Amicable Numbers

Angeliki Koutsoukou-Argyraki

May 26, 2024

Abstract

This is a formalisation of Amicable Numbers, involving some relevant material including Euler's sigma function, some relevant definitions, results and examples as well as rules such as Thābit ibn Qurra's Rule, Euler's Rule, te Riele's Rule and Borho's Rule with breeders.

The main sources are [2] [3]. Some auxiliary material can be found in [1] [4]. If not otherwise stated, the source of definitions is [2]. In a few definitions where we refer to Wikipedia articles [5] [6] [7] this is explicitly mentioned.

Contents

1 Miscellaneous 3
2 Amicable Numbers 4
2.1 Preliminaries 4
2.2 Euler's sigma function and properties 6
2.3 Amicable Numbers; definitions, some lemmas and examples 9
2.3.1 Regular Amicable Pairs 10
2.3.2 Twin Amicable Pairs 11
2.3.3 Isotopic Amicable Pairs 11
2.3.4 Betrothed (Quasi-Amicable) Pairs 16
2.3.5 Breeders 16
2.3.6 More examples 17
3 Euler's Rule 20
4 Thābit ibn Qurra's Rule and more examples 27
5 Te Riele's Rule and Borho's Rule with breeders 30
6 Acknowledgements 34

theory Amicable-Numbers
imports HOL-Number-Theory.Number-Theory
HOL-Computational-Algebra.Computational-Algebra
Pratt-Certificate.Pratt-Certificate-Code
Polynomial-Factorization.Prime-Factorization

begin

1 Miscellaneous

```
lemma mult-minus-eq-nat:
    fixes \(x:: n a t\) and \(y:: n a t\) and \(z:: n a t\)
    assumes \(x+y=z\)
    shows \(-x-y=-z\)
    using assms by linarith
lemma minus-eq-nat-subst: fixes \(A:: n a t\) and \(B:: n a t\) and \(C:: n a t\) and \(D:: n a t\) and
E::nat
    assumes \(A=B-C-D\) and \(-E=-C-D\)
    shows \(A=B-E\)
    using assms by linarith
lemma minus-eq-nat-subst-order: fixes \(A:: n a t\) and \(B:: n a t\) and \(C:: n a t\) and
\(D::\) nat and \(E:\) :nat
    assumes \(B-C-D>0\) and \(A=B-C-D+B\) shows \(A=2 * B-C-D\)
        using assms by auto
lemma auxiliary-ineq: fixes \(x::\) nat assumes \(x \geq\) (2::nat)
    shows \(x+1<(2:: n a t) * x\)
    using assms by linarith
lemma sum-strict-mono:
    fixes \(A\) :: nat set
    assumes finite \(B A \subset B 0 \notin B\)
    shows \(\sum A<\sum B\)
proof -
    have \(B-A \neq\{ \}\)
        using assms(2) by blast
    with assms Diffe have \(\sum(B-A)>0\)
        by fastforce
    moreover have \(\sum B=\sum A+\sum(B-A)\)
        by (metis add.commute assms(1) assms(2) psubsetE sum.subset-diff)
    ultimately show ?thesis
        by linarith
qed
lemma coprime-dvd-aux:
```

assumes $g c d m n=S u c 0 n a d v d n m a d v d m m b d v d m n b d v d n$ and $e q: m a$ * $n a=m b * n b$
shows $m a=m b$
proof -
have $g c d n a m b=1$
using assms by (metis One-nat-def gcd.commute gcd-nat.mono is-unit-gcd-iff)
moreover have $g c d n b m a=1$
using assms by (metis One-nat-def gcd.commute gcd-nat.mono is-unit-gcd-iff)
ultimately show $m a=m b$
by (metis eq gcd-mult-distrib-nat mult.commute nat-mult-1-right)
qed

2 Amicable Numbers

2.1 Preliminaries

definition divisor :: nat \Rightarrow nat \Rightarrow bool (infixr divisor 80)
where n divisor $m \equiv(n \geq 1 \wedge n \leq m \wedge n d v d m)$
definition divisor-set: divisor-set $m=\{n$. n divisor $m\}$
lemma def-equiv-divisor-set: divisor-set $(n::$ nat $)=\operatorname{set}($ divisors-nat $n)$
using divisors-nat-def divisors-nat divisor-set divisor-def by auto
definition proper-divisor :: nat \Rightarrow nat \Rightarrow bool (infixr properdiv 80)
where n properdiv $m \equiv(n \geq 1 \wedge n<m \wedge n d v d m)$
definition properdiv-set: properdiv-set $m=\{n . n$ properdiv $m\}$
lemma example1-divisor: shows (2::nat) \in divisor-set (4::nat)
using divisor-set divisor-def by force
lemma example2-properdiv-set: properdiv-set (Suc (Suc (Suc 0))) $=\{(1$::nat $)\}$ by (auto simp: properdiv-set proper-divisor-def less-Suc-eq dvd-def; presburger)
lemma divisor-set-not-empty: fixes $m:: n a t$ assumes $m \geq 1$
shows $m \in$ divisor-set m
using assms divisor-set divisor-def by force
lemma finite-divisor-set [simp]: finite(divisor-set n) using divisor-def divisor-set by simp
lemma finite-properdiv-set[simp]: shows finite(properdiv-set m)
using properdiv-set proper-divisor-def by simp
lemma divisor-set-mult:
divisor-set $(m * n)=\{i * j \mid i j .(i \in$ divisor-set $m) \wedge(j \in$ divisor-set $n)\}$
using divisor-set divisor-def
by (fastforce simp add: divisor-set divisor-def dest: division-decomp)

```
lemma divisor-set-1 [simp]: divisor-set (Suc 0) ={\begin{array}{lllcc}{0}\end{array}}
    by (simp add: divisor-set divisor-def cong: conj-cong)
lemma divisor-set-one: shows divisor-set 1 ={1}
    using divisor-set divisor-def by auto
lemma union-properdiv-set: assumes n\geq1 shows divisor-set n =(properdiv-set
n)\cup{n}
using divisor-set properdiv-set proper-divisor-def assms divisor-def by auto
lemma prime-div-set: assumes prime n shows divisor-set n ={n,1}
    using divisor-def assms divisor-set prime-nat-iff by auto
lemma div-set-prime:
    assumes prime n
    shows properdiv-set n={1}
    using assms properdiv-set prime-nat-iff proper-divisor-def
    by (metis (no-types, lifting) Collect-cong One-nat-def divisor-def divisor-set divi-
sor-set-one
dvd-1-left empty-iff insert-iff mem-Collect-eq order-less-irrefl)
lemma prime-gcd: fixes m::nat and n::nat assumes prime m and prime n
and m\not=n shows gcd mn=1 using prime-def
    by (simp add: assms primes-coprime)
    We refer to definitions from [5]:
definition aliquot-sum :: nat => nat
    where aliquot-sum n}\equiv\sum(\mathrm{ properdiv-set n)
definition deficient-number :: nat }=>\mathrm{ bool
    where deficient-number }n\equiv(n>\mathrm{ aliquot-sum n)
definition abundant-number :: nat => bool
    where abundant-number }n\equiv(n<\mathrm{ aliquot-sum n)
definition perfect-number :: nat }=>\mathrm{ bool
    where perfect-number }n\equiv(n=\mathrm{ aliquot-sum n)
lemma example-perfect-6: shows perfect-number 6
proof-
    have a: set(divisors-nat 6)={1,2,3,6} by eval
    have b: divisor-set (6)={1, 2, 3, 6}
        using a def-equiv-divisor-set by simp
    have c: properdiv-set (6)={1, 2, 3}
    using b union-properdiv-set properdiv-set proper-divisor-def by auto
    show ?thesis using aliquot-sum-def c
    by (simp add: numeral-3-eq-3 perfect-number-def)
```


