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Abstract

~-CVP is the problem of finding a vector in L that is within v times
the closest possible to t, where L is a lattice and ¢ is a target vector. If
the basis for L is LLL-reduced, Babai’s Closest Hyperplane algorithm
solves 7-CVP for v = 2"/2, where n is the dimension of the lattice L, in
time polynomial in n. This session formalizes said algorithm, using the
AFP formalization of LLL [2, 1] and adapting a proof of correctness
from the lecture notes of Stephens-Davidowitz [4].
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The (exact) closest vector problem (CVP) is the problem of finding the
closest vector within a lattice L to a target vector ¢. This is equivalent to
finding the shortest vector in the lattice coset L —t :={l—t:1 € L}. There
is a corresponding family of weaker problems, v-CVP (where 7 is some real



parameter), where one needs only find a vector in L — ¢ whose length is
at most v times the shortest possible. Through a reduction to the shortest
vector problem [4], solutions to these problems may be used to factor rational
polynomials. This problem is therefore of cryptographic interest.

Although exact CVP (or 1-CVP) is NP-Complete [3], Babai’s Nearest
Plane Algorithm solves 2"/2-CVP, where n is the dimension of L, in poly-
nomial time, provided that L is presented using an LLL-reduced basis with
parameter o = 4/3. The proof in this document is mostly a straightfor-
ward algebraicization of the proof in Stephens-Davidowitz’ lecture notes. It
makes use of the coordinate systems defined by the original basis (denoted
) and the Gram-Schmidt orthogonalization of that basis (denoted j). Let
[u]g denote the representation of a vector u under §, with coordinates [u]fb,,

j=1,..,n (likewise for B) Also, let s; denote the output of the algorithm
after step ¢ and let d be the shortest lattice coset vector, as witnessed by the
vector v. The proof works by analysing the coordinates of [s,] Iz showing
that all are at most 1/2 and that some later coordinates are exactly those
of [U]B

The algorithm modifies coordinate n—4 in both bases for the last time in
step i (formalized in lemma coord_invariance), during which both coor-
dinates are decreased below 1/2 (formalized in lemma small coord). Com-
bined, these facts imply that the output s, has ‘[sn}%‘ < 1/2 for all indices
J- N

Since ( is orthogonal, we have

n
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so the preceding coordinate bounds ||s,[|> by 1 > [|3;]|%. If the B; are all
i=1

short compared to d, this bound suffices. In fact, if there is any short vector

B 7 in @ then because § is LLL-reduced, any vector preceding B 7 in B will not
be much longer. This bounds the first I terms in Equation 1. By selecting
I maximal, we may assume that B ends in a series of n — I long vectors.
In this case it can be shown [v]% and [sn]JB differ by an integral amount for

j=1+1,...,n. Therefore, if [v]jé and [sn]% differ at all, they differ by at least
1, which would mean ‘[U]]B‘ > 1/2, since ‘[sn]jﬁ‘ < 1/2. This would force v to

be longer than d, a contradiction. So [v]% = [sn]g for j = I+ 1,...n, which
gives a tighter bound on the last n — I terms in equation 1.

Precisely, let I denote max{i : ||3;|| < 2d}, meaning for all indices Jj>

L, |1Bjll > 2d. Now, for all j > I, d* = ||| > ([U]Jg)zllﬁjll2 > ([o]%)? -

4d?, meaning 1/4 > (B7)2, or 1/2 > ‘[v]]é‘ Since ‘[3]]%‘ < 1/2 from the



previous section,

[v]i§ - [sj]%‘ < 1. Using properties of the change-of-basis

between (3, 3 formalized in the LLL AFP session, we show that [U]]B — [sj]% =

[v]jﬁ - [sj]% = [v— sj]%, so that ‘[v - sj]é‘ < 1 But since v — s; lies in the
lattice, [v — sj]é is integral, so ‘[v - sj]%‘ = 0, meaning [v]%i = [S]]Jﬁ Lemma
= [sj]% = [sn]% This is formalized by

coord_invariance gives that [v]’

™

lemma correct coord.

