(** Valuation3 author Hidetsune Kobayashi Group You Santo Department of Mathematics Nihon University h_coba@math.cst.nihon-u.ac.jp June 24, 2005 July 20, 2007 chapter 1. elementary properties of a valuation section 9. completion subsection Hensel's theorem **) theory Valuation3 imports Valuation2 begin section "Completion" text{* In this section we formalize "completion" of the ground field K *} constdefs (structure K) limit ::"[_, 'b => ant, nat => 'b, 'b] => bool" ("(4lim _ _ _ _)" [90,90,90,91]90) "limK v f b == ∀N. ∃M. (∀n. M < n --> ((f n) ± (-a b)) ∈ (vp K v) (Vr K v) (an N))" (* In this definition, f represents a sequence of elements of K, which is converging to b. Key lemmas of this section are n_value_x_1 and n_value_x_2 *) lemma not_in_singleton_noneq:"x ∉ {a} ==> x ≠ a" apply simp done (* later move this lemma to Algebra1 *) lemma noneq_not_in_singleton:"x ≠ a ==> x ∉ {a}" apply simp done lemma inf_neq_1[simp]:"∞ ≠ 1" by (simp only:ant_1[THEN sym], rule z_neq_inf[THEN not_sym, of 1]) lemma a1_neq_0[simp]:"(1::ant) ≠ 0" by (simp only:an_1[THEN sym], simp only:an_0[THEN sym], subst aneq_natneq[of 1 0], simp) lemma a1_poss[simp]:"(0::ant) < 1" by (cut_tac zposs_aposss[of 1], simp) lemma a_p1_gt[simp]:"[|a ≠ ∞; a ≠ -∞|] ==> a < a + 1" apply (cut_tac aadd_poss_less[of a 1], simp add:aadd_commute, assumption+) apply simp done lemma (in Corps) vpr_pow_inter_zero:"valuation K v ==> (\<Inter> {I. ∃n. I = (vp K v)(Vr K v) (an n)}) = {\<zero>}" apply (frule Vr_ring[of v], frule vp_ideal[of v]) apply (rule equalityI) defer apply (rule subsetI) apply simp apply (rule allI, rule impI, erule exE, simp) apply (cut_tac n = "an n" in vp_apow_ideal[of v], assumption+) apply simp apply (cut_tac I = "(vp K v) (Vr K v) (an n)" in Ring.ideal_zero[of "Vr K v"], assumption+) apply (simp add:Vr_0_f_0) apply (rule subsetI, simp) apply (rule contrapos_pp, simp+) apply (subgoal_tac "x ∈ vp K v") prefer 2 apply (drule_tac a = "vp K v (Vr K v) (an 1)" in forall_spec1) apply (subgoal_tac "∃n. vp K v (Vr K v) (an (Suc 0)) = vp K v (Vr K v) (an n)", simp, thin_tac " ∃n. vp K v (Vr K v) (an (Suc 0)) = vp K v (Vr K v) (an n)") apply (simp add:r_apow_def an_def) apply (simp only:na_1) apply (simp only:Ring.idealpow_1_self[of "Vr K v" "vp K v"]) apply blast apply (frule n_val_valuation[of v]) apply (frule_tac x = x in val_nonzero_z[of "n_val K v"], frule_tac h = x in Ring.ideal_subset[of "Vr K v" "vp K v"], assumption+, simp add:Vr_mem_f_mem, assumption+) apply ( frule_tac h = x in Ring.ideal_subset[of "Vr K v" "vp K v"], simp add:Vr_mem_f_mem, assumption+) apply (cut_tac x = x in val_pos_mem_Vr[of v], assumption) apply( simp add:Vr_mem_f_mem, simp) apply (frule_tac x = x in val_pos_n_val_pos[of v], simp add:Vr_mem_f_mem, simp) apply (cut_tac x = "n_val K v x" and y = 1 in aadd_pos_poss, assumption+, simp) apply (frule_tac y = "n_val K v x + 1" in aless_imp_le[of 0]) apply (cut_tac x1 = x and n1 = "(n_val K v x) + 1" in n_val_n_pow[THEN sym, of v], assumption+) apply (drule_tac a = "vp K v (Vr K v) (n_val K v x + 1)" in forall_spec) apply (erule exE, simp) apply (simp only:ant_1[THEN sym] a_zpz, cut_tac z = "z + 1" in z_neq_inf) apply (subst an_na[THEN sym], assumption+, blast) apply simp apply (cut_tac a = "n_val K v x" in a_p1_gt) apply (erule exE, simp only:ant_1[THEN sym], simp only:a_zpz z_neq_inf) apply (cut_tac i = "z + 1" and j = z in ale_zle, simp) apply (erule exE, simp add:z_neq_minf) apply (cut_tac y1 = "n_val K v x" and x1 = "n_val K v x + 1" in aneg_le[THEN sym], simp) done lemma (in Corps) limit_diff_n_val:"[|b ∈ carrier K; ∀j. f j ∈ carrier K; valuation K v|] ==> (limK v f b) = (∀N. ∃M. ∀n. M < n --> (an N) ≤ (n_val K v ((f n) ± (-a b))))" apply (rule iffI) apply (rule allI) apply (simp add:limit_def) apply (rotate_tac -1) apply (drule_tac m = N in nat_forall_spec) apply (erule exE) apply (subgoal_tac "∀n>M. (an N) ≤ (n_val K v (f n ± (-a b)))") apply blast apply (rule allI, rule impI) apply (rotate_tac -2) apply (drule_tac m = n in nat_forall_spec, simp) apply (rule n_value_x_1[of v], assumption+, simp add:an_nat_pos, assumption) apply (simp add:limit_def) apply (rule allI, rotate_tac -1, drule_tac m = N in nat_forall_spec) apply (erule exE) apply (subgoal_tac "∀n>M. f n ± (-a b) ∈ vp K v (Vr K v) (an N)") apply blast apply (rule allI, rule impI) apply (rotate_tac -2, drule_tac m = n in nat_forall_spec, simp) apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"]) apply (rule_tac x = "f n ± -a b" and n = "an N" in n_value_x_2[of "v"], assumption+) apply (subst val_pos_mem_Vr[THEN sym, of "v"], assumption+) apply (drule_tac m = n in nat_forall_spec) apply (rule aGroup.ag_pOp_closed[of "K"], assumption+) apply (simp add:aGroup.ag_mOp_closed) apply (subst val_pos_n_val_pos[of "v"], assumption+) apply (rule aGroup.ag_pOp_closed, assumption+) apply simp apply (simp add:aGroup.ag_mOp_closed) apply (rule_tac j = "an N" and k = "n_val K v ( f n ± -a b)" in ale_trans[of "0"], simp, assumption+) apply simp done lemma (in Corps) an_na_Lv:"valuation K v ==> an (na (Lv K v)) = Lv K v" apply (frule Lv_pos[of "v"]) apply (frule aless_imp_le[of "0" "Lv K v"]) apply (frule apos_neq_minf[of "Lv K v"]) apply (frule Lv_z[of "v"], erule exE) apply (rule an_na) apply (rule contrapos_pp, simp+) done lemma (in Corps) limit_diff_val:"[|b ∈ carrier K; ∀j. f j ∈ carrier K; valuation K v|] ==> (limK v f b) = (∀N. ∃M. ∀n. M < n --> (an N) ≤ (v ((f n) ± (-a b))))" apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], simp add:limit_diff_n_val[of "b" "f" "v"]) apply (rule iffI) apply (rule allI, rotate_tac -1, drule_tac m = N in nat_forall_spec, erule exE) apply (subgoal_tac "∀n > M. an N ≤ v( f n ± -a b)", blast) apply (rule allI, rule impI) apply (drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec, simp) apply (frule aGroup.ag_mOp_closed[of "K" "b"], assumption+, frule_tac x = "f n" and y = "-a b" in aGroup.ag_pOp_closed, assumption+) apply (frule_tac x = "f n ± -a b" in n_val_le_val[of "v"], assumption+) apply (cut_tac n = N in an_nat_pos) apply (frule_tac j = "an N" and k = "n_val K v ( f n ± -a b)" in ale_trans[of "0"], assumption+) apply (subst val_pos_n_val_pos, assumption+) apply (rule_tac i = "an N" and j = "n_val K v ( f n ± -a b)" and k = "v ( f n ± -a b)" in ale_trans, assumption+) apply (rule allI) apply (rotate_tac 3, drule_tac m = "N * (na (Lv K v))" in nat_forall_spec) apply (erule exE) apply (subgoal_tac "∀n. M < n --> (an N) ≤ n_val K v (f n ± -a b)", blast) apply (rule allI, rule impI) apply (rotate_tac -2, drule_tac m = n in nat_forall_spec, simp) apply (drule_tac m = n in nat_forall_spec) apply (frule aGroup.ag_mOp_closed[of "K" "b"], assumption+, frule_tac x = "f n" and y = "-a b" in aGroup.ag_pOp_closed, assumption+) apply (cut_tac n = "N * na (Lv K v)" in an_nat_pos) apply (frule_tac i = 0 and j = "an (N * na (Lv K v))" and k = "v ( f n ± -a b)" in ale_trans, assumption+) apply (simp add:amult_an_an, simp add:an_na_Lv) apply (frule Lv_pos[of "v"]) apply (frule_tac x1 = "f n ± -a b" in n_val[THEN sym, of v], assumption+, simp) apply (frule Lv_z[of v], erule exE, simp) apply (simp add:amult_pos_mono_r) done text{* uniqueness of the limit is derived from vp_pow_inter_zero *} lemma (in Corps) limit_unique:"[|b ∈ carrier K; ∀j. f j ∈ carrier K; valuation K v; c ∈ carrier K; limK v f b; limK v f c|] ==> b = c" apply (rule contrapos_pp, simp+, simp add:limit_def, cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], simp add:aGroup.ag_neq_diffnonzero[of "K" "b" "c"], frule vpr_pow_inter_zero[THEN sym, of v], frule noneq_not_in_singleton[of "b ± -a c" "\<zero>"]) apply simp apply (rotate_tac -1, erule exE, erule conjE) apply (erule exE, simp, thin_tac "x = (vp K v)(Vr K v) (an n)") apply (rotate_tac 3, drule_tac m = n in nat_forall_spec, erule exE, drule_tac m = n in nat_forall_spec, erule exE) apply (rename_tac x N M1 M2) apply (subgoal_tac "M1 < Suc (max M1 M2)", subgoal_tac "M2 < Suc (max M1 M2)", drule_tac m = "Suc (max M1 M2)" in nat_forall_spec, drule_tac m = "Suc (max M1 M2)" in nat_forall_spec, drule_tac m = "Suc (max M1 M2)" in nat_forall_spec) apply simp (* We see (f (Suc (max xb xc)) +K -K b) +K (-K (f (Suc (max xb xc)) +K -K c)) ∈ vpr K G a i v ♦Vr K G a i v xa" *) apply (frule_tac n = "an N" in vp_apow_ideal[of "v"], frule_tac x = "f (Suc (max M1 M2)) ± -a b" and N = "an N" in mem_vp_apow_mem_Vr[of "v"], simp, frule Vr_ring[of "v"], simp, simp) apply (frule Vr_ring[of "v"], frule_tac I = "vp K v(Vr K v) (an N)" and x = "f (Suc (max M1 M2)) ± -a b" in Ring.ideal_inv1_closed[of "Vr K v"], assumption+) (** mOp of Vring and that of K is the same **) apply (frule_tac I = "vp K v(Vr K v) (an N)" and h = "f (Suc (max M1 M2)) ± -a b" in Ring.ideal_subset[of "Vr K v"], assumption+) apply (simp add:Vr_mOp_f_mOp, cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule aGroup.ag_mOp_closed[of "K" "b"], assumption+, simp add:aGroup.ag_p_inv, simp add:aGroup.ag_inv_inv) (** addition of -K f (Suc (max xb xc)) +K b and f (Suc (max xb xc)) +K -K c is included in vpr K G a i v ♦(Vr K G a i v) xa **) apply (frule_tac I = "vp K v(Vr K v) (an N)" and x = "-a (f (Suc (max M1 M2))) ± b " and y = "f (Suc (max M1 M2)) ± (-a c)" in Ring.ideal_pOp_closed[of "Vr K v"], assumption+) apply (frule_tac x = "f (Suc (max M1 M2)) ± -a c" and N = "an N" in mem_vp_apow_mem_Vr[of v], simp, assumption, frule_tac x = "-a (f (Suc (max M1 M2))) ± b" and N = "an N" in mem_vp_apow_mem_Vr[of "v"], simp, simp add:Vr_pOp_f_pOp, simp add:Vr_pOp_f_pOp, frule aGroup.ag_mOp_closed[of "K" "c"], assumption+, frule_tac x = "f (Suc (max M1 M2))" in aGroup.ag_mOp_closed[of "K"], assumption+, frule_tac x = "f (Suc (max M1 M2))" and y = "-a c" in aGroup.ag_pOp_closed[of "K"], assumption+) apply (simp add:aGroup.ag_pOp_assoc[of "K" _ "b" _], simp add:aGroup.ag_pOp_assoc[THEN sym, of "K" "b" _ "-a c"], simp add:aGroup.ag_pOp_commute[of "K" "b"], simp add:aGroup.ag_pOp_assoc[of "K" _ "b" "-a c"], frule aGroup.ag_pOp_closed[of "K" "b" "-a c"], assumption+, simp add:aGroup.ag_pOp_assoc[THEN sym, of "K" _ _ "b ± -a c"], simp add:aGroup.ag_l_inv1, simp add:aGroup.ag_l_zero) apply (simp add:aGroup.ag_pOp_commute[of "K" _ "b"]) apply arith apply arith done (** The following lemma will be used to prove lemma limit_t. This lemma and them next lemma show that the valuation v is continuous (see lemma n_val **) lemma (in Corps) limit_n_val:"[|b ∈ carrier K; b ≠ \<zero>; valuation K v; ∀j. f j ∈ carrier K; limK v f b|] ==> ∃N. (∀m. N < m --> (n_val K v) (f m) = (n_val K v) b)" apply (simp add:limit_def) apply (frule n_val_valuation[of "v"]) apply (frule val_nonzero_z[of "n_val K v" "b"], assumption+, erule exE, rename_tac L) apply (rotate_tac -3, drule_tac m = "nat (abs L + 1)" in nat_forall_spec) apply (erule exE, rename_tac M) (* |L| + 1 ≤ (n_val K v ( f n +K -K b)). *) apply (subgoal_tac "∀n. M < n --> n_val K v (f n) = n_val K v b", blast) apply (rule allI, rule impI) apply (rotate_tac -2, drule_tac m = n in nat_forall_spec, simp) apply (frule_tac x = "f n ± -a b" and n = "an (nat (¦L¦ + 1))" in n_value_x_1[of "v"], thin_tac "f n ± -a b ∈ vp K v(Vr K v) (an (nat (¦L¦ + 1)))") apply (simp add:an_def) apply (subgoal_tac "0 ≤ ¦L¦ + 1", simp) apply (simp add:zpos_apos) apply arith apply assumption apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"]) apply (frule aGroup.ag_mOp_closed[of "K" "b"], assumption+) apply (drule_tac m = n in nat_forall_spec, frule_tac x = "f n" in aGroup.ag_pOp_closed[of "K" _ "-a b"], assumption+, frule_tac x = "b" and y = "(f n) ± (-a b)" in value_less_eq[of "n_val K v"], assumption+) apply simp apply (rule_tac x = "ant L" and y = "an (nat (¦L¦ + 1))" and z = "n_val K v ( f n ± -a b)" in aless_le_trans) apply (subst an_def) apply (subst aless_zless) apply arith apply assumption+ apply (simp add:aGroup.ag_pOp_commute[of "K" "b"]) apply (simp add:aGroup.ag_pOp_assoc) apply (simp add:aGroup.ag_l_inv1) apply (simp add:aGroup.ag_r_zero) done lemma (in Corps) limit_val:"[|b ∈ carrier K; b ≠ \<zero>; ∀j. f j ∈ carrier K; valuation K v; limK v f b|] ==> ∃N. (∀n. N < n --> v (f n) = v b)" apply (frule limit_n_val[of "b" "v" "f"], assumption+) apply (erule exE) apply (subgoal_tac "∀m. N < m --> v (f m) = v b") apply blast apply (rule allI, rule impI) apply (drule_tac m = m in nat_forall_spec) apply (drule_tac m = m in nat_forall_spec) apply simp apply (frule Lv_pos[of "v"]) apply (simp add:n_val[THEN sym, of "v"]) done lemma (in Corps) limit_val_infinity:"[|valuation K v; ∀j. f j ∈ carrier K; limK v f \<zero>|] ==> ∀N.(∃M. (∀m. M < m --> (an N) ≤ (n_val K v (f m))))" apply (simp add:limit_def) apply (rule allI) apply (drule_tac m = N in nat_forall_spec, erule exE) apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], simp only:aGroup.ag_inv_zero[of "K"], simp only:aGroup.ag_r_zero) apply (subgoal_tac "∀n. M < n --> an N ≤ n_val K v (f n)", blast) apply (rule allI, rule impI) apply (drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec, simp) apply (simp add:n_value_x_1) done lemma (in Corps) not_limit_zero:"[|valuation K v; ∀j. f j ∈ carrier K; ¬ (limK v f \<zero>)|] ==> ∃N.(∀M. (∃m. (M < m) ∧ ((n_val K v) (f m)) < (an N)))" apply (simp add:limit_def) apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"]) apply (simp add:aGroup.ag_inv_zero aGroup.ag_r_zero) apply (erule exE) apply (case_tac "N = 0", simp add:r_apow_def) apply (subgoal_tac "∀M. ∃n. M < n ∧ n_val K v (f n) < (an 0)") apply blast apply (rule allI, rotate_tac 4, frule_tac m = M in nat_forall_spec, erule exE, erule conjE) apply (frule_tac x1 = "f n" in val_pos_mem_Vr[THEN sym, of "v"]) apply simp apply simp apply (frule_tac x = "f n" in val_pos_n_val_pos[of "v"]) apply simp apply simp apply (thin_tac "¬ 0 ≤ v (f n)") apply (simp add:aneg_le) apply blast apply (simp) apply (subgoal_tac "∀n. ((f n) ∈ vp K v (Vr K v) (an N)) = ((an N) ≤ n_val K v (f n))") apply simp apply (thin_tac "∀n. (f n ∈ vp K v (Vr K v) (an N)) = (an N ≤ n_val K v (f n))") apply (simp add:aneg_le) apply blast apply (rule allI) apply (thin_tac "∀M. ∃n. M < n ∧ f n ∉ vp K v (Vr K v) (an N)") apply (rule iffI) apply (frule_tac x1 = "f n" and n1 = "an N" in n_val_n_pow[THEN sym, of v]) apply (rule_tac N = "an N" and x = "f n" in mem_vp_apow_mem_Vr[of v], assumption+, simp, assumption, simp, simp) apply (frule_tac x = "f n" and n = "an N" in n_val_n_pow[of "v"]) apply (frule_tac x1 = "f n" in val_pos_mem_Vr[THEN sym, of "v"]) apply simp apply (cut_tac n = N in an_nat_pos) apply (frule_tac j = "an N" and k = "n_val K v (f n)" in ale_trans[of "0"], assumption+) apply (frule_tac x1 = "f n" in val_pos_n_val_pos[THEN sym, of "v"]) apply simp+ done lemma (in Corps) limit_p:"[|valuation K v; ∀j. f j ∈ carrier K; ∀j. g j ∈ carrier K; b ∈ carrier K; c ∈ carrier K; limK v f b; limK v g c|] ==> limK v (λj. (f j) ± (g j)) (b ± c)" apply (simp add:limit_def) apply (rule allI) apply (rotate_tac 3, drule_tac m = N in nat_forall_spec, drule_tac m = N in nat_forall_spec, (erule exE)+) apply (frule_tac x = M and y = Ma in two_inequalities, simp, subgoal_tac "∀n > (max M Ma). (f n) ± (g n) ± -a (b ± c) ∈ (vp K v)(Vr K v) (an N)") apply (thin_tac "∀n. Ma < n --> g n ± -a c ∈ (vp K v)(Vr K v) (an N)", thin_tac "∀n. M < n --> f n ± -a b ∈(vp K v)(Vr K v) (an N)", blast) apply (frule Vr_ring[of v], frule_tac n = "an N" in vp_apow_ideal[of v]) apply simp apply (rule allI, rule impI) apply (thin_tac "∀n>M. f n ± -a b ∈ vp K v (Vr K v) (an N)", thin_tac "∀n>Ma. g n ± -a c ∈ vp K v (Vr K v) (an N)", frule_tac I = "vp K v(Vr K v) (an N)" and x = "f n ± -a b" and y = "g n ± -a c" in Ring.ideal_pOp_closed[of "Vr K v"], assumption+, simp, simp) apply (frule_tac I = "vp K v(Vr K v) (an N)" and h = "f n ± -a b" in Ring.ideal_subset[of "Vr K v"], assumption+, simp, frule_tac I = "vp K v(Vr K v) (an N)" and h = "g n ± -a c" in Ring.ideal_subset[of "Vr K v"], assumption+, simp) apply (simp add:Vr_pOp_f_pOp) apply (thin_tac "f n ± -a b ∈ carrier (Vr K v)", thin_tac "g n ± -a c ∈ carrier (Vr K v)") apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule aGroup.ag_mOp_closed[of "K" "b"], assumption+, frule aGroup.ag_mOp_closed[of "K" "c"], assumption+, frule_tac a = "f n" and b = "-a b" and c = "g n" and d = "-a c" in aGroup.ag_add4_rel[of "K"], simp+) apply (simp add:aGroup.ag_p_inv[THEN sym]) done lemma (in Corps) Abs_ant_abs[simp]:"Abs (ant z) = ant (abs z)" apply (simp add:Abs_def, simp add:aminus) apply (simp only:ant_0[THEN sym], simp only:aless_zless) apply (simp add:zabs_def) done lemma (in Corps) limit_t_nonzero:"[|valuation K v; ∀(j::nat). (f j) ∈ carrier K; ∀(j::nat). g j ∈ carrier K; b ∈ carrier K; c ∈ carrier K; b ≠ \<zero>; c ≠ \<zero>; limK v f b; limK v g c|] ==> limK v (λj. (f j) ·r (g j)) (b ·r c)" apply (cut_tac field_is_ring, simp add:limit_def, rule allI) apply (subgoal_tac "∀j. (f j) ·r (g j) ± -a (b ·r c) = ((f j) ·r (g j) ± (f j) ·r (-a c)) ± ((f j) ·r c ± -a (b ·r c))", simp, thin_tac "∀j. f j ·r g j ± -a b ·r c = f j ·r g j ± f j ·r (-a c) ± (f j ·r c ± -a b ·r c)") apply (frule limit_n_val[of "b" "v" "f"], assumption+, simp add:limit_def) apply (frule n_val_valuation[of "v"]) apply (frule val_nonzero_z[of "n_val K v" "b"], assumption+, rotate_tac -1, erule exE, frule val_nonzero_z[of "n_val K v" "c"], assumption+, rotate_tac -1, erule exE, rename_tac N bz cz) apply (rotate_tac 5, drule_tac m = "N + nat (abs cz)" in nat_forall_spec, drule_tac m = "N + nat (abs bz)" in nat_forall_spec) apply (erule exE)+ apply (rename_tac N bz cz M M1 M2) (** three inequalities together **) apply (subgoal_tac "∀n. (max (max M1 M2) M) < n --> (f n) ·r (g n) ± (f n) ·r (-a c) ± ((f n) ·r c ± (-a (b ·r c))) ∈ vp K v (Vr K v) (an N)", blast) apply (rule allI, rule impI) apply (simp, (erule conjE)+) apply (rotate_tac 11, drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec, simp, drule_tac m = n in nat_forall_spec, simp) apply (frule_tac b = "g n ± -a c" and n = "an N" and x = "f n" in convergenceTr1[of v]) apply simp apply simp apply (simp add:an_def a_zpz[THEN sym]) apply simp apply (frule_tac b = "f n ± -a b" and n = "an N" in convergenceTr1[of "v" "c"], assumption+, simp) apply (simp add:an_def) apply (simp add:a_zpz[THEN sym]) apply simp apply (drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec) apply (simp add:Ring.ring_inv1_1[of "K" "b" "c"], cut_tac Ring.ring_is_ag, frule aGroup.ag_mOp_closed[of "K" "c"], assumption+, simp add:Ring.ring_distrib1[THEN sym], frule aGroup.ag_mOp_closed[of "K" "b"], assumption+, simp add:Ring.ring_distrib2[THEN sym], subst Ring.ring_tOp_commute[of "K" _ "c"], assumption+, rule aGroup.ag_pOp_closed, assumption+) apply (cut_tac n = N in an_nat_pos) apply (frule_tac n = "an N" in vp_apow_ideal[of "v"], assumption+) apply (frule Vr_ring[of "v"]) apply (frule_tac x = "(f n) ·r (g n ± -a c)" and y = "c ·r (f n ± -a b)" and I = "vp K v (Vr K v) (an N)" in Ring.ideal_pOp_closed[of "Vr K v"], assumption+) apply (frule_tac R = "Vr K v" and I = "vp K v (Vr K v) (an N)" and h = "(f n) ·r (g n ± -a c)" in Ring.ideal_subset, assumption+, frule_tac R = "Vr K v" and I = "vp K v (Vr K v) (an N)" and h = "c ·r (f n ± -a b)" in Ring.ideal_subset, assumption+) apply (simp add:Vr_pOp_f_pOp, assumption+) apply (rule allI) apply (thin_tac "∀N. ∃M. ∀n>M. f n ± -a b ∈ vp K v (Vr K v) (an N)", thin_tac "∀N. ∃M. ∀n>M. g n ± -a c ∈ vp K v (Vr K v) (an N)") apply (drule_tac m = j in nat_forall_spec, drule_tac m = j in nat_forall_spec, cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule_tac x = "f j" and y = "g j" in Ring.ring_tOp_closed, assumption+, frule_tac x = "b" and y = "c" in Ring.ring_tOp_closed, assumption+, frule_tac x = "f j" and y = "c" in Ring.ring_tOp_closed, assumption+, frule_tac x = c in aGroup.ag_mOp_closed[of "K"], assumption+, frule_tac x = "f j" and y = "-a c" in Ring.ring_tOp_closed, assumption+, frule_tac x = "b ·r c" in aGroup.ag_mOp_closed[of "K"], assumption+) apply (subst aGroup.pOp_assocTr41[THEN sym, of "K"], assumption+, subst aGroup.pOp_assocTr42[of "K"], assumption+, subst Ring.ring_distrib1[THEN sym, of "K"], assumption+) apply (simp add:aGroup.ag_l_inv1, simp add:Ring.ring_times_x_0, simp add:aGroup.ag_r_zero) done lemma an_npn[simp]:"an (n + m) = an n + an m" by (simp add:an_def a_zpz) (** move **) lemma Abs_noninf:"a ≠ -∞ ∧ a ≠ ∞ ==> Abs a ≠ ∞" by (cut_tac mem_ant[of "a"], simp, erule exE, simp add:Abs_def, simp add:aminus) lemma (in Corps) limit_t_zero:"[|c ∈ carrier K; valuation K v; ∀(j::nat). f j ∈ carrier K; ∀(j::nat). g j ∈ carrier K; limK v f \<zero>; limK v g c|] ==> limK v (λj. (f j) ·r (g j)) \<zero>" apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], simp add:limit_def, simp add:aGroup.ag_inv_zero, simp add:aGroup.ag_r_zero) apply (subgoal_tac "∀j. (f j) ·r (g j) ∈ carrier K", simp add:aGroup.ag_r_zero) prefer 2 apply (rule allI, simp add:Ring.ring_tOp_closed) apply (case_tac "c = \<zero>K") apply (simp add:aGroup.ag_inv_zero, simp add:aGroup.ag_r_zero) apply (rule allI, rotate_tac 4, drule_tac m = N in nat_forall_spec, drule_tac m = N in nat_forall_spec, (erule exE)+, rename_tac N M1 M2) apply (subgoal_tac "∀n>(max M1 M2). (f n) ·r (g n) ∈ (vp K v)(Vr K v) (an N)", blast) apply (rule allI, rule impI) apply (drule_tac x = M1 and y = M2 in two_inequalities, assumption+, thin_tac "∀n>M2. g n ∈ vp K v (Vr K v) (an N)") apply (thin_tac "∀j. f j ·r g j ∈ carrier K", thin_tac "∀j. f j ∈ carrier K", thin_tac "∀j. g j ∈ carrier K", drule_tac m = n in nat_forall_spec, simp, erule conjE, erule conjE, frule Vr_ring[of v]) apply (cut_tac n = N in an_nat_pos) apply (frule_tac x = "f n" in mem_vp_apow_mem_Vr[of "v"], assumption+, frule_tac x = "g n" in mem_vp_apow_mem_Vr[of "v"], assumption+, frule_tac n = "an N" in vp_apow_ideal[of "v"], assumption+) apply (frule_tac I = "vp K v(Vr K v) (an N)" and x = "g n" and r = "f n" in Ring.ideal_ring_multiple[of "Vr K v"], assumption+, simp add:Vr_tOp_f_tOp) (** case c ≠ 0K **) apply (rule allI) apply (subgoal_tac "∀j. (f j) ·r (g j) = (f j) ·r ((g j) ± (-a c)) ± (f j) ·r c", simp, thin_tac "∀j. (f j) ·r (g j) = (f j) ·r ((g j) ± (-a c)) ± (f j) ·r c", thin_tac "∀j. (f j) ·r ( g j ± -a c) ± (f j) ·r c ∈ carrier K") apply (rotate_tac 4, drule_tac m = "N + na (Abs (n_val K v c))" in nat_forall_spec, drule_tac m = N in nat_forall_spec) apply (erule exE)+ apply (rename_tac N M1 M2) apply (subgoal_tac "∀n. (max M1 M2) < n --> (f n) ·r (g n ± -a c) ± (f n) ·r c ∈ vp K v(Vr K v) (an N)", blast) apply (rule