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Abstract

The Burrows-Wheeler transform (BWT) [2] is an invertible lossless
transformation that permutes input sequences into alternate sequences
of the same length that frequently contain long localized regions that
involve clusters consisting of just a few distinct symbols, and sometimes
also include long runs of same-symbol repetitions. Moreover, there is a
one-to-one correspondence between the BWT and suffix arrays [7]. As
a consequence, the BWT is widely used in data compression and as an
indexing data structure for pattern search. In this formalization [4],
we present the formal verification of both the BWT and its inverse,
building on a formalization of suffix arrays [5]. This is the artefact of
our CPP paper [3].
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theory Nat-Mod-Helper
imports Main

begin

1 Nat Modulo Helper
lemma nat-mod-add-neq-self :

[[a < (n :: nat); b < n; b 6= 0 ]] =⇒ (a + b) mod n 6= a
by (metis add-diff-cancel-left ′ mod-if mod-mult-div-eq mod-mult-self1-is-0 )

lemma nat-mod-a-pl-b-eq1 :
[[n + b ≤ a; a < (n :: nat)]] =⇒ (a + b) mod n = b − (n − a)
using order-le-less-trans by blast

lemma not-mod-a-pl-b-eq2 :
[[n − a ≤ b; a < n; b < (n :: nat)]] =⇒ (a + b) mod n = b − (n − a)
using Nat.diff-diff-right add.commute mod-if by auto

end
theory Rotated-Substring

imports Nat-Mod-Helper
begin

2 Rotated Sublists
definition is-sublist :: ′a list ⇒ ′a list ⇒ bool

where
is-sublist xs ys = (∃ as bs. xs = as @ ys @ bs)

definition is-rot-sublist :: ′a list ⇒ ′a list ⇒ bool
where

is-rot-sublist xs ys = (∃n. is-sublist (rotate n xs) ys)

definition inc-one-bounded :: nat ⇒ nat list ⇒ bool
where

inc-one-bounded n xs ≡
(∀ i. Suc i < length xs −→ xs ! Suc i = Suc (xs ! i) mod n) ∧
(∀ i < length xs. xs ! i < n)

lemma inc-one-boundedD:
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[[inc-one-bounded n xs; Suc i < length xs]] =⇒ xs ! Suc i = Suc (xs ! i) mod n
[[inc-one-bounded n xs; i < length xs]] =⇒ xs ! i < n
using inc-one-bounded-def by blast+

lemma inc-one-bounded-nth-plus:
[[inc-one-bounded n xs; i + k < length xs]] =⇒ xs ! (i + k) = (xs ! i + k) mod n

proof (induct k)
case 0
then show ?case

by (simp add: inc-one-boundedD(2 ))
next

case (Suc k)
then show ?case

by (metis Suc-lessD add-Suc-right inc-one-bounded-def mod-Suc-eq)
qed

lemma inc-one-bounded-neq:
[[inc-one-bounded n xs; length xs ≤ n; i + k < length xs; k 6= 0 ]] =⇒ xs ! (i + k)
6= xs ! i

using inc-one-bounded-nth-plus nat-mod-add-neq-self
by (simp add: inc-one-boundedD(2 ) linorder-not-le)

corollary inc-one-bounded-neq-nth:
assumes inc-one-bounded n xs
and length xs ≤ n
and i < length xs
and j < length xs
and i 6= j

shows xs ! i 6= xs ! j
proof (cases i < j)

assume i < j
then show ?thesis
by (metis assms(1 ,2 ,4 ) canonically-ordered-monoid-add-class.lessE inc-one-bounded-neq)

next
assume ¬ i < j
then show ?thesis
by (metis assms(1 ,2 ,3 ,5 ) canonically-ordered-monoid-add-class.lessE inc-one-bounded-neq

le-neq-implies-less linorder-not-le)
qed

lemma inc-one-bounded-distinct:
[[inc-one-bounded n xs; length xs ≤ n]] =⇒ distinct xs
using distinct-conv-nth inc-one-bounded-neq-nth by blast

lemma inc-one-bounded-subset-upt:
[[inc-one-bounded n xs; length xs ≤ n]] =⇒ set xs ⊆ {0 ..<n}
by (metis atLeastLessThan-iff in-set-conv-nth inc-one-boundedD(2 ) less-eq-nat.simps(1 )

subset-code(1 ))
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lemma inc-one-bounded-consD:
inc-one-bounded n (x # xs) =⇒ inc-one-bounded n xs
unfolding inc-one-bounded-def
using bot-nat-0 .not-eq-extremum lessI less-zeroE mod-less-divisor by fastforce

lemma inc-one-bounded-nth:
[[inc-one-bounded n xs; i < length xs]] =⇒ xs ! i = ((λx. Suc x mod n)^^i) (xs !

0 )
proof (induct i)

case 0
then show ?case

by simp
next

case (Suc i)
note IH = this

from IH
have xs ! i = ((λx. Suc x mod n) ^^ i) (xs ! 0 )

by simp
hence Suc (xs ! i) mod n = ((λx. Suc x mod n) ^^ Suc i) (xs ! 0 )

by force
moreover
from inc-one-boundedD(1 )[OF IH (2 ,3 )]
have xs ! Suc i = Suc (xs ! i) mod n.
ultimately show ?case

by presburger
qed

lemma inc-one-bounded-nth-le:
[[inc-one-bounded n xs; i < length xs; (xs ! 0 ) + i < n]] =⇒
xs ! i = (xs ! 0 ) + i

by (metis add-cancel-right-left inc-one-bounded-nth-plus mod-if )

lemma inc-one-bounded-upt1 :
assumes inc-one-bounded n xs
and length xs = Suc k
and Suc k ≤ n
and (xs ! 0 ) + k < n

shows xs = [xs ! 0 ..<(xs ! 0 ) + Suc k]
proof (intro list-eq-iff-nth-eq[THEN iffD2 ] conjI impI allI )

show length xs = length [xs ! 0 ..<xs ! 0 + Suc k]
using assms(2 ) by force

next
fix i
assume i < length xs
hence [xs ! 0 ..<xs ! 0 + Suc k] ! i = xs ! 0 + i

by (metis add-less-cancel-left assms(2 ) nth-upt)
moreover
have xs ! 0 + i < n
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using ‹i < length xs› assms(2 ,4 ) by linarith
with inc-one-bounded-nth-le[OF assms(1 ) ‹i < length xs›]
have xs ! i = xs ! 0 + i

by simp
ultimately show xs ! i = [xs ! 0 ..<xs ! 0 + Suc k] ! i

by presburger
qed

lemma inc-one-bounded-upt2 :
assumes inc-one-bounded n xs
and length xs = Suc k
and Suc k ≤ n
and n ≤ (xs ! 0 ) + k

shows xs = [xs ! 0 ..<n] @ [0 ..<(xs ! 0 ) + Suc k − n]
proof (intro list-eq-iff-nth-eq[THEN iffD2 ] conjI impI allI )

show length xs = length ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n])
using assms(1 ) assms(2 ) assms(4 ) inc-one-boundedD(2 ) less-or-eq-imp-le by

auto
next

fix i
assume i < length xs
show xs ! i = ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i
proof (cases i < length [xs ! 0 ..<n])

assume i < length [xs ! 0 ..<n]
hence ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i = [xs ! 0 ..<n] ! i

by (meson nth-append)
moreover
have [xs ! 0 ..<n] ! i = xs ! 0 + i

using ‹i < length [xs ! 0 ..<n]› by force
moreover
have xs ! 0 + i < n

using ‹i < length [xs ! 0 ..<n]› by auto
with inc-one-bounded-nth-le[OF assms(1 ) ‹i < length xs›]
have xs ! i = xs ! 0 + i

by blast
ultimately show xs ! i = ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i

by simp
next

assume ¬ i < length [xs ! 0 ..<n]
hence ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i =

[0 ..<xs ! 0 + Suc k − n] ! (i − length [xs ! 0 ..<n] )
by (meson nth-append)

moreover
have [0 ..<xs ! 0 + Suc k − n] ! (i − length [xs ! 0 ..<n]) = i − (n − xs ! 0 )

using ‹i < length xs› add-0 assms(2 ) assms(4 ) by fastforce
moreover
{

have i < n
using ‹i < length xs› assms(2 ) assms(3 ) by linarith
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moreover
from inc-one-boundedD(2 )[OF assms(1 ), of 0 ]
have xs ! 0 < n

by (simp add: assms(2 ))
moreover
have n − xs ! 0 ≤ i

using ‹¬ i < length [xs ! 0 ..<n]› by force
ultimately have xs ! i = i − (n − xs ! 0 )

using not-mod-a-pl-b-eq2 [of n xs ! 0 i]
inc-one-bounded-nth-plus[OF assms(1 ), of 0 i, simplified, OF ‹i <

length xs›]
by presburger

}
ultimately show xs ! i = ([xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]) ! i

by argo
qed

qed

lemmas inc-one-bounded-upt = inc-one-bounded-upt1 inc-one-bounded-upt2

lemma is-rot-sublist-nil:
is-rot-sublist xs []
by (metis append-Nil is-rot-sublist-def is-sublist-def )

lemma rotate-upt:
m ≤ n =⇒ rotate m [0 ..<n] = [m..<n] @ [0 ..<m]
by (metis diff-zero le-Suc-ex length-upt rotate-append upt-add-eq-append zero-order(1 ))

lemma inc-one-bounded-is-rot-sublist:
assumes inc-one-bounded n xs length xs ≤ n
shows is-rot-sublist [0 ..<n] xs
unfolding is-rot-sublist-def is-sublist-def

proof (cases length xs)
case 0
then show ∃na as bs. rotate na [0 ..<n] = as @ xs @ bs

using append-Nil by blast
next

case (Suc k)
hence Suc k ≤ n

using assms(2 ) by auto

have (xs ! 0 ) + k < n =⇒ ∃na as bs. rotate na [0 ..<n] = as @ xs @ bs
proof −

assume (xs ! 0 ) + k < n
with inc-one-bounded-upt(1 )[OF assms(1 ) Suc ‹Suc k ≤ n›]
have xs = [xs ! 0 ..<xs ! 0 + Suc k]

by blast
moreover
have xs ! 0 + Suc k ≤ n
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by (simp add: Suc-leI ‹xs ! 0 + k < n›)
with upt-add-eq-append[of xs ! 0 xs ! 0 + Suc k n − (xs ! 0 + Suc k)]
have [xs ! 0 ..<n] = [xs ! 0 ..<xs ! 0 + Suc k] @ [xs ! 0 + Suc k..<n]

by (metis le-add1 le-add-diff-inverse)
with upt-add-eq-append[of 0 xs ! 0 n − xs ! 0 ]
have [0 ..<n] = [0 ..<xs ! 0 ] @ [xs ! 0 ..<xs ! 0 + Suc k] @ [xs ! 0 + Suc k..<n]

using ‹xs ! 0 + Suc k ≤ n› by fastforce
ultimately show ?thesis

by (metis append.right-neutral append-Nil rotate-append)
qed
moreover
have ¬ (xs ! 0 ) + k < n =⇒ ∃na as bs. rotate na [0 ..<n] = as @ xs @ bs
proof −

assume ¬ (xs ! 0 ) + k < n
hence (xs ! 0 ) + k ≥ n

by simp
with inc-one-bounded-upt(2 )[OF assms(1 ) Suc ‹Suc k ≤ n›]
have xs = [xs ! 0 ..<n] @ [0 ..<xs ! 0 + Suc k − n]

by blast
moreover
from inc-one-boundedD(2 )[OF assms(1 ), of 0 ]
have xs ! 0 < n

by (simp add: Suc)
with rotate-upt[of xs ! 0 n]
have rotate (xs ! 0 ) [0 ..<n] = [xs ! 0 ..<n] @ [0 ..<xs ! 0 ]

by linarith
moreover
{

have 0 ≤ xs ! 0 + Suc k − n
by simp

hence [0 ..<xs ! 0 + Suc k − n + (n − Suc k)] =
[0 ..<xs ! 0 + Suc k − n] @ [xs ! 0 + Suc k − n..<xs ! 0 + Suc k −

n + (n − Suc k)]
using upt-add-eq-append[of 0 xs ! 0 + Suc k − n n − Suc k] by blast

moreover
have xs ! 0 = xs ! 0 + Suc k − n + (n − Suc k)

using ‹Suc k ≤ n› ‹n ≤ xs ! 0 + k› by auto
ultimately have [0 ..<xs ! 0 ] = [0 ..<xs ! 0 + Suc k − n] @ [xs ! 0 + Suc k

− n..<xs ! 0 ]
by argo

}
ultimately show ?thesis

by (metis append.assoc append-Nil)
qed
ultimately show ∃na as bs. rotate na [0 ..<n] = as @ xs @ bs

by blast
qed

lemma is-rot-sublist-idx:
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is-rot-sublist [0 ..<length xs] ys =⇒ is-rot-sublist xs (map ((!) xs) ys)
unfolding is-rot-sublist-def is-sublist-def

proof (elim exE)
fix n as bs
assume rotate n [0 ..<length xs] = as @ ys @ bs
hence rotate n xs = map ((!) xs) (as @ ys @ bs)

by (metis map-nth rotate-map)
then show ∃n as bs. rotate n xs = as @ map ((!) xs) ys @ bs

by auto
qed

lemma is-rot-sublist-upt-eq-upt-hd:
[[is-rot-sublist [0 ..<Suc n] ys; length ys = Suc n; ys ! 0 = 0 ]] =⇒ ys = [0 ..<Suc

n]
unfolding is-rot-sublist-def is-sublist-def

proof (elim exE)
fix m as bs
assume A: length ys = Suc n ys ! 0 = 0 rotate m [0 ..<Suc n] = as @ ys @ bs
with rotate-conv-mod[of m [0 ..<Suc n]]
have rotate (m mod length [0 ..<Suc n]) [0 ..<Suc n] = as @ ys @ bs

by simp
with rotate-upt[of m mod length [0 ..<Suc n] Suc n]
have [m mod length [0 ..<Suc n]..<Suc n] @ [0 ..<m mod length [0 ..<Suc n]] =

as @ ys @ bs
by (metis diff-zero le-Suc-eq length-upt mod-Suc-le-divisor)

hence [m mod Suc n..<Suc n] @ [0 ..<m mod Suc n] = as @ ys @ bs
by simp

moreover
have as = []

by (metis A(1 ) A(3 ) diff-zero length-append length-greater-0-conv length-rotate
length-upt

less-add-same-cancel2 not-add-less1 )
moreover
have bs = []
by (metis A(1 ) A(3 ) append.right-neutral append-eq-append-conv calculation(2 )

diff-zero
length-rotate length-upt self-append-conv2 )

moreover
have m mod Suc n = 0

by (metis A add.right-neutral append.right-neutral calculation(2 ,3 ) diff-zero
length-rotate

mod-less-divisor nth-rotate nth-upt self-append-conv2 zero-le zero-less-Suc
ordered-cancel-comm-monoid-diff-class.add-diff-inverse)

ultimately show ys = [0 ..<Suc n]
by simp

qed

lemma is-rot-sublist-upt-eq-upt-last:
[[is-rot-sublist [0 ..<Suc n] ys; length ys = Suc n; ys ! n = n]] =⇒ ys = [0 ..<Suc
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n]
unfolding is-rot-sublist-def is-sublist-def

proof (elim exE)
fix m as bs
assume A: length ys = Suc n ys ! n = n rotate m [0 ..<Suc n] = as @ ys @ bs

with rotate-conv-mod[of m [0 ..<Suc n]]
have rotate (m mod length [0 ..<Suc n]) [0 ..<Suc n] = as @ ys @ bs

by simp
with rotate-upt[of m mod length [0 ..<Suc n] Suc n]
have [m mod length [0 ..<Suc n]..<Suc n] @ [0 ..<m mod length [0 ..<Suc n]] =

as @ ys @ bs
by (metis diff-zero le-Suc-eq length-upt mod-Suc-le-divisor)

hence [m mod Suc n..<Suc n] @ [0 ..<m mod Suc n] = as @ ys @ bs
by simp

moreover
have as = []

by (metis A(1 ) A(3 ) diff-zero length-append length-greater-0-conv length-rotate
length-upt

less-add-same-cancel2 not-add-less1 )
moreover
have bs = []
by (metis A(1 ) A(3 ) append.right-neutral append-eq-append-conv calculation(2 )

diff-zero
length-rotate length-upt self-append-conv2 )

moreover
from list-eq-iff-nth-eq[THEN iffD1 , OF calculation(1 ), simplified,

simplified calculation(2 ,3 ), simplified]
have Suc n = length ys ∀ i<Suc n. ([m mod Suc n..<n] @ n # [0 ..<m mod Suc

n]) ! i = ys ! i
by blast+

hence ([m mod Suc n..<n] @ n # [0 ..<m mod Suc n]) ! n = n
by (simp add: A(2 ))

with nth-append[of [m mod Suc n..<n] n # [0 ..<m mod Suc n] n]
have n < length [m mod Suc n..<n] ∨

