
Babai’s Nearest Plane Algorithm

Eric Ren, Sage Binder, and Katherine Kosaian

October 31, 2024

Abstract

γ-CVP is the problem of finding a vector in L that is within γ times
the closest possible to t, where L is a lattice and t is a target vector. If
the basis for L is LLL-reduced, Babai’s Closest Hyperplane algorithm
solves γ-CVP for γ = 2n/2, where n is the dimension of the lattice L, in
time polynomial in n. This session formalizes said algorithm, using the
AFP formalization of LLL [2, 1] and adapting a proof of correctness
from the lecture notes of Stephens-Davidowitz [4].

Contents
1 Introduction 1

2 Copy-Pasted Material 4

3 Locale setup for Babai 7

4 Coordinates 9

5 Lattice Lemmas 19

6 Lemmas on closest distance 23

7 More linear algebra lemmas 27

8 Coord-Invariance 35

9 Main Theorem 43

1 Introduction
The (exact) closest vector problem (CVP) is the problem of finding the
closest vector within a lattice L to a target vector t. This is equivalent to
finding the shortest vector in the lattice coset L− t := {l− t : l ∈ L}. There
is a corresponding family of weaker problems, γ-CVP (where γ is some real

1

parameter), where one needs only find a vector in L − t whose length is
at most γ times the shortest possible. Through a reduction to the shortest
vector problem [4], solutions to these problems may be used to factor rational
polynomials. This problem is therefore of cryptographic interest.

Although exact CVP (or 1-CVP) is NP-Complete [3], Babai’s Nearest
Plane Algorithm solves 2n/2-CVP, where n is the dimension of L, in poly-
nomial time, provided that L is presented using an LLL-reduced basis with
parameter α = 4/3. The proof in this document is mostly a straightfor-
ward algebraicization of the proof in Stephens-Davidowitz’ lecture notes. It
makes use of the coordinate systems defined by the original basis (denoted
β) and the Gram-Schmidt orthogonalization of that basis (denoted β̃). Let
[u]β denote the representation of a vector u under β, with coordinates [u]jβ;
j = 1, ..., n (likewise for β̃). Also, let si denote the output of the algorithm
after step i and let d be the shortest lattice coset vector, as witnessed by the
vector v. The proof works by analysing the coordinates of [sn]β̃, showing
that all are at most 1/2 and that some later coordinates are exactly those
of [v]β̃.

The algorithm modifies coordinate n−i in both bases for the last time in
step i (formalized in lemma coord_invariance), during which both coor-
dinates are decreased below 1/2 (formalized in lemma small_coord). Com-
bined, these facts imply that the output sn has

∣∣∣[sn]jβ̃∣∣∣ ≤ 1/2 for all indices
j.

Since β̃ is orthogonal, we have

‖sn‖2 =
n∑

i=1

(
[sn]

i
β̃
‖β̃i‖

)2
, (1)

so the preceding coordinate bounds ‖sn‖2 by 1
4

n∑
i=1

‖β̃i‖2. If the β̃i are all

short compared to d, this bound suffices. In fact, if there is any short vector
β̃I in β̃ then because β is LLL-reduced, any vector preceding β̃I in β̃ will not
be much longer. This bounds the first I terms in Equation 1. By selecting
I maximal, we may assume that β̃ ends in a series of n − I long vectors.
In this case it can be shown [v]j

β̃
and [sn]

j

β̃
differ by an integral amount for

j = I+1, ..., n. Therefore, if [v]j
β̃

and [sn]
j

β̃
differ at all, they differ by at least

1, which would mean
∣∣∣[v]j

β̃

∣∣∣ ≥ 1/2, since
∣∣∣[sn]jβ̃∣∣∣ ≤ 1/2. This would force v to

be longer than d, a contradiction. So [v]j
β̃
= [sn]

j

β̃
for j = I + 1, ...n, which

gives a tighter bound on the last n− I terms in equation 1.
Precisely, let I denote max{i : ‖β̃i‖ ≤ 2d}, meaning for all indices j >

I, ‖β̃j‖ > 2d. Now, for all j > I, d2 = ‖v‖ ≥ ([v]j
β̃
)2‖β̃j‖2 > ([v]j

β̃
)2 ·

4d2, meaning 1/4 > (β̃j)2, or 1/2 >
∣∣∣[v]j

β̃

∣∣∣. Since
∣∣∣[sj]jβ̃∣∣∣ ≤ 1/2 from the

2

previous section,
∣∣∣[v]j

β̃
− [sj]

j

β̃

∣∣∣ < 1. Using properties of the change-of-basis
between β, β̃ formalized in the LLL AFP session, we show that [v]j

β̃
− [sj]

j

β̃
=

[v]jβ − [sj]
j
β = [v − sj]

j
β, so that

∣∣∣[v − sj]
j
β

∣∣∣ < 1 But since v − sj lies in the

lattice, [v− sj]
j
β is integral, so

∣∣∣[v − sj]
j
β

∣∣∣ = 0, meaning [v]j
β̃
= [sj]

j

β̃
. Lemma

coord_invariance gives that [v]j
β̃
= [sj]

j

β̃
= [sn]

j

β̃
. This is formalized by

lemma correct_coord.
Now ‖sn‖2 =

n∑
i=1

([sn]
i
β̃
‖β̃i‖)2, since β̃ is orthogonal. Splitting the sum

around I equates this to
I∑

i=1
([sn]

i
β̃
)2 +

n∑
i=I+1

([sn]
i
β̃
)2. Lemma small_coord

bounds the terms in the first sum by ‖β̃i‖2/4, while lemma correctcoord

bounds the terms in the second sum by d2, giving ‖sn‖2 ≤ (n − I)d2 +
I∑

i=1
‖β̃i‖2/4. If β is LLL-reduced with parameter α, ‖β̃i‖2 ≤ αI‖β̃I‖2 for all

i ≤ I, which, by the definition of I, is at most 4d2. So ‖sn‖2 ≤ ((n − I) +
IαI)d2 ≤ nαnd2. The standard choice of α = 4/3 gives ‖sn‖2 ≤ 2nd2. All of
this is formalized in the final section, which culminates in the main theorem.

To avoid having to prove that a shortest vector exists, we use the defini-
tion inf{‖u− t‖ : u ∈ L} for d instead of min{‖u− t‖ : u ∈ L} and rephrase
the arguments above to allow ‖v‖ to exceed d by a small constant factor ε.
This workaround and its details are contained in the section on the closest
distance and negligibly change the rest of the proof.

theory Babai-Algorithm

imports LLL-Basis-Reduction.LLL
HOL.Archimedean-Field
HOL−Analysis.Inner-Product

begin
fun calculate-c:: rat vec ⇒ rat vec list ⇒ nat => int where

calculate-c s L1 n = round ((s · (L1 !((dim-vec s) − n))) / (sq-norm-vec (L1 !(
(dim-vec s) − n))))

fun update-s:: rat vec ⇒ rat vec list ⇒ rat vec list ⇒ nat ⇒ rat vec where
update-s sn M Mt n = ((rat-of-int (calculate-c sn Mt n)) ·v M !((dim-vec sn)−n))

fun Babai-Help:: rat vec ⇒ rat vec list ⇒ rat vec list ⇒ nat ⇒ rat vec where
Babai-Help s M Mt 0 = s |
Babai-Help s M Mt (Suc n) = (let B= (Babai-Help s M Mt n) in B− (update-s B

M Mt (Suc n)))

3

definition Babai:: rat vec ⇒ rat vec list ⇒ rat vec where
Babai s M = Babai-Help s M (gram-schmidt (dim-vec s) M) (dim-vec s)

end
theory Babai

imports Babai-Algorithm

begin

This theory contains the proof of correctness of the algorithm. The main
theorem is "theorem Babai-Correct", under the locale "Babai-with-assms".
To use the theorem, one needs to show that lattice, the vectors in the lattice
basis, and the target vector all have the same dimension, that the lattice
basis vectors are linearly independent and form an invertible matrix, and
that the lattice basis is LLL-weakly-reduced.

2 Copy-Pasted Material
The next couple of lemmas are copy-pasted from Modular-arithmetic-LLL-
and-HNF-algorithms (we copy-paste them instead of loading them to avoid
excessive loading times)
context vec-module
begin

This lemma is copy-pasted from Modular-arithmetic-LLL-and-HNF-algorithms
(we copy-paste them instead of loading them to avoid excessive loading
times)
lemma lattice-of-altdef-lincomb:

assumes set fs ⊆ carrier-vec n
shows lattice-of fs = {y. ∃ f . lincomb (of-int ◦ f) (set fs) = y}
unfolding lincomb-def lattice-of-altdef [OF assms] image-def by auto

This lemma is copy-pasted from Modular-arithmetic-LLL-and-HNF-algorithms
(we copy-paste them instead of loading them to avoid excessive loading
times)
lemma lincomb-as-lincomb-list:

fixes ws f
assumes s: set ws ⊆ carrier-vec n
shows lincomb f (set ws) = lincomb-list (λi. if ∃ j<i. ws!i = ws!j then 0 else f

(ws ! i)) ws
using assms

proof (induct ws rule: rev-induct)
case (snoc a ws)

4

let ?f = λi. if ∃ j<i. ws ! i = ws ! j then 0 else f (ws ! i)
let ?g = λi. (if ∃ j<i. (ws @ [a]) ! i = (ws @ [a]) ! j then 0 else f ((ws @ [a]) !

i)) ·v (ws @ [a]) ! i
let ?g2= (λi. (if ∃ j<i. ws ! i = ws ! j then 0 else f (ws ! i)) ·v ws ! i)
have [simp]:

∧
v. v ∈ set ws =⇒ v ∈ carrier-vec n using snoc.prems(1) by auto

then have ws: set ws ⊆ carrier-vec n by auto
have hyp: lincomb f (set ws) = lincomb-list ?f ws

by (intro snoc.hyps ws)
show ?case
proof (cases a∈set ws)

case True
have g-length: ?g (length ws) = 0 v n using True

by (auto, metis in-set-conv-nth nth-append)
have (map ?g [0 ..<length (ws @ [a])]) = (map ?g [0 ..<length ws]) @ [?g (length

ws)]
by auto

also have ... = (map ?g [0 ..<length ws]) @ [0 v n] using g-length by simp
finally have map-rw: (map ?g [0 ..<length (ws @ [a])]) = (map ?g [0 ..<length

ws]) @ [0 v n] .
have M .sumlist (map ?g2 [0 ..<length ws]) = M .sumlist (map ?g [0 ..<length

ws])
by (rule arg-cong[of - - M .sumlist], intro nth-equalityI , auto simp add:

nth-append)
also have ... = M .sumlist (map ?g [0 ..<length ws]) + 0 v n

by (metis M .r-zero calculation hyp lincomb-closed lincomb-list-def ws)
also have ... = M .sumlist (map ?g [0 ..<length ws] @ [0 v n])

by (rule M .sumlist-snoc[symmetric], auto simp add: nth-append)
finally have summlist-rw: M .sumlist (map ?g2 [0 ..<length ws])
= M .sumlist (map ?g [0 ..<length ws] @ [0 v n]) .

have lincomb f (set (ws @ [a])) = lincomb f (set ws) using True unfolding
lincomb-def

by (simp add: insert-absorb)
thus ?thesis

unfolding hyp lincomb-list-def map-rw summlist-rw
by auto

next
case False
have g-length: ?g (length ws) = f a ·v a using False by (auto simp add:

nth-append)
have (map ?g [0 ..<length (ws @ [a])]) = (map ?g [0 ..<length ws]) @ [?g (length

ws)]
by auto

also have ... = (map ?g [0 ..<length ws]) @ [(f a ·v a)] using g-length by simp
finally have map-rw: (map ?g [0 ..<length (ws @ [a])]) = (map ?g [0 ..<length

ws]) @ [(f a ·v a)] .
have summlist-rw: M .sumlist (map ?g2 [0 ..<length ws]) = M .sumlist (map ?g

[0 ..<length ws])
by (rule arg-cong[of - - M .sumlist], intro nth-equalityI , auto simp add:

nth-append)

5

have lincomb f (set (ws @ [a])) = lincomb f (set (a # ws)) by auto
also have ... = (

⊕
Vv∈set (a # ws). f v ·v v) unfolding lincomb-def ..

also have ... = (
⊕

Vv∈ insert a (set ws). f v ·v v) by simp
also have ... = (f a ·v a) + (

⊕
Vv∈ (set ws). f v ·v v)

proof (rule finsum-insert)
show finite (set ws) by auto
show a /∈ set ws using False by auto
show (λv. f v ·v v) ∈ set ws → carrier-vec n

using snoc.prems(1) by auto
show f a ·v a ∈ carrier-vec n using snoc.prems by auto

qed
also have ... = (f a ·v a) + lincomb f (set ws) unfolding lincomb-def ..
also have ... = (f a ·v a) + lincomb-list ?f ws using hyp by auto
also have ... = lincomb-list ?f ws + (f a ·v a)

using M .add.m-comm lincomb-list-carrier snoc.prems by auto
also have ... = lincomb-list (λi. if ∃ j<i. (ws @ [a]) ! i
= (ws @ [a]) ! j then 0 else f ((ws @ [a]) ! i)) (ws @ [a])

proof (unfold lincomb-list-def map-rw summlist-rw, rule M .sumlist-snoc[symmetric])
show set (map ?g [0 ..<length ws]) ⊆ carrier-vec n using snoc.prems

by (auto simp add: nth-append)
show f a ·v a ∈ carrier-vec n

using snoc.prems by auto
qed
finally show ?thesis .

qed
qed auto
end

context
begin

interpretation vec-module TYPE(int) .