allI, rule impI, simp, erule conjE, drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec) apply (frule n_val_valuation[of "v"]) apply (frule value_in_aug_inf[of "n_val K v" "c"], assumption+, simp add:aug_inf_def) apply (frule val_nonzero_noninf[of "n_val K v" "c"], assumption+) apply (cut_tac Abs_noninf[of "n_val K v c"]) apply (cut_tac Abs_pos[of "n_val K v c"]) apply (simp add:an_na) apply (drule_tac m = n in nat_forall_spec, simp) apply (frule_tac b = "f n" and n = "an N" in convergenceTr1[of "v" "c"], assumption+) apply simp apply (frule_tac x = "f n" and N = "an N + Abs (n_val K v c)" in mem_vp_apow_mem_Vr[of "v"], frule_tac n = "an N" in vp_apow_ideal[of "v"]) apply simp apply (rule_tac x = "an N" and y = "Abs (n_val K v c)" in aadd_two_pos) apply simp apply (simp add:Abs_pos) apply assumption apply (frule_tac x = "g n ± (-a c)" and N = "an N" in mem_vp_apow_mem_Vr[of "v"], simp, assumption+) apply ( frule_tac x = "c ·r (f n)" and N = "an N" in mem_vp_apow_mem_Vr[of "v"], simp) apply simp apply (simp add:Ring.ring_tOp_commute[of "K" "c"]) apply ( frule Vr_ring[of "v"], frule_tac I = "(vp K v)(Vr K v) (an N)" and x = "g n ± (-a c)" and r = "f n" in Ring.ideal_ring_multiple[of "Vr K v"]) apply (simp add:vp_apow_ideal) apply assumption+ apply (frule_tac I = "vp K v(Vr K v) (an N)" and x = "(f n) ·r (g n ± -a c)" and y = "(f n) ·r c" in Ring.ideal_pOp_closed[of "Vr K v"]) apply (simp add:vp_apow_ideal) apply (simp add:Vr_tOp_f_tOp, assumption) apply (simp add:Vr_tOp_f_tOp Vr_pOp_f_pOp, frule_tac x = "(f n) ·r (g n ± -a c)" and N = "an N" in mem_vp_apow_mem_Vr[of "v"], simp add:Vr_pOp_f_pOp, assumption+) apply (frule_tac N = "an N" and x = "(f n) ·r c" in mem_vp_apow_mem_Vr[of "v"]) apply simp apply assumption apply (simp add:Vr_pOp_f_pOp) apply simp apply (thin_tac "∀N. ∃M. ∀n>M. f n ∈ vp K v (Vr K v) (an N)", thin_tac "∀N. ∃M. ∀n>M. g n ± -a c ∈ vp K v (Vr K v) (an N)", rule allI) apply (drule_tac m = j in nat_forall_spec, drule_tac m = j in nat_forall_spec, drule_tac m = j in nat_forall_spec, frule aGroup.ag_mOp_closed[of "K" "c"], assumption+, frule_tac x = "f j" in Ring.ring_tOp_closed[of "K" _ "c"], assumption+, frule_tac x = "f j" in Ring.ring_tOp_closed[of "K" _ "-a c"], assumption+) apply (simp add:Ring.ring_distrib1, simp add:aGroup.ag_pOp_assoc, simp add:Ring.ring_distrib1[THEN sym], simp add:aGroup.ag_l_inv1, simp add:Ring.ring_times_x_0, simp add:aGroup.ag_r_zero) done lemma (in Corps) limit_minus:"[|valuation K v; ∀j. f j ∈ carrier K; b ∈ carrier K; limK v f b|] ==> limK v (λj. (-a (f j))) (-a b)" apply (simp add:limit_def) apply (rule allI, rotate_tac -1, frule_tac m = N in nat_forall_spec, thin_tac "∀N. ∃M. ∀n. M < n --> f n ± -a b ∈ (vp K v)(Vr K v) (an N)", erule exE, subgoal_tac "∀n. M < n --> (-a (f n)) ± (-a (-a b)) ∈ (vp K v)(Vr K v) (an N)", blast) apply (rule allI, rule impI, frule_tac m = n in nat_forall_spec, frule_tac m = n in nat_forall_spec, simp) apply (frule Vr_ring[of "v"], frule_tac n = "an N" in vp_apow_ideal[of "v"], simp) apply (frule_tac x = "f n ± -a b" and N = "an N" in mem_vp_apow_mem_Vr[of "v"], simp+, frule_tac I = "vp K v(Vr K v) (an N)" and x = "f n ± (-a b)" in Ring.ideal_inv1_closed[of "Vr K v"], assumption+, simp) apply (simp add:Vr_mOp_f_mOp) apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule aGroup.ag_mOp_closed[of "K" "b"], assumption+) apply (simp add:aGroup.ag_p_inv[of "K"]) done lemma (in Corps) inv_diff:"[|x ∈ carrier K; x ≠ \<zero>; y ∈ carrier K; y ≠ \<zero>|] ==> (xK) ± (-a (yK)) = (xK) ·r ( yK) ·r (-a (x ± (-a y)))" apply (cut_tac invf_closed1[of "x"], simp, erule conjE, cut_tac invf_closed1[of y], simp, erule conjE, cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule Ring.ring_tOp_closed[of "K" "xK" "yK"], assumption+, frule aGroup.ag_mOp_closed[of "K" "x"], assumption+, frule aGroup.ag_mOp_closed[of "K" "y"], assumption+, frule aGroup.ag_mOp_closed[of "K" "xK"], assumption+, frule aGroup.ag_mOp_closed[of "K" "yK"], assumption+, frule aGroup.ag_pOp_closed[of "K" "x" "-a y"], assumption+) apply (simp add:Ring.ring_inv1_2[THEN sym], simp only:Ring.ring_distrib1[of "K" "(xK) ·r (yK)" "x" "-a y"], simp only:Ring.ring_tOp_commute[of "K" _ x], simp only:Ring.ring_inv1_2[THEN sym, of "K"], simp only:Ring.ring_tOp_assoc[THEN sym], simp only:Ring.ring_tOp_commute[of "K" "x"], cut_tac linvf[of "x"], simp+, simp add:Ring.ring_l_one, simp only:Ring.ring_tOp_assoc, cut_tac linvf[of "y"], simp+, simp only:Ring.ring_r_one) apply (simp add:aGroup.ag_p_inv[of "K"], simp add:aGroup.ag_inv_inv, rule aGroup.ag_pOp_commute[of "K" "xK" "-a yK"], assumption+) apply simp+ done lemma times2plus:"(2::nat)*n = n + n" by simp lemma (in Corps) limit_inv:"[|valuation K v; ∀j. f j ∈ carrier K; b ∈ carrier K; b ≠ \<zero>; limK v f b|] ==> limK v (λj. if (f j) = \<zero> then \<zero> else (f j)K) (bK)" apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"]) apply (frule limit_n_val[of "b" "v" "f"], assumption+) apply (subst limit_def) apply (rule allI, erule exE) apply (subgoal_tac "∀m>Na. f m ≠ \<zero>") prefer 2 apply (rule allI, rule impI, rotate_tac -2, drule_tac m = m in nat_forall_spec, simp) apply (frule n_val_valuation[of v]) apply (frule val_nonzero_noninf[of "n_val K v" b], assumption+) apply (rule contrapos_pp, simp+, simp add:value_of_zero) apply (unfold limit_def) apply (rotate_tac 2, frule_tac m = "N + 2*(na (Abs (n_val K v b)))" in nat_forall_spec) apply (erule exE) apply (subgoal_tac "∀n>(max Na M). (if f n = \<zero> then \<zero> else f nK) ± -a bK ∈ vp K v(Vr K v) (an N)", blast) apply (rule allI, rule impI) apply (cut_tac x = "Na" and y = "max Na M" and z = n in le_less_trans) apply simp+ apply (thin_tac "∀N. ∃M. ∀n>M. f n ± -a b ∈ vp K v (Vr K v) (an N)") apply (drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec, simp) apply (subst inv_diff, assumption+) apply (cut_tac x = "f n" in invf_closed1, simp, cut_tac x = b in invf_closed1, simp, simp, (erule conjE)+) (* apply (frule field_is_idom[of "K"], frule field_iOp_closed[of "K" "b"], simp, simp, erule conjE, frule idom_tOp_nonzeros [of "K" "bK" "bK"], assumption+) *) apply (frule_tac n = "an N + an (2 * na (Abs (n_val K v b)))" and x = "f n ± -a b" in n_value_x_1[of v]) apply (simp only:an_npn[THEN sym], rule an_nat_pos) apply assumption apply (rule_tac x = "f n K ·r b K ·r (-a (f n ± -a b))" and v = v and n = "an N" in n_value_x_2, assumption+) apply (frule n_val_valuation[of v]) apply (subst val_pos_mem_Vr[THEN sym, of "v"], assumption+) apply (rule Ring.ring_tOp_closed, assumption+)+ apply (rule aGroup.ag_mOp_closed, assumption) apply (rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (subst val_pos_n_val_pos[of v], assumption+, rule Ring.ring_tOp_closed, assumption+, rule Ring.ring_tOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+, rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (subst val_t2p[of "n_val K v"], assumption+, rule Ring.ring_tOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+, rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+, subst val_minus_eq[of "n_val K v"], assumption+, (rule aGroup.ag_pOp_closed, assumption+), (rule aGroup.ag_mOp_closed, assumption+)) apply (subst val_t2p[of "n_val K v"], assumption+) apply (simp add:value_of_inv) apply (frule_tac x = "an N + an (2 * na (Abs (n_val K v b)))" and y = "n_val K v (f n ± -a b)" and z = "- n_val K v b + - n_val K v b" in aadd_le_mono) apply (cut_tac z = "n_val K v b" in Abs_pos) apply (frule val_nonzero_z[of "n_val K v" b], assumption+, erule exE) apply (rotate_tac -1, drule sym, cut_tac z = z in z_neq_minf, cut_tac z = z in z_neq_inf, simp, cut_tac a = "(n_val K v b)" in Abs_noninf, simp) apply (simp only:times2plus an_npn, simp add:an_na) apply (rotate_tac -4, drule sym, simp) apply (thin_tac "f n ± -a b ∈ vp K v (Vr K v) (an N + (ant ¦z¦ + ant ¦z¦))") apply (simp add:an_def, simp add:aminus, (simp add:a_zpz)+) apply (subst aadd_commute) apply (rule_tac i = 0 and j = "ant (int N + 2 * ¦z¦ + -2 * z)" and k = "n_val K v (f n ± -a b) + ant (-2 * z)" in ale_trans) apply (subst ant_0[THEN sym]) apply (subst ale_zle, simp, assumption) apply (frule n_val_valuation[of v]) apply (subst val_t2p[of "n_val K v"], assumption+) apply (rule Ring.ring_tOp_closed, assumption+)+ apply (rule aGroup.ag_mOp_closed, assumption) apply (rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (subst val_t2p[of "n_val K v"], assumption+) apply (subst val_minus_eq[of "n_val K v"], assumption+, rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (simp add:value_of_inv) apply (frule_tac x = "an N + an (2 * na (Abs (n_val K v b)))" and y = "n_val K v (f n ± -a b)" and z = "- n_val K v b + - n_val K v b" in aadd_le_mono) apply (cut_tac z = "n_val K v b" in Abs_pos) apply (frule val_nonzero_z[of "n_val K v" b], assumption+, erule exE) apply (rotate_tac -1, drule sym, cut_tac z = z in z_neq_minf, cut_tac z = z in z_neq_inf, simp, cut_tac a = "(n_val K v b)" in Abs_noninf, simp) apply (simp only:times2plus an_npn, simp add:an_na) apply (rotate_tac -4, drule sym, simp) apply (thin_tac "f n ± -a b ∈ vp K v (Vr K v) (an N + (ant ¦z¦ + ant ¦z¦))") apply (simp add:an_def, simp add:aminus, (simp add:a_zpz)+) apply (subst aadd_commute) apply (rule_tac i = "ant (int N)" and j = "ant (int N + 2 * ¦z¦ + -2 * z)" and k = "n_val K v (f n ± -a b) + ant (-2 * z)" in ale_trans) apply (subst ale_zle, simp, assumption) apply simp done constdefs (structure K) Cauchy_seq::"[_ , 'b => ant, nat => 'b] => bool" ("(3Cauchy _ _ _)" [90,90,91]90) "CauchyK v f == (∀n. (f n) ∈ carrier K) ∧ ( ∀N. ∃M. (∀n m. M < n ∧ M < m --> ((f n) ± (-a (f m))) ∈ (vp K v)(Vr K v) (an N)))" v_complete::"['b => ant, _] => bool" ("(2Complete_ _)" [90,91]90) "Completev K == ∀f. (CauchyK v f) --> (∃b. b ∈ (carrier K) ∧ limK v f b)" lemma (in Corps) has_limit_Cauchy:"[|valuation K v; ∀j. f j ∈ carrier K; b ∈ carrier K; limK v f b|] ==> CauchyK v f" apply (simp add:Cauchy_seq_def) apply (rule allI) apply (simp add:limit_def) apply (rotate_tac -1) apply (drule_tac m = N in nat_forall_spec) apply (erule exE) apply (subgoal_tac "∀n m. M < n ∧ M < m --> f n ± -a (f m) ∈ vp K v(Vr K v) (an N)") apply blast apply ((rule allI)+, rule impI, erule conjE) apply (frule_tac m = n in nat_forall_spec, frule_tac m = m in nat_forall_spec, thin_tac "∀j. f j ∈ carrier K", frule_tac m = n in nat_forall_spec, frule_tac m = m in nat_forall_spec, thin_tac "∀n. M < n --> f n ± -a b ∈ vp K v(Vr K v) (an N)", simp) apply (frule_tac n = "an N" in vp_apow_ideal[of v], simp) apply (frule Vr_ring[of "v"]) apply (frule_tac x = "f m ± -a b" and I = "vp K v(Vr K v) (an N)" in Ring.ideal_inv1_closed[of "Vr K v"], assumption+) apply (frule_tac h = "f m ± -a b" and I = "vp K v(Vr K v) (an N)" in Ring.ideal_subset[of "Vr K v"], assumption+, frule_tac h = "f n ± -a b" and I = "vp K v(Vr K v) (an N)" in Ring.ideal_subset[of "Vr K v"], assumption+) apply (frule_tac h = "-aVr K v (f m ± -a b)" and I = "vp K v(Vr K v) (an N)" in Ring.ideal_subset[of "Vr K v"], assumption+, frule_tac h = "f n ± -a b" and I = "vp K v(Vr K v) (an N)" in Ring.ideal_subset[of "Vr K v"], assumption+) apply (frule_tac I = "(vp K v) (Vr K v) (an N)" and x = "f n ± -a b" and y = "-a(Vr K v) (f m ± -a b)" in Ring.ideal_pOp_closed[of "Vr K v"], assumption+) apply (simp add:Vr_pOp_f_pOp) apply (simp add:Vr_mOp_f_mOp) apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"]) apply (frule aGroup.ag_mOp_closed[of "K" "b"], assumption+) apply (frule_tac x = "f m ± -a b" in Vr_mem_f_mem[of "v"], assumption+) apply (frule_tac x = "f m ± -a b" in aGroup.ag_mOp_closed[of "K"], assumption+) apply (simp add:aGroup.ag_pOp_assoc) apply (simp add:aGroup.ag_pOp_commute[of "K" "-a b"]) apply (simp add:aGroup.ag_p_inv[of "K"]) apply (frule_tac x = "f m" in aGroup.ag_mOp_closed[of "K"], assumption+) apply (simp add:aGroup.ag_inv_inv) apply (simp add:aGroup.ag_pOp_assoc[of "K" _ "b" "-a b"]) apply (simp add:aGroup.ag_r_inv1[of "K"], simp add:aGroup.ag_r_zero) done lemma (in Corps) no_limit_zero_Cauchy:"[|valuation K v; CauchyK v f; ¬ (limK v f \<zero>)|] ==> ∃N M. (∀m. N < m --> ((n_val K v) (f M)) = ((n_val K v) (f m)))" apply (frule not_limit_zero[of "v" "f"], thin_tac "¬ lim K v f \<zero>") apply (simp add:Cauchy_seq_def, assumption) apply (erule exE) apply (rename_tac L) apply (simp add:Cauchy_seq_def, erule conjE, rotate_tac -1, frule_tac m = L in nat_forall_spec, thin_tac "∀N. ∃M. ∀n m. M < n ∧ M < m --> f n ± -a (f m) ∈ vp K v(Vr K v) (an N)") apply (erule exE) apply (drule_tac m = M in nat_forall_spec) apply (erule exE, erule conjE) apply (rotate_tac -3, frule_tac m = m in nat_forall_spec) apply (thin_tac "∀n m. M < n ∧ M < m --> f n ± -a (f m) ∈ (vp K v)(Vr K v) (an L)") apply (subgoal_tac "M < m ∧ (∀ma. M < ma --> n_val K v (f m) = n_val K v (f ma))") apply blast apply simp apply (rule allI, rule impI) apply (rotate_tac -2) apply (drule_tac m = ma in nat_forall_spec) apply simp (** we have f ma ± -a f m ∈ vpr K G a i v ♦Vr K G a i v L as **) apply (frule Vr_ring[of "v"], frule_tac n = "an L" in vp_apow_ideal[of "v"], simp) apply (frule_tac I = "vp K v(Vr K v) (an L)" and x = "f m ± -a (f ma)" in Ring.ideal_inv1_closed[of "Vr K v"], assumption+) apply ( frule_tac I = "vp K v(Vr K v) (an L)" and h = "f m ± -a (f ma)" in Ring.ideal_subset[of "Vr K v"], assumption+, simp add:Vr_mOp_f_mOp) apply (frule_tac m = m in nat_forall_spec, drule_tac m = ma in nat_forall_spec) apply ( cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule_tac x = "f ma" in aGroup.ag_mOp_closed[of "K"], assumption+, frule_tac x = "f m" and y = "-a (f ma)" in aGroup.ag_p_inv[of "K"], assumption+, simp only:aGroup.ag_inv_inv, frule_tac x = "f m" in aGroup.ag_mOp_closed[of "K"], assumption+, simp add:aGroup.ag_pOp_commute, thin_tac "-a ( f m ± -a (f ma)) = f ma ± -a (f m)", thin_tac "f m ± -a (f ma) ∈ vp K v(Vr K v) (an L)") (** finally, by f ma = f m ± (f ma ± -a (f m)) and value_less_eq we have the conclusion **) apply (frule_tac x = "f ma ± -a (f m)" and n = "an L" in n_value_x_1[of "v" ], simp) apply assumption apply ( frule n_val_valuation[of "v"], frule_tac x = "f m" and y = "f ma ± -a (f m)" in value_less_eq[of "n_val K v"], assumption+) apply (simp add:aGroup.ag_pOp_closed) apply ( rule_tac x = "n_val K v (f m)" and y = "an L" and z = "n_val K v ( f ma ± -a (f m))" in aless_le_trans, assumption+) apply (frule_tac x = "f ma ± -a (f m)" in Vr_mem_f_mem[of "v"]) apply (simp add:Ring.ideal_subset) apply (frule_tac x = "f m" and y = "f ma ± -a (f m)" in aGroup.ag_pOp_commute[of "K"], assumption+) apply (simp add:aGroup.ag_pOp_assoc, simp add:aGroup.ag_l_inv1, simp add:aGroup.ag_r_zero) done lemma (in Corps) no_limit_zero_Cauchy1:"[|valuation K v; ∀j. f j ∈ carrier K; CauchyK v f; ¬ (limK v f \<zero>)|] ==> ∃N M. (∀m. N < m --> v (f M) = v (f m))" apply (frule no_limit_zero_Cauchy[of "v" "f"], assumption+) apply (erule exE)+ apply (subgoal_tac "∀m. N < m --> v (f M) = v (f m)") apply blast apply (rule allI, rule impI) apply (frule_tac m = M in nat_forall_spec, drule_tac m = m in nat_forall_spec, drule_tac m = m in nat_forall_spec, simp) apply (simp add:n_val[THEN sym, of "v"]) done constdefs (structure K) subfield::"[_, ('b, 'm1) Ring_scheme] => bool" "subfield K K' == Corps K' ∧ carrier K ⊆ carrier K' ∧ idmap (carrier K) ∈ rHom K K'" constdefs (structure K) v_completion::"['b => ant, 'b => ant, _, ('b, 'm) Ring_scheme] => bool" ("(4Completion_ _ _ _)" [90,90,90,91]90) "Completionv v' K K' == subfield K K' ∧ Completev' K' ∧ (∀x ∈ carrier K. v x = v' x) ∧ (∀x ∈ carrier K'. (∃f. CauchyK v f ∧ limK' v' f x))" lemma (in Corps) subfield_zero:"[|Corps K'; subfield K K'|] ==> \<zero>K = \<zero>K'" apply (simp add:subfield_def, (erule conjE)+) apply (simp add:rHom_def, (erule conjE)+) apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule Corps.field_is_ring[of "K'"], frule Ring.ring_is_ag[of "K'"]) apply (frule aHom_0_0[of "K" "K'" "IK"], assumption+) apply (frule aGroup.ag_inc_zero[of "K"], simp add:idmap_def) done lemma (in Corps) subfield_pOp:"[|Corps K'; subfield K K'; x ∈ carrier K; y ∈ carrier K|] ==> x ± y = x ±K' y" apply (cut_tac field_is_ring, frule Corps.field_is_ring[of "K'"], frule Ring.ring_is_ag[of "K"], frule Ring.ring_is_ag[of "K'"]) apply (simp add:subfield_def, erule conjE, simp add:rHom_def, frule conjunct1) apply (thin_tac "IK ∈ aHom K K' ∧ (∀x∈carrier K. ∀y∈carrier K. IK (x ·r y) = IK x ·rK' IK y) ∧ IK 1r = 1rK'") apply (frule aHom_add[of "K" "K'" "IK" "x" "y"], assumption+, frule aGroup.ag_pOp_closed[of "K" "x" "y"], assumption+, simp add:idmap_def) done lemma (in Corps) subfield_mOp:"[|Corps K'; subfield K K'; x ∈ carrier K|] ==> -a x = -aK' x" apply (cut_tac field_is_ring, frule Corps.field_is_ring[of "K'"], frule Ring.ring_is_ag[of "K"], frule Ring.ring_is_ag[of "K'"]) apply (simp add:subfield_def, erule conjE, simp add:rHom_def, frule conjunct1) apply (thin_tac "IK ∈ aHom K K' ∧ (∀x∈carrier K. ∀y∈carrier K. IK (x ·r y) = IK x ·rK' IK y) ∧ IK 1r = 1rK'") apply (frule aHom_inv_inv[of "K" "K'" "IK" "x"], assumption+, frule aGroup.ag_mOp_closed[of "K" "x"], assumption+) apply (simp add:idmap_def) done lemma (in Corps) completion_val_eq:"[|Corps K'; valuation K v; valuation K' v'; x ∈ carrier K; Completionv v' K K'|] ==> v x = v' x" apply (unfold v_completion_def, (erule conjE)+) apply simp done lemma (in Corps) completion_subset:"[|Corps K'; valuation K v; valuation K' v'; Completionv v' K K'|] ==> carrier K ⊆ carrier K'" apply (unfold v_completion_def, (erule conjE)+) apply (simp add:subfield_def) done lemma (in Corps) completion_subfield:"[|Corps K'; valuation K v; valuation K' v'; Completionv v' K K'|] ==> subfield K K'" apply (simp add:v_completion_def) done lemma (in Corps) subfield_sub:"subfield K K' ==> carrier K ⊆ carrier K'" apply (simp add:subfield_def) done lemma (in Corps) completion_Vring_sub:"[|Corps K'; valuation K v; valuation K' v'; Completionv v' K K'|] ==> carrier (Vr K v) ⊆ carrier (Vr K' v')" apply (rule subsetI, frule completion_subset[of "K'" "v" "v'"], assumption+, frule_tac x = x in Vr_mem_f_mem[of "v"], assumption+, frule_tac x = x in completion_val_eq[of "K'" "v" "v'"], assumption+) apply (frule_tac x1 = x in val_pos_mem_Vr[THEN sym, of "v"], assumption+, simp, frule_tac c = x in subsetD[of "carrier K" "carrier K'"], assumption+, simp add:Corps.val_pos_mem_Vr[of "K'" "v'"]) done lemma (in Corps) completion_idmap_rHom:"[|Corps K'; valuation K v; valuation K' v'; Completionv v' K K'|] ==> I(Vr K v) ∈ rHom (Vr K v) (Vr K' v')" apply (frule completion_Vring_sub[of "K'" "v" "v'"], assumption+, frule completion_subfield[of "K'" "v" "v'"], assumption+, frule Vr_ring[of "v"], frule Ring.ring_is_ag[of "Vr K v"], frule Corps.Vr_ring[of "K'" "v'"], assumption+, frule Ring.ring_is_ag[of "Vr K' v'"]) apply (simp add:rHom_def) apply (rule conjI) apply (simp add:aHom_def, rule conjI, rule univar_func_test, rule ballI, simp add:idmap_def, simp add:subsetD) apply (rule conjI) apply (simp add:idmap_def extensional_def) apply ((rule ballI)+) apply ( frule_tac x = a and y = b in aGroup.ag_pOp_closed, assumption+, simp add:idmap_def, frule_tac c = a in subsetD[of "carrier (Vr K v)" "carrier (Vr K' v')"], assumption+, frule_tac c = b in subsetD[of "carrier (Vr K v)" "carrier (Vr K' v')"], assumption+, simp add:Vr_pOp_f_pOp, frule_tac x = a in Vr_mem_f_mem[of v], assumption, frule_tac x = b in Vr_mem_f_mem[of v], assumption, simp add:Corps.Vr_pOp_f_pOp, simp add:subfield_pOp) apply (rule conjI) apply ((rule ballI)+, frule_tac x = x and y = y in Ring.ring_tOp_closed, assumption+, simp add:idmap_def, simp add:subfield_def, erule conjE) apply (frule_tac c = x in subsetD[of "carrier (Vr K v)" "carrier (Vr K' v')"], assumption+, frule_tac c = y in subsetD[of "carrier (Vr K v)" "carrier (Vr K' v')"], assumption+) apply (simp add:Vr_tOp_f_tOp Corps.Vr_tOp_f_tOp) apply (frule_tac x = x in Vr_mem_f_mem[of "v"], assumption+, frule_tac x = y in Vr_mem_f_mem[of "v"], assumption+, frule_tac x = x in Corps.Vr_mem_f_mem[of "K'" "v'"], assumption+, frule_tac x = y in Corps.Vr_mem_f_mem[of "K'" "v'"], assumption+, cut_tac field_is_ring, frule Corps.field_is_ring[of "K'"], frule_tac x = x and y = y in Ring.ring_tOp_closed[of "K"], assumption+) apply (frule_tac x = x and y = y in rHom_tOp[of "K" "K'" _ _ "IK"], assumption+, simp add:idmap_def) apply (frule Ring.ring_one[of "Vr K v"], simp add:idmap_def) apply (simp add:Vr_1_f_1 Corps.Vr_1_f_1) apply (simp add:subfield_def, (erule conjE)+) apply (cut_tac field_is_ring, frule Corps.field_is_ring[of "K'"], frule Ring.ring_one[of "K"], frule rHom_one[of "K" "K'" "IK"], assumption+, simp add:idmap_def) done lemma (in Corps) completion_vpr_sub:"[|Corps K'; valuation K v; valuation K' v'; Completionv v' K K'|] ==> vp K v ⊆ vp K' v'" apply (rule subsetI, frule completion_subset[of "K'" "v" "v'"], assumption+, frule Vr_ring[of "v"], frule vp_ideal[of "v"], frule_tac h = x in Ring.ideal_subset[of "Vr K v" "vp K v"], assumption+, frule_tac x = x in Vr_mem_f_mem[of "v"], assumption+, frule_tac x = x in completion_val_eq[of "K'" "v" "v'"], assumption+) apply (frule completion_subset[of "K'" "v" "v'"], assumption+, frule_tac c = x in subsetD[of "carrier K" "carrier K'"], assumption+, simp add:Corps.vp_mem_val_poss vp_mem_val_poss) done lemma (in Corps) val_v_completion:"[|Corps K'; valuation K v; valuation K' v'; x ∈ carrier K'; x ≠ \<zero>K'; Completionv v' K K'|] ==> ∃f. (CauchyK v f) ∧ (∃N. (∀m. N < m --> v (f m) = v' x))" apply (simp add:v_completion_def, erule conjE, (erule conjE)+) apply (rotate_tac -1, drule_tac b = x in forball_spec1, assumption+, erule exE, erule conjE, subgoal_tac "∃N. ∀m. N < m --> v (f m) = v' x", blast) thm Corps.limit_val apply (frule_tac f = f and v = v' in Corps.limit_val[of "K'" "x"], assumption+, unfold Cauchy_seq_def, frule conjunct1, fold Cauchy_seq_def) apply (rule allI, drule_tac m = j in nat_forall_spec, simp add:subfield_def, erule conjE, simp add:subsetD, assumption+) apply (simp add:Cauchy_seq_def) done lemma (in Corps) v_completion_v_limit:"[|Corps K'; valuation K v; x ∈ carrier K; subfield K K'; Completev' K'; ∀j. f j ∈ carrier K; valuation K' v'; ∀x∈carrier K. v x = v' x; limK' v' f x|] ==> limK v f x" apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule Corps.field_is_ring[of K'], frule Ring.ring_is_ag[of "K'"], subgoal_tac "∀j. f j ∈ carrier K'", unfold subfield_def, frule conjunct2, fold subfield_def, erule conjE) apply (frule subsetD[of "carrier