(* Title: HOL/Library/FuncSet.thy ID: $Id: FuncSet.thy,v 1.19 2008/02/21 16:34:09 nipkow Exp $ Author: Florian Kammueller and Lawrence C Paulson *) header {* Pi and Function Sets *} theory FuncSet imports Main begin definition Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where "Pi A B = {f. ∀x. x ∈ A --> f x ∈ B x}" definition extensional :: "'a set => ('a => 'b) set" where "extensional A = {f. ∀x. x~:A --> f x = arbitrary}" definition "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where "restrict f A = (%x. if x ∈ A then f x else arbitrary)" abbreviation funcset :: "['a set, 'b set] => ('a => 'b) set" (infixr "->" 60) where "A -> B == Pi A (%_. B)" notation (xsymbols) funcset (infixr "->" 60) syntax "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3PI _:_./ _)" 10) "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3%_:_./ _)" [0,0,3] 3) syntax (xsymbols) "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3Π _∈_./ _)" 10) "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3λ_∈_./ _)" [0,0,3] 3) syntax (HTML output) "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3Π _∈_./ _)" 10) "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3λ_∈_./ _)" [0,0,3] 3) translations "PI x:A. B" == "CONST Pi A (%x. B)" "%x:A. f" == "CONST restrict (%x. f) A" definition "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where "compose A g f = (λx∈A. g (f x))" subsection{*Basic Properties of @{term Pi}*} lemma Pi_I: "(!!x. x ∈ A ==> f x ∈ B x) ==> f ∈ Pi A B" by (simp add: Pi_def) lemma funcsetI: "(!!x. x ∈ A ==> f x ∈ B) ==> f ∈ A -> B" by (simp add: Pi_def) lemma Pi_mem: "[|f: Pi A B; x ∈ A|] ==> f x ∈ B x" by (simp add: Pi_def) lemma funcset_mem: "[|f ∈ A -> B; x ∈ A|] ==> f x ∈ B" by (simp add: Pi_def) lemma funcset_image: "f ∈ A->B ==> f ` A ⊆ B" by (auto simp add: Pi_def) lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (∃x∈A. B(x) = {})" apply (simp add: Pi_def, auto) txt{*Converse direction requires Axiom of Choice to exhibit a function picking an element from each non-empty @{term "B x"}*} apply (drule_tac x = "%u. SOME y. y ∈ B u" in spec, auto) apply (cut_tac P= "%y. y ∈ B x" in some_eq_ex, auto) done lemma Pi_empty [simp]: "Pi {} B = UNIV" by (simp add: Pi_def) lemma Pi_UNIV [simp]: "A -> UNIV = UNIV" by (simp add: Pi_def) text{*Covariance of Pi-sets in their second argument*} lemma Pi_mono: "(!!x. x ∈ A ==> B x <= C x) ==> Pi A B <= Pi A C" by (simp add: Pi_def, blast) text{*Contravariance of Pi-sets in their first argument*} lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B" by (simp add: Pi_def, blast) subsection{*Composition With a Restricted Domain: @{term compose}*} lemma funcset_compose: "[| f ∈ A -> B; g ∈ B -> C |]==> compose A g f ∈ A -> C" by (simp add: Pi_def compose_def restrict_def) lemma compose_assoc: "[| f ∈ A -> B; g ∈ B -> C; h ∈ C -> D |] ==> compose A h (compose A g f) = compose A (compose B h g) f" by (simp add: expand_fun_eq Pi_def compose_def restrict_def) lemma compose_eq: "x ∈ A ==> compose A g f x = g(f(x))" by (simp add: compose_def restrict_def) lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C" by (auto simp add: image_def compose_eq) subsection{*Bounded Abstraction: @{term restrict}*} lemma restrict_in_funcset: "(!!x. x ∈ A ==> f x ∈ B) ==> (λx∈A. f x) ∈ A -> B" by (simp add: Pi_def restrict_def) lemma restrictI: "(!!x. x ∈ A ==> f x ∈ B x) ==> (λx∈A. f x) ∈ Pi A B" by (simp add: Pi_def restrict_def) lemma restrict_apply [simp]: "(λy∈A. f y) x = (if x ∈ A then f x else arbitrary)" by (simp add: restrict_def) lemma restrict_ext: "(!!x. x ∈ A ==> f x = g x) ==> (λx∈A. f x) = (λx∈A. g x)" by (simp add: expand_fun_eq Pi_def Pi_def restrict_def) lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" by (simp add: inj_on_def restrict_def) lemma Id_compose: "[|f ∈ A -> B; f ∈ extensional A|] ==> compose A (λy∈B. y) f = f" by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) lemma compose_Id: "[|g ∈ A -> B; g ∈ extensional A|] ==> compose A g (λx∈A. x) = g" by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" by (auto simp add: restrict_def) subsection{*Bijections Between Sets*} text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of the theorems belong here, or need at least @{term Hilbert_Choice}.