2.2 Euler's sigma function and properties

The sources of the following useful material on Euler's sigma function are [2], [3], [4] and [1].
definition Esigma :: nat \Rightarrow nat
where Esigma $n \equiv \sum($ divisor-set $n)$
lemma Esigma-properdiv-set:
assumes $m \geq 1$
shows Esigma $m=($ aliquot-sum $m)+m$
using assms divisor-set properdiv-set proper-divisor-def union-properdiv-set Es-igma-def
aliquot-sum-def by fastforce
lemma Esigmanotzero:
assumes $n \geq 1$
shows Esigma $n \geq 1$
using Esigma-def assms Esigma-properdiv-set by auto
lemma prime-sum-div:
assumes prime n
shows Esigma $n=n+(1::$ nat $)$
proof -
have $1 \leq n$
using assms prime-ge-1-nat by blast
then show ?thesis using Esigma-properdiv-set assms div-set-prime
by (simp add: Esigma-properdiv-set aliquot-sum-def assms div-set-prime)
qed
lemma sum-div-is-prime:
assumes Esigma $n=n+(1::$ nat $)$ and $n \geq 1$
shows prime n
proof (rule ccontr)
assume F : $\neg($ prime $n)$
have n divisor n using assms divisor-def by simp
have ($1::$ nat) divisor nusing assms divisor-def by simp
have $n \neq$ Suc 0
using Esigma-def assms(1) by auto
then have $r: \exists(m:: n a t) . m \in$ divisor-set $n \wedge m \neq(1:: n a t) \wedge m \neq n$
using assms F
apply (clarsimp simp add: Esigma-def divisor-set divisor-def prime-nat-iff)
by (meson Suc-le-eq dvd-imp-le dvd-pos-nat)
have Suc $n=\sum\{n, 1\}$
by (simp add: $\langle n \neq$ Suc 0$\rangle)$

```
    moreover
    have divisor-set n}\supset{n,1
    using assms divisor-set r <1 divisor n> divisor-set-not-empty by auto
    then have \sum(divisor-set n)>\sum{n,1}
        apply (rule sum-strict-mono [OF finite-divisor-set])
    by (simp add: divisor-def divisor-set)
    ultimately
    show False
    using Esigma-def assms(1) by presburger
qed
lemma Esigma-prime-sum:
    fixes k:: nat assumes prime m k\geq1
    shows Esigma (m^k)=( m^(k+(1::nat)) -(1::nat)) /(m-1)
proof-
    have m>1
        using <prime m> prime-gt-1-nat by blast
    have A: Esigma (m^k) =( \sum j=0..k.( m^j))
    proof-
        have AA: divisor-set (m^k)=(\lambdaj.m^ j)'{0..k}
            using assms prime-ge-1-nat
            by (auto simp add: power-increasing prime-ge-Suc-0-nat divisor-set divisor-def
image-iff
    divides-primepow-nat)
    have §: \sum ((\lambdaj.m^^}j)'{..k})=\operatorname{sum}(\lambdaj.m\mp@subsup{}{}{`}j){0..k} for 
    proof (induction k)
            case (Suc k)
            have [simp]: m*m^ k\not\in(`)m`{..k}
            by (metis Suc-n-not-le-n <1<m> atMost-iff image-iff power-Suc power-inject-exp)
            then show ?case
                by (clarsimp simp: atMost-Suc Suc)
    qed auto
    show ?thesis
        by (metis § AA Esigma-def atMost-atLeast0)
    qed
    have B:(\sum i\leqk.( m`i)) =( m`Suc k-(1::nat)) /(m-(1::nat))
            using assms <m>1\rangleSet-Interval.geometric-sum [of m Suc k]
            apply simp
            by (metis One-nat-def lessThan-Suc-atMost nat-one-le-power of-nat-1 of-nat-diff
of-nat-mult
of-nat-power one-le-mult-iff prime-ge-Suc-0-nat sum.lessThan-Suc)
    show ?thesis using A B assms
    by (metis Suc-eq-plus1 atMost-atLeast0 of-nat-1 of-nat-diff prime-ge-1-nat)
qed
lemma prime-Esigma-mult: assumes prime \(m\) and prime \(n\) and \(m \neq n\)
```

```
    shows Esigma (m*n)=(Esigma n)*(Esigma m)
proof -
    have m divisor ( }m*n)\mathrm{ using divisor-def assms
        by (simp add: dvd-imp-le prime-gt-0-nat)
    moreover have }\neg(\exists\mathrm{ k::nat. k divisor }(m*n)\wedgek\not=(1::nat)\wedgek\not=m\wedgek\not=n
k\not=m*n)
    using assms unfolding divisor-def
    by (metis One-nat-def division-decomp nat-mult-1 nat-mult-1-right prime-nat-iff)
    ultimately have c: divisor-set (m*n)={m,n,m*n,1}
        using divisor-set assms divisor-def by auto
    obtain m\not=1 n\not=1
    using assms not-prime-1 by blast
    then have dd: Esigma (m*n)=m+n+m*n+1
    using assms by (simp add: Esigma-def c)
    then show ?thesis
    using prime-sum-div assms by simp
qed
lemma gcd-Esigma-mult:
    assumes gcd m n=1
    shows Esigma (m*n)=(Esigma m)*(Esigma n)
proof
    have Esigma (m*n)=\sum{i*j| ij.i\indivisor-set m ^j\indivisor-set n}
    by (simp add: divisor-set-mult Esigma-def)
    also have ... = (\sumi\in divisor-set m. \sumj\in divisor-set n. i*j)
    proof-
        have inj-on ( }\lambda(i,j).i*j)(\mathrm{ divisor-set m }\times\mathrm{ divisor-set n)
            using assms
            apply (simp add: inj-on-def divisor-set divisor-def)
            by (metis assms coprime-dvd-aux mult-left-cancel not-one-le-zero)
    moreover have {i*j| ij.i\indivisor-set m ^j d divisor-set n} = (\lambda(i,j). i*j)
    '(divisor-set m < divisor-set n)
            by auto
            ultimately show ?thesis
                by (simp add: sum.cartesian-product sum.image-eq)
    qed
    also have ... = \sum( divisor-set m)* \sum( divisor-set n)
        by (simp add: sum-product)
    also have ... = Esigma m * Esigma n
        by (simp add: Esigma-def)
    finally show ?thesis.
qed
lemma deficient-Esigma:
    assumes Esigma m<2*m and m\geq1
    shows deficient-number m
    using Esigma-properdiv-set assms deficient-number-def by auto
```


lemma abundant-Esigma:

assumes Esigma $m>2 * m$ and $m \geq 1$
shows abundant-number m
using Esigma-properdiv-set assms abundant-number-def by auto
lemma perfect-Esigma:
assumes Esigma $m=2 * m$ and $m \geq 1$
shows perfect-number m
using Esigma-properdiv-set assms perfect-number-def by auto

2.3 Amicable Numbers; definitions, some lemmas and examples

definition Amicable-pair :: nat \Rightarrow nat \Rightarrow bool (infixr Amic 80)
where m Amic $n \equiv((m=$ aliquot-sum $n) \wedge(n=$ aliquot-sum $m))$
lemma Amicable-pair-sym: fixes $m::$ nat and n ::nat
assumes m Amic n shows n Amic m
using Amicable-pair-def assms by blast
lemma Amicable-pair-equiv-def:
assumes (m Amic n) and $m \geq 1$ and $n \geq 1$
shows (Esigma $m=$ Esigma $n) \wedge($ Esigma $m=m+n)$
using assms Amicable-pair-def
by (metis Esigma-properdiv-set add.commute)
lemma Amicable-pair-equiv-def-conv:
assumes $m \geq 1$ and $n \geq 1$ and (Esigma $m=$ Esigma $n) \wedge($ Esigma $m=m+n)$
shows (m Amic n)
using assms Amicable-pair-def Esigma-properdiv-set
by (metis add-right-imp-eq add.commute)
definition typeAmic :: nat \Rightarrow nat \Rightarrow nat list
where typeAmic $n m=$
$[(\operatorname{card}\{i . \exists N . n=N *(g c d n m) \wedge$ prime $i \wedge i \operatorname{dvd} N \wedge \neg i d v d(g c d n m)\})$, $(\operatorname{card}\{j . \exists M . m=M *(g c d n m) \wedge \operatorname{prime} j \wedge j d v d M \wedge \neg j d v d(\operatorname{gcd} n m)\})]$
lemma Amicable-pair-deficient: assumes $m>n$ and m Amic n
shows deficient-number m
using assms deficient-number-def Amicable-pair-def by metis
lemma Amicable-pair-abundant: assumes $m>n$ and m Amic n shows abundant-number n
using assms abundant-number-def Amicable-pair-def by metis
lemma even-even-amicable: assumes m Amic n and $m \geq 1$ and $n \geq 1$ and even m and even n
shows $(2 * m \neq n)$

```
proof( rule ccontr )
    have a: Esigma m = Esigma n using <m Amic n` Amicable-pair-equiv-def
Amicable-pair-def
        assms by blast
    assume }\neg(2*m\not=n
have (2*m=n) using <\neg (2*m\not=n)> by simp
have d:Esigma n = Esigma (2*m) using <\neg(2*m\not=n)` by simp
then show False
proof-
    have w:2*m \in divisor-set (2*m) using divisor-set assms divisor-set-not-empty
        by auto
    have w1:2*m & divisor-set (m) using divisor-set assms
        by (simp add: divisor-def)
    have w2: }\forall\mathrm{ n::nat. n divisor m}\longrightarrown\mathrm{ divisor (2*m)
        using assms divisor-def by auto
    have w3: divisor-set (2*m) \supset divisor-set m using divisor-set divisor-def assms
w w1 w2
        by blast
    have v:( \sumi\in(divisor-set (2*m)).i)> ( \sumi\in( divisor-set m).i)
        using w3 sum-strict-mono by (simp add: divisor-def divisor-set)
    show ?thesis using v d Esigma-def a by auto
qed
qed
```


2.3.1 Regular Amicable Pairs

definition regularAmicPair :: nat \Rightarrow nat \Rightarrow bool where
regularAmicPair $n m \longleftrightarrow(n$ Amic $m \wedge$
$(\exists M N g . g=g c d m n \wedge m=M * g \wedge n=N * g \wedge$ squarefree $M \wedge$ squarefree $N \wedge \operatorname{gcd} g M=1 \wedge \operatorname{gcd} g N=1)$)
lemma regularAmicPair-sym:
assumes regularAmicPair $n m$ shows regularAmicPair $m n$
proof -
have $g c d m n=g c d n m$
by (metis (no-types) gcd.commute)
then show ?thesis
using Amicable-pair-sym assms regularAmicPair-def by auto
qed
definition irregularAmicPair :: nat \Rightarrow nat \Rightarrow bool where
irregularAmicPair $n m \longleftrightarrow((n$ Amic $m) \wedge \neg$ regularAmicPair $n m)$
lemma irregularAmicPair-sym:
assumes irregularAmicPair n m

$$
\text { shows irregularAmicPair m } n
$$

using irregularAmicPair-def regularAmicPair-sym Amicable-pair-sym assms by blast

2.3.2 Twin Amicable Pairs

We refer to the definition in [6]:
definition twinAmicPair :: nat \Rightarrow nat \Rightarrow bool where

```
twinAmicPair \(n m \longleftrightarrow\)
        \((n\) Amic \(m) \wedge(\neg(\exists k l . k>\operatorname{Min}\{n, m\} \wedge k<\operatorname{Max}\{n, m\} \wedge k\) Amic \(l))\)
```


lemma twinAmicPair-sym:

assumes twinAmicPair $n m$
shows twinAmicPair $m n$
using assms twinAmicPair-def Amicable-pair-sym assms by auto

2.3.3 Isotopic Amicable Pairs

A way of generating an amicable pair from a given amicable pair under certain conditions is given below. Such amicable pairs are called Isotopic [2].
lemma isotopic-amicable-pair:
fixes $m n g h M N:$ nat
assumes m Amic n and $m \geq 1$ and $n \geq 1$ and $m=g * M$ and $n=g * N$
and Esigma $h=(h / g) *$ Esigma g and $h \neq g$ and $h>1$ and $g>1$
and $\operatorname{gcd} g M=1$ and $\operatorname{gcd} g N=1$ and $g c d h M=1$ and $g c d h N=1$
shows $(h * M)$ Amic $(h * N)$
proof-
have a: Esigma $m=$ Esigma n using 〈 m Amic $n\rangle$ Amicable-pair-equiv-def assms
by blast
have b: Esigma $m=m+n$ using <m Amic n〉Amicable-pair-equiv-def assms
by blast
have c: Esigma $(h * M)=($ Esigma $h) *($ Esigma $M)$
proof-
have $h \neq M$
using assms Esigmanotzero gcd-Esigma-mult gcd-nat.idem b mult-eq-self-implies-10
by (metis less-irrefl)
show ?thesis using $\langle h \neq M\rangle$ gcd-Esigma-mult assms by auto
qed
have d : Esigma $(g * M)=($ Esigma $g) *($ Esigma $M)$
proof -
have $g \neq M$ using assms gcd-nat.idem by (metis less-irrefl) show ?thesis using $\langle g \neq M\rangle$ gcd-Esigma-mult assms by auto qed
have e : Esigma $(g * N)=($ Esigma $g) *($ Esigma $N)$
proof -
have $g \neq N$ using assms by auto
show ?thesis using $\langle g \neq N\rangle$ gcd-Esigma-mult assms by auto qed
have $p 1$: Esigma $m=($ Esigma $g) *(E s i g m a ~ M)$ using assms d by simp
have p2: Esigma $n=($ Esigma $g) *($ Esigma $N)$ using assms e by simp
have p3: Esigma $(h * N)=($ Esigma $h) *($ Esigma $N)$
proof-
have $h \neq N$ using assms < gcd $h N=1\rangle$ a b p2 by fastforce
show ?thesis using $\langle h \neq N\rangle$ gcd-Esigma-mult assms by auto
qed
have A: Esigma $(h * M)=\operatorname{Esigma}(h * N)$
using c p3 d e p1 p2 a assms Esigmanotzero by fastforce
have B: Esigma $(h * M)=(h * M)+(h * N)$
proof-
have s: Esigma $(h * M)=(h / g) *(m+n)$ using b c p1 Esigmanotzero assms by
simp
have s1: Esigma $(h * M)=h *(m / g+n / g)$ using s assms
by (metis add-divide-distrib b of-nat-add semiring-normalization-rules(7)
times-divide-eq-left times-divide-eq-right)
have s2: Esigma $(h * M)=h *(M+N)$
proof-
have $v: m / g=M$ using assms by simp
have $v 1: n / g=N$ using assms by simp
show ?thesis using s1 v v1 assms
using of-nat-eq-iff by fastforce
qed
show ?thesis using s2 assms
by (simp add: add-mult-distrib2)
qed
show? ?hesis using Amicable-pair-equiv-def-conv A B assms one-le-mult-iff One-nat-def Suc-leI

```
    by (metis (no-types, opaque-lifting) nat-less-le)
```