(n # [0 ..<m mod Suc n]) ! (n − length [m mod Suc n..<n]) = n
by argo

hence m mod Suc n = 0
proof

assume n < length [m mod Suc n..<n]
then show m mod Suc n = 0

by simp
next

assume B: (n # [0 ..<m mod Suc n]) ! (n − length [m mod Suc n..<n]) = n
show m mod Suc n = 0
proof (cases n − length [m mod Suc n..<n])

case 0
then show ?thesis

by simp
next
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case (Suc x)
then show ?thesis
by (metis B One-nat-def add-Suc diff-diff-cancel length-upt lessI mod-Suc-le-divisor

mod-less-divisor nless-le nth-Cons-Suc nth-upt plus-1-eq-Suc
zero-less-Suc)

qed
qed
ultimately show ys = [0 ..<Suc n]

by simp
qed

end
theory Count-Util

imports HOL−Library.Multiset
HOL−Combinatorics.List-Permutation
SuffixArray.List-Util
SuffixArray.List-Slice

begin

3 Counting
3.1 Count List
lemma count-in:

x ∈ set xs =⇒ count-list xs x > 0
by (meson count-list-0-iff gr0I )

lemma in-count:
count-list xs x > 0 =⇒ x ∈ set xs
by (metis count-notin less-irrefl)

lemma notin-count:
count-list xs x = 0 =⇒ x /∈ set xs
by (simp add: count-list-0-iff )

lemma count-list-eq-count:
count-list xs x = count (mset xs) x
by (induct xs; simp)

lemma count-list-perm:
xs <∼∼> ys =⇒ count-list xs x = count-list ys x
by (simp add: count-list-eq-count)

lemma in-count-nth-ex:
count-list xs x > 0 =⇒ ∃ i < length xs. xs ! i = x
by (meson in-count in-set-conv-nth)

lemma in-count-list-slice-nth-ex:
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count-list (list-slice xs i j) x > 0 =⇒ ∃ k < length xs. i ≤ k ∧ k < j ∧ xs ! k = x
by (meson in-count nth-mem-list-slice)

3.2 Cardinality
lemma count-list-card:

count-list xs x = card {j. j < length xs ∧ xs ! j = x}
proof (induct xs rule: rev-induct)

case Nil
then show ?case

by simp
next

case (snoc y xs)

let ?A = {j. j < length xs ∧ xs ! j = x}
let ?B = {j. j < length (xs @ [y]) ∧ (xs @ [y]) ! j = x}

have length xs /∈ ?A
by simp

have ?B − {length xs} = ?A
by (intro equalityI subsetI ; clarsimp simp: nth-append)

{
have y = x =⇒ count-list (xs @ [y]) x = Suc (card ?A)

by (simp add: snoc)
moreover
have y = x =⇒ ?B = insert (length xs) ?A
by (metis (mono-tags, lifting) ‹?B − {length xs} = ?A› insert-Diff length-append-singleton

lessI mem-Collect-eq nth-append-length)
with card-insert-disjoint[OF - ‹length xs /∈ -›]
have y = x =⇒ card ?B = Suc (card ?A)

by simp
ultimately have y = x =⇒ ?case

by simp
}
moreover
have y 6= x =⇒ count-list (xs @ [y]) x = card ?A

by (simp add: snoc)
hence y 6= x =⇒ ?case

using ‹?B − {length xs} = ?A› by force
ultimately show ?case

by blast
qed

lemma card-le-eq-card-less-pl-count-list:
fixes s :: ′a :: linorder list
shows card {k. k < length s ∧ s ! k ≤ a} = card {k. k < length s ∧ s ! k < a}

+ count-list s a
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proof −
let ?A = {k. k < length s ∧ s ! k ≤ a}
let ?B = {k. k < length s ∧ s ! k < a}
let ?C = {k. k < length s ∧ s ! k = a}

have ?B ∩ ?C = {}
by blast

hence card (?B ∪ ?C ) = card ?B + count-list s a
by (simp add: card-Un-disjoint count-list-card)

moreover
have ?A = ?B ∪ ?C
proof safe

fix x
assume s ! x ≤ a s ! x 6= a
then show s ! x < a

by simp
next

fix x
assume s ! x < a
then show s ! x ≤ a

by simp
qed
hence card ?A = card (?B ∪ ?C )

by simp
ultimately show ?thesis

by simp
qed

lemma card-less-idx-upper-strict:
fixes s :: ′a :: linorder list
assumes a ∈ set s
shows card {k. k < length s ∧ s ! k < a} < length s

proof −
have ∃ i < length s. s ! i = a

by (meson assms in-set-conv-nth)
then obtain i where P:

i < length s s ! i = a
by blast

have {k. k < length s ∧ s ! k < a} ⊆ {0 ..<length s}
using atLeastLessThan-iff by blast

moreover
have i ∈ {0 ..<length s}

by (simp add: P(1 ))
moreover
have i /∈ {k. k < length s ∧ s ! k < a}

by (simp add: P(2 ))
ultimately have {k. k < length s ∧ s ! k < a} ⊂ {0 ..<length s}

by blast
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then show ?thesis
by (metis card-upt finite-atLeastLessThan psubset-card-mono)

qed

lemma card-less-idx-upper :
shows card {k. k < length s ∧ s ! k < a} ≤ length s
by (metis (no-types, lifting) atLeastLessThan-iff bot-nat-0 .extremum mem-Collect-eq

subsetI
subset-eq-atLeast0-lessThan-card)

lemma card-pl-count-list-strict-upper :
fixes s :: ′a :: linorder list
shows card {i. i < length s ∧ s ! i < a} + count-list s a ≤ length s

proof −
let ?X = {i. i < length s ∧ s ! i < a}
let ?Y = {i. i < length s ∧ s ! i = a}

have ?X ∩ ?Y = {}
by blast

hence card (?X ∪ ?Y ) = card ?X + card ?Y
by (simp add: card-Un-disjoint)

moreover
have card ?Y = count-list s a

by (simp add: count-list-card)
moreover
have ?X ∪ ?Y ⊆ {0 ..<length s}

by (simp add: subset-iff )
hence card (?X ∪ ?Y ) ≤ length s

using subset-eq-atLeast0-lessThan-card by blast
ultimately show ?thesis

by presburger
qed

3.3 Sorting
lemma sorted-nth-le:

assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} < length xs

shows c ≤ xs ! card {k. k < length xs ∧ xs ! k < c}
using assms

proof (induct xs)
case Nil
then show ?case

by simp
next

case (Cons a xs)
note IH = this

let ?A = {k. k < length (a # xs) ∧ (a # xs) ! k < c}
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let ?B = {k. k < length xs ∧ xs ! k < c}

have a < c ∨ c ≤ a
by fastforce

then show ?case
proof

assume a < c

have finite ?B
by auto

hence finite (Suc ‘ ?B)
by blast

have card (Suc ‘ ?B) = card ?B
using card-image inj-Suc by blast

have {0} ∩ Suc ‘ ?B = {}
by blast

have ?A = {0} ∪ Suc ‘ ?B
proof (intro equalityI subsetI )

fix x
assume x ∈ {0} ∪ Suc ‘ ?B
then show x ∈ ?A
proof

assume x ∈ {0}
hence x = 0

by simp
then show ?thesis

by (simp add: ‹a < c›)
next

assume x ∈ Suc ‘ ?B
hence ∃ y. x = Suc y ∧ xs ! y < c

by blast
then show ?thesis

using ‹x ∈ Suc ‘ ?B› by force
qed

next
fix x
assume x ∈ ?A
hence x = 0 ∨ (∃ y. x = Suc y ∧ xs ! y < c)

using not0-implies-Suc by fastforce
then show x ∈ {0} ∪ Suc ‘ ?B
proof

assume x = 0
then show ?thesis

by blast
next

assume ∃ y. x = Suc y ∧ xs ! y < c
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then show ?thesis
using ‹x ∈ ?A› by fastforce

qed
qed
with card-Un-disjoint[OF - ‹finite (Suc ‘ ?B)› ‹- ∩ - = -›]
have card ?A = Suc (card ?B)

by (simp add: ‹card (Suc ‘ ?B) = card ?B›)
hence (a # xs) ! card {k. k < length (a # xs) ∧ (a # xs) ! k < c} =

xs ! card {k. k < length xs ∧ xs ! k < c}
by simp

then show ?case
using Cons.hyps IH (2 ) IH (3 ) ‹card ?A = Suc (card ?B)› by auto

next
assume c ≤ a
have {k. k < length (a # xs) ∧ (a # xs) ! k < c} = {}
proof safe

fix x
assume A: x < length (a # xs) (a # xs) ! x < c
show x ∈ {}
proof (cases x)

case 0
then show ?thesis

using A(2 ) ‹c ≤ a› by auto
next

case (Suc n)
hence a ≤ (a # xs) ! x

using A(1 ) IH (2 ) by auto
then show ?thesis

using A(2 ) ‹c ≤ a› by auto
qed

qed
then show ?thesis

by (metis ‹c ≤ a› card.empty nth-Cons-0 )
qed

qed

lemma sorted-nth-le-gen:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} + i < length xs

shows c ≤ xs ! (card {k. k < length xs ∧ xs ! k < c} + i)
proof (cases i)

case 0
then show ?thesis

using assms(1 ) assms(2 ) sorted-nth-le by auto
next

let ?x = card {k. k < length xs ∧ xs ! k < c }
case (Suc n)
with sorted-wrt-nth-less[OF assms(1 ), of ?x ?x + i]
have xs ! ?x ≤ xs ! (?x + i)
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using assms(1 ) assms(2 ) le-add1 sorted-nth-mono by blast
moreover
have c ≤ xs ! ?x

using add-lessD1 assms(1 ) assms(2 ) sorted-nth-le by blast
ultimately show ?thesis

by order
qed

lemma sorted-nth-less-gen:
assumes sorted xs
and i < card {k. k < length xs ∧ xs ! k < c}

shows xs ! i < c
proof (rule ccontr)

assume ¬ xs ! i < c
hence i /∈ {k. k < length xs ∧ xs ! k < c}

by simp
hence ∀ k < length xs. i ≤ k −→ k /∈ {k. k < length xs ∧ xs ! k < c}

using assms(1 ) sorted-iff-nth-mono by fastforce
hence {k. k < length xs ∧ xs ! k < c} ⊆ {0 ..<i}

by fastforce
moreover
have card {0 ..<i} = i

by auto
ultimately show False

by (metis assms(2 ) card-mono finite-atLeastLessThan verit-comp-simplify1 (3 ))
qed

lemma sorted-nth-gr-gen:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} + i < length xs
and count-list xs c ≤ i

shows xs ! (card {k. k < length xs ∧ xs ! k < c} + i) > c
proof −

let ?A = {k. k < length xs ∧ xs ! k < c}
have xs ! (card ?A + i) ≥ c

using assms(1 ) assms(2 ) sorted-nth-le-gen by blast
hence xs ! (card ?A + i) = c ∨ xs ! (card ?A + i) > c

by force
then show ?thesis
proof

assume xs ! (card ?A + i) > c
then show ?thesis .

next
assume xs ! (card ?A + i) = c

from sorted-nth-le-gen[OF assms(1 )]
have P1 : ∀ k < length xs. card ?A ≤ k −→ c ≤ xs ! k
by (metis (mono-tags, lifting) assms(1 ) dual-order .strict-trans2 linorder-not-le

sorted-iff-nth-mono sorted-nth-le)
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have P2 : ∀ k < length xs. k < card ?A + Suc i −→ xs ! k ≤ c
by (metis (mono-tags, lifting) Suc-leI ‹xs ! (card ?A + i) = c› add-Suc-right

add-le-cancel-left assms(1 ,2 ) plus-1-eq-Suc
sorted-nth-mono)

have P3 : ∀ x ∈ {card ?A..<card ?A + Suc i}. xs ! x = c
proof safe

fix x
assume x ∈ {card ?A..<card ?A + Suc i}
hence A: card ?A ≤ x x < card ?A + Suc i

by simp+

have c ≤ xs ! x
using P1 A assms(2 ) by auto

moreover
have xs ! x ≤ c

using A(2 ) P2 assms(2 ) by force
ultimately show xs ! x = c

by simp
qed

have {card ?A..<card ?A + Suc i} ⊆ {k. k < length xs ∧ xs ! k = c}
proof

fix x
assume A: x ∈ {card ?A..<card ?A + Suc i}
have x < card ?A + Suc i

using A by simp+
hence x < length xs

using assms(2 ) by linarith
moreover
have xs ! x = c

using P3 A by blast
ultimately show x ∈ {k. k < length xs ∧ xs ! k = c}

by blast
qed
hence count-list xs c ≥ card {card ?A..<card ?A + Suc i}

using count-list-card[of xs c] card-mono
by (metis (mono-tags, lifting) ‹xs ! (card ?A + i) = c› assms(2 ) card-ge-0-finite

count-in
nth-mem)

moreover
have card {card ?A..<card ?A + Suc i} = Suc i

by simp
ultimately have False

using assms(3 ) by linarith
then show ?thesis

by blast
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qed
qed

end
theory Rank-Util

imports HOL−Library.Multiset
Count-Util
SuffixArray.Prefix

begin

4 Rank Definition
Count how many occurrences of an element are in a certain index in the list

Definition 3.7 from [3]: Rank
definition rank :: ′a list ⇒ ′a ⇒ nat ⇒ nat

where
rank s x i ≡ count-list (take i s) x

5 Rank Properties
5.1 List Properties
lemma rank-cons-same:

rank (x # xs) x (Suc i) = Suc (rank xs x i)
by (simp add: rank-def )

lemma rank-cons-diff :
a 6= x =⇒ rank (a # xs) x (Suc i) = rank xs x i
by (simp add: rank-def )

5.2 Counting Properties
lemma rank-length:

rank xs x (length xs) = count-list xs x
by (simp add: rank-def )

lemma rank-gre-length:
length xs ≤ n =⇒ rank xs x n = count-list xs x
by (simp add: rank-def )

lemma rank-not-in:
x /∈ set xs =⇒ rank xs x i = 0
by (metis gr-zeroI in-count rank-def set-take-subset subset-code(1 ))

lemma rank-0 :
rank xs x 0 = 0
by (simp add: rank-def )
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Theorem 3.11 from [3]: Rank Equivalence
lemma rank-card-spec:

rank xs x i = card {j. j < length xs ∧ j < i ∧ xs ! j = x}
proof −

have rank xs x i = count-list (take i xs) x
by (meson rank-def )

moreover
have count-list (take i xs) x = card {j. j < length (take i xs) ∧ (take i xs) ! j =

x}
by (metis count-list-card)

moreover
have {j. j < length (take i xs) ∧ (take i xs) ! j = x} =

{j. j < length xs ∧ j < i ∧ xs ! j = x}
by fastforce

ultimately show ?thesis
by simp

qed

lemma le-rank-plus-card:
i ≤ j =⇒
rank xs x j = rank xs x i + card {k. k < length xs ∧ i ≤ k ∧ k < j ∧ xs ! k =

x}
proof −

assume i ≤ j

let ?X = {k. k < length xs ∧ k < j ∧ xs ! k = x}
have rank xs x j = card ?X

by (simp add: rank-card-spec)
moreover
let ?Y = {k. k < length xs ∧ k < i ∧ xs ! k = x}
have rank xs x i = card ?Y

by (simp add: rank-card-spec)
moreover
let ?Z = {k. k < length xs ∧ i ≤ k ∧ k < j ∧ xs ! k = x}
have ?Y ∪ ?Z = ?X
proof safe

fix k
assume k < i
then show k < j

using ‹i ≤ j› order-less-le-trans by blast
next

fix k
assume ¬ i ≤ k
then show k < i

using linorder-le-less-linear by blast
qed
moreover
have ?Y ∩ ?Z = {}
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by force
hence card (?Y ∪ ?Z ) = card ?Y + card ?Z

by (simp add: card-Un-disjoint)
ultimately show ?thesis

by presburger
qed

5.3 Bound Properties
lemma rank-lower-bound:

assumes k < rank xs x i
shows k < i

proof −
from rank-card-spec[of xs x i]
have rank xs x i = card {j. j < length xs ∧ j < i ∧ xs ! j = x} .
hence k < card {j. j < length xs ∧ j < i ∧ xs ! j = x}

using assms by presburger
moreover
{

have i ≤ length xs ∨ length xs < i
using linorder-not-less by blast

moreover
have i ≤ length xs =⇒ {j. j < length xs ∧ j < i ∧ xs ! j = x} ⊆ {0 ..<i}

using atLeast0LessThan by blast
hence i ≤ length xs =⇒ card {j. j < length xs ∧ j < i ∧ xs ! j = x} ≤ i

using subset-eq-atLeast0-lessThan-card by presburger
moreover
have length xs < i =⇒ {j. j < length xs ∧ j < i ∧ xs ! j = x} ⊆ {0 ..<length

xs}
using atLeast0LessThan by blast

hence length xs < i =⇒ card {j. j < length xs ∧ j < i ∧ xs ! j = x} ≤ length
xs

using subset-eq-atLeast0-lessThan-card by presburger
hence length xs < i =⇒ card {j. j < length xs ∧ j < i ∧ xs ! j = x} ≤ i

by linarith
ultimately have card {j. j < length xs ∧ j < i ∧ xs ! j = x} ≤ i

by blast
}
ultimately show ?thesis

using dual-order .strict-trans1 by blast
qed

corollary rank-Suc-ex:
assumes k < rank xs x i
shows ∃ l. i = Suc l
by (metis Nat.lessE assms rank-lower-bound)

lemma rank-upper-bound:
[[i < length xs; xs ! i = x]] =⇒ rank xs x i < count-list xs x
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proof (induct xs arbitrary: i)
case Nil
then show ?case

by (simp add: rank-def )
next

case (Cons a xs i)
then show ?case
proof (cases i)

case 0
then show ?thesis

by (metis Cons.prems(2 ) count-in list.set-intros(1 ) nth-Cons-0 rank-0 )
next

case (Suc n)
then show ?thesis
by (metis Cons.hyps Cons.prems Suc-less-eq length-Cons nth-Cons-Suc rank-cons-diff

rank-cons-same rank-length)
qed

qed

lemma rank-idx-mono:
i ≤ j =⇒ rank xs x i ≤ rank xs x j

proof (cases i = j)
assume i = j
then show ?thesis

by simp
next

assume i ≤ j i 6= j
hence i < j

using antisym-conv2 by blast
hence prefix xs j = prefix xs i @ list-slice xs i j

by (metis ‹i ≤ j› append-take-drop-id list-slice.elims min.absorb1 take-take)
hence rank xs x j = rank xs x i + count-list (list-slice xs i j) x

by (metis count-list-append rank-def )
then show ?thesis

by fastforce
qed

lemma rank-less:
[[i < length xs; i < j; xs ! i = x]] =⇒ rank xs x i < rank xs x j

proof −
let ?X = {k. k < length xs ∧ i ≤ k ∧ k < j ∧ xs ! k = x}
assume i < length xs i < j xs ! i = x
with le-rank-plus-card[of i j xs x]
have rank xs x j = rank xs x i + card ?X

using nless-le by blast
moreover
have i ∈ ?X

using ‹i < j› ‹i < length xs› ‹xs ! i = x› by blast
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hence card ?X > 0
using card-gt-0-iff by fastforce

ultimately show ?thesis
by linarith

qed

lemma rank-upper-bound-gen:
rank xs x i ≤ count-list xs x
by (metis nat-le-linear rank-gre-length rank-idx-mono)

