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Abstract

The Burrows-Wheeler transform (BWT) [2] is an invertible lossless
transformation that permutes input sequences into alternate sequences
of the same length that frequently contain long localized regions that
involve clusters consisting of just a few distinct symbols, and sometimes
also include long runs of same-symbol repetitions. Moreover, there is a
one-to-one correspondence between the BWT and suffix arrays [7]. As
a consequence, the BWT is widely used in data compression and as an
indexing data structure for pattern search. In this formalization [4],
we present the formal verification of both the BWT and its inverse,
building on a formalization of suffix arrays [5]. This is the artefact of
our CPP paper [3].
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theory Nat-Mod-Helper
imports Main

begin

1 Nat Modulo Helper
lemma nat-mod-add-neq-self :

[[a < (n :: nat); b < n; b 6= 0 ]] =⇒ (a + b) mod n 6= a
〈proof 〉

lemma nat-mod-a-pl-b-eq1 :
[[n + b ≤ a; a < (n :: nat)]] =⇒ (a + b) mod n = b − (n − a)
〈proof 〉

lemma not-mod-a-pl-b-eq2 :
[[n − a ≤ b; a < n; b < (n :: nat)]] =⇒ (a + b) mod n = b − (n − a)
〈proof 〉

end
theory Rotated-Substring

imports Nat-Mod-Helper
begin

2 Rotated Sublists
definition is-sublist :: ′a list ⇒ ′a list ⇒ bool

where
is-sublist xs ys = (∃ as bs. xs = as @ ys @ bs)

definition is-rot-sublist :: ′a list ⇒ ′a list ⇒ bool
where

is-rot-sublist xs ys = (∃n. is-sublist (rotate n xs) ys)

definition inc-one-bounded :: nat ⇒ nat list ⇒ bool
where

inc-one-bounded n xs ≡
(∀ i. Suc i < length xs −→ xs ! Suc i = Suc (xs ! i) mod n) ∧
(∀ i < length xs. xs ! i < n)

lemma inc-one-boundedD:
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[[inc-one-bounded n xs; Suc i < length xs]] =⇒ xs ! Suc i = Suc (xs ! i) mod n
[[inc-one-bounded n xs; i < length xs]] =⇒ xs ! i < n
〈proof 〉

lemma inc-one-bounded-nth-plus:
[[inc-one-bounded n xs; i + k < length xs]] =⇒ xs ! (i + k) = (xs ! i + k) mod n
〈proof 〉

lemma inc-one-bounded-neq:
[[inc-one-bounded n xs; length xs ≤ n; i + k < length xs; k 6= 0 ]] =⇒ xs ! (i + k)
6= xs ! i
〈proof 〉

corollary inc-one-bounded-neq-nth:
assumes inc-one-bounded n xs
and length xs ≤ n
and i < length xs
and j < length xs
and i 6= j

shows xs ! i 6= xs ! j
〈proof 〉

lemma inc-one-bounded-distinct:
[[inc-one-bounded n xs; length xs ≤ n]] =⇒ distinct xs
〈proof 〉

lemma inc-one-bounded-subset-upt:
[[inc-one-bounded n xs; length xs ≤ n]] =⇒ set xs ⊆ {0 ..<n}
〈proof 〉

lemma inc-one-bounded-consD:
inc-one-bounded n (x # xs) =⇒ inc-one-bounded n xs
〈proof 〉

lemma inc-one-bounded-nth:
[[inc-one-bounded n xs; i < length xs]] =⇒ xs ! i = ((λx. Suc x mod n)^^i) (xs !

0 )
〈proof 〉

lemma inc-one-bounded-nth-le:
[[inc-one-bounded n xs; i < length xs; (xs ! 0 ) + i < n]] =⇒
xs ! i = (xs ! 0 ) + i
〈proof 〉

lemma inc-one-bounded-upt1 :
assumes inc-one-bounded n xs
and length xs = Suc k
and Suc k ≤ n
and (xs ! 0 ) + k < n
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shows xs = [xs ! 0 ..<(xs ! 0 ) + Suc k]
〈proof 〉

lemma inc-one-bounded-upt2 :
assumes inc-one-bounded n xs
and length xs = Suc k
and Suc k ≤ n
and n ≤ (xs ! 0 ) + k

shows xs = [xs ! 0 ..<n] @ [0 ..<(xs ! 0 ) + Suc k − n]
〈proof 〉

lemmas inc-one-bounded-upt = inc-one-bounded-upt1 inc-one-bounded-upt2

lemma is-rot-sublist-nil:
is-rot-sublist xs []
〈proof 〉

lemma rotate-upt:
m ≤ n =⇒ rotate m [0 ..<n] = [m..<n] @ [0 ..<m]
〈proof 〉

lemma inc-one-bounded-is-rot-sublist:
assumes inc-one-bounded n xs length xs ≤ n
shows is-rot-sublist [0 ..<n] xs
〈proof 〉