This lemma is copy-pasted from Modular-arithmetic-LLL-and-HNF-algorithms
(we copy-paste them instead of loading them to avoid excessive loading
times)
lemma lattice-of-cols-as-mat-mult:

assumes A: A ∈ carrier-mat n nc
shows lattice-of (cols A) = {y∈carrier-vec (dim-row A). ∃ x∈carrier-vec (dim-col

A). A ∗v x = y}
proof −

let ?ws = cols A
have set-cols-in: set (cols A) ⊆ carrier-vec n using A unfolding cols-def by

auto
have lincomb (of-int ◦ f)(set ?ws) ∈ carrier-vec (dim-row A) for f

using lincomb-closed A
by (metis (full-types) carrier-matD(1) cols-dim lincomb-closed)

moreover have ∃ x∈carrier-vec (dim-col A). A ∗v x = lincomb (of-int ◦ f) (set
(cols A)) for f

6

proof −
let ?g = (λv. of-int (f v))
let ?g ′ = (λi. if ∃ j<i. ?ws ! i = ?ws ! j then 0 else ?g (?ws ! i))
have lincomb (of-int ◦ f) (set (cols A)) = lincomb ?g (set ?ws) unfolding o-def

by auto
also have ... = lincomb-list ?g ′ ?ws

by (rule lincomb-as-lincomb-list[OF set-cols-in])
also have ... = mat-of-cols n ?ws ∗v vec (length ?ws) ?g ′

by (rule lincomb-list-as-mat-mult, insert set-cols-in A, auto)
also have ... = A ∗v (vec (length ?ws) ?g ′) using mat-of-cols-cols A by auto
finally show ?thesis by auto

qed
moreover have ∃ f . A ∗v x = lincomb (of-int ◦ f) (set (cols A))

if Ax: A ∗v x ∈ carrier-vec (dim-row A) and x: x ∈ carrier-vec (dim-col A) for
x

proof −
let ?c = λi. x $ i
have x-vec: vec (length ?ws) ?c = x using x by auto
have A ∗v x = mat-of-cols n ?ws ∗v vec (length ?ws) ?c using mat-of-cols-cols

A x-vec by auto
also have ... = lincomb-list ?c ?ws

by (rule lincomb-list-as-mat-mult[symmetric], insert set-cols-in A, auto)
also have ... = lincomb (mk-coeff ?ws ?c) (set ?ws)

by (rule lincomb-list-as-lincomb, insert set-cols-in A, auto)
finally show ?thesis by auto

qed
ultimately show ?thesis unfolding lattice-of-altdef-lincomb[OF set-cols-in]

by (metis (mono-tags, opaque-lifting))
qed

This lemma is copy-pasted from Modular-arithmetic-LLL-and-HNF-algorithms
(we copy-paste them instead of loading them to avoid excessive loading
times)
corollary lattice-of-as-mat-mult:

assumes fs: set fs ⊆ carrier-vec n
shows lattice-of fs = {y∈carrier-vec n. ∃ x∈carrier-vec (length fs). (mat-of-cols

n fs) ∗v x = y}
proof −

have cols-eq: cols (mat-of-cols n fs) = fs using cols-mat-of-cols[OF fs] by simp
have m: (mat-of-cols n fs) ∈ carrier-mat n (length fs) using mat-of-cols-carrier(1)

by auto
show ?thesis using lattice-of-cols-as-mat-mult[OF m] unfolding cols-eq using

m by auto
qed
end

3 Locale setup for Babai
locale Babai =

7

fixes M :: int vec list
fixes t :: rat vec
assumes length-M : length M = dim-vec t

begin

abbreviation n where n ≡ length M
definition α where (α::rat) = 4/3
sublocale LLL n n M α.

abbreviation coset::rat vec set where coset≡{(map-vec rat-of-int x)−t|x. x∈L}
abbreviation Mt where Mt ≡ gram-schmidt n (RAT M)

definition s :: nat ⇒ rat vec where
s i = Babai-Help (uminus t) (RAT M) Mt i

definition closest-distance-sq:: real where
closest-distance-sq = Inf {real-of-rat (sq-norm x::rat) |x. x ∈ coset}

end

Locale setup with additional assumptions required for main theorem
locale Babai-with-assms = Babai+

fixes mat-M mat-M-inv:: rat mat
assumes basis: lin-indep M
defines mat-M ≡ mat-of-cols n (RAT M)
defines mat-M-inv ≡
(if (invertible-mat mat-M) then SOME B. (inverts-mat B mat-M) ∧ (inverts-mat

mat-M B) else (0m n n))
assumes inv:invertible-mat mat-M
assumes reduced:weakly-reduced M n
assumes non-trivial:0<n

begin

lemma dim-vecs-in-M :
shows ∀ v ∈ set M . dim-vec v = length M
using basis unfolding gs.lin-indpt-list-def by force

lemma inv1 :mat-M ∗ mat-M-inv = 1m n
proof−

have dim-m:dim-row mat-M = n using dim-vecs-in-M unfolding mat-M-def
by fastforce

then have inverts-mat mat-M mat-M-inv using inv
unfolding mat-M-inv-def
by (smt (verit, ccfv-SIG) invertible-mat-def some-eq-imp)
then show ?thesis using dim-m unfolding inverts-mat-def by argo

8

qed

lemma inv2 :mat-M-inv ∗ mat-M = 1m n
proof−

have dim-m:dim-col mat-M = n unfolding mat-M-def by fastforce
have inverts-mat mat-M-inv mat-M using inv
unfolding mat-M-inv-def
by (smt (verit, ccfv-SIG) invertible-mat-def some-eq-imp)
then have inv:mat-M-inv ∗ mat-M = 1m (dim-row mat-M-inv)

unfolding inverts-mat-def by blast
then have dim-n:dim-col (1m (dim-row mat-M-inv)) = n

using dim-m index-mult-mat(3)[of mat-M-inv mat-M] by fastforce
have (dim-row mat-M-inv)= n
proof(rule ccontr)

assume (dim-row mat-M-inv)6= n
then have dim-col (1m (dim-row mat-M-inv)) 6= n

by auto
then show False using dim-n by blast

qed
then show ?thesis using inv by argo

qed

sublocale rats: vec-module TYPE(rat) n.

lemma M-dim: dim-row mat-M = n dim-col mat-M = n
apply (metis index-mult-mat(2) index-one-mat(2) inv1)

by (metis index-mult-mat(3) index-one-mat(3) inv2)

lemma M-inv-dim: dim-row mat-M-inv = n dim-col mat-M-inv = n
apply (metis M-dim(1) index-mult-mat(2) inv1 inv2)

by (metis index-mult-mat(3) index-one-mat(3) inv1)

lemma Babai-to-Help:
shows s n = Babai-Algorithm.Babai (uminus t) (RAT M)
using Babai.Babai-def Babai.s-def Babai-Algorithm.Babai-def Babai-axioms by

force

4 Coordinates
This section sets up the use of the lattice basis and its GS orthogonalization
as coordinate systems and some properties of that coordinate system. The
important lemma here is coord-invariance, which shows that after step i of
the algorithm, all coordinates (in both systems) after n-i are invariant.
definition lattice-coord :: rat vec ⇒ rat vec

9

where lattice-coord a = mat-M-inv ∗v a

lemma dim-preserve-lattice-coord:
fixes v::rat vec
assumes dim-vec v=n
shows dim-vec (lattice-coord v) = n unfolding lattice-coord-def mat-M-inv-def

using M-inv-dim
by (simp add: mat-M-inv-def)

lemma vec-to-col:
assumes i < n
shows (RAT M)!i = col mat-M i
unfolding mat-M-def
by (metis Babai-with-assms-axioms Babai-with-assms-axioms-def Babai-with-assms-def

M-dim(2)
assms cols-mat-of-cols cols-nth gs.lin-indpt-list-def mat-M-def)

lemma unit:
assumes i < n
shows lattice-coord ((RAT M)!i) = unit-vec n i
using assms inv2 unfolding lattice-coord-def
by (metis M-dim(1) M-dim(2) M-inv-dim(2) carrier-matI col-mult2 col-one

vec-to-col)

lemma linear :
fixes i::nat
fixes v1 ::rat vec
and v2 :: rat vec
and q:: rat
assumes dim-vec v1 = n
assumes dim-2 :dim-vec v2 = n
assumes 0≤i
assumes dim-i:i<n
shows (lattice-coord (v1+(q·vv2)))$i = (lattice-coord v1)$i + q∗((lattice-coord

v2)$i)
using assms

proof(−)
have linear-vec:(lattice-coord (v1+(q·vv2))) = (lattice-coord v1) + q·v((lattice-coord

v2))
unfolding lattice-coord-def
by (metis (mono-tags, opaque-lifting) M-inv-dim(2) assms(1) assms(2) car-

rier-mat-triv
carrier-vec-dim-vec mult-add-distrib-mat-vec mult-mat-vec smult-carrier-vec)

then have 2 : (lattice-coord (v1+(q·vv2)))$i= ((lattice-coord v1) + q·v((lattice-coord
v2)))$i by auto
also have dim-v2 : dim-vec (lattice-coord v2) = n using dim-preserve-lattice-coord

dim-2 by blast
then have i-in-range: i<dim-vec (q·v(lattice-coord v2)) using dim-v2 dim-i by

simp
also have 3 :((lattice-coord v1) + q·v((lattice-coord v2)))$i=(lattice-coord v1)$i+

10

(q·v(lattice-coord v2))$i using i-in-range by simp
also have 4 : (q·v(lattice-coord v2))$i=q∗(lattice-coord v2)$i using i-in-range by

simp
thus ?thesis unfolding vec-def using linear-vec 2 3 4 by simp

qed

lemma sub-s:
fixes i::nat
assumes 0≤i
assumes i<n
shows s (Suc i) = (s i) −

((rat-of-int (calculate-c (s i) Mt (Suc i))) ·v (RAT M)!((dim-vec (s i)) −(Suc
i)))

using assms Babai-Help.simps[of −t RAT M Mt] unfolding s-def
by (metis update-s.simps)

lemma M-locale-1 :
shows gram-schmidt-fs-Rn n (RAT M)
by (smt (verit) M-dim(1) M-dim(2) carrier-dim-vec dim-col gram-schmidt-fs-Rn.intro

in-set-conv-nth
mat-M-def mat-of-cols-carrier(3) subset-code(1) vec-to-col)

lemma M-locale-2 :
shows gram-schmidt-fs-lin-indpt n (RAT M)
using basis M-locale-1 gram-schmidt-fs-lin-indpt.intro[of n (RAT M)] unfolding

gs.lin-indpt-list-def
using gram-schmidt-fs-lin-indpt-axioms.intro by blast

lemma more-dim: length (RAT M) = n
by simp

lemma Mt-gso-connect:
fixes j::nat
assumes j<n
shows Mt!j = gs.gso j

proof(−)
have Mt = map gs.gso[0 ..<n]

using M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)]
by fastforce

then show ?thesis
using assms
by simp

qed

lemma access-index-M-dim:
assumes 0 ≤ i
assumes i < n

11

shows dim-vec (map of-int-hom.vec-hom M ! i) = n
using assms dim-vecs-in-M
by auto

lemma s-dim:
fixes i::nat
assumes i≤ n
shows dim-vec (s i) = n ∧ (s i) ∈carrier-vec n
using assms
proof(induct i)
case 0
have unfold1 :s 0 = Babai-Help (uminus t) (RAT M) Mt 0 unfolding s-def by

simp
also have unfold2 :Babai-Help (uminus t) (RAT M) Mt 0 = uminus t unfolding

Babai-Help.simps by simp
also have unfold3 :s 0 = uminus t using unfold1 unfold2 by simp
also have dim-eq:dim-vec (s 0) = dim-vec (uminus t) using unfold3 by simp
moreover have dim-minus:dim-vec (uminus t) = n by (metis index-uminus-vec(2)

length-M)
then have dim-vec (s 0) = n

using dim-eq dim-minus
by simp

then have (s 0) ∈ carrier-vec n
using carrier-vecI [of (s 0) n]
by simp

then show ?case
by simp

next
case (Suc i)
then have leq: i≤n by linarith
have sub:s (Suc i) = (s i) − ((rat-of-int (calculate-c (s i) Mt (Suc i))) ·v

(RAT M)!((dim-vec (s i)) −(Suc i)))
using sub-s Suc
by auto

moreover have prev-s-dim:(s i)∈carrier-vec n
using Suc
by simp

moreover have dim-vec (s i)=n
using Suc
by simp

then have 0≤(dim-vec (s i)) −(Suc i)∧ (dim-vec (s i)) −(Suc i)<n
using Suc
by linarith

then have dim-m:(dim-vec ((RAT M)!((dim-vec (s i)) −(Suc i)))) = n
using access-index-M-dim[of (dim-vec (s i)) −(Suc i)]
by simp

then have dim-qm:dim-vec ((rat-of-int (calculate-c (s i) Mt (Suc i))) ·v
(RAT M)!((dim-vec (s i)) −(Suc i))) = n

by simp

12

then have final-dim:dim-vec ((s i) −
((rat-of-int (calculate-c (s i) Mt (Suc i))) ·v (RAT M)!((dim-vec (s i)) −(Suc
i)))) = n

using index-minus-vec(2) prev-s-dim dim-qm
by metis

show ?case
using final-dim sub carrier-vecI [of s i n]
by (metis carrier-vec-dim-vec)

qed

lemma dim-vecs-in-Mt:
fixes i::nat
assumes i<n
shows dim-vec (Mt!i) = n
using Mt-gso-connect[of i] M-locale-1 assms gram-schmidt-fs-Rn.gso-dim
by fastforce

lemma upper-tri:
fixes i::nat

and j::nat
assumes j>i
assumes j<n
shows ((RAT M)!i)· (Mt!j) =0

proof(−)
have (gs.gso j)· (RAT M)!i= 0
using gram-schmidt-fs-lin-indpt.gso-scalar-zero[of n (RAT M) j i]

Mt-gso-connect[of j]
assms
M-locale-2
more-dim

by presburger
then have (Mt!j)· ((RAT M)!i)= 0

using Mt-gso-connect[of j] assms
by simp

then show ?thesis
using comm-scalar-prod[of (Mt!j) n ((RAT M)!i)]

carrier-vecI [of (Mt!j) n]
carrier-vecI [of ((RAT M)!i) n]
access-index-M-dim[of i]
dim-vecs-in-Mt[of j]
assms

by auto
qed
lemma one-diag:

fixes i::nat
assumes 0≤i
assumes i<n
shows ((RAT M)!i)· (Mt!i)=sq-norm (Mt!i)

proof(−)
have mu:((RAT M)!i)·(Mt!i) = (gs.µ i i)∗sq-norm (Mt!i)

13

using gram-schmidt-fs-lin-indpt.fi-scalar-prod-gso[of n (RAT M) i i]
M-locale-2
assms
more-dim
Mt-gso-connect

by presburger
moreover have gs.µ i i=1

by (meson gs.µ.elims order-less-imp-not-eq2)
then show ?thesis

using mu
by fastforce

qed

lemma coord-invariance:
fixes j::nat
fixes k::nat
fixes i::nat
assumes k≤j
assumes j+i≤n
assumes k>0
shows (lattice-coord (s (j+i)))$(n−k) = (lattice-coord (s j))$(n−k)
∧ (s (j+i)) · Mt!(n−k)=(s j) · Mt!(n−k)

using assms
proof(induct i)

case 0
show ?case by simp

next
case (Suc i)
have j+ (Suc i) = Suc (j+i) by simp
then have 1 :s (Suc (j+i)) =s (j + (Suc i)) by simp
then have sub:s (Suc (j+i)) =
(s (j+i)) −((rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i))))

·v (RAT M)!((dim-vec (s (j+i))) −(Suc (j+i))))
using sub-s[of j+i] Suc(3) by linarith

then have dim1 : dim-vec (s (j + i)) = n
using s-dim[of j+i] using Suc(3) by auto

then have dim2 : dim-vec
(map of-int-hom.vec-hom M !
(dim-vec (s (j + i)) − Suc (j + i))) = n

using access-index-M-dim[of n − Suc (j + i)] Suc(3)
by auto

have k-in-range:0≤(n−k) ∧(n−k)<n using Suc(2) Suc(3) Suc(4)
by simp

have index-in-range:0≤(dim-vec (s (j+i))) −(Suc (j+i))∧(dim-vec (s (j+i)))
−(Suc (j+i))<n

using Suc(3) s-dim[of j+i]
by simp

moreover have carriers: s (j+i) ∈ carrier-vec n∧

14

map of-int-hom.vec-hom M ! (dim-vec (s (j + i)) − Suc (j +
i))∈carrier-vec n

using dim1 dim2
carrier-vecI [of s (j + i) n]
carrier-vecI [of map of-int-hom.vec-hom M ! (dim-vec (s (j + i)) − Suc (j

+ i)) n]
by fast

let ?sSuc = (s (Suc (j+i)))
let ?si = (s (j+i))
let ?c = (rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i))))
let ?ind = (dim-vec (s (j+i))) −(Suc (j+i))

have ?si − ?c·v (RAT M)!?ind = ?si + (−?c)·v (RAT M)!?ind
using minus-add-uminus-vec[of ?si n ?c·v (RAT M)!?ind]

carriers
by fastforce

then have (lattice-coord (?si − ?c·v (RAT M)!?ind))$(n−k) =
(lattice-coord(?si))$(n−k) + (−?c)∗ (lattice-coord((RAT M)!?ind))$(n−k)
using linear [of ?si (RAT M)!?ind n−k −?c] dim1 dim2 k-in-range
by metis

then have lin-lattice-coord:(lattice-coord (?sSuc))$(n−k) =
(lattice-coord(?si))$(n−k) − ?c∗ (lattice-coord((RAT M)!?ind))$(n−k)
using sub
by algebra

have neq:Suc (j+i)6=k using Suc(3) Suc(2) by auto
moreover have ((dim-vec (s (j+i))) −(Suc (j+i)))6= (n−k)

using s-dim[of j+i] neq Suc(3)
by (metis Suc(2) ‹j + Suc i = Suc (j + i)› diff-0-eq-0 diff-cancel2

diff-commute diff-diff-cancel diff-diff-eq diff-is-0-eq dim1)
moreover have (lattice-coord ((RAT M)!((dim-vec (s (j+i))) −(Suc (j+i))))

