File ‹code_lazy.ML›
signature CODE_LAZY =
sig
type lazy_info =
{eagerT: typ,
lazyT: typ,
ctr: term,
destr: term,
lazy_ctrs: term list,
case_lazy: term,
active: bool,
activate: theory -> theory,
deactivate: theory -> theory};
val code_lazy_type: string -> theory -> theory
val activate_lazy_type: string -> theory -> theory
val deactivate_lazy_type: string -> theory -> theory
val activate_lazy_types: theory -> theory
val deactivate_lazy_types: theory -> theory
val get_lazy_types: theory -> (string * lazy_info) list
val print_lazy_types: theory -> unit
val transform_code_eqs: Proof.context -> (thm * bool) list -> (thm * bool) list option
end;
structure Code_Lazy : CODE_LAZY =
struct
type lazy_info =
{eagerT: typ,
lazyT: typ,
ctr: term,
destr: term,
lazy_ctrs: term list,
case_lazy: term,
active: bool,
activate: theory -> theory,
deactivate: theory -> theory};
fun map_active f {eagerT, lazyT, ctr, destr, lazy_ctrs, case_lazy, active, activate, deactivate} =
{ eagerT = eagerT,
lazyT = lazyT,
ctr = ctr,
destr = destr,
lazy_ctrs = lazy_ctrs,
case_lazy = case_lazy,
active = f active,
activate = activate,
deactivate = deactivate
}
structure Laziness_Data = Theory_Data(
type T = lazy_info Symtab.table;
val empty = Symtab.empty;
val merge = Symtab.join (fn _ => fn (_, record) => record);
);
fun fold_type type' tfree tvar typ =
let
fun go (Type (s, Ts)) = type' (s, map go Ts)
| go (TFree T) = tfree T
| go (TVar T) = tvar T
in
go typ
end;
fun read_typ lthy name =
let
val (s, Ts) = Proof_Context.read_type_name {proper = true, strict = true} lthy name |> dest_Type
val (Ts', _) = Ctr_Sugar_Util.mk_TFrees (length Ts) lthy
in
Type (s, Ts')
end
fun mk_name prefix suffix name ctxt =
Ctr_Sugar_Util.mk_fresh_names ctxt 1 (prefix ^ name ^ suffix) |>> hd;
fun generate_typedef_name name ctxt = mk_name "" "_lazy" name ctxt;
fun add_syntax_definition short_type_name eagerT lazyT lazy_ctr lthy =
let
val (name, _) = mk_name "lazy_" "" short_type_name lthy
val freeT = HOLogic.unitT --> lazyT
val lazyT' = Type (\<^type_name>‹lazy›, [lazyT])
val def = Logic.all_const freeT $ absdummy freeT (Logic.mk_equals (
Free (name, (freeT --> eagerT)) $ Bound 0,
lazy_ctr $ (Const (\<^const_name>‹delay›, (freeT --> lazyT')) $ Bound 0)))
val lthy' = (snd o Local_Theory.begin_nested) lthy
val ((t, (_, thm)), lthy') = Specification.definition NONE [] []
((Thm.def_binding (Binding.name name), []), def) lthy'
val lthy' = Local_Theory.notation true ("", false) [(t, Mixfix.mixfix "_")] lthy'
val lthy = Local_Theory.end_nested lthy'
val def_thm = singleton (Proof_Context.export lthy' lthy) thm
in
(def_thm, lthy)
end;
fun add_ctr_code raw_ctrs case_thms thy =
let
fun mk_case_certificate ctxt raw_thms =
let
val thms = raw_thms
|> Conjunction.intr_balanced
|> Thm.unvarify_global (Proof_Context.theory_of ctxt)
|> Conjunction.elim_balanced (length raw_thms)
|> map Simpdata.mk_meta_eq
|> map Drule.zero_var_indexes
val thm1 = case thms of
thm :: _ => thm
| _ => raise Empty
val params = Term.add_free_names (Thm.prop_of thm1) [];
