Theory FuncSet

Up to index of Isabelle/HOL/Valuation

theory FuncSet
imports Main
begin

(*  Title:      HOL/Library/FuncSet.thy
    ID:         $Id: FuncSet.thy,v 1.19 2008/02/21 16:34:09 nipkow Exp $
    Author:     Florian Kammueller and Lawrence C Paulson
*)

header {* Pi and Function Sets *}

theory FuncSet
imports Main
begin

definition
  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
  "Pi A B = {f. ∀x. x ∈ A --> f x ∈ B x}"

definition
  extensional :: "'a set => ('a => 'b) set" where
  "extensional A = {f. ∀x. x~:A --> f x = arbitrary}"

definition
  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
  "restrict f A = (%x. if x ∈ A then f x else arbitrary)"

abbreviation
  funcset :: "['a set, 'b set] => ('a => 'b) set"
    (infixr "->" 60) where
  "A -> B == Pi A (%_. B)"

notation (xsymbols)
  funcset  (infixr "->" 60)

syntax
  "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)

syntax (xsymbols)
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3Π _∈_./ _)"   10)
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3λ_∈_./ _)" [0,0,3] 3)

syntax (HTML output)
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3Π _∈_./ _)"   10)
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3λ_∈_./ _)" [0,0,3] 3)

translations
  "PI x:A. B" == "CONST Pi A (%x. B)"
  "%x:A. f" == "CONST restrict (%x. f) A"

definition
  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
  "compose A g f = (λx∈A. g (f x))"


subsection{*Basic Properties of @{term Pi}*}

lemma Pi_I: "(!!x. x ∈ A ==> f x ∈ B x) ==> f ∈ Pi A B"
  by (simp add: Pi_def)

lemma funcsetI: "(!!x. x ∈ A ==> f x ∈ B) ==> f ∈ A -> B"
  by (simp add: Pi_def)

lemma Pi_mem: "[|f: Pi A B; x ∈ A|] ==> f x ∈ B x"
  by (simp add: Pi_def)

lemma funcset_mem: "[|f ∈ A -> B; x ∈ A|] ==> f x ∈ B"
  by (simp add: Pi_def)

lemma funcset_image: "f ∈ A->B ==> f ` A ⊆ B"
  by (auto simp add: Pi_def)

lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (∃x∈A. B(x) = {})"
apply (simp add: Pi_def, auto)
txt{*Converse direction requires Axiom of Choice to exhibit a function
picking an element from each non-empty @{term "B x"}*}
apply (drule_tac x = "%u. SOME y. y ∈ B u" in spec, auto)
apply (cut_tac P= "%y. y ∈ B x" in some_eq_ex, auto)
done

lemma Pi_empty [simp]: "Pi {} B = UNIV"
  by (simp add: Pi_def)

lemma Pi_UNIV [simp]: "A -> UNIV = UNIV"
  by (simp add: Pi_def)

text{*Covariance of Pi-sets in their second argument*}
lemma Pi_mono: "(!!x. x ∈ A ==> B x <= C x) ==> Pi A B <= Pi A C"
  by (simp add: Pi_def, blast)

text{*Contravariance of Pi-sets in their first argument*}
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"
  by (simp add: Pi_def, blast)


subsection{*Composition With a Restricted Domain: @{term compose}*}

lemma funcset_compose:
    "[| f ∈ A -> B; g ∈ B -> C |]==> compose A g f ∈ A -> C"
  by (simp add: Pi_def compose_def restrict_def)

lemma compose_assoc:
    "[| f ∈ A -> B; g ∈ B -> C; h ∈ C -> D |]
      ==> compose A h (compose A g f) = compose A (compose B h g) f"
  by (simp add: expand_fun_eq Pi_def compose_def restrict_def)

lemma compose_eq: "x ∈ A ==> compose A g f x = g(f(x))"
  by (simp add: compose_def restrict_def)

lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"
  by (auto simp add: image_def compose_eq)


subsection{*Bounded Abstraction: @{term restrict}*}

lemma restrict_in_funcset: "(!!x. x ∈ A ==> f x ∈ B) ==> (λx∈A. f x) ∈ A -> B"
  by (simp add: Pi_def restrict_def)

lemma restrictI: "(!!x. x ∈ A ==> f x ∈ B x) ==> (λx∈A. f x) ∈ Pi A B"
  by (simp add: Pi_def restrict_def)

lemma restrict_apply [simp]:
    "(λy∈A. f y) x = (if x ∈ A then f x else arbitrary)"
  by (simp add: restrict_def)

lemma restrict_ext:
    "(!!x. x ∈ A ==> f x = g x) ==> (λx∈A. f x) = (λx∈A. g x)"
  by (simp add: expand_fun_eq Pi_def Pi_def restrict_def)

lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"
  by (simp add: inj_on_def restrict_def)

lemma Id_compose:
    "[|f ∈ A -> B;  f ∈ extensional A|] ==> compose A (λy∈B. y) f = f"
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)

lemma compose_Id:
    "[|g ∈ A -> B;  g ∈ extensional A|] ==> compose A g (λx∈A. x) = g"
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)

lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"
  by (auto simp add: restrict_def)


subsection{*Bijections Between Sets*}

text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
the theorems belong here, or need at least @{term Hilbert_Choice}.*}

lemma bij_betw_imp_funcset: "bij_betw f A B ==> f ∈ A -> B"
  by (auto simp add: bij_betw_def inj_on_Inv Pi_def)

lemma inj_on_compose:
    "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A"
  by (auto simp add: bij_betw_def inj_on_def compose_eq)

lemma bij_betw_compose:
    "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C"
  apply (simp add: bij_betw_def compose_eq inj_on_compose)
  apply (auto simp add: compose_def image_def)
  done