5.4 Sorted Properties
lemma sorted-card-rank-idx:

assumes sorted xs
and i < length xs

shows i = card {j. j < length xs ∧ xs ! j < xs ! i} + rank xs (xs ! i) i
proof −

let ?A = {j. j < length xs ∧ xs ! j < xs ! i}
let ?B = {j. j < length xs ∧ xs ! j = xs ! i}

have ?B 6= {}
using assms(2 ) by blast

have Min ?B ∈ ?B
by (metis (no-types, lifting) Min-in ‹?B 6= {}› finite-nat-set-iff-bounded mem-Collect-eq)

hence Min ?B < length xs xs ! (Min ?B) = xs ! i
by simp-all

have Min ?B ≤ i
by (simp add: assms(2 ))

have P: ∀ k < Min ?B. xs ! k < xs ! i
proof (intro allI impI )

fix k
assume k < Min ?B
with sorted-nth-mono[OF assms(1 ) - ‹Min ?B < length xs›]
have xs ! k ≤ xs ! (Min ?B)

using le-eq-less-or-eq by presburger

show xs ! k < xs ! i
proof (rule ccontr)

assume ¬ xs ! k < xs ! i
with ‹xs ! k ≤ xs ! (Min ?B)› ‹xs ! (Min ?B) = xs ! i›
have xs ! k = xs ! i

by order
with ‹k < Min ?B› ‹Min ?B < length xs›
have k ∈ ?B
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by auto
then show False

by (metis (mono-tags, lifting) Min-gr-iff ‹k < Min ?B› ‹?B 6= {}› fi-
nite-nat-set-iff-bounded

less-irrefl-nat mem-Collect-eq)
qed

qed

have ?A = {0 ..<Min ?B}
proof (intro equalityI subsetI )

fix x
assume x ∈ ?A
hence x < length xs xs ! x < xs ! i

by blast+
hence xs ! x < xs ! Min ?B

using ‹xs ! Min ?B = xs ! i› by simp
hence x < Min ?B

using assms(1 ) ‹x < length xs› ‹Min ?B < length xs›
by (meson dual-order .strict-iff-not not-le-imp-less sorted-nth-mono)

then show x ∈ {0 ..<Min ?B}
using atLeastLessThan-iff by blast

next
fix x
assume x ∈ {0 ..<Min ?B}
with P ‹Min ?B < length xs›
show x ∈ ?A

by auto
qed
moreover
{

let ?C = {j. j < length xs ∧ j < i ∧ xs ! j = xs ! i}
from rank-card-spec[of xs xs ! i i]
have rank xs (xs ! i) i = card ?C .
moreover
have ?C = {Min ?B..<i}
proof (intro equalityI subsetI )

fix x
assume x ∈ ?C
hence x < length xs x < i xs ! x = xs ! i

by blast+
hence Min ?B ≤ x

by simp
with ‹x < i›
show x ∈ {Min ?B..<i}

using atLeastLessThan-iff by blast
next

fix x
assume x ∈ {Min ?B..<i}
hence Min ?B ≤ x x < i
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using atLeastLessThan-iff by blast+
moreover
have xs ! x = xs ! i
proof −

have xs ! x ≤ xs ! i
using assms(1 ,2 ) ‹x < i›
by (simp add: sorted-wrt-nth-less)

moreover
have xs ! Min ?B ≤ xs ! x

using assms(1 ,2 ) ‹Min ?B ≤ x› ‹x < i›
by (meson order .strict-trans sorted-iff-nth-mono)

ultimately show ?thesis
using ‹xs ! Min ?B = xs ! i› by order

qed
ultimately show x ∈ ?C

using assms(2 ) by fastforce
qed
ultimately have rank xs (xs ! i) i = card {Min ?B..<i}

by presburger
}
ultimately show ?thesis

by (simp add: ‹Min ?B ≤ i›)
qed

lemma sorted-rank:
assumes sorted xs
and i < length xs
and xs ! i = a

shows rank xs a i = i − card {k. k < length xs ∧ xs ! k < a}
using assms(1 ) assms(2 ) assms(3 ) sorted-card-rank-idx by fastforce

lemma sorted-rank-less:
assumes sorted xs
and i < length xs
and xs ! i < a

shows rank xs a i = 0
proof −

have rank xs a i = card {k. k < length xs ∧ k < i ∧ xs ! k = a}
by (simp add: rank-card-spec)

moreover
have {k. k < length xs ∧ k < i ∧ xs ! k = a} = {}

using assms sorted-wrt-nth-less by fastforce
ultimately show ?thesis

by fastforce
qed

lemma sorted-rank-greater :
assumes sorted xs
and i < length xs
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and xs ! i > a
shows rank xs a i = count-list xs a
proof −

let ?A = {k. k < length xs ∧ k < i ∧ xs ! k = a}
have rank xs a i = card ?A

by (simp add: rank-card-spec)
moreover
let ?B = {k. k < length xs ∧ k ≥ i ∧ xs ! k = a}
let ?C = {k. k < length xs ∧ xs ! k = a}
{

have ?A ∪ ?B = ?C
proof safe

fix x
assume ¬ i ≤ x
then show x < i

using linorder-le-less-linear by blast
qed
moreover
have ?B = {}
proof −

have ∀ k < length xs. k ≥ i −→ xs ! k > a
by (meson assms(1 ) assms(3 ) dual-order .strict-trans1 sorted-nth-mono)

then show ?thesis
by blast

qed
ultimately have ?A = ?C

by blast
}
ultimately show ?thesis

by (simp add: count-list-card)
qed

end
theory Select-Util

imports Count-Util
SuffixArray.Sorting-Util

begin

6 Select Definition
Find nth occurrence of an element in a list

Definition 3.8 from [3]: Select
fun select :: ′a list ⇒ ′a ⇒ nat ⇒ nat

where
select [] - - = 0 |
select (a#xs) x 0 = (if x = a then 0 else Suc (select xs x 0 )) |
select (a#xs) x (Suc i)= (if x = a then Suc (select xs x i) else Suc (select xs x
(Suc i)))

26



7 Select Properties
7.1 Length Properties
lemma notin-imp-select-length:

x /∈ set xs =⇒ select xs x i = length xs
proof (induct xs arbitrary: i)

case Nil
then show ?case

by simp
next

case (Cons a xs i)
then show ?case
proof (cases i)

case 0
then show ?thesis

using Cons.hyps Cons.prems by fastforce
next

case (Suc n)
then show ?thesis

using Cons.hyps Cons.prems by force
qed

qed

lemma select-length-imp-count-list-less:
select xs x i = length xs =⇒ count-list xs x ≤ i
by (induct rule: select.induct[of - xs x i]; simp split: if-splits)

lemma select-Suc-length:
select xs x i = length xs =⇒ select xs x (Suc i) = length xs
by (induct rule: select.induct[of - xs x i]; clarsimp split: if-splits)

7.2 List Properties
lemma select-cons-neq:

[[select xs x i = j; x 6= a]] =⇒ select (a # xs) x i= Suc j
by (cases i; simp)

lemma cons-neq-select:
[[select (a # xs) x i = Suc j; x 6= a]] =⇒ select xs x i = j
by (cases i; simp)

lemma cons-eq-select:
select (x # xs) x (Suc i) = Suc j =⇒ select xs x i = j
by simp

lemma select-cons-eq:
select xs x i = j =⇒ select (x # xs) x (Suc i) = Suc j
by simp
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7.3 Bound Properties
lemma select-max:

select xs x i ≤ length xs
by (induct rule: select.induct[of - xs x i]; simp)

7.4 Nth Properties
lemma nth-select:

[[j < length xs; count-list (take (Suc j) xs) x = Suc i; xs ! j = x]]
=⇒ select xs x i = j

proof (induct arbitrary: j rule: select.induct[of - xs x i])
case (1 uu uv)
then show ?case

by simp
next

case (2 a xs x)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 2 .prems(3 ) by auto
next

case (Suc n)

have xs ! n = x
using 2 .prems(3 ) Suc by auto

moreover
have n < length xs

using 2 .prems(1 ) Suc by auto
moreover
have x 6= a
proof (rule ccontr)

assume ¬ x 6= a
hence x = a

by blast
moreover
have count-list (take (Suc n) xs) x > 0

by (simp add: ‹n < length xs› ‹xs ! n = x› take-Suc-conv-app-nth)
ultimately show False

using 2 .prems(2 ) Suc by auto
qed
moreover
have count-list (take (Suc n) xs) x = Suc 0

using 2 .prems(2 ) Suc calculation(3 ) by auto
ultimately have select xs x 0 = n

using 2 .hyps by blast
then show ?thesis

by (simp add: Suc ‹x 6= a›)
qed
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next
case (3 a xs x i)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 3 .prems(2 ) 3 .prems(3 ) by force
next

case (Suc n)
then show ?thesis
by (metis 3 .hyps 3 .prems Suc-inject Suc-less-eq add.right-neutral add-Suc-right

count-list.simps(2 ) length-Cons nth-Cons-Suc plus-1-eq-Suc se-
lect.simps(3 )

take-Suc-Cons)
qed

qed

lemma nth-select-alt:
[[j < length xs; count-list (take j xs) x = i; xs ! j = x]]

=⇒ select xs x i = j
proof (induct arbitrary: j rule: select.induct[of - xs x i])

case (1 uu uv)
then show ?case

by simp
next

case (2 a xs x j)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 2 .prems(3 ) by auto
next

case (Suc n)
then show ?thesis
by (metis 2 .hyps 2 .prems Suc-less-eq count-in count-list.simps(2 ) length-Cons

list.set-intros(1 ) not-gr-zero nth-Cons-Suc select.simps(2 ) take-Suc-Cons)
qed

next
case (3 a xs x i)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 3 .prems(2 ) by auto
next

case (Suc n)
then show ?thesis
by (metis 3 .hyps 3 .prems One-nat-def Suc-inject Suc-less-eq add.right-neutral

add-Suc-right count-list.simps(2 ) length-Cons nth-Cons-Suc se-
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lect.simps(3 )
take-Suc-Cons)

qed
qed

lemma select-nth:
[[select xs x i = j; j < length xs]]

=⇒ count-list (take (Suc j) xs) x = Suc i ∧ xs ! j = x
proof (induct arbitrary: j rule: select.induct[of - xs x i])

case (1 uu uv)
then show ?case

by simp
next

case (2 a xs x j)
then show ?case
proof (cases j)

case 0
then show ?thesis
by (metis 2 .prems(1 ) One-nat-def add.right-neutral add-Suc-right count-list.simps

nat.simps(3 ) nth-Cons-0 select-cons-neq take0 take-Suc-Cons)
next

case (Suc n)
then show ?thesis

using 2 .hyps 2 .prems(1 ) 2 .prems(2 ) by auto
qed

next
case (3 a xs x i j)
then show ?case
proof (cases j)

case 0
then show ?thesis

by (metis 3 .prems(1 ) nat.simps(3 ) select-cons-eq select-cons-neq)
next

case (Suc n)
then show ?thesis
by (metis 3 .hyps 3 .prems One-nat-def Suc-le-eq add.right-neutral add-Suc-right

count-list.simps(2 ) length-Cons less-Suc-eq-le nth-Cons-Suc select-cons-eq
select-cons-neq take-Suc-Cons)

qed
qed

lemma select-nth-alt:
[[select xs x i = j; j < length xs]]

=⇒ count-list (take j xs) x = i ∧ xs ! j = x
proof (induct arbitrary: j rule: select.induct[of - xs x i])

case (1 uu uv)
then show ?case

by simp
next
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case (2 a xs x j)
then show ?case
proof (cases j)

case 0
then show ?thesis

using 2 .prems(1 ) order .strict-iff-not by fastforce
next

case (Suc n)
then show ?thesis

by (metis 2 .prems(1 ) 2 .prems(2 ) nat.inject nth-select-alt select-nth)
qed

next
case (3 a xs x i j)
then show ?case
proof (cases j)

case 0
then show ?thesis

by (metis 3 .prems(1 ) nat.simps(3 ) select-cons-eq select-cons-neq)
next

case (Suc n)
then show ?thesis

by (metis 3 .prems nat.inject nth-select-alt select-nth)
qed

qed

lemma select-less-0-nth:
assumes i < length xs
and i < select xs x 0

shows xs ! i 6= x
proof (cases select xs x 0 < length xs)

assume select xs x 0 < length xs
with select-nth-alt[of xs x 0 select xs x 0 ]
have count-list (take (select xs x 0 ) xs) x = 0 xs ! select xs x 0 = x

by blast+
with count-list-0-iff
have x /∈ set (take (select xs x 0 ) xs)

by metis
then show ?thesis

by (simp add: ‹select xs x 0 < length xs› assms(2 ) in-set-conv-nth)
next

assume ¬ select xs x 0 < length xs
hence length xs ≤ select xs x 0

using linorder-le-less-linear by blast
with select-max[of xs x 0 ]
have select xs x 0 = length xs

by simp
with select-length-imp-count-list-less
have count-list xs x = 0

by (metis le-zero-eq)
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with count-list-0-iff
have x /∈ set xs

by fastforce
then show ?thesis

using assms(1 ) nth-mem by blast
qed

7.5 Sorted Properties
Theorem 3.10 from [3]: Select Sorted Equivalence
lemma sorted-select:

assumes sorted xs
and i < count-list xs x

shows select xs x i = card {j. j < length xs ∧ xs ! j < x} + i
using assms

proof (induct rule: select.induct[of - xs x i])
case (1 uu uv)
then show ?case

by simp
next

case (2 a xs x)
note IH = this

from IH (2 )
have sorted xs

by simp

have x = a ∨ x 6= a
by blast

moreover
have x 6= a =⇒ ?case
proof −

assume x 6= a
hence 0 < count-list xs x

using IH (3 ) by fastforce
with IH (1 )[OF ‹x 6= a› ‹sorted xs›]
have select xs x 0 = card {j. j < length xs ∧ xs ! j < x}

by simp
moreover
{

from in-count[OF ‹0 < count-list xs x›]
have x ∈ set xs .
with IH (2 ) ‹x 6= a›
have a < x

by (simp add: order-less-le)
have {j. j < length (a # xs) ∧ (a # xs) ! j < x} =

{0} ∪ Suc ‘ {j. j < length xs ∧ xs ! j < x}
proof (safe)

show (a # xs) ! 0 < x
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by (simp add: ‹a < x›)
next

fix y
assume y < length xs
then show Suc y < length (a # xs)

by simp
next

fix y
assume y < length xs xs ! y < x
then show (a # xs) ! Suc y < x

by simp
next

fix j
assume A: j /∈ Suc ‘ {v. v < length xs ∧ xs ! v < x} j < length (a # xs)

(a # xs) ! j < x

have ∃ k. j = Suc k =⇒ False
proof −

assume ∃ k. j = Suc k
then obtain k where
j = Suc k

by blast
hence B: k < length xs xs ! k < x k /∈ {v. v < length xs ∧ xs ! v < x}

using A by simp-all
then show False

by auto
qed
then show j = 0

using not0-implies-Suc by blast
qed
moreover
{

have finite {0}
by blast

moreover
have finite (Suc ‘ {j. j < length xs ∧ xs ! j < x})

by simp
moreover
have {0} ∩ Suc ‘ {j. j < length xs ∧ xs ! j < x} = {}

by blast
ultimately have

card ({0} ∪ Suc ‘ {j. j < length xs ∧ xs ! j < x}) =
Suc (card (Suc ‘ {j. j < length xs ∧ xs ! j < x}))

using card-Un-disjoint[of {0} Suc ‘ {j. j < length xs ∧ xs ! j < x}] by
simp

}
ultimately have

card {j. j < length (a # xs) ∧ (a # xs) ! j < x} =
Suc (card (Suc ‘{j. j < length xs ∧ xs ! j < x}))
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by presburger
hence card {j. j < length (a # xs) ∧ (a # xs) ! j < x} =

Suc (card {j. j < length xs ∧ xs ! j < x})
by (simp add: card-image)