)$(n−k)=
(unit-vec n ((dim-vec (s (j+i))) −(Suc (j+i))))$(n−k)

using unit[of dim-vec (s (j+i)) −(Suc (j+i))] index-in-range by presburger
then have zero:(lattice-coord ((RAT M)!((dim-vec (s (j+i))) −(Suc (j+i))))

)$(n−k) = 0
unfolding unit-vec-def
using neq calculation(3) k-in-range by fastforce

then have (lattice-coord (s (Suc (j+i))))$(n−k) = ((lattice-coord (s (j+i)))$(n−k))
−
(rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i))))
∗0

using zero lin-lattice-coord by presburger
then have conclusion1 :(lattice-coord (s (Suc (j+i))))$(n−k) = ((lattice-coord

(s (j+i)))$(n−k))
by simp

have init-sub:(s (Suc (j+i)))· Mt!(n−k) = ((s (j+i)) −
((rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i)))) ·v (RAT M)!((dim-vec (s
(j+i))) −(Suc (j+i)))))

15

· (Mt!(n−k))
using sub
by simp

moreover have carrier-prod:((rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i))
))
·v (RAT M)!((dim-vec (s (j+i))) −(Suc (j+i))))∈carrier-vec n

using smult-carrier-vec[of (rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i))))
(RAT M)!((dim-vec (s (j+i))) −(Suc (j+i))) n] carrier-vecI dim2 by

blast
moreover have l:((s (j+i)) −

((rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i)))) ·v (RAT M)!((dim-vec (s
(j+i))) −(Suc (j+i)))))
· (Mt!(n−k)) = (s (j+i))· (Mt!(n−k)) − ((rat-of-int (calculate-c (s (j+i)) Mt

(Suc (j+i))))
·v (RAT M)!((dim-vec (s (j+i))) −(Suc (j+i))))· (Mt!(n−k))

using s-dim[of j+i]
assms(2)
access-index-M-dim
dim-vecs-in-Mt
carrier-vecI [of Mt!(n−k) n]
carrier-vecI [of (RAT M)!((dim-vec (s (j+i))) −(Suc (j+i))) n]
add-scalar-prod-distrib[of
(s (j+i))
n
(rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i)))) ·v (RAT M)!((dim-vec

(s (j+i))) −(Suc (j+i)))
(Mt!(n−k))]

using calculation(5) carriers k-in-range minus-scalar-prod-distrib by blast

moreover then have lin-scalar-prod:((s (j+i)) −
((rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i)))) ·v (RAT M)!((dim-vec (s
(j+i))) −(Suc (j+i)))))
· (Mt!(n−k)) = (s (j+i))· (Mt!(n−k)) − (rat-of-int (calculate-c (s (j+i)) Mt

(Suc (j+i))))
∗ ((RAT M)!((dim-vec (s (j+i))) −(Suc (j+i)))

· (Mt!(n−k)))
by (metis dim2 dim-vecs-in-Mt k-in-range scalar-prod-smult-left)

moreover have step-past-index:(dim-vec (s (j+i))) −(Suc (j+i))<n−k
using s-dim[of j+i] Suc(3) Suc(2)

by (simp add: calculation(3) diff-le-mono2 dim1 le-SucI nat-less-le trans-le-add1)
moreover have ((RAT M)!((dim-vec (s (j+i))) −(Suc (j+i))) · (Mt!(n−k)

)) = 0
using step-past-index upper-tri[of (dim-vec (s (j+i))) −(Suc (j+i)) n−k] Suc(4)
by simp

then have (s (Suc (j+i)))· Mt!(n−k) = (s (j+i))· Mt!(n−k) −
((rat-of-int (calculate-c (s (j+i)) Mt (Suc (j+i)))) ∗0)

using lin-scalar-prod init-sub
by algebra

then have conclusion2 :(s (Suc (j+i)))· Mt!(n−k) = (s (j+i))· Mt!(n−k) by

16

auto
show ?case

by (metis Suc(2) Suc(3) Suc(4) Suc.hyps Suc-leD ‹j + Suc i = Suc (j + i)›
conclusion1 conclusion2)
qed

lemma small-orth-coord:
fixes i::nat
assumes 1≤i
assumes i≤n
shows abs ((s i) · Mt!(n−i)) ≤ (sq-norm (Mt!(n−i)))∗(1/2)

proof(−)
have minus-plus:Suc (i−1) = i using assms(1) by auto
then have init-sub:s i = (s (i−1))−((rat-of-int (calculate-c (s (i−1)) Mt i))

·v (RAT M)!((dim-vec (s (i−1))) −i))
using sub-s[of i−1]
by (metis (full-types) Suc-le-eq assms(2) less-eq-nat.simps(1))

then have scalar-distrib:(s i) · Mt!(n−i) = (s (i−1)) · Mt!(n−i)−(((rat-of-int
(calculate-c (s (i−1)) Mt i))

·v (RAT M)!((dim-vec (s (i−1))) −i))·Mt!(n−i))
using add-scalar-prod-distrib[of (s (i−1)) n ((rat-of-int (calculate-c (s (i−1))

Mt i))
·v (RAT M)!((dim-vec (s (i−1))) −i)) Mt!(n−i)]

s-dim[of i−1]
carrier-vecI [of Mt!(n−i)]
carrier-vecI [of (RAT M)!((dim-vec (s (i−1))) −i)]
access-index-M-dim[of ((dim-vec (s (i−1))) −i)]
dim-vecs-in-Mt[of n−i]
init-sub

minus-scalar-prod-distrib[of (s (i−1)) n ((rat-of-int (calculate-c (s (i−1))
Mt i))

·v (RAT M)!((dim-vec (s (i−1))) −i)) Mt!(n−i)]
by (metis Suc-leD assms(2) diff-Suc-less gs.smult-closed le0 minus-plus non-trivial)
also have scalar-commute:(s (i−1)) · Mt!(n−i)−(((rat-of-int (calculate-c (s

(i−1)) Mt i))
·v (RAT M)!((dim-vec (s (i−1)))

−i))·Mt!(n−i)) =
(s (i−1)) · Mt!(n−i)−((rat-of-int (calculate-c (s (i−1)) Mt i))

∗ (((RAT M)!((dim-vec (s (i−1))) −i)) ·Mt!(n−i)))
using scalar-prod-smult-left

carrier-vecI [of Mt!(n−i)]
carrier-vecI [of (RAT M)!((dim-vec (s (i−1))) −i)]
access-index-M-dim
dim-vecs-in-Mt

by (smt (verit) Suc-le-D assms(2) diff-less index-minus-vec(2) index-smult-vec(2)

init-sub minus-plus s-dim zero-less-Suc)
moreover have index-in-range: 0≤n−i ∧ n−i<n

17

using assms(1) assms(2)
by simp

moreover have sq-norm-eq:((RAT M)!((dim-vec (s (i−1))) −i)) ·Mt!(n−i) =
sq-norm (Mt!(n−i))

using one-diag[of n−i]
s-dim[of i−1]
index-in-range
assms(1)
assms(2)
less-imp-diff-less

by simp
then have (s i) · Mt!(n−i) = (s (i−1)) · Mt!(n−i)−

((rat-of-int (calculate-c (s (i−1)) Mt i)) ∗ sq-norm (Mt!(n−i)))
using scalar-distrib scalar-commute sq-norm-eq by argo

then have final-sub:abs((s i) · Mt!(n−i)) = abs(((rat-of-int (calculate-c (s
(i−1)) Mt i))

∗ sq-norm (Mt!(n−i))) − (s (i−1)) ·
Mt!(n−i))

using abs-minus-commute by simp
then have round-small:abs(rat-of-int (calculate-c (s (i−1)) Mt i)−

(((s (i−1)) · (Mt!((dim-vec (s (i−1))) − i)))
/ (sq-norm-vec (Mt!((dim-vec (s (i−1))) − i)))))≤1/2

by (metis calculate-c.simps of-int-round-abs-le)
moreover have pos:0≤ sq-norm (Mt!(n−i))

by (simp add: sq-norm-vec-ge-0)
then have (sq-norm (Mt!(n−i)))∗abs((rat-of-int (calculate-c (s (i−1)) Mt i)−

(((s (i−1)) · (Mt!((dim-vec (s (i−1))) − i))) /
(sq-norm-vec (Mt!((dim-vec (s (i−1))) − i))))))
≤(sq-norm (Mt!(n−i)))∗(1/2)

using pos round-small mult-left-mono by blast
then have 2 :abs((sq-norm (Mt!(n−i)))∗(rat-of-int (calculate-c (s (i−1)) Mt i

)−
(((s (i−1)) · (Mt!((dim-vec (s (i−1))) − i))) /

(sq-norm-vec (Mt!((dim-vec (s (i−1))) − i))))))≤(sq-norm
(Mt!(n−i)))∗(1/2)

using pos by (smt (verit) abs-mult abs-of-nonneg)
have i≤n

using assms(2) by simp
then have abs(

(sq-norm (Mt!(n−i)))∗(rat-of-int (calculate-c (s (i−1)) Mt i))−
(sq-norm (Mt!(n−i)))∗(((s (i−1)) · (Mt!((dim-vec (s (i−1))) − i)))/
(sq-norm (Mt!(n−i))))
)≤(sq-norm (Mt!(n−i)))∗(1/2)

using 2
s-dim[of i]

by (smt (verit) Rings.ring-distribs(4) Suc-leD minus-plus s-dim)
then have 1 :abs(

(sq-norm (Mt!(n−i)))∗(rat-of-int (calculate-c (s (i−1)) Mt i))−
((s (i−1)) · (Mt!((dim-vec (s (i−1))) − i)))∗

18

((sq-norm (Mt!(n−i)))/(sq-norm (Mt!(n−i))))
)≤(sq-norm (Mt!(n−i)))∗(1/2)

using assms(2) s-dim
by (smt (z3) gs.cring-simprules(14) times-divide-eq-right)

moreover have nonzero:sq-norm (Mt!(n−i)) 6=0
using Mt-gso-connect[of n−i] assms

by (metis M-locale-2 gram-schmidt-fs-lin-indpt.sq-norm-pos index-in-range length-map
rel-simps(70))

moreover have cancel:(sq-norm (Mt!(n−i)))/(sq-norm (Mt!(n−i)))=1
using nonzero
by auto

moreover have dim-match:dim-vec (s (i−1)) = n
using s-dim[of i−1] assms(2)
by linarith

then have final-ineq:abs(
(sq-norm (Mt!(n−i)))∗(rat-of-int (calculate-c (s (i−1)) Mt i))−
((s (i−1)) · (Mt!((dim-vec (s (i−1))) − i)))

)≤(sq-norm (Mt!(n−i)))∗(1/2)
using 1 cancel
by (smt (verit) gs.r-one)

then have rearrange-final-ineq: abs((rat-of-int (calculate-c (s (i−1)) Mt i))
∗ (sq-norm (Mt!(n−i))) − ((s (i−1)) · (Mt!(n − i))))≤(sq-norm

(Mt!(n−i)))∗(1/2)
using dim-match
by algebra

show ?thesis
using final-sub rearrange-final-ineq
by argo

qed
lemma lattice-carrier : L⊆ carrier-vec n
proof−

have x∈carrier-vec n if x-def :x∈L for x
proof−

obtain f where f-def :x = sumlist (map (λi. (f i)·v M !i) [0 ..<n])
using x-def unfolding L-def lattice-of-def by fast

have (f i)·v M !i∈carrier-vec n if 0≤i∧i<n for i
using access-index-M-dim[of i]
by (metis carrier-vec-dim-vec map-carrier-vec nth-map smult-closed that)

then have set (map (λi. (f i)·v M !i) [0 ..<n]) ⊆ carrier-vec n by auto
then have sumlist (map (λi. (f i)·v M !i) [0 ..<n]) ∈ carrier-vec n by simp
then show x∈carrier-vec n using f-def by fast

qed
then show ?thesis by fast

qed

5 Lattice Lemmas
lemma lattice-sum-close:

fixes u::int vec and v::int vec

19

assumes u∈L v∈L
shows u+v∈L

proof −
let ?mM = mat-of-cols n M
have 1 :?mM ∈carrier-mat n n using dim-vecs-in-M by fastforce
have set-M : set M ⊆ carrier-vec n

using dim-vecs-in-M carrier-vecI by blast
have as-mat-mult:lattice-of M = {y∈carrier-vec n. ∃ x∈carrier-vec n. ?mM ∗v x

= y}
using lattice-of-as-mat-mult[OF set-M] by blast

then obtain u1 where u1-def :u = ?mM ∗v u1 ∧ u1∈carrier-vec n using assms
unfolding L-def by auto

obtain v1 where v1-def :v = ?mM ∗v v1 ∧ v1∈carrier-vec n
using assms as-mat-mult unfolding L-def by auto

have u1+v1∈carrier-vec n using u1-def v1-def by blast
moreover have ?mM∗v (u1+v1) = u+v

using u1-def v1-def 1 mult-add-distrib-mat-vec[of ?mM n n u1 v1]
by metis

moreover have u+v∈carrier-vec n using assms lattice-carrier by blast
ultimately show u+v∈L

using as-mat-mult unfolding L-def
by blast

qed

lemma lattice-smult-close:
fixes u::int vec and q::int
assumes u∈L
shows q·v u∈L

proof−
let ?mM = mat-of-cols n M
have 1 :?mM ∈carrier-mat n n using dim-vecs-in-M by fastforce
have set-M : set M ⊆ carrier-vec n

using dim-vecs-in-M carrier-vecI by blast
have as-mat-mult:lattice-of M = {y∈carrier-vec n. ∃ x∈carrier-vec n. ?mM ∗v x

= y}
using lattice-of-as-mat-mult[OF set-M] by blast

then obtain v::int vec where v-def :u = ?mM ∗v v∧v∈carrier-vec n
using assms unfolding L-def by auto

then have q·v v ∈carrier-vec n by blast
moreover then have q·v u= ?mM ∗v (q·v v) using 1 v-def by fastforce
ultimately show q·v u ∈ L
by (metis (mono-tags, lifting) L-def as-mat-mult assms mem-Collect-eq smult-closed)

qed

lemma smult-vec-zero:
fixes v :: ′a::ring vec
shows 0 ·v v = 0 v (dim-vec v)

20

unfolding smult-vec-def vec-eq-iff
by (auto)

lemma coset-s:
fixes i::nat
assumes i≤n
shows s i ∈coset
using assms

proof(induct i)
case 0
have s 0 = −t unfolding s-def by simp
moreover have carrier-mt:−t∈carrier-vec n using length-M carrier-vecI [of t n]

by fastforce
ultimately have pzero:s 0 = of-int-hom.vec-hom (0 v n) −t by fastforce
let ?zero = λ j. 0
have 0<length M using non-trivial by fast
then have M !0 ∈ set M by force
then have M !0∈L using basis-in-latticeI [of M M !0] dim-vecs-in-M carrier-vecI

L-def
by blast

then have 0 v n ∈L
using lattice-smult-close[of M !0 0] smult-vec-zero[of M !0] access-index-M-dim[of

0] non-trivial
unfolding L-def
by fastforce

then show ?case using pzero by blast
next

case (Suc i)
let ?q = (rat-of-int (calculate-c (s i) Mt (Suc i)))
let ?ind = ((dim-vec (s i)) −(Suc i))
have sub:s (Suc i) = (s i) −