qed
lemma isotopic-pair-example1:
assumes (3 ^ $3 * 5 * 11 * 17 * 227$) Amic ($3 ` 3 * 5 * 23 * 37 * 53$)
shows $(3 \wedge 2 * 7 * 13 * 11 * 17 * 227)$ Amic (3^2*7*13*23*37*53)

```
proof-
    obtain m where o1:m=(3::nat)^ 3*5*11*17*227 by simp
    obtain n where o2: n = (3::nat)^ }3*5*23*37*53 by sim
    obtain g}\mathrm{ where o3: g=(3::nat)^ }3*5\mathrm{ by simp
    obtain }h\mathrm{ where o4: h=(3::nat)^2*7*13 by simp
    obtain M where o5:M=(11::nat)*17*227 by simp
    obtain N where o6: N = (23::nat)*37*53 by simp
    have prime(3::nat) by simp
    have prime(5::nat) by simp
    have prime(7::nat) by simp
    have prime(13::nat) by simp
    have v:m Amic n using o1 o2 assms by simp
    have v1:m=g*M using o1 o3 o5 by simp
    have v2: n = g*N using o2 o3 o6 by simp
    have v3: }h>0\mathrm{ using of by simp
    have w: g>0 using o3 by simp
    have w1:h\not=g using o4 o3 by simp
    have }h=819\mathrm{ using o4 by simp
    have g=135 using o3 by simp
    have w2: Esigma h=(h/g)*Esigma g
    proof-
    have B: Esigma }h=145
    proof -
        have R: set(divisors-nat 819) ={1, 3, 7, 9, 13, 21, 39, 63, 91, 117, 273,
819}
            by eval
            have RR: set( divisors-nat(819)) = divisor-set (819)
                using def-equiv-divisor-set by simp
            show?thesis using Esigma-def RR R < h = 819` divisor-def divisors-nat
divisors-nat-def by auto
    qed
    have C: Esigma g=240
    proof-
        have G: set(divisors-nat 135)}={1,3,5,9,15, 27, 45,135
            by eval
            have GG: set(divisors-nat 135)= divisor-set 135
                using def-equiv-divisor-set by simp
    show ?thesis using G GG Esigma-def < g=135>
        properdiv-set proper-divisor-def
        by simp
qed
    have D:(Esigma h)*g=(Esigma g)*h
```

```
    proof -
    have A:(Esigma h)*g=196560
        using B o3 by simp
        have AA:(Esigma g)*h=196560 using C o4 by simp
        show ?thesis using A AA by simp
    qed
    show ?thesis using D
    by (metis mult.commute nat-neq-iff nonzero-mult-div-cancel-right
of-nat-eq-0-iff of-nat-mult times-divide-eq-left w)
qed
    have w4: gcd g M =1
    proof-
    have coprime g M
    proof -
        have }\negg\mathrm{ dvd M using o3 o5 by auto
        moreover have }\neg3\mathrm{ dvd M using o5 by auto
        moreover have }\neg5\mathrm{ dvd M using o5 by auto
        ultimately show ?thesis using o5 o3
        gcd-nat.absorb-iff2 prime-nat-iff \ prime(3::nat)\rangle\langleprime(5::nat)\rangle
    by (metis coprime-commute
coprime-mult-left-iff prime-imp-coprime-nat prime-imp-power-coprime-nat)
qed
show ?thesis using <coprime g M> by simp
    qed
    have s: gcd gN=1
    proof-
    have coprime g N
proof
            have }\neggdvd 
                using o3 o6 by auto
            moreover have }\neg3\mathrm{ dvd N using o6 by auto
            moreover have }\neg5dvd N using o6 by aut
    ultimately show ?thesis using o3 gcd-nat.absorb-iff2 prime-nat-iff < prime(3::nat)>
< prime(5::nat)>
    by (metis coprime-commute
coprime-mult-left-iff prime-imp-coprime-nat prime-imp-power-coprime-nat)
qed
show ?thesis using <coprime g N` by simp
    qed
have s1: gcd h M =1
```

```
proof-
    have coprime h M
proof-
    have }\negh\mathrm{ dvd M using o4 o5 by auto
    moreover have }\neg3\mathrm{ dvd M using o5 by auto
    moreover have }\neg7\mathrm{ dvd M using o5 by auto
    moreover have }\neg13\mathrm{ dvd M using o5 by auto
        ultimately show ?thesis using o4 gcd-nat.absorb-iff2 prime-nat-iff <
prime(3::nat)>
< prime(13::nat)> < prime(7::nat)>
    by (metis coprime-commute
coprime-mult-left-iff prime-imp-coprime-nat prime-imp-power-coprime-nat)
qed
    show ?thesis using <coprime h M> by simp
    qed
    have s2:gcd h N=1
    proof-
    have coprime h N
    proof-
have \negh dvd N using o4 o6 by auto
moreover have \neg 3 dvd N using o6 by auto
moreover have }\neg7dvdN\mathrm{ using o6 by auto
moreover have }\neg13\mathrm{ dvd N using o6 by auto
ultimately show ?thesis using o4
    gcd-nat.absorb-iff2 prime-nat-iff < prime(3::nat)>< prime(13::nat)\rangle\langleprime(7::nat)>
    by (metis coprime-commute
coprime-mult-left-iff prime-imp-coprime-nat prime-imp-power-coprime-nat)
qed
    show ?thesis using <coprime h N` by simp
    qed
    have s4: (h*M) Amic (h*N) using isotopic-amicable-pair v v1 v2 v3 w4 s s1 s2
w w1 w2
    by (metis One-nat-def Suc-leI le-eq-less-or-eq nat-1-eq-mult-iff
num.distinct(3) numeral-eq-one-iff one-le-mult-iff one-le-numeral o3 o4 o5 o6)
    show ?thesis using s4 o4 o5 o6 by simp
qed
```


2.3.4 Betrothed (Quasi-Amicable) Pairs

We refer to the definition in [7]:

```
definition QuasiAmicable-pair :: nat \(\Rightarrow\) nat \(\Rightarrow\) bool (infixr QAmic 80)
    where \(m\) QAmic \(n \longleftrightarrow(m+1=\) aliquot-sum \(n) \wedge(n+1=\) aliquot-sum \(m)\)
lemma QuasiAmicable-pair-sym:
    assumes \(m\) QAmic \(n\) shows \(n\) QAmic \(m\)
    using QuasiAmicable-pair-def assms by blast
lemma QuasiAmicable-example:
    shows 48 QAmic 75
proof -
    have \(a\) : set(divisors-nat 48) \(=\{1,2,3,4,6,8,12,16,24,48\}\) by eval
    have \(b\) : divisor-set \((48)=\{1,2,3,4,6,8,12,16,24,48\}\)
        using a def-equiv-divisor-set by simp
    have \(c\) : properdiv-set \((48)=\{1,2,3,4,6,8,12,16,24\}\)
        using \(b\) union-properdiv-set properdiv-set proper-divisor-def by auto
    have \(e\) : aliquot-sum \((48)=75+1\) using aliquot-sum-def \(c\)
        by \(\operatorname{simp}\)
    have \(i\) : set(divisors-nat 75) \(=\{1,3,5,15,25,75\}\) by eval
    have \(i i\) : divisor-set (75) \(=\{1,3,5,15,25,75\}\)
        using \(i\) def-equiv-divisor-set by simp
    have iii: properdiv-set (75) \(=\{1,3,5,15,25\}\)
        using ii union-properdiv-set properdiv-set proper-divisor-def by auto
    have iv: aliquot-sum (75) \(=48+1\) using aliquot-sum-def iii
        by \(\operatorname{simp}\)
    show ?thesis using e iv QuasiAmicable-pair-def by simp
qed
```


2.3.5 Breeders

definition breeder-pair :: nat \Rightarrow nat \Rightarrow bool (infixr breeder 80)
where m breeder $n \equiv(\exists x \in \mathbb{N} . x>0 \wedge$ Esigma $m=m+n * x \wedge$ Esigma $m=$
$($ Esigma $n) *(x+1)$)
lemma breederAmic:
fixes x :: nat
assumes $x>0$ and Esigma $n=n+m * x$ and Esigma $n=$ Esigma $m *(x+1)$
and prime x and $\neg(x$ dvd $m)$
shows n Amic $(m * x)$
proof-
have A: Esigma $n=\operatorname{Esigma}(m * x)$
proof-
have $g c d m x=1$ using assms gcd-nat.absorb-iff2 prime-nat-iff by blast

```
    have A1: Esigma (m*x)=(Esigma m)*(Esigma x)
        using <gcd m x =1` gcd-Esigma-mult by simp
    have A2: Esigma }(m*x)=(\mathrm{ Esigma m)*(x+1)
        using <prime x〉 prime-Esigma-mult A1
        by (simp add: prime-sum-div)
    show ?thesis using A2 assms by simp
qed
```

have B ：Esigma $n=n+m * x$ using assms by simp
show ？thesis using A B Amicable－pair－equiv－def assms
by（smt（verit，del－insts）Amicable－pair－equiv－def－conv Esigma－properdiv－set Suc－eq－plus1 Suc－le－eq add－0 add－le－same－cancel2
add－less－cancel－right dvd－triv－right less－nat－zero－code linorder－not－le mult－Suc－right mult－is－0 mult－le－mono not－gr－zero prime－ge－Suc－0－nat）
qed