}
moreover
have select (a # xs) x 0 = Suc (select xs x 0 )

using ‹x 6= a› select.simps(2 )[of a xs x] by auto
ultimately show ?thesis

by simp
qed
moreover
have x = a =⇒ ?case
proof −

assume x = a
with IH (2 )
have {j. j < length (a # xs) ∧ (a # xs) ! j < x} = {}
by (metis (no-types, lifting) Collect-empty-eq less-nat-zero-code linorder-not-less

neq0-conv
nth-Cons-0 order-refl sorted-nth-less-mono)

with ‹x = a›
show ?thesis

by force
qed
ultimately show ?case

by blast
next

case (3 a xs x i)
note IH = this

have sorted xs

using IH (3 ) by auto
have a ≤ x
by (metis IH (3−) Suc-less-eq2 count-list.simps(2 ) in-count order-refl sorted-simps(2 )

zero-less-Suc)

have x = a ∨ x 6= a
by blast

moreover
have x = a =⇒ ?case
proof −

assume x = a
with IH (4 )
have i < count-list xs x

by auto
with IH (1 )[OF ‹x = a› ‹sorted xs›]
have select xs x i = card {j. j < length xs ∧ xs ! j < x} + i .
moreover
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from select.simps(3 )[of a xs x i] ‹x = a›
have select (a # xs) x (Suc i) = Suc (select xs x i)

by simp
moreover
from ‹a ≤ x› ‹x = a› IH (3 )
have {j. j < length (a # xs) ∧ (a # xs) ! j < x} = {}

by (metis (no-types, lifting) Collect-empty-eq length-Cons less-nat-zero-code
linorder-not-less nth-Cons-0 sorted-nth-less-mono

zero-less-Suc)
hence card {j. j < length (a # xs) ∧ (a # xs) ! j < x} = 0

by simp
moreover
from ‹a ≤ x› ‹x = a› IH (3 )
have {j. j < length xs ∧ xs ! j < x} = {}

using nth-mem by fastforce
hence card {j. j < length xs ∧ xs ! j < x} = 0

by simp
ultimately show ?thesis

by simp
qed
moreover
have x 6= a =⇒ ?case
proof −

assume x 6= a
hence Suc i < count-list xs x

using IH (4 ) by force
with IH (2 )[OF ‹x 6= a› ‹sorted xs›]
have select xs x (Suc i) = card {j. j < length xs ∧ xs ! j < x} + Suc i .
moreover
from ‹x 6= a› select.simps(3 )[of a xs x i]
have select (a # xs) x (Suc i) = Suc (select xs x (Suc i))

by simp
moreover
{

have {j. j < length (a # xs) ∧ (a # xs) ! j < x} =
{0} ∪ Suc ‘ {j. j < length xs ∧ xs ! j < x}

proof safe
show (a # xs) ! 0 < x

using ‹a ≤ x› ‹x 6= a› by auto
next

fix y
assume y < length xs xs ! y < x
then show Suc y < length (a # xs)

by simp
next

fix y
assume y < length xs xs ! y < x
then show (a # xs) ! Suc y < x

by simp
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next
fix k
assume A: k /∈ Suc ‘ {j. j < length xs ∧ xs ! j < x} k /∈ {} k < length (a

# xs)
(a # xs) ! k < x

have ∃ l. k = Suc l =⇒ False
proof −

assume ∃ l. k = Suc l
then obtain l where

k = Suc l
by blast

hence l /∈ {j. j < length xs ∧ xs ! j < x} l < length xs xs ! l < x
using A by simp-all

then show False
by blast

qed
then show k = 0

using not0-implies-Suc by blast
qed
moreover
have finite {0}

by blast
moreover
have finite (Suc ‘ {j. j < length xs ∧ xs ! j < x})

by simp
moreover
have {0} ∩ Suc ‘ {j. j < length xs ∧ xs ! j < x} = {}

by blast
ultimately have

card ({j. j < length (a # xs) ∧ (a # xs) ! j < x}) =
Suc (card (Suc ‘ {j. j < length xs ∧ xs ! j < x}))

by simp
hence card ({j. j < length (a # xs) ∧ (a # xs) ! j < x}) =

Suc (card {j. j < length xs ∧ xs ! j < x})
by (simp add: card-image)

}
ultimately show ?thesis

by simp
qed
ultimately show ?case

by blast
qed

corollary sorted-select-0-plus:
assumes sorted xs
and i < count-list xs x

shows select xs x i = select xs x 0 + i
using assms(1 ) assms(2 ) sorted-select by fastforce
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corollary select-sorted-0 :
assumes sorted xs
and 0 < count-list xs x

shows select xs x 0 = card {j. j < length xs ∧ xs ! j < x}
by (simp add: assms(1 ) assms(2 ) sorted-select)

end
theory Rank-Select

imports Main
Rank-Util
Select-Util

begin

8 Rank and Select Properties
8.1 Correctness of Rank and Select
Correctness theorem statements based on [1].

8.1.1 Rank Correctness
lemma rank-spec:

rank s x i = count (mset (take i s)) x
by (simp add: count-list-eq-count rank-def )

8.1.2 Select Correctness
lemma select-spec:

select s x i = j
=⇒ (j < length s ∧ rank s x j = i) ∨ (j = length s ∧ count-list s x ≤ i )

by (metis le-eq-less-or-eq rank-def select-length-imp-count-list-less select-max se-
lect-nth-alt)

Theorem 3.9 from [3]: Correctness of Select
lemma select-correct:

select s x i ≤ length s ∧
(select s x i < length s −→ rank s x (select s x i) = i) ∧
(select s x i = length s −→ count-list s x ≤ i)

proof −
have select s x i ≤ length s

by (simp add: select-max)
moreover
have select s x i < length s −→ rank s x (select s x i) = i

by (metis rank-def select-nth-alt)
moreover
have select s x i = length s −→ count-list s x ≤ i

by (simp add: select-length-imp-count-list-less)
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ultimately show ?thesis
by blast

qed

8.2 Rank and Select
lemma rank-select:

select xs x i < length xs =⇒ rank xs x (select xs x i) = i
proof −

let ?j = select xs x i

assume select xs x i < length xs
with select-spec[of xs x i ?j]
show rank xs x (select xs x i) = i

by auto
qed

lemma select-upper-bound:
i < rank xs x j =⇒ select xs x i < length xs

proof (induct xs arbitrary: i j)
case Nil
then show ?case

by (simp add: rank-def )
next

case (Cons a xs i j)
note IH = this

from rank-Suc-ex[OF Cons.prems]
obtain n where

j = Suc n
by blast

show ?case
proof (cases a = x)

assume a = x
show ?thesis
proof (cases i)

case 0
then show ?thesis

by (simp add: ‹a = x›)
next

case (Suc m)
with rank-cons-same[of a xs n] ‹j = Suc n› IH (2 ) ‹a = x›
have m < rank xs x n

by force
with IH (1 )
have select xs x m < length xs

by simp
then show ?thesis
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by (simp add: Suc ‹a = x›)
qed

next
assume a 6= x
with Cons.prems rank-cons-diff [of a x xs n] ‹j = Suc n›
have i < rank xs x n

by force
with Cons.hyps
have select xs x i < length xs

by simp
then show ?thesis

by (metis ‹a 6= x› length-Cons not-less-eq select-cons-neq)
qed

qed

lemma select-out-of-range:
assumes count-list xs a ≤ i
and mset xs = mset ys

shows select ys a i = length ys
by (metis assms count-list-perm leD rank-select rank-upper-bound select-nth se-

lect-spec)

8.3 Sorted Properties
lemma sorted-nth-gen:

assumes sorted xs
and card {k. k < length xs ∧ xs ! k < c} < length xs
and count-list xs c > i

shows xs ! (card {k. k < length xs ∧ xs ! k < c} + i) = c
proof −

from sorted-select[OF assms(1 ,3 )]
have select xs c i = card {j. j < length xs ∧ xs ! j < c} + i .
with select-nth[of xs c i]
show ?thesis

by (metis assms(3 ) rank-length select-upper-bound)
qed

lemma sorted-nth-gen-alt:
assumes sorted xs
and card {k. k < length xs ∧ xs ! k < a} ≤ i
and i < card {k. k < length xs ∧ xs ! k < a} + card {k. k < length xs ∧ xs

! k = a}
shows xs ! i = a
proof (cases a ∈ set xs)

assume a /∈ set xs
hence card {k. k < length xs ∧ xs ! k = a} = 0

by auto
with assms(2−)
show ?thesis
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by linarith
next

assume a ∈ set xs

have card {k. k < length xs ∧ xs ! k < a} < length xs
using ‹a ∈ set xs› card-less-idx-upper-strict by blast

moreover
have ∃ k. i = card {k. k < length xs ∧ xs ! k < a} + k

using assms(2 ) le-iff-add by blast
then obtain k where

i = card {k. k < length xs ∧ xs ! k < a} + k
by blast

moreover
have k < count-list xs a

by (metis (mono-tags, lifting) count-list-card nat-add-left-cancel-less assms(3 )
calculation(2 ))

ultimately show ?thesis
using sorted-nth-gen[OF assms(1 ), of a k]
by blast

qed

end
theory SA-Util

imports SuffixArray.Suffix-Array-Properties
SuffixArray.Simple-SACA-Verification
../counting/Rank-Select

begin

9 Suffix Array Properties
9.1 Bijections
lemma bij-betw-empty:

bij-betw f {} {}
using bij-betwI ′ by fastforce

lemma bij-betw-sort-idx-ex:
assumes xs = sort ys
shows ∃ f . bij-betw f {j. j < length ys ∧ ys ! j < x} {j. j < length xs ∧ xs ! j <

x}
proof −

let ?A = {j. j < length ys ∧ ys ! j < x}
let ?B = {j. j < length xs ∧ xs ! j < x}

have mset ys = mset xs
by (simp add: assms)

with permutation-Ex-bij[of ys xs]
obtain f where
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bij-betw f {..<length ys} {..<length xs}
(∀ i<length ys. ys ! i = xs ! f i)
by blast

moreover
have ?A ⊆ {..<length ys}

by blast
moreover
have f ‘ ?A = ?B
proof safe

fix a
assume a < length ys ys ! a < x
then show f a < length xs

by (meson bij-betw-apply calculation(1 ) lessThan-iff )
next

fix a
assume a < length ys ys ! a < x
then show xs ! f a < x

by (simp add: calculation(2 ))
next

fix a
assume A: a < length xs xs ! a < x
from bij-betw-iff-bijections[THEN iffD1 , OF calculation(1 )]
obtain g where
∀ x∈{..<length ys}. f x ∈ {..<length xs} ∧ g (f x) = x
∀ y∈{..<length xs}. g y ∈ {..<length ys} ∧ f (g y) = y
by blast

then show a ∈ f ‘ ?A
by (metis (no-types, lifting) A calculation(2 ) imageI lessThan-iff mem-Collect-eq)

qed
ultimately show ?thesis

using bij-betw-subset
by blast

qed

9.2 Suffix Properties
lemma suffix-hd-set-eq:
{k. k < length s ∧ s ! k = c } = {k. k < length s ∧ (∃ xs. suffix s k = c # xs)}
using suffix-cons-ex by fastforce

lemma suffix-hd-set-less:
{k. k < length s ∧ s ! k < c } = {k. k < length s ∧ suffix s k < [c]}
using suffix-cons-ex by fastforce

lemma select-nth-suffix-start1 :
assumes i < card {k. k < length s ∧ (∃ as. suffix s k = a # as)}
and xs = sort s

shows select xs a i = card {k. k < length s ∧ suffix s k < [a]} + i
proof −
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let ?A = {k. k < length s ∧ (∃ as. suffix s k = a # as)}
let ?A ′ = {k. k < length s ∧ s ! k = a}

have ?A = ?A ′

using suffix-cons-Suc by fastforce
with assms(1 )
have i < count-list s a

by (simp add: count-list-card)
hence i < count-list xs a

by (metis assms(2 ) count-list-perm mset-sort)
moreover
let ?B = {k. k < length s ∧ suffix s k < [a]}
let ?B ′ = {k. k < length s ∧ s ! k < a}
let ?B ′′ = {k. k < length xs ∧ xs ! k < a}
{

have ?B = ?B ′

using suffix-cons-ex by fastforce
moreover
have card ?B ′ = card ?B ′′

using bij-betw-sort-idx-ex[OF assms(2 ), of a] bij-betw-same-card
by blast

ultimately have card ?B = card ?B ′′

by presburger
}
ultimately show ?thesis

using sorted-select assms(2 ) by force
qed

lemma select-nth-suffix-start2 :
assumes card {k. k < length s ∧ (∃ as. suffix s k = a # as)} ≤ i
and xs = sort s

shows select xs a i = length xs
proof (rule select-out-of-range[of s])

show mset s = mset xs
by (simp add: assms(2 ))

next
let ?A = {k. k < length s ∧ (∃ as. suffix s k = a # as)}
let ?A ′ = {k. k < length s ∧ s ! k = a}
have ?A = ?A ′

using suffix-cons-Suc by fastforce
with assms(1 )
show count-list s a ≤ i

by (simp add: count-list-card)
qed

context Suffix-Array-General begin
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9.3 General Properties
lemma sa-subset-upt:

set (sa s) ⊆ {0 ..< length s}
by (simp add: sa-set-upt)

lemma sa-suffix-sorted:
sorted (map (suffix s) (sa s))
using sa-g-sorted strict-sorted-imp-sorted by blast

9.4 Nth Properties
lemma sa-nth-suc-le:

assumes j < length s
and i < j
and s ! (sa s ! i) = s ! (sa s ! j)
and Suc (sa s ! i) < length s
and Suc (sa s ! j) < length s

shows s ! Suc (sa s ! i) ≤ s ! (Suc (sa s ! j))
proof −

from sorted-wrt-nth-less[OF sa-g-sorted[of s] assms(2 )] assms(1 ,2 )
have suffix s (sa s ! i) < suffix s (sa s ! j)

using sa-length by auto
with assms(3−)
have suffix s (Suc (sa s ! i)) < suffix s (Suc (sa s ! j))
by (metis Cons-less-Cons Cons-nth-drop-Suc Suc-lessD order-less-imp-not-less)

then show ?thesis
by (metis Cons-less-Cons assms(4 ,5 ) dual-order .asym suffix-cons-Suc verit-comp-simplify1 (3 ))

qed

lemma sa-nth-suc-le-ex:
assumes j < length s
and i < j
and s ! (sa s ! i) = s ! (sa s ! j)
and Suc (sa s ! i) < length s
and Suc (sa s ! j) < length s

shows ∃ k l. k < l ∧ sa s ! k = Suc (sa s ! i) ∧ sa s ! l = Suc (sa s ! j)
proof −

from sorted-wrt-nth-less[OF sa-g-sorted[of s] assms(2 )] assms(1 ,2 )
have suffix s (sa s ! i) < suffix s (sa s ! j)

using sa-length by auto
with assms(3−)
have suffix s (Suc (sa s ! i)) < suffix s (Suc (sa s ! j))
by (metis Cons-less-Cons Cons-nth-drop-Suc Suc-lessD order-less-imp-not-less)

moreover
from ex-sa-nth[OF assms(4 )]
obtain k where

k < length s
sa s ! k = Suc (sa s ! i)
by blast
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moreover
from ex-sa-nth[OF assms(5 )]
obtain l where

l < length s
sa s ! l = Suc (sa s ! j)
by blast

ultimately have k < l
using sorted-nth-less-mono[OF strict-sorted-imp-sorted[OF sa-g-sorted[of s]]]
by (metis length-map not-less-iff-gr-or-eq nth-map sa-length)

with ‹sa s ! k = -› ‹sa s ! l = -›
show ?thesis

by blast
qed

lemma sorted-map-nths-sa:
sorted (map (nth s) (sa s))

proof (intro sorted-wrt-mapI )
fix i j
assume i < j j < length (sa s)
hence suffix s (sa s ! i) < suffix s (sa s ! j)

using sa-g-sorted sorted-wrt-mapD by blast
moreover
have suffix s (sa s ! i) = s ! (sa s ! i) # suffix s (Suc (sa s ! i))

by (metis ‹i < j› ‹j < length (sa s)› order .strict-trans sa-length sa-nth-ex
suffix-cons-Suc)

moreover
have suffix s (sa s ! j) = s ! (sa s ! j) # suffix s (Suc (sa s ! j))

by (metis ‹j < length (sa s)› sa-length sa-nth-ex suffix-cons-Suc)
ultimately show s ! (sa s ! i) ≤ s ! (sa s ! j)

by fastforce
qed

lemma perm-map-nths-sa:
s <∼∼> map (nth s) (sa s)
by (metis map-nth mset-map sa-g-permutation)

lemma sort-eq-map-nths-sa:
sort s = map (nth s) (sa s)
by (metis perm-map-nths-sa properties-for-sort sorted-map-nths-sa)

lemma sort-sa-nth:
i < length s =⇒ sort s ! i = s ! (sa s ! i)
by (simp add: sa-length sort-eq-map-nths-sa)

lemma inj-on-nth-sa-upt:
assumes j ≤ length s l ≤ length s

shows inj-on (nth (sa s)) ({i..<j} ∪ {k..<l})
proof

fix x y
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assume x ∈ {i..<j} ∪ {k..<l} y ∈ {i..<j} ∪ {k..<l} sa s ! x = sa s ! y

have x < length s
using ‹x ∈ {i..<j} ∪ {k..<l}› assms(1 ) assms(2 ) by auto

moreover
have y < length s

using ‹y ∈ {i..<j} ∪ {k..<l}› assms(1 ) assms(2 ) by auto
ultimately show x = y

by (metis ‹sa s ! x = sa s ! y› nth-eq-iff-index-eq sa-distinct sa-length)
qed

lemma nth-sa-upt-set:
nth (sa s) ‘ {0 ..<length s} = {0 ..<length s}

proof safe
fix x
assume x ∈ {0 ..<length s}
then show sa s ! x ∈ {0 ..<length s}

using sa-nth-ex by force
next

fix x
assume x ∈ {0 ..<length s}
then show x ∈ (!) (sa s) ‘ {0 ..<length s}

by (metis ex-sa-nth image-iff in-set-conv-nth sa-length sa-set-upt)
qed

9.5 Valid List Properties
lemma valid-list-sa-hd:

assumes valid-list s
shows ∃n. length s = Suc n ∧ sa s ! 0 = n

proof −
from valid-list-ex-def [THEN iffD1 , OF assms]
obtain xs where

s = xs @ [bot]
by blast

hence valid-list (xs @ [bot])
using assms by simp

with valid-list-bot-min[of xs sa, OF - sa-g-permutation sa-g-sorted]
obtain ys where

sa (xs @ [bot]) = length xs # ys
by blast

with ‹s = xs @ [bot]›
show ?thesis

by simp
qed

lemma valid-list-not-last:
assumes valid-list s
and i < length s
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and j < length s
and i 6= j
and s ! i = s ! j

shows i < length s − 1 ∧ j < length s − 1
by (metis One-nat-def Suc-pred assms hd-drop-conv-nth last-suffix-index less-Suc-eq

valid-list-length)

end

lemma Suffix-Array-General-ex:
∃ sa. Suffix-Array-General sa
using simple-saca.Suffix-Array-General-axioms by auto

end
theory SA-Count

imports Rank-Select
../util/SA-Util

begin

10 Counting Properties on Suffix Arays
context Suffix-Array-General begin

10.1 Counting Properties
lemma sa-card-index:

assumes i < length s
shows i = card {j. j < length s ∧ suffix s (sa s ! j) < suffix s (sa s ! i)}