(?q ·v (RAT M)!?ind)
using sub-s[of i] Suc.prems by linarith

have s i ∈coset using Suc by auto
then obtain x where x-def :x∈L ∧ (s i) = of-int-hom.vec-hom x−t by blast
have (?q ·v (RAT M)!?ind)∈ of-int-hom.vec-hom‘ L
proof−

have dim-vec (s i) = n using s-dim[of i] Suc.prems by fastforce
then have in-range:?ind<n∧ 0≤?ind using Suc.prems by simp
then have com-hom:(RAT M)!(?ind) = of-int-hom.vec-hom (M !?ind) by auto
have M !?ind∈set M using in-range by simp
then have mil:M !?ind ∈ L using basis-in-latticeI [of M M !?ind] dim-vecs-in-M

carrier-vecI L-def
by blast

moreover have ?q·v(of-int-hom.vec-hom (M !?ind)) =
of-int-hom.vec-hom ((calculate-c (s i) Mt (Suc i)) ·v M !?ind)

by fastforce
moreover have (calculate-c (s i) Mt (Suc i)) ·v M !?ind∈L

using lattice-smult-close[of M !?ind (calculate-c (s i) Mt (Suc i))] mil by

21

simp
ultimately show (?q ·v (RAT M)!?ind) ∈ of-int-hom.vec-hom‘ L

using com-hom
by force

qed
then obtain y where y-def :(?q ·v (RAT M)!?ind) = of-int-hom.vec-hom y∧

y∈L by blast
have carrier-x: x∈carrier-vec n using lattice-carrier x-def by blast
have carrier-y: y∈carrier-vec n using lattice-carrier y-def by blast
then have carrier-my: −y∈carrier-vec n by simp
then have 1 :−(?q ·v (RAT M)!?ind) = of-int-hom.vec-hom (−y) using y-def

by fastforce
then have s (Suc i) = of-int-hom.vec-hom x−t+ of-int-hom.vec-hom (−y)

using sub x-def y-def 1 by fastforce
then have s (Suc i) = of-int-hom.vec-hom x + of-int-hom.vec-hom (−y) − t

using lattice-carrier x-def y-def length-M
by fastforce

moreover have of-int-hom.vec-hom x + of-int-hom.vec-hom (−y) = of-int-hom.vec-hom
(x+ −y)

using carrier-my carrier-x by fastforce
ultimately have 2 :s (Suc i) = of-int-hom.vec-hom (x+ −y) −t

by metis
have −y = −1 ·v y by auto
then have −y∈L using lattice-smult-close y-def by simp
then have x+−y∈L using lattice-sum-close x-def by simp
then show ?case using 2 by fast

qed

lemma subtract-coset-into-lattice:
fixes v::rat vec
fixes w::rat vec
assumes v∈coset
assumes w∈coset
shows (v−w)∈of-int-hom.vec-hom‘ L

proof−
obtain l1 where l1-def :v=l1−t∧ l1∈of-int-hom.vec-hom‘ L using assms(1) by

blast
obtain l2 where l2-def :w = l2−t∧ l2∈of-int-hom.vec-hom‘ L using assms(2)

by blast
have carrier-l1 :l1 ∈ carrier-vec n using lattice-carrier l1-def by force
have carrier-l2 :l2 ∈ carrier-vec n using lattice-carrier l2-def by force
obtain l1p where l1p-def :l1 = of-int-hom.vec-hom l1p ∧ l1p∈L using l1-def by

fast
obtain l2p where l2p-def :l2 = of-int-hom.vec-hom l2p ∧ l2p∈L using l2-def by

fast
have −l2p = −1 ·v l2p using carrier-l2 by fastforce
then have ml2p:−l2p∈ L using lattice-smult-close[of l2p −1] l2p-def by pres-

burger
then have of-int-hom.vec-hom (−l2p)∈ of-int-hom.vec-hom‘ L by simp

22

moreover have of-int-hom.vec-hom (−l2p) = −l2 using l2p-def by fastforce
then have l1−l2 = of-int-hom.vec-hom (l1p − l2p) using l1p-def l2p-def car-

rier-l1 carrier-l2 by auto
moreover have l1p−l2p∈L using lattice-sum-close[of l1p −l2p]

l1p-def l2p-def ml2p carrier-l1 carrier-l2
by (simp add: minus-add-uminus-vec)

ultimately have l1−l2∈ of-int-hom.vec-hom‘ L by fast
moreover have v−w = l1−l2 using l1-def l2-def length-M carrier-vecI carrier-l1

carrier-l2 by force
ultimately show ?thesis by simp

qed
lemma t-in-coset:

shows uminus t ∈ coset
using coset-s[of 0] Babai-Help.simps unfolding s-def by simp

6 Lemmas on closest distance
lemma closest-distance-sq-pos: closest-distance-sq≥0
proof−

have ∀N∈ {real-of-rat (sq-norm x::rat) |x. x ∈ coset}. 0≤N
using sq-norm-vec-ge-0 by auto

moreover have {real-of-rat (sq-norm x::rat) |x. x ∈ coset}6={} using t-in-coset
by blast

ultimately have 0≤Inf {real-of-rat (sq-norm x::rat) |x. x ∈ coset}
by (meson cInf-greatest)

then show ?thesis unfolding closest-distance-sq-def by blast
qed

definition witness:: rat vec⇒rat ⇒ bool
where witness v eps-closest = (sq-norm v ≤ eps-closest ∧ v∈coset∧dim-vec v =

n)

definition epsilon::real where epsilon = 11/10

definition close-condition::rat ⇒ bool
where close-condition eps-closest ≡

(if closest-distance-sq = 0 then 0≤ real-of-rat eps-closest
else real-of-rat (eps-closest)>closest-distance-sq)
∧ (real-of-rat (eps-closest)≤epsilon∗closest-distance-sq)

lemma close-rat:
obtains eps-closest::rat
where close-condition eps-closest

proof(cases closest-distance-sq = 0)
case t:True
then have epsilon∗closest-distance-sq = real-of-rat (0 ::rat) by simp
then have real-of-rat (0 ::rat)≤ epsilon∗closest-distance-sq∧closest-distance-sq

≤(real-of-rat (0 ::rat))
using t by force

23

then show ?thesis
using that t unfolding close-condition-def by metis

next
case f :False
then have 0<closest-distance-sq

using closest-distance-sq-pos by linarith
moreover have (1 ::real)<epsilon unfolding epsilon-def by simp
ultimately have closest-distance-sq<epsilon∗closest-distance-sq by simp
then show ?thesis
using Rats-dense-in-real[of closest-distance-sq epsilon∗closest-distance-sq] that
unfolding close-condition-def
by (metis Rats-cases less-eq-real-def)

qed

definition eps-closest::rat
where eps-closest = (if ∃ r . close-condition r then SOME r . close-condition r

else 0)

lemma eps-closest-lemma: close-condition eps-closest
using close-rat unfolding eps-closest-def by (metis (full-types))

lemma rational-tri-ineq:
fixes v::rat vec
fixes w::rat vec
assumes dim-vec v = dim-vec w
shows (sq-norm (v+w))≤ 4∗(Max {(sq-norm v), (sq-norm w)})

proof−
let ?d = dim-vec w
let ?M = Max {(sq-norm v), (sq-norm w)}
have carr-v:v∈carrier-vec ?d using assms carrier-vecI [of v ?d] by fastforce
have carr-w:w∈carrier-vec ?d using carrier-vecI [of w ?d] by fastforce
have carr-vw:v+w∈carrier-vec ?d using carr-v carr-w add-carrier-vec by blast
have sq-norm (v+w) = (v+w)·(v+w)

by (simp add: sq-norm-vec-as-cscalar-prod)
also have (v+w)·(v+w) = v·(v+w)+w·(v+w)

using add-scalar-prod-distrib[of v ?d w v+w]
carr-v carr-w carr-vw by blast

also have v·(v+w)+w·(v+w) = v·v+v·w+w·v+w·w
using scalar-prod-add-distrib[of v ?d v w]

scalar-prod-add-distrib[of w ?d v w]
carr-v carr-w carr-vw by algebra

also have v·w=w·v
using carr-v carr-w comm-scalar-prod by blast

also have v·v = sq-norm v
using sq-norm-vec-as-cscalar-prod[of v] by force

also have w·w = sq-norm w
using sq-norm-vec-as-cscalar-prod[of w] by force

finally have sq-norm (v+w) = sq-norm v + sq-norm w + 2∗(w·v) by force
also have b1 :sq-norm v≤?M by force

24

also have b2 :sq-norm w≤?M by force
also have 2∗(w·v)≤2∗(Max {(sq-norm v), (sq-norm w)})
proof−

have (w·v)^2≤ (sq-norm v) ∗ (sq-norm w)
using scalar-prod-Cauchy[of w ?d v] carr-w carr-v by algebra

also have (sq-norm v) ∗ (sq-norm w)≤?M∗?M
using b1 b2 sq-norm-vec-ge-0 [of w] sq-norm-vec-ge-0 [of v]

mult-mono[of sq-norm v ?M sq-norm w ?M] by linarith
also have ?M∗?M = ?M^2

using power2-eq-square[of ?M] by presburger
finally have (w·v)^2≤?M^2 by blast
also have (w·v)^2=abs(w·v)^2 by force
finally have abs(w·v)^2≤?M^2 by presburger
moreover have 0≤abs(w·v) by fastforce
moreover have 0≤?M

using sq-norm-vec-ge-0 [of w] sq-norm-vec-ge-0 [of v] by fastforce
ultimately have abs(w·v)≤?M

using power2-le-imp-le by blast
also have (w·v)≤abs(w·v) by force
finally show ?thesis by linarith

qed
finally show ?thesis by auto

qed

lemma witness-exists:
shows ∃ v. witness v eps-closest

proof(cases closest-distance-sq = 0)
case t:True
have eps-closest = 0

using eps-closest-lemma t
unfolding witness-def unfolding close-condition-def
by auto

then have equiv:?thesis = (∃ v. v∈coset∧ (dim-vec v = n) ∧ (sq-norm v) ≤ 0)
unfolding witness-def eps-closest-def by auto

show ?thesis
proof(rule ccontr)

assume contra:¬?thesis
have {real-of-rat (sq-norm x::rat) |x. x ∈ coset}6={} using t-in-coset by fast

then have limit-point:∃ v::rat vec. real-of-rat (sq-norm v) < (eps::real) ∧ v∈coset
if 0<eps for eps

using t cInf-lessD[of {real-of-rat (sq-norm x::rat) |x. x ∈ coset} eps] that
unfolding closest-distance-sq-def by auto

moreover have 0<real-of-rat ((sq-norm ((RAT M)!0))/ (4∗α^(n−1)))
proof−

have 0<1/(4∗α^(n−1)) using non-trivial unfolding α-def by force
moreover have 0< (sq-norm ((RAT M)!0))

using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M 0]
gram-schmidt-fs-lin-indpt.sq-norm-gso-le-f [of n RAT M 0]
M-locale-2 non-trivial

25

by fastforce
ultimately show ?thesis by auto

qed
ultimately obtain v::rat vec where v-def :real-of-rat (sq-norm v)

< real-of-rat ((sq-norm ((RAT M)!0))/ (4∗α^(n−1)))∧
v∈coset

by presburger
then have dim-vec v = n

using length-M by force
then have 0< real-of-rat (sq-norm v)

using equiv contra v-def by auto
then obtain w::rat vec where w-def :real-of-rat (sq-norm w) < real-of-rat

(sq-norm v)∧w∈coset
using limit-point by fast

then have small-w:real-of-rat (sq-norm w)<real-of-rat ((sq-norm ((RAT M)!0)
)/ (4∗α^(n−1)))

using v-def by argo
have lat:w−v∈ of-int-hom.vec-hom‘ L using subtract-coset-into-lattice[of w v]

using v-def w-def by force
then obtain l where l-def :l∈L∧w−v=of-int-hom.vec-hom l by blast
then have of-int-hom.vec-hom l ∈ gs.lattice-of (RAT M)

using lattice-of-of-int[of M n l] dim-vecs-in-M carrier-vecI L-def by blast
then have lat-hom:w−v ∈ gs.lattice-of (RAT M) using l-def by simp
have sq-norm v 6= sq-norm w using w-def by auto
then have neq:w 6=v by meson
have c1 :w∈carrier-vec n using length-M w-def lattice-carrier carrier-dim-vec

by fastforce
moreover have c2 :v∈carrier-vec n using length-M v-def lattice-carrier car-

rier-dim-vec by fastforce
ultimately have c3 :w−v∈carrier-vec n by simp
have neqzero:w−v 6=0 v n
proof(rule ccontr)

assume c:¬?thesis
have w−v=0 v n using c by blast
then have w=v+ 0 v n using c1 c2 c3

by (smt (verit, ccfv-SIG) gs.M .add.r-inv-ex minus-add-minus-vec mi-
nus-cancel-vec minus-zero-vec right-zero-vec)

then show False using c2 neq by simp
qed
then have w−v ∈ gs.lattice-of (RAT M) − {0 v n} using lat-hom by blast
moreover have α^(n−1) ∗ (sq-norm (w−v)) < (sq-norm ((RAT M)!0))
proof−

have w−v = w+ (−v) by fastforce
then have sq-norm (w−v) = sq-norm (w+(−v)) by simp
also have sq-norm (w+(−v)) ≤ 4∗Max({sq-norm w, sq-norm (−v)})

using rational-tri-ineq[of w −v] c1 c2 by fastforce
also have sq-norm (−v) = sq-norm v
proof−

have −v = (−1)·v v by fastforce

26

then have sq-norm (−v) = ((−1)·v v)·((−1)·v v) using sq-norm-vec-as-cscalar-prod[of
−v] by force

then have sq-norm (−v) = (−1)∗(−1)∗(v·v) using c1 c2 by simp
then show ?thesis using sq-norm-vec-as-cscalar-prod[of v] by simp

qed
also have Max({sq-norm w, sq-norm (v)})<((sq-norm ((RAT M)!0))/

(4∗α^(n−1)))
using v-def small-w of-rat-less by auto

finally have sq-norm (w−v)<4∗((sq-norm ((RAT M)!0))/ (4∗α^(n−1)))
by linarith

then have sq-norm (w−v)<(sq-norm ((RAT M)!0))/ (α^(n−1)) by linarith
moreover have p:0<α^(n−1) unfolding α-def by fastforce
ultimately show ?thesis using p

by (metis gs.cring-simprules(14) pos-less-divide-eq)
qed
ultimately show False

using gram-schmidt-fs-lin-indpt.weakly-reduced-imp-short-vector [of n (RAT
M) α w−v]

M-locale-2 reduced
unfolding α-def gs.reduced-def L-def by force

qed
next

case False
then have closest-distance-sq < real-of-rat eps-closest

using eps-closest-lemma unfolding eps-closest-def close-condition-def
by presburger

moreover have {real-of-rat (sq-norm x::rat) |x. x ∈ coset}6={} using t-in-coset
by fast

ultimately obtain l where l∈{real-of-rat (sq-norm x::rat) |x. x ∈ coset}∧ l<
real-of-rat eps-closest

using closest-distance-sq-pos
unfolding closest-distance-sq-def
by (meson cInf-lessD)

moreover then obtain v::rat vec where l = real-of-rat (sq-norm v) ∧ v∈coset
by blast

ultimately show ?thesis unfolding witness-def lattice-carrier
by (smt (verit) length-M index-minus-vec(2) mem-Collect-eq of-rat-less-eq)

qed

7 More linear algebra lemmas
lemma carrier-Ms:

shows mat-M ∈carrier-mat n n mat-M-inv ∈carrier-mat n n
using M-dim M-inv-dim
apply blast

by (simp add: M-inv-dim(1) M-inv-dim(2) carrier-matI)

lemma carrier-L:
fixes v::rat vec

27

assumes dim-vec v = n
shows lattice-coord v∈carrier-vec n
unfolding lattice-coord-def
using mult-mat-vec-carrier [of mat-M-inv n n v]

carrier-Ms
carrier-vecI [of v]
assms(1)

by fast

lemma sumlist-index-commute:
fixes Lst::rat vec list
fixes i::nat
assumes set Lst⊆carrier-vec n
assumes i<n
shows (gs.sumlist Lst)$i = sum-list (map (λj. (Lst!j)$i) [0 ..<(length Lst)])
using assms

proof(induct Lst)
case Nil
have gs.sumlist Nil = 0 v n using assms unfolding gs.sumlist-def by auto
then have lhs:(gs.sumlist Nil)$i = 0 using assms(2) by auto
have [0 ..<(length Nil)] = Nil by simp
then have (map (λj. (Nil!j)$i) [0 ..<(length Nil)]) = Nil by blast
then have sum-list (map (λj. (Nil!j)$i) [0 ..<(length Nil)]) = 0 by simp
then show ?case using lhs by simp

next
case (Cons a Lst)
let ?CaLst = Cons a Lst
have set Lst ⊆ carrier-vec n using Cons.prems by auto
then have carr :gs.sumlist Lst ∈carrier-vec n using assms gs.sumlist-carrier [of