2．3．6 More examples

The first odd－odd amicable pair was discovered by Euler［2］．In the following proof，amicability is shown using the properties of Euler＇s sigma function．

```
lemma odd-odd-amicable-Euler: 69615 Amic 87633
proof-
    have prime(5::nat) by simp
    have prime(17::nat) by simp
    have }\neg(5*17)dvd((3::nat)^2*7*13) by aut
    have ᄀ 5 dvd((3::nat)^2*7*13) by auto
    have ᄀ 17 dvd((3::nat)^2***13) by auto
    have A1: Esigma(69615) = Esigma(3^2*7*13*5*17) by simp
    have A2: Esigma(3^2* % * 13*5*17) = Esigma(3^2*7*13)*Esigma(5*17)
    proof-
    have A111: coprime ((3::nat)^2*7*13) ((5::nat)*17)
        using < }17\mathrm{ dvd((3::nat)^2*7*13)〉〈ᄀ 5 dvd((3::nat)^2* `**13)〉〈prime
(17::nat)>
        <prime (5::nat)\rangle coprime-commute coprime-mult-left-iff prime-imp-coprime-nat
```

by blast
have $\operatorname{gcd}(3 \wedge 2 * 7 * 13)((5::$ nat $) * 17)=1$
using A111 coprime-imp-gcd-eq-1 by blast
then show ?thesis
by (metis (no-types, lifting) gcd-Esigma-mult mult.assoc)
qed
have prime (7::nat) by simp
have $\neg 7$ dvd ((3::nat) ^2) by simp
have prime (13::nat) by simp
have $\neg 13$ dvd ((3::nat) $\left.{ }^{\wedge} 2 * 7\right)$ by simp
have $g c d((3:: n a t) \wedge 2 * 7) 13=1$
using 〈prime (13::nat)〉〈ᄀ13 dvd ((3::nat) $\left.\left.{ }^{\wedge} 2 * 7\right)\right\rangle$ gcd-nat.absorb-iff2 prime-nat-iff
by blast

```
then have A3: Esigma(3^2 * 7*13) \(=\operatorname{Esigma}(3\) ^2*7) \(2 \operatorname{Esigma}(13)\)
    using gcd-Esigma-mult by presburger
    have \(\operatorname{gcd}\left((3:: n a t)^{\wedge} 2\right) 7=1\)
    using 〈prime (7::nat)〉〈 ᄀ7dvd ((3::nat)^2 )〉 gcd-nat.absorb-iff2 prime-nat-iff
    by blast
then have A4: Esigma (3^2*7) = Esigma(3^2)*Esigma (7)
    using gcd-Esigma-mult by presburger
have \(A 5: \operatorname{Esigma}\left(3^{\wedge}\right.\) 2) \()=13\)
proof-
    have (3::nat)^2 \(=9\) by auto
    have A55:divisor-set \(9=\{1,3,9\}\)
    proof -
        have \(A 555\) : set(divisors-nat (9)) \(=\{1,3,9\}\) by eval
        show ?thesis using def-equiv-divisor-set \(A 555\) by simp
    qed
    show ?thesis using \(A 55\) 〈(3::nat) ^2 = 9〉Esigma-def by simp
qed
have prime( \(13::\) nat) by simp
have A6: Esigma (13) = 14
    using prime-sum-div 〈prime( \(13:: n a t)\) 〉 by auto
have prime( 7::nat) by simp
have A7: Esigma (7) \(=8\)
    using prime-sum-div 〈prime( 7::nat)〉 by auto
have prime ( \(5::\) nat) by simp
have prime (17::nat) by simp
have A8: \(\operatorname{Esigma}(5 * 17)=\operatorname{Esigma}(5) * \operatorname{Esigma}\) (17)
    using prime-Esigma-mult 〈prime ( \(5::\) nat)〉〈prime (17::nat)〉
    by (metis arith-simps(2) mult.commute num.inject(2) numeral-eq-iff semir-
ing-norm(83))
have A9: \(\operatorname{Esigma}(69615)=\operatorname{Esigma}(\) 3~2 \() * \operatorname{Esigma}(7) * \operatorname{Esigma}(13) * \operatorname{Esigma}(5)\)
* Esigma (17)
    using A1 A2 A3 A4 A5 A6 A7 A8 by (metis mult.assoc)
have A10: Esigma (5)=6
    using prime-sum-div 〈prime(5::nat)〉 by auto
have A11: Esigma \((17)=18\)
    using prime-sum-div 〈prime ( \(17:\) :nat) 〉 by auto
    have \(A A\) : \(\operatorname{Esigma}(69615)=13 * 8 * 14 * 6 * 18\) using A1 A2 A3 A4 A5 A6 A7 A8
A9 A10 A11
    by \(\operatorname{simp}\)
have AAA: \(\operatorname{Esigma}(69615)=157248\) using \(A A\) by simp
have AA1: \(\operatorname{Esigma}(87633)=\operatorname{Esigma}(3 \wedge 2 * 7 * 13 * 107)\) by simp
have prime (107::nat) by eval
have AA2: Esigma \((3 \wedge 2 * 7 * 13 * 107)=\operatorname{Esigma}(3 \wedge 2 * 7 * 13) * E \operatorname{sigma}(107)\)
proof-
    have \(\neg(107::\) nat \()\) dvd \(\left(3^{\wedge} 2 * 7 * 13\right)\) by auto
    then have gcd ((3::nat) \(\left.{ }^{\wedge} 2 * 7 * 13\right) 107=1\) using 〈prime (107::nat)〉
        using gcd-nat.absorb-iffe prime-nat-iff by blast
```

```
    then show ?thesis
    by (meson gcd-Esigma-mult)
    qed
    have AA3: Esigma (107) =108
        using prime-sum-div <prime(107::nat)> by auto
    have AA4: Esigma(3^2*7*13) = 13*8*14
    using A3 A4 A5 A6 A7 by auto
    have AA5 : Esigma (3^2*7*13*107)=13*8*14*108
    using AA2 AA3 AA4 by auto
    have AA6: Esigma (3^2*'7*13*107) = 157248 using AA5 by simp
    have A:Esigma(69615)=Esigma(87633)
    using AAA AA6 AA5 AA1 by linarith
    have B: Esigma (87633) = 69615 + 87633
    using AAA <Esigma 69615 = Esigma 87633> by linarith
    show ?thesis using A B Amicable-pair-def Amicable-pair-equiv-def-conv by auto
qed
```

The following is the smallest odd-odd amicable pair [2]. In the following proof, amicability is shown directly by evaluating the sets of divisors.

```
lemma Amicable-pair-example-smallest-odd-odd: 12285 Amic 14595
proof-
    have \(A: \operatorname{set}(\) divisors-nat (12285)) \(=\{1,3,5,7,9,13,15,21,27,35,39,45\),
63, 65, 91,
\(105,117,135,189,195,273,315,351,455,585,819,945,1365,1755,2457\),
4095, 12285\}
    by eval
    have A1: set(divisors-nat (12285)) \(=\) divisor-set 12285
    using def-equiv-divisor-set by simp
    have A2: \(\sum\{1,3,5,7,9,13,15,21,27,35,39,45,63,65,91,105,117\),
135, 189, 195, 273,
\(315,351,455,585,819,945,1365,1755,2457,4095,12285\}=(26880::\) nat \()\)
by eval
    have A3: Esigma \(12285=26880\) using A A1 A2 Esigma-def by simp
    have \(Q\) :Esigma \(12285=\) Esigma 14595
    proof-
        have \(N\) : set(divisors-nat (14595)) \(=\)
        \(\{1,3,5,7,15,21,35,105,139,417,695,973,2085,2919,4865\),
14595\}
            by eval
        have N1: set(divisors-nat (14595)) \(=\) divisor-set 14595
            using def-equiv-divisor-set by simp
        have N2:
            \(\sum\{1,3,5,7,15,21,35,105,139,417,695,973,2085,2919,4865\),
\(14595\}=(26880::\) nat \()\)
            by eval
        show ?thesis using A3 N N1 N2 Esigma-def by simp
    qed
    have \(B: E \operatorname{sigma}(12285)=12285+14595\) using A3 by auto
    show ?thesis using \(B Q\) Amicable-pair-def
```

using Amicable－pair－equiv－def－conv one－le－numeral by blast qed

3 Euler＇s Rule

We present Euler＇s Rule as in［2］．The proof has been reconstructed．

```
theorem Euler-Rule-Amicable:
    fixes \(k l f p q r m n::\) nat
    assumes \(k>l\) and \(l \geq 1\) and \(f=2 ` l+1\)
        and prime \(p\) and prime \(q\) and prime \(r\)
        and \(p=2 \wedge(k-l) * f-1\) and \(q=2 \wedge k * f-1\) and \(r=2 \wedge(2 * k-l) * f^{\wedge} 2\)
\(-1\)
    and \(m=2 \wedge k * p * q\) and \(n=2 \wedge k * r\)
    shows \(m\) Amic \(n\)
proof -
    note \([[\) linarith-split-limit \(=50]]\)
    have A1: \((p+1) *(q+1)=(r+1)\)
    proof-
        have \(a\) : \(p+1=\left(\mathcal{D}^{\wedge}(k-l)\right) * f\) using assms by simp
        have \(b: q+1=\left(2^{\wedge}(k)\right) * f\) using assms by simp
        have \(c: r+1=(2 \mathcal{2}(2 * k-l)) *\left(f^{\wedge} 2\right)\) using assms by simp
        have \(d:(p+1) *(q+1)=\left(2^{\wedge}(k-l)\right) *\left(\mathscr{D}^{\wedge}(k)\right) * f^{\wedge} 2\)
            using \(a b\) by (simp add: power2-eq-square)
        show ?thesis using \(d c\)
            by (metis Nat.add-diff-assoc add.commute assms(1) less-imp-le-nat mult-2
power-add)
    qed
    have aa: Esigma \(p=p+1\) using assms 〈prime p〉prime-sum-div by simp
    have bb: Esigma \(q=q+1\) using 〈prime \(q\rangle\) prime-sum-div assms by simp
    have \(c c\) : Esigma \(r=r+1\) using 〈prime \(r\rangle\) prime-sum-div assms by simp
    have A2: (Esigma \(p) *(\) Esigma \(q)=\) Esigma \(r\)
        using aa bb cc A1 by simp
    have A3: Esigma (2^k)*(Esigma p) \(*\left(\right.\) Esigma q) \(=\operatorname{Esigma}\left(\right.\) 2^k \(\left.^{2}\right) *(\) Esigma \(r)\)
        using A2 by simp
    have \(A\) 4: \(\operatorname{Esigma}\left(\left(\right.\right.\) 2^k \(\left.\left.^{2}\right) * r\right)=(\operatorname{Esigma}(2 \wedge k)) *(E s i g m a r)\)
    proof-
        have 20 : gcd ((2::nat) \(\uparrow k) r=1\) using assms \(\langle\) prime \(r\rangle\) by simp
        have \(A\) : (2::nat) \(k \geq 1\) using assms by \(\operatorname{simp}\)
        have \(A b\) : (2::nat) \(k \neq r\) using assms
            by (metis gcd-nat.idem numeral-le-one-iff prime-ge-2-nat semiring-norm(69)
Z0)
    show ?thesis using \(Z 0\) gcd-Esigma-mult assms \(A\) Ab by metis
    qed
    have A5: Esigma \(((\) 2^k \() * p * q)=\left(\operatorname{Esigma}\left(\right.\right.\) 2^k \(\left.\left.^{2}\right)\right) *(\operatorname{Esigma} p) *(E s i g m a ~ q)\)
    proof-
    have (2::nat) \(k \geq 1\) using assms by simp
```

```
    have A: gcd (2^k) p =1 using assms <prime p> by simp
    have B: gcd (2`k) q=1 using assms <prime q> by simp
    have BB:gcd (2^k) (p*q)=1 using assms A B by fastforce
    have C: p*q\geq1 using assms One-nat-def one-le-mult-iff prime-ge-1-nat by
metis
    have A6: Esigma((2^k)*(p*q))=( Esigma(2^k))*(Esigma(p*q))
    proof -
        have (( 2::nat)^k) \not=(p*q) using assms
            by (metis BB Nat.add-0-right gcd-idem-nat less-add-eq-less
            not-add-less1 power-inject-exp prime-gt-1-nat semiring-normalization-rules(32)
                    two-is-prime-nat )
        show ?thesis using <(( 2::nat)^k) \not= (p*q)>
            〈( 2::nat)^k \geq1> gcd-Esigma-mult assms C BB
        by metis
    qed
    have A7:Esigma (p*q) =(Esigma p)*(Esigma q)
    proof -
        have p\not=q
            by (metis A2 Suc-eq-plus1 Zero-not-Suc aa add-Suc add-cancel-left-left
add-diff-cancel-left' assms(4) assms(6)
                cc diff-is-0-eq linorder-not-less mult.commute mult-Suc-right prime-nat-iff
prime-product)
            show ?thesis using <p}\not=q
                <prime p\rangle\langleprime q\rangleC prime-Esigma-mult assms
            by (metis mult.commute)
    qed
```