(is i = card ?A)
proof −

let ?P = λj. j < length s ∧ suffix s (sa s ! j) < suffix s (sa s ! i)
have P: ∀ j < i. ?P j
proof (safe)

fix j
assume j < i
with assms
show j < length s

by simp
next

fix j
assume j < i
with sorted-wrt-nth-less[OF sa-g-sorted[of s] ‹j < i›] assms
show suffix s (sa s ! j) < suffix s (sa s ! i)

using assms sa-length by auto
qed

have ?A = {j. j < i}
proof (safe)

fix x
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assume x < i
then show x < length s

using assms by simp
next

fix x
assume x < i
then show suffix s (sa s ! x) < suffix s (sa s ! i)

using P by auto
next

fix x
assume Q: x < length s suffix s (sa s ! x) < suffix s (sa s ! i)
hence x 6= i

by blast
with sorted-nth-less-mono[OF strict-sorted-imp-sorted[OF sa-g-sorted],

simplified length-map sa-length,
OF Q(1 ) assms]

Q assms
show x < i

by (simp add: sa-length)
qed
then show ?thesis

using card-Collect-less-nat by presburger
qed

corollary sa-card-s-index:
assumes i < length s
shows i = card {j. j < length s ∧ suffix s j < suffix s (sa s ! i)}

(is i = card ?A)
proof −

let ?i = sa s ! i
let ?v = s ! ?i
let ?B = {j. j < length s ∧ suffix s (sa s ! j) < suffix s ?i}

from sa-card-index[OF assms]
have i = card ?B .
moreover
have bij-betw (λx. sa s ! x) ?B ?A
proof (intro bij-betwI ′; safe)

fix x y
assume x < length s y < length s sa s ! x = sa s ! y
then show x = y

by (simp add: nth-eq-iff-index-eq sa-distinct sa-length)
next

fix x
assume x < length s
then show sa s ! x < length s

using sa-nth-ex by fastforce
next

fix x
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assume x < length s suffix s x < suffix s ?i
then show ∃ y ∈ ?B. x = sa s ! y

using ex-sa-nth by blast
qed
hence card ?B = card ?A

using bij-betw-same-card by blast
ultimately show ?thesis

by simp
qed

lemma sa-card-s-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! j < s ! (sa s ! i)} +

card {j. j < length s ∧ s ! j = s ! (sa s ! i) ∧ suffix s j < suffix s (sa s !
i)}
proof −

let ?i = sa s ! i
let ?v = s ! ?i
let ?A = {j. j < length s ∧ s ! j < ?v}
let ?B = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}
let ?C = {j. j < length s ∧ suffix s j < suffix s ?i}

from sa-card-s-index[OF assms]
have i = card ?C

by simp
moreover
have ?A ∩ ?B = {}

by fastforce
moreover
have ?C = ?A ∪ ?B
proof (safe)

fix x
assume x < length s suffix s x < suffix s ?i ¬s ! x < s ! ?i
then show s ! x = s ! ?i

by (metis Cons-less-Cons sa-nth-ex assms suffix-cons-Suc)
next

fix x
assume x < length s s ! x < s ! ?i
then show suffix s x < suffix s ?i

by (metis Cons-less-Cons sa-nth-ex assms suffix-cons-Suc)
qed
ultimately show ?thesis

by (simp add: card-Un-disjoint)
qed

lemma sa-card-index-lower-bound:
assumes i < length s
shows card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)} ≤ i
(is card ?A ≤ i)
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proof −
let ?B = {j. j < length s ∧ suffix s (sa s ! j) < suffix s (sa s ! i)}
have ?A ⊆ ?B
proof safe

fix x
assume x < length s s ! (sa s ! x) < s ! (sa s ! i)
then show suffix s (sa s ! x) < suffix s (sa s ! i)

by (metis Cons-less-Cons Cons-nth-drop-Suc assms sa-nth-ex)
qed
hence card ?A ≤ card ?B

by (simp add: card-mono)
then show ?thesis

using sa-card-index[OF assms] by simp
qed

lemma sa-card-rank-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}

+ rank (sort s) (s ! (sa s ! i)) i
proof −

from sorted-card-rank-idx[of sort s i]
have i = card {j. j < length (sort s) ∧ sort s ! j < sort s ! i} + rank (sort s)

(sort s ! i) i
using assms by fastforce

moreover
have sort s ! i = s ! (sa s ! i)

using assms sort-sa-nth by auto
moreover
have length (sort s) = length s

by simp
ultimately show ?thesis

using sort-sa-nth[of -s]
by (metis (no-types, lifting) Collect-cong)

qed

corollary sa-card-rank-s-idx:
assumes i < length s
shows i = card {j. j < length s ∧ s ! j < s ! (sa s ! i)}

+ rank (sort s) (s ! (sa s ! i)) i
proof −

let ?A = {j. j < length s ∧ s ! j < s ! (sa s ! i)}
and ?B = {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}
from sa-card-rank-idx[OF assms]
have i = card {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)} +

rank (sort s) (s ! (sa s ! i)) i .
moreover
have bij-betw (λx. sa s ! x)

{j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}
{j. j < length s ∧ s ! j < s ! (sa s ! i)}
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proof (rule bij-betwI ′; safe)
fix x y
assume x < length s y < length s sa s ! x = sa s ! y
then show x = y

by (simp add: nth-eq-iff-index-eq sa-distinct sa-length)
next

fix x
assume x < length s
then show sa s ! x < length s

using sa-nth-ex by auto
next

fix x
assume x < length s s ! x < s ! (sa s ! i)
then show ∃ xa ∈ {j. j < length s ∧ s ! (sa s ! j) < s ! (sa s ! i)}. x = sa s !

xa
using ex-sa-nth by blast

qed
hence card ?B = card ?A

using bij-betw-same-card by blast
ultimately show ?thesis

by simp
qed

lemma sa-rank-nth:
assumes i < length s
shows rank (sort s) (s ! (sa s ! i)) i =

card {j. j < length s ∧ s ! j = s ! (sa s ! i) ∧
suffix s j < suffix s (sa s ! i)}

proof −
let ?i = sa s ! i
let ?v = s ! ?i
let ?A = {j. j < length s ∧ s ! j < ?v}
let ?B = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}

from sa-card-rank-s-idx[OF assms]
have i = card ?A + rank (sort s) ?v i .
moreover
from sa-card-s-idx[OF assms]
have i = card ?A + card ?B .
ultimately show ?thesis

by linarith
qed

lemma sa-suffix-nth:
assumes card {k. k < length s ∧ s ! k < c } + i < length s
and i < count-list s c

shows ∃ as. suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i)) = c # as
proof −

let ?A = {k. k < length s ∧ s ! k < c}
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let ?i = card ?A
let ?A ′ = {k. k < length (sort s) ∧ (sort s) ! k < c}

have ∃ as. suffix s (sa s ! (?i + i)) = (s ! (sa s ! (?i + i))) # as
using assms sa-nth-ex suffix-cons-ex by blast

moreover
have s ! (sa s ! (?i + i)) = sort s ! (?i + i)

using assms(1 ) sort-sa-nth by presburger
moreover
{

have i < count-list (sort s) c
by (metis assms(2 ) count-list-perm sort-perm)

moreover
have card ?A = card ?A ′

proof −
have ∃ f . bij-betw f {n. n < length s ∧ s ! n < c} {n. n < length (sort s) ∧

sort s ! n < c}
using bij-betw-sort-idx-ex by blast

then show ?thesis
using bij-betw-same-card by blast

qed
ultimately have sort s ! (?i + i) = c

using sorted-nth-gen[of sort s c i] assms(1 ) by auto
}
ultimately show ?thesis

by force
qed

10.2 Ordering Properties
lemma sa-suffix-order-le:

assumes card {k. k < length s ∧ s ! k < c } < length s
shows [c] ≤ suffix s (sa s ! (card {k. k < length s ∧ s ! k < c}))

proof −
let ?A = {k. k < length s ∧ s ! k < c}
let ?A ′ = {k. k < length (sort s) ∧ (sort s) ! k < c}
let ?i = card ?A
let ?i ′ = card ?A ′

have ∃ as. suffix s (sa s ! ?i) = (s ! (sa s ! ?i)) # as
using assms sa-nth-ex suffix-cons-ex by blast

then obtain as where
suffix s (sa s ! ?i) = (s ! (sa s ! ?i)) # as
by blast

moreover
from sort-sa-nth[of ?i s]
have sort s ! ?i = s ! (sa s ! ?i)

using assms by blast
moreover
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have ?i = ?i ′
proof −

have ∃ f . bij-betw f {n. n < length s ∧ s ! n < c} {n. n < length (sort s) ∧
sort s ! n < c}

using bij-betw-sort-idx-ex by blast
then show ?thesis

using bij-betw-same-card by blast
qed
hence c ≤ sort s ! ?i

using sorted-nth-le[of sort s c] assms by auto
ultimately show ?thesis

by fastforce
qed

lemma sa-suffix-order-le-gen:
assumes card {k. k < length s ∧ s ! k < c } + i < length s
shows [c] ≤ suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i))

proof (cases i)
case 0
then show ?thesis

using assms sa-suffix-order-le by auto
next

let ?x = card {k. k < length s ∧ s ! k < c }
case (Suc m)
with sorted-wrt-mapD[OF sa-g-sorted, of ?x ?x + i s]
have suffix s (sa s ! ?x) < suffix s (sa s ! (?x + i))

using assms sa-length by auto
moreover
have [c] ≤ suffix s (sa s ! ?x)

using add-lessD1 assms sa-suffix-order-le by blast
ultimately show ?thesis

by order
qed

lemma sa-suffix-nth-less:
assumes i < card {k. k < length s ∧ s ! k < c}
shows ∀ as. suffix s (sa s ! i) < c # as

proof −
have i < length s

using assms card-less-idx-upper dual-order .strict-trans1 by blast
hence ∃ as. suffix s (sa s ! i) = s ! (sa s ! i) # as

using sa-nth-ex suffix-cons-Suc by blast
moreover
have i < card {k. k < length (sort s) ∧ (sort s) ! k < c}

using bij-betw-sort-idx-ex[of sort s s c] assms bij-betw-same-card by force
with sorted-nth-less-gen[of sort s i c]
have s ! (sa s ! i) < c

using sorted-nth-less-gen[of sort s i c] ‹i < length s› sort-sa-nth by force
ultimately show ?thesis
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by fastforce
qed

lemma sa-suffix-nth-gr :
assumes card {k. k < length s ∧ s ! k < c} + i < length s
and count-list s c ≤ i

shows ∀ as. c # as < suffix s (sa s ! (card {k. k < length s ∧ s ! k < c} + i))
proof −

let ?x = card {k. k < length s ∧ s ! k < c}
let ?i = ?x + i
let ?y = card {k. k < length (sort s) ∧ sort s ! k < c}
have ∃ as. suffix s (sa s ! ?i) = s ! (sa s ! ?i) # as

using assms(1 ) sa-nth-ex suffix-cons-Suc by blast
moreover
{

have ?y = ?x
using bij-betw-sort-idx-ex[of sort s s c] bij-betw-same-card by force

moreover
have ?y + i < length (sort s)

using assms(1 ) calculation(1 ) by auto
moreover
have count-list (sort s) c ≤ i

by (metis assms(2 ) count-list-perm mset-sort)
ultimately have s ! (sa s ! ?i) > c

using sorted-nth-gr-gen[of sort s c i] sort-sa-nth by fastforce
}
ultimately show ?thesis

by fastforce
qed

end

end
theory BWT

imports ../../util/SA-Util

begin

11 Burrows-Wheeler Transform
Based on [2]

Definition 3.3 from [3]: Canonical BWT
definition bwt-canon :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list

where
bwt-canon s = map last (sort (map (λx. rotate x s) [0 ..<length s]))

context Suffix-Array-General begin
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Definition 3.4 from [3]: Suffix Array Version of the BWT
definition bwt-sa :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list

where
bwt-sa s = map (λi. s ! ((i + length s − Suc 0 ) mod (length s))) (sa s)

end

12 BWT Verification
12.1 List Rotations
lemma rotate-suffix-prefix:

assumes i < length xs
shows rotate i xs = suffix xs i @ prefix xs i
by (simp add: assms rotate-drop-take)

lemma rotate-last:
assumes i < length xs
shows last (rotate i xs) = xs ! ((i + length xs − Suc 0 ) mod (length xs))
by (metis Nat.add-diff-assoc One-nat-def Suc-leI assms diff-less last-conv-nth

length-greater-0-conv length-rotate list.size(3 ) not-less-zero nth-rotate
zero-less-one)

lemma (in Suffix-Array-General) map-last-rotations:
map last (map (λi. rotate i s) (sa s)) = bwt-sa s

proof −
have ∀ x∈set (sa s). last (rotate x s) = s ! ((x + length s − Suc 0 ) mod length s)

by (meson atLeastLessThan-iff rotate-last sa-subset-upt subset-code(1 ))
then show ?thesis

unfolding bwt-sa-def by simp
qed

lemma distinct-rotations:
assumes valid-list s
and i < length s
and j < length s
and i 6= j

shows rotate i s 6= rotate j s
proof −

from rotate-suffix-prefix[OF assms(2 )]
rotate-suffix-prefix[OF assms(3 )]
suffix-has-no-prefix-suffix[OF assms, simplified]
suffix-has-no-prefix-suffix[OF assms(1 ,3 ,2 ) assms(4 )[symmetric], simplified]

show ?thesis
by (metis append-eq-append-conv2 )

qed
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12.2 Ordering
lemma list-less-suffix-app-prefix-1 :

assumes valid-list xs
and i < length xs
and j < length xs
and suffix xs i < suffix xs j

shows suffix xs i @ prefix xs i < suffix xs j @ prefix xs j
proof −

from suffix-less-ex[OF assms]
obtain b c as bs cs where

suffix xs i = as @ b # bs
suffix xs j = as @ c # cs
b < c
by blast

hence suffix xs i @ prefix xs i = as @ b # bs @ prefix xs i
suffix xs j @ prefix xs j = as @ c # cs @ prefix xs j

by simp-all
with ‹b < c›
show ?thesis

by (metis list-less-ex)
qed

lemma list-less-suffix-app-prefix-2 :
assumes valid-list xs
and i < length xs
and j < length xs
and suffix xs i @ prefix xs i < suffix xs j @ prefix xs j

shows suffix xs i < suffix xs j
by (metis assms list-less-suffix-app-prefix-1 not-less-iff-gr-or-eq suffixes-neq)

corollary list-less-suffix-app-prefix:
assumes valid-list xs
and i < length xs
and j < length xs

shows suffix xs i < suffix xs j ←→
suffix xs i @ prefix xs i < suffix xs j @ prefix xs j

using assms list-less-suffix-app-prefix-1 list-less-suffix-app-prefix-2 by blast

Theorem 3.5 from [3]: Same Suffix and Rotation Order
lemma list-less-suffix-rotate:

assumes valid-list xs
and i < length xs
and j < length xs

shows suffix xs i < suffix xs j ←→ rotate i xs < rotate j xs
by (simp add: assms list-less-suffix-app-prefix rotate-suffix-prefix)

lemma (in Suffix-Array-General) sorted-rotations:
assumes valid-list s
shows strict-sorted (map (λi. rotate i s) (sa s))
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proof (intro sorted-wrt-mapI )
fix i j
assume i < j j < length (sa s)
with sorted-wrt-nth-less[OF sa-g-sorted ‹i < j›, simplified, OF ‹j < -›]
have suffix s (sa s ! i) < suffix s (sa s ! j)

by force
with list-less-suffix-rotate[THEN iffD1 , OF assms, of sa s ! i sa s ! j]
show rotate (sa s ! i) s < rotate (sa s ! j) s
by (metis ‹i < j› ‹j < length (sa s)› dual-order .strict-trans sa-length sa-nth-ex)

qed

12.3 BWT Equivalence
Theorem 3.6 from [3]: BWT and Suffix Array Correspondence Canoncial
BWT and BWT via Suffix Array Correspondence
theorem (in Suffix-Array-General) bwt-canon-eq-bwt-sa:

assumes valid-list s
shows bwt-canon s = bwt-sa s

proof −
let ?xs = map (λx. rotate x s) [0 ..<length s]

have distinct ?xs
by (intro distinct-conv-nth[THEN iffD2 ] allI impI ; simp add: distinct-rotations[OF

assms])
hence strict-sorted (sort ?xs)

using distinct-sort sorted-sort strict-sorted-iff by blast
hence sort ?xs = map (λi. rotate i s) (sa s)

using sorted-rotations[OF assms]
by (simp add: strict-sorted-equal sa-set-upt)

with map-last-rotations[of s]
have map last (sort ?xs) = bwt-sa s

by presburger
then show ?thesis

by (metis bwt-canon-def )
qed

end
theory BWT-SA-Corres

imports BWT
../../counting/SA-Count
../../util/Rotated-Substring

begin

13 BWT and Suffix Array Correspondence
context Suffix-Array-General begin

Definition 3.12 from [3]: BWT Permutation
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definition bwt-perm :: ( ′a :: {linorder , order-bot}) list ⇒ nat list
where

bwt-perm s = map (λi. (i + length s − Suc 0 ) mod (length s)) (sa s)