K" "carrier K'" "x"], assumption+, simp add:limit_diff_val[of "x" "f"], subgoal_tac "∀n. f n ±K' -aK' x = f n ± -a x") apply (rule allI) apply (simp add:limit_def) apply (rotate_tac 6, drule_tac m = N in nat_forall_spec, erule exE) apply (subgoal_tac "∀n>M. an N ≤ v'(f n ± -a x)", subgoal_tac "∀n. (v' (f n ± -a x) = v (f n ± -a x))", simp, blast) apply (rule allI) apply (frule_tac b = "f n ± -a x" in forball_spec1, rule aGroup.ag_pOp_closed, assumption+, simp, rule aGroup.ag_mOp_closed, assumption+) apply simp apply (rule allI, rule impI) apply (frule_tac v = v' and n = "an N" and x = "f n ± -a x" in Corps.n_value_x_1[of K'], assumption+, simp, simp) apply (frule_tac v = v' and x = "f n ± -a x" in Corps.n_val_le_val[of K'], assumption+) apply (cut_tac x = "f n" and y = "-a x" in aGroup.ag_pOp_closed, assumption, simp, rule aGroup.ag_mOp_closed, assumption+, simp add:subsetD) apply (subst Corps.val_pos_n_val_pos[of K' v'], assumption+) apply (cut_tac x = "f n" and y = "-a x" in aGroup.ag_pOp_closed, assumption, simp, rule aGroup.ag_mOp_closed, assumption+, simp add:subsetD) apply (rule_tac i = 0 and j = "an N" and k = "n_val K' v' (f n ± -a x)" in ale_trans, simp+, rule allI) apply (subst subfield_pOp[of K'], assumption+, simp+, rule aGroup.ag_mOp_closed, assumption+) apply (simp add:subfield_mOp[of K']) apply (cut_tac subfield_sub[of K'], simp add:subsetD, assumption+) done lemma (in Corps) Vr_idmap_aHom:"[|Corps K'; valuation K v; valuation K' v'; subfield K K'; ∀x∈carrier K. v x = v' x|] ==> I(Vr K v) ∈ aHom (Vr K v) (Vr K' v')" apply (simp add:aHom_def) apply (subgoal_tac "I(Vr K v) ∈ carrier (Vr K v) -> carrier (Vr K' v')") apply simp apply (rule conjI) apply (simp add:idmap_def) apply (rule ballI)+ apply (frule Vr_ring[of "v"], frule Ring.ring_is_ag[of "Vr K v"], frule Corps.Vr_ring[of "K'" "v'"], assumption+, frule Ring.ring_is_ag[of "Vr K' v'"]) apply (frule_tac x = a and y = b in aGroup.ag_pOp_closed[of "Vr K v"], assumption+, frule_tac x = a in funcset_mem[of "I(Vr K v)" "carrier (Vr K v)" "carrier (Vr K' v')"], assumption+, frule_tac x = b in funcset_mem[of "I(Vr K v)" "carrier (Vr K v)" "carrier (Vr K' v')"], assumption+, frule_tac x = "(I(Vr K v)) a" and y = "(I(Vr K v)) b" in aGroup.ag_pOp_closed[of "Vr K' v'"], assumption+, simp add:Vr_pOp_f_pOp) apply (simp add:idmap_def, simp add:subfield_def, erule conjE, simp add:rHom_def, frule conjunct1, thin_tac "IK ∈ aHom K K' ∧ (∀x∈carrier K. ∀y∈carrier K. IK (x ·r y) = IK x ·rK' IK y) ∧ IK 1r = 1rK'") apply (simp add:Corps.Vr_pOp_f_pOp[of K' v']) thm Vr_mem_f_mem apply (frule_tac x = a in Vr_mem_f_mem[of v], assumption+, frule_tac x = b in Vr_mem_f_mem[of v], assumption+) apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of K], frule Corps.field_is_ring[of K'], frule Ring.ring_is_ag[of K']) apply (frule_tac a = a and b = b in aHom_add[of K K' "IK"], assumption+, frule_tac x = a and y = b in aGroup.ag_pOp_closed[of K], assumption+, simp add:idmap_def) apply (rule univar_func_test, rule ballI, drule_tac b = x in forball_spec1, simp add:Vr_mem_f_mem) apply (simp add:idmap_def) apply (frule_tac x1 = x in val_pos_mem_Vr[THEN sym, of v], simp add:Vr_mem_f_mem, simp) apply (subst Corps.val_pos_mem_Vr[THEN sym, of K' v'], assumption+, frule_tac x = x in Vr_mem_f_mem[of v], assumption+, frule subfield_sub[of K'], simp add:subsetD) apply assumption done lemma amult_pos_pos:"0 ≤ a ==> 0 ≤ a * an N" apply (case_tac "N = 0", simp add:an_0) apply (case_tac "a = ∞", simp) apply (frule apos_neq_minf[of a]) apply (subst ant_tna[THEN sym, of a], simp) apply (subst amult_0_r, simp) apply (case_tac "a = ∞", simp add:an_def) apply (frule apos_neq_minf[of a]) apply (subst ant_tna[THEN sym, of a], simp) apply (case_tac "a = 0", simp) apply (simp add:ant_0 an_def amult_0_l) apply (cut_tac amult_pos1[of "tna a" "an N"]) apply (simp add:ant_tna) apply (rule_tac ale_trans[of 0 "an N" "a * an N"], simp+) apply (frule ale_neq_less[of 0 a], rule not_sym, assumption) apply (subst aless_zless[THEN sym, of 0 "tna a"], simp add:ant_tna ant_0) apply simp done lemma (in Corps) Cauchy_down:"[|Corps K'; valuation K v; valuation K' v'; subfield K K'; ∀x∈carrier K. v x = v' x; ∀j. f j ∈ carrier K; CauchyK' v' f|] ==> CauchyK v f" apply (simp add:Cauchy_seq_def, rule allI, erule conjE) apply (rotate_tac -1, drule_tac m = "na (Lv K v) * N" in nat_forall_spec, erule exE, subgoal_tac "∀n m. M < n ∧ M < m --> f n ± (-a (f m)) ∈ vp K v(Vr K v) (an N)", blast) apply (simp add:amult_an_an) apply (simp add:an_na_Lv) apply ((rule allI)+, rule impI, erule conjE) apply ( rotate_tac -3, drule_tac m = n in nat_forall_spec, rotate_tac -1, drule_tac m = m in nat_forall_spec, simp) apply (rotate_tac 7, frule_tac m = n in nat_forall_spec, drule_tac m = m in nat_forall_spec) apply (simp add:subfield_mOp[THEN sym], cut_tac field_is_ring, frule Ring.ring_is_ag[of K], frule_tac x = "f m" in aGroup.ag_mOp_closed[of K], assumption+) apply (simp add:subfield_pOp[THEN sym]) apply (frule_tac x = "f n" and y = "-a f m" in aGroup.ag_pOp_closed, assumption+, frule subfield_sub[of K'], frule_tac c = "f n ± -a f m" in subsetD[of "carrier K" "carrier K'"], assumption+) apply (frule Lv_pos[of v], frule aless_imp_le[of 0 "Lv K v"]) apply (frule_tac N = N in amult_pos_pos[of "Lv K v"]) apply (frule_tac n = "(Lv K v) * an N" and x = "f n ± -a f m" in Corps.n_value_x_1[of K' v'], assumption+) apply (frule_tac x = "f n ± -a f m" in Corps.n_val_le_val[of K' v'], assumption+, frule_tac j = "Lv K v * an N" and k = "n_val K' v' (f n ± -a f m)" in ale_trans[of 0], assumption+, simp add:Corps.val_pos_n_val_pos) apply (frule_tac i = "Lv K v * an N" and j = "n_val K' v' (f n ± -a f m)" and k = "v' (f n ± -a f m)" in ale_trans, assumption+, thin_tac "n_val K' v' (f n ± -a f m) ≤ v' (f n ± -a f m)", thin_tac "Lv K v * an N ≤ n_val K' v' (f n ± -a f m)") apply (rotate_tac 1, drule_tac b = "f n ± -a f m" in forball_spec1, assumption, rotate_tac -1, drule sym, simp) apply (frule_tac v1 = v and x1 = "f n ± -a f m" in n_val[THEN sym], assumption) apply simp apply (simp only:amult_commute[of _ "Lv K v"]) apply (frule Lv_z[of v], erule exE) apply (cut_tac w = z and x = "an N" and y = "n_val K v (f n ± -a f m)" in amult_pos_mono_l, cut_tac m = 0 and n = z in aless_zless, simp add:ant_0) apply simp apply (rule_tac x="f n ± -a (f m)" and n = "an N" in n_value_x_2[of v], assumption+) apply (subst val_pos_mem_Vr[THEN sym, of v], assumption+) apply (subst val_pos_n_val_pos[of v], assumption+) apply (rule_tac j = "an N" and k = "n_val K v (f n ± -a f m)" in ale_trans[of 0], simp, assumption+) apply simp done lemma (in Corps) Cauchy_up:"[|Corps K'; valuation K v; valuation K' v'; Completionv v' K K'; Cauchy K v f|] ==> Cauchy K' v' f" apply (simp add:Cauchy_seq_def, erule conjE, rule conjI, unfold v_completion_def, frule conjunct1, fold v_completion_def, rule allI, frule subfield_sub[of K']) apply (simp add:subsetD) apply (rule allI) apply (rotate_tac -1, drule_tac m = "na (Lv K' v') * N" in nat_forall_spec, erule exE) apply (subgoal_tac "∀n m. M < n ∧ M < m --> f n ±K' (-aK' (f m)) ∈ vp K' v'(Vr K' v') (an N)", blast, (rule allI)+, rule impI, erule conjE) apply (rotate_tac -3, drule_tac m = n in nat_forall_spec, rotate_tac -1, drule_tac m = m in nat_forall_spec, simp, frule_tac m = n in nat_forall_spec, drule_tac m = m in nat_forall_spec) apply(unfold v_completion_def, frule conjunct1, fold v_completion_def, cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule_tac x = "f m" in aGroup.ag_mOp_closed[of "K"], assumption+, frule_tac x = "f n" and y = "-a (f m)" in aGroup.ag_pOp_closed[of "K"], assumption+) apply (simp add:amult_an_an) apply (simp add:Corps.an_na_Lv) apply (simp add:subfield_mOp, simp add:subfield_pOp) apply ( frule_tac x = "f n ±K' -aK' f m" and n = "(Lv K' v') * (an N)" in n_value_x_1[of v]) (*apply ( thin_tac "f n ±' (-a' (f m)) ∈ vp K v(Vr K v) ( (Lv K' v') * (an N))", simp add:v_completion_def, (erule conjE)+) *) apply (frule Corps.Lv_pos[of "K'" "v'"], assumption+, frule Corps.Lv_z[of "K'" "v'"], assumption, erule exE, simp, cut_tac n = N in an_nat_pos, frule_tac w1 = z and x1 = 0 and y1 = "an N" in amult_pos_mono_l[THEN sym], simp, simp add:amult_0_r) apply assumption apply (frule_tac x = "f n ±K' -aK' f m " in n_val_le_val[of v], assumption+) apply (subst n_val[THEN sym, of "v"], assumption+) apply (frule Lv_pos[of "v"], frule Lv_z[of v], erule exE, simp) apply (frule Corps.Lv_pos[of "K'" "v'"], assumption+, frule Corps.Lv_z[of "K'" "v'"], assumption, erule exE, simp, cut_tac n = N in an_nat_pos, frule_tac w1 = za and x1 = 0 and y1 = "an N" in amult_pos_mono_l[THEN sym], simp, simp add:amult_0_r) apply (frule_tac j = "ant za * an N" and k = "n_val K v (f n ±K' -aK' (f m))" in ale_trans[of "0"], assumption+) apply (frule_tac w1 = z and x1 = 0 and y1 = "n_val K v ( f n ±K' -aK' (f m))" in amult_pos_mono_r[THEN sym], simp, simp add:amult_0_l) apply (frule_tac i = "Lv K' v' * an N" and j ="n_val K v ( f n ±K' -aK' (f m))" and k = "v ( f n ±K' -aK' (f m))" in ale_trans, assumption+) apply (thin_tac "f n ±K' -aK' (f m) ∈ vp K v (Vr K v) (Lv K' v') * (an N)", thin_tac "Lv K' v' * an N ≤ n_val K v ( f n ±K' -aK' (f m))", thin_tac "n_val K v ( f n ±K' -aK' (f m)) ≤ v ( f n ±K' -aK' (f m))") apply (simp add:v_completion_def, (erule conjE)+) apply (thin_tac "∀x∈carrier K. v x = v' x", thin_tac "∀x∈carrier K'. ∃f. Cauchy K v f ∧ lim K' v' f x") apply (frule subfield_sub[of K'], frule_tac c = "f n ±K' -aK' (f m)" in subsetD[of "carrier K" "carrier K'"], assumption+) apply (simp add:Corps.n_val[THEN sym, of "K'" "v'"]) apply (simp add:amult_commute[of _ "Lv K' v'"]) apply (frule Corps.Lv_pos[of "K'" "v'"], assumption, frule Corps.Lv_z[of "K'" "v'"], assumption+, erule exE, simp) apply (simp add:amult_pos_mono_l) apply (rule_tac x = "f n ±K' -aK' (f m)" and n = "an N" in Corps.n_value_x_2[of "K'" "v'"], assumption+) apply (cut_tac n = N in an_nat_pos) apply (frule_tac j = "an N" and k = "n_val K' v' (f n ±K' -aK' (f m))" in ale_trans[of "0"], assumption+) apply (simp add:Corps.val_pos_n_val_pos[THEN sym, of "K'" "v'"]) apply (simp add:Corps.val_pos_mem_Vr) apply assumption apply simp done lemma max_gtTr:"(n::nat) < max (Suc n) (Suc m) ∧ m < max (Suc n) (Suc m)" apply (simp add:max_def) done lemma (in Corps) completion_approx:"[|Corps K'; valuation K v; valuation K' v'; Completionv v' K K'; x ∈ carrier (Vr K' v')|] ==> ∃y∈carrier (Vr K v). (y ±K' -aK' x) ∈ (vp K' v')" (** show an element y near by x is included in (Vr K v) **) apply (frule Corps.Vr_mem_f_mem [of "K'" "v'" "x"], assumption+, frule Corps.val_pos_mem_Vr[THEN sym, of "K'" "v'" "x"], assumption+, simp add:v_completion_def, (erule conjE)+, rotate_tac -1, drule_tac b = x in forball_spec1, assumption+, erule exE, erule conjE) apply (unfold Cauchy_seq_def, frule conjunct1, fold Cauchy_seq_def) apply (case_tac "x = \<zero>K'", simp, frule Corps.field_is_ring[of "K'"], frule Ring.ring_is_ag[of "K'"], subgoal_tac " \<zero>K' ∈ carrier (Vr K v)", subgoal_tac " (\<zero>K' ±K' -aK' \<zero>K')∈ vp K' v'", blast, frule aGroup.ag_inc_zero[of "K'"], simp add:aGroup.ag_r_inv1, simp add:Corps.Vr_0_f_0[THEN sym, of "K'" "v'"], frule Corps.Vr_ring[of "K'" "v'"], assumption+, frule Corps.vp_ideal[of "K'" "v'"], assumption+, simp add:Ring.ideal_zero, simp add:subfield_zero[THEN sym, of "K'"], cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule aGroup.ag_inc_zero[of "K"], simp add:Vr_0_f_0[THEN sym, of "v"], frule Vr_ring[of "v"],simp add:Ring.ring_zero) apply (frule_tac f = f in Corps.limit_val[of "K'" "x" _ "v'"], assumption+) apply (rule allI, rotate_tac -2, frule_tac m = j in nat_forall_spec, frule subfield_sub[of K'], simp add:subsetD, assumption+) apply (erule exE) apply (simp add:limit_def, frule Corps.Vr_ring[of K' v'], assumption+, rotate_tac 10, drule_tac m = "Suc 0" in nat_forall_spec, erule exE, rotate_tac 1, frule_tac x = N and y = M in two_inequalities, assumption+, thin_tac "∀n>N. v' (f n) = v' x", thin_tac "∀n>M. f n ±K' -aK' x ∈ vp K' v' (Vr K' v') (an (Suc 0))") apply (frule Corps.vp_ideal[of K' v'], assumption+, simp add:Ring.r_apow_Suc[of "Vr K' v'" "vp K' v'"]) apply (drule_tac m = "N + M + 1" in nat_forall_spec, simp, drule_tac m = "N + M + 1" in nat_forall_spec, simp, erule conjE) apply (drule_tac b = "f (Suc (N + M))" in forball_spec1, assumption+) apply simp apply (cut_tac x = "f (Suc (N + M))" in val_pos_mem_Vr[of v], assumption+) apply simp apply blast done lemma (in Corps) res_v_completion_surj:"[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K'|] ==> surjec(Vr K v),(qring (Vr K' v') (vp K' v')) (compos (Vr K v) (pj (Vr K' v') (vp K' v')) (I(Vr K v)))" apply (frule Vr_ring[of "v"], frule Ring.ring_is_ag[of "Vr K v"], frule Corps.Vr_ring[of "K'" "v'"], assumption+, frule Ring.ring_is_ag[of "Vr K' v'"], frule Ring.ring_is_ag[of "Vr K v"]) apply (frule Corps.vp_ideal[of "K'" "v'"], assumption+, frule Ring.qring_ring[of "Vr K' v'" "vp K' v'"], assumption+) apply (simp add:surjec_def) apply (frule aHom_compos[of "Vr K v" "Vr K' v'" "qring (Vr K' v') (vp K' v')" "I(Vr K v)" "pj (Vr K' v') (vp K' v')"], assumption+, simp add:Ring.ring_is_ag) apply (rule Vr_idmap_aHom, assumption+) apply (simp add:completion_subfield, simp add:v_completion_def) apply ( frule pj_Hom[of "Vr K' v'" "vp K' v'"], assumption+) apply ( simp add:rHom_def, simp) apply (rule surj_to_test) apply (simp add:aHom_def) apply (rule ballI) apply (thin_tac "Ring (Vr K' v' /r vp K' v')", thin_tac "compos (Vr K v) (pj (Vr K' v') (vp K' v')) (I(Vr K v)) ∈ aHom (Vr K v) (Vr K' v' /r vp K' v')") apply (simp add:Ring.qring_carrier) apply (erule bexE) apply (frule_tac x = a in completion_approx[of "K'" "v" "v'"], assumption+, erule bexE) apply (subgoal_tac "compos (Vr K v) (pj (Vr K' v') (vp K' v')) ((I(Vr K v))) y = b", blast) apply (simp add:compos_def compose_def idmap_def) apply (frule completion_Vring_sub[of "K'" "v" "v'"], assumption+) apply (frule_tac c = y in subsetD[of "carrier (Vr K v)" "carrier (Vr K' v')"], assumption+) apply (frule_tac x = y in pj_mem[of "Vr K' v'" "vp K' v'"], assumption+, simp, thin_tac "pj (Vr K' v') (vp K' v') y = y \<uplus>(Vr K' v') (vp K' v')") apply (rotate_tac -5, frule sym, thin_tac "a \<uplus>(Vr K' v') (vp K' v') = b", simp) apply (rule_tac b1 = y and a1 = a in Ring.ar_coset_same1[THEN sym, of "Vr K' v'" "vp K' v'"], assumption+) apply (frule Ring.ring_is_ag[of "Vr K' v'"], frule_tac x = a in aGroup.ag_mOp_closed[of "Vr K' v'"], assumption+) apply (simp add:Corps.Vr_mOp_f_mOp, simp add:Corps.Vr_pOp_f_pOp) done lemma (in Corps) res_v_completion_ker:"[|Corps K'; valuation K v; valuation K' v'; Completionv v' K K'|] ==> ker(Vr K v), (qring (Vr K' v') (vp K' v')) (compos (Vr K v) (pj (Vr K' v') (vp K' v')) (I(Vr K v))) = vp K v" apply (rule equalityI) apply (rule subsetI) apply (simp add:ker_def, (erule conjE)+) apply (frule Corps.Vr_ring[of "K'" "v'"], assumption+, frule Corps.vp_ideal[of "K'" "v'"], assumption+, frule Ring.qring_ring[of "Vr K' v'" "vp K' v'"], assumption+, simp add:Ring.qring_zero) apply (simp add:compos_def, simp add:compose_def, simp add:idmap_def) apply (frule completion_Vring_sub[of "K'" "v" "v'"], assumption+) apply (frule_tac c = x in subsetD[of "carrier (Vr K v)" "carrier (Vr K' v')"], assumption+) apply (simp add:pj_mem) apply (frule_tac a = x in Ring.qring_zero_1[of "Vr K' v'" _ "vp K' v'"], assumption+) apply (subst vp_mem_val_poss[of v], assumption+) apply (simp add:Vr_mem_f_mem) apply (frule_tac x = x in Corps.vp_mem_val_poss[of "K'" "v'"], assumption+, simp add:Corps.Vr_mem_f_mem, simp) apply (frule_tac x = x in Vr_mem_f_mem[of v], assumption+) apply (frule_tac x = x in completion_val_eq[of "K'" "v" "v'"], assumption+, simp) apply (rule subsetI) apply (simp add:ker_def) apply (frule Vr_ring[of "v"]) apply (frule vp_ideal[of "v"]) apply (frule_tac h = x in Ring.ideal_subset[of "Vr K v" "vp K v"], assumption+, simp) apply (frule Corps.Vr_ring[of "K'" "v'"], assumption+, frule Corps.vp_ideal[of "K'" "v'"], assumption+, simp add:Ring.qring_zero) apply (simp add:compos_def compose_def idmap_def) apply (frule completion_Vring_sub[of "K'" "v" "v'"], assumption+, frule_tac c = x in subsetD[of "carrier (Vr K v)" "carrier (Vr K' v')"], assumption+) apply (simp add:pj_mem) apply (frule completion_vpr_sub[of "K'" "v" "v'"], assumption+, frule_tac c = x in subsetD[of "vp K v" "vp K' v'"], assumption+) apply (simp add:Ring.ar_coset_same4[of "Vr K' v'" "vp K' v'"]) done lemma (in Corps) completion_res_qring_isom:"[|Corps K'; valuation K v; valuation K' v'; Completionv v' K K'|] ==> r_isom ((Vr K v) /r (vp K v)) ((Vr K' v') /r (vp K' v'))" apply (subst r_isom_def) apply (frule res_v_completion_surj[of "K'" "v" "v'"], assumption+) apply (frule Vr_ring[of "v"], frule Corps.Vr_ring[of "K'" "v'"], assumption+, frule Corps.vp_ideal[of "K'" "v'"], assumption+, frule Ring.qring_ring[of "Vr K' v'" "vp K' v'"], assumption+) apply (frule rHom_compos[of "Vr K v" "Vr K' v'" "(Vr K' v' /r vp K' v')" "(I(Vr K v))" "pj (Vr K' v') (vp K' v')"], assumption+) apply (simp add:completion_idmap_rHom) apply (simp add:pj_Hom) apply (frule surjec_ind_bijec [of "Vr K v" "(Vr K' v' /r vp K' v')" "compos (Vr K v) (pj (Vr K' v') (vp K' v')) (I(Vr K v))"], assumption+) apply (frule ind_hom_rhom[of "Vr K v" "(Vr K' v' /r vp K' v')" "compos (Vr K v) (pj (Vr K' v') (vp K' v')) (I(Vr K v))"], assumption+) apply (simp add:res_v_completion_ker) apply blast done text{* expansion of x in a complete field K, with normal valuation v. Here we suppose t is an element of K satisfying the equation v t = 1.*} constdefs (structure K) Kxa :: "[_, 'b => ant, 'b] => 'b set" "Kxa K v x == {y. ∃k∈carrier (Vr K v). y = x ·r k}" (** x *r carrier (Vr K v) **) consts partial_sum :: "[('b, 'm) Ring_scheme, 'b, 'b => ant, 'b] => nat => 'b" ("(5psum _ _ _ _ _)" [96,96,96,96,97]96) primrec psum_0 :"psum K x v t 0 = (csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) (x ·rK tK-(tna (v x))))) ·rK (tK(tna (v x)))" psum_Suc: "psum K x v t (Suc n) = (psum K x v t n) ±K ((csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) ((x ±K -aK (psum K x v t n)) ·rK (tK- (tna (v x) + int (Suc n)))))) ·rK (tK(tna (v x) + int (Suc n))))" constdefs (structure K) expand_coeff :: "[_ , 'b => ant, 'b, 'b] => nat => 'b" ("(5ecf_ _ _ _ _)" [96,96,96,96,97]96) "ecfK v t x n == if n = 0 then csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) (x ·r tK(-(tna (v x))))) else csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) ((x ± -a (psum K x v t (n - 1))) ·r (tK(- (tna (v x) + int n)))))" expand_term :: "[_, 'b => ant, 'b, 'b] => nat => 'b" ("(5etm _ _ _ _ _)" [96,96,96,96,97]96) "etmK v t x n == (ecfK v t x n)·r (tK(tna (v x) + int n))" (*** Let O be the valuation ring with respect to the valuation v and let P be the maximal ideal of O. Let j be the value of x (∈ O), and a0 be an element of the complete set of representatives such that a0 = x t-j mod P. We see that (a0 - x t-j)/t is an element of O, and then we choose a1 an element of the complete set of representatives which is equal to (a0 - x t-j)/tmodulo P. We see x - (a0tj + a1t(j+1) + … + ast(j+s)) ∈ (t(j+s+1)). "psum G a i K v t x s" is the partial sum a0tj + a1t(j+1) + … + ast(j+s) ***) lemma (in Corps) Kxa_val_ge:"[|valuation K v; t ∈ carrier K; v t = 1|] ==> Kxa K v (tKj) = {x. x ∈ carrier K ∧ (ant j) ≤ (v x)}" apply (frule val1_neq_0[of v t], assumption+) apply (cut_tac field_is_ring) apply (rule equalityI) apply (rule subsetI, simp add:Kxa_def, erule bexE, frule_tac x = k in Vr_mem_f_mem[of "v"], assumption+, frule npowf_mem[of "t" "j"], simp, simp add:Ring.ring_tOp_closed) apply (simp add:val_t2p) apply (simp add:val_exp[THEN sym]) apply (simp add:val_pos_mem_Vr[THEN sym, of "v"]) apply (frule_tac x = 0 and y = "v k" in aadd_le_mono[of _ _ "ant j"]) apply (simp add:aadd_0_l aadd_commute) apply (rule subsetI, simp, erule conjE) apply (simp add:Kxa_def) apply (case_tac "x = \<zero>K") apply (frule Vr_ring[of "v"], frule Ring.ring_zero[of "Vr K v"], simp add:Vr_0_f_0, frule_tac x1 = "tKj" in Ring.ring_times_x_0[THEN sym, of "K"], simp add:npowf_mem, blast) apply (frule val_exp[of "v" "t" "j"], assumption+, simp) apply (frule field_potent_nonzero1[of "t" "j"], frule npowf_mem[of "t" "j"], assumption+) apply (frule_tac y = "v x" in ale_diff_pos[of "v (tKj)"], simp add:diff_ant_def) apply (cut_tac npowf_mem[of t j]) defer apply assumption apply simp apply (frule value_of_inv[THEN sym, of "v" "tKj"], assumption+) apply (cut_tac invf_closed1[of "tKj"], simp, erule conjE) apply (frule_tac x1 = x in val_t2p[THEN sym, of "v" _ "(tKj)K"], assumption+, simp) apply (frule_tac x = "(tKj)K" and y = x in Ring.ring_tOp_closed[of "K"], assumption+) apply (simp add:Ring.ring_tOp_commute[of "K" _ "(tKj)K"]) apply (frule_tac x = "((tKj)K) ·r x" in val_pos_mem_Vr[of v], assumption+, simp) apply (frule_tac z = x in Ring.ring_tOp_assoc[of "K" "tKj" "(tKj)K"], assumption+) apply (simp add:Ring.ring_tOp_commute[of K "tKj" "(tKj) K"] linvf, simp add:Ring.ring_l_one, blast) apply simp done lemma (in Corps) Kxa_pow_vpr:"[| valuation K v; t ∈ carrier K; v t = 1; (0::int) ≤ j|] ==> Kxa K v (tKj) = (vp K v)(Vr K v) (ant j)" apply (frule val_surj_n_val[of v], blast) apply (simp add:Kxa_val_ge) apply (rule equalityI) apply (rule subsetI, simp, erule conjE) apply (rule_tac x = x in n_value_x_2[of "v" _ "(ant j)"], assumption+) apply (cut_tac ale_zle[THEN sym, of "0" "j"]) apply (frule_tac a = "0 ≤ j" and b = "ant 0 ≤ ant j" in a_b_exchange, assumption+) apply (thin_tac "(0 ≤ j) = (ant 0 ≤ ant j)", simp add:ant_0) apply (frule_tac k = "v x" in ale_trans[of "0" "ant j"], assumption+) apply (simp add:val_pos_mem_Vr) apply simp apply (simp only:ale_zle[THEN sym, of "0" "j"], simp add:ant_0) apply (rule subsetI) apply simp apply (frule_tac x = x in mem_vp_apow_mem_Vr[of "v" "ant j"]) apply (simp only:ale_zle[THEN sym, of "0" "j"], simp add:ant_0) apply assumption apply (simp add:Vr_mem_f_mem[of "v"]) apply (frule_tac x = x in n_value_x_1[of "v" "ant j" _ ]) apply (simp only:ale_zle[THEN sym, of "0" "j"], simp add:ant_0) apply assumption apply simp done lemma (in Corps) field_distribTr:"[|a ∈ carrier K; b ∈ carrier K; x ∈ carrier K; x ≠ \<zero>|] ==> a ± (-a (b ·r x)) = (a ·r (xK) ± (-a b)) ·r x" apply (cut_tac field_is_ring, cut_tac invf_closed1[of x], simp, erule conjE) apply ( simp add:Ring.ring_inv1_1[of "K" "b" "x"], frule Ring.ring_is_ag[of "K"], frule