Up to index of Isabelle/HOL/Valuation
theory Order_Relation(* ID : $Id: Order_Relation.thy,v 1.4 2008/05/07 08:57:47 berghofe Exp $ Author : Tobias Nipkow *) header {* Orders as Relations *} theory Order_Relation imports ATP_Linkup Hilbert_Choice begin text{* This prelude could be moved to theory Relation: *} definition "irrefl r ≡ ∀x. (x,x) ∉ r" definition "total_on A r ≡ ∀x∈A.∀y∈A. x≠y --> (x,y)∈r ∨ (y,x)∈r" abbreviation "total ≡ total_on UNIV" lemma total_on_empty[simp]: "total_on {} r" by(simp add:total_on_def) lemma refl_on_converse[simp]: "refl A (r^-1) = refl A r" by(auto simp add:refl_def) lemma total_on_converse[simp]: "total_on A (r^-1) = total_on A r" by (auto simp: total_on_def) lemma irrefl_diff_Id[simp]: "irrefl(r-Id)" by(simp add:irrefl_def) declare [[simp_depth_limit = 2]] lemma trans_diff_Id: " trans r ==> antisym r ==> trans (r-Id)" by(simp add: antisym_def trans_def) blast declare [[simp_depth_limit = 50]] lemma total_on_diff_Id[simp]: "total_on A (r-Id) = total_on A r" by(simp add: total_on_def) subsection{* Orders on a set *} definition "preorder_on A r ≡ refl A r ∧ trans r" definition "partial_order_on A r ≡ preorder_on A r ∧ antisym r" definition "linear_order_on A r ≡ partial_order_on A r ∧ total_on A r" definition "strict_linear_order_on A r ≡ trans r ∧ irrefl r ∧ total_on A r" definition "well_order_on A r ≡ linear_order_on A r ∧ wf(r - Id)" lemmas order_on_defs = preorder_on_def partial_order_on_def linear_order_on_def strict_linear_order_on_def well_order_on_def lemma preorder_on_empty[simp]: "preorder_on {} {}" by(simp add:preorder_on_def trans_def) lemma partial_order_on_empty[simp]: "partial_order_on {} {}" by(simp add:partial_order_on_def) lemma lnear_order_on_empty[simp]: "linear_order_on {} {}" by(simp add:linear_order_on_def) lemma well_order_on_empty[simp]: "well_order_on {} {}" by(simp add:well_order_on_def) lemma preorder_on_converse[simp]: "preorder_on A (r^-1) = preorder_on A r" by (simp add:preorder_on_def) lemma partial_order_on_converse[simp]: "partial_order_on A (r^-1) = partial_order_on A r" by (simp add: partial_order_on_def) lemma linear_order_on_converse[simp]: "linear_order_on A (r^-1) = linear_order_on A r" by (simp add: linear_order_on_def) lemma strict_linear_order_on_diff_Id: "linear_order_on A r ==> strict_linear_order_on A (r-Id)" by(simp add: order_on_defs trans_diff_Id) subsection{* Orders on the field *} abbreviation "Refl r ≡ refl (Field r) r" abbreviation "Preorder r ≡ preorder_on (Field r) r" abbreviation "Partial_order r ≡ partial_order_on (Field r) r" abbreviation "Total r ≡ total_on (Field r) r" abbreviation "Linear_order r ≡ linear_order_on (Field r) r" abbreviation "Well_order r ≡ well_order_on (Field r) r" lemma subset_Image_Image_iff: "[| Preorder r; A ⊆ Field r; B ⊆ Field r|] ==> r `` A ⊆ r `` B <-> (∀a∈A.∃b∈B. (b,a):r)" apply(auto simp add: subset_eq preorder_on_def refl_def Image_def) apply metis by(metis trans_def) lemma subset_Image1_Image1_iff: "[| Preorder r; a : Field r; b : Field r|] ==> r `` {a} ⊆ r `` {b} <-> (b,a):r" by(simp add:subset_Image_Image_iff) lemma Refl_antisym_eq_Image1_Image1_iff: "[|Refl r; antisym r; a:Field r; b:Field r|] ==> r `` {a} = r `` {b} <-> a=b" by(simp add: expand_set_eq antisym_def refl_def) metis lemma Partial_order_eq_Image1_Image1_iff: "[|Partial_order r; a:Field r; b:Field r|] ==> r `` {a} = r `` {b} <-> a=b" by(auto simp:order_on_defs Refl_antisym_eq_Image1_Image1_iff) subsection{* Orders on a type *} abbreviation "strict_linear_order ≡ strict_linear_order_on UNIV" abbreviation "linear_order ≡ linear_order_on UNIV" abbreviation "well_order r ≡ well_order_on UNIV" end
lemma total_on_empty:
total_on {} r
lemma refl_on_converse:
refl A (r^-1) = refl A r
lemma total_on_converse:
total_on A (r^-1) = total_on A r
lemma irrefl_diff_Id:
irrefl (r - Id)
lemma trans_diff_Id:
[| trans r; antisym r |] ==> trans (r - Id)
lemma total_on_diff_Id:
total_on A (r - Id) = total_on A r
lemma order_on_defs:
preorder_on A r == refl A r ∧ trans r
partial_order_on A r == preorder_on A r ∧ antisym r
linear_order_on A r == partial_order_on A r ∧ total_on A r
strict_linear_order_on A r == trans r ∧ irrefl r ∧ total_on A r
well_order_on A r == linear_order_on A r ∧ wf (r - Id)
lemma preorder_on_empty:
preorder_on {} {}
lemma partial_order_on_empty:
partial_order_on {} {}
lemma lnear_order_on_empty:
linear_order_on {} {}
lemma well_order_on_empty:
well_order_on {} {}
lemma preorder_on_converse:
preorder_on A (r^-1) = preorder_on A r
lemma partial_order_on_converse:
partial_order_on A (r^-1) = partial_order_on A r
lemma linear_order_on_converse:
linear_order_on A (r^-1) = linear_order_on A r
lemma strict_linear_order_on_diff_Id:
linear_order_on A r ==> strict_linear_order_on A (r - Id)
lemma subset_Image_Image_iff:
[| Preorder r; A ⊆ Field r; B ⊆ Field r |]
==> (r `` A ⊆ r `` B) = (∀a∈A. ∃b∈B. (b, a) ∈ r)
lemma subset_Image1_Image1_iff:
[| Preorder r; a ∈ Field r; b ∈ Field r |]
==> (r `` {a} ⊆ r `` {b}) = ((b, a) ∈ r)
lemma Refl_antisym_eq_Image1_Image1_iff:
[| Refl r; antisym r; a ∈ Field r; b ∈ Field r |]
==> (r `` {a} = r `` {b}) = (a = b)
lemma Partial_order_eq_Image1_Image1_iff:
[| Partial_order r; a ∈ Field r; b ∈ Field r |]
==> (r `` {a} = r `` {b}) = (a = b)