Lst]
by blast

have gs.sumlist (Cons a Lst) = a + gs.sumlist Lst by simp
then have lhs:(gs.sumlist ?CaLst)$i = a$i + (gs.sumlist Lst)$i using assms

carr by simp
have sum-list (map (λj. (?CaLst!j)$i) [0 ..<(length ?CaLst)]) = sum-list (map

(λl. l$i) ?CaLst)
by (smt (verit) length-map map-eq-conv ′ map-nth nth-map)

moreover have sum-list (map (λl. l$i) ?CaLst) = a$i + sum-list (map (λl. l$i)
Lst) by simp

moreover have sum-list (map (λl. l$i) Lst) = sum-list (map (λj. (Lst!j)$i)
[0 ..<(length Lst)])

by (smt (verit) length-map map-eq-conv ′ map-nth nth-map)
moreover have sum-list (map (λj. (Lst!j)$i) [0 ..<(length Lst)]) = (gs.sumlist

Lst)$i
using Cons.prems Cons.hyps by simp

ultimately show ?case using lhs
by argo

qed

28

lemma mat-mul-to-sum-list:
fixes A::rat mat
fixes v::rat vec
assumes dim-vec v = dim-col A
assumes dim-row A = n
shows A∗vv = gs.sumlist (map (λj. v$j ·v (col A j)) [0 ..< dim-col A])

proof−
have carrier :set (map (λj. v $ j ·v col A j) [0 ..<dim-col A]) ⊆ Rn

by (smt (verit) assms(2) carrier-dim-vec dim-col ex-map-conv index-smult-vec(2)
subset-code(1))

have (A∗vv)$i = gs.sumlist (map (λj. v$j ·v (col A j)) [0 ..< dim-col A])$i if
small:i<dim-row A for i

proof−
let ?rAi = row A i

have 1 :(A∗vv)$i = ?rAi · v using small by simp
have 2 :?rAi · v = sum-list (map (λj. (?rAi$j)∗(v$j)) [0 ..<dim-col A])
using assms sum-set-upt-conv-sum-list-nat unfolding scalar-prod-def by auto

have ?rAi$j∗(v$j) = (v$j ·v (col A j))$i if jsmall:j<dim-col A for j
unfolding row-def col-def using small jsmall
by force

then have (map (λj. (?rAi$j)∗(v$j)) [0 ..<dim-col A]) = (map (λj. (v$j ·v (col
A j))$i) [0 ..<dim-col A])

by fastforce
then have (A∗vv)$i = sum-list (map (λj. (v$j ·v (col A j))$i) [0 ..<dim-col

A])
using 1 2 by algebra

then show ?thesis using sumlist-index-commute[of map (λj. v$j ·v (col A j))
[0 ..< dim-col A] i]

small assms(2) carrier
by (smt (verit) gs.sumlist-vec-index length-map map-equality-iff nth-map sub-

set-code(1))
qed
moreover have dim-vec (A∗vv) = dim-row A by fastforce
moreover have dim-vec (gs.sumlist (map (λj. v$j ·v (col A j)) [0 ..< dim-col

A])) = n
using carrier by auto

ultimately show ?thesis using assms
by auto

qed

lemma recover-from-lattice-coord:
fixes v::rat vec
assumes dim-vec v = n
shows v = gs.sumlist (map (λi. (lattice-coord v)$i ·v (RAT M)!i) [0 ..< n])

proof −
have (mat-M ∗ mat-M-inv)∗v v= mat-M∗v(lattice-coord v)

unfolding lattice-coord-def

29

using assms(1) carrier-Ms carrier-vecI [of v]
assoc-mult-mat-vec[of mat-M n n mat-M-inv n v]

by presburger
then have (1m n)∗vv=mat-M∗v(lattice-coord v)

using inv1
by simp

then have v = mat-M∗v(lattice-coord v)
by (metis assms carrier-vec-dim-vec one-mult-mat-vec)

then have pre:v = gs.sumlist (map (λi. (lattice-coord v)$i ·v col mat-M i) [0
..< dim-col mat-M])

using mat-mul-to-sum-list[of lattice-coord v mat-M]
M-dim
assms
dim-preserve-lattice-coord

by simp
moreover have col mat-M i = (RAT M)!i if i<n for i

using vec-to-col
by (simp add: that)

ultimately have (map (λi. (lattice-coord v)$i ·v col mat-M i) [0 ..< dim-col
mat-M]) =

(map (λi. (lattice-coord v)$i ·v (RAT M)!i) [0 ..< n]) using
M-dim

by simp
then show v = gs.sumlist (map (λi. (lattice-coord v)$i ·v (RAT M)!i) [0 ..<

n])
using pre by presburger

qed

lemma sumlist-linear-coord:
fixes Lst::int vec list
assumes

∧
i. i<length Lst =⇒dim-vec (Lst!i) = n

shows lattice-coord (map-vec rat-of-int (sumlist Lst)) = gs.sumlist (map lat-
tice-coord (RAT Lst))
using assms
proof(induct Lst)

case Nil
have rhs:gs.sumlist(map lattice-coord (RAT Nil)) = 0 v n by fastforce
have map-vec rat-of-int (sumlist Nil) = 0 v n by auto
then have lattice-coord (map-vec rat-of-int (sumlist Nil)) = 0 v n

unfolding lattice-coord-def using M-inv-dim
by (metis carrier-Ms(2) gs.M .add.r-cancel-one ′ gs.M .zero-closed mult-add-distrib-mat-vec

mult-mat-vec-carrier)
then show ?case using rhs by simp

next
case (Cons a Lst)
let ?CaLst = Cons a Lst
let ?ra = of-int-hom.vec-hom a
have dim:i∈set ?CaLst =⇒ dim-vec i = n for i using Cons.prems

by (metis in-set-conv-nth)

30

then have i-lt: (i < length Lst =⇒ dim-vec (Lst ! i) = n) for i
using Cons.prems carrier-dim-vec by auto

have carrier :set ?CaLst⊆ carrier-vec n using Cons.prems
using carrier-vecI dim by fast

then have carrier-sumCaLst: (sumlist ?CaLst)∈carrier-vec n by force
have carrier-a: a ∈ carrier-vec n using carrier by force
have carrier-Lst:set Lst ⊆ carrier-vec n using carrier by simp
have lhs:lattice-coord (map-vec rat-of-int (sumlist ?CaLst)) = (lattice-coord ?ra)

+ gs.sumlist (map lattice-coord (RAT Lst))
proof−

have carrier-sumLst: sumlist Lst∈carrier-vec n using carrier-Lst by force
have sumlist ?CaLst = a + sumlist Lst by force
then have (map-vec rat-of-int (sumlist ?CaLst)) = ?ra + (map-vec rat-of-int

(sumlist Lst))
using carrier-a carrier-sumLst carrier-sumCaLst by auto

then have lattice-coord (map-vec rat-of-int (sumlist ?CaLst))
= lattice-coord(?ra) + lattice-coord(map-vec rat-of-int (sumlist Lst))

unfolding lattice-coord-def
using carrier-sumCaLst carrier-a carrier-sumLst
by (metis carrier-Ms(2) map-carrier-vec mult-add-distrib-mat-vec)

then show ?thesis using i-lt Cons.hyps
by algebra

qed
moreover have rhs:gs.sumlist (map lattice-coord (RAT ?CaLst)) =

(lattice-coord ?ra) + gs.sumlist (map lattice-coord (RAT Lst))
by fastforce

ultimately show ?case by argo
qed

lemma integral-sum:
fixes l::nat
assumes

∧
j1 . j1 < l =⇒

map f [0 ..<l] ! j1 ∈ �
shows sum-list

(map f [0 ..<l]) ∈ �
using assms

proof(induct l)
case 0
have (map f [0 ..<0]) = Nil by auto
then have sum-list (map f [0 ..<0]) = 0 by simp
then show ?case by simp

next
case (Suc l)
have nontriv:Suc l>0 by simp
have break:sum-list (map f [0 ..<(Suc l)]) = sum-list (map f [0 ..<l]) + (f l) by

fastforce
have l<Suc l by simp
then have [0 ..<(Suc l)]!l = l

31

by (metis nth-upt plus-nat.add-0)
moreover then have f ([0 ..<(Suc l)] ! l) = (map f [0 ..<(Suc l)]) ! l
by (metis One-nat-def Suc-diff-Suc diff-Suc-1 local.nontriv nat-SN .default-gt-zero

nth-map-upt nth-upt plus-1-eq-Suc real-add-less-cancel-right-pos)
ultimately have z:f l ∈� using Suc.prems by fastforce
have

∧
j1 . j1 < l =⇒

map f [0 ..<l] ! j1 ∈ �
by (metis Suc.prems diff-Suc-1 ′ diff-Suc-Suc less-SucI nth-map-upt)

then have sum-list (map f [0 ..<l])∈� using Suc by blast
then show ?case using z break by force

qed

lemma int-coord:
fixes i::nat
assumes 0≤i
assumes i<n
fixes v::int vec
assumes v∈L
assumes dim-vec v = n
shows (lattice-coord (map-vec rat-of-int v))$i∈�

proof −
obtain w where w-def :v = sumlist (map (λ i. of-int (w i) ·v M ! i) [0 ..< length

M])
using L-def assms(3) vec-module.lattice-of-def
by blast

let ?Lst = (map (λ i. of-int (w i) ·v M ! i) [0 ..< length M])
have dims-j:dim-vec (?Lst!j) = n if j-lt:j<length ?Lst for j

using access-index-M-dim carrier-vecI j-lt by force
let ?recover = (map lattice-coord (RAT ?Lst))
have 1 :lattice-coord (map-vec rat-of-int v) = gs.sumlist ?recover

using sumlist-linear-coord[of ?Lst]
w-def
dims-j

by blast
have int-recover :

∧
j. j<n=⇒(?recover !j)$i ∈�∧ (dim-vec (?recover !j)) = n

proof −
fix j::nat
assume small:j<n
have ?recover !j = lattice-coord ((RAT ?Lst)!j)

using List.nth-map[of j (RAT ?Lst) lattice-coord]
small

by simp
then have ?recover !j = lattice-coord (of-int-hom.vec-hom (?Lst!j))

using List.nth-map[of j ?Lst of-int-hom.vec-hom]
small

by simp
then have ?recover !j = lattice-coord (of-int-hom.vec-hom (of-int (w j) ·v M !

32

j))
using List.nth-map[of j [0 ..< length M] (λ i. of-int (w i) ·v M ! i)]

small
by simp

then have commuted-maps:?recover !j = mat-M-inv ∗v (of-int-hom.vec-hom
(of-int (w j) ·v M ! j))

unfolding lattice-coord-def
by simp

then have ?recover !j = mat-M-inv ∗v((of-int (of-int (w j))) ·v of-int-hom.vec-hom
(M ! j))

using of-int-hom.vec-hom-smult[of of-int (w j) M ! j]
by metis

then have ?recover !j = (of-int (of-int (w j))) ·v (mat-M-inv ∗v of-int-hom.vec-hom
(M ! j))

using mult-mat-vec[of mat-M-inv n n of-int-hom.vec-hom (M ! j) (of-int
(of-int (w j)))]

carrier-Ms
access-index-M-dim[of j]
carrier-vecI [of of-int-hom.vec-hom (M ! j) n]

by (simp add: small)
then have ?recover !j = (of-int (of-int (w j))) ·v (lattice-coord (of-int-hom.vec-hom

(M ! j)))
unfolding lattice-coord-def
by simp

then have recover-unit:?recover !j = (of-int (of-int (w j))) ·v (unit-vec n j)
using unit[of j]

small
by simp

then have (?recover !j)$i=((of-int (of-int (w j))) ·v (unit-vec n j))$i
by simp

then have (?recover !j)$i = (of-int (of-int (w j))) ∗ (unit-vec n j)$i
by (simp add: assms(2))

then have (?recover !j)$i = (of-int (of-int (w j))) ∗ (if i=j then 1 else 0)
using small assms(2)
by simp

moreover have (if i=j then 1 else 0) ∈�
by simp

moreover have (of-int (of-int (w j)))∈�
by simp

moreover have dim-vec (?recover !j) = n
using recover-unit

smult-closed[of (unit-vec n j) (of-int (of-int (w j)))]
unit-vec-carrier [of n j]

by force
ultimately show (?recover !j)$i ∈� ∧ dim-vec (?recover !j) = n

by simp
qed
then have ∀ v∈set ?recover . dim-vec v = n

by auto

33

then have set ?recover⊆carrier-vec n
using carrier-vecI
by blast

then have (gs.sumlist ?recover)$i = sum-list (map (λj. (?recover !j)$i) [0 ..<(length
?recover)])

using sumlist-index-commute[of ?recover i] assms
by blast

moreover have length ?recover = n
by auto

ultimately have (gs.sumlist ?recover)$i = sum-list (map (λj. (?recover !j)$i)
[0 ..<n])

by simp
moreover have

∧
j. j<n =⇒ (map (λj. (?recover !j)$i) [0 ..<n])!j ∈�

proof−
fix j::nat
assume jsmall:j<n
have (map (λj. (?recover !j)$i) [0 ..<n])!j = (λj. (?recover !j)$i) j

using List.nth-map[of j [0 ..<n] (λj. (?recover !j)$i)]
jsmall

by simp
then have (map (λj. (?recover !j)$i) [0 ..<n])!j =(?recover !j)$i

by simp
then show (map (λj. (?recover !j)$i) [0 ..<n])!j∈�

using int-recover [of j] jsmall
by simp

qed
ultimately have (gs.sumlist ?recover)$i∈�

using integral-sum[of n (λj. map lattice-coord
(map of-int-hom.vec-hom (map (λi. of-int (w i) ·v M ! i) [0 ..<n])) !

j $
i)]

by argo
then show ?thesis

using 1
by simp

qed

lemma int-coord-for-rat:
fixes i::nat
assumes 0≤i
assumes i<n
fixes v::rat vec
assumes v∈of-int-hom.vec-hom‘ L
assumes dim-vec v = n
shows (lattice-coord v)$i∈�

proof−
let ?hom = of-int-hom.vec-hom
obtain vint where v = ?hom vint∧ vint∈L using assms(3) by blast
moreover then have (lattice-coord (?hom vint))$i∈� using int-coord assms by

34

simp
ultimately show ?thesis by simp

qed

8 Coord-Invariance
This section shows that the algorithm output matches true closest (or near-
closest) vector in some trailing coordinates.
definition I where

I = (if ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat set) 6= {}
then Max ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat set) else

−1)

lemma I-geq:
shows I≥−1
unfolding I-def
by simp

lemma I-leq:
shows I<n
unfolding I-def
by force

lemma index-geq-I-big:
fixes i::nat
assumes i>I
assumes i<n
shows ((sq-norm (Mt!i)::rat))>4∗eps-closest

proof(rule ccontr)
assume ¬?thesis
then have ((sq-norm (Mt!i)::rat))≤4∗eps-closest by linarith
then have i-def :i∈({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat set)

using assms by fastforce
then have ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat set)6={} by

fast
moreover then have I= Max ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat

set) unfolding I-def by presburger
moreover have finite ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat

set)
by simp

ultimately show False using assms i-def eq-Max-iff by auto
qed

lemma scalar-prod-gs-from-lattice-coord:
fixes i::nat
fixes v::rat vec
assumes dim-vec v = n
assumes i<n