13.1 BWT Using Suffix Arrays
lemma map-bwt-indexes:

fixes s :: ( ′a :: {linorder , order-bot}) list
shows bwt-sa s = map (λi. s ! i) (bwt-perm s)
by (simp add: bwt-perm-def bwt-sa-def )

lemma map-bwt-indexes-perm:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows bwt-perm s <∼∼> [0 ..<length s]

proof (intro distinct-set-imp-perm)
show distinct [0 ..<length s]

by simp
next

show set (bwt-perm s) = set [0 ..<length s]
unfolding bwt-perm-def

proof safe
fix x
assume x ∈ set (map (λi. (i + length s − Suc 0 ) mod length s) (sa s))
hence x < length s

by (metis (no-types, lifting) ex-map-conv length-map length-pos-if-in-set
mod-less-divisor

sa-length)
then show x ∈ set [0 ..<length s]

by simp
next

fix x
assume x ∈ set [0 ..<length s]
hence x ∈ {0 ..<length s}

using atLeastLessThan-upt by blast

have x ∈ (λi. (i + length s − Suc 0 ) mod length s) ‘ {0 ..<length s}
proof (cases Suc x < length s)

assume Suc x < length s
hence (λi. (i + length s − Suc 0 ) mod length s) (Suc x) = x

by simp
then show ?thesis

using ‹Suc x < length s› by force
next

assume ¬ Suc x < length s
with ‹x ∈ {0 ..<length s}›
have Suc x = length s

by simp
hence (λi. (i + length s − Suc 0 ) mod length s) 0 = x

using diff-Suc-1 ′ lessI mod-less by presburger
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then show ?thesis
by (metis (mono-tags, lifting) ‹Suc x = length s› atLeastLessThan-iff imageI

zero-le
zero-less-Suc)

qed
then show x ∈ set (map (λi. (i + length s − Suc 0 ) mod length s) (sa s))

by (simp add: sa-set-upt)
qed

next
show distinct (bwt-perm s)
proof (intro distinct-conv-nth[THEN iffD2 ] allI impI )

fix i j
assume A: i < length (bwt-perm s) j < length (bwt-perm s) i 6= j

have bwt-perm s ! i = (sa s ! i + length s − Suc 0 ) mod (length s)
using A(1 ) bwt-perm-def by force

moreover
have bwt-perm s ! j = (sa s ! j + length s − Suc 0 ) mod (length s)

using A(2 ) bwt-perm-def by force
moreover
have sa s ! i 6= sa s ! j

by (metis A bwt-perm-def length-map nth-eq-iff-index-eq sa-distinct)

have (sa s ! i + length s − Suc 0 ) mod (length s) 6=
(sa s ! j + length s − Suc 0 ) mod (length s)

proof (cases sa s ! i)
case 0
hence (sa s ! i + length s − Suc 0 ) mod (length s) = length s − Suc 0

by (metis diff-Suc-less gen-length-def length-code length-greater-0-conv
list.size(3 )

mod-by-0 mod-less)
moreover
have ∃m. sa s ! j = Suc m

using 0 ‹sa s ! i 6= sa s ! j› not0-implies-Suc by force
then obtain m where

sa s ! j = Suc m
by blast

hence (sa s ! j + length s − Suc 0 ) mod (length s) = m
using A(2 ) bwt-perm-def sa-length sa-nth-ex by force

moreover
have Suc m ≤ length s − Suc 0
by (metis 0 A(1 ) A(2 ) Suc-pred ‹sa s ! j = Suc m› bwt-perm-def length-map

less-Suc-eq-le
sa-length sa-nth-ex)

hence m < length s − Suc 0
using Suc-le-eq by blast

ultimately show ?thesis
by (metis not-less-iff-gr-or-eq)

next
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case (Suc n)
assume sa s ! i = Suc n
hence B: (sa s ! i + length s − Suc 0 ) mod (length s) = n

using A(1 ) bwt-perm-def sa-length sa-nth-ex by force
show ?thesis
proof (cases sa s ! j)

case 0
hence (sa s ! j + length s − Suc 0 ) mod (length s) = length s − Suc 0
by (metis add-eq-if diff-Suc-less length-greater-0-conv list.size(3 ) mod-by-0

mod-less)
moreover
have Suc n ≤ length s − Suc 0

by (metis 0 A(1 ,2 ) Suc Suc-pred bwt-perm-def length-map less-Suc-eq-le
sa-length

sa-nth-ex)
hence n < length s − Suc 0

using Suc-le-eq by blast
ultimately show ?thesis

by (simp add: B)
next

case (Suc m)
hence (sa s ! j + length s − Suc 0 ) mod (length s) = m

using A(2 ) add-Suc bwt-perm-def sa-length sa-nth-ex by force
moreover
have m 6= n

using Suc ‹sa s ! i = Suc n› ‹sa s ! i 6= sa s ! j› by auto
ultimately show ?thesis

using B by presburger
qed

qed
ultimately show bwt-perm s ! i 6= bwt-perm s ! j

by presburger
qed

qed

lemma bwt-sa-perm:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows bwt-sa s <∼∼> s
by (metis map-bwt-indexes-perm map-bwt-indexes map-nth mset-map)

lemma bwt-sa-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-sa s ! i = s ! (((sa s ! i) + length s − 1 ) mod (length s))
using assms sa-length bwt-sa-def by force

lemma bwt-perm-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
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fixes i :: nat
assumes i < length s
shows bwt-perm s ! i = ((sa s ! i) + length s − 1 ) mod (length s)
using assms sa-length bwt-perm-def by force

lemma bwt-perm-s-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes i < length s
shows bwt-sa s ! i = s ! (bwt-perm s ! i)
using assms bwt-perm-nth bwt-sa-nth by presburger

lemma bwt-sa-length:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows length (bwt-sa s) = length s
using sa-length bwt-sa-def by force

lemma bwt-perm-length:
fixes s :: ( ′a :: {linorder , order-bot}) list
shows length (bwt-perm s) = length s
using sa-length bwt-perm-def by force

lemma ex-bwt-perm-nth:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes k :: nat
assumes k < length s
shows ∃ i < length s. bwt-perm s ! i = k
using assms ex-perm-nth map-bwt-indexes-perm by blast

lemma valid-list-sa-index-helper :
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < length s
and j < length s
and i 6= j
and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)

shows sa s ! i 6= 0
proof (rule ccontr)

assume ¬ sa s ! i 6= 0
hence sa s ! i = 0

by clarsimp

from valid-list-length-ex[OF assms(1 )]
obtain n where

length s = Suc n
by blast
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let ?i = (sa s ! i + length s − 1 ) mod length s
and ?j = (sa s ! j + length s − 1 ) mod length s

from bwt-perm-nth[OF assms(2 )]
have bwt-perm s ! i = ?i .
moreover
from bwt-perm-nth[OF assms(3 )]
have bwt-perm s ! j = ?j .
moreover
have ?i = n

by (simp add: ‹length s = Suc n› ‹sa s ! i = 0 ›)
hence s ! ?i = bot

by (metis One-nat-def ‹length s = Suc n› assms(1 ) diff-Suc-Suc diff-zero
last-conv-nth

list.size(3 ) nat.distinct(1 ) valid-list-def )
moreover
have ∃ k. sa s ! j = Suc k

by (metis ‹length s = Suc n› ‹sa s ! i = 0 › assms(2−4 ) less-Suc-eq-0-disj
nth-eq-iff-index-eq

sa-distinct sa-length sa-nth-ex)
then obtain k where

sa s ! j = Suc k
by blast

hence ?j = k ∧ k < n
by (metis ‹length s = Suc n› add-Suc-right add-Suc-shift add-diff-cancel-left ′

assms(3 )
dual-order .strict-trans lessI mod-add-self2 mod-less not-less-eq plus-1-eq-Suc

sa-nth-ex)
hence s ! ?j 6= bot

by (metis ‹length s = Suc n› assms(1 ) diff-Suc-1 valid-list-def )
ultimately show False

by (metis assms(5 ))
qed

Theorem 3.13 from [3]: Suffix Relative Order Preservation Relative order
of the suffixes is maintained by the BWT permutation
lemma bwt-relative-order :

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < j
and j < length s
and s ! (bwt-perm s ! i) = s ! (bwt-perm s ! j)

shows suffix s (bwt-perm s ! i) < suffix s (bwt-perm s ! j)
proof −

from valid-list-length-ex[OF assms(1 )]
obtain n where

length s = Suc n
by blast
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let ?i = (sa s ! i + length s − 1 ) mod length s
and ?j = (sa s ! j + length s − 1 ) mod length s

from bwt-perm-nth[of i s] assms(2−3 )
have bwt-perm s ! i = ?i

using dual-order .strict-trans by blast
moreover
from bwt-perm-nth[OF assms(3 )]
have bwt-perm s ! j = ?j .
moreover
from sorted-wrt-nth-less[OF sa-g-sorted assms(2 )] assms(2 ,3 )
have suffix s (sa s ! i) < suffix s (sa s ! j)

using sa-length by force
moreover
have ∃ k. sa s ! i = Suc k
using valid-list-sa-index-helper [OF assms(1 ) - assms(3 ) - assms(4 )] assms(2 ,3 )

dual-order .strict-trans not0-implies-Suc by blast
then obtain k where

sa s ! i = Suc k
by blast

moreover
from calculation(4 )
have ?i = k

by (metis Suc-lessD add.assoc assms(2 ,3 ) diff-Suc-1 dual-order .strict-trans
mod-add-self2

mod-less plus-1-eq-Suc sa-nth-ex)
moreover
have ∃ l. sa s ! j = Suc l
using valid-list-sa-index-helper [OF assms(1 ) assms(3 ) - - assms(4 )[symmetric]]

assms(2 ,3 )
dual-order .strict-trans not0-implies-Suc by blast

then obtain l where
sa s ! j = Suc l
by blast

moreover
from calculation(6 )
have ?j = l

using assms(3 ) sa-nth-ex by force
ultimately show ?thesis
by (metis Cons-less-Cons Cons-nth-drop-Suc assms(1 ,4 ) mod-less-divisor valid-list-length)

qed

lemma bwt-sa-card-s-idx:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s
shows i = card {j. j < length s ∧ j < i ∧ bwt-sa s ! j 6= bwt-sa s ! i} +
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card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)}

proof −
let ?bwt = bwt-sa s
let ?idx = bwt-perm s
let ?i = ?idx ! i
let ?v = ?bwt ! i
let ?A = {j. j < length s ∧ j < i ∧ ?bwt ! j 6= ?v}
let ?B = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}
let ?C = {j. j < length s ∧ j < i ∧ ?bwt ! j = ?v}

have P:
∧

x. [[x < i; ¬x < length s]] =⇒ False
using assms(2 ) dual-order .strict-trans by blast

have ?A ∩ ?C = {}
by blast

moreover
have ?A ∪ ?C = {0 ..<i}

by (safe; clarsimp dest!: P)
ultimately have i = card ?A + card ?C

by (metis (no-types, lifting) List.finite-set atLeastLessThan-upt card-Un-disjnt
card-upt

disjnt-def finite-Un)
moreover
have bij-betw (λx. ?idx ! x) ?C ?B
proof (intro bij-betwI ′; safe)

fix x y
assume x < length s y < length s ?idx ! x = ?idx ! y
with perm-distinct-iff [OF map-bwt-indexes-perm, of s]
show x = y

by (simp add: bwt-perm-length nth-eq-iff-index-eq)
next

fix x
assume x < length s
with map-bwt-indexes-perm[of s]
show ?idx ! x < length s

using perm-nth-ex by blast
next

fix x
assume x < length s bwt-sa s ! x = ?v
then show s ! (?idx ! x) = ?v

using bwt-perm-s-nth by auto
next

fix x
assume x < length s x < i bwt-sa s ! x = ?v
then show suffix s (?idx ! x) < suffix s ?i
using bwt-relative-order [OF assms(1 ) - assms(2 ), of x] assms(2 ) bwt-perm-s-nth

by fastforce
next
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fix x
assume Q: x < length s s ! x = ?v suffix s x < suffix s ?i

from perm-nth[OF map-bwt-indexes-perm[of s, symmetric],
simplified length-map sa-length length-upt]

have ∃ y < length s. x = ?idx ! y
using Q(1 ) bwt-perm-length by auto

then obtain y where
y < length s
x = ?idx ! y
by blast

moreover
from Q(2 ) calculation
have ?bwt ! y = ?v

by (simp add: bwt-perm-s-nth)
moreover
have y < i
proof (rule ccontr)

assume ¬ y < i
hence i ≤ y

by simp
moreover
from Q(3 ) ‹x = ?idx ! y›
have i = y =⇒ False

by blast
moreover
have i < y =⇒ False
proof −

assume i < y
from bwt-relative-order [OF assms(1 ) ‹i < y› ‹y < -›]

Q(2 ) ‹x = ?idx ! y›
have suffix s ?i < suffix s (?idx ! y)

by (simp add: bwt-perm-s-nth assms(2 ))
with Q(3 ) ‹x = ?idx ! y›
show False

using order .asym by blast
qed
ultimately show False

using nat-less-le by blast
qed
ultimately show ∃ y ∈ ?C . x = bwt-perm s ! y

by blast
qed
hence card ?C = card ?B

using bij-betw-same-card by blast
ultimately
show ?thesis

by presburger
qed
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lemma bwt-perm-to-sa-idx:
assumes valid-list s
and i < length s

shows ∃ k < length s. sa s ! k = bwt-perm s ! i ∧
k = card {j. j < length s ∧ s ! j < bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)}

proof −
let ?bwt = bwt-sa s
let ?v = ?bwt ! i
let ?i = bwt-perm s ! i
let ?A = {j. j < length s ∧ s ! j < ?v}
let ?B = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}

have ∃ k < length s. sa s ! k = ?i
by (metis assms bwt-perm-nth ex-sa-nth mod-less-divisor valid-list-length)

then obtain k where
k < length s
sa s ! k = ?i
by blast

moreover
have s ! (sa s ! k) = ?v

using assms(2 ) bwt-perm-s-nth calculation(2 ) by presburger
with sa-card-s-idx[OF calculation(1 )]
have k = card ?A + card ?B

by (metis calculation(2 ))
ultimately show ?thesis

by blast
qed

corollary bwt-perm-eq:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows bwt-perm s ! i =
sa s ! (card {j. j < length s ∧ s ! j < bwt-sa s ! i} +

card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧
suffix s j < suffix s (bwt-perm s ! i)})

using assms bwt-perm-to-sa-idx by presburger

13.2 BWT Rank Properties
lemma bwt-perm-rank-nth:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s
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shows rank (bwt-sa s) (bwt-sa s ! i) i =
card {j. j < length s ∧ s ! j = bwt-sa s ! i ∧

suffix s j < suffix s (bwt-perm s ! i)}
proof −

let ?bwt = bwt-sa s
let ?idx = bwt-perm s
let ?i = ?idx ! i
let ?v = ?bwt ! i
let ?A = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}
let ?B = {j. j < length ?bwt ∧ j < i ∧ ?bwt ! j = ?v}
let ?C = {j. j < length s ∧ j < i ∧ ?bwt ! j = ?v}

from valid-list-length-ex[OF assms(1 )]
obtain n where

length s = Suc n
by blast

from rank-card-spec[of ?bwt ?v i]
have rank ?bwt ?v i = card ?B .
moreover
have ?B = ?C

by (simp add: bwt-sa-length sa-length)
moreover
have bij-betw (λx. ?idx ! x) ?C ?A
proof (rule bij-betwI ′; safe)

fix x y
assume x < length s y < length s ?idx ! x = ?idx ! y
then show x = y

by (metis map-bwt-indexes-perm bwt-perm-length nth-eq-iff-index-eq
perm-distinct-set-of-upt-iff )

next
fix x
assume x < length s
then show ?idx ! x < length s

using map-bwt-indexes-perm perm-nth-ex by blast
next

fix x
assume x < length s x < i ?bwt ! x = ?v
then show s ! (?idx ! x) = ?v

using bwt-perm-s-nth by auto
next

fix x
assume x < length s x < i ?bwt ! x = ?v
then show suffix s (?idx ! x) < suffix s ?i

by (simp add: assms(1 ,2 ) bwt-relative-order bwt-perm-s-nth)
next

fix x
assume x < length s s ! x = ?v suffix s x < suffix s ?i
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from perm-nth[OF map-bwt-indexes-perm[of s, symmetric],
simplified length-map sa-length length-upt, of x]

have ∃ y < length s. x = ?idx ! y
using ‹x < length s› bwt-perm-length by auto

then obtain y where
y < length s
x = ?idx ! y
by blast

moreover
from calculation ‹s ! x = ?v›
have ?bwt ! y = ?v

using bwt-perm-s-nth by presburger
moreover
have y < i
proof (rule ccontr)

assume ¬ y < i
hence i ≤ y

by simp
moreover
from ‹suffix s x < suffix s ?i› ‹x = ?idx ! y›
have y = i =⇒ False

by blast
moreover
have i < y =⇒ False
proof −

assume i < y
with bwt-relative-order [OF assms(1 ) ‹i < y› ‹y < -›] ‹x = ?idx ! y› ‹s ! x