aGroup.ag_mOp_closed[of "K" "b"], assumption+) apply (frule Ring.ring_tOp_closed[of "K" "a" "xK"], assumption+, simp add:Ring.ring_distrib2, simp add:Ring.ring_tOp_assoc, simp add:linvf, simp add:Ring.ring_r_one) apply simp done lemma a0_le_1[simp]:"(0::ant) ≤ 1" by (cut_tac a0_less_1, simp add:aless_imp_le) lemma (in Corps) vp_mem_times_t:"[|valuation K v; t ∈ carrier K; t ≠ \<zero>; v t = 1; x ∈ vp K v|] ==> ∃a∈carrier (Vr K v). x = a ·r t" apply (frule Vr_ring[of v], frule vp_ideal[of v]) apply (frule val_surj_n_val[of v], blast) apply (frule vp_mem_val_poss[of v x], frule_tac h = x in Ring.ideal_subset[of "Vr K v" "vp K v"], assumption+, simp add:Vr_mem_f_mem, simp) apply (frule gt_a0_ge_1[of "v x"]) apply (subgoal_tac "v t ≤ v x") apply (thin_tac "1 ≤ v x") apply (frule val_Rxa_gt_a_1[of "v" "t" "x"]) apply (subst val_pos_mem_Vr[THEN sym, of "v" "t"], assumption+) apply simp apply (simp add:vp_mem_Vr_mem) apply assumption+ apply (simp add:Rxa_def, erule bexE) apply (cut_tac a0_less_1) apply (subgoal_tac "0 ≤ v t") apply (frule val_pos_mem_Vr[of "v" "t"], assumption+) apply (simp, simp add:Vr_tOp_f_tOp, blast, simp+) done lemma (in Corps) psum_diff_mem_Kxa:"[|valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero>|] ==> (psum K x v t n) ∈ carrier K ∧ ( x ± (-a (psum K x v t n))) ∈ Kxa K v (tK((tna (v x)) + (1 + int n)))" apply (frule val1_neq_0[of v t], assumption+) apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"], frule Vr_ring[of v], frule vp_ideal[of v]) apply (induct_tac n) apply (subgoal_tac "x ·r (tK- tna (v x)) ∈ carrier (Vr K v)", rule conjI, simp, rule Ring.ring_tOp_closed[of "K"], assumption+, frule Ring.csrp_fn_mem[of "Vr K v" "vp K v" "pj (Vr K v) (vp K v) (x ·r (tK- tna (v x)))"], assumption+, simp add:pj_mem Ring.qring_carrier, blast, simp add:Vr_mem_f_mem, simp add:npowf_mem) apply (simp, frule npowf_mem[of "t" "tna (v x)"], assumption+, frule field_potent_nonzero1[of "t" "tna (v x)"], assumption+, subst field_distribTr[of "x" _ "tK(tna (v x))"], assumption+, frule Ring.csrp_fn_mem[of "Vr K v" "vp K v" "pj (Vr K v) (vp K v) (x ·r (tK- tna (v x)))"], assumption+, simp add:pj_mem Ring.qring_carrier, blast, simp add:Vr_mem_f_mem, simp add:npowf_mem, assumption) apply (frule Ring.csrp_diff_in_vpr[of "Vr K v" "vp K v" "x ·r ((tK(tna (v x)))K)"], assumption+) apply (simp add:npowf_minus) apply (simp add:npowf_minus) apply (frule pj_Hom[of "Vr K v" "vp K v"], assumption+) apply (frule rHom_mem[of "pj (Vr K v) (vp K v)" "Vr K v" "Vr K v /r vp K v" "x ·r (tK- tna (v x))"], assumption+) apply (frule Ring.csrp_fn_mem[of "Vr K v" "vp K v" "pj (Vr K v) (vp K v) (x ·r (tK- tna (v x)))"], assumption+) apply (frule Ring.ring_is_ag[of "Vr K v"], frule_tac x = "csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) (x ·r (tK- tna (v x))))" in aGroup.ag_mOp_closed[of "Vr K v"], assumption+) apply (simp add:Vr_pOp_f_pOp) apply (simp add:Vr_mOp_f_mOp) apply (frule_tac x = "x ·r (tK- tna (v x)) ± -a (csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) (x ·r (tK- tna (v x)))))" in vp_mem_times_t[of "v" "t"], assumption+, erule bexE, simp) apply (frule_tac x = a in Vr_mem_f_mem[of "v"], assumption+) apply (simp add:Ring.ring_tOp_assoc[of "K"]) apply (simp add:npowf_exp_1_add[THEN sym, of "t" "tna (v x)"]) apply (simp add:zadd_commute) apply (simp add:Kxa_def) apply (frule npowf_mem[of "t" "1 + tna (v x)"], assumption+) apply (simp add:Ring.ring_tOp_commute[of "K" _ "tK(1 + tna (v x))"]) apply blast apply (frule npowf_mem[of "t" "- tna (v x)"], assumption+) apply (frule Ring.ring_tOp_closed[of "K" "x" "tK- tna (v x)"], assumption+) apply (subst val_pos_mem_Vr[THEN sym, of v], assumption+) apply (simp add:val_t2p) apply (simp add:val_exp[THEN sym, of "v" "t"]) apply (simp add:aminus[THEN sym]) apply (frule value_in_aug_inf[of "v" "x"], assumption+, simp add:aug_inf_def) apply (frule val_nonzero_noninf[of "v" "x"], assumption+, simp add:ant_tna) apply (simp add:aadd_minus_r) apply (erule conjE) apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"]) apply (rule conjI) apply simp apply (rule aGroup.ag_pOp_closed, assumption+) apply (rule Ring.ring_tOp_closed[of "K"], assumption+) apply (simp add:Kxa_def, erule bexE, simp) apply (subst Ring.ring_tOp_commute, assumption+) apply (rule npowf_mem, assumption+) apply (simp add:Vr_mem_f_mem) apply (frule_tac n = "tna (v x) + (1 + int n)" in npowf_mem[of t ], assumption, frule_tac n = "- tna (v x) + (-1 - int n)" in npowf_mem[of t ], assumption, frule_tac x = k in Vr_mem_f_mem[of v], assumption+) apply (simp add:Ring.ring_tOp_assoc npowf_exp_add[THEN sym, of t]) apply (simp add:field_npowf_exp_zero) apply (simp add:Ring.ring_r_one) apply (frule pj_Hom[of "Vr K v" "vp K v"], assumption+) apply (frule_tac a = k in rHom_mem[of "pj (Vr K v) (vp K v)" "Vr K v" "Vr K v /r vp K v"], assumption+) apply (frule_tac x = "pj (Vr K v) (vp K v) k" in Ring.csrp_fn_mem[of "Vr K v" "vp K v"], assumption+) apply (simp add:Vr_mem_f_mem) apply (rule npowf_mem, assumption+) apply (simp add:Kxa_def) apply (erule bexE, simp) apply (frule_tac x = k in Vr_mem_f_mem[of "v"], assumption+) apply (frule_tac n = "tna (v x) + (1 + int n)" in npowf_mem[of "t"], assumption+) apply (frule_tac n = "- tna (v x) + (- 1 - int n)" in npowf_mem[of "t"], assumption+) apply (frule_tac x = "tK(tna (v x) + (1 + int n))" and y = k in Ring.ring_tOp_commute[of "K"], assumption+) apply simp apply (simp add:Ring.ring_tOp_assoc, simp add:npowf_exp_add[THEN sym]) apply (simp add:field_npowf_exp_zero) apply (simp add:Ring.ring_r_one) apply (thin_tac "(tK(tna (v x) + (1 + int n))) ·r k = k ·r (tK(tna (v x) + (1 + int n)))") apply (frule pj_Hom[of "Vr K v" "vp K v"], assumption+) apply (frule_tac a = k in rHom_mem[of "pj (Vr K v) (vp K v)" "Vr K v" "Vr K v /r vp K v"], assumption+) apply (frule_tac x = "pj (Vr K v) (vp K v) k" in Ring.csrp_fn_mem[of "Vr K v" "vp K v"], assumption+) apply (frule_tac x = "csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) k)" in Vr_mem_f_mem[of v], assumption+) apply (frule_tac x = "csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) k)" and y = "tK(tna (v x) + (1 + int n))" in Ring.ring_tOp_closed[of "K"], assumption+) apply (simp add:aGroup.ag_p_inv[of "K"]) apply (frule_tac x = "psum K x v t n" in aGroup.ag_mOp_closed[of "K"], assumption+) apply (frule_tac x = "(csrp_fn (Vr K v) (vp K v)(pj (Vr K v) (vp K v) k)) ·r (tK(tna (v x) + (1 + int n)))" in aGroup.ag_mOp_closed[of "K"], assumption+) apply (subst aGroup.ag_pOp_assoc[THEN sym], assumption+) apply simp apply (simp add:Ring.ring_inv1_1) apply (subst Ring.ring_distrib2[THEN sym, of "K"], assumption+) apply (rule aGroup.ag_mOp_closed, assumption+) apply (frule_tac x = k in Ring.csrp_diff_in_vpr[of "Vr K v" "vp K v"] , assumption+) apply (frule Ring.ring_is_ag[of "Vr K v"]) apply (frule_tac x = "csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) k)" in aGroup.ag_mOp_closed[of "Vr K v"], assumption+) apply (simp add:Vr_pOp_f_pOp) apply (simp add:Vr_mOp_f_mOp) apply (frule_tac x = "k ± -a (csrp_fn (Vr K v) (vp K v) (pj (Vr K v) (vp K v) k))" in vp_mem_times_t[of "v" "t"], assumption+, erule bexE, simp) apply (frule_tac x = a in Vr_mem_f_mem[of v], assumption+) apply (simp add:Ring.ring_tOp_assoc[of "K"]) apply (simp add:npowf_exp_1_add[THEN sym, of "t"]) apply (simp add:zadd_commute[of "2"]) apply (simp add:zadd_assoc) apply (subst Ring.ring_tOp_commute, assumption+) apply (rule npowf_mem, assumption+) apply blast done lemma Suc_diff_int:"0 < n ==> int (n - Suc 0) = int n - 1" by (cut_tac int_Suc[of "n - Suc 0"], simp) lemma (in Corps) ecf_mem:"[|valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero> |] ==> ecfK v t x n ∈ carrier K" apply (frule val1_neq_0[of v t], assumption+) apply (cut_tac field_is_ring, frule Vr_ring[of v], frule vp_ideal[of v]) apply (case_tac "n = 0") apply (simp add:expand_coeff_def) apply (rule Vr_mem_f_mem[of v], assumption+) apply (rule Ring.csrp_fn_mem, assumption+) apply (subgoal_tac "x ·r (tK- tna (v x)) ∈ carrier (Vr K v)") apply (simp add:pj_mem Ring.qring_carrier, blast) apply (frule npowf_mem[of "t" "- tna (v x)"], assumption+, subst val_pos_mem_Vr[THEN sym, of v "x ·r (tK(- tna(v x)))"], assumption+, rule Ring.ring_tOp_closed, assumption+) apply (simp add:val_t2p, simp add:val_exp[THEN sym, of "v" "t" "- tna (v x)"]) apply (frule value_in_aug_inf[of "v" "x"], assumption+, simp add:aug_inf_def) apply (frule val_nonzero_noninf[of "v" "x"], assumption+) apply (simp add:aminus[THEN sym], simp add:ant_tna) apply (simp add:aadd_minus_r) apply (simp add:expand_coeff_def) apply (frule psum_diff_mem_Kxa[of "v" "t" "x" "n - 1"], assumption+, erule conjE) apply (simp add:Kxa_def, erule bexE, frule_tac x = k in Vr_mem_f_mem[of v], assumption+, frule npowf_mem[of "t" "tna (v x) + (1 + int (n - Suc 0))"], assumption+, frule npowf_mem[of "t" "-tna (v x) - int n"], assumption+) apply simp apply (thin_tac "x ± -a psum K x v t (n - Suc 0) = (tK(tna (v x) + (1 + int (n - Suc 0)))) ·r k") apply(simp add:Ring.ring_tOp_commute[of "K" "tK(tna (v x) + (1 + int (n - Suc 0)))"]) apply (simp add:Ring.ring_tOp_assoc, simp add:npowf_exp_add[THEN sym]) apply (thin_tac "tK(tna (v x) + (1 + int (n - Suc 0))) ∈ carrier K", thin_tac "tK(- tna (v x) - int n) ∈ carrier K") apply (simp add:Suc_diff_int[of "n"]) apply (simp add:npowf_def, simp add:Ring.ring_r_one) apply (rule Vr_mem_f_mem, assumption+) apply (rule Ring.csrp_fn_mem, assumption+) apply (simp add:pj_mem Ring.qring_carrier, blast) done lemma (in Corps) etm_mem:"[|valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero>|] ==> etmK v t x n ∈ carrier K" apply (frule val1_neq_0[of v t], assumption+) apply (simp add:expand_term_def) apply (cut_tac field_is_ring, rule Ring.ring_tOp_closed[of "K"], assumption) apply (simp add:ecf_mem) apply (simp add:npowf_mem) done lemma (in Corps) psum_sum_etm:"[|valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero>|] ==> psumK x v t n = nsum K (λj. (ecfK v t x j)·r (tK(tna (v x) + (int j)))) n" apply (frule val1_neq_0[of v t], assumption+) apply (induct_tac "n") apply (simp add:expand_coeff_def) apply (rotate_tac -1, drule sym) apply simp apply (thin_tac "Σe K (λj. ecfK v t x j ·r tK(tna (v x) + int j)) n = psum K x v t n") apply (simp add:expand_coeff_def) done lemma zabs_pos:"0 ≤ (abs (z::int))" by (simp add:zabs_def) lemma abs_p_self_pos:"0 ≤ z + (abs (z::int))" by (simp add:zabs_def) lemma zadd_right_mono:"(i::int) ≤ j ==> i + k ≤ j + k" by simp theorem (in Corps) expansion_thm:"[|valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero>|] ==> limK v (partial_sum K x v t) x" apply (cut_tac field_is_ring, frule Ring.ring_is_ag[of "K"]) apply (simp add:limit_def) apply (rule allI) apply (subgoal_tac "∀n. (N + na (Abs (v x))) < n --> psumK x v t n ± -a x ∈ vp K v(Vr K v) (an N)") apply blast apply (rule allI, rule impI) apply (frule_tac n = n in psum_diff_mem_Kxa[of "v" "t" "x"], assumption+, erule conjE) apply (frule_tac j = "tna (v x) + (1 + int n)" in Kxa_val_ge[of "v" "t"], assumption+) apply simp apply (thin_tac "Kxa K v (tK(tna (v x) + (1 + int n))) = {xa ∈ carrier K. ant (tna (v x) + (1 + int n)) ≤ v xa}") apply (erule conjE) apply (simp add:a_zpz[THEN sym]) apply (subgoal_tac "(an N) ≤ v (psum K x v t n ± -a x)") apply (frule value_in_aug_inf[of v x], assumption+, simp add:aug_inf_def) apply (frule val_nonzero_noninf[of v x], assumption+) apply (simp add:ant_tna) apply (frule val_surj_n_val[of v], blast) apply (rule_tac x = "psumK x v t n ± -a x" and n = "an N" in n_value_x_2[of "v"], assumption+) apply (subst val_pos_mem_Vr[THEN sym, of v], assumption+) apply (rule aGroup.ag_pOp_closed[of "K"], assumption+) apply (simp add:aGroup.ag_mOp_closed) apply (cut_tac n = N in an_nat_pos) apply (rule_tac i = 0 and j = "an N" and k = "v (psum K x v t n ± -a x)" in ale_trans, assumption+) apply simp apply simp apply (frule_tac x1 = "x ± (-a psumK x v t n)" in val_minus_eq[THEN sym, of v], assumption+, simp, thin_tac "v ( x ± -a psum K x v t n) = v (-a ( x ± -a psum K x v t n))") apply (frule_tac x = "psum K x v t n" in aGroup.ag_mOp_closed[of "K"], assumption+, simp add:aGroup.ag_p_inv, simp add:aGroup.ag_inv_inv) apply (frule aGroup.ag_mOp_closed[of "K" "x"], assumption+) apply (simp add:aGroup.ag_pOp_commute[of "K" "-a x"]) apply (cut_tac Abs_pos[of "v x"]) apply (frule val_nonzero_z[of v x], assumption+, erule exE, simp) apply (simp add:na_def) apply (cut_tac aneg_less[THEN sym, of "0" "Abs (v x)"], simp) apply (frule val_nonzero_noninf[of v x], assumption+) apply (simp add:tna_ant) apply (simp only:ant_1[THEN sym], simp del:ant_1 add:a_zpz) apply (simp add:zadd_assoc[THEN sym]) apply (cut_tac m1 = "N + nat ¦z¦" and n1 = n in zless_int[THEN sym], simp) apply (frule_tac i = "int N + abs z" and j = "int n" and k = "z + 1" in zadd_strict_right_mono, simp only:zadd_commute) apply (simp only:zadd_assoc[of _ "1"]) apply (simp only:zadd_assoc[THEN sym, of "1"]) apply (simp only:zadd_commute[of "1"]) apply (simp only:zadd_assoc[of _ "1"]) apply (cut_tac ?z1.1= z and ?z2.1= "abs z" and ?z3.1 = "1 + int N" in zadd_assoc[THEN sym]) apply (thin_tac "¦z¦ + int N < int n") apply (frule_tac a = "z + (¦z¦ + (1 + int N))" and b = "z + ¦z¦ + (1 + int N)" and c = "int n + (z + 1)" in ineq_conv1, assumption+) apply (thin_tac "z + (¦z¦ + (1 + int N)) < int n + (z + 1)", thin_tac "z + (¦z¦ + (1 + int N)) = z + ¦z¦ + (1 + int N)", thin_tac "N + nat ¦z¦ < n") apply (cut_tac z = z in abs_p_self_pos) apply (frule_tac i = 0 and j = "z + abs z" and k = "1 + int N" in zadd_right_mono) apply (simp only:zadd_0) apply (frule_tac i = "1 + int N" and j = "z + ¦z¦ + (1 + int N)" and k = "int n + (z + 1)" in zle_zless_trans, assumption+) apply (thin_tac "z + ¦z¦ + (1 + int N) < int n + (z + 1)", thin_tac "0 ≤ z + ¦z¦", thin_tac "1 + int N ≤ z + ¦z¦ + (1 + int N)") apply (cut_tac m1 = "1 + int N" and n1 = "int n + (z + 1)" in aless_zless[THEN sym], simp) apply (frule_tac x = "ant (1 + int N)" and y = "ant (int n + (z + 1))" and z = "v ( psum K x v t n ± -a x)" in aless_le_trans, assumption+) apply (thin_tac "ant (1 + int N) < ant (int n + (z + 1))") apply (simp add:a_zpz[THEN sym]) apply (frule_tac x = "1 + ant (int N)" and y = "v ( psum K x v t n ± -a x)" in aless_imp_le, thin_tac "1 + ant (int N) < v ( psum K x v t n ± -a x)") apply (cut_tac a0_less_1, frule aless_imp_le[of "0" "1"]) apply (frule_tac b = "ant (int N)" in aadd_pos_le[of "1"]) apply (subst an_def) apply (rule_tac i = "ant (int N)" and j = "1 + ant (int N)" and k = "v ( psum K x v t n ± -a x)" in ale_trans, assumption+) done subsection "Hensel's theorem" constdefs (structure K) (*** Cauchy sequence of polynomials in (Vr K v)[X] ***) pol_Cauchy_seq::"[('b, 'm) Ring_scheme, 'b, _, 'b => ant, nat => 'b] => bool" ("(5PCauchy _ _ _ _ _)" [90,90,90,90,91]90) "PCauchyR X K v F == (∀n. (F n) ∈ carrier R) ∧ (∃d. (∀n. deg R (Vr K v) X (F n) ≤ (an d))) ∧ (∀N. ∃M. (∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X ((vp K v)(Vr K v) (an N)) (F n ±R -aR (F m))))" pol_limit::"[('b, 'm) Ring_scheme, 'b, _, 'b => ant, nat => 'b, 'b] => bool" ("(6Plimit _ _ _ _ _ _)" [90,90,90,90,90,91]90) "PlimitR X K v F p == (∀n. (F n) ∈ carrier R) ∧ (∀N. ∃M. (∀m. M < m --> P_mod R (Vr K v) X ((vp K v)(Vr K v) (an N)) ((F m) ±R -aR p)))" Pseql::"[('b, 'm) Ring_scheme, 'b, _, 'b => ant, nat, nat => 'b] => nat => 'b" ("(6Pseql_ _ _ _ _ _)" [90,90,90,90,90,91]90) "PseqlR X K v d F == λn. (ldeg_p R (Vr K v) X d (F n))" (** deg R (Vr K v) X (F n) ≤ an (Suc d) **) Pseqh::"[('b, 'm) Ring_scheme, 'b, _, 'b => ant, nat, nat => 'b] => nat => 'b" ("(6Pseqh _ _ _ _ _ _)" [90,90,90,90,90,91]90) "PseqhR X K v d F == λn. (hdeg_p R (Vr K v) X (Suc d) (F n))" (** deg R (Vr K v) X (F n) ≤ an (Suc d) **) lemma an_neq_minf[simp]:"∀n. -∞ ≠ an n" apply (rule allI) apply (simp add:an_def) apply (rule not_sym) apply simp done lemma an_neq_minf1[simp]:"∀n. an n ≠ -∞" apply (rule allI) apply (simp add:an_def) done lemma (in Corps) Pseql_mem:"[|valuation K v; PolynRg R (Vr K v) X; F n ∈ carrier R; ∀n. deg R (Vr K v) X (F n) ≤ an (Suc d)|] ==> (PseqlR X K v d F) n ∈ carrier R" apply (frule PolynRg.is_Ring) apply (simp add:Pseql_def) apply (frule Vr_ring[of "v"], rule PolynRg.ldeg_p_mem, assumption+, simp) done lemma (in Corps) Pseqh_mem:"[|valuation K v; PolynRg R (Vr K v) X; F n ∈ carrier R; ∀n. deg R (Vr K v) X (F n) ≤ an (Suc d)|] ==> (PseqhR X K v d F) n ∈ carrier R" apply (frule PolynRg.is_Ring) apply (frule Vr_ring[of "v"]) apply (frule PolynRg.subring[of "R" "Vr K v" "X"]) apply (frule PolynRg.X_mem_R[of "R" "Vr K v" "X"]) apply (simp del:npow_suc add:Pseqh_def) apply (rule PolynRg.hdeg_p_mem, assumption+, simp) done lemma (in Corps) PCauchy_lTr:"[|valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R; deg R (Vr K v) X p ≤ an (Suc d); P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) p|] ==> P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) (ldeg_p R (Vr K v) X d p)" apply (frule PolynRg.is_Ring) apply (simp add:ldeg_p_def) apply (frule Vr_ring[of v]) apply (frule PolynRg.scf_d_pol[of "R" "Vr K v" "X" "p" "Suc d"], assumption+, (erule conjE)+) apply (frule_tac n = "an N" in vp_apow_ideal[of v], simp) apply (frule PolynRg.P_mod_mod[THEN sym, of R "Vr K v" X "vp K v (Vr K v) (an N)" p "scf_d R (Vr K v) X p (Suc d)"], assumption+, simp) apply (subst PolynRg.polyn_expr_short[of R "Vr K v" X "scf_d R (Vr K v) X p (Suc d)" d], assumption+, simp) apply (subst PolynRg.P_mod_mod[THEN sym, of R "Vr K v" X "vp K v (Vr K v) (an N)" "polyn_expr R X d (d, snd (scf_d R (Vr K v) X p (Suc d)))" "(d, snd (scf_d R (Vr K v) X p (Suc d)))"], assumption+) apply (subst PolynRg.polyn_expr_short[THEN sym], simp+, simp add:PolynRg.polyn_mem) apply (subst pol_coeff_def, rule allI, rule impI, simp add:PolynRg.pol_coeff_mem) apply simp+ done lemma (in Corps) PCauchy_hTr:"[|valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R; deg R (Vr K v) X p ≤ an (Suc d); P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) p|] ==> P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) (hdeg_p R (Vr K v) X (Suc d) p)" apply (frule PolynRg.is_Ring) apply (cut_tac Vr_ring[of v]) apply (frule PolynRg.scf_d_pol[of R "Vr K v" X p "Suc d"], assumption+) apply (frule_tac n = "an N" in vp_apow_ideal[of v], simp) apply (frule PolynRg.P_mod_mod[THEN sym, of "R" "Vr K v" "X" "vp K v (Vr K v) (an N)" p "scf_d R (Vr K v) X p (Suc d)"], assumption+, simp+) apply (subst hdeg_p_def) apply (subst PolynRg.monomial_P_mod_mod[THEN sym, of "R" "Vr K v" "X" "vp K v (Vr K v) (an N)" "snd (scf_d R (Vr K v) X p (Suc d)) (Suc d)" "(snd (scf_d R (Vr K v) X p (Suc d)) (Suc d)) ·rR (X^R (Suc d))" "Suc d"], assumption+) apply (rule PolynRg.pol_coeff_mem[of R "Vr K v" X "scf_d R (Vr K v) X p (Suc d)" "Suc d"], assumption+, simp+) done lemma (in Corps) v_ldeg_p_pOp:"[|valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R; q ∈ carrier R; deg R (Vr K v) X p ≤ an (Suc d); deg R (Vr K v) X q ≤ an (Suc d)|] ==> (ldeg_p R (Vr K v) X d p) ±R (ldeg_p R (Vr K v) X d q) = ldeg_p R (Vr K v) X d (p ±R q)" by (simp add:PolynRg.ldeg_p_pOp[of R "Vr K v" X p q d]) lemma (in Corps) v_hdeg_p_pOp:"[|valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R; q ∈ carrier R; deg R (Vr K v) X p ≤ an (Suc d); deg R (Vr K v) X q ≤ an (Suc d)|] ==> (hdeg_p R (Vr K v) X (Suc d) p) ±R (hdeg_p R (Vr K v) X (Suc d) q) = hdeg_p R (Vr K v) X (Suc d) (p ±R q)" by (simp add:PolynRg.hdeg_p_pOp[of R "Vr K v" X p q d]) lemma (in Corps) v_ldeg_p_mOp:"[|valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R;deg R (Vr K v) X p ≤ an (Suc d)|] ==> -aR (ldeg_p R (Vr K v) X d p) = ldeg_p R (Vr K v) X d (-aR p)" by (simp add:PolynRg.ldeg_p_mOp) lemma (in Corps) v_hdeg_p_mOp:"[|valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R;deg R (Vr K v) X p ≤ an (Suc d)|] ==> -aR (hdeg_p R (Vr K v) X (Suc d) p) = hdeg_p R (Vr K v) X (Suc d) (-aR p)" by (simp add:PolynRg.hdeg_p_mOp) lemma (in Corps) PCauchy_lPCauchy:"[|valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R; ∀n. deg R (Vr K v) X (F n) ≤ an (Suc d); P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) (F n ±R -aR (F m))|] ==> P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) (((PseqlR X K v d F) n) ±R -aR ((PseqlR X K v d F) m))" apply (frule PolynRg.is_Ring) apply (cut_tac Vr_ring[of v], frule Ring.ring_is_ag[of "R"], frule PolynRg.subring[of "R" "Vr K v" "X"]) apply (simp add:Pseql_def) apply (subst v_ldeg_p_mOp[of "v" "R" "X" _ "d"], assumption+, simp, simp) apply (subst v_ldeg_p_pOp[of v R X "F n" "-aR (F m)"], assumption+, simp, rule aGroup.ag_mOp_closed, assumption, simp, simp, simp add:PolynRg.deg_minus_eq1) apply (rule PCauchy_lTr[of v R X "F n ±R -aR (F m)" "d" "N"], assumption+, rule aGroup.ag_pOp_closed[of "R" "F n" "-aR (F m)"], assumption+, simp, rule aGroup.ag_mOp_closed, assumption+, simp) apply (frule PolynRg.deg_minus_eq1 [of "R" "Vr K v" "X" "F m"], simp) apply (rule PolynRg.polyn_deg_add4[of "R" "Vr K v" "X" "F n" "-aR (F m)" "Suc d"], assumption+, simp, rule aGroup.ag_mOp_closed, assumption, simp+) done lemma (in Corps) PCauchy_hPCauchy:"[|valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R; ∀n. deg R (Vr K v) X (F n) ≤ an (Suc d); P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) (F n ±R -aR (F m))|] ==> P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) (((PseqhR X K v d F) n) ±R -aR ((PseqhR X K v d F) m))" apply (frule PolynRg.is_Ring) apply (frule Vr_ring[of v], frule Ring.ring_is_ag[of "R"], frule PolynRg.subring[of "R" "Vr K v" "X"], frule vp_apow_ideal[of v "an N"], simp) apply (simp add:Pseqh_def, subst v_hdeg_p_mOp[of v R X "F m" "d"], assumption+, simp+) apply (subst v_hdeg_p_pOp[of v R X "F n" "-aR (F m)"], assumption+, simp, rule aGroup.ag_mOp_closed, assumption, simp, simp, frule PolynRg.deg_minus_eq1 [of "R" "Vr K v" "X" "F m"], simp+ ) apply (frule PCauchy_hTr[of "v" "R" "X" "F n ±R -aR (F m)" "d" "N"], assumption+, rule aGroup.ag_pOp_closed[of "R" "F n" "-aR (F m)"], assumption+, simp, rule aGroup.ag_mOp_closed, assumption+, simp) apply (frule PolynRg.deg_minus_eq1 [of "R" "Vr K v" "X" "F m"], simp+) apply (rule PolynRg.polyn_deg_add4[of "R" "Vr K v" "X" "F n" "-aR (F m)" "Suc d"], assumption+, simp, rule aGroup.ag_mOp_closed, assumption, simp+) done (** Don't forget t_vp_apow ***) lemma (in Corps) Pseq_decompos:"[|valuation K v; PolynRg R (Vr K v) X; F n ∈ carrier R; deg R (Vr K v) X (F n) ≤ an (Suc d)|] ==> F n = ((PseqlR X K v d