val rhs = thm1
|> Thm.prop_of |> Logic.dest_equals |> fst |> strip_comb
||> fst o split_last |> list_comb
val lhs = Free (singleton (Name.variant_list params) "case", fastype_of rhs);
val assum = Thm.cterm_of ctxt (Logic.mk_equals (lhs, rhs))
in
thms
|> Conjunction.intr_balanced
|> rewrite_rule ctxt [Thm.symmetric (Thm.assume assum)]
|> Thm.implies_intr assum
|> Thm.generalize (Names.empty, Names.make_set params) 0
|> Axclass.unoverload ctxt
|> Thm.varifyT_global
end
val ctrs = map (apsnd (perhaps (try Logic.unvarifyT_global))) raw_ctrs
val unover_ctrs = map (fn ctr as (_, fcT) => (Axclass.unoverload_const thy ctr, fcT)) ctrs
in
if can (Code.constrset_of_consts thy) unover_ctrs then
thy
|> Code.declare_datatype_global ctrs
|> fold_rev (Code.add_eqn_global o rpair true) case_thms
|> Code.declare_case_global (mk_case_certificate (Proof_Context.init_global thy) case_thms)
else
thy
end;
fun not_found s = error (s ^ " has not been added as lazy type");
fun validate_type_name thy type_name =
let
val lthy = Named_Target.theory_init thy
val eager_type = read_typ lthy type_name
val type_name = case eager_type of
Type (s, _) => s
| _ => raise Match
in
type_name
end;
fun set_active_lazy_type value eager_type_string thy =
let
val type_name = validate_type_name thy eager_type_string
val x =
case Symtab.lookup (Laziness_Data.get thy) type_name of
NONE => not_found type_name
| SOME x => x
val new_x = map_active (K value) x
val thy1 = if value = #active x
then thy
else if value
then #activate x thy
else #deactivate x thy
in
Laziness_Data.map (Symtab.update (type_name, new_x)) thy1
end;
fun set_active_lazy_types value thy =
let
val lazy_type_names = Symtab.keys (Laziness_Data.get thy)
fun fold_fun value type_name thy =
let
val x =
case Symtab.lookup (Laziness_Data.get thy) type_name of
SOME x => x
| NONE => raise Match
val new_x = map_active (K value) x
val thy1 = if value = #active x
then thy
else if value
then #activate x thy
else #deactivate x thy
in
Laziness_Data.map (Symtab.update (type_name, new_x)) thy1
end
in
fold (fold_fun value) lazy_type_names thy
end;
fun code_lazy_type eager_type_string thy =
let
val lthy = Named_Target.theory_init thy
val eagerT = read_typ lthy eager_type_string
val (type_name, type_args) = dest_Type eagerT
val short_type_name = Long_Name.base_name type_name
val _ = if Symtab.defined (Laziness_Data.get thy) type_name
then error (type_name ^ " has already been added as lazy type.")
else ()
val {case_thms, casex, ctrs, ...} = case Ctr_Sugar.ctr_sugar_of lthy type_name of
SOME x => x
| _ => error (type_name ^ " is not registered with free constructors.")
fun substitute_ctr (old_T, new_T) ctr_T lthy =
let
val old_ctr_vars = map TVar (Term.add_tvarsT ctr_T [])
val old_ctr_Ts = map TFree (Term.add_tfreesT ctr_T []) @ old_ctr_vars
val (new_ctr_Ts, lthy') = Ctr_Sugar_Util.mk_TFrees (length old_ctr_Ts) lthy
fun double_type_fold Ts = case Ts of
(Type (_, Ts1), Type (_, Ts2)) => flat (map double_type_fold (Ts1 ~~ Ts2))
| (Type _, _) => raise Match