n . ~ ~
Now ||s,]|? = Z([sn]ZBHBZH)Q, since [ is orthogonal. Splitting the sum

i=1
I , n .
around I equates this to Z([Sn]z/})Q + > ([sn]%)2 Lemma small coord
i=1 i=I+1
bounds the terms in the first sum by ||3;]|?/4, while lemma correct.oord
bounds the terms in the second sum by d2, giving [|s,||> < (n — I)d? +

I
S°1Bil?/4. If B is LLL-reduced with parameter o, ||3;]|? < of||5r||? for all
i=1
i < I, which, by the definition of I, is at most 4d?. So ||s,|> < ((n —1I) +
Ia")d? < na"d?. The standard choice of a = 4/3 gives ||s,||? < 2"d?. All of
this is formalized in the final section, which culminates in the main theorem.
To avoid having to prove that a shortest vector exists, we use the defini-
tion inf{|ju — t|| : w € L} for d instead of min{||u — t|| : v € L} and rephrase
the arguments above to allow ||v|| to exceed d by a small constant factor e.
This workaround and its details are contained in the section on the closest
distance and negligibly change the rest of the proof.

theory Babai-Algorithm

imports LLL-Basis-Reduction.LLL
HOL.Archimedean-Field
HOL— Analysis.Inner-Product

begin
fun calculate-c:: rat vec = rat vec list = nat => int where

calculate-c s LI n = round ((s + (L1!( (dim-vec s) — n) ) ) / (sg-norm-vec (L1(
(dim-vec s) —mn))))

fun update-s:: rat vec = rat vec list = rat vec list = nat = rat vec where
update-s sn M Mt n = ( (rat-of-int (calculate-c sn Mt n)) -, M!((dim-vec sn)—n))

fun Babai-Help:: rat vec = rat vec list = rat vec list = nat = rat vec where
Babai-Help s M Mt 0 = s |

Babai-Help s M Mt (Suc n) = (let B= (Babai-Help s M Mt n) in B— (update-s B
M Mt (Suc n)) )



definition Babai:: rat vec = rat vec list = rat vec where
Babai s M = Babai-Help s M (gram-schmidt (dim-vec s) M) (dim-vec s)

end
theory Babai
imports Babai-Algorithm

begin

This theory contains the proof of correctness of the algorithm. The main
theorem is "theorem Babai-Correct", under the locale "Babai-with-assms".
To use the theorem, one needs to show that lattice, the vectors in the lattice
basis, and the target vector all have the same dimension, that the lattice
basis vectors are linearly independent and form an invertible matrix, and
that the lattice basis is LLL-weakly-reduced.

2 Copy-Pasted Material

The next couple of lemmas are copy-pasted from Modular-arithmetic-LLL-
and-HNF-algorithms (we copy-paste them instead of loading them to avoid
excessive loading times)

context vec-module
begin

This lemma is copy-pasted from Modular-arithmetic-LLL-and-HNF-algorithms
(we copy-paste them instead of loading them to avoid excessive loading
times)
lemma lattice-of-altdef-lincomb:

assumes set fs C carrier-vec n
shows lattice-of fs = {y. 3 f. lincomb (of-int o f) (set fs) = y}
(proof )

This lemma is copy-pasted from Modular-arithmetic-LLL-and-HNF-algorithms
(we copy-paste them instead of loading them to avoid excessive loading
times)

lemma lincomb-as-lincomb-list:

fixes ws f

assumes s: set ws C carrier-vec n

shows lincomb f (set ws) = lincomb-list (N\i. if Fj<i. wsli = wslj then 0 else f
(ws 1)) ws

(proof)
end



context
begin

interpretation vec-module TYPE(int) (proof)

This lemma is copy-pasted from Modular-arithmetic-LLL-and-HNF-algorithms
(we copy-paste them instead of loading them to avoid excessive loading
times)

lemma lattice-of-cols-as-mat-mult:

assumes A: A € carrier-mat n nc

shows lattice-of (cols A) = {y€carrier-vec (dim-row A). 3 z€ carrier-vec (dim-col
A). A %y z =y}
(proof )