F) n) ±R ((PseqhR X K v d F) n)" apply (frule PolynRg.is_Ring) apply (simp del:npow_suc add:Pseql_def Pseqh_def) apply (frule Vr_ring[of v]) apply (frule PolynRg.subring[of "R" "Vr K v" "X"]) apply (rule PolynRg.decompos_p[of "R" "Vr K v" "X" "F n" "d"], assumption+) done lemma (in Corps) deg_0_const:"[|valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R; deg R (Vr K v) X p ≤ 0|] ==> p ∈ carrier (Vr K v)" apply (frule Vr_ring[of v]) apply (frule PolynRg.subring) apply (frule PolynRg.is_Ring) apply (case_tac "p = \<zero>R", simp, simp add:Ring.Subring_zero_ring_zero[THEN sym], simp add:Ring.ring_zero) apply (subst PolynRg.pol_of_deg0[THEN sym, of "R" "Vr K v" "X" "p"], assumption+) apply (simp add:PolynRg.deg_an, simp only:an_0[THEN sym]) apply (simp only:ale_nat_le[of "deg_n R (Vr K v) X p" "0"]) done lemma (in Corps) monomial_P_limt:"[|valuation K v; Completev K; PolynRg R (Vr K v) X; ∀n. f n ∈ carrier (Vr K v); ∀n. F n = (f n) ·rR (X^R d); ∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) (F n ±R -aR (F m))|] ==> ∃b∈carrier (Vr K v). Plimit R X K v F (b ·rR (X^R d))" apply (frule PolynRg.is_Ring) apply (frule Vr_ring[of v]) apply (frule PolynRg.subring[of "R" "Vr K v" "X"]) apply simp apply (subgoal_tac "Cauchy K v f") apply (simp add:v_complete_def) apply (drule_tac a = f in forall_spec) apply (thin_tac "∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v(Vr K v) (an N)) ((f n) ·rR (X^R d) ±R -aR (f m) ·rR (X^R d))", assumption) apply (erule exE, erule conjE) apply (subgoal_tac "b ∈ carrier (Vr K v)") apply (subgoal_tac "Plimit R X K v F (b ·rR (X^R d))", blast) (******* b ∈ carrier (Vr K v) ***********) apply (simp add:pol_limit_def) apply (rule conjI) apply (rule allI) apply (rule Ring.ring_tOp_closed[of "R"], assumption) apply (frule PolynRg.subring[of "R" "Vr K v" "X"]) apply (rule Ring.mem_subring_mem_ring[of "R" "Vr K v"], assumption+) apply simp apply (frule PolynRg.X_mem_R[of "R" "Vr K v" "X"]) apply (simp add:Ring.npClose) apply (thin_tac "∀n. F n = f n ·rR X^R d") apply (simp add:limit_def) apply (rule allI) (* apply (simp add:t_vp_apow[of "K" "v" "t"]) *) apply (rotate_tac -2, drule_tac m = N in nat_forall_spec) apply (erule exE) apply (subgoal_tac "∀n> M. P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((f n)·rR (X^R d) ±R -aR (b ·rR (X^R d)))", blast) apply (rule allI, rule impI) apply (rotate_tac -2, drule_tac m = n in nat_forall_spec, simp) apply (drule_tac m = n in nat_forall_spec) apply (frule_tac x = "f n" in Ring.mem_subring_mem_ring[of "R" "Vr K v"], assumption+, frule_tac x = b in Ring.mem_subring_mem_ring[of "R" "Vr K v"], assumption+) apply (frule PolynRg.X_mem_R[of "R" "Vr K v" "X"]) apply (frule Ring.npClose[of "R" "X" "d"], assumption+) apply (simp add:Ring.ring_inv1_1) apply (frule Ring.ring_is_ag[of "R"], frule_tac x = b in aGroup.ag_mOp_closed[of "R"], assumption+) apply (subst Ring.ring_distrib2[THEN sym, of "R" "X^R d"], assumption+) apply (frule_tac n = "an N" in vp_apow_ideal[of v], simp) apply (frule_tac I = "vp K v (Vr K v) (an N)" and c = "f n ±R -aR b" and p = "(f n ±R -aR b) ·rR (X^R d)" in PolynRg.monomial_P_mod_mod[of "R" "Vr K v" "X" _ _ _ "d"], assumption+) apply (simp add:Ring.Subring_minus_ring_minus[THEN sym]) apply (frule Ring.ring_is_ag[of "Vr K v"]) apply (frule_tac x = b in aGroup.ag_mOp_closed[of "Vr K v"], assumption+) apply (simp only:Ring.Subring_pOp_ring_pOp[THEN sym]) apply (rule aGroup.ag_pOp_closed, assumption+) apply simp apply (frule_tac I1 = "vp K v (Vr K v) (an N)" and c1 = "f n ±R -aR b" and p1 = "(f n ±R -aR b) ·rR (X^R d)" in PolynRg.monomial_P_mod_mod[THEN sym, of "R" "Vr K v" "X" _ _ _ "d"], assumption+) apply (frule Ring.ring_is_ag[of "Vr K v"]) apply (frule_tac x = b in aGroup.ag_mOp_closed[of "Vr K v"], assumption+) apply (simp only:Ring.Subring_minus_ring_minus[THEN sym]) apply (simp only:Ring.Subring_pOp_ring_pOp[THEN sym]) apply (rule aGroup.ag_pOp_closed, assumption+) apply simp apply simp apply (simp only:Vr_mOp_f_mOp[THEN sym]) apply (frule Ring.ring_is_ag[of "Vr K v"]) apply (frule_tac x = b in aGroup.ag_mOp_closed[of "Vr K v"], assumption+) apply (simp add:Vr_pOp_f_pOp[THEN sym]) apply (simp add:Ring.Subring_pOp_ring_pOp) apply (simp add:Ring.Subring_minus_ring_minus) apply (case_tac "b = \<zero>K", simp add:Vr_0_f_0[THEN sym], simp add:Ring.ring_zero) apply (frule_tac b = b in limit_val[of _ "f" "v"], assumption+, rule allI, frule_tac m = j in nat_forall_spec, simp add:Vr_mem_f_mem, assumption+, erule exE) apply (thin_tac "∀n. F n = f n ·rR X^R d", thin_tac "∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) (f n ·rR X^R d ±R -aR f m ·rR X^R d)") apply (rotate_tac -1, drule_tac m = "Suc N" in nat_forall_spec, simp) apply (drule_tac m = "Suc N" in nat_forall_spec) apply (frule_tac x1 = "f (Suc N)" in val_pos_mem_Vr[THEN sym, of v], simp add:Vr_mem_f_mem, simp, simp add:val_pos_mem_Vr[of v]) apply (simp add:Cauchy_seq_def) apply (simp add:Vr_mem_f_mem) apply (rule allI) apply (rotate_tac -3, frule_tac m = N in nat_forall_spec) apply (thin_tac "∀n. F n = f n ·rR X^R d") (*apply (simp add:t_vp_apow[of "K" "v" "t"]) *) apply (frule_tac n = "an N" in vp_apow_ideal[of "v"], simp) apply (drule_tac m = N in nat_forall_spec, erule exE) apply (subgoal_tac "∀n m. M < n ∧ M < m --> f n ± -a (f m) ∈ vp K v (Vr K v) (an N)", blast) apply (rule allI)+ apply (rule impI, erule conjE) apply (frule_tac I = "vp K v (Vr K v) (an N)" and c = "f n ± -a (f m)" and p = "(f n ± -a (f m)) ·rR (X^R d)" in PolynRg.monomial_P_mod_mod[of "R" "Vr K v" "X" _ _ _ "d"], assumption+) apply (frule_tac m = n in nat_forall_spec, drule_tac m = m in nat_forall_spec) apply (frule Ring.ring_is_ag[of "Vr K v"], simp add:Vr_mOp_f_mOp[THEN sym], frule_tac x = "f m" in aGroup.ag_mOp_closed[of "Vr K v"], assumption+, simp add:Vr_pOp_f_pOp[THEN sym]) apply (rule aGroup.ag_pOp_closed, assumption+, simp) apply simp apply (thin_tac "(f n ± -a f m ∈ vp K v (Vr K v) (an N)) = P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((f n ± -a f m) ·rR X^R d)") apply (rotate_tac -3, drule_tac m = n in nat_forall_spec, rotate_tac -1, drule_tac m = m in nat_forall_spec, simp) apply (frule_tac m = n in nat_forall_spec, drule_tac m = m in nat_forall_spec) apply (frule_tac x = "f n" in Ring.mem_subring_mem_ring[of R "Vr K v"], assumption+, frule_tac x = "f m" in Ring.mem_subring_mem_ring[of R "Vr K v"], assumption+, frule Ring.ring_is_ag[of R], frule_tac x = "f m" in aGroup.ag_mOp_closed[of R], assumption+, frule PolynRg.X_mem_R[of R "Vr K v" X], frule Ring.npClose[of R X d], assumption) apply (simp add:Ring.ring_inv1_1[of R], frule_tac y1 = "f n" and z1 = "-aR f m" in Ring.ring_distrib2[ THEN sym, of R "X^R d"], assumption+, simp, thin_tac "f n ·rR X^R d ±R (-aR f m) ·rR X^R d = (f n ±R -aR f m) ·rR X^R d") apply (simp only:Ring.Subring_minus_ring_minus[THEN sym,of R "Vr K v"]) apply (frule Ring.subring_Ring[of R "Vr K v"], assumption, frule Ring.ring_is_ag[of "Vr K v"], frule_tac x = "f m" in aGroup.ag_mOp_closed[of "Vr K v"], assumption+) apply (simp add:Ring.Subring_pOp_ring_pOp[THEN sym, of R "Vr K v"], simp add:Vr_pOp_f_pOp, simp add:Vr_mOp_f_mOp) done lemma (in Corps) mPlimit_uniqueTr:"[|valuation K v; PolynRg R (Vr K v) X; ∀n. f n ∈ carrier (Vr K v); ∀n. F n = (f n) ·rR (X^R d); c ∈ carrier (Vr K v); Plimit R X K v F (c ·rR (X^R d))|] ==> lim K v f c" apply (frule PolynRg.is_Ring, simp add:pol_limit_def limit_def, rule allI, erule conjE, rotate_tac -1, drule_tac m = N in nat_forall_spec, erule exE) apply (subgoal_tac "∀n. M < n --> f n ± -a c ∈ vp K v (Vr K v) (an N)", blast) apply (rule allI, rule impI, rotate_tac -2, drule_tac m = n in nat_forall_spec, simp, drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec, thin_tac "∀n. f n ·rR X^R d ∈ carrier R") apply (frule Vr_ring[of v], frule PolynRg.X_mem_R[of "R" "Vr K v" "X"], frule Ring.npClose[of "R" "X" "d"], assumption+, frule PolynRg.subring[of "R" "Vr K v" "X"]) apply (frule_tac x = c in Ring.mem_subring_mem_ring[of "R" "Vr K v"], assumption+, frule_tac x = "f n" in Ring.mem_subring_mem_ring[of "R" "Vr K v"], assumption+) apply (simp add:Ring.ring_inv1_1, frule Ring.ring_is_ag[of "R"], frule aGroup.ag_mOp_closed[of "R" "c"], assumption+) apply (simp add:Ring.ring_distrib2[THEN sym, of "R" "X^R d" _ "-aR c"], simp add:Ring.Subring_minus_ring_minus[THEN sym], frule Ring.ring_is_ag[of "Vr K v"], frule aGroup.ag_mOp_closed[of "Vr K v" "c"], assumption+) apply (simp add:Ring.Subring_pOp_ring_pOp[THEN sym], frule_tac x = "f n" in aGroup.ag_pOp_closed[of "Vr K v" _ "-a(Vr K v) c"], assumption+, frule_tac n = "an N" in vp_apow_ideal[of "v"], simp, frule_tac I1 = "vp K v (Vr K v) (an N)" and c1 = "f n ±(Vr K v) -a(Vr K v) c" and p1 = "(f n ±(Vr K v) -a(Vr K v) c) ·rR (X^R d)" in PolynRg.monomial_P_mod_mod[THEN sym, of R "Vr K v" X _ _ _ d], assumption+, simp, simp) apply (simp add:Vr_pOp_f_pOp, simp add:Vr_mOp_f_mOp) done lemma (in Corps) mono_P_limt_unique:"[|valuation K v; PolynRg R (Vr K v) X; ∀n. f n ∈ carrier (Vr K v); ∀n. F n = (f n) ·rR (X^R d); b ∈ carrier (Vr K v); c ∈ carrier (Vr K v); Plimit R X K v F (b ·rR (X^R d)); Plimit R X K v F (c ·rR (X^R d))|] ==> b ·rR (X^R d) = c ·rR (X^R d)" apply (frule PolynRg.is_Ring) apply (frule_tac mPlimit_uniqueTr[of v R X f F d b], assumption+, frule_tac mPlimit_uniqueTr[of v R X f F d c], assumption+) apply (frule Vr_ring[of v], frule PolynRg.subring[of "R" "Vr K v" "X"], frule Vr_mem_f_mem[of v b], assumption+, frule Vr_mem_f_mem[of v c], assumption+, frule limit_unique[of b f v c]) apply (rule allI, simp add:Vr_mem_f_mem, assumption+, simp) done lemma (in Corps) Plimit_deg:"[|valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R; ∀n. deg R (Vr K v) X (F n) ≤ (an d); p ∈ carrier R; Plimit R X K v F p|] ==> deg R (Vr K v) X p ≤ (an d)" apply (frule PolynRg.is_Ring, frule Vr_ring[of v]) apply (case_tac "p = \<zero>R", simp add:deg_def) apply (rule contrapos_pp, simp+, simp add:aneg_le, frule PolynRg.s_cf_expr[of R "Vr K v" X p], assumption+, (erule conjE)+, frule PolynRg.s_cf_deg[of R "Vr K v" X p], assumption+, frule PolynRg.pol_coeff_mem[of R "Vr K v" X "s_cf R (Vr K v) X p" "fst (s_cf R (Vr K v) X p)"], assumption+, simp, frule Vr_mem_f_mem[of v "snd (s_cf R (Vr K v) X p) (fst (s_cf R (Vr K v) X p))"], assumption+) (* show the value of the leading coefficient is noninf *) apply (frule val_nonzero_noninf[of "v" "snd (s_cf R (Vr K v) X p) (fst (s_cf R (Vr K v) X p))"], assumption, simp add:Vr_0_f_0, frule val_pos_mem_Vr[THEN sym, of v "snd (s_cf R (Vr K v) X p) (fst (s_cf R (Vr K v) X p))"], assumption+, simp, frule value_in_aug_inf[of "v" "snd (s_cf R (Vr K v) X p) (fst (s_cf R (Vr K v) X p))"], assumption+, cut_tac mem_ant[of "v (snd (s_cf R (Vr K v) X p) (fst (s_cf R (Vr K v) X p)))"], simp add:aug_inf_def, erule exE, simp, simp only:ant_0[THEN sym], simp only:ale_zle, frule_tac z = z in zpos_nat, erule exE, simp, thin_tac "z = int n") (* show that the leading coefficient of p shoule be 0. contradiction *) apply (simp add:pol_limit_def) apply (rotate_tac 5, drule_tac m = "Suc n" in nat_forall_spec) apply (erule exE) apply (rotate_tac -1, drule_tac m = "Suc M" in nat_forall_spec, simp del:npow_suc, drule_tac m = "Suc M" in nat_forall_spec, drule_tac m = "Suc M" in nat_forall_spec) (**** Only formula manipulation to obtain P_mod R (Vr K v) X (vp K v Vr K v an (Suc n)) (polyn_expr R X (fst (s_cf R (Vr K v) X p)) (add_cf (Vr K v) f (fst (s_cf R (Vr K v) X p), λj. -aVr K v snd (s_cf R (Vr K v) X p) j))) *****) apply (frule PolynRg.polyn_minus[of R "Vr K v" X "s_cf R (Vr K v) X p" "fst (s_cf R (Vr K v) X p)"], assumption+, simp, frule PolynRg.minus_pol_coeff[of R "Vr K v" X "s_cf R (Vr K v) X p"], assumption+, drule sym, frule_tac x = "deg R (Vr K v) X (F (Suc M))" in ale_less_trans[of _ "an d" "deg R (Vr K v) X p"], assumption+, frule_tac p = "F (Suc M)" and d = "deg_n R (Vr K v) X p" in PolynRg.pol_expr_edeg[of "R" "Vr K v" "X"], assumption+, frule_tac x = "deg R (Vr K v) X (F (Suc M))" and y = "deg R (Vr K v) X p" in aless_imp_le, subst PolynRg.deg_an[THEN sym, of "R" "Vr K v" "X" "p"], assumption+, erule exE, (erule conjE)+, frule_tac c = f in PolynRg.polyn_add1[of "R" "Vr K v" "X" _ "(fst (s_cf R (Vr K v) X p), λj. -aVr K v snd (s_cf R (Vr K v) X p) j)"], assumption+, simp add:max_def, thin_tac "-aR p = polyn_expr R X (fst (s_cf R (Vr K v) X p)) (fst (s_cf R (Vr K v) X p), λj. -aVr K v snd (s_cf R (Vr K v) X p) j)", thin_tac "polyn_expr R X (fst (s_cf R (Vr K v) X p)) (s_cf R (Vr K v) X p) = p", thin_tac "F (Suc M) = polyn_expr R X (fst (s_cf R (Vr K v) X p)) f", thin_tac "polyn_expr R X (fst (s_cf R (Vr K v) X p)) f ±R polyn_expr R X (fst (s_cf R (Vr K v) X p)) (fst (s_cf R (Vr K v) X p), λj. -aVr K v snd (s_cf R (Vr K v) X p) j) = polyn_expr R X (fst (s_cf R (Vr K v) X p)) (add_cf (Vr K v) f (fst (s_cf R (Vr K v) X p), λj. -aVr K v snd (s_cf R (Vr K v) X p) j))") (** apply P_mod_mod to obtain a condition of coefficients **) apply (frule_tac n = "an (Suc n)" in vp_apow_ideal[of "v"], simp, frule_tac p1 = "polyn_expr R X (fst (s_cf R (Vr K v) X p))(add_cf (Vr K v) f (fst (s_cf R (Vr K v) X p), λj. -aVr K v snd (s_cf R (Vr K v) X p) j))" and I1= "vp K v (Vr K v) (an (Suc n))" and c1 = "add_cf (Vr K v) f (fst (s_cf R (Vr K v) X p), λj. -aVr K v snd (s_cf R (Vr K v) X p) j)" in PolynRg.P_mod_mod[THEN sym, of R "Vr K v" X], assumption+, rule PolynRg.polyn_mem[of R "Vr K v" X], assumption+, rule PolynRg.add_cf_pol_coeff[of R "Vr K v" X], assumption+, simp add:PolynRg.add_cf_len, rule PolynRg.add_cf_pol_coeff[of R "Vr K v" X], assumption+, simp add:PolynRg.add_cf_len, simp add:PolynRg.add_cf_len) apply (drule_tac m = "fst (s_cf R (Vr K v) X p)" in nat_forall_spec, simp, thin_tac "P_mod R (Vr K v) X (vp K v (Vr K v) (an (Suc n))) (polyn_expr R X (fst (s_cf R (Vr K v) X p)) (add_cf (Vr K v) f (fst (s_cf R (Vr K v) X p), λj. -aVr K v snd (s_cf R (Vr K v) X p) j)))", simp add:add_cf_def) (**** we obtained snd (add_cf (Vr K v) f (fst (s_cf R (Vr K v) X p), λj. -aVr K v snd (s_cf R (Vr K v) X p) j)) (fst (s_cf R (Vr K v) X p)) ∈ vp K v Vr K v an (Suc n) ***) apply (frule_tac p = "polyn_expr R X (fst (s_cf R (Vr K v) X p)) f" and c = f and j = "fst f" in PolynRg.pol_len_gt_deg[of R "Vr K v" X], assumption+, simp, drule sym, simp add:PolynRg.deg_an) apply simp apply (rotate_tac -4, drule sym, simp) apply (frule Ring.ring_is_ag[of "Vr K v"], frule_tac x = "snd (s_cf R (Vr K v) X p) (fst f)" in aGroup.ag_mOp_closed[of "Vr K v"], assumption+, simp add:aGroup.ag_l_zero) apply (frule_tac I = "vp K v (Vr K v) (an (Suc n))" and x = "-aVr K v snd (s_cf R (Vr K v) X p) (fst f)" in Ring.ideal_inv1_closed[of "Vr K v"], assumption+) apply (simp add:aGroup.ag_inv_inv) apply (frule_tac n = "an (Suc n)" and x = "snd (s_cf R (Vr K v) X p) (fst f)" in n_value_x_1[of v], simp+) apply (frule_tac x = "snd (s_cf R (Vr K v) X p) (fst f)" in n_val_le_val[of v], assumption+, simp add:ant_int) apply (drule_tac i = "an (Suc n)" and j = "n_val K v (snd (s_cf R (Vr K v) X p) (fst f))" and k = "v (snd (s_cf R (Vr K v) X p) (fst f))" in ale_trans, assumption+) apply (simp add:ant_int ale_natle) done lemma (in Corps) Plimit_deg1:"[|valuation K v; Ring R; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R; ∀n. deg R (Vr K v) X (F n) ≤ ad; p ∈ carrier R; Plimit R X K v F p|] ==> deg R (Vr K v) X p ≤ ad" apply (frule Vr_ring[of v]) apply (case_tac "∀n. F n = \<zero>R") apply (frule Plimit_deg[of v R X F 0 p], assumption+, rule allI, simp add:deg_def, assumption+) apply (case_tac "p = \<zero>R", simp add:deg_def, frule PolynRg.nonzero_deg_pos[of R "Vr K v" X p], assumption+, simp, frule PolynRg.pols_const[of "R" "Vr K v" "X" "p"], assumption+, simp, frule PolynRg.pols_const[of "R" "Vr K v" "X" "p"], assumption+, simp add:ale_refl) apply (subgoal_tac "p = \<zero>R", simp) apply (thin_tac "p ≠ \<zero>R") apply (rule contrapos_pp, simp+) apply (frule n_val_valuation[of v]) apply (frule val_nonzero_z[of "n_val K v" "p"]) apply (simp add:Vr_mem_f_mem) apply (frule PolynRg.subring[of "R" "Vr K v" "X"]) apply (simp only:Ring.Subring_zero_ring_zero[THEN sym, of "R" "Vr K v"]) apply (simp add:Vr_0_f_0, erule exE) apply (frule val_pos_mem_Vr[THEN sym, of "v" "p"]) apply (simp add:Vr_mem_f_mem, simp) apply (frule val_pos_n_val_pos[of "v" "p"]) apply (simp add:Vr_mem_f_mem, simp) apply (simp add:ant_0[THEN sym]) apply (frule_tac z = z in zpos_nat, erule exE) apply (unfold pol_limit_def, erule conjE) apply (rotate_tac -1, drule_tac m = "Suc n" in nat_forall_spec) apply (subgoal_tac "¬ (∃M. ∀m. M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an (Suc n))) ( F m ±R -aR p))") apply blast apply (thin_tac "∃M. ∀m. M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an (Suc n))) (F m ±R -aR p)") apply simp apply (subgoal_tac "M < (Suc M) ∧ ¬ P_mod R (Vr K v) X (vp K v (Vr K v) (an (Suc n))) (\<zero>R ±R -aR p)") apply blast apply simp apply (frule Ring.ring_is_ag[of "R"]) apply (frule aGroup.ag_mOp_closed[of "R" "p"], assumption) apply (simp add:aGroup.ag_l_zero) apply (frule Ring.ring_is_ag[of "Vr K v"]) apply (frule aGroup.ag_mOp_closed[of "Vr K v" "p"], assumption) apply (frule_tac n = "an (Suc n)" in vp_apow_ideal[of v], simp) apply (frule PolynRg.subring[of "R" "Vr K v" "X"]) apply (simp add:Ring.Subring_minus_ring_minus[THEN sym, of "R" "Vr K v"]) apply (simp add:PolynRg.P_mod_coeffTr[of "R" "Vr K v" "X" _ "-a(Vr K v) p"]) apply (rule contrapos_pp, simp+) apply (frule_tac I = "vp K v (Vr K v) (an (Suc n))" in Ring.ideal_inv1_closed[of "Vr K v" _ "-a(Vr K v) p"], assumption+) apply (simp add:aGroup.ag_inv_inv) apply (frule_tac n = "an (Suc n)" in n_value_x_1[of "v" _ "p"], simp) apply assumption apply simp apply (simp add:ant_int, simp add:ale_natle) apply (fold pol_limit_def) apply (case_tac "ad = ∞", simp) apply simp apply (erule exE) apply (subgoal_tac "0 ≤ ad") apply (frule Plimit_deg[of "v" "R" "X" "F" "na ad" "p"], assumption+) apply (simp add:an_na)+ apply (drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec) apply (frule_tac p = "F n" in PolynRg.nonzero_deg_pos[of "R" "Vr K v" "X"], assumption+) apply (rule_tac j = "deg R (Vr K v) X (F n)" in ale_trans[of "0" _ "ad"], assumption+) done lemma (in Corps) Plimit_ldeg:"[|valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R; p ∈ carrier R; ∀n. deg R (Vr K v) X (F n) ≤ an (Suc d); Plimit R X K v F p|] ==> Plimit R X K v (Pseql R X K v d F) (ldeg_p R (Vr K v) X d p)" apply (frule Vr_ring[of v], frule PolynRg.is_Ring, frule Ring.ring_is_ag[of "R"]) apply (frule Plimit_deg[of v R X F "Suc d" p], assumption+) apply (simp add:Pseql_def, simp add:pol_limit_def) apply (rule conjI, rule allI) apply (rule PolynRg.ldeg_p_mem, assumption+, simp+) apply (rule allI) apply (rotate_tac -5, drule_tac m = N in nat_forall_spec, erule exE) apply (subgoal_tac "∀m > M. P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) (ldeg_p R (Vr K v) X d (F m) ±R -aR (ldeg_p R (Vr K v) X d p))", blast) apply (rule allI, rule impI) apply (rotate_tac -2, frule_tac m = m in nat_forall_spec, thin_tac "∀m. M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ( F m ±R -aR p)", simp) apply (subst v_ldeg_p_mOp[of v R X _ d], assumption+) apply (subst v_ldeg_p_pOp[of v R X _ "-aR p"], assumption+) apply (simp, rule aGroup.ag_mOp_closed, assumption, simp, simp) apply (frule PolynRg.deg_minus_eq1 [THEN sym, of "R" "Vr K v" "X" "p"], assumption+) apply simp apply (rule_tac p = "F m ±R -aR p" and N = N in PCauchy_lTr[of "v" "R" "X" _ "d" ], assumption+) apply (rule_tac x = "F m" in aGroup.ag_pOp_closed[of "R" _ "-aR p"], assumption+) apply (simp, rule aGroup.ag_mOp_closed, assumption+) apply (frule PolynRg.deg_minus_eq1 [of "R" "Vr K v" "X" "p"], assumption+) apply (rule PolynRg.polyn_deg_add4[of "R" "Vr K v" "X" _ "-aR p" "Suc d"], assumption+) apply (simp, rule aGroup.ag_mOp_closed, assumption, simp+) done lemma (in Corps) Plimit_hdeg:"[|valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R; ∀n. deg R (Vr K v) X (F n) ≤ an (Suc d); p ∈ carrier R; Plimit R X K v F p|] ==> Plimit R X K v (Pseqh R X K v d F) (hdeg_p R (Vr K v) X (Suc d) p)" apply (frule Vr_ring[of "v"], frule PolynRg.is_Ring, frule Ring.ring_is_ag[of "R"]) apply (frule Plimit_deg[of v R X F "Suc d" p], assumption+) apply (simp add:Pseqh_def, simp add:pol_limit_def) apply (rule conjI, rule allI) apply (rule PolynRg.hdeg_p_mem, assumption+, simp+) apply (rule allI) apply (rotate_tac -5, drule_tac m = N in nat_forall_spec) apply (erule exE) apply (subgoal_tac "∀m>M. P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) (hdeg_p R (Vr K v) X (Suc d) (F m) ±R -aR (hdeg_p R (Vr K v) X (Suc d) p))", blast) apply (rule allI, rule impI) apply (rotate_tac -2, drule_tac m = m in nat_forall_spec, simp) apply (subst v_hdeg_p_mOp[of v R X _ d], assumption+) apply (subst v_hdeg_p_pOp[of v R X _ "-aR p"], assumption+) apply (simp, rule aGroup.ag_mOp_closed, assumption, simp, simp) apply (frule PolynRg.deg_minus_eq1 [THEN sym, of R "Vr K v" X p], assumption+) apply simp apply (rule_tac p = "F m ±R -aR p" and N = N in PCauchy_hTr[of v R X _ d ], assumption+) apply (rule_tac x = "F m" in aGroup.ag_pOp_closed[of R _ "-aR p"], assumption+) apply (simp, rule aGroup.ag_mOp_closed, assumption+) apply (frule PolynRg.deg_minus_eq1 [of "R" "Vr K v" "X" "p"], assumption+) apply (rule PolynRg.polyn_deg_add4[of "R" "Vr K v" "X" _ "-aR p" "Suc d"], assumption+) apply (simp, rule aGroup.ag_mOp_closed, assumption, simp+) done lemma (in Corps) P_limit_uniqueTr:"[|valuation K v; PolynRg R (Vr K v) X|] ==> ∀F. ((∀n. F n ∈ carrier R) ∧ (∀n. deg R (Vr K v) X (F n) ≤ (an d)) --> (∀p1 p2. p1 ∈ carrier R ∧ p2 ∈ carrier R ∧ Plimit R X K v F p1 ∧ Plimit R X K v F p2 --> p1 = p2))" apply (frule PolynRg.is_Ring) apply (induct_tac d) apply (rule allI, rule impI, (rule allI)+, rule impI) apply (erule conjE)+ apply (subgoal_tac "∀n. F n ∈ carrier (Vr K v)") apply (frule Vr_ring[of "v"]) apply (frule PolynRg.X_mem_R[of "R" "Vr K v" "X"]) apply (frule_tac f = F and F = F and d = 0 and b = p1 and c = p2 in mono_P_limt_unique[of v R X], assumption+) apply (rule allI, drule_tac m = n in nat_forall_spec, simp add:Ring.ring_r_one) apply (frule_tac F = F and p = p1 in Plimit_deg[of v R X _ 0], assumption+, simp add:deg_0_const, frule_tac F = F and p = p2 in Plimit_deg[of v R X _ 0], assumption+, simp add:deg_0_const) apply (simp add:Ring.ring_r_one)+ apply (simp add:deg_0_const) (******** case Suc d **********) apply (rename_tac