| (_, Type _) => raise Match
| Ts => [Ts]
fun map_fun1 f = List.foldr
(fn ((T1, T2), f) => fn T => if T = T1 then T2 else f T)
f
(double_type_fold (old_T, new_T))
val map_fun2 = AList.lookup (op =) (old_ctr_Ts ~~ new_ctr_Ts) #> the
val map_fun = map_fun1 map_fun2
val new_ctr_type = fold_type Type (map_fun o TFree) (map_fun o TVar) ctr_T
in
(new_ctr_type, lthy')
end
val (short_lazy_type_name, lthy1) = generate_typedef_name short_type_name lthy
fun mk_lazy_typedef (name, eager_type) lthy =
let
val binding = Binding.name name
val (result, lthy1) = (Typedef.add_typedef
{ overloaded=false }
(binding, rev (Term.add_tfreesT eager_type []), Mixfix.NoSyn)
(Const (\<^const_name>‹top›, Type (\<^type_name>‹set›, [eager_type])))
NONE
(fn ctxt => resolve_tac ctxt [@{thm UNIV_witness}] 1)
o (snd o Local_Theory.begin_nested)) lthy
in
(binding, result, Local_Theory.end_nested lthy1)
end;
val (typedef_binding, (_, info), lthy2) = mk_lazy_typedef (short_lazy_type_name, eagerT) lthy1
val lazy_type = Type (Local_Theory.full_name lthy2 typedef_binding, type_args)
val (Abs_lazy, Rep_lazy) =
let
val info = fst info
val Abs_name = #Abs_name info
val Rep_name = #Rep_name info
val Abs_type = eagerT --> lazy_type
val Rep_type = lazy_type --> eagerT
in
(Const (Abs_name, Abs_type), Const (Rep_name, Rep_type))
end
val Abs_inverse = #Abs_inverse (snd info)
val Rep_inverse = #Rep_inverse (snd info)
val (ctrs', lthy3) = List.foldr
(fn (Const (s, T), (ctrs, lthy)) => let
val (T', lthy') = substitute_ctr (body_type T, eagerT) T lthy
in
((Const (s, T')) :: ctrs, lthy')
end
)
([], lthy2)
ctrs
fun to_destr_eagerT typ = case typ of
Type (\<^type_name>‹fun›, [_, Type (\<^type_name>‹fun›, Ts)]) =>
to_destr_eagerT (Type (\<^type_name>‹fun›, Ts))
| Type (\<^type_name>‹fun›, [T, _]) => T
| _ => raise Match
val (case', lthy4) =
let
val (eager_case, caseT) = dest_Const casex
val (caseT', lthy') = substitute_ctr (to_destr_eagerT caseT, eagerT) caseT lthy3
in (Const (eager_case, caseT'), lthy') end
val ctr_names = map (Long_Name.base_name o fst o dest_Const) ctrs
val ((((lazy_ctr_name, lazy_sel_name), lazy_ctrs_name), lazy_case_name), ctxt) = lthy4
|> mk_name "Lazy_" "" short_type_name
||>> mk_name "unlazy_" "" short_type_name
||>> fold_map (mk_name "" "_Lazy") ctr_names
||>> mk_name "case_" "_lazy" short_type_name
fun mk_def (name, T, rhs) lthy =
let
val binding = Binding.name name
val ((_, (_, thm)), lthy1) =
(snd o Local_Theory.begin_nested) lthy
|> Specification.definition NONE [] [] ((Thm.def_binding binding, []), rhs)
val lthy2 = Local_Theory.end_nested lthy1
val def_thm = hd (Proof_Context.export lthy1 lthy2 [thm])
in
({binding = binding, const = Const (Local_Theory.full_name lthy2 binding, T), thm = def_thm}, lthy2)
end;
val lazy_datatype = Type (\<^type_name>‹lazy›, [lazy_type])
val Lazy_type = lazy_datatype --> eagerT
val unstr_type = eagerT --> lazy_datatype
fun apply_bounds i n term =
if n > i then apply_bounds i (n-1) (term $ Bound (n-1))
else term
fun all_abs Ts t = Logic.list_all (map (pair Name.uu) Ts, t)