lemma is-rot-sublist-idx:
is-rot-sublist [0 ..<length xs] ys =⇒ is-rot-sublist xs (map ((!) xs) ys)
〈proof 〉

lemma is-rot-sublist-upt-eq-upt-hd:
[[is-rot-sublist [0 ..<Suc n] ys; length ys = Suc n; ys ! 0 = 0 ]] =⇒ ys = [0 ..<Suc

n]
〈proof 〉

lemma is-rot-sublist-upt-eq-upt-last:
[[is-rot-sublist [0 ..<Suc n] ys; length ys = Suc n; ys ! n = n]] =⇒ ys = [0 ..<Suc

n]
〈proof 〉

end
theory Count-Util

imports HOL−Library.Multiset
HOL−Combinatorics.List-Permutation
SuffixArray.List-Util
SuffixArray.List-Slice

begin
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3 Counting
3.1 Count List
lemma count-in:

x ∈ set xs =⇒ count-list xs x > 0
〈proof 〉

lemma in-count:
count-list xs x > 0 =⇒ x ∈ set xs
〈proof 〉

lemma notin-count:
count-list xs x = 0 =⇒ x /∈ set xs
〈proof 〉

lemma count-list-eq-count:
count-list xs x = count (mset xs) x
〈proof 〉

lemma count-list-perm:
xs <∼∼> ys =⇒ count-list xs x = count-list ys x
〈proof 〉

lemma in-count-nth-ex:
count-list xs x > 0 =⇒ ∃ i < length xs. xs ! i = x
〈proof 〉

lemma in-count-list-slice-nth-ex:
count-list (list-slice xs i j) x > 0 =⇒ ∃ k < length xs. i ≤ k ∧ k < j ∧ xs ! k = x
〈proof 〉

3.2 Cardinality
lemma count-list-card:

count-list xs x = card {j. j < length xs ∧ xs ! j = x}
〈proof 〉

lemma card-le-eq-card-less-pl-count-list:
fixes s :: ′a :: linorder list
shows card {k. k < length s ∧ s ! k ≤ a} = card {k. k < length s ∧ s ! k < a}

+ count-list s a
〈proof 〉

lemma card-less-idx-upper-strict:
fixes s :: ′a :: linorder list
assumes a ∈ set s
shows card {k. k < length s ∧ s ! k < a} < length s
〈proof 〉
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lemma card-less-idx-upper :
shows card {k. k < length s ∧ s ! k < a} ≤ length s
〈proof 〉

lemma card-pl-count-list-strict-upper :
fixes s :: ′a :: linorder list
shows card {i. i < length s ∧ s ! i < a} + count-list s a ≤ length s
〈proof 〉

3.3 Sorting
lemma sorted-nth-le:

assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} < length xs

shows c ≤ xs ! card {k. k < length xs ∧ xs ! k < c}
〈proof 〉

lemma sorted-nth-le-gen:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} + i < length xs

shows c ≤ xs ! (card {k. k < length xs ∧ xs ! k < c} + i)
〈proof 〉

lemma sorted-nth-less-gen:
assumes sorted xs
and i < card {k. k < length xs ∧ xs ! k < c}

shows xs ! i < c
〈proof 〉

lemma sorted-nth-gr-gen:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} + i < length xs
and count-list xs c ≤ i

shows xs ! (card {k. k < length xs ∧ xs ! k < c} + i) > c
〈proof 〉

end
theory Rank-Util

imports HOL−Library.Multiset
Count-Util
SuffixArray.Prefix

begin

4 Rank Definition
Count how many occurrences of an element are in a certain index in the list

Definition 3.7 from [3]: Rank
definition rank :: ′a list ⇒ ′a ⇒ nat ⇒ nat
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where
rank s x i ≡ count-list (take i s) x

5 Rank Properties
5.1 List Properties
lemma rank-cons-same:

rank (x # xs) x (Suc i) = Suc (rank xs x i)
〈proof 〉

lemma rank-cons-diff :
a 6= x =⇒ rank (a # xs) x (Suc i) = rank xs x i
〈proof 〉

5.2 Counting Properties
lemma rank-length:

rank xs x (length xs) = count-list xs x
〈proof 〉

lemma rank-gre-length:
length xs ≤ n =⇒ rank xs x n = count-list xs x
〈proof 〉

lemma rank-not-in:
x /∈ set xs =⇒ rank xs x i = 0
〈proof 〉

lemma rank-0 :
rank xs x 0 = 0
〈proof 〉

Theorem 3.11 from [3]: Rank Equivalence
lemma rank-card-spec:

rank xs x i = card {j. j < length xs ∧ j < i ∧ xs ! j = x}
〈proof 〉

lemma le-rank-plus-card:
i ≤ j =⇒
rank xs x j = rank xs x i + card {k. k < length xs ∧ i ≤ k ∧ k < j ∧ xs ! k =

x}
〈proof 〉

5.3 Bound Properties
lemma rank-lower-bound:

assumes k < rank xs x i
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shows k < i
〈proof 〉

corollary rank-Suc-ex:
assumes k < rank xs x i
shows ∃ l. i = Suc l
〈proof 〉

lemma rank-upper-bound:
[[i < length xs; xs ! i = x]] =⇒ rank xs x i < count-list xs x
〈proof 〉

lemma rank-idx-mono:
i ≤ j =⇒ rank xs x i ≤ rank xs x j
〈proof 〉

lemma rank-less:
[[i < length xs; i < j; xs ! i = x]] =⇒ rank xs x i < rank xs x j
〈proof 〉

lemma rank-upper-bound-gen:
rank xs x i ≤ count-list xs x
〈proof 〉

5.4 Sorted Properties
lemma sorted-card-rank-idx:

assumes sorted xs
and i < length xs

shows i = card {j. j < length xs ∧ xs ! j < xs ! i} + rank xs (xs ! i) i
〈proof 〉

lemma sorted-rank:
assumes sorted xs
and i < length xs
and xs ! i = a

shows rank xs a i = i − card {k. k < length xs ∧ xs ! k < a}
〈proof 〉

lemma sorted-rank-less:
assumes sorted xs
and i < length xs
and xs ! i < a

shows rank xs a i = 0
〈proof 〉

lemma sorted-rank-greater :
assumes sorted xs
and i < length xs
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and xs ! i > a
shows rank xs a i = count-list xs a
〈proof 〉

end
theory Select-Util

imports Count-Util
SuffixArray.Sorting-Util

begin

6 Select Definition
Find nth occurrence of an element in a list

Definition 3.8 from [3]: Select
fun select :: ′a list ⇒ ′a ⇒ nat ⇒ nat

where
select [] - - = 0 |
select (a#xs) x 0 = (if x = a then 0 else Suc (select xs x 0 )) |
select (a#xs) x (Suc i)= (if x = a then Suc (select xs x i) else Suc (select xs x
(Suc i)))

7 Select Properties
7.1 Length Properties
lemma notin-imp-select-length:

x /∈ set xs =⇒ select xs x i = length xs
〈proof 〉

lemma select-length-imp-count-list-less:
select xs x i = length xs =⇒ count-list xs x ≤ i
〈proof 〉

lemma select-Suc-length:
select xs x i = length xs =⇒ select xs x (Suc i) = length xs
〈proof 〉

7.2 List Properties
lemma select-cons-neq:

[[select xs x i = j; x 6= a]] =⇒ select (a # xs) x i= Suc j
〈proof 〉

lemma cons-neq-select:
[[select (a # xs) x i = Suc j; x 6= a]] =⇒ select xs x i = j
〈proof 〉
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lemma cons-eq-select:
select (x # xs) x (Suc i) = Suc j =⇒ select xs x i = j
〈proof 〉

lemma select-cons-eq:
select xs x i = j =⇒ select (x # xs) x (Suc i) = Suc j
〈proof 〉

7.3 Bound Properties
lemma select-max:

select xs x i ≤ length xs
〈proof 〉

7.4 Nth Properties
lemma nth-select:

[[j < length xs; count-list (take (Suc j) xs) x = Suc i; xs ! j = x]]
=⇒ select xs x i = j

〈proof 〉

lemma nth-select-alt:
[[j < length xs; count-list (take j xs) x = i; xs ! j = x]]

=⇒ select xs x i = j
〈proof 〉

lemma select-nth:
[[select xs x i = j; j < length xs]]

=⇒ count-list (take (Suc j) xs) x = Suc i ∧ xs ! j = x
〈proof 〉

lemma select-nth-alt:
[[select xs x i = j; j < length xs]]

=⇒ count-list (take j xs) x = i ∧ xs ! j = x
〈proof 〉

lemma select-less-0-nth:
assumes i < length xs
and i < select xs x 0

shows xs ! i 6= x
〈proof 〉

7.5 Sorted Properties
Theorem 3.10 from [3]: Select Sorted Equivalence
lemma sorted-select:

assumes sorted xs
and i < count-list xs x

shows select xs x i = card {j. j < length xs ∧ xs ! j < x} + i
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〈proof 〉

corollary sorted-select-0-plus:
assumes sorted xs
and i < count-list xs x

shows select xs x i = select xs x 0 + i
〈proof 〉

corollary select-sorted-0 :
assumes sorted xs
and 0 < count-list xs x

shows select xs x 0 = card {j. j < length xs ∧ xs ! j < x}
〈proof 〉

end
theory Rank-Select

imports Main
Rank-Util
Select-Util

begin

8 Rank and Select Properties
8.1 Correctness of Rank and Select
Correctness theorem statements based on [1].

8.1.1 Rank Correctness
lemma rank-spec:

rank s x i = count (mset (take i s)) x
〈proof 〉

8.1.2 Select Correctness
lemma select-spec:

select s x i = j
=⇒ (j < length s ∧ rank s x j = i) ∨ (j = length s ∧ count-list s x ≤ i )
〈proof 〉