d) apply (rule allI, rule impI) apply (erule conjE) apply ((rule allI)+, rule impI, (erule conjE)+) apply (frule_tac F = F and p = p1 and d = d in Plimit_ldeg[of v R X], assumption+, frule_tac F = F and p = p2 and d = d in Plimit_ldeg[of v R X], assumption+, frule_tac F = F and p = p1 and d = d in Plimit_hdeg[of v R X], assumption+, frule_tac F = F and p = p2 and d = d in Plimit_hdeg[of v R X], assumption+) apply (frule_tac a = "Pseql R X K v d F" in forall_spec) apply (rule conjI) apply (rule allI) apply (rule Pseql_mem, assumption+, simp) apply (rule allI, simp) apply (rule allI) apply (subst Pseql_def) apply (rule_tac p = "F n" and d = d in PolynRg.deg_ldeg_p[of R "Vr K v" X], assumption+) apply (simp add:Vr_ring) apply simp apply (thin_tac "∀F. (∀n. F n ∈ carrier R) ∧ (∀n. deg R (Vr K v) X (F n) ≤ an d) --> (∀p1 p2. p1 ∈ carrier R ∧ p2 ∈ carrier R ∧ Plimit R X K v F p1 ∧ Plimit R X K v F p2 --> p1 = p2)") apply (frule Vr_ring[of v]) apply (frule_tac F = F and d = "Suc d" and p = p1 in Plimit_deg[of v R X], assumption+, frule_tac F = F and d = "Suc d" and p = p2 in Plimit_deg[of v R X], assumption+) apply (subgoal_tac "(ldeg_p R (Vr K v) X d p1) = (ldeg_p R (Vr K v) X d p2)") apply (subgoal_tac "hdeg_p R (Vr K v) X (Suc d) p1 = hdeg_p R (Vr K v) X (Suc d) p2") apply (frule_tac p = p1 and d = d in PolynRg.decompos_p[of "R" "Vr K v" "X"], assumption+, frule_tac p = p2 and d = d in PolynRg.decompos_p[of "R" "Vr K v" "X"], assumption+) apply simp apply (thin_tac "Plimit R X K v Pseql R X K v d F (ldeg_p R (Vr K v) X d p1)", thin_tac "Plimit R X K v Pseql R X K v d F (ldeg_p R (Vr K v) X d p2)", thin_tac "∀p1 p2. p1 ∈ carrier R ∧ p2 ∈ carrier R ∧ Plimit R X K v Pseql R X K v d F p1 ∧ Plimit R X K v Pseql R X K v d F p2 --> p1 = p2") apply (simp only:hdeg_p_def) apply (rule_tac f = "λj. snd (scf_d R (Vr K v) X (F j) (Suc d)) (Suc d)" and F = "Pseqh R X K v d F" and b = "(snd (scf_d R (Vr K v) X p1 (Suc d))) (Suc d)" and d = "Suc d" and c = "snd (scf_d R (Vr K v) X p2 (Suc d)) (Suc d)" in mono_P_limt_unique[of v R X], assumption+) apply (rule allI) apply (frule_tac p = "F n" and d = "Suc d" in PolynRg.scf_d_pol[of "R" "Vr K v" "X"]) apply (simp del:npow_suc)+ apply (frule_tac c = "scf_d R (Vr K v) X (F n) (Suc d)" and j = "Suc d" in PolynRg.pol_coeff_mem[of R "Vr K v" X]) apply simp apply (simp del:npow_suc)+ apply (rule allI) apply (frule_tac c = "scf_d R (Vr K v) X (F n) (Suc d)" and j = "Suc d" in PolynRg.pol_coeff_mem[of R "Vr K v" X]) apply (frule_tac p = "F n" and d = "Suc d" in PolynRg.scf_d_pol[of R "Vr K v" X], (simp del:npow_suc)+) apply (cut_tac p = "F n" and d = "Suc d" in PolynRg.scf_d_pol[of R "Vr K v" X], (simp del:npow_suc)+) apply (subst Pseqh_def) apply (simp only:hdeg_p_def) apply (frule_tac p = p1 and d = "Suc d" in PolynRg.scf_d_pol[of R "Vr K v" X], assumption+) apply (rule_tac c = "scf_d R (Vr K v) X p1 (Suc d)" and j = "Suc d" in PolynRg.pol_coeff_mem[of R "Vr K v" X], assumption+, simp, simp) apply (frule_tac p = p2 and d = "Suc d" in PolynRg.scf_d_pol[of R "Vr K v" X], assumption+) apply (rule_tac c = "scf_d R (Vr K v) X p2 (Suc d)" and j = "Suc d" in PolynRg.pol_coeff_mem[of R "Vr K v" X], assumption+, simp, simp) apply simp apply simp apply (rotate_tac -4, drule_tac a = "ldeg_p R (Vr K v) X d p1" in forall_spec1, rotate_tac -1, drule_tac a = "ldeg_p R (Vr K v) X d p2" in forall_spec1) apply (simp add:PolynRg.ldeg_p_mem) done lemma (in Corps) P_limit_unique:"[|valuation K v; Completev K; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R; ∀n. deg R (Vr K v) X (F n) ≤ (an d); p1 ∈ carrier R; p2 ∈ carrier R; Plimit R X K v F p1; Plimit R X K v F p2|] ==> p1 = p2" apply (frule P_limit_uniqueTr[of "v" "R" "X" "d"], assumption+) apply blast done lemma (in Corps) P_limitTr:"[|valuation K v; Completev K; PolynRg R (Vr K v) X|] ==> ∀F. ((∀n. F n ∈ carrier R) ∧ (∀n. deg R (Vr K v) X (F n) ≤ (an d)) ∧ (∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) (F n ±R -aR (F m))) --> (∃p∈carrier R. Plimit R X K v F p))" apply (frule PolynRg.is_Ring) apply (frule Vr_ring[of v]) apply (induct_tac d) apply simp apply (rule allI, rule impI, (erule conjE)+) apply (frule_tac F = F and f = F in monomial_P_limt[of v R X _ _ 0], assumption+) apply (rule allI) apply (rotate_tac 5, drule_tac m = n in nat_forall_spec) apply (simp add:deg_0_const) apply (rule allI) apply (drule_tac m = n in nat_forall_spec, thin_tac "∀n. deg R (Vr K v) X (F n) ≤ 0") apply (frule PolynRg.X_mem_R[of "R" "Vr K v" "X"], frule PolynRg.is_Ring, simp add:Ring.ring_r_one, assumption) apply (erule bexE) apply (frule PolynRg.subring[of "R" "Vr K v" "X"]) apply (cut_tac x = b in Ring.mem_subring_mem_ring[of "R" "Vr K v"]) apply (frule PolynRg.X_mem_R[of "R" "Vr K v" "X"], assumption+) apply (simp add:Ring.ring_r_one, blast) (*********** case n ***************) apply (rule allI, rule impI) apply (rename_tac d F) apply (erule conjE)+ apply (subgoal_tac "(∀n.(Pseql R X K v d F) n ∈ carrier R) ∧ (∀n. deg R (Vr K v) X ((Pseql R X K v d F) n) ≤ an d) ∧ (∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((Pseql R X K v d F) n ±R -aR ((Pseql R X K v d F) m)))") apply (frule_tac a = "Pseql R X K v d F" in forall_spec, assumption) apply (erule bexE) apply (thin_tac "∀F. (∀n. F n ∈ carrier R) ∧ (∀n. deg R (Vr K v) X (F n) ≤ an d) ∧ (∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) (F n ±R -aR (F m))) --> (∃p∈carrier R. Plimit R X K v F p)", thin_tac "(∀n. (Pseql R X K v d F) n ∈ carrier R) ∧ (∀n. deg R (Vr K v) X ((Pseql R X K v d F) n) ≤ an d) ∧ (∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((Pseql R X K v d F) n ±R -aR ((Pseql R X K v d F) m)))") apply (subgoal_tac "∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((PseqhR X K v d F) n ±R -aR ((PseqhR X K v d F) m))") apply (frule_tac f = "λj. snd (scf_d R (Vr K v) X (F j) (Suc d)) (Suc d)" and F = "Pseqh R X K v d F" and d = "Suc d" in monomial_P_limt[of v R X], assumption+) apply (rule allI) apply (drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec, frule_tac p = "F n" and d = "Suc d" in PolynRg.scf_d_pol[of R "Vr K v" "X"], assumption+, (erule conjE)+) apply (rule_tac c = "scf_d R (Vr K v) X (F n) (Suc d)" and j = "Suc d" in PolynRg.pol_coeff_mem[of R "Vr K v" X], assumption+) apply simp apply (rule allI) apply (thin_tac "∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ( (Pseqh R X K v d F) n ±R -aR ((Pseqh R X K v d F) m))") apply (simp only:Pseqh_def hdeg_p_def, assumption, erule bexE) apply (thin_tac "∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) (F n ±R -aR (F m))", thin_tac "∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((Pseqh R X K v d F) n ±R -aR ((Pseqh R X K v d F) m))") apply (subgoal_tac "Plimit R X K v F (p ±R b ·rR (X^R (Suc d)))", subgoal_tac "p ±R b ·rR(X^R (Suc d)) ∈ carrier R", blast) apply (frule PolynRg.X_mem_R[of "R" "Vr K v" "X"], frule_tac n = "Suc d" in Ring.npClose[of "R" "X"], assumption+, frule Ring.ring_is_ag[of "R"], rule aGroup.ag_pOp_closed[of "R"], assumption+, rule Ring.ring_tOp_closed, assumption+) apply (frule PolynRg.subring[of "R" "Vr K v" "X"], simp add:Ring.mem_subring_mem_ring, assumption) apply (simp del:npow_suc add:pol_limit_def, rule allI, subgoal_tac "∀n. F n = (Pseql R X K v d F) n ±R ((Pseqh R X K v d F) n)", simp del:npow_suc, subgoal_tac "∀m. (Pseql R X K v d F) m ±R ((Pseqh R X K v d F) m) ±R -aR (p ±R (b ·rR (X^R (Suc d)))) = (Pseql R X K v d F) m ±R -aR p ±R ((Pseqh R X K v d F) m ±R -aR (b ·rR (X^R (Suc d))))", simp del:npow_suc) apply (thin_tac "∀m. (PseqlR X K v d F) m ±R (Pseqh R X K v d F) m ±R -aR (p ±R b ·rR X^R (Suc d)) = (PseqlR X K v d F) m ±R -aR p ±R ((Pseqh R X K v d F) m ±R -aR b ·rR X^R (Suc d))") apply (erule conjE)+ apply (rotate_tac -3, drule_tac m = N in nat_forall_spec, erule exE) apply (rotate_tac 1, drule_tac m = N in nat_forall_spec, erule exE) apply (rename_tac d F p b N M1 M2) apply (subgoal_tac "∀m. (max M1 M2) < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((Pseql R X K v d F) m ±R -aR p ±R ((Pseqh R X K v d F) m ±R -aR (b ·rR (X^R (Suc d)))))", blast) apply (rule allI, rule impI) apply (rotate_tac -2, drule_tac m = m in nat_forall_spec, simp del:npow_suc) apply (erule conjE) apply (rotate_tac -5, drule_tac m = m in nat_forall_spec, simp del:npow_suc) apply (frule_tac n = "an N" in vp_apow_ideal[of v], simp del:npow_suc) apply (frule Ring.ring_is_ag[of "R"]) apply (rule_tac I = "vp K v (Vr K v) (an N)" and p = "(Pseql R X K v d F) m ±R -aR p" and q = "(Pseqh R X K v d F) m ±R -aR (b ·rR (X^R (Suc d)))" in PolynRg.P_mod_add[of R "Vr K v" X], assumption+) apply (rule aGroup.ag_pOp_closed, assumption+) apply (simp add:Pseql_mem, rule aGroup.ag_mOp_closed, assumption+) apply (rule aGroup.ag_pOp_closed[of "R"], assumption) apply (simp add:Pseqh_mem, rule aGroup.ag_mOp_closed, assumption) apply (rule Ring.ring_tOp_closed, assumption) apply (frule PolynRg.subring[of "R" "Vr K v" "X"]) apply (simp add:Ring.mem_subring_mem_ring) apply (frule PolynRg.X_mem_R[of "R" "Vr K v" "X"]) apply (rule Ring.npClose, assumption+) apply (rule allI) apply (thin_tac "∀n.(Pseql R X K v d F) n ±R((Pseqh R X K v d F) n) ∈ carrier R") apply (erule conjE)+ apply (thin_tac "∀n. deg R (Vr K v) X ((PseqlR X K v d F) n ±R (Pseqh R X K v d F) n) ≤ an (Suc d)") apply (thin_tac "∀N. ∃M. ∀m>M. P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((PseqlR X K v d F) m ±R -aR p)", thin_tac "∀N. ∃M. ∀m>M. P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((Pseqh R X K v d F) m ±R -aR b ·rR X^R (Suc d))", thin_tac "∀n. F n = (Pseql R X K v d F) n ±R ((Pseqh R X K v d F) n)") apply (drule_tac m = m in nat_forall_spec, drule_tac m = m in nat_forall_spec) apply (subgoal_tac "b ·rR X^R (Suc d) ∈ carrier R") apply (frule Ring.ring_is_ag[of "R"]) apply (frule_tac x = p in aGroup.ag_mOp_closed[of "R"], assumption+) apply (subst aGroup.ag_pOp_assoc[of "R"], assumption+) apply (rule aGroup.ag_mOp_closed, assumption+) apply (rule aGroup.ag_pOp_closed, assumption+) apply (frule_tac x1 = "-aR p" and y1 = "(Pseqh R X K v d F) m" and z1 = "-aR (b ·rR (X^R (Suc d)))" in aGroup.ag_pOp_assoc[THEN sym, of "R"], assumption+) apply (rule aGroup.ag_mOp_closed, assumption+, simp del:npow_suc) apply (subst aGroup.ag_pOp_assoc[THEN sym], assumption+) apply (rule aGroup.ag_mOp_closed, assumption+, rule aGroup.ag_pOp_closed, assumption+) apply (subst aGroup.ag_add4_rel[of R], assumption+) apply (rule aGroup.ag_mOp_closed, assumption+) apply (subst aGroup.ag_p_inv[THEN sym, of R], assumption+, simp del:npow_suc) apply (rule Ring.ring_tOp_closed, assumption+, frule PolynRg.subring[of R "Vr K v" X], simp add:Ring.mem_subring_mem_ring, rule Ring.npClose, assumption+, simp add:PolynRg.X_mem_R) apply (rule allI) apply (rule_tac F = F and n = n and d = d in Pseq_decompos[of "v" "R" "X"], assumption+, simp, simp) apply (rule allI) apply (rotate_tac -3, drule_tac m = N in nat_forall_spec) apply (erule exE) apply (subgoal_tac "∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((Pseqh R X K v d F) n ±R -aR ((Pseqh R X K v d F) m))") apply blast apply ((rule allI)+, rule impI) apply (rotate_tac -2, drule_tac m = n in nat_forall_spec, rotate_tac -1, drule_tac m = m in nat_forall_spec, simp) apply (simp only: Pseqh_def) apply (subst v_hdeg_p_mOp[of "v" "R" "X"], assumption+) apply simp+ apply (frule Ring.ring_is_ag[of "R"]) apply (subst v_hdeg_p_pOp[of "v" "R" "X"], assumption+) apply (simp, rule aGroup.ag_mOp_closed, assumption, simp, simp, frule_tac p1 = "F m" in PolynRg.deg_minus_eq1 [THEN sym, of R "Vr K v" X]) apply simp apply (rotate_tac -1, frule sym, thin_tac "deg R (Vr K v) X (F m) = deg R (Vr K v) X (-aR (F m))", simp) apply (rule PCauchy_hTr[of v R X], assumption+) apply (rule_tac x = "F n" and y = "-aR (F m)" in aGroup.ag_pOp_closed[of "R"], assumption+, simp, rule aGroup.ag_mOp_closed, assumption+, simp) apply (frule_tac p = "F m" in PolynRg.deg_minus_eq1 [of R "Vr K v" X], simp, rule_tac p = "F n" and q = "-aR (F m)" and n = "Suc d" in PolynRg.polyn_deg_add4[of "R" "Vr K v" "X"], assumption+, simp, rule aGroup.ag_mOp_closed, assumption, simp+) apply (rule conjI, rule allI, rule Pseql_mem, assumption+, simp) apply (rule allI, simp) apply (thin_tac "∀F. (∀n. F n ∈ carrier R) ∧ (∀n. deg R (Vr K v) X (F n) ≤ an d) ∧ (∀N. ∃M. ∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) (F n ±R -aR (F m))) --> (∃p∈carrier R. Plimit R X K v F p)") apply (rule conjI, rule allI) apply (subst Pseql_def) apply (rule_tac p = "F n" and d = d in PolynRg.deg_ldeg_p[of R "Vr K v" X], assumption+) apply simp+ apply (simp only: Pseql_def) apply (rule allI) apply (rotate_tac -1, drule_tac m = N in nat_forall_spec) apply (erule exE) apply (subgoal_tac "∀n m. M < n ∧ M < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) (ldeg_p R (Vr K v) X d (F n) ±R -aR (ldeg_p R (Vr K v) X d (F m)))") apply blast apply ((rule allI)+, rule impI, erule conjE) apply (rotate_tac -3, drule_tac m = n in nat_forall_spec, rotate_tac -1, drule_tac m = m in nat_forall_spec, simp) apply (subst v_ldeg_p_mOp[of v R X], assumption+, simp+) apply (frule Ring.ring_is_ag[of "R"]) apply (subst v_ldeg_p_pOp[of v R X], assumption+, simp, rule aGroup.ag_mOp_closed, assumption, simp, simp, frule_tac p = "F m" in PolynRg.deg_minus_eq1[of R "Vr K v" X], simp) apply simp apply (rule PCauchy_lTr[of v R X], assumption+) apply (rule_tac x = "F n" and y = "-aR (F m)" in aGroup.ag_pOp_closed[of R], assumption+, simp, rule aGroup.ag_mOp_closed, assumption+, simp) apply (frule_tac p = "F m" in PolynRg.deg_minus_eq1[of R "Vr K v" X], simp, rule_tac p = "F n" and q = "-aR (F m)" and n = "Suc d" in PolynRg.polyn_deg_add4[of "R" "Vr K v" "X"], assumption+, simp, rule aGroup.ag_mOp_closed, assumption, simp+) done lemma (in Corps) PCauchy_Plimit:"[|valuation K v; Completev K; PolynRg R (Vr K v) X; PCauchyR X K v F|] ==> ∃p∈carrier R. PlimitR X K v F p" apply (simp add:pol_Cauchy_seq_def) apply ((erule conjE)+, erule exE) apply (frule_tac d = d in P_limitTr[of "v" "R" "X"], assumption+) apply (drule_tac a = F in forall_spec, simp) apply assumption done lemma (in Corps) P_limit_mult:"[|valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R; ∀n. G n ∈ carrier R; p1 ∈ carrier R; p2 ∈ carrier R; Plimit R X K v F p1; Plimit R X K v G p2|] ==> Plimit R X K v (λn. (F n) ·rR (G n)) (p1 ·rR p2)" apply (frule Vr_ring[of v], frule PolynRg.is_Ring, frule Ring.ring_is_ag[of "R"]) apply (simp add:pol_limit_def) apply (rule conjI) apply (rule allI) apply (drule_tac m = n in nat_forall_spec, drule_tac m = n in nat_forall_spec) apply (simp add:Ring.ring_tOp_closed[of "R"]) apply (rule allI) apply (rotate_tac 6, drule_tac m = N in nat_forall_spec, drule_tac m = N in nat_forall_spec) apply (erule exE, erule exE, rename_tac N M1 M2) apply (subgoal_tac "∀m. (max M1 M2) < m --> P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((F m) ·rR (G m) ±R -aR (p1 ·rR p2))") apply blast apply (rule allI, rule impI, simp, erule conjE) apply (rotate_tac -4, drule_tac m = m in nat_forall_spec, drule_tac m = m in nat_forall_spec, simp) apply (subgoal_tac "(F m) ·rR (G m) ±R -aR p1 ·rR p2 = ((F m) ±R -aR p1) ·rR (G m) ±R p1 ·rR ((G m) ±R -aR p2)", simp) apply (frule_tac n = "an N" in vp_apow_ideal[of v]) apply simp apply (rule_tac I = "vp K v (Vr K v) (an N)" and p = "((F m) ±R -aR p1) ·rR (G m)" and q = "p1 ·rR ((G m) ±R -aR p2)" in PolynRg.P_mod_add[of R "Vr K v" "X"], assumption+) apply (rule Ring.ring_tOp_closed[of "R"], assumption+) apply (rule aGroup.ag_pOp_closed, assumption) apply simp apply (rule aGroup.ag_mOp_closed, assumption+) apply simp apply (rule Ring.ring_tOp_closed[of "R"], assumption+) apply (rule aGroup.ag_pOp_closed, assumption) apply simp apply (rule aGroup.ag_mOp_closed, assumption+) apply (frule Ring.whole_ideal[of "Vr K v"]) apply (frule_tac I = "vp K v (Vr K v) (an N)" and J = "carrier (Vr K v)" and p = "F m ±R -aR p1" and q = "G m" in PolynRg.P_mod_mult1[of R "Vr K v" X], assumption+, rule aGroup.ag_pOp_closed, assumption+, simp, rule aGroup.ag_mOp_closed, assumption+) apply simp apply assumption apply (rotate_tac 8, drule_tac m = m in nat_forall_spec) apply (case_tac "G m = \<zero>R", simp add:P_mod_def) apply (frule_tac p = "G m" in PolynRg.s_cf_expr[of R "Vr K v" X], assumption+, (erule conjE)+) thm PolynRg.P_mod_mod apply (frule_tac I1 = "carrier (Vr K v)" and p1 = "G m" and c1 = "s_cf R (Vr K v) X (G m)" in PolynRg.P_mod_mod[THEN sym, of R "Vr K v" X], assumption+) apply (simp, thin_tac "P_mod R (Vr K v) X (carrier (Vr K v)) (G m) = (∀j≤fst (s_cf R (Vr K v) X (G m)). snd (s_cf R (Vr K v) X (G m)) j ∈ carrier (Vr K v))") apply (rule allI, rule impI) apply (simp add:PolynRg.pol_coeff_mem) apply (simp add:Ring.idealprod_whole_r[of "Vr K v"]) apply (cut_tac I = "carrier (Vr K v)" and J = "vp K v (Vr K v) (an N)" and p = p1 and q = "G m ±R -aR p2" in PolynRg.P_mod_mult1[of R "Vr K v" X], assumption+) apply (simp only: Ring.whole_ideal, assumption+) apply (rule aGroup.ag_pOp_closed, assumption+, simp, rule aGroup.ag_mOp_closed, assumption+) apply (frule PolynRg.s_cf_expr0[of R "Vr K v" X p1], assumption+) thm PolynRg.P_mod_mod apply (cut_tac I1 = "carrier (Vr K v)" and p1 = p1 and c1 = "s_cf R (Vr K v) X p1" in PolynRg.P_mod_mod[THEN sym, of R "Vr K v" X], assumption+) apply (simp add:Ring.whole_ideal, assumption+) apply (simp, simp, simp, (erule conjE)+, thin_tac "P_mod R (Vr K v) X (carrier (Vr K v)) p1 = (∀j≤fst (s_cf R (Vr K v) X p1). snd (s_cf R (Vr K v) X p1) j ∈ carrier (Vr K v))") apply (rule allI, rule impI) apply (simp add:PolynRg.pol_coeff_mem, assumption) apply (simp add:Ring.idealprod_whole_l[of "Vr K v"]) apply (drule_tac m = m in nat_forall_spec, drule_tac m = m in nat_forall_spec) apply (frule aGroup.ag_mOp_closed[of R p1], assumption, frule aGroup.ag_mOp_closed[of R p2], assumption ) apply (simp add:Ring.ring_distrib1 Ring.ring_distrib2) apply (subst aGroup.pOp_assocTr43[of R], assumption+, (rule Ring.ring_tOp_closed, assumption+)+) apply (simp add:Ring.ring_inv1_1[THEN sym], simp add:Ring.ring_inv1_2[THEN sym]) apply (frule_tac x = p1 and y = "G m" in Ring.ring_tOp_closed, assumption+, frule_tac x = "F m" and y = "G m" in Ring.ring_tOp_closed, assumption+, simp add:aGroup.ag_l_inv1 aGroup.ag_r_zero) done (** Hfst K v R X t S Y f g h m**) constdefs (structure K) Hfst::"[_, 'b => ant, ('b, 'm1) Ring_scheme, 'b,'b, ('b set, 'm2) Ring_scheme, 'b set, 'b, 'b, 'b, nat] => 'b" ("(11Hfst _ _ _ _ _ _ _ _ _ _ _)" [67,67,67,67,67,67,67,67,67,67,68]67) "HfstK v R X t S Y f g h m == fst (HprR (Vr K v) X t S Y f g h m)" Hsnd::"[_, 'b => ant, ('b, 'm1) Ring_scheme, 'b,'b, ('b set, 'm2) Ring_scheme, 'b set, 'b, 'b, 'b, nat] => 'b" ("(11Hsnd _ _ _ _ _ _ _ _ _ _ _)" [67,67,67,67,67,67,67,67,67,67,68]67) "HsndK v R X t S Y f g h m == snd (HprR (Vr K v) X t S Y f g h m)" lemma (in Corps) Hensel_starter:"[|valuation K v; Completev K; PolynRg R (Vr K v) X; PolynRg S ((Vr K v) /r (vp K v)) Y; t ∈ carrier (Vr K v); vp K v = (Vr K v) ♦p t; f ∈ carrier R; f ≠ \<zero>R; g' ∈ carrier S; h' ∈ carrier S; 0 < deg S ((Vr K v) /r (vp K v)) Y g'; 0 < deg S ((Vr K v) /r (vp K v)) Y h'; ((erH R (Vr K v) X S ((Vr K v) /r (vp K v)) Y (pj (Vr K v) (vp K v))) f) = g' ·rS h'; rel_prime_pols S ((Vr K v) /r (vp K v)) Y g' h'|] ==> ∃g h. g ≠ \<zero>R ∧ h ≠ \<zero>R ∧ g ∈ carrier R ∧ h ∈ carrier R ∧ deg R (Vr K v) X g ≤ deg S ((Vr K v) /r ((Vr K v) ♦p t)) Y (erH R (Vr K v) X S ((Vr K v) /r ((Vr K v) ♦p t)) Y (pj (Vr K v) ((Vr K v) ♦p t)) g) ∧ (deg R (Vr K v) X h + deg S ((Vr K v) /r ((Vr K v) ♦p t)) Y (erH R (Vr K v) X S ((Vr K v) /r ((Vr K v) ♦p t)) Y (pj (Vr K v) ((Vr K v) ♦p t)) g) ≤ deg R (Vr K v) X f) ∧ (erH R (Vr K v) X S ((Vr K v) /r (vp K v)) Y (pj (Vr K v) (vp K v))) g = g' ∧ (erH R (Vr K v) X S ((Vr K v) /r (vp K v)) Y (pj (Vr K v) (vp K v))) h = h' ∧ 0 < deg S ((Vr K v) /r ((Vr K v) ♦p t)) Y (erH R (Vr K v) X S ((Vr K v) /r ((Vr K v) ♦p t)) Y (pj (Vr K v) ((Vr K v) ♦p t)) g) ∧ 0 < deg S ((Vr K v) /r ((Vr K v) ♦p t)) Y (erH R (Vr K v) X S ((Vr K v) /r ((Vr K v) ♦p t)) Y (pj (Vr K v) ((Vr K v) ♦p t)) h) ∧ rel_prime_pols S ((Vr K v) /r ((Vr K v) ♦p t)) Y (erH R (Vr K v) X S ((Vr K v) /r ((Vr K v) ♦p t)) Y (pj (Vr K v) ((Vr K v) ♦p t)) g) (erH R (Vr K v) X S ((Vr K v) /r ((Vr K v) ♦p t)) Y (pj (Vr K v) ((Vr K v) ♦p t)) h) ∧ P_mod R (Vr K v) X ((Vr K v) ♦p t) (f ±R -aR (g ·rR h))" apply (frule Vr_ring[of v], frule PolynRg.subring[of R "Vr K v" X], frule vp_maximal [of v], frule PolynRg.is_Ring, frule Ring.subring_Ring[of R "Vr K v"], assumption+, frule Ring.residue_field_cd[of "Vr K v" "vp K v"], assumption+, frule Corps.field_is_ring[of "Vr K v /r vp K v"], frule pj_Hom[of "Vr K v" "vp K v"], frule vp_ideal[of "v"], simp add:Ring.maximal_ideal_ideal) apply (frule Corps.field_is_idom[of "(Vr K v) /r (vp K v)"], frule Vr_integral[of v], simp, frule Vr_mem_f_mem[of v t], assumption+) apply (frule PolynRg.erH_inv[of R "Vr K v" X "Vr K v ♦p t" S Y "g'"], assumption+, simp add:Ring.maximal_ideal_ideal, simp add:PolynRg.is_Ring, assumption+, erule bexE, erule conjE) apply (frule PolynRg.erH_inv[of R "Vr K v" X "Vr K v ♦p t" S Y "h'"], assumption+, simp add:Ring.maximal_ideal_ideal, simp add:PolynRg.is_Ring, assumption+, erule bexE, erule conjE) apply (rename_tac g0 h0) apply (subgoal_tac " g0 ≠ \<zero>R ∧ h0 ≠ \<zero>R ∧ deg R (Vr K v) X g0 ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) ∧ deg R (Vr K v) X h0 + deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) ≤ deg R (Vr K v) X f ∧ 0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) ∧ 0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0) ∧ rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0) ∧ P_mod R (Vr K v) X (Vr K v ♦p t) (f ±R -aR g0 ·rR h0)") apply (thin_tac "g' ∈ carrier S", thin_tac "h' ∈ carrier S", thin_tac "0 < deg S (Vr K v /r (Vr K v ♦p t)) Y g'", thin_tac "0 < deg S (Vr K v /r (Vr K v ♦p t)) Y h'", thin_tac "erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f = g' ·rS h'", thin_tac "rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y g' h'", thin_tac "Corps (Vr K v /r (Vr K v ♦p t))", thin_tac "Ring (Vr K v /r (Vr K v ♦p t))", thin_tac "vp K v = Vr K v ♦p t") apply blast apply (rule conjI) apply (thin_tac "0 < deg S (Vr K v /r (Vr K v ♦p t)) Y h'", thin_tac "erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f = g' ·rS h'", thin_tac "rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y g' h'", thin_tac "erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0 = h'", thin_tac "deg R (Vr K v) X h0 ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y h'") apply (rule contrapos_pp, simp+) apply (simp add:PolynRg.erH_rHom_0[of R "Vr K v" X S "Vr K v /r (Vr K v ♦p t)" Y "pj (Vr K v) (Vr K v ♦p t)"]) apply (rotate_tac -3, drule sym, simp add:deg_def) apply (drule aless_imp_le[of "0" "-∞"], cut_tac minf_le_any[of "0"], frule ale_antisym[of "0" "-∞"], simp only:ant_0[THEN sym], simp) apply (rule conjI) apply (thin_tac "0 < deg S (Vr K v /r (Vr K v ♦p t)) Y g'", thin_tac "erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f = g' ·rS h'", thin_tac "rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y g' h'", thin_tac "erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0 = g'", thin_tac "deg R (Vr K v) X h0 ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y h'") apply (rule contrapos_pp, simp+, simp add:PolynRg.erH_rHom_0[of R "Vr K v" X S "Vr K v /r (Vr K v ♦p t)" Y "pj (Vr K v) (Vr K v ♦p t)"]) apply (rotate_tac -2, drule sym, simp add:deg_def) apply (frule aless_imp_le[of "0" "-∞"], thin_tac "0 < - ∞", cut_tac minf_le_any[of "0"], frule ale_antisym[of "0" "-∞"], simp only:ant_0[THEN sym], simp) apply (frule_tac x = "deg R (Vr K v) X h0" and y = "deg S (Vr K v /r (Vr K v ♦p t)) Y h'" and z = "deg S (Vr K v /r (Vr K v ♦p t)) Y g'" in aadd_le_mono) apply (simp add:PolynRg.deg_mult_pols1[THEN sym, of S "Vr K v /r (Vr K v ♦p t)" Y "h'" "g'"]) apply (frule PolynRg.is_Ring[of S "Vr K v /r (Vr K v ♦p t)" Y], simp add:Ring.ring_tOp_commute[of S "h'" "g'"]) apply (rotate_tac 11, drule sym) apply simp apply (frule PolynRg.erH_rHom[of R "Vr K v" X S "(Vr K v) /r (Vr K v ♦p t)" Y "pj (Vr K v) (Vr K v ♦p t)"], assumption+) apply (frule PolynRg.pHom_dec_deg[of R "Vr K v" X S "(Vr K v) /r (Vr K v ♦p t)" Y "erH R (Vr K v) X S ((Vr K v) /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))" "f"], assumption+) apply (frule_tac i = "deg R (Vr K v) X h0 + deg S (Vr K v /r (Vr K v ♦p t)) Y g'" in ale_trans[of _ "deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f)" "deg R (Vr K v) X f"], assumption+) apply simp apply (thin_tac "deg R (Vr K v) X h0 + deg S (Vr K v /r (Vr K v ♦p t)) Y g' ≤ deg R (Vr K v) X f", thin_tac "deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f) ≤ deg R (Vr K v) X f", thin_tac "0 < deg S (Vr K v /r (Vr K v ♦p t)) Y g'", thin_tac "0 < deg S (Vr K v /r (Vr K v ♦p t)) Y h'", thin_tac "deg R (Vr K v) X h0 + deg S (Vr K v /r (Vr K v ♦p t)) Y g' ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f)", thin_tac "rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y g' h'") apply (rotate_tac 12, drule sym) apply (drule sym) apply simp apply (frule_tac x = g0 and y = h0 in Ring.ring_tOp_closed[of "R"], assumption+) apply (thin_tac "deg R (Vr K v) X h0 ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0)", thin_tac "h' = erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0", thin_tac "g' = erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0", thin_tac "deg R (Vr K v) X g0 ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0)") apply (subst PolynRg.P_mod_diff[THEN sym, of R "Vr K v" X "Vr K v ♦p t" S Y f], assumption+) apply (simp add:Ring.maximal_ideal_ideal, assumption+) apply (rotate_tac 12, drule sym) apply (subst PolynRg.erH_mult[of R "Vr K v" X S "Vr K v /r (Vr K v ♦p t)" Y], assumption+) done lemma aadd_plus_le_plus:"[| a ≤ (a'::ant); b ≤ b'|] ==> a + b ≤ a' + b'" apply (frule aadd_le_mono[of "a" "a'" "b"]) apply (frule aadd_le_mono[of "b" "b'" "a'"]) apply (simp add:aadd_commute[of _ "a'"]) done lemma (in Corps) Hfst_PCauchy:"[|valuation K v; Completev K; PolynRg R (Vr K v) X; PolynRg S (Vr K v /r (Vr K v ♦p t)) Y; g0 ∈ carrier R; h0 ∈ carrier R; f ∈ carrier R; f ≠ \<zero>R; g0 ≠ \<zero>R; h0 ≠ \<zero>R; t ∈ carrier (Vr K v); vp K v = Vr K v ♦p t; deg R (Vr K v) X g0 ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0); deg R (Vr K v) X h0 + deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) ≤ deg R (Vr K v) X f; 0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0); 0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0); rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0); erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f = erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0 ·rS erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0|] ==> PCauchy R X K v Hfst K v R X t S Y f g0 h0" (* P_mod begin*) apply(frule Vr_integral[of v], frule vp_ideal[of v], frule Vr_ring, frule pj_Hom[of "Vr K v" "vp K v"], assumption+, simp add:PolynRg.erH_mult[THEN sym, of R "Vr K v" X S "Vr K v /r (Vr K v ♦p t)" Y "pj (Vr K v) (Vr K v ♦p t)" g0 h0], frule PolynRg.P_mod_diff[THEN sym, of R "Vr K v" X "Vr K v ♦p t" S Y f "g0 ·rR h0"], assumption+, frule PolynRg.is_Ring[of R], rule Ring.ring_tOp_closed, assumption+) (** P_mod done **) apply (simp add:pol_Cauchy_seq_def, rule conjI) apply (rule allI) apply (frule_tac t = t and g = g0 and h = h0 and m = n in PolynRg.P_mod_diffxxx5_2[of R "Vr K v" X _ S Y f], rule Vr_integral[of v], assumption+, simp add:vp_gen_nonzero, drule sym, simp add:vp_maximal, assumption+) apply (subst Hfst_def) apply (rule cart_prod_fst, assumption) apply (rule conjI) apply (subgoal_tac "∀n. deg R (Vr K v) X (Hfst K v R X t S Y f g0 h0 n) ≤ an (deg_n R (Vr K v) X f)") apply blast apply (rule allI) apply (frule Vr_integral[of v], frule_tac t = t and g = g0 and h = h0 and m = n in PolynRg.P_mod_diffxxx5_4[of R "Vr K v" X _ S Y f], assumption+, simp add:vp_gen_nonzero, drule sym, simp add:vp_maximal, assumption+) apply (subst PolynRg.deg_an[THEN sym], (erule conjE)+, assumption+) apply (simp add:Hfst_def, (erule conjE)+) apply (frule_tac i = "deg R (Vr K v) X (fst (Hpr R (Vr K v) X t S Y f g0 h0 n))" and j = "deg R (Vr K v) X g0" and k = "deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0)" in ale_trans, assumption+, frule PolynRg.nonzero_deg_pos[of R "Vr K v" X h0], assumption+, frule_tac x = 0 and y = "deg R (Vr K v) X h0" and z = "deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0)" in aadd_le_mono, simp add:aadd_0_l) apply (rule allI) apply (subgoal_tac "∀n m. N < n ∧ N < m --> P_mod R (Vr K v) X (Vr K v ♦p t (Vr K v) (an N)) ( Hfst K v R X t S Y f g0 h0 n ±R -aR (Hfst K v R X t S Y f g0 h0 m))") apply blast apply ((rule allI)+, rule impI, (erule conjE)+, frule Vr_integral[of v], frule vp_gen_nonzero[of v t], assumption+, frule vp_maximal[of v]) apply (frule_tac t = t and g = g0 and h = h0 and m = n in PolynRg.P_mod_diffxxx5_2[of R "Vr K v" X _ S Y f], assumption+, simp, assumption+, frule_tac t = t and g = g0 and h = h0 and m = m in PolynRg.P_mod_diffxxx5_2[of R "Vr K v" X _ S Y f], assumption+, simp, assumption+, frule_tac t = t and g = g0 and h = h0 and m = N in PolynRg.P_mod_diffxxx5_2[of R "Vr K v" X _ S Y f], assumption+, simp, assumption+, frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 m" in cart_prod_fst[of _ "carrier R" "carrier R"], frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 N" in cart_prod_fst[of _ "carrier R" "carrier R"], frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 n" in cart_prod_fst[of _ "carrier R" "carrier R"], thin_tac "Hpr R (Vr K v) X t S Y f g0 h0 n ∈ carrier R × carrier R", thin_tac "Hpr R (Vr K v) X t S Y f g0 h0 m ∈ carrier R × carrier R") apply (frule PolynRg.is_Ring) apply (case_tac "N = 0", simp add:r_apow_def) apply (rule_tac p = "Hfst K v R X t S Y f g0 h0 n ±R -aR (Hfst K v R X t S Y f g0 h0 m)" in PolynRg.P_mod_whole[of "R" "Vr K v" "X"], assumption+, frule Ring.ring_is_ag[of "R"], simp add:Hfst_def, rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (frule_tac t = t and g = g0 and h = h0 and m = N and n = "n - N" in PolynRg.P_mod_diffxxx5_3[of R "Vr K v" X _ S Y f], assumption+, simp+, (erule conjE)+, frule_tac t = t and g = g0 and h = h0 and m = N and n = "m - N" in PolynRg.P_mod_diffxxx5_3[of R "Vr K v" X _ S Y f], assumption+, simp, (erule conjE)+, thin_tac "P_mod R (Vr K v) X (Vr K v ♦p (t^(Vr K v) N)) (snd (Hpr R (Vr K v) X t S Y f g0 h0 N) ±R -aR (snd (Hpr R (Vr K v) X t S Y f g0 h0 n)))", thin_tac "P_mod R (Vr K v) X (Vr K v ♦p (t^(Vr K v) N)) (snd (Hpr R (Vr K v) X t S Y f g0 h0 N) ±R -aR (snd (Hpr R (Vr K v) X t S Y f g0 h0 m)))") apply (frule Vr_ring[of v], simp only:Ring.principal_ideal_n_pow1[THEN sym], drule sym, simp, frule vp_ideal[of v], simp add:Ring.ring_pow_apow, frule_tac n = "an N" in vp_apow_ideal[of v], simp, frule Ring.ring_is_ag[of R], frule_tac x = "fst (Hpr R (Vr K v) X t S Y f g0 h0 n)" in aGroup.ag_mOp_closed[of R], assumption) apply (frule_tac I = "vp K v (Vr K v) (an N)" and p = "(fst (Hpr R (Vr K v) X t S Y f g0 h0 N)) ±R -aR (fst (Hpr R (Vr K v) X t S Y f g0 h0 n))" in PolynRg.P_mod_minus[of R "Vr K v" X], assumption+) apply (rule aGroup.ag_pOp_closed, assumption+, simp add:aGroup.ag_p_inv aGroup.ag_inv_inv) apply (frule Ring.ring_is_ag, frule_tac x = "-aR fst (Hpr R (Vr K v) X t S Y f g0 h0 N)" and y = "fst (Hpr R (Vr K v) X t S Y f g0 h0 n)" in aGroup.ag_pOp_commute) apply(rule aGroup.ag_mOp_closed, assumption+, simp, thin_tac "-aR fst (Hpr R (Vr K v) X t S Y f g0 h0 N) ±R fst (Hpr R (Vr K v) X t S Y f g0 h0 n) = fst (Hpr R (Vr K v) X t S Y f g0 h0 n) ±R -aR fst (Hpr R (Vr K v) X t S Y f g0 h0 N)") apply (frule_tac I = "vp K v (Vr K v) (an N)" and p = "fst (Hpr R (Vr K v) X t S Y f g0 h0 n) ±R -aR fst (Hpr R (Vr K v) X t S Y f g0 h0 N)" and q = "fst (Hpr R (Vr K v) X t S Y f g0 h0 N) ±R -aR fst (Hpr R (Vr K v) X t S Y f g0 h0 m)" in PolynRg.P_mod_add[of R "Vr K v" X], assumption+) apply (rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (frule_tac x = "fst (Hpr R (Vr K v) X t S Y f g0 h0 N)" in aGroup.ag_mOp_closed, assumption+, frule_tac x = "fst (Hpr R (Vr K v) X t S Y f g0 h0 m)" in aGroup.ag_mOp_closed, assumption+, simp add:aGroup.pOp_assocTr43[of R] aGroup.ag_l_inv1 aGroup.ag_r_zero) apply (simp add:Hfst_def) done lemma (in Corps) Hsnd_PCauchy:"[|valuation K v; Completev K; PolynRg R (Vr K v) X; PolynRg S (Vr K v /r (Vr K v ♦p t)) Y; g0 ∈ carrier R; h0 ∈ carrier R; f ∈ carrier R; f ≠ \<zero>R; g0 ≠ \<zero>R; h0 ≠ \<zero>R; t ∈ carrier (Vr K v); vp K v = Vr K v ♦p t; deg R (Vr K v) X g0 ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0); deg R (Vr K v) X h0 + deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) ≤ deg R (Vr K v) X f; 0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0); 0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0); rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0); erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f = erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0 ·rS erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0|] ==> PCauchy R X K v Hsnd K v R X t S Y f g0 h0" (* P_mod begin*) apply(frule Vr_integral[of v], frule vp_ideal[of v], frule Vr_ring, frule pj_Hom[of "Vr K v" "vp K v"], assumption+, simp add:PolynRg.erH_mult[THEN sym, of R "Vr K v" X S "Vr K v /r (Vr K v ♦p t)" Y "pj (Vr K v) (Vr K v ♦p t)" g0 h0], frule PolynRg.P_mod_diff[THEN sym, of R "Vr K v" X "Vr K v ♦p t" S Y f "g0 ·rR h0"], assumption+, frule PolynRg.is_Ring[of R], rule Ring.ring_tOp_closed, assumption+) (** P_mod done **) apply (simp add:pol_Cauchy_seq_def, rule conjI) apply (rule allI) apply (frule_tac t = t and g = g0 and h = h0 and m = n in PolynRg.P_mod_diffxxx5_2[of R "Vr K v" X _ S Y f], rule Vr_integral[of v], assumption+, simp add:vp_gen_nonzero, drule sym, simp add:vp_maximal, assumption+) apply (subst Hsnd_def) apply (rule cart_prod_snd, assumption) apply (rule conjI) apply (subgoal_tac "∀n. deg R (Vr K v) X (Hsnd K v R X t S Y f g0 h0 n) ≤ an (deg_n R (Vr K v) X f)") apply blast apply (rule allI) apply (frule Vr_integral[of v], frule_tac t = t and g = g0 and h = h0 and m = n in PolynRg.P_mod_diffxxx5_4[of R "Vr K v" X _ S Y f], assumption+, simp add:vp_gen_nonzero, drule sym, simp add:vp_maximal, assumption+) apply (subst PolynRg.deg_an[THEN sym], (erule conjE)+, assumption+) apply (simp add:Hsnd_def) apply (rule allI) apply (subgoal_tac "∀n m. N < n ∧ N < m --> P_mod R (Vr K v) X (Vr K v ♦p t (Vr K v) (an N)) ( Hsnd K v R X t S Y f g0 h0 n ±R -aR (Hsnd K v R X t S Y f g0 h0 m))") apply blast apply ((rule allI)+, rule impI, (erule conjE)+) apply (frule Vr_integral[of v], frule vp_gen_nonzero[of v t], assumption+) apply (frule vp_maximal[of v]) apply (frule_tac t = t and g = g0 and h = h0 and m = n in PolynRg.P_mod_diffxxx5_2[of R "Vr K v" X _ S Y f], assumption+, simp, assumption+) apply (frule_tac t = t and g = g0 and h = h0 and m = m in PolynRg.P_mod_diffxxx5_2[of R "Vr K v" X _ S Y f], assumption+, simp, assumption+, frule_tac t = t and g = g0 and h = h0 and m = N in PolynRg.P_mod_diffxxx5_2[of R "Vr K v" X _ S Y f], assumption+, simp, assumption+, frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 m" in cart_prod_snd[of _ "carrier R" "carrier R"], frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 N" in cart_prod_snd[of _ "carrier R" "carrier R"], frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 n" in cart_prod_snd[of _ "carrier R" "carrier R"], thin_tac "Hpr R (Vr K v) X t S Y f g0 h0 n ∈ carrier R × carrier R", thin_tac "Hpr R (Vr K v) X t S Y f g0 h0 m ∈ carrier R × carrier R") apply (frule PolynRg.is_Ring) apply (case_tac "N = 0", simp add:r_apow_def) apply (rule_tac p = "Hsnd K v R X t S Y f g0 h0 n ±R -aR (Hsnd K v R X t S Y f g0 h0 m)" in PolynRg.P_mod_whole[of "R" "Vr K v" "X"], assumption+, frule Ring.ring_is_ag[of "R"], simp add:Hsnd_def, rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (frule_tac t = t and g = g0 and h = h0 and m = N and n = "n - N" in PolynRg.P_mod_diffxxx5_3[of R "Vr K v" X _ S Y f], assumption+) apply simp+ apply (erule conjE)+ apply (frule_tac t = t and g = g0 and h = h0 and m = N and n = "m - N" in PolynRg.P_mod_diffxxx5_3[of R "Vr K v" X _ S Y f], assumption+) apply simp apply (erule conjE)+ apply (thin_tac "P_mod R (Vr K v) X (Vr K v ♦p (t^(Vr K v) N)) (fst (Hpr R (Vr K v) X t S Y f g0 h0 N) ±R -aR (fst (Hpr R (Vr K v) X t S Y f g0 h0 n)))", thin_tac "P_mod R (Vr K v) X (Vr K v ♦p (t^(Vr K v) N)) (fst (Hpr R (Vr K v) X t S Y f g0 h0 N) ±R -aR (fst (Hpr R (Vr K v) X t S Y f g0 h0 m)))") apply (frule Vr_ring[of v]) apply (simp only:Ring.principal_ideal_n_pow1[THEN sym]) apply (drule sym, simp, frule vp_ideal[of v]) apply (simp add:Ring.ring_pow_apow, frule_tac n = "an N" in vp_apow_ideal[of v], simp, frule Ring.ring_is_ag[of R], frule_tac x = "snd (Hpr R (Vr K v) X t S Y f g0 h0 n)" in aGroup.ag_mOp_closed[of R], assumption) apply (frule_tac I = "vp K v (Vr K v) (an N)" and p = "(snd (Hpr R (Vr K v) X t S Y f g0 h0 N)) ±R -aR (snd (Hpr R (Vr K v) X t S Y f g0 h0 n))" in PolynRg.P_mod_minus[of R "Vr K v" X], assumption+) apply (rule aGroup.ag_pOp_closed, assumption+, simp add:aGroup.ag_p_inv aGroup.ag_inv_inv) apply (frule Ring.ring_is_ag, frule_tac x = "-aR snd (Hpr R (Vr K v) X t S Y f g0 h0 N)" and y = "snd (Hpr R (Vr K v) X t S Y f g0 h0 n)" in aGroup.ag_pOp_commute) apply(rule aGroup.ag_mOp_closed, assumption+, simp, thin_tac "-aR snd (Hpr R (Vr K v) X t S Y f g0 h0 N) ±R snd (Hpr R (Vr K v) X t S Y f g0 h0 n) = snd (Hpr R (Vr K v) X t S Y f g0 h0 n) ±R -aR snd (Hpr R (Vr K v) X t S Y f g0 h0 N)") apply (frule_tac I = "vp K v (Vr K v) (an N)" and p = "snd (Hpr R (Vr K v) X t S Y f g0 h0 n) ±R -aR snd (Hpr R (Vr K v) X t S Y f g0 h0 N)" and q = "snd (Hpr R (Vr K v) X t S Y f g0 h0 N) ±R -aR snd (Hpr R (Vr K v) X t S Y f g0 h0 m)" in PolynRg.P_mod_add[of R "Vr K v" X], assumption+) apply (rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption+) apply (frule_tac x = "snd (Hpr R (Vr K v) X t S Y f g0 h0 N)" in aGroup.ag_mOp_closed, assumption+, frule_tac x = "snd (Hpr R (Vr K v) X t S Y f g0 h0 m)" in aGroup.ag_mOp_closed, assumption+, simp add:aGroup.pOp_assocTr43[of R] aGroup.ag_l_inv1 aGroup.ag_r_zero) apply (simp add:Hsnd_def) done lemma (in Corps) H_Plimit_f:"[|valuation K v; Completev K; t ∈ carrier (Vr K v); vp K v = Vr K v ♦p t; PolynRg R (Vr K v) X; PolynRg S (Vr K v /r (Vr K v ♦p t)) Y; f ∈ carrier R; f ≠ \<zero>R; g0 ∈ carrier R; h0 ∈ carrier R; g0 ≠ \<zero>R; h0 ≠ \<zero>R; 0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0); 0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0); deg R (Vr K v) X h0 + deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) ≤ deg R (Vr K v) X f; rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0); erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f = erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0 ·rS erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0; deg R (Vr K v) X g0 ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0); g ∈ carrier R; h ∈ carrier R; Plimit R X K v (Hfst K v R X t S Y f g0 h0) g; Plimit R X K v (Hsnd K v R X t S Y f g0 h0) h; Plimit R X K v (λn. (Hfst K v R X t S Y f g0 h0 n) ·rR (Hsnd K v R X t S Y f g0 h0 n)) (g ·rR h)|] ==> Plimit R X K v (λn. (Hfst K v R X t S Y f g0 h0 n) ·rR (Hsnd K v R X t S Y f g0 h0 n)) f" apply(frule Vr_integral[of v], frule vp_ideal[of v], frule Vr_ring, frule pj_Hom[of "Vr K v" "vp K v"], assumption+, simp add:PolynRg.erH_mult[THEN sym, of R "Vr K v" X S "Vr K v /r (Vr K v ♦p t)" Y "pj (Vr K v) (Vr K v ♦p t)" g0 h0]) apply(frule PolynRg.P_mod_diff[of R "Vr K v" X "Vr K v ♦p t" S Y f "g0 ·rR h0"], assumption+, frule PolynRg.is_Ring[of R], rule Ring.ring_tOp_closed, assumption+, simp) (** P_mod done **) apply (simp add:PolynRg.erH_mult[of R "Vr K v" X S "Vr K v /r (Vr K v ♦p t)" Y "pj (Vr K v) (Vr K v ♦p t)" g0 h0]) apply (frule PolynRg.is_Ring[of R]) apply (frule Hfst_PCauchy[of v R X S t Y g0 h0 f], assumption+, frule Hsnd_PCauchy[of v R X S t Y g0 h0 f], assumption+) apply (subst pol_limit_def) apply (rule conjI) apply (rule allI) apply (rule Ring.ring_tOp_closed, assumption) apply (simp add:pol_Cauchy_seq_def, simp add:pol_Cauchy_seq_def) apply (rule allI) apply (subgoal_tac "∀m>N. P_mod R (Vr K v) X (vp K v (Vr K v) (an N)) ((Hfst K v R X t S Y f g0 h0 m) ·rR (Hsnd K v R X t S Y f g0 h0 m) ±R -aR f)") apply blast apply (rule allI, rule impI, frule Vr_integral[of v]) apply (frule_tac t = t and g = g0 and h = h0 and m = "m - Suc 0" in PolynRg.P_mod_diffxxx5_1[of R "Vr K v" X _ S Y], assumption+, simp add:vp_gen_nonzero[of v], frule vp_maximal[of v], simp, assumption+) apply ((erule conjE)+, simp del:npow_suc Hpr_Suc) apply (frule Ring.ring_is_ag[of "R"]) apply (thin_tac "0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0)", thin_tac "0 < deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0)", thin_tac "rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0)", thin_tac "P_mod R (Vr K v) X (Vr K v ♦p t) ( f ±R -aR g0 ·rR h0)", thin_tac "erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) f = (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) ·rS (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0)", thin_tac "deg R (Vr K v) X g0 ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0)", thin_tac "deg R (Vr K v) X h0 + deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) ≤ deg R (Vr K v) X f", thin_tac "erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) (fst (Hpr R (Vr K v) X t S Y f g0 h0 m)) = erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0", thin_tac "erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) (snd (Hpr R (Vr K v) X t S Y f g0 h0 m)) = erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0", thin_tac "deg R (Vr K v) X (fst (Hpr R (Vr K v) X t S Y f g0 h0 m)) ≤ deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0)", thin_tac "P_mod R (Vr K v) X (Vr K v ♦p (t^(Vr K v) m)) ( fst (Hpr R (Vr K v) X t S Y f g0 h0 (m - Suc 0)) ±R -aR (fst (Hpr R (Vr K v) X t S Y f g0 h0 m)))", thin_tac "deg R (Vr K v) X (snd (Hpr R (Vr K v) X t S Y f g0 h0 m)) + deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0) ≤ deg R (Vr K v) X f", thin_tac "P_mod R (Vr K v) X (Vr K v ♦p (t^(Vr K v) m)) (snd (Hpr R (Vr K v) X t S Y f g0 h0 (m - Suc 0)) ±R -aR (snd (Hpr R (Vr K v) X t S Y f g0 h0 m)))") apply (case_tac "N = 0", simp add:r_apow_def) apply (rule_tac p = "(Hfst K v R X t S Y f g0 h0 m) ·rR (Hsnd K v R X t S Y f g0 h0 m) ±R -aR f" in PolynRg.P_mod_whole[of R "Vr K v" X], assumption+) apply (simp add:Hfst_def Hsnd_def) apply (frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 m" in cart_prod_fst[of _ "carrier R" "carrier R"]) apply (frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 m" in cart_prod_snd[of _ "carrier R" "carrier R"]) apply (frule Ring.ring_is_ag[of R], rule aGroup.ag_pOp_closed, assumption) apply (rule Ring.ring_tOp_closed, assumption+) apply (rule aGroup.ag_mOp_closed, assumption+) apply (frule_tac g = "f ±R -aR (fst (Hpr R (Vr K v) X t S Y f g0 h0 m)) ·rR (snd (Hpr R (Vr K v) X t S Y f g0 h0 m))" and m = "N - Suc 0" and n = m in PolynRg.P_mod_n_m[of "R" "Vr K v" "X"], assumption+) apply (frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 m" in cart_prod_fst[of _ "carrier R" "carrier R"], frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 m" in cart_prod_snd[of _ "carrier R" "carrier R"]) apply (rule aGroup.ag_pOp_closed, assumption+, rule aGroup.ag_mOp_closed, assumption) apply (rule Ring.ring_tOp_closed, assumption+) apply (subst Suc_le_mono[THEN sym], simp) apply assumption apply (simp del:npow_suc) apply (simp only:Ring.principal_ideal_n_pow1[THEN sym, of "Vr K v"]) apply (cut_tac n = N in an_neq_inf) apply (subgoal_tac "an N ≠ 0") apply (subst r_apow_def, simp) apply (simp add:na_an) apply (frule Ring.principal_ideal[of "Vr K v" t], assumption) apply (frule_tac I = "Vr K v ♦p t" and n = N in Ring.ideal_pow_ideal[of "Vr K v"], assumption+) apply (frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 m" in cart_prod_fst[of _ "carrier R" "carrier R"], frule_tac x = "Hpr R (Vr K v) X t S Y f g0 h0 m" in cart_prod_snd[of _ "carrier R" "carrier R"]) apply (thin_tac "PCauchy R X K v Hfst K v R X t S Y f g0 h0", thin_tac "PCauchy R X K v Hsnd K v R X t S Y f g0 h0") apply (simp add:Hfst_def Hsnd_def) apply (frule_tac x = "fst (Hpr R (Vr K v) X t S Y f g0 h0 m)" and y = "snd (Hpr R (Vr K v) X t S Y f g0 h0 m)" in Ring.ring_tOp_closed[of "R"], assumption+) apply (frule_tac x = "(fst (Hpr R (Vr K v) X t S Y f g0 h0 m)) ·rR (snd (Hpr R (Vr K v) X t S Y f g0 h0 m))" in aGroup.ag_mOp_closed[of "R"], assumption+) apply (frule_tac I = "Vr K v ♦p t ♦(Vr K v) N" and p = "f ±R -aR (fst (Hpr R (Vr K v) X t S Y f g0 h0 m)) ·rR (snd (Hpr R (Vr K v) X t S Y f g0 h0 m))" in PolynRg.P_mod_minus[of R "Vr K v" X], assumption+) apply (frule