fun mk_force t = Const (\<^const_name>‹force›, lazy_datatype --> lazy_type) $ t
fun mk_delay t = Const (\<^const_name>‹delay›, (\<^typ>‹unit› --> lazy_type) --> lazy_datatype) $ t
val lazy_ctr = all_abs [lazy_datatype]
(Logic.mk_equals (Free (lazy_ctr_name, Lazy_type) $ Bound 0, Rep_lazy $ mk_force (Bound 0)))
val (lazy_ctr_def, lthy5) = mk_def (lazy_ctr_name, Lazy_type, lazy_ctr) lthy4
val lazy_sel = all_abs [eagerT]
(Logic.mk_equals (Free (lazy_sel_name, unstr_type) $ Bound 0,
mk_delay (Abs (Name.uu, \<^typ>‹unit›, Abs_lazy $ Bound 1))))
val (lazy_sel_def, lthy6) = mk_def (lazy_sel_name, unstr_type, lazy_sel) lthy5
fun mk_lazy_ctr (name, eager_ctr) =
let
val (_, ctrT) = dest_Const eager_ctr
fun to_lazy_ctrT (Type (\<^type_name>‹fun›, [T1, T2])) = T1 --> to_lazy_ctrT T2
| to_lazy_ctrT T = if T = eagerT then lazy_type else raise Match
val lazy_ctrT = to_lazy_ctrT ctrT
val argsT = binder_types ctrT
val lhs = apply_bounds 0 (length argsT) (Free (name, lazy_ctrT))
val rhs = Abs_lazy $ apply_bounds 0 (length argsT) eager_ctr
in
mk_def (name, lazy_ctrT, all_abs argsT (Logic.mk_equals (lhs, rhs)))
end
val (lazy_ctrs_def, lthy7) = fold_map mk_lazy_ctr (lazy_ctrs_name ~~ ctrs') lthy6
val (lazy_case_def, lthy8) =
let
val (_, caseT) = dest_Const case'
fun to_lazy_caseT (Type (\<^type_name>‹fun›, [T1, T2])) =
if T1 = eagerT then lazy_type --> T2 else T1 --> to_lazy_caseT T2
val lazy_caseT = to_lazy_caseT caseT
val argsT = binder_types lazy_caseT
val n = length argsT
val lhs = apply_bounds 0 n (Free (lazy_case_name, lazy_caseT))
val rhs = apply_bounds 1 n case' $ (Rep_lazy $ Bound 0)
in
mk_def (lazy_case_name, lazy_caseT, all_abs argsT (Logic.mk_equals (lhs, rhs))) lthy7
end
fun mk_thm ((name, term), thms) lthy =
let
val binding = Binding.name name
fun tac {context, ...} = Simplifier.simp_tac
(put_simpset HOL_basic_ss context addsimps thms)
1
val thm = Goal.prove lthy [] [] term tac
val (_, lthy1) = lthy
|> (snd o Local_Theory.begin_nested)
|> Local_Theory.note ((binding, []), [thm])
in
(thm, Local_Theory.end_nested lthy1)
end
fun mk_thms exec_list lthy = fold_map mk_thm exec_list lthy
val mk_eq = HOLogic.mk_Trueprop o HOLogic.mk_eq
val lazy_ctrs = map #const lazy_ctrs_def
val eager_lazy_ctrs = ctrs' ~~ lazy_ctrs
val (((((((Lazy_delay_eq_name, Rep_ctr_names), ctrs_lazy_names), force_sel_name), case_lazy_name),
sel_lazy_name), case_ctrs_name), _) = lthy5
|> mk_name "Lazy_" "_delay" short_type_name
||>> fold_map (mk_name "Rep_" "_Lazy") ctr_names
||>> fold_map (mk_name "" "_conv_lazy") ctr_names
||>> mk_name "force_unlazy_" "" short_type_name
||>> mk_name "case_" "_conv_lazy" short_type_name
||>> mk_name "Lazy_" "_inverse" short_type_name
||>> fold_map (mk_name ("case_" ^ short_type_name ^ "_lazy_") "") ctr_names
val mk_Lazy_delay_eq =
(#const lazy_ctr_def $ mk_delay (Bound 0), Rep_lazy $ (Bound 0 $ \<^Const>‹Unity›))
|> mk_eq |> all_abs [\<^Type>‹unit› --> lazy_type]
val (Lazy_delay_thm, lthy8a) = mk_thm
((Lazy_delay_eq_name, mk_Lazy_delay_eq), [#thm lazy_ctr_def, @{thm force_delay}])