lemma bij_betw_restrict_eq [simp]:
     "bij_betw (restrict f A) A B = bij_betw f A B"
  by (simp add: bij_betw_def)


subsection{*Extensionality*}

lemma extensional_arb: "[|f ∈ extensional A; x∉ A|] ==> f x = arbitrary"
  by (simp add: extensional_def)

lemma restrict_extensional [simp]: "restrict f A ∈ extensional A"
  by (simp add: restrict_def extensional_def)

lemma compose_extensional [simp]: "compose A f g ∈ extensional A"
  by (simp add: compose_def)

lemma extensionalityI:
    "[| f ∈ extensional A; g ∈ extensional A;
      !!x. x∈A ==> f x = g x |] ==> f = g"
  by (force simp add: expand_fun_eq extensional_def)

lemma Inv_funcset: "f ` A = B ==> (λx∈B. Inv A f x) : B -> A"
  by (unfold Inv_def) (fast intro: restrict_in_funcset someI2)

lemma compose_Inv_id:
    "bij_betw f A B ==> compose A (λy∈B. Inv A f y) f = (λx∈A. x)"
  apply (simp add: bij_betw_def compose_def)
  apply (rule restrict_ext, auto)
  apply (erule subst)
  apply (simp add: Inv_f_f)
  done

lemma compose_id_Inv:
    "f ` A = B ==> compose B f (λy∈B. Inv A f y) = (λx∈B. x)"
  apply (simp add: compose_def)
  apply (rule restrict_ext)
  apply (simp add: f_Inv_f)
  done


subsection{*Cardinality*}

lemma card_inj: "[|f ∈ A->B; inj_on f A; finite B|] ==> card(A) ≤ card(B)"
  apply (rule card_inj_on_le)
    apply (auto simp add: Pi_def)
  done

lemma card_bij:
     "[|f ∈ A->B; inj_on f A;
        g ∈ B->A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)"
  by (blast intro: card_inj order_antisym)


(*The following declarations generate polymorphic Skolem functions for 
  these theorems. Eventually they should become redundant, once this 
  is done automatically.*)

declare FuncSet.Pi_I [skolem]
declare FuncSet.Pi_mono [skolem]
declare FuncSet.extensionalityI [skolem]
declare FuncSet.funcsetI [skolem]
declare FuncSet.restrictI [skolem]
declare FuncSet.restrict_in_funcset [skolem]

end

Basic Properties of @{term Pi}

lemma Pi_I:

  (!!x. xA ==> f xB x) ==> fPi A B

lemma funcsetI:

  (!!x. xA ==> f xB) ==> fA -> B

lemma Pi_mem:

  [| fPi A B; xA |] ==> f xB x

lemma funcset_mem:

  [| fA -> B; xA |] ==> f xB

lemma funcset_image:

  fA -> B ==> f ` A  B

lemma Pi_eq_empty:

  (Pi A B = {}) = (∃xA. B x = {})

lemma Pi_empty:

  Pi {} B = UNIV

lemma Pi_UNIV:

  A -> UNIV = UNIV

lemma Pi_mono:

  (!!x. xA ==> B x  C x) ==> Pi A B  Pi A C

lemma Pi_anti_mono:

  A'  A ==> Pi A B  Pi A' B

Composition With a Restricted Domain: @{term compose}

lemma funcset_compose:

  [| fA -> B; gB -> C |] ==> compose A g fA -> C

lemma compose_assoc:

  [| fA -> B; gB -> C; hC -> D |]
  ==> compose A h (compose A g f) = compose A (compose B h g) f

lemma compose_eq:

  xA ==> compose A g f x = g (f x)

lemma surj_compose:

  [| f ` A = B; g ` B = C |] ==> compose A g f ` A = C

Bounded Abstraction: @{term restrict}

lemma restrict_in_funcset:

  (!!x. xA ==> f xB) ==> restrict f AA -> B

lemma restrictI:

  (!!x. xA ==> f xB x) ==> restrict f APi A B

lemma restrict_apply:

  restrict f A x = (if xA then f x else arbitrary)

lemma restrict_ext:

  (!!x. xA ==> f x = g x) ==> restrict f A = restrict g A

lemma inj_on_restrict_eq:

  inj_on (restrict f A) A = inj_on f A

lemma Id_compose:

  [| fA -> B; fextensional A |] ==> compose AyB. y) f = f

lemma compose_Id:

  [| gA -> B; gextensional A |] ==> compose A gxA. x) = g

lemma image_restrict_eq:

  restrict f A ` A = f ` A

Bijections Between Sets

lemma bij_betw_imp_funcset:

  bij_betw f A B ==> fA -> B

lemma inj_on_compose:

  [| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A

lemma bij_betw_compose:

  [| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C

lemma bij_betw_restrict_eq:

  bij_betw (restrict f A) A B = bij_betw f A B

Extensionality

lemma extensional_arb:

  [| fextensional A; x  A |] ==> f x = arbitrary

lemma restrict_extensional:

  restrict f Aextensional A

lemma compose_extensional:

  compose A f gextensional A

lemma extensionalityI:

  [| fextensional A; gextensional A; !!x. xA ==> f x = g x |] ==> f = g

lemma Inv_funcset:

  f ` A = B ==> restrict (Inv A f) BB -> A

lemma compose_Inv_id:

  bij_betw f A B ==> compose A (restrict (Inv A f) B) f = (λxA. x)

lemma compose_id_Inv:

  f ` A = B ==> compose B f (restrict (Inv A f) B) = (λxB. x)

Cardinality

lemma card_inj:

  [| fA -> B; inj_on f A; finite B |] ==> card A  card B

lemma card_bij:

  [| fA -> B; inj_on f A; gB -> A; inj_on g B; finite A; finite B |]
  ==> card A = card B