Ring.ring_is_ag[of "R"]) apply (rule aGroup.ag_pOp_closed, assumption+) apply (simp add:aGroup.ag_p_inv, simp add:aGroup.ag_inv_inv, frule aGroup.ag_mOp_closed[of "R" "f"], assumption+) apply (simp add:aGroup.ag_pOp_commute[of "R" "-aR f"]) apply (subst an_0[THEN sym]) apply (subst aneq_natneq[of _ "0"], thin_tac "an N ≠ ∞", simp) done theorem (in Corps) Hensel:"[|valuation K v; Completev K; PolynRg R (Vr K v) X; PolynRg S ((Vr K v) /r (vp K v)) Y; f ∈ carrier R; f ≠ \<zero>R; g' ∈ carrier S; h' ∈ carrier S; 0 < deg S ((Vr K v) /r (vp K v)) Y g'; 0 < deg S ((Vr K v) /r (vp K v)) Y h'; ((erH R (Vr K v) X S ((Vr K v) /r (vp K v)) Y (pj (Vr K v) (vp K v))) f) = g' ·rS h'; rel_prime_pols S ((Vr K v) /r (vp K v)) Y g' h'|] ==> ∃g h. g ∈ carrier R ∧ h ∈ carrier R ∧ deg R (Vr K v) X g ≤ deg S ((Vr K v) /r (vp K v)) Y g' ∧ f = g ·rR h" apply (frule PolynRg.is_Ring[of R "Vr K v" X], frule PolynRg.is_Ring[of S "Vr K v /r vp K v" Y], frule vp_gen_t[of v], erule bexE, frule_tac t = t in vp_gen_nonzero[of v], assumption) apply (frule_tac t = t in Hensel_starter[of v R X S Y _ f g' h'], assumption+) apply ((erule exE)+, (erule conjE)+, rename_tac g0 h0) apply (frule Vr_ring[of v], frule Vr_integral[of v]) apply (rotate_tac 22, drule sym, drule sym, simp) apply (frule vp_maximal[of v], simp) apply (frule_tac mx = "Vr K v ♦p t" in Ring.residue_field_cd[of "Vr K v"], assumption) apply (frule_tac mx = "Vr K v ♦p t" in Ring.maximal_ideal_ideal[of "Vr K v"], assumption) apply (frule_tac I = "Vr K v ♦p t" in Ring.qring_ring[of "Vr K v"], assumption+) apply (frule_tac B = "Vr K v /r (Vr K v ♦p t)" and h = "pj (Vr K v) (Vr K v ♦p t)" in PolynRg.erH_rHom[of R "Vr K v" X S _ Y], assumption+) apply (simp add:pj_Hom) apply (frule_tac ?g0.0 = g0 and ?h0.0 = h0 in Hfst_PCauchy[of v R X S _ Y _ _ f], assumption+) apply (frule_tac ?g0.0 = g0 and ?h0.0 = h0 in Hsnd_PCauchy[of v R X S _ Y _ _ f], assumption+) apply (frule_tac F = "λj. HfstK v R X t S Y f g0 h0 j" in PCauchy_Plimit[of v R X] , assumption+) apply (frule_tac F = "λj. HsndK v R X t S Y f g0 h0 j" in PCauchy_Plimit[of v R X] , assumption+) apply ((erule bexE)+, rename_tac g0 h0 g h) apply (frule_tac F = "λj. HfstK v R X t S Y f g0 h0 j" and G = "λj. HsndK v R X t S Y f g0 h0 j" and ?p1.0 = g and ?p2.0 = h in P_limit_mult[of v R X], assumption+, rule allI) apply (simp add:pol_Cauchy_seq_def) apply (simp add:pol_Cauchy_seq_def, assumption+) apply (frule_tac t = t and ?g0.0 = g0 and ?h0.0 = h0 and g = g and h = h in H_Plimit_f[of v _ R X S Y f], assumption+) apply (frule_tac F = "λn. (Hfst K v R X t S Y f g0 h0 n) ·rR (Hsnd K v R X t S Y f g0 h0 n)" and ?p1.0 = "g ·rR h" and d = "na (deg R (Vr K v) X g0 + deg R (Vr K v) X f)" in P_limit_unique[of v R X _ _ _ f], assumption+) apply (rule allI) apply (frule PolynRg.is_Ring[of R], rule Ring.ring_tOp_closed, assumption) apply (simp add:pol_Cauchy_seq_def) apply (simp add:pol_Cauchy_seq_def) apply (rule allI) apply (thin_tac "Plimit R X K v (Hfst K v R X t S Y f g0 h0) g", thin_tac "Plimit R X K v (Hsnd K v R X t S Y f g0 h0) h", thin_tac "Plimit R X K v (λn. (Hfst K v R X t S Y f g0 h0 n) ·rR (Hsnd K v R X t S Y f g0 h0 n)) (g ·rR h)", thin_tac "Plimit R X K v (λn. (Hfst K v R X t S Y f g0 h0 n) ·rR (Hsnd K v R X t S Y f g0 h0 n)) f") apply (subst PolynRg.deg_mult_pols1[of R "Vr K v" X], assumption+) apply (simp add:pol_Cauchy_seq_def, simp add:pol_Cauchy_seq_def, thin_tac "g' = erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0", thin_tac "h' = erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) h0") apply (subst PolynRg.deg_mult_pols1[THEN sym, of R "Vr K v" X], assumption+) apply (simp add:pol_Cauchy_seq_def, simp add:pol_Cauchy_seq_def) apply (frule_tac p1 = g0 in PolynRg.deg_mult_pols1[THEN sym, of R "Vr K v" X _ f], assumption+, simp) apply (frule_tac x = g0 in Ring.ring_tOp_closed[of R _ f], assumption+) apply (frule_tac p = "g0 ·rR f" in PolynRg.nonzero_deg_pos[of R "Vr K v" X], assumption+) apply (frule_tac p = "g0 ·rR f" in PolynRg.deg_in_aug_minf[of R "Vr K v" X], assumption+, simp add:aug_minf_def, simp add:PolynRg.polyn_ring_integral[of R "Vr K v" X], simp add:Idomain.idom_tOp_nonzeros[of R _ f], frule_tac p = "g0 ·rR f" in PolynRg.deg_noninf[of R "Vr K v" X], assumption+) apply (simp add:an_na) apply (subst PolynRg.deg_mult_pols1[of "R" "Vr K v" "X"], assumption+, simp add:pol_Cauchy_seq_def, simp add:pol_Cauchy_seq_def) apply (frule_tac t = t and g = g0 and h = h0 and m = n in PolynRg.P_mod_diffxxx5_4[of R "Vr K v" X _ S Y f], assumption+) apply (erule conjE) apply (frule_tac a = "deg R (Vr K v) X (fst (Hpr R (Vr K v) X t S Y f g0 h0 n))" and a' = "deg R (Vr K v) X g0" and b = "deg R (Vr K v) X (snd (Hpr R (Vr K v) X t S Y f g0 h0 n))" and b' = "deg R (Vr K v) X f" in aadd_plus_le_plus, assumption+) apply simp apply (simp add:Hfst_def Hsnd_def) apply (rule Ring.ring_tOp_closed, assumption+) apply (rotate_tac -1, drule sym) apply (frule_tac F = "λj. HfstK v R X t S Y f g0 h0 j" and p = g and ad = "deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0)" in Plimit_deg1[of v R X], assumption+, simp add:pol_Cauchy_seq_def) apply (rule allI) apply (frule_tac t = t and g = g0 and h = h0 and m = n in PolynRg.P_mod_diffxxx5_4[of R "Vr K v" X _ S Y f], assumption+, erule conjE) apply (frule_tac i = "deg R (Vr K v) X (fst (Hpr R (Vr K v) X t S Y f g0 h0 n))" and j = "deg R (Vr K v) X g0" and k = "deg S (Vr K v /r (Vr K v ♦p t)) Y (erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t)) g0)" in ale_trans, assumption+) apply (subst Hfst_def, assumption+, blast) done end
lemma not_in_singleton_noneq:
x ∉ {a} ==> x ≠ a
lemma noneq_not_in_singleton:
x ≠ a ==> x ∉ {a}
lemma inf_neq_1:
∞ ≠ 1
lemma a1_neq_0:
1 ≠ 0
lemma a1_poss:
0 < 1
lemma a_p1_gt:
[| a ≠ ∞; a ≠ - ∞ |] ==> a < a + 1
lemma vpr_pow_inter_zero:
valuation K v ==> Inter {I. ∃n. I = vp K v Vr K v an n} = {\<zero>}
lemma limit_diff_n_val:
[| b ∈ carrier K; ∀j. f j ∈ carrier K; valuation K v |]
==> lim K v f b = (∀N. ∃M. ∀n>M. an N ≤ n_val K v (f n ± -a b))
lemma an_na_Lv:
valuation K v ==> an (na (Lv K v)) = Lv K v
lemma limit_diff_val:
[| b ∈ carrier K; ∀j. f j ∈ carrier K; valuation K v |]
==> lim K v f b = (∀N. ∃M. ∀n>M. an N ≤ v (f n ± -a b))
lemma limit_unique:
[| b ∈ carrier K; ∀j. f j ∈ carrier K; valuation K v; c ∈ carrier K;
lim K v f b; lim K v f c |]
==> b = c
lemma limit_n_val:
[| b ∈ carrier K; b ≠ \<zero>; valuation K v; ∀j. f j ∈ carrier K;
lim K v f b |]
==> ∃N. ∀m>N. n_val K v (f m) = n_val K v b
lemma limit_val:
[| b ∈ carrier K; b ≠ \<zero>; ∀j. f j ∈ carrier K; valuation K v;
lim K v f b |]
==> ∃N. ∀n>N. v (f n) = v b
lemma limit_val_infinity:
[| valuation K v; ∀j. f j ∈ carrier K; lim K v f \<zero> |]
==> ∀N. ∃M. ∀m>M. an N ≤ n_val K v (f m)
lemma not_limit_zero:
[| valuation K v; ∀j. f j ∈ carrier K; ¬ lim K v f \<zero> |]
==> ∃N. ∀M. ∃m>M. n_val K v (f m) < an N
lemma limit_p:
[| valuation K v; ∀j. f j ∈ carrier K; ∀j. g j ∈ carrier K; b ∈ carrier K;
c ∈ carrier K; lim K v f b; lim K v g c |]
==> lim K v (λj. f j ± g j) (b ± c)
lemma Abs_ant_abs:
Abs (ant z) = ant ¦z¦
lemma limit_t_nonzero:
[| valuation K v; ∀j. f j ∈ carrier K; ∀j. g j ∈ carrier K; b ∈ carrier K;
c ∈ carrier K; b ≠ \<zero>; c ≠ \<zero>; lim K v f b; lim K v g c |]
==> lim K v (λj. f j ·r g j) (b ·r c)
lemma an_npn:
an (n + m) = an n + an m
lemma Abs_noninf:
a ≠ - ∞ ∧ a ≠ ∞ ==> Abs a ≠ ∞
lemma limit_t_zero:
[| c ∈ carrier K; valuation K v; ∀j. f j ∈ carrier K; ∀j. g j ∈ carrier K;
lim K v f \<zero>; lim K v g c |]
==> lim K v (λj. f j ·r g j) \<zero>
lemma limit_minus:
[| valuation K v; ∀j. f j ∈ carrier K; b ∈ carrier K; lim K v f b |]
==> lim K v (λj. -a f j) (-a b)
lemma inv_diff:
[| x ∈ carrier K; x ≠ \<zero>; y ∈ carrier K; y ≠ \<zero> |]
==> x K ± -a y K = x K ·r y K ·r (-a (x ± -a y))
lemma times2plus:
2 * n = n + n
lemma limit_inv:
[| valuation K v; ∀j. f j ∈ carrier K; b ∈ carrier K; b ≠ \<zero>;
lim K v f b |]
==> lim K v (λj. if f j = \<zero> then \<zero> else f j K) (b K)
lemma has_limit_Cauchy:
[| valuation K v; ∀j. f j ∈ carrier K; b ∈ carrier K; lim K v f b |]
==> Cauchy K v f
lemma no_limit_zero_Cauchy:
[| valuation K v; Cauchy K v f; ¬ lim K v f \<zero> |]
==> ∃N M. ∀m>N. n_val K v (f M) = n_val K v (f m)
lemma no_limit_zero_Cauchy1:
[| valuation K v; ∀j. f j ∈ carrier K; Cauchy K v f; ¬ lim K v f \<zero> |]
==> ∃N M. ∀m>N. v (f M) = v (f m)
lemma subfield_zero:
[| Corps K'; subfield K K' |] ==> \<zero> = \<zero>K'
lemma subfield_pOp:
[| Corps K'; subfield K K'; x ∈ carrier K; y ∈ carrier K |] ==> x ± y = x ±K' y
lemma subfield_mOp:
[| Corps K'; subfield K K'; x ∈ carrier K |] ==> -a x = -aK' x
lemma completion_val_eq:
[| Corps K'; valuation K v; valuation K' v'; x ∈ carrier K;
Completionv v' K K' |]
==> v x = v' x
lemma completion_subset:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K' |]
==> carrier K ⊆ carrier K'
lemma completion_subfield:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K' |]
==> subfield K K'
lemma subfield_sub:
subfield K K' ==> carrier K ⊆ carrier K'
lemma completion_Vring_sub:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K' |]
==> carrier (Vr K v) ⊆ carrier (Vr K' v')
lemma completion_idmap_rHom:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K' |]
==> IVr K v ∈ rHom (Vr K v) (Vr K' v')
lemma completion_vpr_sub:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K' |]
==> vp K v ⊆ vp K' v'
lemma val_v_completion:
[| Corps K'; valuation K v; valuation K' v'; x ∈ carrier K'; x ≠ \<zero>K';
Completionv v' K K' |]
==> ∃f. Cauchy K v f ∧ (∃N. ∀m>N. v (f m) = v' x)
lemma v_completion_v_limit:
[| Corps K'; valuation K v; x ∈ carrier K; subfield K K'; Completev' K';
∀j. f j ∈ carrier K; valuation K' v'; ∀x∈carrier K. v x = v' x;
lim K' v' f x |]
==> lim K v f x
lemma Vr_idmap_aHom:
[| Corps K'; valuation K v; valuation K' v'; subfield K K';
∀x∈carrier K. v x = v' x |]
==> IVr K v ∈ aHom (Vr K v) (Vr K' v')
lemma amult_pos_pos:
0 ≤ a ==> 0 ≤ a * an N
lemma Cauchy_down:
[| Corps K'; valuation K v; valuation K' v'; subfield K K';
∀x∈carrier K. v x = v' x; ∀j. f j ∈ carrier K; Cauchy K' v' f |]
==> Cauchy K v f
lemma Cauchy_up:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K';
Cauchy K v f |]
==> Cauchy K' v' f
lemma max_gtTr:
n < max (Suc n) (Suc m) ∧ m < max (Suc n) (Suc m)
lemma completion_approx:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K';
x ∈ carrier (Vr K' v') |]
==> ∃y∈carrier (Vr K v). y ±K' -aK' x ∈ vp K' v'
lemma res_v_completion_surj:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K' |]
==> surjecVr K v,Vr K' v' /r
vp K' v' compos (Vr K v) (pj (Vr K' v') (vp K' v')) IVr K v
lemma res_v_completion_ker:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K' |]
==> kerVr K v,Vr K' v' /r
vp K' v' compos (Vr K v) (pj (Vr K' v') (vp K' v')) IVr K v =
vp K v
lemma completion_res_qring_isom:
[| Corps K'; valuation K v; valuation K' v'; Completionv v' K K' |]
==> Vr K v /r vp K v ≅r Vr K' v' /r vp K' v'
lemma Kxa_val_ge:
[| valuation K v; t ∈ carrier K; v t = 1 |]
==> Kxa K v (tKj) = {x : carrier K. ant j ≤ v x}
lemma Kxa_pow_vpr:
[| valuation K v; t ∈ carrier K; v t = 1; 0 ≤ j |]
==> Kxa K v (tKj) = vp K v Vr K v ant j
lemma field_distribTr:
[| a ∈ carrier K; b ∈ carrier K; x ∈ carrier K; x ≠ \<zero> |]
==> a ± -a b ·r x = (a ·r x K ± -a b) ·r x
lemma a0_le_1:
0 ≤ 1
lemma vp_mem_times_t:
[| valuation K v; t ∈ carrier K; t ≠ \<zero>; v t = 1; x ∈ vp K v |]
==> ∃a∈carrier (Vr K v). x = a ·r t
lemma psum_diff_mem_Kxa:
[| valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero> |]
==> psum K x v t n ∈ carrier K ∧
x ± -a psum K x v t n ∈ Kxa K v (tK(tna (v x) + (1 + int n)))
lemma Suc_diff_int:
0 < n ==> int (n - Suc 0) = int n - 1
lemma ecf_mem:
[| valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero> |]
==> ecfK v t x n ∈ carrier K
lemma etm_mem:
[| valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero> |]
==> etm K v t x n ∈ carrier K
lemma psum_sum_etm:
[| valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero> |]
==> psum K x v t n = Σe K (λj. ecfK v t x j ·r tK(tna (v x) + int j)) n
lemma zabs_pos:
0 ≤ ¦z¦
lemma abs_p_self_pos:
0 ≤ z + ¦z¦
lemma zadd_right_mono:
i ≤ j ==> i + k ≤ j + k
theorem expansion_thm:
[| valuation K v; t ∈ carrier K; v t = 1; x ∈ carrier K; x ≠ \<zero> |]
==> lim K v partial_sum K x v t x
lemma an_neq_minf:
∀n. - ∞ ≠ an n
lemma an_neq_minf1:
∀n. an n ≠ - ∞
lemma Pseql_mem:
[| valuation K v; PolynRg R (Vr K v) X; F n ∈ carrier R;
∀n. deg R (Vr K v) X (F n) ≤ an (Suc d) |]
==> (PseqlR X K v d F) n ∈ carrier R
lemma Pseqh_mem:
[| valuation K v; PolynRg R (Vr K v) X; F n ∈ carrier R;
∀n. deg R (Vr K v) X (F n) ≤ an (Suc d) |]
==> (Pseqh R X K v d F) n ∈ carrier R
lemma PCauchy_lTr:
[| valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R;
deg R (Vr K v) X p ≤ an (Suc d); P_mod R (Vr K v) X (vp K v Vr K v an N) p |]
==> P_mod R (Vr K v) X (vp K v Vr K v an N) (ldeg_p R (Vr K v) X d p)
lemma PCauchy_hTr:
[| valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R;
deg R (Vr K v) X p ≤ an (Suc d); P_mod R (Vr K v) X (vp K v Vr K v an N) p |]
==> P_mod R (Vr K v) X (vp K v Vr K v an N) (hdeg_p R (Vr K v) X (Suc d) p)
lemma v_ldeg_p_pOp:
[| valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R; q ∈ carrier R;
deg R (Vr K v) X p ≤ an (Suc d); deg R (Vr K v) X q ≤ an (Suc d) |]
==> ldeg_p R (Vr K v) X d p ±R ldeg_p R (Vr K v) X d q =
ldeg_p R (Vr K v) X d (p ±R q)
lemma v_hdeg_p_pOp:
[| valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R; q ∈ carrier R;
deg R (Vr K v) X p ≤ an (Suc d); deg R (Vr K v) X q ≤ an (Suc d) |]
==> hdeg_p R (Vr K v) X (Suc d) p ±R hdeg_p R (Vr K v) X (Suc d) q =
hdeg_p R (Vr K v) X (Suc d) (p ±R q)
lemma v_ldeg_p_mOp:
[| valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R;
deg R (Vr K v) X p ≤ an (Suc d) |]
==> -aR ldeg_p R (Vr K v) X d p = ldeg_p R (Vr K v) X d (-aR p)
lemma v_hdeg_p_mOp:
[| valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R;
deg R (Vr K v) X p ≤ an (Suc d) |]
==> -aR hdeg_p R (Vr K v) X (Suc d) p = hdeg_p R (Vr K v) X (Suc d) (-aR p)
lemma PCauchy_lPCauchy:
[| valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R;
∀n. deg R (Vr K v) X (F n) ≤ an (Suc d);
P_mod R (Vr K v) X (vp K v Vr K v an N) (F n ±R -aR F m) |]
==> P_mod R (Vr K v) X (vp K v Vr K v an N)
((PseqlR X K v d F) n ±R -aR (PseqlR X K v d F) m)
lemma PCauchy_hPCauchy:
[| valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R;
∀n. deg R (Vr K v) X (F n) ≤ an (Suc d);
P_mod R (Vr K v) X (vp K v Vr K v an N) (F n ±R -aR F m) |]
==> P_mod R (Vr K v) X (vp K v Vr K v an N)
((Pseqh R X K v d F) n ±R -aR (Pseqh R X K v d F) m)
lemma Pseq_decompos:
[| valuation K v; PolynRg R (Vr K v) X; F n ∈ carrier R;
deg R (Vr K v) X (F n) ≤ an (Suc d) |]
==> F n = (PseqlR X K v d F) n ±R (Pseqh R X K v d F) n
lemma deg_0_const:
[| valuation K v; PolynRg R (Vr K v) X; p ∈ carrier R; deg R (Vr K v) X p ≤ 0 |]
==> p ∈ carrier (Vr K v)
lemma monomial_P_limt:
[| valuation K v; Completev K; PolynRg R (Vr K v) X; ∀n. f n ∈ carrier (Vr K v);
∀n. F n = f n ·rR X^R d;
∀N. ∃M. ∀n m. M < n ∧ M < m -->
P_mod R (Vr K v) X (vp K v Vr K v an N) (F n ±R -aR F m) |]
==> ∃b∈carrier (Vr K v). Plimit R X K v F (b ·rR X^R d)
lemma mPlimit_uniqueTr:
[| valuation K v; PolynRg R (Vr K v) X; ∀n. f n ∈ carrier (Vr K v);
∀n. F n = f n ·rR X^R d; c ∈ carrier (Vr K v);
Plimit R X K v F (c ·rR X^R d) |]
==> lim K v f c
lemma mono_P_limt_unique:
[| valuation K v; PolynRg R (Vr K v) X; ∀n. f n ∈ carrier (Vr K v);
∀n. F n = f n ·rR X^R d; b ∈ carrier (Vr K v); c ∈ carrier (Vr K v);
Plimit R X K v F (b ·rR X^R d); Plimit R X K v F (c ·rR X^R d) |]
==> b ·rR X^R d = c ·rR X^R d
lemma Plimit_deg:
[| valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R;
∀n. deg R (Vr K v) X (F n) ≤ an d; p ∈ carrier R; Plimit R X K v F p |]
==> deg R (Vr K v) X p ≤ an d
lemma Plimit_deg1:
[| valuation K v; Ring R; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R;
∀n. deg R (Vr K v) X (F n) ≤ ad; p ∈ carrier R; Plimit R X K v F p |]
==> deg R (Vr K v) X p ≤ ad
lemma Plimit_ldeg:
[| valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R; p ∈ carrier R;
∀n. deg R (Vr K v) X (F n) ≤ an (Suc d); Plimit R X K v F p |]
==> Plimit R X K v PseqlR X K v d F ldeg_p R (Vr K v) X d p
lemma Plimit_hdeg:
[| valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R;
∀n. deg R (Vr K v) X (F n) ≤ an (Suc d); p ∈ carrier R; Plimit R X K v F p |]
==> Plimit R X K v Pseqh R X K v d F hdeg_p R (Vr K v) X (Suc d) p
lemma P_limit_uniqueTr:
[| valuation K v; PolynRg R (Vr K v) X |]
==> ∀F. (∀n. F n ∈ carrier R) ∧ (∀n. deg R (Vr K v) X (F n) ≤ an d) -->
(∀p1 p2.
p1 ∈ carrier R ∧
p2 ∈ carrier R ∧ Plimit R X K v F p1 ∧ Plimit R X K v F p2 -->
p1 = p2)
lemma P_limit_unique:
[| valuation K v; Completev K; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R;
∀n. deg R (Vr K v) X (F n) ≤ an d; p1.0 ∈ carrier R; p2.0 ∈ carrier R;
Plimit R X K v F p1.0; Plimit R X K v F p2.0 |]
==> p1.0 = p2.0
lemma P_limitTr:
[| valuation K v; Completev K; PolynRg R (Vr K v) X |]
==> ∀F. (∀n. F n ∈ carrier R) ∧
(∀n. deg R (Vr K v) X (F n) ≤ an d) ∧
(∀N. ∃M. ∀n m. M < n ∧ M < m -->
P_mod R (Vr K v) X (vp K v Vr K v an N)
(F n ±R -aR F m)) -->
(∃p∈carrier R. Plimit R X K v F p)
lemma PCauchy_Plimit:
[| valuation K v; Completev K; PolynRg R (Vr K v) X; PCauchy R X K v F |]
==> ∃p∈carrier R. Plimit R X K v F p
lemma P_limit_mult:
[| valuation K v; PolynRg R (Vr K v) X; ∀n. F n ∈ carrier R;
∀n. G n ∈ carrier R; p1.0 ∈ carrier R; p2.0 ∈ carrier R;
Plimit R X K v F p1.0; Plimit R X K v G p2.0 |]
==> Plimit R X K v (λn. F n ·rR G n) (p1.0 ·rR p2.0)
lemma Hensel_starter:
[| valuation K v; Completev K; PolynRg R (Vr K v) X;
PolynRg S (Vr K v /r vp K v) Y; t ∈ carrier (Vr K v); vp K v = Vr K v ♦p t;
f ∈ carrier R; f ≠ \<zero>R; g' ∈ carrier S; h' ∈ carrier S;
0 < deg S (Vr K v /r vp K v) Y g'; 0 < deg S (Vr K v /r vp K v) Y h';
erH R (Vr K v) X S (Vr K v /r vp K v) Y (pj (Vr K v) (vp K v)) f = g' ·rS h';
rel_prime_pols S (Vr K v /r vp K v) Y g' h' |]
==> ∃g h. g ≠ \<zero>R ∧
h ≠ \<zero>R ∧
g ∈ carrier R ∧
h ∈ carrier R ∧
deg R (Vr K v) X g
≤ deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g) ∧
deg R (Vr K v) X h +
deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g)
≤ deg R (Vr K v) X f ∧
erH R (Vr K v) X S (Vr K v /r vp K v) Y (pj (Vr K v) (vp K v)) g =
g' ∧
erH R (Vr K v) X S (Vr K v /r vp K v) Y (pj (Vr K v) (vp K v)) h =
h' ∧
0 < deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g) ∧
0 < deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) h) ∧
rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g)
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) h) ∧
P_mod R (Vr K v) X (Vr K v ♦p t) (f ±R -aR g ·rR h)
lemma aadd_plus_le_plus:
[| a ≤ a'; b ≤ b' |] ==> a + b ≤ a' + b'
lemma Hfst_PCauchy:
[| valuation K v; Completev K; PolynRg R (Vr K v) X;
PolynRg S (Vr K v /r (Vr K v ♦p t)) Y; g0.0 ∈ carrier R; h0.0 ∈ carrier R;
f ∈ carrier R; f ≠ \<zero>R; g0.0 ≠ \<zero>R; h0.0 ≠ \<zero>R;
t ∈ carrier (Vr K v); vp K v = Vr K v ♦p t;
deg R (Vr K v) X g0.0
≤ deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g0.0);
deg R (Vr K v) X h0.0 +
deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
g0.0)
≤ deg R (Vr K v) X f;
0 < deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g0.0);
0 < deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) h0.0);
rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
g0.0)
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
h0.0);
erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
f =
erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
g0.0 ·rS
erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
h0.0 |]
==> PCauchy R X K v Hfst K v R X t S Y f g0.0 h0.0
lemma Hsnd_PCauchy:
[| valuation K v; Completev K; PolynRg R (Vr K v) X;
PolynRg S (Vr K v /r (Vr K v ♦p t)) Y; g0.0 ∈ carrier R; h0.0 ∈ carrier R;
f ∈ carrier R; f ≠ \<zero>R; g0.0 ≠ \<zero>R; h0.0 ≠ \<zero>R;
t ∈ carrier (Vr K v); vp K v = Vr K v ♦p t;
deg R (Vr K v) X g0.0
≤ deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g0.0);
deg R (Vr K v) X h0.0 +
deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
g0.0)
≤ deg R (Vr K v) X f;
0 < deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g0.0);
0 < deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) h0.0);
rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
g0.0)
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
h0.0);
erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
f =
erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
g0.0 ·rS
erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
h0.0 |]
==> PCauchy R X K v Hsnd K v R X t S Y f g0.0 h0.0
lemma H_Plimit_f:
[| valuation K v; Completev K; t ∈ carrier (Vr K v); vp K v = Vr K v ♦p t;
PolynRg R (Vr K v) X; PolynRg S (Vr K v /r (Vr K v ♦p t)) Y; f ∈ carrier R;
f ≠ \<zero>R; g0.0 ∈ carrier R; h0.0 ∈ carrier R; g0.0 ≠ \<zero>R;
h0.0 ≠ \<zero>R;
0 < deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g0.0);
0 < deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) h0.0);
deg R (Vr K v) X h0.0 +
deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
g0.0)
≤ deg R (Vr K v) X f;
rel_prime_pols S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
g0.0)
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
h0.0);
erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
f =
erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
g0.0 ·rS
erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y (pj (Vr K v) (Vr K v ♦p t))
h0.0;
deg R (Vr K v) X g0.0
≤ deg S (Vr K v /r (Vr K v ♦p t)) Y
(erH R (Vr K v) X S (Vr K v /r (Vr K v ♦p t)) Y
(pj (Vr K v) (Vr K v ♦p t)) g0.0);
g ∈ carrier R; h ∈ carrier R;
Plimit R X K v Hfst K v R X t S Y f g0.0 h0.0 g;
Plimit R X K v Hsnd K v R X t S Y f g0.0 h0.0 h;
Plimit R X K v (λn. (Hfst K v R X t S Y f g0.0 h0.0 n) ·rR
(Hsnd K v R X t S Y f g0.0 h0.0 n)) (g ·rR h) |]
==> Plimit R X K v (λn. (Hfst K v R X t S Y f g0.0 h0.0 n) ·rR
(Hsnd K v R X t S Y f g0.0 h0.0 n)) f
theorem Hensel:
[| valuation K v; Completev K; PolynRg R (Vr K v) X;
PolynRg S (Vr K v /r vp K v) Y; f ∈ carrier R; f ≠ \<zero>R; g' ∈ carrier S;
h' ∈ carrier S; 0 < deg S (Vr K v /r vp K v) Y g';
0 < deg S (Vr K v /r vp K v) Y h';
erH R (Vr K v) X S (Vr K v /r vp K v) Y (pj (Vr K v) (vp K v)) f = g' ·rS h';
rel_prime_pols S (Vr K v /r vp K v) Y g' h' |]
==> ∃g h. g ∈ carrier R ∧
h ∈ carrier R ∧
deg R (Vr K v) X g ≤ deg S (Vr K v /r vp K v) Y g' ∧ f = g ·rR h