= bwt-sa s ! i›
have suffix s ?i < suffix s x

using assms(2 ) bwt-perm-s-nth by presburger
with ‹suffix s x < suffix s ?i›
show False

using less-not-sym by blast
qed
ultimately show False

by linarith
qed
ultimately show ∃ y ∈ ?C . x = bwt-perm s ! y

by blast
qed
hence card ?C = card ?A

using bij-betw-same-card by blast
ultimately show ?thesis

by presburger
qed

lemma bwt-sa-card-rank-s-idx:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
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assumes valid-list s
and i < length s

shows i = card {j. j < length s ∧ j < i ∧ bwt-sa s ! j 6= bwt-sa s ! i} +
rank (bwt-sa s) (bwt-sa s ! i) i

using assms bwt-sa-card-s-idx bwt-perm-rank-nth by presburger

13.3 Suffix Array and BWT Rank
lemma sa-bwt-perm-same-rank:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
assumes valid-list s
and i < length s
and j < length s
and sa s ! i = bwt-perm s ! j

shows rank (sort s) (s ! (sa s ! i)) i = rank (bwt-sa s) (bwt-sa s ! j) j
proof −

let ?i = sa s ! i
let ?v = s ! ?i
let ?A = {j. j < length s ∧ s ! j = ?v ∧ suffix s j < suffix s ?i}

have bwt-sa s ! j = ?v
using bwt-perm-s-nth[OF assms(3 )] assms(4 ) by presburger

from sa-rank-nth[OF assms(2 )]
have rank (sort s) ?v i = card ?A .
moreover
from bwt-perm-rank-nth[OF assms(1 ,3 ), simplified assms(4 )[symmetric]] ‹bwt-sa

s ! j = ?v›
have rank (bwt-sa s) (bwt-sa s ! j) j = card ?A

by simp
ultimately show ?thesis

by simp
qed

Theorem 3.17 from [3]: Same Rank Rank for each symbol is the same in
the BWT and suffix array
lemma rank-same-sa-bwt-perm:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i j :: nat
fixes v :: ′a
assumes valid-list s
and i < length s
and j < length s
and s ! (sa s ! i) = v
and bwt-sa s ! j = v
and rank (sort s) v i = rank (bwt-sa s) v j

shows sa s ! i = bwt-perm s ! j
proof −
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let ?A = {j. j < length s ∧ s ! j < v}
from sa-card-rank-s-idx[OF assms(2 ), simplified assms(4 )]
have i = card ?A + rank (sort s) v i .
moreover
from bwt-perm-rank-nth[OF assms(1 ,3 ), simplified assms(5 )]

bwt-perm-eq[OF assms(1 ,3 ), simplified assms(5 )]
have bwt-perm s ! j = sa s ! (card ?A + rank (bwt-sa s) v j)

by presburger
with assms(6 )
have bwt-perm s ! j = sa s ! (card ?A + rank (sort s) v i)

by simp
ultimately show ?thesis

by simp
qed

lemma rank-bwt-card-suffix:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
fixes a :: ′a
assumes i < length s
shows rank (bwt-sa s) a i =

card {k. k < length s ∧ k < i ∧ bwt-sa s ! k = a ∧
a # suffix s (sa s ! k) < a # suffix s (sa s ! i)}

proof −
let ?X = {j. j < length (bwt-sa s) ∧ j < i ∧ bwt-sa s ! j = a}
let ?Y = {k. k < length s ∧ k < i ∧ bwt-sa s ! k = a ∧

a # suffix s (sa s ! k) < a # suffix s (sa s ! i)}

from rank-card-spec[of bwt-sa s a i]
have rank (bwt-sa s) a i = card ?X .
moreover
have ?Y ⊆ ?X

using bwt-sa-length by auto
moreover
have ?X ⊆ ?Y
proof safe

fix x
assume x < length (bwt-sa s)
then show x < length s

by (simp add: bwt-sa-length)
next

fix x
assume x < length (bwt-sa s) x < i a = bwt-sa s ! x
with sorted-wrt-mapD[OF sa-g-sorted, of x i s]
show bwt-sa s ! x # suffix s (sa s ! x) < bwt-sa s ! x # suffix s (sa s ! i)

by (simp add: assms sa-length)
qed
ultimately show ?thesis

by force
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qed

lemma sa-to-bwt-perm-idx:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows sa s ! i =
bwt-perm s ! (select (bwt-sa s) (s ! (sa s ! i)) (rank (sort s) (s ! (sa s ! i)) i))

proof −
let ?a = s ! (sa s ! i)
let ?r1 = rank (sort s) ?a i
let ?i = select (bwt-sa s) ?a ?r1
let ?r2 = rank (bwt-sa s) ?a ?i

have ?r1 < count-list (sort s) ?a
by (simp add: assms(2 ) rank-upper-bound sort-sa-nth)

hence ?r1< count-list (bwt-sa s) ?a
by (metis bwt-sa-perm count-list-perm mset-sort)

hence ?i < length (bwt-sa s)
by (metis rank-length select-upper-bound)

hence ?r1 = ?r2 ∧ bwt-sa s ! ?i = ?a
by (metis rank-select select-nth-alt)

with rank-same-sa-bwt-perm[OF assms, of ?i ?a]
show ?thesis

using ‹?i < length (bwt-sa s)› bwt-sa-length by fastforce
qed

lemma suffix-bwt-perm-sa:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s
and bwt-sa s ! i 6= bot

shows suffix s (bwt-perm s ! i) = bwt-sa s ! i # suffix s (sa s ! i)
proof −

from bwt-sa-nth[OF assms(2 )]
have bwt-sa s ! i = s ! ((sa s ! i + length s − 1 ) mod length s) .
moreover
have sa s ! i 6= 0
by (metis add-diff-cancel-left ′ assms(1 ,3 ) calculation diff-less diff-zero last-conv-nth

length-greater-0-conv less-one mod-less valid-list-def )
ultimately have bwt-sa s ! i = s ! (sa s ! i − 1 )
by (metis Nat.add-diff-assoc2 One-nat-def Suc-lessD Suc-pred assms(2 ) bot-nat-0 .not-eq-extremum

less-Suc-eq-le linorder-not-less mod-add-self2 mod-if sa-nth-ex)
hence bwt-sa s ! i # suffix s (sa s ! i) = suffix s (sa s ! i − 1 )

by (metis Suc-lessD ‹sa s ! i 6= 0 › add-diff-inverse-nat assms(2 ) less-one
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plus-1-eq-Suc
sa-nth-ex suffix-cons-Suc)

moreover
have bwt-perm s ! i = sa s ! i − 1

by (metis Nat.add-diff-assoc2 One-nat-def Suc-leI Suc-lessD Suc-pred ‹sa s ! i
6= 0 › assms(2 )

bwt-perm-nth mod-add-self2 mod-less not-gr-zero sa-nth-ex)
ultimately show ?thesis

by presburger
qed

end

end
theory IBWT

imports BWT-SA-Corres
begin

14 Inverse Burrows-Wheeler Transform
Inverse BWT algorithm obtained from [6]

14.1 Abstract Versions
context Suffix-Array-General begin

These are abstract because they use additional information about the
original string and its suffix array.

Definition 3.15 from [3]: Abstract LF-Mapping
fun lf-map-abs :: ′a list ⇒ nat ⇒ nat
where
lf-map-abs s i = select (sort s) (bwt-sa s ! i) (rank (bwt-sa s) (bwt-sa s ! i) i)

Definition 3.16 from [3]: Inverse BWT Permutation
fun ibwt-perm-abs :: nat ⇒ ′a list ⇒ nat ⇒ nat list
where
ibwt-perm-abs 0 - - = [] |
ibwt-perm-abs (Suc n) s i = ibwt-perm-abs n s (lf-map-abs s i) @ [i]

end

14.2 Concrete Versions
These are concrete because they only rely on the BWT-transformed sequence
without any additional information.

Definition 3.14 from [3]: Inverse BWT - LF-mapping
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fun lf-map-conc :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒ nat
where

lf-map-conc ss bs i = (select ss (bs ! i) 0 ) + (rank bs (bs ! i) i)

fun ibwt-perm-conc :: nat ⇒ ( ′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒
nat list

where
ibwt-perm-conc 0 - - - = [] |
ibwt-perm-conc (Suc n) ss bs i = ibwt-perm-conc n ss bs (lf-map-conc ss bs i)

@ [i]

Definition 3.14 from [3]: Inverse BWT - Inverse BWT Rotated Subse-
quence
fun ibwtn :: nat ⇒ ( ′a :: {linorder , order-bot}) list ⇒ ′a list ⇒ nat ⇒ ′a list

where
ibwtn 0 - - - = [] |
ibwtn (Suc n) ss bs i = ibwtn n ss bs (lf-map-conc ss bs i) @ [bs ! i]

Definition 3.14 from [3]: Inverse BWT
fun ibwt :: ( ′a :: {linorder , order-bot}) list ⇒ ′a list

where
ibwt bs = ibwtn (length bs) (sort bs) bs (select bs bot 0 )

15 List Filter
lemma filter-nth-app-upt:

filter (λi. P (xs ! i)) [0 ..<length xs] = filter (λi. P ((xs @ ys) ! i)) [0 ..<length
xs]

by (induct xs arbitrary: ys rule: rev-induct; simp)

lemma filter-eq-nth-upt:
filter P xs = map (λi. xs ! i) (filter (λi. P (xs ! i)) [0 ..<length xs])

proof (induct xs rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc x xs)
have ?case ←→

map ((!) xs) (filter (λi. P (xs ! i)) [0 ..<length xs]) =
map ((!) (xs @ [x])) (filter (λi. P ((xs @ [x]) ! i)) [0 ..<length xs])

using snoc by simp
moreover
have map ((!) (xs @ [x])) (filter (λi. P ((xs @ [x]) ! i)) [0 ..<length xs]) =

map ((!) (xs @ [x])) (filter (λi. P (xs ! i)) [0 ..<length xs])
using filter-nth-app-upt[of P xs [x]] by simp

moreover
have map ((!) xs) (filter (λi. P (xs ! i)) [0 ..<length xs]) =
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map ((!) (xs @ [x])) (filter (λi. P (xs ! i)) [0 ..<length xs])
by (clarsimp simp: nth-append)

ultimately show ?case
by argo

qed

lemma distinct-filter-nth-upt:
distinct (filter (λi. P (xs ! i)) [0 ..<length xs])
by simp

lemma filter-nth-upt-set:
set (filter (λi. P (xs ! i)) [0 ..<length xs]) = {i. i < length xs ∧ P (xs ! i)}
using set-filter by simp

lemma filter-length-upt:
length (filter (λi. P (xs ! i)) [0 ..<length xs]) = card {i. i < length xs ∧ P (xs !

i)}
by (metis distinct-card distinct-filter-nth-upt filter-nth-upt-set)

lemma perm-filter-length:
xs <∼∼> ys =⇒
length (filter (λi. P (xs ! i)) [0 ..<length xs])
= length (filter (λi. P (ys ! i)) [0 ..<length ys])

by (metis filter-eq-nth-upt length-map mset-filter perm-length)

16 Verification of the Inverse Burrows-Wheeler Trans-
form

context Suffix-Array-General begin

16.1 LF-Mapping Simple Properties
lemma lf-map-abs-less-length:

fixes s :: ′a list
fixes i j :: nat
assumes i < length s

shows lf-map-abs s i < length s
proof −

let ?v = bwt-sa s ! i
let ?r = rank (bwt-sa s) ?v i
let ?i = lf-map-abs s i

have ?i = select (sort s) ?v ?r
by (metis lf-map-abs.simps)

have ?r < count-list (bwt-sa s) ?v
by (simp add: assms bwt-sa-length rank-upper-bound)

moreover
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have bwt-sa s <∼∼> sort s
using bwt-sa-perm by auto

ultimately have ?r < count-list (sort s) ?v
by (metis (no-types, lifting) count-list-perm)

with rank-length[of sort s ?v, symmetric]
have ?r < rank (sort s) ?v (length s)

by simp
with select-upper-bound
have select (sort s) ?v ?r < length (sort s)

by metis
with ‹?i = select (sort s) ?v ?r›
show ?thesis

by (metis length-sort)
qed

corollary lf-map-abs-less-length-funpow:
fixes s :: ′a list
fixes i j :: nat
assumes i < length s

shows ((lf-map-abs s)^^k) i < length s
proof (induct k)

case 0
then show ?case

using assms by auto
next

case (Suc k)
then show ?case

by (metis comp-apply funpow.simps(2 ) lf-map-abs-less-length)
qed

lemma lf-map-abs-equiv:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i r :: nat
fixes v :: ′a
assumes i < length (bwt-sa s)
and v = bwt-sa s ! i
and r = rank (bwt-sa s) v i

shows lf-map-abs s i = card {j. j < length (bwt-sa s) ∧ bwt-sa s ! j < v} + r
proof −

have ∃ k. length s = Suc k
by (metis assms(1 ) bwt-sa-length less-nat-zero-code not0-implies-Suc)

then obtain n where
length s = Suc n
by blast

let ?P = (λx. x < v)

have lf-map-abs s i = select (sort s) v r
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by (metis assms(2 ) assms(3 ) lf-map-abs.simps)
moreover
from rank-upper-bound[OF assms(1 ) assms(2 )[symmetric]] assms(3 )
have r < count-list (bwt-sa s) v

by simp
hence r < count-list (sort s) v

using count-list-perm[OF trans[OF bwt-sa-perm sort-perm]] by simp
with sorted-select[of sort s r v]
have select (sort s) v r = card {j. j < length (sort s) ∧ sort s ! j < v} + r

by simp
moreover
have length (filter (λx. ?P (sort s ! x)) [0 ..<length (sort s)])

= card {j. j < length (sort s) ∧ sort s ! j < v}
using filter-length-upt[of ?P sort s] by simp

moreover
have length (filter (λx. ?P (bwt-sa s ! x)) [0 ..<length (bwt-sa s)])

= card {j. j < length (bwt-sa s) ∧ bwt-sa s ! j < v}
using filter-length-upt[of ?P bwt-sa s] by simp

ultimately show ?thesis
using perm-filter-length[OF trans[OF bwt-sa-perm sort-perm], of ?P s]
by presburger

qed

16.2 LF-Mapping Correctness
lemma sa-lf-map-abs:

assumes valid-list s
and i < length s

shows sa s ! (lf-map-abs s i) = (sa s ! i + length s − Suc 0 ) mod (length s)
proof −

let ?v = bwt-sa s ! i
let ?r = rank (bwt-sa s) ?v i
let ?i = lf-map-abs s i

have ?i = select (sort s) ?v ?r
by (metis lf-map-abs.simps)

from lf-map-abs-less-length[OF assms(2 )]
have ?i < length s .
hence select (sort s) ?v ?r < length (sort s)

by (metis length-sort lf-map-abs.simps)
with rank-select
have rank (sort s) ?v (select (sort s) ?v ?r) = ?r

by metis
with ‹?i = select (sort s) ?v ?r›
have rank (sort s) ?v ?i = ?r

by simp
moreover
have ?i < length s

75



using ‹select (sort s) ?v ?r < length (sort s)› ‹?i = select (sort s) ?v ?r› by
auto

moreover
{

from select-nth[of sort s ?v ?r ?i]
have sort s ! lf-map-abs s i = bwt-sa s ! i

by (metis ‹?i = select (sort s) ?v ?r› calculation(2 ) length-sort)
moreover
have s ! (sa s ! ?i) = sort s ! ?i

using ‹?i < length s› sort-sa-nth by presburger
ultimately have s ! (sa s ! ?i) = ?v

by presburger
}
ultimately have sa s ! ?i = bwt-perm s ! i

using rank-same-sa-bwt-perm[OF assms(1 )- assms(2 ), of ?i ?v]
by blast

then show ?thesis
using bwt-perm-nth[OF assms(2 )]
by simp

qed

Theorem 3.18 from [3]: Abstract LF-Mapping Correctness
corollary bwt-perm-lf-map-abs:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i :: nat
assumes valid-list s
and i < length s

shows bwt-perm s ! (lf-map-abs s i) = (bwt-perm s ! i + length s − Suc 0 ) mod
(length s)
by (metis One-nat-def bwt-perm-nth assms(1 ,2 ) lf-map-abs-less-length sa-lf-map-abs)

16.3 Backwards Inverse BWT Simple Properties
lemma ibwt-perm-abs-length:

fixes s :: ′a list
fixes n i :: nat
shows length (ibwt-perm-abs n s i) = n
by (induct n arbitrary: i; simp)

lemma ibwt-perm-abs-nth:
fixes s :: ′a list
fixes k n i :: nat
assumes k ≤ n
shows (ibwt-perm-abs (Suc n) s i) ! k = ((lf-map-abs s)^^(n−k)) i

using assms
proof (induct n arbitrary: i k)

case 0
then show ?case

by simp
next
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case (Suc n i k)
note IH = this

have A: ibwt-perm-abs (Suc (Suc n)) s i = ibwt-perm-abs (Suc n) s (lf-map-abs
s i) @ [i]

by simp

have k ≤ n =⇒ ?case
proof −

assume k ≤ n
with IH (1 )[of k lf-map-abs s i]
have ibwt-perm-abs (Suc n) s (lf-map-abs s i) ! k = (lf-map-abs s ^^ (Suc n −

k)) i
by (metis Suc-diff-le comp-apply funpow.simps(2 ) funpow-swap1 )

then show ?thesis
by (metis ‹k ≤ n› A ibwt-perm-abs-length le-imp-less-Suc nth-append)

qed
moreover
have k = Suc n =⇒ ?case
proof −

assume k = Suc n
with ibwt-perm-abs-length[of Suc (Suc n) s i] A
have ibwt-perm-abs (Suc (Suc n)) s i ! k = i

by (metis ibwt-perm-abs-length nth-append-length)
moreover
have (lf-map-abs s ^^ (Suc n − k)) i = i

by (simp add: ‹k = Suc n›)
ultimately show ?thesis

by presburger
qed
ultimately show ?case

using Suc.prems le-Suc-eq by blast
qed

corollary ibwt-perm-abs-alt-nth:
fixes s :: ′a list
fixes n i k :: nat
assumes k < n
shows (ibwt-perm-abs n s i) ! k = ((lf-map-abs s)^^(n − Suc k)) i
by (metis assms add-diff-cancel-left ′ diff-diff-left le-add1 less-imp-Suc-add plus-1-eq-Suc

ibwt-perm-abs-nth)

lemma ibwt-perm-abs-nth-le-length:
fixes s :: ′a list
fixes n i k :: nat
assumes i < length s
assumes k < n
shows (ibwt-perm-abs n s i) ! k < length s
using assms ibwt-perm-abs-alt-nth lf-map-abs-less-length-funpow by force
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lemma ibwt-perm-abs-map-ver :
ibwt-perm-abs n s i = map (λx. ((lf-map-abs s)^^x) i) (rev [0 ..<n])

proof (intro list-eq-iff-nth-eq[THEN iffD2 ] conjI allI impI )
show length (ibwt-perm-abs n s i) = length (map (λx. (lf-map-abs s ^^ x) i) (rev