 have A8: Esigma \(\left(\left(\right.\right.\) 2^k \(\left.\left.^{2}\right) *\left({ }^{2} * q\right)\right)=\left(E \operatorname{sigma}\left(\right.\right.\) 2^ \(\left.\left.^{2}\right)\right) *(E \operatorname{sigma} p) *(E s i g m a q)\) by
 (simp add: A6 A7)
show ?thesis using $A 8$ by (simp add: mult.assoc)
qed
have Z: Esigma $\left(\left(\right.\right.$ 2^ $\left.\left.^{\wedge}\right) * p * q\right)=\operatorname{Esigma}\left(\left(\right.\right.$ 2^k $\left.\left.^{\wedge}\right) * r\right)$ using A1 A2 A3 A4 A5 by
simp
have Z1: Esigma $\left(\left(\mathcal{Z}^{\wedge} k\right) * p * q\right)=\mathcal{Z}^{\wedge} k * p * q+\mathcal{Z}^{\wedge} k * r$
proof-
have prime (2::nat) by simp
have s : Esigma $\left(\mathcal{2}^{\wedge} k\right)=((2::$ nat $) \uparrow(k+1)-1) /(2-1)$
using <prime (2::nat)〉 assms Esigma-prime-sum by auto
have ss: Esigma $\left(\mathcal{2}^{\wedge} k\right)=\left(\mathcal{Z}^{\wedge}(k+1)-1\right)$ using s by simp
have $J:(k+1+k-l+k)=3 * k+1-l$ using assms by linarith
have $J J:\left(\right.$ 2^ $\left.^{\wedge}(k-l)\right) *(2 \wedge k)=(2:: n a t) \wedge(2 * k-l)$
apply (simp add: algebra-simps)
by (metis Nat.add-diff-assoc assms(1) less-imp-le-nat mult-2-right power-add)
have $\operatorname{Esigma}\left(\left(\mathfrak{2}^{\wedge} k\right) * p * q\right)=\left(\operatorname{Esigma}\left(\mathfrak{Z}^{\wedge} k\right)\right) *(E \operatorname{sigma} p) *(E s i g m a q)$ using $A 5$
by simp
also have $\ldots=\left(2^{\wedge}(k+1)-1\right) *(p+1) *(q+1)$ using assms ss aa bb by metis

```
also have \(\ldots=\left(2^{\wedge}(k+1)-1\right) *\left(\left(2^{\wedge}(k-l)\right) * f\right) *\left(\left(2^{\wedge} k\right) * f\right)\) using assms by simp
also have \(\ldots=\left(\mathcal{D}^{\wedge}(k+1)-1\right) *\left(\mathscr{R}^{\wedge}(k-l)\right) *\left(\mathcal{D}^{\wedge} k\right) * f \wedge 2\)
    by (simp add: power2-eq-square)
```



```
    using diff-mult-distrib nat-mult-1 by presburger
    also have \(\ldots=\left(\mathscr{R}^{\wedge}(k+1+k-l+k)\right) * f^{\wedge} 2-\left(2^{\wedge}(k-l)\right) *\left(2^{\wedge} k\right) * f^{\wedge} 2\)
    by (metis Nat.add-diff-assoc assms(1) less-imp-le-nat power-add)
    also have \(\ldots=\left(\mathbb{Z}^{\wedge}(3 * k+1-l)\right) * f^{\wedge} 2-\left(\mathbb{Z}^{\wedge}(k-l)\right) *\left(\mathcal{Z}^{\wedge} k\right) * f\) ²
    using \(J\) by auto
    also have \(\ldots=(2 \uparrow(3 * k+1-l)) * f^{\wedge} 2-(2 \wedge(2 * k-l)) * f^{\wedge} 2\)
    using \(J J\) by \(\operatorname{simp}\)
finally
have \(Y Y: \operatorname{Esigma}((2 \wedge k) * p * q)=(2 `(3 * k+1-l)) * f\) ^2 \(-(2 \wedge(2 * k-l)) * f^{\wedge} 2\).
    have auxicalc: \(\left(\mathfrak{2}^{\wedge}(2 * k-l)\right) *\left(f^{\wedge} 2\right)=(2 `(2 * k-l)) * f+(2 `(2 * k)) * f\)
    proof -
        have \(i:\left(\mathcal{Z}^{\wedge}(2 * k-l)\right) * f=(2 `(2 * k-l)) *\left(2^{\wedge} l+1\right)\)
            using assms \(\langle f=2 \wedge l+1\rangle\) by simp
        have \(i i:\left(2^{\wedge}(2 * k-l)\right) * f=\left(2^{\wedge}(2 * k-l)\right) *(2 \wedge l)+(2 \wedge(2 * k-l))\)
            using \(i\) by simp
        have \(i i i:(2 ヘ(2 * k-l)) * f=(2 ヘ(2 * k-l+l))+(2 ヘ(2 * k-l))\)
            using \(i i\) by (simp add: power-add)
```



```
            using iii assms by simp
        have \(v:\left(\mathcal{L}^{〔}(2 * k-l)\right) * f * f=((2 \wedge(2 * k))) * f+\left(\left({ }^{2} \uparrow(2 * k-l)\right)\right) * f\)
    using iv assms comm-monoid-mult-axioms power2-eq-square semiring-normalization-rules(18)
                semiring-normalization-rules by (simp add: add-mult-distrib assms)
    show ?thesis using \(v\) by (simp add: power2-eq-square semiring-normalization-rules(18))
    qed
    have W1: 2 ^ \(k * p * q+2 ` k * r=2{ }^{\wedge} k *(p * q+r)\)
        by (simp add: add-mult-distrib2)
```



```
        using assms by simp
    have \(W 3: \mathscr{D}^{\wedge} k *\left(\left(2^{\wedge}(k-l) * f-1\right) *((2 \wedge k) * f-1)+(2 `(2 * k-l)) * f \wedge 2-1\right)=\)
2^k*((2^(k-l)*f-1)*((2^k)*f)-(2^(k-l)*f-1)+(2^(2*k-l))*f^2-1)
    by (simp add: right-diff-distrib')
    have \(W 4\) : 2^ \(k *((2 \wedge(k-l) * f-1) *((2 \wedge k) * f)-(2 \wedge(k-l) * f-1)+(2 \wedge(2 * k-l)) * f \wedge 2-1)\)
\(=\)
\(\mathcal{Z}^{\wedge} k *\left(\left(\mathcal{L}^{\wedge}(k-l) * f\right) *\left(\left(\mathcal{Z}^{\wedge} k\right) * f\right)-\left(\left(\mathcal{D}^{\wedge} k\right) * f\right)-\left(\mathcal{Z}^{\wedge}(k-l) * f-1\right)+\left(\mathcal{Z}^{\wedge}(2 * k-l)\right) * f\right.\) 2 -1\()\)
        using assms by (simp add: diff-mult-distrib)
```



```
\(=\)
```