Theorem 3.9 from [3]: Correctness of Select
lemma select-correct:

select s x i ≤ length s ∧
(select s x i < length s −→ rank s x (select s x i) = i) ∧
(select s x i = length s −→ count-list s x ≤ i)

〈proof 〉
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8.2 Rank and Select
lemma rank-select:

select xs x i < length xs =⇒ rank xs x (select xs x i) = i
〈proof 〉

lemma select-upper-bound:
i < rank xs x j =⇒ select xs x i < length xs
〈proof 〉

lemma select-out-of-range:
assumes count-list xs a ≤ i
and mset xs = mset ys

shows select ys a i = length ys
〈proof 〉

8.3 Sorted Properties
lemma sorted-nth-gen:

assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} < length xs
and count-list xs c > i

shows xs ! (card {k. k < length xs ∧ xs ! k < c} + i) = c
〈proof 〉

lemma sorted-nth-gen-alt:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < a} ≤ i
and i < card {k. k < length xs ∧ xs ! k < a} + card {k. k < length xs ∧ xs

! k = a}
shows xs ! i = a
〈proof 〉

end
theory SA-Util

imports SuffixArray.Suffix-Array-Properties
SuffixArray.Simple-SACA-Verification
../counting/Rank-Select

begin

9 Suffix Array Properties
9.1 Bijections
lemma bij-betw-empty:

bij-betw f {} {}
〈proof 〉

lemma bij-betw-sort-idx-ex:
assumes xs = sort ys
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shows ∃ f . bij-betw f {j. j < length ys ∧ ys ! j < x} {j. j < length xs ∧ xs ! j <
x}
〈proof 〉

9.2 Suffix Properties
lemma suffix-hd-set-eq:
{k. k < length s ∧ s ! k = c } = {k. k < length s ∧ (∃ xs. suffix s k = c # xs)}
〈proof 〉

lemma suffix-hd-set-less:
{k. k < length s ∧ s ! k < c } = {k. k < length s ∧ suffix s k < [c]}
〈proof 〉

lemma select-nth-suffix-start1 :
assumes i < card {k. k < length s ∧ (∃ as. suffix s k = a # as)}
and xs = sort s

shows select xs a i = card {k. k < length s ∧ suffix s k < [a]} + i
〈proof 〉

lemma select-nth-suffix-start2 :
assumes card {k. k < length s ∧ (∃ as. suffix s k = a # as)} ≤ i
and xs = sort s

shows select xs a i = length xs
〈proof 〉

context Suffix-Array-General begin

9.3 General Properties
lemma sa-subset-upt:

set (sa s) ⊆ {0 ..< length s}
〈proof 〉

lemma sa-suffix-sorted:
sorted (map (suffix s) (sa s))
〈proof 〉

9.4 Nth Properties
lemma sa-nth-suc-le:

assumes j < length s
and i < j
and s ! (sa s ! i) = s ! (sa s ! j)
and Suc (sa s ! i) < length s
and Suc (sa s ! j) < length s

shows s ! Suc (sa s ! i) ≤ s ! (Suc (sa s ! j))
〈proof 〉

lemma sa-nth-suc-le-ex:
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assumes j < length s
and i < j
and s ! (sa s ! i) = s ! (sa s ! j)
and Suc (sa s ! i) < length s
and Suc (sa s ! j) < length s

shows ∃ k l. k < l ∧ sa s ! k = Suc (sa s ! i) ∧ sa s ! l = Suc (sa s ! j)
〈proof 〉

lemma sorted-map-nths-sa:
sorted (map (nth s) (sa s))
〈proof 〉

lemma perm-map-nths-sa:
s <∼∼> map (nth s) (sa s)
〈proof 〉

lemma sort-eq-map-nths-sa:
sort s = map (nth s) (sa s)
〈proof 〉

lemma sort-sa-nth:
i < length s =⇒ sort s ! i = s ! (sa s ! i)
〈proof 〉

lemma inj-on-nth-sa-upt:
assumes j ≤ length s l ≤ length s

shows inj-on (nth (sa s)) ({i..<j} ∪ {k..<l})
〈proof 〉

lemma nth-sa-upt-set:
nth (sa s) ‘ {0 ..<length s} = {0 ..<length s}
〈proof 〉

9.5 Valid List Properties
lemma valid-list-sa-hd:

assumes valid-list s
shows ∃n. length s = Suc n ∧ sa s ! 0 = n
〈proof 〉

lemma valid-list-not-last:
assumes valid-list s
and i < length s
and j < length s
and i 6= j
and s ! i = s ! j