lthy8
fun mk_lazy_ctr_eq (eager_ctr, lazy_ctr) =
let
val (_, ctrT) = dest_Const eager_ctr
val argsT = binder_types ctrT
val args = length argsT
in
(Rep_lazy $ apply_bounds 0 args lazy_ctr, apply_bounds 0 args eager_ctr)
|> mk_eq |> all_abs argsT
end
val Rep_ctr_eqs = map mk_lazy_ctr_eq eager_lazy_ctrs
val (Rep_ctr_thms, lthy8b) = mk_thms
((Rep_ctr_names ~~ Rep_ctr_eqs) ~~
(map (fn def => [#thm def, Abs_inverse, @{thm UNIV_I}]) lazy_ctrs_def)
)
lthy8a
fun mk_ctrs_lazy_eq (eager_ctr, lazy_ctr) =
let
val argsT = dest_Const eager_ctr |> snd |> binder_types
val n = length argsT
val lhs = apply_bounds 0 n eager_ctr
val rhs = #const lazy_ctr_def $
(mk_delay (Abs (Name.uu, \<^typ>‹unit›, apply_bounds 1 (n + 1) lazy_ctr)))
in
(lhs, rhs) |> mk_eq |> all_abs argsT
end
val ctrs_lazy_eq = map mk_ctrs_lazy_eq eager_lazy_ctrs
val (ctrs_lazy_thms, lthy8c) = mk_thms
((ctrs_lazy_names ~~ ctrs_lazy_eq) ~~ map (fn thm => [Lazy_delay_thm, thm]) Rep_ctr_thms)
lthy8b
val force_sel_eq =
(mk_force (#const lazy_sel_def $ Bound 0), Abs_lazy $ Bound 0)
|> mk_eq |> all_abs [eagerT]
val (force_sel_thm, lthy8d) = mk_thm
((force_sel_name, force_sel_eq), [#thm lazy_sel_def, @{thm force_delay}])
lthy8c
val case_lazy_eq =
let
val (_, caseT) = case' |> dest_Const
val argsT = binder_types caseT
val n = length argsT
val lhs = apply_bounds 0 n case'
val rhs = apply_bounds 1 n (#const lazy_case_def) $ (mk_force (#const lazy_sel_def $ Bound 0))
in
(lhs, rhs) |> mk_eq |> all_abs argsT
end
val (case_lazy_thm, lthy8e) = mk_thm
((case_lazy_name, case_lazy_eq),
[#thm lazy_case_def, force_sel_thm, Abs_inverse, @{thm UNIV_I}])
lthy8d
val sel_lazy_eq =
(#const lazy_sel_def $ (#const lazy_ctr_def $ Bound 0), Bound 0)
|> mk_eq |> all_abs [lazy_datatype]
val (sel_lazy_thm, lthy8f) = mk_thm
((sel_lazy_name, sel_lazy_eq),
[#thm lazy_sel_def, #thm lazy_ctr_def, Rep_inverse, @{thm delay_force}])
lthy8e
fun mk_case_ctrs_eq (i, lazy_ctr) =
let
val lazy_case = #const lazy_case_def
val (_, ctrT) = dest_Const lazy_ctr
val ctr_argsT = binder_types ctrT
val ctr_args_n = length ctr_argsT
val (_, caseT) = dest_Const lazy_case
val case_argsT = binder_types caseT
fun n_bounds_from m n t =
if n > 0 then n_bounds_from (m - 1) (n - 1) (t $ Bound (m - 1)) else t
val case_argsT' = take (length case_argsT - 1) case_argsT
val Ts = case_argsT' @ ctr_argsT
val num_abs_types = length Ts
val lhs = n_bounds_from num_abs_types (length case_argsT') lazy_case $
apply_bounds 0 ctr_args_n lazy_ctr
val rhs = apply_bounds 0 ctr_args_n (Bound (num_abs_types - i - 1))
in
(lhs, rhs) |> mk_eq |> all_abs Ts
end
val case_ctrs_eq = map_index mk_case_ctrs_eq lazy_ctrs
val (case_ctrs_thms, lthy9) = mk_thms
((case_ctrs_name ~~ case_ctrs_eq) ~~
map2 (fn thm1 => fn thm2 => [#thm lazy_case_def, thm1, thm2]) Rep_ctr_thms case_thms
)
lthy8f
val (pat_def_thm, lthy10) =
add_syntax_definition short_type_name eagerT lazy_type (#const lazy_ctr_def) lthy9
val add_lazy_ctrs =
Code.declare_datatype_global [dest_Const (#const lazy_ctr_def)]