35

shows v·Mt!i=sum-list (map (λk. (lattice-coord v)$k ∗ (((RAT M)!k)·Mt!i))
[i..<n])
proof(−)

let ?lc = lattice-coord v
let ?recover = ((map (λj. ?lc$j ·v (RAT M)!j) [0 ..< n]))
let ?gsv = Mt!i
have v = gs.sumlist ?recover

using recover-from-lattice-coord[of v] assms
by blast

then have split-ip: v · ?gsv = (gs.sumlist (map (λj. ?lc$j ·v (RAT M)!j) [0
..< n]))· ?gsv

by simp
have

∧
u. u∈set ?recover=⇒u∈carrier-vec n

proof(−)
fix u::rat vec
assume u-init:u∈ set ?recover
then have index-small:find-index ?recover u < length ?recover

by (meson find-index-leq-length)
then have carrier-v-ind-M :(RAT M)!(find-index ?recover u)∈carrier-vec n

using carrier-vecI [of (RAT M)!(find-index ?recover u) n]
access-index-M-dim

by (smt (z3) M-locale-1 gram-schmidt-fs-Rn.f-carrier length-map map-nth)
then have u=?recover !(find-index ?recover u)

using u-init
by (simp add: find-index-in-set)

then have u=(λj. ?lc$j ·v (RAT M)!j) (find-index ?recover u)
using u-init

List.nth-map[of find-index ?recover u [0 ..<n] (λj. ?lc$j ·v (RAT M)!j)]
index-small

by auto
then have u = ?lc$(find-index ?recover u)·v (RAT M)!(find-index ?recover u)

by simp
then show u∈carrier-vec n

using carrier-v-ind-M
smult-carrier-vec[of ?lc$(find-index ?recover u) (RAT M)!(find-index

?recover u) n]
by presburger

qed
then have result-sumlist-L:v · ?gsv = sum-list (map (λw. w · ?gsv) ?recover)

using split-ip
gs.scalar-prod-left-sum-distrib[of ?recover ?gsv]

by (metis (no-types, lifting) assms(2) carrier-dim-vec dim-vecs-in-Mt)
let ?L=(map (λw. w · ?gsv) ?recover)
have 2 :

∧
k. k<n=⇒?L!k = ?lc$k ∗ ((RAT M)!k· ?gsv)

proof(−)
fix k::nat
assume k-bound:k<n
then have ?L!k= (λw. w · ?gsv) (?recover !k)

by force

36

then have ?L!k = ?recover !k · ?gsv
by simp

then have ?L!k = ((λj. (?lc$j ·v (RAT M)!j)) k) · ?gsv
using List.nth-map[of k [0 ..<n] (λj. (?lc$j ·v (RAT M)!j))] k-bound
by simp

then have ?L!k = (?lc$k ·v(RAT M)!k)· ?gsv
by simp

then show ?L!k =?lc$k ∗ ((RAT M)!k· ?gsv)
using smult-scalar-prod-distrib[of (RAT M)!k n ?gsv ?L!k]

access-index-M-dim
dim-vecs-in-Mt[of i]
carrier-vecI [of ?gsv n]
k-bound
assms

by force
qed
moreover have length ?L = n

by fastforce
ultimately have 1 :?L = (map (λk. ?lc$k ∗ ((RAT M)!k· ?gsv)) [0 ..<n])

by auto
moreover then have filt:

∧
k. k<i=⇒ (λk. ?lc$k ∗ ((RAT M)!k· ?gsv)) k =0

proof(−)
fix k::nat
assume tri:k<i
then have (?gsv ·(RAT M)!k) = 0

using gram-schmidt-fs-lin-indpt.gso-scalar-zero[of n (RAT M) i k]
M-locale-2
Mt-gso-connect[of i]
assms(2)
more-dim

by presburger
then have ((RAT M)!k)·?gsv = 0

using comm-scalar-prod[of ((RAT M)!k) n ?gsv]
access-index-M-dim[of k]
tri
assms(2)
dim-vecs-in-Mt[of i]
carrier-vecI [of ?gsv] carrier-vecI [of ((RAT M)!k)]

by fastforce
then have ?lc$k ∗ ((RAT M)!k· ?gsv) = 0

by simp
then show (λk. ?lc$k ∗ ((RAT M)!k· ?gsv)) k =0

by blast
qed

moreover have k∈ set [0 ..<n]∧ ¬i≤k=⇒k<i
by linarith

ultimately have sum-list ?L = sum-list (map (λk. ?lc$k ∗ ((RAT M)!k· ?gsv))
(filter (λk. i≤k) [0 ..<n]))

using sum-list-map-filter [of [0 ..<n] (λk. i≤k) (λk. ?lc$k ∗ ((RAT M)!k· ?gsv))

37

]
by (metis (no-types, lifting) le-eq-less-or-eq nat-neq-iff)

moreover have (filter (λk. i≤k) [0 ..<n]) = [i..<n]
using assms(2) bot-nat-0 .extremum filter-upt
by presburger

ultimately have sum-list ?L = sum-list (map (λk. ?lc$k ∗ ((RAT M)!k· ?gsv))
[i..<n])

by presburger
then show ?thesis

using result-sumlist-L
by simp

qed

lemma correct-coord-help:
fixes i::nat
assumes i<(int n)−I
assumes witness v (eps-closest)
assumes 0<i
shows (lattice-coord (s i))$(n−i)=(lattice-coord v)$(n−i)

∧ ((s i) · Mt!(n−i) = v · Mt!(n−i))
using assms

proof(induct i rule: less-induct)
case (less i)
let ?lcs = (lattice-coord (s i))
let ?lcIs = λi. lattice-coord (s i)$(n−i)
let ?lcv = lattice-coord v
let ?gsv = Mt!(n−(i))
have leq:(int n)−I≤n+1

using I-geq
by simp

moreover have nonbase:0<i
using less by blast

then have 1 :i≤n
using leq less
by linarith

moreover have nms:n−(i)<n
using 1 nonbase by linarith

ultimately have s-ip:(s (i)) · ?gsv = sum-list (map (λj. ?lcs$j ∗((RAT M)!j·
?gsv)) [n−(i)..<n])

using scalar-prod-gs-from-lattice-coord[of s (i) n−(i)]
s-dim[of i] by force

have dim-v:dim-vec v = n
using assms(2)
unfolding witness-def
by blast

then have v-ip:v · ?gsv = sum-list (map (λj. ?lcv$j ∗((RAT M)!j· ?gsv))
[n−(i)..<n])

unfolding witness-def
using scalar-prod-gs-from-lattice-coord[of v n−i]

38

nms assms(2)
carrier-vecI [of v n]

by satx
have [n−i..<n] 6=[] using nms by auto
then have split-indices:[n−(i)..<n] = (n−i) # [n−(i)+1 ..<n]

by (simp add: upt-eq-Cons-conv)
then have split-s-list:(map (λj. ?lcs$j ∗((RAT M)!j· ?gsv)) [n−(i)..<n]) =

((λj. ?lcs$j ∗((RAT M)!j· ?gsv)) (n−(i)))#(map (λj. ?lcs$j ∗((RAT M)!j·
?gsv)) [n−(i)+1 ..<n])

by simp
then have split-s-ip-pre:(s (i)) · ?gsv = ((λj. ?lcs$j ∗((RAT M)!j· ?gsv))

(n−(i)))
+ sum-list (map (λj. ?lcs$j ∗((RAT M)!j·

?gsv)) [n−(i)+1 ..<n])
using s-ip
by force

then have split-s-ip: (s (i)) · ?gsv = ((λj. ?lcs$j ∗((RAT M)!j· ?gsv)) (n−(i)))
+ sum-list (map (λj. ?lcs$j ∗((RAT M)!j·

?gsv)) [n−i+1 ..<n])
by presburger

have split-v-list:(map (λj. ?lcv$j ∗((RAT M)!j· ?gsv)) [n−(i)..<n]) =
((λj. ?lcv$j ∗((RAT M)!j· ?gsv)) (n−(i)))#(map (λj. ?lcv$j ∗((RAT M)!j·

?gsv)) [n−(i)+1 ..<n])
using split-indices by simp

then have split-v-ip-pre:v · ?gsv = ((λj. ?lcv$j ∗((RAT M)!j· ?gsv)) (n−(i)))
+ sum-list (map (λj. ?lcv$j ∗((RAT M)!j· ?gsv)) [n−(i)+1 ..<n])

using v-ip
by force

then have split-v-ip:v · ?gsv = ((λj. ?lcv$j ∗((RAT M)!j· ?gsv)) (n−(i)))
+ sum-list (map (λj. ?lcv$j ∗((RAT M)!j· ?gsv)) [n−i+1 ..<n])

by presburger
have use-coord-inv: (λj. ?lcs$j ∗((RAT M)!j· ?gsv)) k = (λj. ?lcv$j ∗((RAT

M)!j· ?gsv)) k if k-bound: k<n ∧ k≥n−i+1 for k
proof −

have nmssmall:n−k<i
using k-bound by linarith

then have arith:(n−k)+(i − (n−k)) = i
using k-bound 1 by linarith

have 2 :0<n−k
using k-bound by linarith

moreover have 3 :(n−k)+(i − (n−k))≤n
using 1 arith by linarith

moreover have 4 :n−k≤n−k by auto
ultimately have 5 :lattice-coord (s (n−k + (i − (n−k)))) $ (n−(n−k)) =

lattice-coord (s (n−k)) $ (n−(n−k))
using coord-invariance[of n−k n−k (i)−(n−k)] by blast

also have cancel:n−(n−k) =k
using k-bound 2 by auto

then have ?lcs$k = ?lcIs (n−k)

39

using arith 5 by presburger
moreover have int (n−k)<int n −I

using assms nmssmall less by linarith
ultimately have ?lcs$k = ?lcv$(n−(n−k))

using less(1)[of n−k] nmssmall assms(2) 2 by argo
then have ?lcs$k = ?lcv$k

using cancel by presburger
then have ?lcs$k ∗((RAT M)!k· ?gsv) = ?lcv$k ∗((RAT M)!k· ?gsv)

by simp
then show (λj. ?lcs$j ∗((RAT M)!j· ?gsv)) k = (λj. ?lcv$j ∗((RAT M)!j·

?gsv)) k
by simp

qed
then have (map (λj. ?lcs$j ∗((RAT M)!j· ?gsv)) [n−i+1 ..<n])

= (map (λj. ?lcv$j ∗((RAT M)!j· ?gsv)) [n−i+1 ..<n])
by simp

then have sum-list (map (λj. ?lcs$j ∗((RAT M)!j· ?gsv)) [n−i+1 ..<n])
= sum-list (map (λj. ?lcv$j ∗((RAT M)!j· ?gsv)) [n−i+1 ..<n])

by presburger
then have (s i) · ?gsv =

((λj. ?lcs$j ∗((RAT M)!j· ?gsv)) (n−i)) +
sum-list (map (λj. ?lcv$j ∗((RAT M)!j· ?gsv)) [n−i+1 ..<n])

using split-s-ip by argo
then have (s i) · ?gsv − v · ?gsv =

((λj. ?lcs$j ∗((RAT M)!j· ?gsv)) (n−i))−
((λj. ?lcv$j ∗((RAT M)!j· ?gsv)) (n−i))

using split-v-ip by linarith
then have (s i) · ?gsv − v · ?gsv = ((?lcs$(n−i) − ?lcv$(n−i)) ∗ ((RAT

M)!(n−i)· ?gsv))
by algebra

then have case-2-from-case-1 :(s i) · ?gsv − v · ?gsv = ((?lcs$(n−i) −
?lcv$(n−i)) ∗ (sq-norm ?gsv))

using one-diag[of n− i] 1 nms
by fastforce

then have abs ((s i) · ?gsv − v · ?gsv) = abs(?lcs$(n−i) − ?lcv$(n−i)) ∗
abs(sq-norm ?gsv)

using abs-mult by auto
then have a:abs ((s i) · ?gsv − v · ?gsv) = abs(?lcs$(n−i) − ?lcv$(n−i)) ∗

(sq-norm ?gsv)
by (metis abs-of-nonneg sq-norm-vec-ge-0)

have lattice-coord-equal:?lcs$(n−i) − ?lcv$(n−i)= 0
proof(rule ccontr)

assume ¬(?lcs$(n−i) − ?lcv$(n−i)= 0)
then have contra:?lcs$(n−i) − ?lcv$(n−i) 6= 0 by simp
have ?lcs$(n−i) − ?lcv$(n−i) = (?lcs−?lcv)$(n−i)

using index-minus-vec(1)[of n−i ?lcv ?lcs]
dim-preserve-lattice-coord[of v]
assms(2) nms

unfolding witness-def by argo

40

moreover have ?lcs−?lcv = lattice-coord((s i)−v)
using mult-minus-distrib-mat-vec
unfolding lattice-coord-def
by (metis 1 carrier-Ms(2) carrier-vecI dim-v s-dim)

ultimately have use-linear :?lcs$(n−i) − ?lcv$(n−i) = (lattice-coord((s i)−v))$(n−i)
by presburger

have (s i)−v∈ of-int-hom.vec-hom‘ L
using subtract-coset-into-lattice[of s i v]

coset-s[of i]
1 assms(2)

unfolding witness-def
by linarith

then have use-int-coord:(lattice-coord(((s i)−v)))$(n−i)∈�
using int-coord-for-rat[of n−i ((s i)−v)] 1 nms
by (simp add: dim-v)

then have abs((lattice-coord(((s i)−v)))$(n−i))>0
using contra use-linear
by linarith

then have abs((lattice-coord(((s i)−v)))$(n−i))≥1
using use-int-coord
by (simp add: Ints-nonzero-abs-ge1 contra use-linear)

then have abs(?lcs$(n−i) − ?lcv$(n−i))≥1
using use-linear by presburger

then have abs(?lcs$(n−i) − ?lcv$(n−i))∗(sq-norm ?gsv)≥sq-norm ?gsv
using sq-norm-vec-ge-0 [of ?gsv] mult-left-mono[of 1 abs(?lcs$(n−i) − ?lcv$(n−i))

sq-norm ?gsv] by algebra
then have big1 :abs ((s i) · ?gsv − v · ?gsv)≥sq-norm ?gsv

using a by argo
then have tri-ineq:abs(v · ?gsv)≥ abs(abs ((s i) · ?gsv − v · ?gsv) −abs((s i)

· ?gsv))
using cancel-ab-semigroup-add-class.diff-right-commute

cancel-comm-monoid-add-class.diff-cancel diff-zero by linarith
then have smallhalf :abs((s i) · ?gsv)≤(1/2)∗(sq-norm ?gsv)

using small-orth-coord[of i] nonbase 1
by fastforce

then have abs((s i) · ?gsv − v · ?gsv) −abs((s i) · ?gsv)≥ sq-norm ?gsv −
(1/2)∗(sq-norm ?gsv)

using big1 by linarith
then have big2 :abs((s i) · ?gsv − v · ?gsv) −abs((s i) · ?gsv)≥ (1/2)∗(sq-norm