shows i < length s − 1 ∧ j < length s − 1
〈proof 〉
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end

lemma Suffix-Array-General-ex:
∃ sa. Suffix-Array-General sa
〈proof 〉

end
theory SA-Count

imports Rank-Select
../util/SA-Util

begin

10 Counting Properties on Suffix Arays
context Suffix-Array-General begin

10.1 Counting Properties
lemma sa-card-index:

assumes i < length s
shows i = card {j. j < length s ∧ suffix s (sa s ! j) < suffix s (sa s ! i)}

(is i = card ?A)
〈proof 〉

corollary sa-card-s-index:
assumes i < length s
shows i = card {j. j < length s ∧ suffix s j < suffix s (sa s ! i)}

(is i = card ?A)
〈proof 〉

lemma sa-card-s-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! j < s ! (sa s ! i)} +

card {j. j < length s ∧ s ! j = s ! (sa s ! i) ∧ suffix s j < suffix s (sa s !
i)}
〈proof 〉

lemma sa-card-index-lower-bound:
assumes i < length s
shows card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)} ≤ i
(is card ?A ≤ i)
〈proof 〉

lemma sa-card-rank-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}

+ rank (sort s) (s ! (sa s ! i)) i
〈proof 〉
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corollary sa-card-rank-s-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! j < s ! (sa s ! i)}

+ rank (sort s) (s ! (sa s ! i)) i
〈proof 〉

lemma sa-rank-nth:
assumes i < length s
shows rank (sort s) (s ! (sa s ! i)) i =

card {j. j < length s ∧ s ! j = s ! (sa s ! i) ∧
suffix s j < suffix s (sa s ! i)}

〈proof 〉

lemma sa-suffix-nth:
assumes card {k. k < length s ∧ s ! k < c } + i < length s
and i < count-list s c

shows ∃ as. suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i)) = c # as
〈proof 〉

10.2 Ordering Properties
lemma sa-suffix-order-le:

assumes card {k. k < length s ∧ s ! k < c } < length s
shows [c] ≤ suffix s (sa s ! (card {k. k < length s ∧ s ! k < c}))
〈proof 〉

lemma sa-suffix-order-le-gen:
assumes card {k. k < length s ∧ s ! k < c } + i < length s
shows [c] ≤ suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i))
〈proof 〉

lemma sa-suffix-nth-less:
assumes i < card {k. k < length s ∧ s ! k < c}
shows ∀ as. suffix s (sa s ! i) < c # as
〈proof 〉

lemma sa-suffix-nth-gr :
assumes card {k. k < length s ∧ s ! k < c} + i < length s
and count-list s c ≤ i

shows ∀ as. c # as < suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i))
〈proof 〉

end

end
theory BWT

imports ../../util/SA-Util

begin
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11 Burrows-Wheeler Transform
Based on [2]

Definition 3.3 from [3]: Canonical BWT
definition bwt-canon :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list

where
bwt-canon s = map last (sort (map (λx. rotate x s) [0 ..<length s]))

context Suffix-Array-General begin

Definition 3.4 from [3]: Suffix Array Version of the BWT
definition bwt-sa :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list

where
bwt-sa s = map (λi. s ! ((i + length s − Suc 0 ) mod (length s))) (sa s)

end

12 BWT Verification
12.1 List Rotations
lemma rotate-suffix-prefix:

assumes i < length xs
shows rotate i xs = suffix xs i @ prefix xs i
〈proof 〉

lemma rotate-last:
assumes i < length xs
shows last (rotate i xs) = xs ! ((i + length xs − Suc 0 ) mod (length xs))
〈proof 〉

lemma (in Suffix-Array-General) map-last-rotations:
map last (map (λi. rotate i s) (sa s)) = bwt-sa s
〈proof 〉

lemma distinct-rotations:
assumes valid-list s
and i < length s
and j < length s
and i 6= j

shows rotate i s 6= rotate j s
〈proof 〉

12.2 Ordering
lemma list-less-suffix-app-prefix-1 :

assumes valid-list xs
and i < length xs
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and j < length xs
and suffix xs i < suffix xs j

shows suffix xs i @ prefix xs i < suffix xs j @ prefix xs j
〈proof 〉

lemma list-less-suffix-app-prefix-2 :
assumes valid-list xs
and i < length xs
and j < length xs
and suffix xs i @ prefix xs i < suffix xs j @ prefix xs j

shows suffix xs i < suffix xs j
〈proof 〉

corollary list-less-suffix-app-prefix:
assumes valid-list xs
and i < length xs
and j < length xs

shows suffix xs i < suffix xs j ←→
suffix xs i @ prefix xs i < suffix xs j @ prefix xs j