using assms less-imp-le-nat prime-ge-1-nat
by (smt (verit) Nat.add-diff-assoc2 Nat.diff-diff-right One-nat-def W3 W4 add.commute add-diff-cancel-right'
add-diff-inverse-nat diff-is-0-eq le-add2 nat-mult-eq-cancel-disj one-le-mult-iff plus-1-eq-Suc)
have $W 6$: $\mathcal{R}^{\wedge} k *\left((2 \wedge(k-l) * f) *((2 \wedge k) * f)-\left(\left(\mathcal{R}^{\wedge} k\right) * f\right)-\left(\mathcal{R}^{\wedge}(k-l) * f\right)+1+(2 \wedge(2 * k-l)) * f^{\wedge} 2-1\right.$) $=$ $2 \wedge k *\left(\left(\right.\right.$ 2^ $\left.\left.^{\wedge}(k-l) * f\right) *((2 \wedge k) * f)-((2 \wedge k) * f)-(2 \wedge(k-l) * f)+(2 `(2 * k-l)) * f^{\wedge} 2\right)$
by simp
 $=$
$\mathfrak{Z}^{\wedge} k *\left(\left(\mathcal{Z}^{\wedge}(2 * k-l+1) *\left(f^{\wedge} 2\right)\right)-\left(\left(\mathbb{Z}^{\wedge} k\right) * f\right)-\left(\mathfrak{Z}^{\wedge}(k-l) * f\right)\right)$
proof-
have $a:\left(\mathcal{R}^{\wedge}(k-l) * f\right) *\left(\mathcal{R}^{\wedge} k * f\right)=\left(\mathcal{R}^{\wedge}(k-l) * f *\left(f *\left(\mathcal{R}^{\wedge} k\right)\right)\right)$
using assms by simp
have $b:\left(\mathcal{Z}^{\wedge}(k-l) * f\right) *\left(f *\left(\mathcal{D}^{\wedge} k\right)\right)=\mathcal{Z}^{\wedge}(k-l) *(f * f) *\left(\mathscr{R}^{\wedge} k\right)$ using assms by linarith
have $c:$: $` ~(k-l) *(f * f) *\left(\mathcal{Z}^{\wedge} k\right)=$ 2^ $(k-l+k) *(f \wedge 2)$
using Semiring-Normalization.comm-semiring-1-class.semiring-normalization-rules(16)
Semiring-Normalization.comm-semiring-1-class.semiring-normalization-rules(29) by (simp add: power-add)
have $d:$ 2^ $(k-l+k) *(f \wedge 2)=2 \wedge(2 * k-l) *(f$ ^2 $)$
by (simp add: JJ power-add)
have $e:\left(2^{\wedge}(2 * k-l)\right) * f^{\wedge} 2+\left(\mathscr{Z}^{\wedge}(2 * k-l)\right) * f^{\wedge} 2=2{ }^{2}(2 * k-l+1) *\left(f^{\wedge} 2\right)$
by simp
have $f 1$: $\left(\left(2^{\wedge}(k-l) * f\right) *((2 \wedge k) * f)-((2 \wedge k) * f)-(2 \wedge(k-l) * f)+(2 \wedge(2 * k-l)) * f\right.$ ^2 $)$
$=$
$\left(2 \wedge(2 * k-l) *\left(f^{\wedge} 2\right)-((2 \wedge k) * f)-(2 \wedge(k-l) * f)+(2 \wedge(2 * k-l)) * f\right.$ ^2 $)$
using $a b c d e$ by simp
have f2: ((2ヘ $(k-l) * f) *((2 \wedge k) * f)-((2 \wedge k) * f)-(2 `(k-l) * f))+(2 `(2 * k-l)) * f^{\wedge} 2$ $=\left(\left(2^{\wedge}(2 * k-l+1) *\left(f^{\wedge} 2\right)\right)-\left(\left(2^{\wedge} k\right) * f\right)-\left(2^{\wedge}(k-l) * f\right)\right)$
proof -
have aa: $f>1$ using assms by simp
have $a:((2:: n a t) \uparrow(2 * k-l)) * f^{\wedge} 2-((2:: n a t) \wedge(k-l) * f)>0$
proof -
have $b:(2:: n a t) \wedge(2 * k-l)>\mathcal{2}^{\wedge}(k-l)$ using assms by simp
have $c:(2:: n a t) \uparrow(2 * k-l) * f>\mathcal{2}^{\wedge}(k-l) * f$ using a assms
by (metis One-nat-def add-gr-0 b lessI mult-less-mono1)
show ?thesis
using c auxicalc by linarith
qed
have $a a a:(2 \wedge(2 * k-l)) * f{ }^{\wedge} 2-(2 \wedge(k-l) * f)-((2 \wedge k) * f)>0$
proof -
have $A:\left(\mathscr{2}^{\wedge}(2 * k-l)\right) * f-\left(\right.$ 2^^ $\left.^{\wedge}(k-l)\right)-\left(\left(\right.\right.$ 2^ $\left.\left.^{\wedge}\right)\right)>0$
proof-
have $A-1:\left(2^{\wedge}(2 * k-l)\right) * f>(2 \wedge(k-l))+\left(\left(2^{\wedge} k\right)\right)$
proof -
have A-2: $\left(\right.$ $\left.^{\wedge}(2 * k-l)\right) * f=$ 2^ $^{\wedge}(k) * \mathcal{D}^{\wedge}(k-l) * f$
by (metis JJ semiring-normalization-rules(7))
have df1: $\left(\mathcal{Z}^{\wedge}(k-l)\right)+\left(\left(\mathcal{R}^{\wedge} k\right)\right)<((2::$ nat $) \uparrow(2 * k-l))+\left(\left(\mathcal{Z}^{\wedge} k\right)\right)$
using $\langle l<k\rangle$ by (simp add: algebra-simps)
have df2: $((2:: n a t) \uparrow(2 * k-l))+\left(\left(\right.\right.$ 2^k $\left.\left.^{\wedge}\right)\right)<((2:: n a t) \uparrow(2 * k-l)) * f$
proof-
have $k>1$ using assms by simp
have $d f:((2:: n a t) \wedge(k-l))+(1:: n a t)<\left((2:: n a t)^{\wedge}(k-l)\right) * f$
proof-
obtain $x:: n a t$ where $x x: x=(2:: n a t) \uparrow(k-l)$ by simp
have $x x x: x \geq$ (2::nat) using assms $x x$
by (metis One-nat-def Suc-leI one-le-numeral power-increasing semiring-normalization-rules(33) zero-less-diff)
have $c: x * f \geq x *(2:: n a t)$ using $a a$ by simp
have $x+(1:: n a t)<x *(2::$ nat $)$
using auxiliary-ineq $x x x$ by linarith
then have $c \mathcal{2}:((2::$ nat $) \wedge(k-l))+1<\left(\mathbb{2}^{\wedge}(k-l)\right) * \mathcal{Z}$
using $x x$ by blast
show ?thesis using $c 2 c x x$
by (metis diff-is-0-eq' le-trans nat-less-le zero-less-diff)
qed
show ?thesis using df aa assms
by (smt (verit, del-insts) JJ add.commute mult.commute mult.left-commute mult-Suc-right mult-less-mono2 plus-1-eq-Suc zero-less-numeral zero-less-power)
qed
show ?thesis using $A-2$ df1 df2 by linarith
qed
show ?thesis using assms $A-1$
using diff-diff-left zero-less-diff by presburger
qed
show ?thesis using A aa assms
by (smt (verit, ccfv-threshold) JJ a c d diff-mult-distrib mult.assoc
mult.commute mult-less-cancel2)
qed
have b3: $\left(\left(2^{\wedge}(2 * k-l) *\left(f^{\wedge} 2\right)\right)-((2 \wedge k) * f)-(2 \wedge(k-l) * f)+(2 ヘ(2 * k-l)) * f^{\wedge} 2\right)=$ $\left(2 *\left(2 `(2 * k-l) *\left(f^{\wedge}\right.\right.\right.$ 2 $\left.)\right)-\left(\left(\right.\right.$ 2^k $\left.\left.\left.^{2}\right) * f\right)-\left(2^{2}(k-l) * f\right)\right)$
using aaa minus-eq-nat-subst-order by auto
show ?thesis using f1 by (metis b3 e mult-2)
qed
show ?thesis using f2 by simp
qed

proof -

by (simp add: algebra-simps)

by (simp add: algebra-simps)

```
    have c: 2^k*(2`(2*k-l+1)*f`2)-2^k*(2^k*f)-2^k*(2`(k-l)*f)=
2`(2*k+1-l+k)*f`2-2`k*(2`k*f)-2`k*(2`}(k-l)*f
            apply (simp add: algebra-simps power-add)
            using Suc-diff-le assms(1) by fastforce
```

have $d: \mathcal{Z}^{\wedge} k *\left(\mathcal{Z}^{\wedge}(2 * k-l+1) *\left(f^{\wedge} 2\right)\right)=\left(\mathcal{Z}^{\wedge}(3 * k+1-l)\right) * f^{\wedge} 2$
by (smt (verit, ccfv-threshold) J JJ Nat.add-diff-assoc assms(1) less-imp-le-nat mult.assoc mult.commute power-add)
 $(2 `(3 * k+1-l)) * f^{\wedge} 2-(2 \wedge k) *\left(\left(2^{\wedge} k\right) * f\right)-\left(2^{\wedge} k\right) *\left(2^{\wedge}(k-l) * f\right)$
using $a b c d$ One-nat-def one-le-mult-iff
Nat.add-diff-assoc assms(1) less-imp-le-nat by metis
have $e e: 2 \wedge k *\left((2 \wedge(2 * k-l+1) *(f\right.$ ~2 $\left.))-\left(\left(2^{\wedge} k\right) * f\right)-((2:: n a t) \wedge(k-l) * f)\right)$ $=\left(\mathcal{Z}^{\wedge}(3 * k+1-l)\right) * f^{\wedge} 2-\left(\mathcal{2}^{\wedge} k\right) *\left(\left(\mathcal{Z}^{\wedge} k\right) * f\right)-\left(\mathcal{Z}^{\wedge}(2 * k-l) * f\right)$
by (smt (verit) JJ a d mult.assoc mult.commute)
have eee :
$-((2:: n a t) \wedge(2 * k-l)) *\left(f^{\wedge}(2:: n a t)\right)=(-((2:: n a t) \wedge(2 * k)) * f-((2:: n a t) \uparrow(2 * k-l)) * f)$
by (smt (verit, ccfv-SIG) auxicalc mult-minus-left of-nat-add of-nat-mult)

proof -

define B where $B: B=(2 \wedge(3 * k+(1:: n a t)-l)) * f \wedge 2$
define C where $C: C=\left(2^{\wedge} k\right) *\left(\left(2^{\wedge} k\right) * f\right)$
define D where $D: D=(2 \wedge(2 * k-l) * f)$
define E where $E: E=(2 `(2 * k-l)) *(f$ ~2 $)$
have $w q$: $A=B-C-D$ using ee $A B C D$ by simp
have wq1: $-E=-C-D$ using eee $C D E$
by (simp add: semiring-normalization-rules(36))
have wq2: $A=B-E$ using wq wq1 minus-eq-nat-subst by blast
show ?thesis using wq2 A B E
by metis
qed
show ?thesis using ef by simp
qed

using W1 W2 W3 W4 W5 W6 W7 W8 by linarith
show ?thesis using $Y Y Y$ auxicalc by simp
qed
show ?thesis using Z Z1 Amicable-pair-equiv-def-conv assms One-nat-def one-le-mult-iff
one-le-numeral less-imp-le-nat one-le-power
by (metis prime-ge-1-nat)
qed

Another approach by Euler [2]:

```
theorem Euler-Rule-Amicable-1:
    fixes m n a :: nat
    assumes m\geq1 and n\geq1 and a\geq1
        and Esigma m=Esigma n and Esigma a*Esigma m=a*(m+n)
        and gcd a m=1 and gcd a n=1
        shows (a*m) Amic (a*n)
proof-
    have a: Esigma (a*m) =(Esigma a)*(Esigma m)
        using assms gcd-Esigma-mult by (simp add: mult.commute)
    have b: Esigma (a*m) = Esigma (a*n)
    proof-
        have c: Esigma }(a*n)=(\mathrm{ Esigma a })*(\mathrm{ Esigma n)
            using gcd-Esigma-mult <gcd a n=1 
            by (metis assms(4) a )
        show ?thesis using c a assms by simp
            qed
            have d: Esigma (a*m)=a*m+a*n
        using a assms by (simp add: add-mult-distrib2)
    show ?thesis using a b d Amicable-pair-equiv-def-conv assms by (simp add:
```