*} lemma bij_betw_imp_funcset: "bij_betw f A B ==> f ∈ A -> B" by (auto simp add: bij_betw_def inj_on_Inv Pi_def) lemma inj_on_compose: "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A" by (auto simp add: bij_betw_def inj_on_def compose_eq) lemma bij_betw_compose: "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C" apply (simp add: bij_betw_def compose_eq inj_on_compose) apply (auto simp add: compose_def image_def) done lemma bij_betw_restrict_eq [simp]: "bij_betw (restrict f A) A B = bij_betw f A B" by (simp add: bij_betw_def) subsection{*Extensionality*} lemma extensional_arb: "[|f ∈ extensional A; x∉ A|] ==> f x = arbitrary" by (simp add: extensional_def) lemma restrict_extensional [simp]: "restrict f A ∈ extensional A" by (simp add: restrict_def extensional_def) lemma compose_extensional [simp]: "compose A f g ∈ extensional A" by (simp add: compose_def) lemma extensionalityI: "[| f ∈ extensional A; g ∈ extensional A; !!x. x∈A ==> f x = g x |] ==> f = g" by (force simp add: expand_fun_eq extensional_def) lemma Inv_funcset: "f ` A = B ==> (λx∈B. Inv A f x) : B -> A" by (unfold Inv_def) (fast intro: restrict_in_funcset someI2) lemma compose_Inv_id: "bij_betw f A B ==> compose A (λy∈B. Inv A f y) f = (λx∈A. x)" apply (simp add: bij_betw_def compose_def) apply (rule restrict_ext, auto) apply (erule subst) apply (simp add: Inv_f_f) done lemma compose_id_Inv: "f ` A = B ==> compose B f (λy∈B. Inv A f y) = (λx∈B. x)" apply (simp add: compose_def) apply (rule restrict_ext) apply (simp add: f_Inv_f) done subsection{*Cardinality*} lemma card_inj: "[|f ∈ A->B; inj_on f A; finite B|] ==> card(A) ≤ card(B)" apply (rule card_inj_on_le) apply (auto simp add: Pi_def) done lemma card_bij: "[|f ∈ A->B; inj_on f A; g ∈ B->A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)" by (blast intro: card_inj order_antisym) (*The following declarations generate polymorphic Skolem functions for these theorems. Eventually they should become redundant, once this is done automatically.*) declare FuncSet.Pi_I [skolem] declare FuncSet.Pi_mono [skolem] declare FuncSet.extensionalityI [skolem] declare FuncSet.funcsetI [skolem] declare FuncSet.restrictI [skolem] declare FuncSet.restrict_in_funcset [skolem] end
lemma Pi_I:
(!!x. x ∈ A ==> f x ∈ B x) ==> f ∈ Pi A B
lemma funcsetI:
(!!x. x ∈ A ==> f x ∈ B) ==> f ∈ A -> B
lemma Pi_mem:
[| f ∈ Pi A B; x ∈ A |] ==> f x ∈ B x
lemma funcset_mem:
[| f ∈ A -> B; x ∈ A |] ==> f x ∈ B
lemma funcset_image:
f ∈ A -> B ==> f ` A ⊆ B
lemma Pi_eq_empty:
(Pi A B = {}) = (∃x∈A. B x = {})
lemma Pi_empty:
Pi {} B = UNIV
lemma Pi_UNIV:
A -> UNIV = UNIV
lemma Pi_mono:
(!!x. x ∈ A ==> B x ⊆ C x) ==> Pi A B ⊆ Pi A C
lemma Pi_anti_mono:
A' ⊆ A ==> Pi A B ⊆ Pi A' B
lemma funcset_compose:
[| f ∈ A -> B; g ∈ B -> C |] ==> compose A g f ∈ A -> C
lemma compose_assoc:
[| f ∈ A -> B; g ∈ B -> C; h ∈ C -> D |]
==> compose A h (compose A g f) = compose A (compose B h g) f
lemma compose_eq:
x ∈ A ==> compose A g f x = g (f x)
lemma surj_compose:
[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C
lemma restrict_in_funcset:
(!!x. x ∈ A ==> f x ∈ B) ==> restrict f A ∈ A -> B
lemma restrictI:
(!!x. x ∈ A ==> f x ∈ B x) ==> restrict f A ∈ Pi A B
lemma restrict_apply:
restrict f A x = (if x ∈ A then f x else arbitrary)
lemma restrict_ext:
(!!x. x ∈ A ==> f x = g x) ==> restrict f A = restrict g A
lemma inj_on_restrict_eq:
inj_on (restrict f A) A = inj_on f A
lemma Id_compose:
[| f ∈ A -> B; f ∈ extensional A |] ==> compose A (λy∈B. y) f = f
lemma compose_Id:
[| g ∈ A -> B; g ∈ extensional A |] ==> compose A g (λx∈A. x) = g
lemma image_restrict_eq:
restrict f A ` A = f ` A
lemma bij_betw_imp_funcset:
bij_betw f A B ==> f ∈ A -> B
lemma inj_on_compose:
[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A
lemma bij_betw_compose:
[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C
lemma bij_betw_restrict_eq:
bij_betw (restrict f A) A B = bij_betw f A B
lemma extensional_arb:
[| f ∈ extensional A; x ∉ A |] ==> f x = arbitrary
lemma restrict_extensional:
restrict f A ∈ extensional A
lemma compose_extensional:
compose A f g ∈ extensional A
lemma extensionalityI:
[| f ∈ extensional A; g ∈ extensional A; !!x. x ∈ A ==> f x = g x |] ==> f = g
lemma Inv_funcset:
f ` A = B ==> restrict (Inv A f) B ∈ B -> A
lemma compose_Inv_id:
bij_betw f A B ==> compose A (restrict (Inv A f) B) f = (λx∈A. x)
lemma compose_id_Inv:
f ` A = B ==> compose B f (restrict (Inv A f) B) = (λx∈B. x)
lemma card_inj:
[| f ∈ A -> B; inj_on f A; finite B |] ==> card A ≤ card B
lemma card_bij:
[| f ∈ A -> B; inj_on f A; g ∈ B -> A; inj_on g B; finite A; finite B |]
==> card A = card B