〈proof 〉

Theorem 3.5 from [3]: Same Suffix and Rotation Order
lemma list-less-suffix-rotate:

assumes valid-list xs
and i < length xs
and j < length xs

shows suffix xs i < suffix xs j ←→ rotate i xs < rotate j xs
〈proof 〉

lemma (in Suffix-Array-General) sorted-rotations:
assumes valid-list s
shows strict-sorted (map (λi. rotate i s) (sa s))
〈proof 〉

12.3 BWT Equivalence
Theorem 3.6 from [3]: BWT and Suffix Array Correspondence Canoncial
BWT and BWT via Suffix Array Correspondence
theorem (in Suffix-Array-General) bwt-canon-eq-bwt-sa:

assumes valid-list s
shows bwt-canon s = bwt-sa s
〈proof 〉

end
theory BWT-SA-Corres

imports BWT
../../counting/SA-Count
../../util/Rotated-Substring

begin
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13 BWT and Suffix Array Correspondence
context Suffix-Array-General begin

Definition 3.12 from [3]: BWT Permutation
definition bwt-perm :: ( ′a :: {linorder , order-bot}) list ⇒ nat list

where
bwt-perm s = map (λi. (i + length s − Suc 0 ) mod (length s)) (sa s)

13.1 BWT Using Suffix Arrays
lemma map-bwt-indexes:

fixes s :: ( ′a :: {linorder , order-bot}) list
shows bwt-sa s = map (λi. s ! i) (bwt-perm s)
〈proof 〉

lemma map-bwt-indexes-perm:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows bwt-perm s <∼∼> [0 ..<length s]
〈proof 〉

lemma bwt-sa-perm:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows bwt-sa s <∼∼> s
〈proof 〉

lemma bwt-sa-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-sa s ! i = s ! (((sa s ! i) + length s − 1 ) mod (length s))
〈proof 〉

lemma bwt-perm-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-perm s ! i = ((sa s ! i) + length s − 1 ) mod (length s)
〈proof 〉

lemma bwt-perm-s-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-sa s ! i = s ! (bwt-perm s ! i)
〈proof 〉

lemma bwt-sa-length:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows length (bwt-sa s) = length s
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〈proof 〉

lemma bwt-perm-length:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows length (bwt-perm s) = length s
〈proof 〉

lemma ex-bwt-perm-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes k :: nat
assumes k < length s
shows ∃ i < length s. bwt-perm s ! i = k
〈proof 〉

lemma valid-list-sa-index-helper :
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < length s
and j < length s
and i 6= j
and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)

shows sa s ! i 6= 0
〈proof 〉

Theorem 3.13 from [3]: Suffix Relative Order Preservation Relative order
of the suffixes is maintained by the BWT permutation
lemma bwt-relative-order :

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < j
and j < length s
and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)

shows suffix s (bwt-perm s ! i) < suffix s (bwt-perm s ! j)
〈proof 〉

lemma bwt-sa-card-s-idx:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s
shows i = card {j. j < length s ∧ j < i ∧ bwt-sa s ! j 6= bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)}

〈proof 〉

lemma bwt-perm-to-sa-idx:
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assumes valid-list s
and i < length s

shows ∃ k < length s. sa s ! k = bwt-perm s ! i ∧
k = card {j. j < length s ∧ s ! j < bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)}

〈proof 〉

corollary bwt-perm-eq:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows bwt-perm s ! i =
sa s ! (card {j. j < length s ∧ s ! j < bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)})

〈proof 〉

13.2 BWT Rank Properties
lemma bwt-perm-rank-nth:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows rank (bwt-sa s) (bwt-sa s ! i) i =
card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧

suffix s j < suffix s (bwt-perm s ! i)}
〈proof 〉

lemma bwt-sa-card-rank-s-idx:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows i = card {j. j < length s ∧ j < i ∧ bwt-sa s ! j 6= bwt-sa s ! i} +
rank (bwt-sa s) (bwt-sa s ! i) i

〈proof 〉

13.3 Suffix Array and BWT Rank
lemma sa-bwt-perm-same-rank:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < length s
and j < length s
and sa s ! i = bwt-perm s ! j

shows rank (sort s) (s ! (sa s ! i)) i = rank (bwt-sa s) (bwt-sa s ! j) j
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〈proof 〉

Theorem 3.17 from [3]: Same Rank Rank for each symbol is the same in
the BWT and suffix array
lemma rank-same-sa-bwt-perm:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
fixes v :: ′a
assumes valid-list s
and i < length s
and j < length s
and s ! (sa s ! i) = v
and bwt-sa s ! j = v
and rank (sort s) v i = rank (bwt-sa s) v j

shows sa s ! i = bwt-perm s ! j
〈proof 〉

lemma rank-bwt-card-suffix:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
fixes a :: ′a
assumes i < length s
shows rank (bwt-sa s) a i =

card {k. k < length s ∧ k < i ∧ bwt-sa s ! k = a ∧
a # suffix s (sa s ! k) < a # suffix s (sa s ! i)}