This lemma is copy-pasted from Modular-arithmetic-LLL-and-HNF-algorithms
(we copy-paste them instead of loading them to avoid excessive loading
times)

corollary lattice-of-as-mat-mult:
assumes fs: set fs C carrier-vec n
shows lattice-of fs = {yE€carrier-vec n. 3 x€carrier-vec (length fs). (mat-of-cols
n fs) ¥y T = y}
(proof)
end

3 Locale setup for Babai

locale Babai =

fixes M :: int vec list

fixes t :: rat vec

assumes length-M: length M = dim-vec t
begin

abbreviation n where n = length M
definition o where (a::rat) = 4 /3
sublocale LLL n n M a{proof)

abbreviation coset::rat vec set where coset={(map-vec rat-of-int x)—t|z. €L}
abbreviation Mt where Mt = gram-schmidt n (RAT M)

definition s :: nat = rat vec where
s © = Babai-Help (uminus t) (RAT M) Mt i

definition closest-distance-sq:: real where
closest-distance-sq = Inf {real-of-rat (sg-norm z::rat) |z. © € coset}
end

Locale setup with additional assumptions required for main theorem



locale Babai-with-assms = Babai+
fixes mat-M mat-M-inv:: rat mat
assumes basis: lin-indep M
defines mat-M = mat-of-cols n (RAT M)
defines mat-M-inv =
(if (invertible-mat mat-M) then SOME B. (inverts-mat B mat-M) A (inverts-mat
mat-M B) else (0, n n))
assumes inv:invertible-mat mat-M
assumes reduced:weakly-reduced M n
assumes non-trivial:0<n
begin

lemma dim-vecs-in-M:
shows Vv € set M. dim-vec v = length M
(proof )

lemma invi:mat-M *x mat-M-inv = 1,, n

(proof)

lemma inv2:mat-M-inv * mat-M = 1,, n
(proof)

sublocale rats: vec-module TYPE(rat) n{proof)

lemma M-dim: dim-row mat-M = n dim-col mat-M = n

(proof)

lemma M-inv-dim: dim-row mat-M-inv = n dim-col mat-M-inv = n

(proof)

lemma Babai-to-Help:
shows s n = Babai-Algorithm.Babai (uminus t) (RAT M)

{proof)

4 Coordinates

This section sets up the use of the lattice basis and its GS orthogonalization
as coordinate systems and some properties of that coordinate system. The
important lemma here is coord-invariance, which shows that after step i of
the algorithm, all coordinates (in both systems) after n-i are invariant.

definition lattice-coord :: rat vec = rat vec



where lattice-coord a = mat-M-inv *, a

lemma dim-preserve-lattice-coord:

fixes v::rat vec

assumes dim-vec v=n

shows dim-vec (lattice-coord v) = n (proof)
lemma vec-to-col:

assumes ¢ < n

shows (RAT M)!i = col mat-M i

(proof )

lemma unit:
assumes i < n
shows lattice-coord ((RAT M)!i) = unit-vec n i

(proof)

lemma linear:
fixes 7::nat
fixes vl1::rat vec
and v2:: rat vec
and ¢:: rat
assumes dim-vec vl = n
assumes dim-2:dim-vec v2 = n
assumes 0<7¢
assumes dim-i:1<n
shows (lattice-coord (v1+(q-,v2)))$i = (lattice-coord v1)$i + gx((lattice-coord
v2)$7)
(proof)

lemma sub-s:

fixes i::nat

assumes <7

assumes i<n

shows s (Suc i) = (s i) —
( (rat-of-int (calculate-c (s 1) Mt (Suc @) ) ) -» (RAT M)V (dim-vec (s i) —(Suc
)

