*) (*ibwt-perm-conc* n *ss bs i*) $\langle proof \rangle$

```
theorem ibwtn-correct:

fixes s xs ys :: ('a :: \{linorder, order-bot\}) list

assumes valid-list s

and xs = sort (bwt-sa s)

and ys = bwt-sa s

shows ibwtn (length ys) xs ys (select ys bot 0) = s

\langle proof \rangle
```

16.6 Inverse BWT Correctness

BWT (suffix array version) is invertible

```
theorem ibwt-correct:

fixes s :: ('a :: \{linorder, order-bot\}) list

assumes valid-list s

shows ibwt (bwt-sa s) = s

\langle proof \rangle
```

end

Theorem 3.20 from [3]: Correctness of the Inverse BWT

```
theorem ibwt-correct-canon:

fixes s :: ('a :: \{linorder, order-bot\}) list

assumes valid-list s

shows ibwt (bwt-canon s) = s

\langle proof \rangle
```

 \mathbf{end}

References

- R. Affeldt, J. Garrigue, X. Qi, and K. Tanaka. Proving tree algorithms for succinct data structures. In *Proc. Interactive Theorem Proving*, volume 141 of *LIPIcs*, pages 5:1–5:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
- [2] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm. Technical report, Digital SRC Research Report, 1994.
- [3] L. Cheung, A. Moffat, and C. Rizkallah. Formalized Burrows-Wheeler Transform. In *Proc. Ceritifed Programs and Proofs.* ACM, 2025. To appear.

- [4] L. Cheung and C. Rizkallah. Formalized Burrows-Wheeler Transform (artefact), December 2024.
- [5] L. Cheung and C. Rizkallah. Formally verified suffix array construction. Archive of Formal Proofs, September 2024. https://isa-afp.org/entries/ SuffixArray.html, Formal proof development.
- [6] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In *Foundations of Computer Science*, pages 390–398. IEEE Computer Society, 2000.
- [7] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches. *SIAM Journal on Computing*, 22(5):935–948, 1993.