val eager_ctrs = map (apsnd (perhaps (try Logic.unvarifyT_global)) o dest_Const) ctrs
val add_eager_ctrs =
fold Code.del_eqn_global ctrs_lazy_thms
#> Code.declare_datatype_global eager_ctrs
val add_code_eqs = fold (Code.add_eqn_global o rpair true)
([case_lazy_thm, sel_lazy_thm])
val add_lazy_ctr_thms = fold (Code.add_eqn_global o rpair true) ctrs_lazy_thms
val add_lazy_case_thms =
fold Code.del_eqn_global case_thms
#> Code.add_eqn_global (case_lazy_thm, true)
val add_eager_case_thms = Code.del_eqn_global case_lazy_thm
#> fold (Code.add_eqn_global o rpair true) case_thms
val delay_dummy_thm = (pat_def_thm RS @{thm symmetric})
|> Drule.infer_instantiate' lthy10
[SOME (Thm.cterm_of lthy10 (Const (\<^const_name>‹Pure.dummy_pattern›, HOLogic.unitT --> lazy_type)))]
|> Thm.generalize
(Names.make_set (map (fst o dest_TFree) type_args), Names.empty)
(Variable.maxidx_of lthy10 + 1);
val ctr_post = delay_dummy_thm :: map (fn thm => thm RS @{thm sym}) ctrs_lazy_thms
val ctr_thms_abs = map (fn thm => Drule.abs_def (thm RS @{thm eq_reflection})) ctrs_lazy_thms
val case_thm_abs = Drule.abs_def (case_lazy_thm RS @{thm eq_reflection})
val add_simps = Code_Preproc.map_pre
(fn ctxt => ctxt addsimps (case_thm_abs :: ctr_thms_abs))
val del_simps = Code_Preproc.map_pre
(fn ctxt => ctxt delsimps (case_thm_abs :: ctr_thms_abs))
val add_post = Code_Preproc.map_post
(fn ctxt => ctxt addsimps ctr_post)
val del_post = Code_Preproc.map_post
(fn ctxt => ctxt delsimps ctr_post)
in
Local_Theory.exit_global lthy10
|> Laziness_Data.map (Symtab.update (type_name,
{eagerT = eagerT,
lazyT = lazy_type,
ctr = #const lazy_ctr_def,
destr = #const lazy_sel_def,
lazy_ctrs = map #const lazy_ctrs_def,
case_lazy = #const lazy_case_def,
active = true,
activate = add_lazy_ctrs #> add_lazy_ctr_thms #> add_lazy_case_thms #> add_simps #> add_post,
deactivate = add_eager_ctrs #> add_eager_case_thms #> del_simps #> del_post}))
|> add_lazy_ctrs
|> add_ctr_code (map (dest_Const o #const) lazy_ctrs_def) case_ctrs_thms
|> add_code_eqs
|> add_lazy_ctr_thms
|> add_simps
|> add_post
end;
fun transform_code_eqs _ [] = NONE
| transform_code_eqs ctxt eqs =
let
fun replace_ctr ctxt =
let
val thy = Proof_Context.theory_of ctxt
val table = Laziness_Data.get thy
in fn (s1, s2) => case Symtab.lookup table s1 of
NONE => false
| SOME x => #active x andalso s2 <> (#ctr x |> dest_Const |> fst)
end
val thy = Proof_Context.theory_of ctxt
val table = Laziness_Data.get thy
fun num_consts_fun (_, T) =
let
val s = body_type T |> dest_Type |> fst
in
if Symtab.defined table s
then Ctr_Sugar.ctr_sugar_of ctxt s |> the |> #ctrs |> length
else Code.get_type thy s |> fst |> snd |> length
end
val eqs = map (apfst (Thm.transfer thy)) eqs;
val ((code_eqs, nbe_eqs), pure) =
((case hd eqs |> fst |> Thm.prop_of of
Const (\<^const_name>‹Pure.eq›, _) $ _ $ _ =>
(map (apfst (fn x => x RS @{thm meta_eq_to_obj_eq})) eqs, true)
| _ => (eqs, false))
|> apfst (List.partition snd))
handle THM _ => (([], eqs), false)
val to_original_eq = if pure then map (apfst (fn x => x RS @{thm eq_reflection})) else I