(proof)

lemma M-locale-1:
shows gram-schmidt-fs-Rn n (RAT M)
{proof)

lemma M-locale-2:
shows gram-schmidt-fs-lin-indpt n (RAT M)
{proof )

lemma more-dim: length (RAT M) = n
(proof)



lemma Mt-gso-connect:
fixes j::nat
assumes j<n
shows Mt!j = gs.gso j
(proof)

lemma access-index-M-dim:
assumes (0 < g
assumes i < n
shows dim-vec (map of-int-hom.vec-hom M ! i) = n
(proof)

lemma s-dim:
fixes i::nat
assumes 1< n
shows dim-vec (s i) = n A (s i) Ecarrier-vec n
(proof)

lemma dim-vecs-in-Mt:

fixes i::nat

assumes <n

shows dim-vec (Mtli) = n

(proof)
lemma upper-tri:

fixes i::nat

and j::nat

assumes j>1

assumes j<n

shows ((RAT M)Yi)- (Mtlj) =0
(proof)
lemma one-diag:

fixes i::nat

assumes (<7

assumes i<n

shows ((RAT M)Yi)- (Mtli)=sq-norm (Mt!7)
(proof )

lemma coord-invariance:
fixes j::nat
fixes k::nat
fixes i::nat
assumes k<j
assumes j+i<n
assumes k>0
shows (lattice-coord (s (j+1)))$(n—k) = (lattice-coord (s j))$(n—k)
A (s (j+17)) - MtY(n—k)=(s j) - Mt!(n—k)
(proof)



lemma small-orth-coord:

fixes 7::nat

assumes <7

assumes i<n

shows abs ( (s i) - Mtl(n—i)) < (sg-norm (Mt!(n—1i)))x(1/2)
(proof)
lemma lattice-carrier: LC carrier-vec n

(proof)

5 Lattice Lemmas

lemma lattice-sum-close:
fixes u::int vec and v::int vec
assumes u<€l veL
shows u+veL

(proof)

lemma lattice-smult-close:
fixes u::int vec and gq::int
assumes u€L
shows ¢-, u€l

(proof)

lemma smult-vec-zero:
fixes v ::'a::ring vec
shows 0 -, v = 0, (dim-vec v)
{proof)

lemma coset-s:
fixes 7::nat
assumes 1<n
shows s i Ecoset

(proof)

lemma subtract-coset-into-lattice:

fixes v::rat vec

fixes w::rat vec

assumes veE coset

assumes wecoset

shows (v—w)€of-int-hom.vec-hom* L
(proof)
lemma t-in-coset:

shows uminus t € coset

(proof)



6 Lemmas on closest distance

lemma closest-distance-sq-pos: closest-distance-sq>0
(proof)

definition witness:: rat vec=rat = bool
where witness v eps-closest = (sqg-norm v < eps-closest N\ vE cosetAdim-vec v =
n)

definition epsilon::real where epsilon = 11/10

definition close-condition::rat = bool
where close-condition eps-closest =
(if closest-distance-sq = 0 then 0< real-of-rat eps-closest
else real-of-rat (eps-closest)> closest-distance-sq)
A (real-of-rat (eps-closest)<epsilonxclosest-distance-sq)

lemma close-rat:
obtains eps-closest::rat
where close-condition eps-closest

(proof)

definition eps-closest::rat
where eps-closest = (if Ir. close-condition r then SOME r. close-condition

else 0)

lemma eps-closest-lemma: close-condition eps-closest
(proof )

lemma rational-tri-ineq:
fixes v::rat vec
fixes w::rat vec
assumes dim-vec v = dim-vec w
shows (sg-norm (v+w))< 4*x(Maz {(sg-norm v), (sg-norm w)})

(proof)

lemma witness-exists:
shows Fv. witness v eps-closest

(proof)

7 More linear algebra lemmas

lemma carrier-Ms:
shows mat-M €carrier-mat n n mat-M-inv € carrier-mat n n

(proof)

lemma carrier-L:
fixes v::rat vec
assumes dim-vec v = n

10



shows lattice-coord veE carrier-vec n
(proof )

lemma sumlist-indez-commute:
fixes Lst::rat vec list
fixes 7::nat
assumes set LstCcarrier-vec n
assumes <n
shows (gs.sumlist Lst)$i = sum-list (map (Nj. (Lstlj)$i) [0..<(length Lst)])
(proof )

lemma mat-mul-to-sum-list:

fixes A::rat mat

fixes v::rat vec

assumes dim-vec v = dim-col A

assumes dim-row A = n

shows Ax,v = gs.sumlist (map (\j. v8j -, (col A j)) [0 ..< dim-col A])
(proof)

lemma recover-from-lattice-coord:

fixes v::rat vec

assumes dim-vec v = n

shows v = gs.sumlist (map (\i. (lattice-coord v)$i -, (RAT M)!3) [0 ..< n])
(proof)

lemma sumlist-linear-coord:

fixes Lst::int vec list

assumes Ai. i<length Lst = dim-vec (Lstli) = n

shows lattice-coord (map-vec rat-of-int (sumlist Lst)) = gs.sumlist (map lat-
tice-coord (RAT Lst))

(proof)

lemma integral-sum:
fixes [::nat
assumes A\jI. jl < | =
map f [0.<I]!jl € Z
shows sum-list
(map f [0.<l)) € Z
(proof )

lemma int-coord:
fixes 7::nat
assumes 0<7¢
assumes 1<n
fixes v::int vec
assumes vEL

11



assumes dim-vec v = n
shows (lattice-coord (map-vec rat-of-int v))$i€Z

(proof)

lemma int-coord-for-rat:
fixes 7::nat
assumes (<7
assumes <n
fixes v::rat vec
assumes ve of-int-hom.vec-hom* L
assumes dim-vec v = n
shows (lattice-coord v)$icZ

(proof)

8 Coord-Invariance

This section shows that the algorithm output matches true closest (or near-
closest) vector in some trailing coordinates.

definition I where
I = (if ({ie{0..<n}. ((sg-norm (Mtli)::rat))<{*eps-closest}::nat set) # {}
then Max ({i€{0..<n}. ((sg-norm (Mtli)::rat))<jxeps-closest}::nat set) else
_1)

lemma [I-geq:
shows I>—1
(proof )

lemma [-leq:
shows I<n

{proof)

lemma index-geq-1-big:
fixes i::nat
assumes >/
assumes <n
shows ((sg-norm (Mtli)::rat))> 4 *eps-closest

{(proof)

lemma scalar-prod-gs-from-lattice-coord:

fixes i::nat

fixes v::rat vec

assumes dim-vec v = n

assumes <n

shows v-Mtli=sum-list (map (Ak. (lattice-coord v)$k * (((RAT M)!k)-Mtli))
(proof)

lemma correct-coord-help:

12



fixes i::nat

assumes <(int n)—I

assumes witness v (eps-closest)

assumes 0<¢

shows (lattice-coord (s ©))$(n—i)=(lattice-coord v)$(n—1)
A((si) « MtY(n—i) = v+ Mtl(n—1i))

(proof)

lemma correct-coord:

fixes v::rat vec

fixes k::nat

assumes witness v eps-closest

assumes [<k

assumes k<n

shows (s n) - Mtl(k) = v - Mt!(k)
(proof)

9 Main Theorem

This section culminates in the main theorem.

lemma sg-norm-from-Mt:

fixes v::rat vec

assumes v-carrive carrier-vec n

shows sg-norm v = sum-list (map (Ai. (v-Mt!0) "2 /(sg-norm (Mt!%))) [0..<n])
(proof)

lemma bound-help:

fixes N::nat

shows real-of-rat ((rat-of-int N)xa N) % epsilon<2 N
(proof)

lemma present-bound-nicely:
fixes N::nat
shows real-of-rat ((rat-of-int N)xa Nx* eps-closest)<2 Nxclosest-distance-sq

(proof)

lemma basis-decay:
fixes i::nat
fixes j::nat
assumes <n
assumes i+j<n
shows sg-norm (Mtli)< a jxsqg-norm(Mt!(i+7))
(proof)

lemma basis-decay-cor:

fixes i::nat
fixes j::nat

13



assumes <n
assumes j<n
assumes <j
shows sg-norm (Mtli)< a nxsg-norm(Mt!j)

(proof)

theorem Babai-Correct:
shows real-of-rat ((sg-norm (s n)):rat) < 27n x closest-distance-sqN\ s n € coset

(proof)

end
end
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