?gsv)
by linarith

then have abs((s i) · ?gsv − v · ?gsv) −abs((s i) · ?gsv)≥0
using sq-norm-vec-ge-0 [of ?gsv] by linarith

then have abs(abs ((s i) · ?gsv − v · ?gsv) −abs((s i) · ?gsv))
= abs((s i) · ?gsv − v · ?gsv) −abs((s i) · ?gsv)

by fastforce
then have abs(v · ?gsv)≥(1/2)∗(sq-norm ?gsv)

using big2
by linarith

41

moreover have (1/2)∗(sq-norm ?gsv)≥0
using sq-norm-vec-ge-0 [of ?gsv] by simp

moreover have abs(v · ?gsv)≥0 by simp
ultimately have abs(v · ?gsv)^2≥((1/2)∗(sq-norm ?gsv))^2

using nonneg-power-le by blast
moreover have (sq-norm v) ∗ (sq-norm ?gsv)≥abs(v · ?gsv)^2

using scalar-prod-Cauchy[of v n ?gsv]
carrier-vecI [of v n] assms(2)
carrier-vecI [of ?gsv] dim-vecs-in-Mt[of n−i] nms

unfolding witness-def
by fastforce

ultimately have sq-norm v ∗ sq-norm ?gsv ≥ ((1/2)∗(sq-norm ?gsv))^2
by order

then have sq-norm v ∗ sq-norm ?gsv ≥ (1/2)^2 ∗ (sq-norm ?gsv)^2
by (metis gs.nat-pow-distrib)

then have sq-norm v ∗ sq-norm ?gsv ≥ 1/4 ∗ (sq-norm ?gsv)^2
by (smt (z3) numeral-Bit0-eq-double one-power2 power2-eq-square times-divide-times-eq)
moreover have sq-norm ?gsv > 0

using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M n−i]
M-locale-2 M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)]
nms by force

ultimately have big:sq-norm v ≥ 1/4 ∗ sq-norm ?gsv
by (simp add: power2-eq-square)

have n−i>I
using less by linarith

then have big-again:sq-norm ?gsv > 4∗eps-closest
using index-geq-I-big[of n−i] nms by simp

then have sq-norm v> 1/4 ∗4∗eps-closest
using big by fastforce

then have sq-norm v > eps-closest by auto
then show False

using assms(2)
unfolding witness-def
by linarith

qed
then have piece1 : lattice-coord (s i) $ (n − i) = lattice-coord v $ (n − i)

using lattice-coord-equal by simp
have (s i) · ?gsv − v · ?gsv = 0

using lattice-coord-equal case-2-from-case-1
by algebra

then show ?case using piece1 by simp
qed

lemma correct-coord:
fixes v::rat vec
fixes k::nat
assumes witness v eps-closest
assumes I<k
assumes k<n

42

shows (s n) · Mt!(k) = v · Mt!(k)
proof −

have (s n) · Mt!(k) = (s (n−k)) · Mt!(k)
using coord-invariance[of n−k n−k k] assms
by force

moreover have (s (n−k)) · Mt!(k) = v · Mt!(k)
using correct-coord-help[of n−k v] assms
by simp

ultimately show ?thesis by simp
qed

9 Main Theorem
This section culminates in the main theorem.
lemma sq-norm-from-Mt:

fixes v::rat vec
assumes v-carr :v∈carrier-vec n
shows sq-norm v = sum-list (map (λi. (v·Mt!i)^2/(sq-norm (Mt!i))) [0 ..<n])

proof−
let ?Mt-inv-list = map (λi. (1/sq-norm(Mt!i))·v (Mt!i)) [0 ..<n]
have nonsing:?Mt-inv-list!i ∈ carrier-vec n if i:0≤i∧i<n for i
proof−

have 0< sq-norm(Mt!i)
using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M i]

M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)] i
by (simp add: M-locale-2)

then have 0<1/sq-norm(Mt!i) by fastforce
then have (1/sq-norm(Mt!i))·v (Mt!i)∈carrier-vec n

using carrier-vecI [of (Mt!i)] dim-vecs-in-Mt[of i] i by blast
moreover have ?Mt-inv-list!i = (1/sq-norm(Mt!i))·v (Mt!i)

using i by simp
ultimately show ?thesis by argo

qed
let ?Mt-inv-mat = mat-of-rows n ?Mt-inv-list
have carrier-mat-inv:?Mt-inv-mat∈carrier-mat n n by fastforce
let ?vMt = ?Mt-inv-mat ∗v v
have ?vMt$i = ((1/sq-norm(Mt!i))·v (Mt!i))·v if i:0≤i∧i<n for i

using i nonsing[of i] by auto
have dim-vMt:dim-vec ?vMt = n

using carrier-mat-inv v-carr by auto
let ?Mt-mat = mat-of-cols n Mt
have l:length Mt = n

using gs.gram-schmidt-result[of RAT M Mt] basis dim-vecs-in-M
unfolding gs.lin-indpt-list-def
by fastforce

then have carrier-mat-Mt:?Mt-mat∈carrier-mat n n
using dim-vecs-in-Mt carrier-vecI by auto

then have to-sumlist:?Mt-mat∗v?vMt = gs.sumlist (map (λj. ?vMt$j ·v (col

43

?Mt-mat j)) [0 ..< n])
using mat-mul-to-sum-list[of ?vMt ?Mt-mat] dim-vMt
by fastforce

have ?vMt$i ·v (col ?Mt-mat i) = (1/sq-norm(Mt!i))∗ ((Mt!i)·v) ·v Mt!i if
i:0≤i∧i<n for i

using i l dim-vecs-in-Mt v-carr carrier-vecI by fastforce
then have (map (λj. ?vMt$j ·v (col ?Mt-mat j)) [0 ..< n])

= (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v Mt!j) [0 ..< n])
by simp

then have 1 :gs.sumlist (map (λj. ?vMt$j ·v (col ?Mt-mat j)) [0 ..< n])
=gs.sumlist (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v Mt!j) [0 ..<

n])
by presburger

then have 2 :?Mt-mat∗v?vMt = gs.sumlist (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v)
·v Mt!j) [0 ..< n])

using to-sumlist by argo
have ?Mt-mat ∗v ?vMt = (?Mt-mat ∗ ?Mt-inv-mat)∗v v

using carrier-mat-Mt carrier-mat-inv v-carr by auto
have (?Mt-inv-mat∗?Mt-mat)$$(i,j) = (1m n)$$(i,j)

if sensible-indices:0≤i ∧ i<n ∧ 0≤j ∧ j<n for i j
proof−

have (?Mt-inv-mat∗?Mt-mat)$$(i,j) = (row ?Mt-inv-mat i)·(col ?Mt-mat j)
using sensible-indices carrier-mat-Mt carrier-mat-inv by auto

then have (?Mt-inv-mat∗?Mt-mat)$$(i,j) = ?Mt-inv-list!i·Mt!j
using sensible-indices carrier-mat-Mt carrier-mat-inv nonsing
by auto

then have (?Mt-inv-mat∗?Mt-mat)$$(i,j) = ((1/sq-norm(Mt!i))·v (Mt!i))·Mt!j
using sensible-indices by simp

then have (?Mt-inv-mat∗?Mt-mat)$$(i,j) = (1/sq-norm(Mt!i)) ∗((Mt!i)·(Mt!j))
using dim-vecs-in-Mt[of i] dim-vecs-in-Mt[of j] sensible-indices by auto

moreover have (1/sq-norm(Mt!i)) ∗((Mt!i)·(Mt!j)) = (if i=j then 1 else 0)
proof(cases i=j)

case diag:True
have nonzero:0< sq-norm(Mt!i)

using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M i]
M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)] sensible-indices

by (simp add: M-locale-2)
have (1/sq-norm(Mt!i)) ∗((Mt!i)·(Mt!j)) = (1/sq-norm(Mt!i)) ∗ sq-norm(Mt!i)

using sensible-indices diag sq-norm-vec-as-cscalar-prod[of Mt!i] by auto
then have (1/sq-norm(Mt!i)) ∗((Mt!i)·(Mt!j)) = 1

using nonzero by auto
then show ?thesis using diag by argo

next
case off :False
have nonzero:0< sq-norm(Mt!i)

using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M i]
M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)] sensible-indices
by (simp add: M-locale-2)

then have 0<1/sq-norm(Mt!i) by simp

44

moreover have ((Mt!i)·(Mt!j)) = 0
using gram-schmidt-fs-lin-indpt.orthogonal[of n (RAT) M i j] off sensi-

ble-indices
M-locale-1 M-locale-2 gram-schmidt-fs-Rn.main-connect

by force
ultimately show ?thesis using off by algebra

qed
moreover then have (1/sq-norm(Mt!i)) ∗((Mt!i)·(Mt!j)) = (1m n)$$(i,j)

using sensible-indices unfolding one-mat-def by simp
ultimately show ?thesis by presburger

qed
then have inv-Mt:(?Mt-inv-mat∗?Mt-mat) = 1m n

using carrier-mat-inv carrier-mat-Mt
by fastforce

then have ?Mt-mat ∗ ?Mt-inv-mat = 1m n
using mat-mult-left-right-inverse[of ?Mt-inv-mat n ?Mt-mat] carrier-mat-inv

carrier-mat-Mt
by argo

then have 3 :(?Mt-mat ∗ ?Mt-inv-mat)∗v v = v
using v-carr by simp

then have 4 :v = gs.sumlist (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v Mt!j)
[0 ..< n])

using v-carr carrier-mat-inv carrier-mat-Mt 1 2 by auto
have (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v Mt!j) [0 ..< n])

= (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v gs.gso j) [0 ..< n])
using M-locale-1 gram-schmidt-fs-Rn.main-connect[of n RAT M]
by auto

then have gs.sumlist (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v Mt!j) [0 ..<
n])

= gs.sumlist (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v gs.gso j) [0 ..<
n])

by argo
then have v = gs.sumlist (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v gs.gso j)

[0 ..< n])
using 4 by argo

then have v·v = gs.sumlist (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v gs.gso
j) [0 ..< n])·

gs.sumlist (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v) ·v gs.gso j) [0
..< n])

by simp
then have a:v·v =
sum-list(map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(gs.gso

j · gs.gso j)) [0 ..<n])
using gram-schmidt-fs-lin-indpt.scalar-prod-lincomb-gso[

of n RAT M n (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v)) (λj. (1/sq-norm(Mt!j))∗
((Mt!j)·v))]

M-locale-2
M-locale-1 gram-schmidt-fs-Rn.main-connect[of n RAT M] by force

have (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(gs.gso

45

j · gs.gso j)) [0 ..<n])
= (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗

((Mt!j)·v)∗(Mt!j · Mt!j)) [0 ..<n])
using M-locale-1 gram-schmidt-fs-Rn.main-connect[of n RAT M]
by auto

then have b:sum-list (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗
((Mt!j)·v)∗(gs.gso j · gs.gso j)) [0 ..<n])

=sum-list (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗
((Mt!j)·v)∗(Mt!j · Mt!j)) [0 ..<n])

by argo
have (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(Mt!j ·

Mt!j) =
(v·(Mt!j))^2/(sq-norm (Mt!j)) if sensible-indices:0≤j∧j<n for j

proof−
have nonzero:0< sq-norm(Mt!j)

using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M j]
M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)] sensi-

ble-indices
by (simp add: M-locale-2)

moreover have (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(Mt!j
· Mt!j)

= (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗sq-norm
(Mt!j)

using sq-norm-vec-as-cscalar-prod[of Mt!j] by force
moreover have (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗

sq-norm (Mt!j)
= ((Mt!j)·v)^2 ∗ (1/sq-norm(Mt!j))^2 ∗sq-norm (Mt!j)

by (simp add: power2-eq-square)
moreover have ((Mt!j)·v)^2 ∗ (1/sq-norm(Mt!j))^2 ∗sq-norm (Mt!j) =

((Mt!j)·v)^2/(sq-norm(Mt!j))
using nonzero
by (simp add: divide-divide-eq-left ′ power2-eq-square)

moreover have (Mt!j)·v = v·(Mt!j) using v-carr dim-vecs-in-Mt sensible-indices
by (metis carrier-vecI comm-scalar-prod)

ultimately show ?thesis by argo
qed
then have (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(Mt!j

· Mt!j)) [0 ..<n])
= (map (λj. (v·(Mt!j))^2/(sq-norm(Mt!j))) [0 ..<n]) by force

then have c:sum-list (map (λj. (1/sq-norm(Mt!j))∗ ((Mt!j)·v)∗(1/sq-norm(Mt!j))∗
((Mt!j)·v)∗(Mt!j · Mt!j)) [0 ..<n])

= sum-list (map (λj. (v·(Mt!j))^2/(sq-norm(Mt!j))) [0 ..<n]) by argo
then have v·v = sum-list (map (λj. (v·(Mt!j))^2/(sq-norm(Mt!j))) [0 ..<n])

using a b c by argo
moreover have v·v = v·cv by force
ultimately show ?thesis using sq-norm-vec-as-cscalar-prod[of v] v-carr by argo
qed

lemma bound-help:

46

fixes N ::nat
shows real-of-rat ((rat-of-int N)∗α^N) ∗ epsilon≤2^N

proof(induct N)
case 0
then show ?case by simp

next
case (Suc N)
let ?SN = Suc N
have ?SN=1∨?SN=2∨2<?SN by fastforce
then show ?case
proof(elim disjE)

{assume 1 :?SN = 1
then have real-of-rat ((rat-of-int ?SN)∗α^?SN)∗epsilon = real-of-rat ((rat-of-int

1)∗4/3)∗11/10
unfolding α-def epsilon-def by auto

also have real-of-rat ((rat-of-int 1)∗4/3)∗11/10 = real-of-rat (4/3)∗11/10
by force

also have real-of-rat (4/3)∗11/10 =real-of-rat ((4/3)∗ 11/10)
by (simp add: of-rat-hom.hom-div)

also have real-of-rat ((4/3)∗ 11/10) = real-of-rat (44/30) by auto
also have real-of-rat (44/30)≤(2 ::real)

by (simp add: of-rat-hom.hom-div)
finally show ?thesis using 1 by simp}

next
{assume 2 :?SN=2
then have real-of-rat ((rat-of-int ?SN)∗α^?SN)∗epsilon = real-of-rat ((rat-of-int

2)∗(4/3)^2)∗11/10
unfolding α-def epsilon-def
by (metis int-ops(3) times-divide-eq-right)

also have ((4 ::rat)/3)^2 = (4∗4)/(3∗3)
using power2-eq-square[of 4/3] times-divide-times-eq[of 4 3 4 3] by metis

also have (4∗(4 ::rat))/(3∗3) = 16/9 by auto
finally have real-of-rat ((rat-of-int ?SN)∗α^?SN)∗epsilon= real-of-rat ((rat-of-int

2)∗(16/9))∗11/10
by blast

also have (rat-of-int 2)∗(16/9) = 32/9 by force
finally have real-of-rat ((rat-of-int ?SN)∗α^?SN)∗epsilon = real-of-rat (32

/ 9) ∗ 11 / 10
by simp

also have real-of-rat (32 / 9) ∗ 11 / 10 = real-of-rat (32 / 9 ∗(11 / 10))
using of-rat-hom.hom-mult[of 32/9 11/10]
by (simp add: of-rat-hom.hom-div)

also have real-of-rat (32 / 9 ∗(11 / 10)) = real-of-rat (352/90)
using times-divide-times-eq[of 32 9 11 10] by force

also have 352/90≤(4 ::rat) by linarith
also have (4 ::rat) = 2^?SN using 2 by auto
finally show ?thesis

by (simp add: 2 gs.cring-simprules(14) int-ops(3) of-rat-hom.hom-power
of-rat-less-eq)}

47

next
{assume ind:?SN>2

then have N>0 by simp
then have ?SN = N∗(?SN/N) by auto
moreover have α^?SN = α^N∗α by auto
ultimately have real-of-rat ((rat-of-int ?SN)∗α^?SN) = (N∗(?SN/N)) ∗

(real-of-rat (α^N∗α))
by (metis of-int-of-nat-eq of-rat-mult of-rat-of-nat-eq)

also have (N∗(?SN/N)) ∗ real-of-rat (α^N∗α) = real-of-rat ((rat-of-int N)
∗ α^N) ∗ ((?SN/N) ∗(real-of-rat α))

by (simp add: ‹real (Suc N) = real N ∗ (real (Suc N) / real N)›
gs.cring-simprules(11) mult-of-int-commute of-rat-divide of-rat-mult)

finally have real-of-rat ((rat-of-int ?SN)∗α^?SN) ∗ epsilon = real-of-rat
((rat-of-int N) ∗ α^N) ∗ ((?SN/N) ∗(real-of-rat α)) ∗ epsilon

by presburger
then have real-of-rat ((rat-of-int ?SN)∗α^?SN) ∗ epsilon = real-of-rat

