(* Title: HOL/Binomial.thy ID: $Id: Binomial.thy,v 1.8 2007/12/18 13:37:00 haftmann Exp $ Author: Lawrence C Paulson Copyright 1997 University of Cambridge *) header {* Binomial Coefficients *} theory Binomial imports ATP_Linkup begin text {* This development is based on the work of Andy Gordon and Florian Kammueller. *} consts binomial :: "nat => nat => nat" (infixl "choose" 65) primrec binomial_0: "(0 choose k) = (if k = 0 then 1 else 0)" binomial_Suc: "(Suc n choose k) = (if k = 0 then 1 else (n choose (k - 1)) + (n choose k))" lemma binomial_n_0 [simp]: "(n choose 0) = 1" by (cases n) simp_all lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0" by simp lemma binomial_Suc_Suc [simp]: "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)" by simp lemma binomial_eq_0: "!!k. n < k ==> (n choose k) = 0" by (induct n) auto declare binomial_0 [simp del] binomial_Suc [simp del] lemma binomial_n_n [simp]: "(n choose n) = 1" by (induct n) (simp_all add: binomial_eq_0) lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n" by (induct n) simp_all lemma binomial_1 [simp]: "(n choose Suc 0) = n" by (induct n) simp_all lemma zero_less_binomial: "k ≤ n ==> (n choose k) > 0" by (induct n k rule: diff_induct) simp_all lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)" apply (safe intro!: binomial_eq_0) apply (erule contrapos_pp) apply (simp add: zero_less_binomial) done lemma zero_less_binomial_iff: "(n choose k > 0) = (k≤n)" by(simp add: linorder_not_less binomial_eq_0_iff neq0_conv[symmetric] del:neq0_conv) (*Might be more useful if re-oriented*) lemma Suc_times_binomial_eq: "!!k. k ≤ n ==> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k" apply (induct n) apply (simp add: binomial_0) apply (case_tac k) apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq binomial_eq_0) done text{*This is the well-known version, but it's harder to use because of the need to reason about division.*} lemma binomial_Suc_Suc_eq_times: "k ≤ n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k" by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc del: mult_Suc mult_Suc_right) text{*Another version, with -1 instead of Suc.*} lemma times_binomial_minus1_eq: "[|k ≤ n; 0<k|] ==> (n choose k) * k = n * ((n - 1) choose (k - 1))" apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq) apply (simp split add: nat_diff_split, auto) done subsection {* Theorems about @{text "choose"} *} text {* \medskip Basic theorem about @{text "choose"}. By Florian Kamm\"uller, tidied by LCP. *} lemma card_s_0_eq_empty: "finite A ==> card {B. B ⊆ A & card B = 0} = 1" apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq]) apply (simp cong add: rev_conj_cong) done lemma choose_deconstruct: "finite M ==> x ∉ M ==> {s. s <= insert x M & card(s) = Suc k} = {s. s <= M & card(s) = Suc k} Un {s. EX t. t <= M & card(t) = k & s = insert x t}" apply safe apply (auto intro: finite_subset [THEN card_insert_disjoint]) apply (drule_tac x = "xa - {x}" in spec) apply (subgoal_tac "x ∉ xa", auto) apply (erule rev_mp, subst card_Diff_singleton) apply (auto intro: finite_subset) done text{*There are as many subsets of @{term A} having cardinality @{term k} as there are sets obtained from the former by inserting a fixed element @{term x} into each.