〈proof 〉

lemma sa-to-bwt-perm-idx:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows sa s ! i =
bwt-perm s ! (select (bwt-sa s) (s ! (sa s ! i)) (rank (sort s) (s ! (sa s ! i)) i))

〈proof 〉

lemma suffix-bwt-perm-sa:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s
and bwt-sa s ! i 6= bot

shows suffix s (bwt-perm s ! i) = bwt-sa s ! i # suffix s (sa s ! i)
〈proof 〉

end

end
theory IBWT
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imports BWT-SA-Corres
begin

14 Inverse Burrows-Wheeler Transform
Inverse BWT algorithm obtained from [6]

14.1 Abstract Versions
context Suffix-Array-General begin

These are abstract because they use additional information about the
original string and its suffix array.

Definition 3.15 from [3]: Abstract LF-Mapping
fun lf-map-abs :: ′a list ⇒ nat ⇒ nat
where
lf-map-abs s i = select (sort s) (bwt-sa s ! i) (rank (bwt-sa s) (bwt-sa s ! i) i)

Definition 3.16 from [3]: Inverse BWT Permutation
fun ibwt-perm-abs :: nat ⇒ ′a list ⇒ nat ⇒ nat list
where
ibwt-perm-abs 0 - - = [] |
ibwt-perm-abs (Suc n) s i = ibwt-perm-abs n s (lf-map-abs s i) @ [i]

end

14.2 Concrete Versions
These are concrete because they only rely on the BWT-transformed sequence
without any additional information.

Definition 3.14 from [3]: Inverse BWT - LF-mapping
fun lf-map-conc :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒ nat

where
lf-map-conc ss bs i = (select ss (bs ! i) 0 ) + (rank bs (bs ! i) i)

fun ibwt-perm-conc :: nat ⇒ ( ′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒
nat list

where
ibwt-perm-conc 0 - - - = [] |
ibwt-perm-conc (Suc n) ss bs i = ibwt-perm-conc n ss bs (lf-map-conc ss bs i)

@ [i]

Definition 3.14 from [3]: Inverse BWT - Inverse BWT Rotated Subse-
quence
fun ibwtn :: nat ⇒ ( ′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒ ′a list
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where
ibwtn 0 - - - = [] |
ibwtn (Suc n) ss bs i = ibwtn n ss bs (lf-map-conc ss bs i) @ [bs ! i]

Definition 3.14 from [3]: Inverse BWT
fun ibwt :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list

where
ibwt bs = ibwtn (length bs) (sort bs) bs (select bs bot 0 )

15 List Filter
lemma filter-nth-app-upt:

filter (λi. P (xs ! i)) [0 ..<length xs] = filter (λi. P ((xs @ ys) ! i)) [0 ..<length
xs]
〈proof 〉

lemma filter-eq-nth-upt:
filter P xs = map (λi. xs ! i) (filter (λi. P (xs ! i)) [0 ..<length xs])
〈proof 〉

lemma distinct-filter-nth-upt:
distinct (filter (λi. P (xs ! i)) [0 ..<length xs])
〈proof 〉

lemma filter-nth-upt-set:
set (filter (λi. P (xs ! i)) [0 ..<length xs]) = {i. i < length xs ∧ P (xs ! i)}
〈proof 〉

lemma filter-length-upt:
length (filter (λi. P (xs ! i)) [0 ..<length xs]) = card {i. i < length xs ∧ P (xs !

i)}
〈proof 〉

lemma perm-filter-length:
xs <∼∼> ys =⇒
length (filter (λi. P (xs ! i)) [0 ..<length xs])
= length (filter (λi. P (ys ! i)) [0 ..<length ys])
〈proof 〉

16 Verification of the Inverse Burrows-Wheeler Trans-
form

context Suffix-Array-General begin

16.1 LF-Mapping Simple Properties
lemma lf-map-abs-less-length:

fixes s :: ′a list
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fixes i j :: nat
assumes i < length s

shows lf-map-abs s i < length s
〈proof 〉

corollary lf-map-abs-less-length-funpow:
fixes s :: ′a list
fixes i j :: nat
assumes i < length s

shows ((lf-map-abs s)^^k) i < length s
〈proof 〉

lemma lf-map-abs-equiv:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i r :: nat
fixes v :: ′a
assumes i < length (bwt-sa s)
and v = bwt-sa s ! i
and r = rank (bwt-sa s) v i

shows lf-map-abs s i = card {j. j < length (bwt-sa s) ∧ bwt-sa s ! j < v} + r
〈proof 〉