in
case Case_Converter.to_case ctxt (Case_Converter.replace_by_type replace_ctr) num_consts_fun (map fst code_eqs) of
NONE => NONE
| SOME thms => SOME (nbe_eqs @ map (rpair true) thms |> to_original_eq)
end
val activate_lazy_type = set_active_lazy_type true;
val deactivate_lazy_type = set_active_lazy_type false;
val activate_lazy_types = set_active_lazy_types true;
val deactivate_lazy_types = set_active_lazy_types false;
fun get_lazy_types thy = Symtab.dest (Laziness_Data.get thy)
fun print_lazy_type thy (name, info : lazy_info) =
let
val ctxt = Proof_Context.init_global thy
fun pretty_ctr ctr =
let
val argsT = dest_Const ctr |> snd |> binder_types
in
Pretty.block [
Syntax.pretty_term ctxt ctr,
Pretty.brk 1,
Pretty.block (Pretty.separate "" (map (Pretty.quote o Syntax.pretty_typ ctxt) argsT))
]
end
in
Pretty.block [
Pretty.str (name ^ (if #active info then "" else " (inactive)") ^ ":"),
Pretty.brk 1,
Pretty.block [
Syntax.pretty_typ ctxt (#eagerT info),
Pretty.brk 1,
Pretty.str "=",
Pretty.brk 1,
Syntax.pretty_term ctxt (#ctr info),
Pretty.brk 1,
Pretty.block [
Pretty.str "(",
Syntax.pretty_term ctxt (#destr info),
Pretty.str ":",
Pretty.brk 1,
Syntax.pretty_typ ctxt (Type (\<^type_name>‹lazy›, [#lazyT info])),
Pretty.str ")"
]
],
Pretty.fbrk,
Pretty.keyword2 "and",
Pretty.brk 1,
Pretty.block ([
Syntax.pretty_typ ctxt (#lazyT info),
Pretty.brk 1,
Pretty.str "=",
Pretty.brk 1] @
Pretty.separate " |" (map pretty_ctr (#lazy_ctrs info)) @ [
Pretty.fbrk,
Pretty.keyword2 "for",
Pretty.brk 1,
Pretty.str "case:",
Pretty.brk 1,
Syntax.pretty_term ctxt (#case_lazy info)
])
]
end;
fun print_lazy_types thy =
let
fun cmp ((name1, _), (name2, _)) = string_ord (name1, name2)
val infos = Laziness_Data.get thy |> Symtab.dest |> map (apfst Long_Name.base_name) |> sort cmp
in
Pretty.writeln_chunks (map (print_lazy_type thy) infos)
end;
val _ =
Outer_Syntax.command \<^command_keyword>‹code_lazy_type›
"make a lazy copy of the datatype and activate substitution"
(Parse.binding >> (fn b => Toplevel.theory (Binding.name_of b |> code_lazy_type)));
val _ =
Outer_Syntax.command \<^command_keyword>‹activate_lazy_type›
"activate substitution on a specific (lazy) type"
(Parse.binding >> (fn b => Toplevel.theory (Binding.name_of b |> activate_lazy_type)));
val _ =
Outer_Syntax.command \<^command_keyword>‹deactivate_lazy_type›
"deactivate substitution on a specific (lazy) type"
(Parse.binding >> (fn b => Toplevel.theory (Binding.name_of b |> deactivate_lazy_type)));
val _ =
Outer_Syntax.command \<^command_keyword>‹activate_lazy_types›
"activate substitution on all (lazy) types"
(pair (Toplevel.theory activate_lazy_types));
val _ =
Outer_Syntax.command \<^command_keyword>‹deactivate_lazy_types›
"deactivate substitution on all (lazy) type"
(pair (Toplevel.theory deactivate_lazy_types));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_lazy_types›
"print the types that have been declared as lazy and their substitution state"
(pair (Toplevel.theory (tap print_lazy_types)));
end