*} lemma constr_bij: "[|finite A; x ∉ A|] ==> card {B. EX C. C <= A & card(C) = k & B = insert x C} = card {B. B <= A & card(B) = k}" apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq) apply (auto elim!: equalityE simp add: inj_on_def) apply (subst Diff_insert0, auto) txt {* finiteness of the two sets *} apply (rule_tac [2] B = "Pow (A)" in finite_subset) apply (rule_tac B = "Pow (insert x A)" in finite_subset) apply fast+ done text {* Main theorem: combinatorial statement about number of subsets of a set. *} lemma n_sub_lemma: "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)" apply (induct k) apply (simp add: card_s_0_eq_empty, atomize) apply (rotate_tac -1, erule finite_induct) apply (simp_all (no_asm_simp) cong add: conj_cong add: card_s_0_eq_empty choose_deconstruct) apply (subst card_Un_disjoint) prefer 4 apply (force simp add: constr_bij) prefer 3 apply force prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2] finite_subset [of _ "Pow (insert x F)", standard]) apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset]) done theorem n_subsets: "finite A ==> card {B. B <= A & card B = k} = (card A choose k)" by (simp add: n_sub_lemma) text{* The binomial theorem (courtesy of Tobias Nipkow): *} theorem binomial: "(a+b::nat)^n = (∑k=0..n. (n choose k) * a^k * b^(n-k))" proof (induct n) case 0 thus ?case by simp next case (Suc n) have decomp: "{0..n+1} = {0} ∪ {n+1} ∪ {1..n}" by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) have decomp2: "{0..n} = {0} ∪ {1..n}" by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) have "(a+b::nat)^(n+1) = (a+b) * (∑k=0..n. (n choose k) * a^k * b^(n-k))" using Suc by simp also have "… = a*(∑k=0..n. (n choose k) * a^k * b^(n-k)) + b*(∑k=0..n. (n choose k) * a^k * b^(n-k))" by (rule nat_distrib) also have "… = (∑k=0..n. (n choose k) * a^(k+1) * b^(n-k)) + (∑k=0..n. (n choose k) * a^k * b^(n-k+1))" by (simp add: setsum_right_distrib mult_ac) also have "… = (∑k=0..n. (n choose k) * a^k * b^(n+1-k)) + (∑k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))" by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le del:setsum_cl_ivl_Suc) also have "… = a^(n+1) + b^(n+1) + (∑k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) + (∑k=1..n. (n choose k) * a^k * b^(n+1-k))" by (simp add: decomp2) also have "… = a^(n+1) + b^(n+1) + (∑k=1..n. (n+1 choose k) * a^k * b^(n+1-k))" by (simp add: nat_distrib setsum_addf binomial.simps) also have "… = (∑k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))" using decomp by simp finally show ?case by simp qed end
lemma binomial_n_0:
n choose 0 = 1
lemma binomial_0_Suc:
0 choose Suc k = 0
lemma binomial_Suc_Suc:
Suc n choose Suc k = n choose k + (n choose Suc k)
lemma binomial_eq_0:
n < k ==> n choose k = 0
lemma binomial_n_n:
n choose n = 1
lemma binomial_Suc_n:
Suc n choose n = Suc n
lemma binomial_1:
n choose Suc 0 = n
lemma zero_less_binomial:
k ≤ n ==> 0 < n choose k
lemma binomial_eq_0_iff:
(n choose k = 0) = (n < k)
lemma zero_less_binomial_iff:
(0 < n choose k) = (k ≤ n)
lemma Suc_times_binomial_eq:
k ≤ n ==> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k
lemma binomial_Suc_Suc_eq_times:
k ≤ n ==> Suc n choose Suc k = Suc n * (n choose k) div Suc k
lemma times_binomial_minus1_eq:
[| k ≤ n; 0 < k |] ==> (n choose k) * k = n * (n - 1 choose (k - 1))
lemma card_s_0_eq_empty:
finite A ==> card {B. B ⊆ A ∧ card B = 0} = 1
lemma choose_deconstruct:
[| finite M; x ∉ M |]
==> {s. s ⊆ insert x M ∧ card s = Suc k} =
{s. s ⊆ M ∧ card s = Suc k} ∪ {s. ∃t⊆M. card t = k ∧ s = insert x t}
lemma constr_bij:
[| finite A; x ∉ A |]
==> card {B. ∃C⊆A. card C = k ∧ B = insert x C} = card {B. B ⊆ A ∧ card B = k}
lemma n_sub_lemma:
finite A ==> card {B. B ⊆ A ∧ card B = k} = card A choose k
theorem n_subsets:
finite A ==> card {B. B ⊆ A ∧ card B = k} = card A choose k
theorem binomial:
(a + b) ^ n = (∑k = 0..n. (n choose k) * a ^ k * b ^ (n - k))