4 Thābit ibn Qurra's Rule and more examples

Euler's Rule (theorem Euler_Rule_Amicable) is actually a generalisation of the following rule by Thābit ibn Qurra from the 9th century [2]. Thābit ibn Qurra's Rule is the special case for $l=1$ thus $f=3$.

```
corollary Thabit-ibn-Qurra-Rule-Amicable:
    fixes klfpqr :: nat
    assumes k>1 and prime p and prime q and prime r
    and p=2^(k-1)*3-1 and q=2^k*3-1 and r=2^(2*k-1)*9 - 1
    shows ((2`k)*p*q) Amic ((2^k)*r)
proof -
    obtain l where l:l = (1::nat) by simp
    obtain f}\mathrm{ where f:f = (3::nat) by simp
    have k>l using l assms by simp
have }f=2`\1+1 using f by sim
have r=(2^(2*k-1))*(3^2)-1 using assms by simp
    show ?thesis using assms Euler-Rule-Amicable \langlef=2^1 +1\rangle
        < r=(2`(2*k-1))*(3`2) - 1> lf
        by (metis le-numeral-extra(4))
qed
```

In the following three example of amicable pairs, instead of evaluating the sum of the divisors or using the properties of Euler's sigma function as it was done in the previous examples, we prove amicability more directly as we can apply Thābit ibn Qurra's Rule.

The following is the first example of an amicable pair known to the Pythagoreans and can be derived from Thābit ibn Qurra's Rule with $k=2$ [2].

```
lemma Amicable-Example-Pythagoras:
    shows 220 Amic 284
proof-
    have a:(2::nat)>1 by simp
    have b: prime((3::nat)*(2`(2-1))-1) by simp
    have c: prime((3::nat)*(2`2)-1) by simp
    have d: prime ((9::nat)*(2`(2*2-1))-1) by simp
    have e: ((2^2)*(3*(2`(2-1))-1)*(3*(2`2)-1))Amic((2`2)*(9*(2` (2*2-1))-1))
        using Thabit-ibn-Qurra-Rule-Amicable a b c d
        by (metis mult.commute)
```

 have \(f:\left((2:: n a t)^{\wedge} 2\right) * 5 * 11=220\) by simp
 have \(g:\left((2:: n a t)^{\wedge} 2\right) * 71=284\) by \(\operatorname{simp}\)
 show ?thesis using ef \(g\) by simp

qed

The following example of an amicable pair was (re)discovered by Fermat and can be derived from Thābit ibn Qurra's Rule with $k=4$ [2].

```
lemma Amicable-Example-Fermat:
    shows 17296 Amic 18416
proof -
    have a:(4::nat)>1 by simp
    have b: prime ((3::nat)*(2`(4-1))-1) by simp
    have c: prime((3::nat)*(2^4)-1) by simp
    have d: prime (1151::nat) by (pratt (code))
    have e:(1151::nat) = 9*(2`(2*4-1))-1 by simp
    have f: prime((9::nat)*(2`(2*4-1))-1) using d e by metis
    have g: ((2^4)*(3*(2`(4-1))-1)*(3*(2^4)-1)) Amic((2^4)*(9*(2`(2*4-1))-1))
    using Thabit-ibn-Qurra-Rule-Amicable a b cf by (metis mult.commute)
    have h:((2::nat)^4)*23*47=17296 by simp
    have i:(((2::nat)^4)*1151)=18416 by simp
    show ?thesis using ghi by simp
qed
```

The following example of an amicable pair was (re)discovered by Descartes and can be derived from Thābit ibn Qurra's Rule with $k=7$ [2].
lemma Amicable-Example-Descartes:
shows 9363584 Amic 9437056
proof -
have $a:(7:: n a t)>1$ by simp
have b : prime (191::nat) by (pratt (code))
have $c:\left((3:: n a t) *\left({ }^{\wedge}(7-1)\right)-1\right)=191$ by simp
have $d: \operatorname{prime}\left((3:: n a t) *\left(2^{\wedge}(7-1)\right)-1\right)$ using $b c$ by metis
have e : prime (383::nat) by (pratt (code))
have $f:(3:: n a t) *\left(\mathbb{2}^{\wedge 7}\right)-1=383$ by simp
have g : prime $\left((3::\right.$ nat $\left.) *\left(2^{\wedge \gamma}\right)-1\right)$ using e f by metis
have h : prime (73727::nat) by (pratt (code))
have $i:(9::$ nat $) *\left(2^{\wedge}(2 * 7-1)\right)-1=73727$ by simp
have j : prime $((9:: n a t) *(2 `(2 * 7-1))-1)$ using $i h$ by metis
have $k:\left(\left(2^{\wedge} 7\right) *(3 *(2 `(7-1))-1) *\left(3 *\left(2^{\wedge} 7\right)-1\right)\right) \operatorname{Amic}\left(\left(\right.\right.$ 2 $\left.\left.^{\wedge} 7\right) *\left(9 *\left(2^{\wedge}(2 * 7-1)\right)-1\right)\right)$
using Thabit-ibn-Qurra-Rule-Amicable a $d g j$ by (metis mult.commute)
have $l:\left((2:: n a t)^{\wedge} 7\right) * 191 * 383=9363584$ by simp
have $m:\left(\left((2:: n a t)^{\wedge} 7\right) * 73727\right)=9437056$ by simp
show ?thesis using akl by simp
qed
In fact, the Amicable Pair $(220,284)$ is Regular and of type $(2,1)$:
lemma regularAmicPairExample: regularAmicPair $220284 \wedge$ typeAmic 220284 $=[2,1]$

```
proof -
    have a:220 Amic 284 using Amicable-Example-Pythagoras by simp
    have b: gcd (220::nat) (284::nat)=4 by eval
    have c:(220::nat) = 55*4 by simp
    have d:(284::nat) = 71*4 by simp
    have e: squarefree (55::nat) using squarefree-def by eval
    have f: squarefree (71::nat) using squarefree-def by eval
    have g: gcd (4::nat) (55::nat) =1 by eval
    have h:gcd (4::nat) (71::nat)=1 by eval
    have A: regularAmicPair 220 284
        by (simp add: a b e g f h gcd.commute regularAmicPair-def)
    have B:(card {i.\existsN.(220::nat)=N*(4::nat)\wedge prime i}\wedge idvd N\wedge\negi dv
4})=2
    proof
    obtain N::nat where N:(220::nat) = N*4
        by (metis c)
    have NN:N=55 using N by simp
    have K1: prime(5::nat) by simp
    have K2: prime(11::nat) by simp
    have KK2: \neg prime (55::nat) by simp
    have KK3: \neg prime (1::nat) by simp
    have K: set(divisors-nat 55 )={1,5,11,55} by eval
    have KK:{i. i dvd (55::nat)}={1,5,11,55}
        using K divisors-nat divisors-nat-def by auto
    have K3:\neg (5::nat) dvd 4 by simp
    have K4:\neg (11::nat) dvd 4 by simp
    have K55:(1::nat) }\not={i.prime i\wedgeidvd 55} using KK3 by sim
    have K56:(55::nat) }\not={i\mathrm{ . prime i^ idvd 55} using KK2 by simp
    have K57: (5::nat) \in{i.prime i}\wedgeidvd 55} using K1 by sim
    have K58:(11::nat) \in{i.prime i}\wedgei\mathrm{ dvd 55} using K2 by simp
    have K5: {i.( prime i\wedge idvd (55::nat) ^\neg idvd 4)}={5,11}
    proof -
            have K66: {i.(prime i ^idvd (55::nat) ^\negidvd 4)}=
{i.prime i}\cap{i.i dvd 55}\cap{i.\negidvd 4}
                by blast
            show ?thesis using K66 K K1 K2 KK2 KK3 K3 K4 KK K55 K56 K57 K58
divisors-nat-def
            divisors-nat by auto
        qed
        have K6: card ({(5::nat), (11::nat)}) = 2 by simp
        show ?thesis using K5 K6 by simp
    qed
    have C:(card {i.\existsN.(284::nat)=N*&^prime i\wedgeidvd N\wedge\negi \dvd 4})=
1
    proof -
```

```
    obtain N::nat where N:284=N*4
    by (metis d)
    have NN:N=71 using N by simp
    have K: set(divisors-nat 71 ) = {1,71 } by eval
    have KK:{i.i dvd (71::nat)}={1,71}
        using K divisors-nat divisors-nat-def by auto
    have K55:(1::nat) }\not{{i.prime i\wedgeidvd 71} by sim
    have K58: (71::nat) \in{i.prime i^i dvd 71} by simp
    have K5: {i.prime i}^ i dvd 71 ^ ᄀ i dvd 4} ={(71::nat)
    proof -
    have K66: {i. prime i}^i\mathrm{ dvd 71 ^ ᄀidvd 4}=
{i.prime i}\cap{i.idvd 71}\cap{i.\negidvd 4}
            by blast
    show ?thesis using K KK K55 K58
                by (auto simp add: divisors-nat-def K66 divisors-nat)
    qed
    have K6: card ({(71::nat)})=1 by simp
    show ?thesis using K5 K6 by simp
    qed
    show ?thesis using A B C
    by (simp add: typeAmic-def b)
qed
lemma abundant220ex: abundant-number 220
proof-
    have 220 Amic 284 using Amicable-Example-Pythagoras by simp
    moreover have (220::nat) < 284 by simp
    ultimately show ?thesis using Amicable-pair-abundant Amicable-pair-sym
        by blast
qed
lemma deficient284ex: deficient-number 284
proof-
    have 220 Amic 284 using Amicable-Example-Pythagoras by simp
    moreover have (220::nat) < 284 by simp
    ultimately show ?thesis using Amicable-pair-deficient Amicable-pair-sym
        by blast
qed
```