((rat-of-int N) ∗ α^N) ∗ epsilon ∗ ((?SN/N) ∗(real-of-rat α))
by argo

moreover have ((?SN/N) ∗(real-of-rat α))≤2
proof−

have N-big:2≤N using ind
by force

then have 4≤2∗N by fastforce
then have 4∗N+4≤6∗N by fastforce
then have 4/3∗(Suc N)≤2∗N by auto
moreover have 0<1/N using N-big by simp
ultimately have (4/3∗?SN)∗ (1/N)≤ 2∗N∗(1/N)

using N-big mult-right-mono[of (4/3∗?SN) 2∗N (1/N)] by linarith
then have (4/3∗?SN)/N≤ 2∗N/N by argo
then have 4/3∗(?SN / N)≤ 2∗(N/N) by linarith
then have 4/3∗(?SN/N)≤ 2 using N-big by auto
moreover have 4/3 = real-of-rat α using of-rat-divide unfolding α-def

by (metis of-rat-numeral-eq)
ultimately have (real-of-rat α)∗(?SN/N)≤ 2 by algebra
then show ?thesis by argo

qed
moreover have

0≤real-of-rat (rat-of-int (int N) ∗ α ^ N) ∗ epsilon unfolding α-def
epsilon-def by force

moreover have 0≤(real-of-rat α)∗(?SN/N) unfolding α-def by simp
ultimately have real-of-rat ((rat-of-int ?SN)∗α^?SN) ∗ epsilon≤2^N ∗ 2

using Suc mult-mono[of
real-of-rat (rat-of-int (int N) ∗ α ^ N) ∗ epsilon
2^N
((?SN/N) ∗(real-of-rat α))
2] by argo

then show ?thesis by simp}
qed

qed

48

lemma present-bound-nicely:
fixes N ::nat
shows real-of-rat ((rat-of-int N)∗α^N∗ eps-closest)≤2^N∗closest-distance-sq

proof−
have real-of-rat eps-closest≤ epsilon∗closest-distance-sq

using eps-closest-lemma unfolding close-condition-def by fastforce
moreover have 0≤(rat-of-int N)∗α^N unfolding α-def by simp
ultimately have real-of-rat ((rat-of-int N)∗α^N ∗ eps-closest)≤ real-of-rat

((rat-of-int N)∗α^N) ∗ epsilon∗closest-distance-sq
by (metis ab-semigroup-mult-class.mult-ac(1) mult-left-mono of-rat-hom.hom-mult

zero-le-of-rat-iff)
also have real-of-rat ((rat-of-int N)∗α^N) ∗ epsilon∗closest-distance-sq≤2^N∗closest-distance-sq

using bound-help[of N] closest-distance-sq-pos mult-right-mono by fast
finally show ?thesis by force

qed

lemma basis-decay:
fixes i::nat
fixes j::nat
assumes i<n
assumes i+j<n
shows sq-norm (Mt!i)≤ α^j∗sq-norm(Mt!(i+j))
using assms

proof(induct j)
case 0
have α^0 = 1 by simp
moreover have sq-norm (Mt!i) = sq-norm(Mt!(i+0)) by simp
moreover have 0≤ sq-norm(Mt!i)

using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M i]
M-locale-2 M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)]
assms by force

moreover have (0 ::rat)≤(1 ::rat) by force
ultimately show ?case by simp

next
case (Suc j)
have (1 ::rat) ≤α unfolding α-def by fastforce
moreover have n≥0 by simp
ultimately have (1 ::rat)≤α^j by simp
moreover have sq-norm (Mt!(i+j))≤α∗(sq-norm (Mt!(i+Suc j)))

using reduced M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)]
Suc.prems

unfolding gs.reduced-def gs.weakly-reduced-def
by force

moreover have 0≤ sq-norm (Mt!(i+j))
using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M i+j]

M-locale-2 M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)]
Suc.prems by force

49

ultimately have α^j∗sq-norm (Mt!(i+j))≤α^j∗α∗(sq-norm (Mt!(i+Suc j)))
by simp

moreover have sq-norm(Mt!i)≤ α^j ∗ sq-norm (Mt!(i+j))
using Suc by linarith

ultimately have sq-norm(Mt!i)≤α^j∗α∗(sq-norm (Mt!(i+Suc j))) by order
moreover have α^j∗α = α^(Suc j) by simp
ultimately show ?case by argo

qed

lemma basis-decay-cor :
fixes i::nat
fixes j::nat
assumes i<n
assumes j<n
assumes i≤j
shows sq-norm (Mt!i)≤ α^n∗sq-norm(Mt!j)

proof−
have 1 :sq-norm (Mt!i)≤ α^(j−i)∗sq-norm(Mt!j)

using basis-decay[of i j−i] assms
by simp

have α^(j−i)≤α^n using assms unfolding α-def by force
then have α^(j−i)∗sq-norm(Mt!j)≤α^n∗sq-norm(Mt!j)

using mult-right-mono by blast
then show ?thesis using 1 by order

qed

theorem Babai-Correct:
shows real-of-rat ((sq-norm (s n))::rat) ≤ 2^n ∗ closest-distance-sq∧ s n ∈ coset

proof−
let ?s = s n
let ?component = (λi. (?s·Mt!i)^2/(sq-norm (Mt!i)))
obtain v where wit-v:witness v (eps-closest)

using witness-exists by force
have split-norm:sq-norm ?s = sum-list (map ?component [0 ..<n])

using s-dim[of n] sq-norm-from-Mt[of ?s] by fast
have I+1∈� using I-geq
using Nats-0 Nats-1 Nats-add R.add.l-inv-ex R.add.r-inv-ex add-diff-cancel-right ′

cring-simprules(21) rangeI range-abs-Nats verit-la-disequality verit-minus-simplify(3)

zabs-def zle-add1-eq-le by auto
then obtain Inat where Inat-def :int Inat = I+1

using Nats-cases by metis
then have Inat-small:Inat≤n using I-leq by fastforce
then have [0 ..<n] = [0 ..<Inat] @ [Inat..<n]
by (metis bot-nat-0 .extremum-uniqueI le-Suc-ex nat-le-linear upt-add-eq-append)

then have split-norm-sum:sq-norm ?s = sum-list (map ?component [0 ..<Inat])

50

+ sum-list (map ?component [Inat..<n])
using split-norm by force

have ?component i ≤ eps-closest if i:Inat≤i∧i<n for i
proof−

have ge0 :sq-norm (Mt!i) > 0
using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M i]

M-locale-2 M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)]
i by force

then have ?component i = (v· Mt!i)^2 / (sq-norm (Mt!i))
using ge0 correct-coord[of v i] wit-v Inat-def i
by auto

also have (v·Mt!i)^2≤ (sq-norm v)∗sq-norm (Mt!i)
using scalar-prod-Cauchy[of v n Mt!i]

dim-vecs-in-Mt[of i] carrier-vecI [of v] carrier-vecI [of Mt!i] wit-v
i

unfolding witness-def
by algebra

also have sq-norm v ≤ eps-closest
using wit-v unfolding witness-def by fast

finally show ?thesis using ge0
by (simp add: divide-right-mono)

qed
then have

∧
x. x∈set [Inat..<n] =⇒ ?component x ≤ (λi. eps-closest) x by simp

then have sum-list (map ?component [Inat..<n])≤ sum-list (map (λi. eps-closest)
[Inat..<n])

using sum-list-mono[of [Inat..<n] ?component (λi. eps-closest)] by argo
then have right-sum:sum-list (map ?component [Inat..<n])≤(rat-of-nat (n−Inat))∗eps-closest

using sum-list-triv[of eps-closest [Inat..<n]] by force
have (1 ::rat) ≤α unfolding α-def by fastforce
moreover have n≥0 by simp
ultimately have (1 ::rat)≤α^n by simp
moreover have (0 ::rat)≤1 by simp
moreover have 0≤(rat-of-nat (n−Inat))∗eps-closest
proof−

have 0≤(rat-of-nat (n−Inat)) using Inat-small by fast
moreover have 0≤eps-closest
proof(cases closest-distance-sq = 0)

case t:True
then show ?thesis using eps-closest-lemma closest-distance-sq-pos unfolding

close-condition-def
by auto

next
case f :False

then show ?thesis using eps-closest-lemma closest-distance-sq-pos unfolding
close-condition-def

by (smt (verit, del-insts) zero-le-of-rat-iff)
qed

51

ultimately show ?thesis by blast
qed
ultimately have (rat-of-nat (n−Inat))∗eps-closest ≤ (rat-of-nat (n−Inat))∗eps-closest

∗ α^n
using mult-left-mono[of 1 α^n (rat-of-nat (n−Inat))∗eps-closest] by linarith

then have sum-list (map ?component [Inat..<n])≤(rat-of-nat (n−Inat))∗eps-closest∗α^n
using right-sum by order

then have right-sum-alpha:sum-list (map ?component [Inat..<n])≤(rat-of-nat
(n−Inat))∗α^n∗eps-closest

by algebra
have sum-list (map ?component [0 ..<Inat]) + sum-list (map ?component [Inat..<n])≤

(rat-of-int n)∗α^n∗eps-closest
proof(cases Inat = 0)

case Inat:True
then have sum-list (map ?component [0 ..<Inat]) = 0 by auto
then have sum-list (map ?component [0 ..<Inat]) + sum-list (map ?component

[Inat..<n])≤(rat-of-int (n−Inat))∗α^n ∗ eps-closest
using right-sum-alpha by simp

also have n−Inat = n using Inat by simp
finally show ?thesis by linarith

next
case False
then have non-zero:Inat>0 by blast
then have I-not-min:I≥0 using Inat-def by simp

then have non-empty:I = Max ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat
set)

unfolding I-def by presburger
then have max:Inat−1= Max({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat

set)
using Inat-def by linarith

then have Inat −1 ∈ ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat
set)

proof−
have finite ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat set)

by simp
moreover have ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat

set)6={}
using I-not-min unfolding I-def by presburger

ultimately show Inat −1 ∈ ({i∈{0 ..<n}. ((sq-norm (Mt!i)::rat))≤4∗eps-closest}::nat
set)

using max eq-Max-iff by blast
qed
then have 2 :(sq-norm (Mt!(Inat−1))::rat)≤4∗eps-closest by blast
have (1 ::rat) ≤α unfolding α-def by fastforce
moreover have n≥0 by simp
ultimately have (1 ::rat)≤α^n by simp
then have ((1/4)::rat)≤1/4 ∗ α^n by auto
then have (0 ::rat)<1/4∗α^n by linarith
moreover have 0<(sq-norm (Mt!(Inat−1))::rat)

52

using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M Inat−1]
M-locale-2 M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)]
non-zero Inat-small by force

ultimately have bound:1/4 ∗α^n∗ (sq-norm (Mt!(Inat−1)))≤ ((1/4 ∗ α^n)∗
4∗eps-closest)

using 2 by auto
have ?component i ≤ α^n ∗eps-closest if list1 :i<Inat for i
proof−

have 1 :0<n−i using list1 Inat-small by simp
then have ?s·Mt!i = (s (n−i))·Mt!i

using coord-invariance[of n−i n−i i] by fastforce
then have abs(?s·Mt!i)≤ (1/2)∗(sq-norm (Mt!i))

using small-orth-coord[of n−i] 1 by force
then have (?s·Mt!i)^2 ≤ ((1/2)∗(sq-norm (Mt!i)))^2

by (meson abs-ge-self abs-le-square-iff ge-trans)
moreover have ge0 :sq-norm (Mt!i) > 0

using gram-schmidt-fs-lin-indpt.sq-norm-pos[of n RAT M i]
M-locale-2 M-locale-1 gram-schmidt-fs-Rn.main-connect[of n (RAT M)]
list1 Inat-small by force

ultimately have ?component i ≤((1/2)∗(sq-norm (Mt!i)))^2 / (sq-norm
(Mt!i))

using divide-right-mono by auto
also have ((1/2)∗(sq-norm (Mt!i)))^2/ (sq-norm (Mt!i)) = 1/4 ∗ (sq-norm

(Mt!i))^2/ (sq-norm (Mt!i))
by (metis (no-types, lifting) gs.cring-simprules(12) numeral-Bit0-eq-double

power2-eq-square times-divide-eq-left times-divide-times-eq)
also have 1/4 ∗ (sq-norm (Mt!i))^2/ (sq-norm (Mt!i)) = 1/4 ∗ (sq-norm

(Mt!i))
using ge0 by (simp add: power2-eq-square)

also have 1/4∗sq-norm (Mt!i) ≤ 1/4∗α^n ∗ (sq-norm (Mt!(Inat−1)))
using basis-decay-cor [of i Inat−1] list1 Inat-small mult-left-mono[

of sq-norm (Mt!i) α^n ∗ (sq-norm (Mt!(Inat−1))) 1/4]
by linarith

finally have ?component i ≤ 1/4 ∗ α^n ∗ 4 ∗eps-closest
using bound by linarith

also have 1/4 ∗ α^n ∗ 4 ∗ eps-closest=α^n ∗ eps-closest by force
finally show ?thesis by blast

qed
then have sum-list (map ?component [0 ..<Inat])≤ sum-list (map (λi. α^n ∗

eps-closest)[0 ..<Inat])
using sum-list-mono[of [0 ..<Inat] ?component (λi. α^n ∗ eps-closest)] by

fastforce
then have sum-list (map ?component [0 ..<Inat])≤ (rat-of-int Inat)∗α^n ∗

eps-closest
using sum-list-triv[of α^n ∗ eps-closest [0 ..<Inat]] by auto

then have (sum-list (map ?component [0 ..<Inat])) + sum-list (map ?component
[Inat..<n])

≤ (rat-of-int Inat)∗α^n ∗ eps-closest+(rat-of-int (n−Inat))∗α^n ∗
eps-closest

53

using right-sum-alpha by linarith
then have (sum-list (map ?component [0 ..<Inat])) + sum-list (map ?component

[Inat..<n])
≤ ((rat-of-int Inat)+(rat-of-int (n−Inat)))∗α^n ∗ eps-closest

using gs.cring-simprules(13) by auto
then show ?thesis
by (metis (no-types, lifting) Inat-small add-diff-inverse-nat diff-is-0-eq ′ less-nat-zero-code

of-int-of-nat-eq of-nat-add zero-less-diff)
qed
then have sq-norm ?s ≤ (rat-of-int n)∗α^n ∗ eps-closest

using split-norm-sum by argo
then have real-of-rat (sq-norm ?s) ≤ real-of-rat ((rat-of-int n)∗α^n ∗ eps-closest)

by (simp add: of-rat-less-eq)
also have real-of-rat ((rat-of-int n)∗α^n ∗ eps-closest)≤2^n∗closest-distance-sq

using present-bound-nicely[of n]
by blast

finally show ?thesis
using coset-s[of n]
by fast

qed

end
end

References
[1] R. Bottesch, J. Divasón, and R. Thiemann. Two algorithms

based on modular arithmetic: lattice basis reduction and Her-
mite normal form computation. Archive of Formal Proofs, March
2021. https://isa-afp.org/entries/Modular_arithmetic_LLL_and_
HNF_algorithms.html, Formal proof development.

[2] J. Divasón, S. J. C. Joosten, R. Thiemann, and A. Yamada. A Verified
Factorization Algorithm for Integer Polynomials with Polynomial Com-
plexity. Archive of Formal Proofs, February 2018. https://isa-afp.org/
entries/LLL_Factorization.html, Formal proof development.

[3] K. Kreuzer. Hardness of Lattice Problems. Archive of Formal Proofs,
February 2023. https://isa-afp.org/entries/CVP_Hardness.html, For-
mal proof development.

[4] N. Stephens Davidowitz. Lecture 5: CVP and Babais Algorithm, August
2016.

54

https://isa-afp.org/entries/Modular_arithmetic_LLL_and_HNF_algorithms.html
https://isa-afp.org/entries/Modular_arithmetic_LLL_and_HNF_algorithms.html
https://isa-afp.org/entries/LLL_Factorization.html
https://isa-afp.org/entries/LLL_Factorization.html
https://isa-afp.org/entries/CVP_Hardness.html

	Introduction
	Copy-Pasted Material
	Locale setup for Babai
	Coordinates
	Lattice Lemmas
	Lemmas on closest distance
	More linear algebra lemmas
	Coord-Invariance
	Main Theorem