16.2 LF-Mapping Correctness
lemma sa-lf-map-abs:

assumes valid-list s
and i < length s

shows sa s ! (lf-map-abs s i) = (sa s ! i + length s − Suc 0 ) mod (length s)
〈proof 〉

Theorem 3.18 from [3]: Abstract LF-Mapping Correctness
corollary bwt-perm-lf-map-abs:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows bwt-perm s ! (lf-map-abs s i) = (bwt-perm s ! i + length s − Suc 0 ) mod
(length s)
〈proof 〉

16.3 Backwards Inverse BWT Simple Properties
lemma ibwt-perm-abs-length:

fixes s :: ′a list
fixes n i :: nat
shows length (ibwt-perm-abs n s i) = n
〈proof 〉

lemma ibwt-perm-abs-nth:
fixes s :: ′a list
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fixes k n i :: nat
assumes k ≤ n
shows (ibwt-perm-abs (Suc n) s i) ! k = ((lf-map-abs s)^^(n−k)) i
〈proof 〉

corollary ibwt-perm-abs-alt-nth:
fixes s :: ′a list
fixes n i k :: nat
assumes k < n
shows (ibwt-perm-abs n s i) ! k = ((lf-map-abs s)^^(n − Suc k)) i
〈proof 〉

lemma ibwt-perm-abs-nth-le-length:
fixes s :: ′a list
fixes n i k :: nat
assumes i < length s
assumes k < n
shows (ibwt-perm-abs n s i) ! k < length s
〈proof 〉

lemma ibwt-perm-abs-map-ver :
ibwt-perm-abs n s i = map (λx. ((lf-map-abs s)^^x) i) (rev [0 ..<n])
〈proof 〉

16.4 Backwards Inverse BWT Correctness
lemma inc-one-bounded-sa-ibwt-perm-abs:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s

shows inc-one-bounded (length s) (map ((!) (sa s)) (ibwt-perm-abs n s i))
(is inc-one-bounded ?n ?xs)

〈proof 〉

corollary is-rot-sublist-sa-ibwt-perm-abs:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s
and n ≤ length s

shows is-rot-sublist [0 ..<length s] (map ((!) (sa s)) (ibwt-perm-abs n s i))
〈proof 〉

lemma inc-one-bounded-bwt-perm-ibwt-perm-abs:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s

27



shows inc-one-bounded (length s) (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
〈proof 〉

Theorem 3.19 from [3]: Abstract Inverse BWT Permutation Rotated
Sub-list
corollary is-rot-sublist-bwt-perm-ibwt-perm-abs:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s
and n ≤ length s
shows is-rot-sublist [0 ..<length s] (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
〈proof 〉

lemma bwt-ibwt-perm-sa-lookup-idx:
assumes valid-list s
shows map ((!) (bwt-perm s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot

0 ))
= [0 ..<length s]

〈proof 〉

lemma map-bwt-sa-bwt-perm:
∀ x ∈ set xs. x < length s =⇒
map ((!) (bwt-sa s)) xs = map ((!) s) (map ((!) (bwt-perm s)) xs)
〈proof 〉

theorem ibwt-perm-abs-bwt-sa-lookup-correct:
fixes s :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
shows map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0 ))

= s
〈proof 〉

16.5 Concretization
lemma lf-map-abs-eq-conc:

i < length s =⇒ lf-map-abs s i = lf-map-conc (sort (bwt-sa s)) (bwt-sa s) i
〈proof 〉

lemma ibwt-perm-abs-conc-eq:
i < length s =⇒ ibwt-perm-abs n s i = ibwt-perm-conc n (sort (bwt-sa s)) (bwt-sa

s) i
〈proof 〉

theorem ibwtn-bwt-sa-lookup-correct:
fixes s xs ys :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
and xs = sort (bwt-sa s)
and ys = bwt-sa s
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shows map ((!) ys) (ibwt-perm-conc (length ys) xs ys (select ys bot 0 )) = s
〈proof 〉

lemma ibwtn-eq-map-ibwt-perm-conc:
shows ibwtn n ss bs i = map ((!) bs) (ibwt-perm-conc n ss bs i)
〈proof 〉

theorem ibwtn-correct:
fixes s xs ys :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
and xs = sort (bwt-sa s)
and ys = bwt-sa s

shows ibwtn (length ys) xs ys (select ys bot 0 ) = s
〈proof 〉

16.6 Inverse BWT Correctness
BWT (suffix array version) is invertible
theorem ibwt-correct:

fixes s :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
shows ibwt (bwt-sa s) = s
〈proof 〉

end

Theorem 3.20 from [3]: Correctness of the Inverse BWT
theorem ibwt-correct-canon:

fixes s :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
shows ibwt (bwt-canon s) = s
〈proof 〉

end
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