5 Te Riele's Rule and Borho's Rule with breeders

With the following rule [2] we can get an amicable pair from a known amicable pair under certain conditions.
theorem teRiele-Rule-Amicable:
fixes a uprcq:: nat
assumes $a \geq 1$ and $u \geq 1$
and prime p and prime r and prime c and prime q and $r \neq c$
and $\neg(p d v d a)$ and $(a * u)$ Amic $(a * p)$ and gcd $a(r * c)=1$
and $q=r+c+u$ and $g c d(a * u) q=1$ and $r * c=p *(r+c+u)+p+u$
shows $(a * u * q)$ Amic $(a * r * c)$

proof-

have $p+1>0$ using assms by simp
have $Z 1: r * c=p * q+p+u$ using assms by auto
have Z2: $(r+1) *(c+1)=(q+1) *(p+1)$
proof -
have $y:(q+1) *(p+1)=q * p+q+p+1$ by simp
have $y y:(r+1) *(c+1)=r * c+r+c+1$ by simp
show ?thesis using assms y Z1 yy by simp
qed
have $*: \operatorname{Esigma}(a)=(a *(u+p) /(p+1))$
proof-
have d: Esigma $(a * p)=($ Esigma $a) *($ Esigma $p)$
using assms gcd-Esigma-mult 〈prime $p\rangle\langle\neg(p d v d a)\rangle$
by (metis gcd-unique-nat prime-nat-iff)
have dd : Esigma $(a * p)=($ Esigma $a) *(p+1)$
using d assms prime-sum-div by simp
have ddd: Esigma $(a * p)=a *(u+p)$
using assms unfolding Amicable-pair-def
by (metis Esigma-properdiv-set One-nat-def add-mult-distrib2 one-le-mult-iff prime-ge-1-nat)
show ?thesis using d dd ddd Esigmanotzero assms(3) dvd-triv-right
nonzero-mult-div-cancel-right prime-nat-iff prime-sum-div real-of-nat-div
by (metis $\langle 0<p+1\rangle$ neq 0 -conv)
qed
have $\operatorname{Esigma}(r)=(r+1)$ using assms prime-sum-div by blast
have $\operatorname{Esigma}(c)=(c+1)$ using assms prime-sum-div by blast
have Esigma $(a * r * c)=($ Esigma $a) *($ Esigma $r) *($ Esigma $c)$
proof-
have h : Esigma $(a * r * c)=($ Esigma a $) *(E \operatorname{sigma}(r * c))$
using assms gcd-Esigma-mult
by (metis mult.assoc mult.commute)
have hh: Esigma $(r * c)=($ Esigma $r) *($ Esigma c) using assms prime-Esigma-mult
by (metis semiring-normalization-rules(7))
show ?thesis using h hh by auto
qed
have A: Esigma $(a * u * q)=$ Esigma $(a * r * c)$
proof-
have wk: Esigma $(a * u * q)=$ Esigma $(a * u) *(q+1)$
using assms gcd-Esigma-mult by (simp add: prime-sum-div)
have wk1: Esigma $(a * u)=a *(u+p)$ using assms unfolding Amicable-pair-equiv-def
by (metis Amicable-pair-def Esigma-properdiv-set Suc-eq-plus1 add.commute add-0 add-mult-distrib2 one-le-mult-iff)
have w3: Esigma $(a * u * q)=a *(u+p) *(q+1)$ using $w k$ wk1 by simp
have wh: Esigma $(a * r * c)=($ Esigma $a) *(r+1) *(c+1)$ using assms
by $($ simp add: $\langle E s i g m a ~(a * r * c)=$ Esigma $a *$ Esigma $r *$ Esigma $c\rangle\langle E s i g m a$ $c=c+1$ 〉

〈Esigma $r=r+1\rangle)$
have we: $a *(u+p) *(q+1)=($ Esigma $a) *(r+1) *(c+1)$
proof -
have (Esigma a) $*(r+1) *(c+1)=(a *(u+p) /(p+1)) *(r+1) *(c+1)$
by $($ metis \langle real $(E s i g m a ~ a)=\operatorname{real}(a *(u+p)) / \operatorname{real}(p+1)\rangle$ of-nat-mult)
then have (Esigma $a) *(r+1) *(c+1)=(a *(u+p) /(p+1)) *(q+1) *(p+1)$

using $Z 2$

by (metis of-nat-mult semiring-normalization-rules(18))
then show ?thesis using assms
apply (simp add: divide-simps)
by (metis (no-types, opaque-lifting) mult.commute mult-Suc of-nat-Suc of-nat-add of-nat-eq-iff of-nat-mult)
qed
show ?thesis using we w3 w4 by simp qed

```
have \(B\) : Esigma \((a * r * c)=(a * u * q)+(a * r * c)\)
```

proof-
have a1: $(u+p) *(q+1)=(u * q+p * q+p+u)$ using assms add-mult-distrib by auto
have $a 2$: $(u+p) *(q+1) *(p+1)=(u * q+p * q+p+u) *(p+1)$ using a1 assms by metis
have a3: $(u+p) *(r+1) *(c+1)=(u * q+p * q+p+u) *(p+1)$ using assms a2 Z2 by (metis semiring-normalization-rules(18))
have a_{4} : $a *(u+p) *(r+1) *(c+1)=a *(u * q+p * q+p+u) *(p+1)$ using assms a3
by (metis semiring-normalization-rules(18))
have $a 5: a *(u+p) *(r+1) *(c+1)=a *(u * q+r * c) *(p+1)$ using assms a\& Z1
by (simp add: semiring-normalization-rules(21))
have $a 6:(a *(u+p) *(r+1) *(c+1)) /(p+1)=(a *(u * q+r * c) *(p+1)) /(p+1)$ using assms a5
semiring-normalization-rules(21) $\langle p+1>0\rangle$ by auto
have $a 7:(a *(u+p) *(r+1) *(c+1)) /(p+1)=(a *(u * q+r * c))$ using assms a6 $\langle p+1>0\rangle$
by (metis neq0-conv nonzero-mult-div-cancel-right of-nat-eq-0-iff of-nat-mult)
have $a 8:(a *(u+p) /(p+1)) *(r+1) *(c+1)=a *(u * q+r * c)$ using assms a7 $\langle p+1$ >0 >
by (metis of-nat-mult times-divide-eq-left)
have a9: (Esigma a)*Esigma(r)*Esigma $(c)=a *(u * q+r * c)$ using a8 assms $\langle\operatorname{Esigma}(r)=(r+1)\rangle\langle\operatorname{Esigma}(c)=(c+1)\rangle$

```
        by (metis<real (Esigma a) = real (a*(u+p))/real(p+1)>of-nat-eq-iff
of-nat-mult)
    have a10: Esigma(a*r*c)=a*(u*q+r*c) using a9 assms
            Esigma }(a*r*c)=(\mathrm{ Esigma a)*(Esigma r )*(Esigma c)> by simp
    show ?thesis using a10 assms
        by (simp add: add-mult-distrib2 mult.assoc)
    qed
    show ?thesis
    using assms by (metis A B One-nat-def one-le-mult-iff Amicable-pair-equiv-def-conv
prime-ge-1-nat)
    qed
```

By replacing the assumption that $(a * u)$ Amic $(a * p)$ in the above rule by te Riele with the assumption that $(a * u)$ breeder u, we obtain Borho's Rule with breeders [2].
theorem Borho-Rule-breeders-Amicable:

fixes a urc $q x$:: nat

assumes $x \geq 1$ and $a \geq 1$ and $u \geq 1$
and prime r and prime c and prime q and $r \neq c$
and Esigma $(a * u)=a * u+a * x$ Esigma $(a * u)=($ Esigma $a) *(x+1)$ and $g c d$ $a(r * c)=1$
and $g c d(a * u) q=1$ and $r * c=x+u+x * u+r * x+x * c$ and $q=r+c+u$ shows $(a * u * q)$ Amic $(a * r * c)$

proof-

have a: $\operatorname{Esigma}(a * u * q)=\operatorname{Esigma}(a * u) * \operatorname{Esigma}(q)$ using assms gcd-Esigma-mult by simp
have a1: Esigma $(a * r * c)=(E s i g m a \quad a) * \operatorname{Esigma}(r * c)$ using assms gcd-Esigma-mult by (metis mult.assoc mult.commute)
have a2: $\operatorname{Esigma}(a * r * c)=($ Esigma $a) *(r+1) *(c+1)$ using a1 assms by (metis mult.commute mult.left-commute prime-Esigma-mult prime-sum-div)
have A: Esigma $(a * u * q)=\operatorname{Esigma}(a * r * c)$
proof-
have d: $\operatorname{Esigma}(a) *(r+1) *(c+1)=\operatorname{Esigma}(a * u) *(q+1)$ proof-
have $d 1:(r+1) *(c+1)=(x+1) *(q+1)$
proof-
have $c e:(r+1) *(c+1)=r * c+r+c+1$ by simp
have ce1: $(r+1) *(c+1)=x+u+x * u+r * x+x * c+r+c+1$
using ce assms by simp
have de: $(x+1) *(q+1)=x * q+1+x+q$ by simp
have de1: $(x+1) *(q+1)=x *(r+c+u)+1+x+r+c+u$
using assms de by simp
show ?thesis using de1 ce1 add-mult-distrib2 by auto qed

```
        show ?thesis using d1 assms
            by (metis semiring-normalization-rules(18))
        qed
        show ?thesis using d a2
        by (simp add: a assms(6) prime-sum-div)
    qed
    have B: Esigma (a*u*q) =a*u*q+a*r*c
    proof-
        have Esigma (a*u*q) = Esigma(a*u)*(q+1)
            using a assms
            by (simp add: prime-sum-div)
        with assms have Esigma (a*u*q) = (a*u+a*x)*(q+1)
            by auto
        with assms have Esigma (a*u*q) = a*u*q+a*u+a*x*q+a*x
            using add-mult-distrib by simp
        with assms show ?thesis
        by (simp add: distrib-left mult.commute mult.left-commute)
    qed
    show ?thesis using A B assms
    using Amicable-pair-equiv-def-conv prime-ge-1-nat by force
qed
no-notation divisor (infixr divisor 80)
```


6 Acknowledgements

The author was supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council and led by Professor Lawrence Paulson at the University of Cambridge, UK. Many thanks to Lawrence Paulson for his help and suggestions. Number divisors were initially looked up on https://onlinemathtools.com/find-all-divisors.
end

References

[1] E. Escott. Amicable numbers. Scripta Mathematica, 12:61-72, 1946.
[2] M. García, J. Pedersen, and H. te Riele. Amicable pairs, a survey. REPORT MAS-R0307, 2003.
[3] M. García, J. Pedersen, and H. te Riele. Amicable pairs, a survey. Fields Institute Communications, 41:1-19, 2004.
[4] E. Sandifer. Amicable pairs. 2005. How Euler Did It, The Euler Archive.
[5] Wikipedia. Aliquot sum. https://en.wikipedia.org/wiki/Aliquot_sum, 2020.
[6] Wikipedia. Amicable numbers. https://en.wikipedia.org/wiki/Amicable_numbers, 2020.
[7] Wikipedia. Betrothed numbers.
https://en.wikipedia.org/wiki/Betrothed_numbers, 2020.