[0 ..<n]))
by (simp add: ibwt-perm-abs-length)

next
fix j
assume j < length (ibwt-perm-abs n s i)
hence j < n

by (simp add: ibwt-perm-abs-length)

have map (λx. (lf-map-abs s ^^ x) i) (rev [0 ..<n]) ! j =
(λx. (lf-map-abs s ^^ x) i) (rev [0 ..<n] ! j)

by (simp add: ‹j < n›)
moreover
have (λx. (lf-map-abs s ^^ x) i) (rev [0 ..<n] ! j) = (lf-map-abs s ^^ (n − Suc

j)) i
by (metis ‹j < n› add-cancel-right-left diff-Suc-less diff-zero length-greater-0-conv

length-upt
less-nat-zero-code nth-upt rev-nth)

ultimately show ibwt-perm-abs n s i ! j = map (λx. (lf-map-abs s ^^ x) i) (rev
[0 ..<n]) ! j

using ibwt-perm-abs-alt-nth[OF ‹j < n›, of s i] by presburger
qed

16.4 Backwards Inverse BWT Correctness
lemma inc-one-bounded-sa-ibwt-perm-abs:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s

shows inc-one-bounded (length s) (map ((!) (sa s)) (ibwt-perm-abs n s i))
(is inc-one-bounded ?n ?xs)

unfolding inc-one-bounded-def
proof (safe)

fix j
assume Suc j < length (map ((!) (sa s)) (ibwt-perm-abs n s i))
hence Suc j < n

by (simp add: ibwt-perm-abs-length)
hence ∃ k. n = Suc k

using less-imp-Suc-add by blast
then obtain k where

n = Suc k
by blast

let ?i = ((lf-map-abs s)^^(k − Suc j)) i
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have ibwt-perm-abs n s i ! Suc j = ?i
by (metis ‹Suc j < n› ‹n = Suc k› less-Suc-eq-le ibwt-perm-abs-nth)

moreover
{

have ibwt-perm-abs n s i ! j = ((lf-map-abs s)^^(k − j)) i
by (metis Suc-less-SucD ‹Suc j < n› ‹n = Suc k› nless-le ibwt-perm-abs-nth)

moreover
have ((lf-map-abs s)^^(k − j)) i = lf-map-abs s ?i

using ‹Suc j < n› ‹n = Suc k› less-imp-Suc-add by fastforce
ultimately have ibwt-perm-abs n s i ! j = lf-map-abs s ?i

by presburger
}
moreover
{

have ?i < length s
by (simp add: assms lf-map-abs-less-length-funpow)

with sa-lf-map-abs[OF assms(1 ), of ?i]
have sa s ! lf-map-abs s ?i = (sa s ! ?i + length s − Suc 0 ) mod length s

by fastforce
hence Suc (sa s ! lf-map-abs s ?i) mod length s

= Suc ((sa s ! ?i + length s − Suc 0 ) mod length s) mod length s
by simp

moreover
have Suc ((sa s ! ?i + length s − Suc 0 ) mod length s) mod length s = sa s ! ?i

using ‹?i < length s› assms(1 ) mod-Suc-eq sa-nth-ex valid-list-length by
fastforce

ultimately have sa s ! ?i = Suc (sa s ! lf-map-abs s ?i) mod length s
by presburger

}
ultimately have

sa s ! (ibwt-perm-abs n s i ! Suc j) = Suc (sa s ! (ibwt-perm-abs n s i ! j)) mod
length s

by presburger
then show

map ((!) (sa s)) (ibwt-perm-abs n s i) ! Suc j =
Suc (map ((!) (sa s)) (ibwt-perm-abs n s i) ! j) mod length s

using ‹Suc j < length (map ((!) (sa s)) (ibwt-perm-abs n s i))› by auto
next

fix j
assume j < length (map ((!) (sa s)) (ibwt-perm-abs n s i))
hence j < n

by (simp add: ibwt-perm-abs-length)
henceibwt-perm-abs n s i ! j = ((lf-map-abs s)^^(n − Suc j)) i

using ibwt-perm-abs-alt-nth by blast
moreover
have ((lf-map-abs s)^^(n − Suc j)) i < length s

using assms lf-map-abs-less-length-funpow by blast
hence sa s ! (((lf-map-abs s)^^(n − Suc j)) i) < length s

using sa-nth-ex by blast
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ultimately have sa s ! (ibwt-perm-abs n s i ! j) < length s
by presburger

then show map ((!) (sa s)) (ibwt-perm-abs n s i) ! j < length s
by (simp add: ‹j < n› ibwt-perm-abs-length)

qed

corollary is-rot-sublist-sa-ibwt-perm-abs:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s
and n ≤ length s

shows is-rot-sublist [0 ..<length s] (map ((!) (sa s)) (ibwt-perm-abs n s i))
by (simp add: assms inc-one-bounded-is-rot-sublist inc-one-bounded-sa-ibwt-perm-abs

ibwt-perm-abs-length)

lemma inc-one-bounded-bwt-perm-ibwt-perm-abs:
fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s

shows inc-one-bounded (length s) (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
unfolding inc-one-bounded-def

proof safe
fix j
assume Suc j < length (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
hence Suc j < n

by (simp add: ibwt-perm-abs-length)
hence ∃ k. n = Suc k

using less-imp-Suc-add by auto
then obtain k where

n = Suc k
by blast

let ?i = ((lf-map-abs s)^^(k − Suc j)) i
from ibwt-perm-abs-nth[of Suc j k s i]
have ibwt-perm-abs n s i ! Suc j = ?i

using ‹Suc j < n› ‹n = Suc k› less-Suc-eq-le by blast
moreover
{

have ibwt-perm-abs n s i ! j = ((lf-map-abs s)^^(k − j)) i
by (metis Suc-less-SucD ‹Suc j < n› ‹n = Suc k› nless-le ibwt-perm-abs-nth)

moreover
have ((lf-map-abs s)^^(k − j)) i = lf-map-abs s ?i

using ‹Suc j < n› ‹n = Suc k› less-imp-Suc-add by fastforce
ultimately have ibwt-perm-abs n s i ! j = lf-map-abs s ?i

by presburger
}
moreover
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{
have ?i < length s

by (simp add: assms lf-map-abs-less-length-funpow)
with bwt-perm-lf-map-abs[OF assms(1 ), of ?i]
have bwt-perm s ! lf-map-abs s ?i = (bwt-perm s ! ?i + length s − Suc 0 ) mod

length s
by blast

hence Suc (bwt-perm s ! lf-map-abs s ?i) mod length s =
Suc ((bwt-perm s ! ?i + length s − Suc 0 ) mod length s) mod length s

by presburger
moreover
from valid-list-length-ex[OF assms(1 )]
obtain n where

length s = Suc n
by blast

hence Suc ((bwt-perm s ! ?i + length s − Suc 0 ) mod length s) mod length s =
bwt-perm s ! ?i

by (metis (no-types, lifting) Suc-pred bwt-perm-nth ‹?i < length s› add-gr-0
assms(1 )

mod-Suc-eq mod-add-self2 mod-mod-trivial valid-list-length)
ultimately have bwt-perm s ! ?i = Suc (bwt-perm s ! lf-map-abs s ?i) mod

length s
by presburger

}
ultimately have bwt-perm s ! (ibwt-perm-abs n s i ! Suc j) =

Suc (bwt-perm s ! (ibwt-perm-abs n s i ! j)) mod length s
by presburger

then show map ((!) (bwt-perm s)) (ibwt-perm-abs n s i) ! Suc j =
Suc (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i) ! j) mod length s

using ‹Suc j < length (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))› by auto
next

fix j
assume j < length (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
hence j < n

by (simp add: ibwt-perm-abs-length)
hence ∃ k. n = Suc k

using less-imp-Suc-add by blast
then obtain k where

n = Suc k
by blast

hence ibwt-perm-abs n s i ! j = ((lf-map-abs s)^^(k − j)) i
by (metis ‹j < n› less-Suc-eq-le ibwt-perm-abs-nth)

moreover
have ((lf-map-abs s)^^(k − j)) i < length s

using assms lf-map-abs-less-length-funpow by blast
hence bwt-perm s ! ((lf-map-abs s)^^(k − j)) i < length s

using map-bwt-indexes-perm perm-nth-ex by blast
ultimately have bwt-perm s ! (ibwt-perm-abs n s i ! j) < length s

by presburger
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then show map ((!) (bwt-perm s)) (ibwt-perm-abs n s i) ! j < length s
by (simp add: ‹j < n› ibwt-perm-abs-length)

qed

Theorem 3.19 from [3]: Abstract Inverse BWT Permutation Rotated
Sub-list
corollary is-rot-sublist-bwt-perm-ibwt-perm-abs:

fixes s :: ( ′a :: {linorder , order-bot}) list
fixes i n :: nat
assumes valid-list s
and i < length s
and n ≤ length s
shows is-rot-sublist [0 ..<length s] (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
by (simp add: assms inc-one-bounded-is-rot-sublist inc-one-bounded-bwt-perm-ibwt-perm-abs

ibwt-perm-abs-length)

lemma bwt-ibwt-perm-sa-lookup-idx:
assumes valid-list s
shows map ((!) (bwt-perm s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot

0 ))
= [0 ..<length s]

proof −
from valid-list-length-ex[OF assms]
obtain n where

length s = Suc n
by blast

let ?i = select (bwt-sa s) bot 0
let ?xs = ibwt-perm-abs (length s) s ?i

have bot ∈ set s
by (metis assms in-set-conv-decomp valid-list-ex-def )

hence bot ∈ set (bwt-sa s)
by (metis bwt-sa-perm perm-set-eq)

hence count-list (bwt-sa s) bot > 0
by (meson count-in)

hence 0 < rank (bwt-sa s) bot (length (bwt-sa s))
by (metis rank-length)

hence ?i < length (bwt-sa s)
by (meson select-upper-bound)

hence ?i < length s
by (metis bwt-sa-length)

with is-rot-sublist-bwt-perm-ibwt-perm-abs[OF assms, of ?i length s] ‹length s =
Suc n›

have is-rot-sublist [0 ..<Suc n] (map ((!) (bwt-perm s)) ?xs)
by (metis nle-le)

moreover
have length (map ((!) (bwt-perm s)) ?xs) = Suc n

by (metis ‹length s = Suc n› length-map ibwt-perm-abs-length)
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moreover
{

have (map ((!) (bwt-perm s)) ?xs) ! n = bwt-perm s ! ?i
by (simp add: ‹length s = Suc n› nth-append ibwt-perm-abs-length)

moreover
have bwt-sa s ! ?i = bot

by (simp add: ‹?i < length (bwt-sa s)› select-nth-alt)
hence bwt-perm s ! ?i = n
by (metis ‹length s = Suc n› ‹?i < length s› antisym-conv3 assms bwt-perm-nth

bwt-perm-s-nth diff-Suc-1 mod-less-divisor not-less-eq valid-list-def )
ultimately
have (map ((!) (bwt-perm s)) ?xs) ! n = n

by blast
}
ultimately show ?thesis

using is-rot-sublist-upt-eq-upt-last[of n map ((!) (bwt-perm s)) ?xs]
by (metis ‹length s = Suc n›)

qed

lemma map-bwt-sa-bwt-perm:
∀ x ∈ set xs. x < length s =⇒
map ((!) (bwt-sa s)) xs = map ((!) s) (map ((!) (bwt-perm s)) xs)

by (simp add: bwt-perm-s-nth)

theorem ibwt-perm-abs-bwt-sa-lookup-correct:
fixes s :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
shows map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0 ))

= s
proof −

let ?i = select (bwt-sa s) bot 0
let ?xs = map ((!) (bwt-perm s)) (ibwt-perm-abs (length s) s ?i)

have bot ∈ set s
by (metis assms in-set-conv-decomp valid-list-ex-def )

hence bot ∈ set (bwt-sa s)
by (metis bwt-sa-perm perm-set-eq)

hence count-list (bwt-sa s) bot > 0
by (meson count-in)

hence 0 < rank (bwt-sa s) bot (length (bwt-sa s))
by (metis rank-length)

hence ?i < length (bwt-sa s)
by (meson select-upper-bound)

hence ?i < length s
by (metis bwt-sa-length)

have map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s ?i) = map ((!) s) ?xs
proof (intro map-bwt-sa-bwt-perm ballI )

fix x
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assume x ∈ set (ibwt-perm-abs (length s) s ?i)

from in-set-conv-nth[THEN iffD1 , OF ‹x ∈ -›]
obtain i where

i < length (ibwt-perm-abs (length s) s ?i)
ibwt-perm-abs (length s) s ?i ! i = x
by blast

with ibwt-perm-abs-alt-nth[of i length s s ?i]
have x = (lf-map-abs s ^^ (length s − Suc i)) ?i

by (metis ibwt-perm-abs-length)
moreover
have (lf-map-abs s ^^ (length s − Suc i)) ?i < length s

using ‹?i < length s› assms lf-map-abs-less-length-funpow by presburger
ultimately show x < length s

by blast
qed
then show ?thesis

using bwt-ibwt-perm-sa-lookup-idx[OF assms] map-nth by auto
qed

16.5 Concretization
lemma lf-map-abs-eq-conc:

i < length s =⇒ lf-map-abs s i = lf-map-conc (sort (bwt-sa s)) (bwt-sa s) i
proof −

let ?v = bwt-sa s ! i
let ?r = rank (bwt-sa s) ?v i
let ?ss = sort (bwt-sa s)
assume i < length s
hence rank (bwt-sa s) ?v i < count-list (sort s) ?v

using rank-upper-bound[of i bwt-sa s ?v]
by (metis bwt-sa-length bwt-sa-perm count-list-perm mset-sort)

with sorted-select[of ?ss ?r ?v]
have select ?ss ?v ?r = card {j. j < length ?ss ∧ ?ss ! j < ?v} + ?r

by (metis (full-types) bwt-sa-perm sorted-list-of-multiset-mset sorted-sort)
moreover
have sort s = sort ?ss

by (simp add: bwt-sa-perm properties-for-sort)
moreover
have select (sort s) ?v ?r = card {j. j < length (sort s) ∧ (sort s) ! j < ?v} +

?r
by (simp add: ‹rank (bwt-sa s) ?v i < count-list (sort s) ?v› sorted-select)

ultimately show ?thesis
by (metis (full-types) ‹rank (bwt-sa s) ?v i < count-list (sort s) ?v› bwt-sa-perm

lf-map-abs.simps lf-map-conc.simps sorted-list-of-multiset-mset

sorted-select-0-plus sorted-sort)
qed

84



lemma ibwt-perm-abs-conc-eq:
i < length s =⇒ ibwt-perm-abs n s i = ibwt-perm-conc n (sort (bwt-sa s)) (bwt-sa

s) i
proof (induct n arbitrary: i)

case 0
then show ?case

by auto
next

case (Suc n)

let ?ss = sort (bwt-sa s)
let ?bs = bwt-sa s

have ibwt-perm-abs (Suc n) s i = ibwt-perm-abs n s (lf-map-abs s i) @ [i]
by simp

moreover
have ibwt-perm-conc (Suc n) ?ss ?bs i = ibwt-perm-conc n ?ss ?bs (lf-map-conc

?ss ?bs i) @ [i]
by simp

moreover
have lf-map-abs s i = lf-map-conc ?ss ?bs i

using Suc.prems lf-map-abs-eq-conc by blast
moreover
have lf-map-abs s i < length s

using Suc.prems lf-map-abs-less-length by blast
ultimately show ?case

using Suc.hyps by presburger
qed

theorem ibwtn-bwt-sa-lookup-correct:
fixes s xs ys :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
and xs = sort (bwt-sa s)
and ys = bwt-sa s

shows map ((!) ys) (ibwt-perm-conc (length ys) xs ys (select ys bot 0 )) = s
proof −

from ibwt-perm-abs-bwt-sa-lookup-correct[OF assms(1 )]
have map ((!) (bwt-sa s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0 ))

= s .
moreover
have select (bwt-sa s) bot 0 < length s
by (metis (no-types, lifting) assms(1 ) bot-nat-0 .extremum-uniqueI bwt-sa-length

bwt-sa-perm
count-list-perm diff-Suc-1 last-conv-nth length-greater-0-conv

less-nat-zero-code rank-upper-bound sa-nth-ex select-spec
valid-list-def valid-list-sa-hd)

with ibwt-perm-abs-conc-eq
have ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0 ) =
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ibwt-perm-conc (length ys) xs ys (select ys bot 0 )
using assms(2 ) assms(3 ) bwt-sa-length by presburger

ultimately show ?thesis
using assms(3 ) by auto

qed

lemma ibwtn-eq-map-ibwt-perm-conc:
shows ibwtn n ss bs i = map ((!) bs) (ibwt-perm-conc n ss bs i)
by (induct n arbitrary: i; simp)

theorem ibwtn-correct:
fixes s xs ys :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
and xs = sort (bwt-sa s)
and ys = bwt-sa s

shows ibwtn (length ys) xs ys (select ys bot 0 ) = s
by (metis ibwtn-eq-map-ibwt-perm-conc ibwtn-bwt-sa-lookup-correct assms)

16.6 Inverse BWT Correctness
BWT (suffix array version) is invertible
theorem ibwt-correct:

fixes s :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
shows ibwt (bwt-sa s) = s
by (simp add: assms ibwtn-correct)

end

Theorem 3.20 from [3]: Correctness of the Inverse BWT
theorem ibwt-correct-canon:

fixes s :: ( ′a :: {linorder , order-bot}) list
assumes valid-list s
shows ibwt (bwt-canon s) = s
by (metis Suffix-Array-General.bwt-canon-eq-bwt-sa Suffix-Array-General.ibwt-correct

Suffix-Array-General-ex assms)

end
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